Science.gov

Sample records for cell applications pem

  1. Proton Exchange Membrane (PEM) Fuel Cells for Space Applications

    NASA Technical Reports Server (NTRS)

    Bradley, Karla

    2004-01-01

    This presentation will provide a summary of the PEM fuel cell development at the National Aeronautics and Space Administration, Johnson Space Center (NASA, JSC) in support of future space applications. Fuel cells have been used for space power generation due to their high energy storage density for multi-day missions. The Shuttle currently utilizes the alkaline fuel cell technology, which has highly safe and reliable performance. However, the alkaline technology has a limited life due to the corrosion inherent to the alkaline technology. PEM fuel cells are under development by industry for transportation, residential and commercial stationary power applications. NASA is trying to incorporate some of this stack technology development in the PEM fuel cells for space. NASA has some unique design and performance parameters which make developing a PEM fuel cell system more challenging. Space fuel cell applications utilize oxygen, rather than air, which yields better performance but increases the hazard level. To reduce the quantity of reactants that need to be flown in space, NASA also utilizes water separation and reactant recirculation. Due to the hazards of utilizing active components for recirculation and water separation, NASA is trying to develop passive recirculation and water separation methods. However, the ability to develop recirculation components and water separators that are gravity-independent and successfully operate over the full range of power levels is one of the greatest challenges to developing a safe and reliable PEM fuel cell system. PEM stack, accessory component, and system tests that have been performed for space power applications will be discussed.

  2. PEM fuel cell applications and their development at International Fuel Cells

    SciTech Connect

    Fuller, T.F.; Gorman, M.E.; Van Dine, L.L.

    1996-12-31

    International Fuel Cells (IFC) is involved with the full spectrum of fuel cell power plants including the development of Proton Exchange Membrane (PEM) fuel cell systems. The extensive background in systems, design, materials and manufacturing technologies has been brought to bear on the development of highly competitive PEM power plants. IFC is aggressively pursuing these opportunities and is developing low-cost designs for a wide variety of PEM fuel cell applications with special emphasis on portable power and transportation. Experimental PEM power plants for each of these applications have been successfully tested.

  3. PEM fuel cell stack development for automotive applications

    SciTech Connect

    Ernst, W.D.

    1996-12-31

    Presently, the major challenges to the introduction of fuel cell power systems for automotive applications are to maximize the effective system power density and minimize cost. The material cost, especially for Platinum, had been a significant factor until recent advances by Los Alamos National Laboratory and others in low Platinum loading electrode design has brought these costs within control. Since the initiation of its PEM stack development efforts, MTI has focused on applying its system and mechanical engineering heritage on both increasing power density and reducing cost. In May of 1995, MTI was selected (along with four other companies) as a subcontractor by the Ford Motor Company to participate in Phase I of the DOE Office of Transportation Technology sponsored PNGV Program entitled: {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}. This Program was instituted to: (1) Advance the performance and economic viability of a direct-hydrogen-fueled PEM fuel cell system, (2) Identify the critical problems that must be resolved before system scale-up and vehicle integration, and (3) Integrate the fuel cell power system into a sub-scale vehicle propulsion system. The Phase I objective was to develop and demonstrate a nominal 10 kW stack meeting specific criteria. Figure I is a photograph of the stack used for these demonstrations. After completion of Phase I, MTI was one of only two companies selected to continue into Phase II of the Program. This paper summarizes Phase I stack development and results.

  4. PEM fuel cell bipolar plate material requirements for transportation applications

    SciTech Connect

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E.

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  5. Proton Exchange Membrane (PEM) Fuel Cell Status and Remaining Challenges for Manned Space-Flight Applications

    NASA Technical Reports Server (NTRS)

    Reaves, Will F.; Hoberecht, Mark A.

    2003-01-01

    The Fuel Cell has been used for manned space flight since the Gemini program. Its power output and water production capability over long durations for the mass and volume are critical for manned space-flight requirements. The alkaline fuel cell used on the Shuttle, while very reliable and capable for it s application, has operational sensitivities, limited life, and an expensive recycle cost. The PEM fuel cell offers many potential improvements in those areas. NASA Glenn Research Center is currently leading a PEM fuel cell development and test program intended to move the technology closer to the point required for manned space-flight consideration. This paper will address the advantages of PEM fuel cell technology and its potential for future space flight as compared to existing alkaline fuel cells. It will also cover the technical hurdles that must be overcome. In addition, a description of the NASA PEM fuel cell development program will be presented, and the current status of this effort discussed. The effort is a combination of stack and ancillary component hardware development, culminating in breadboard and engineering model unit assembly and test. Finally, a detailed roadmap for proceeding fiom engineering model hardware to qualification and flight hardware will be proposed. Innovative test engineering and potential payload manifesting may be required to actually validate/certify a PEM fuel cell for manned space flight.

  6. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2008-01-01

    A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.

  7. H2S removal with ZnO during fuel processing for PEM fuel cell applications

    SciTech Connect

    Li, Liyu; King, David L.

    2006-09-15

    The possibility of using ZnO as a H2S absorbent to protect catalysts in the gasoline and diesel fuel processor for PEM fuel cell applications was studied. It is possible to use commercial ZnO absorbent as a guard bed to protect the PROX catalyst and PEM fuel cell. However, it is not feasible to use ZnO to protect high and low temperature WGS catalysts, most likely due to COS formation via reactions CO + H2S = COS + H2 and CO2 + H2S = COS + H2O.

  8. NASA Non-Flow-Through PEM Fuel Cell System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Araghi, Koorosh R.

    2011-01-01

    NASA is researching passive NFT Proton Exchange Membrane (PEM) fuel cell technologies for primary fuel cell power plants in air-independent applications. NFT fuel cell power systems have a higher power density than flow through systems due to both reduced parasitic loads and lower system mass and volume. Reactant storage still dominates system mass/volume considerations. NFT fuel cell stack testing has demonstrated equivalent short term performance to flow through stacks. More testing is required to evaluate long-term performance.

  9. PEM regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry L.; Laconti, Anthony B.; Mccatty, Stephen A.

    1993-01-01

    This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.

  10. PEM fuel cell durability studies

    SciTech Connect

    Borup, Rodney L; Davey, John R; Ofstad, Axel B; Xu, Hui

    2008-01-01

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization for stationary and transportation power applications. For transportation applications, the durability target for fuel cell power systems is a 5,000 hour lifespan and able to function over a range of vehicle operating conditions (-40{sup o} to +40{sup o}C). However, durability is difficult to quantify and improve because of the quantity and duration of testing required, and also because the fuel cell stack contains many components, for which the degradation mechanisms, component interactions and effects of operating conditions are not fully understood. These requirements have led to the development of accelerated testing protocols for PEM fuel cells. The need for accelerated testing methodology is exemplified by the times required for standard testing to reach their required targets: automotive 5,000 hrs = {approx} 7 months; stationary systems 40,000 hrs = {approx} 4.6 years. As new materials continue to be developed, the need for relevant accelerated testing increases. In this investigation, we examine the durability of various cell components, examine the effect of transportation operating conditions (potential cycling, variable RH, shut-down/start-up, freeze/thaw) and evaluate durability by accelerated durability protocols. PEM fuel cell durability testing is performed on single cells, with tests being conducted with steady-state conditions and with dynamic conditions using power cycling to simulate a vehicle drive cycle. Component and single-cell characterization during and after testing was conducted to identify changes in material properties and related failure mechanisms. Accelerated-testing experiments were applied to further examine material degradation.

  11. Improved Membrane Materials for PEM Fuel Cell Application

    SciTech Connect

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  12. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2006-01-01

    NASA embarked on a PEM fuel cell power plant development program beginning in 2001. This five-year program was conducted by a three-center NASA team of Glenn Research Center (lead), Johnson Space Center, and Kennedy Space Center. The program initially was aimed at developing hardware for a Reusable Launch Vehicle (RLV) application, but more recently had shifted to applications supporting the NASA Exploration Program. The first phase of the development effort, to develop breadboard hardware in the 1-5 kW power range, was conducted by two competing vendors. The second phase of the effort, to develop Engineering Model hardware at the 10 kW power level, was conducted by the winning vendor from the first phase of the effort. Both breadboard units and the single engineering model power plant were delivered to NASA for independent testing. This poster presentation will present a summary of both phases of the development effort, along with a discussion of test results of the PEM fuel cell engineering model under simulated mission conditions.

  13. PEM/SPE fuel cell

    DOEpatents

    Grot, Stephen Andreas

    1998-01-01

    A PEM/SPE fuel cell including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates.

  14. PEM/SPE fuel cell

    DOEpatents

    Grot, S.A.

    1998-01-13

    A PEM/SPE fuel cell is described including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates. 4 figs.

  15. Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.; Jakupca, Ian J.

    2011-01-01

    Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.

  16. Analytical Investigation and Improvement of Performance of a Proton Exchange Membrane (Pem) Fuel Cell in Mobile Applications

    NASA Astrophysics Data System (ADS)

    Khazaee, I.

    2015-05-01

    In this study, the performance of a proton exchange membrane fuel cell in mobile applications is investigated analytically. At present the main use and advantages of fuel cells impact particularly strongly on mobile applications such as vehicles, mobile computers and mobile telephones. Some external parameters such as the cell temperature (Tcell ) , operating pressure of gases (P) and air stoichiometry (λair ) affect the performance and voltage losses in the PEM fuel cell. Because of the existence of many theoretical, empirical and semi-empirical models of the PEM fuel cell, it is necessary to compare the accuracy of these models. But theoretical models that are obtained from thermodynamic and electrochemical approach, are very exact but complex, so it would be easier to use the empirical and smi-empirical models in order to forecast the fuel cell system performance in many applications such as mobile applications. The main purpose of this study is to obtain the semi-empirical relation of a PEM fuel cell with the least voltage losses. Also, the results are compared with the existing experimental results in the literature and a good agreement is seen.

  17. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K. NY); Cunningham, Kevin M.

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  18. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  19. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.

    1997-04-29

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.

  20. PEM fuel cell monitoring system

    DOEpatents

    Meltser, Mark Alexander; Grot, Stephen Andreas

    1998-01-01

    Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

  1. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2001-07-17

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  2. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen J.; Doll, Gary L.

    1997-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  3. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2002-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  4. PEM fuel cell monitoring system

    DOEpatents

    Meltser, M.A.; Grot, S.A.

    1998-06-09

    Method and apparatus are disclosed for monitoring the performance of H{sub 2}--O{sub 2} PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H{sub 2} sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken. 2 figs.

  5. Reversible (unitized) PEM fuel cell devices

    SciTech Connect

    Mitlitsky, F; Myers, B; Smith, W F; Weisberg, Molter, T M

    1999-06-01

    Regenerative fuel cells (RFCs) are enabling for many weight-critical portable applications, since the packaged specific energy (>400 Wh/kg) of properly designed lightweight RFC systems is several-fold higher than that of the lightest weight rechargeable batteries. RFC systems can be rapidly refueled (like primary fuel cells), or can be electrically recharged (like secondary batteries) if a refueling infrastructure is not conveniently available. Higher energy capacity systems with higher performance, reduced weight, and freedom from fueling infrastructure are the features that RFCs promise for portable applications. Reversible proton exchange membrane (PEM) fuel cells, also known as unitized regenerative fuel cells (URFCs), or reversible regenerative fuel cells, are RFC systems which use reversible PEM cells, where each cell is capable of operating both as a fuel cell and as an electrolyzer. URFCs further economize portable device weight, volume, and complexity by combining the functions of fuel cells and electrolyzers in the same hardware, generally without any system performance or efficiency reduction. URFCs are being made in many forms, some of which are already small enough to be portable. Lawrence Livermore National Laboratory (LLNL) has worked with industrial partners to design, develop, and demonstrate high performance and high cycle life URFC systems. LLNL is also working with industrial partners to develop breakthroughs in lightweight pressure vessels that are necessary for URFC systems to achieve the specific energy advantages over rechargeable batteries. Proton Energy Systems, Inc. (Proton) is concurrently developing and commercializing URFC systems (UNIGEN' product line), in addition to PEM electrolyzer systems (HOGEN' product line), and primary PEM fuel cell systems. LLNL is constructing demonstration URFC units in order to persuade potential sponsors, often in their own conference rooms, that advanced applications based on URFC s are feasible. Safety

  6. Advanced space power PEM fuel cell systems

    NASA Technical Reports Server (NTRS)

    Vanderborgh, N. E.; Hedstrom, J.; Huff, J. R.

    1989-01-01

    A model showing mass and heat transfer in proton exchange membrane (PEM) single cells is presented. For space applications, stack operation requiring combined water and thermal management is needed. Advanced hardware designs able to combine these two techniques are available. Test results are shown for membrane materials which can operate with sufficiently fast diffusive water transport to sustain current densities of 300 ma per square centimeter. Higher power density levels are predicted to require active water removal.

  7. High temperature PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven

    There are several compelling technological and commercial reasons for operating H 2/air PEM fuel cells at temperatures above 100 °C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for ∼90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation.

  8. An ultrathin self-humidifying membrane for PEM fuel cell application: fabrication, characterization, and experimental analysis.

    PubMed

    Zhu, Xiaobing; Zhang, Huamin; Zhang, Yu; Liang, Yongmin; Wang, Xiaoli; Yi, Baolian

    2006-07-27

    An ultrathin poly(tetrafluoroethylene) (PTFE)-reinforced multilayer self-humidifying composite membrane (20 microm, thick) is developed. The membrane is composed of Nafion-impregnated porous PTFE composite as the central layer, and SiO2 supported nanosized Pt particles (Pt-SiO2) imbedded into the Nafion as the two side layers. The proton exchange membrane (PEM) fuel cell employing the self-humidifying membrane (Pt-SiO2/NP) turns out a peak power density of 1.40 W cm(-2) and an open circuit voltage (OCV) of 1.032 V under dry H2/O2 condition. The excellent performance is attributed to the combined result of both the accelerated water back-diffusion in the thin membrane and the adsorbing/releasing water properties of the Pt-SiO2 catalyst in the side layers. Moreover, the inclusion of the hygroscopic Pt-SiO2 catalyst inside the membrane results in an enhanced anode self-humidification capability and also the decreased cathode polarization (accordingly an improved cell OCV). Several techniques, such as transmission electronic microscopy, scanning electronic microscopy, energy dispersive spectroscopy, thermal analysis and electrochemical impedance spectroscopy etc., are employed to characterize the Pt-SiO2/NP membrane. The results are discussed in comparison with the plain Nafion/PTFE membrane (NP). It is established that the reverse net water drag (from the cathode to the anode) across the Pt-SiO2/NP membrane reaches 0.16 H2O/H+. This implies a good hydration of the Pt-SiO2/NP membrane and thus ensures an excellent PEM fuel cell performance under self-humidification operation.

  9. A Novel Non-Platinum Group Electrocatalyst for PEM Fuel Cell Application

    SciTech Connect

    Kim, Jin Yong; Oh, Takkeun; Shin, Yongsoon; Bonnett, Jeff F.; Weil, K. Scott

    2011-04-01

    Precious-metal catalysts (predominantly Pt or Pt-based alloys supported on carbon) have traditionally been used to catalyze the electrode reactions in polymer electrolyte membrane (PEM) fuel cells. However as PEM fuel systems begin to approach commercial reality, there is an impending need to replace Pt with a lower cost alternative. The present study investigates the performance of a carbon-supported tantalum oxide material as a potential oxygen reduction reaction (ORR) catalyst for use on the cathode side of the PEM fuel cell membrane electrode assembly. Although bulk tantalum oxide tends to exhibit poor electrochemical performance due to limited electrical conductivity, it displays a high oxygen reduction potential; one that is comparable to Pt. Analysis of the Pourbaix electrochemical equilibrium database also indicates that tantalum oxide (Ta2O5) is chemically stable under the pH and applied potential conditions to which the cathode catalyst is typically exposed during stack operation. Nanoscale tantalum oxide catalysts were fabricated using two approaches, by reactive oxidation sputtering and by direct chemical synthesis, each carried out on a carbon support material. Nanoscale tantalum oxide particles measuring approximately 6nm in size that were sputtered onto carbon paper exhibited a mass-specific current density as high as one-third that of Pt when measured at 0.6V vs. NHE. However because of the two-dimensional nature of this particle-on-paper structure, which limits the overall length of the triple phase boundary junctions where the oxide, carbon paper, and aqueous electrolyte meet, the corresponding area-specific current density was quite low. The second synthesis approach yielded a more extended, three-dimensional structure via chemical deposition of nanoscale tantalum oxide particles on carbon powder. These catalysts exhibited a high ORR onset potential, comparable to that of Pt, and displayed a significant improvement in the area-specific current

  10. Fuel Processors for PEM Fuel Cells

    SciTech Connect

    Levi T. Thompson

    2008-08-08

    Fuel cells are being developed to power cleaner, more fuel efficient automobiles. The fuel cell technology favored by many automobile manufacturers is PEM fuel cells operating with H2 from liquid fuels like gasoline and diesel. A key challenge to the commercialization of PEM fuel cell based powertrains is the lack of sufficiently small and inexpensive fuel processors. Improving the performance and cost of the fuel processor will require the development of better performing catalysts, new reactor designs and better integration of the various fuel processing components. These components and systems could also find use in natural gas fuel processing for stationary, distributed generation applications. Prototype fuel processors were produced, and evaluated against the Department of Energy technical targets. Significant advances were made by integrating low-cost microreactor systems, high activity catalysts, π-complexation adsorbents, and high efficiency microcombustor/microvaporizers developed at the University of Michigan. The microreactor system allowed (1) more efficient thermal coupling of the fuel processor operations thereby minimizing heat exchanger requirements, (2) improved catalyst performance due to optimal reactor temperature profiles and increased heat and mass transport rates, and (3) better cold-start and transient responses.

  11. Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report

    SciTech Connect

    1996-01-01

    Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

  12. The synthesis and application of Au/Fe3O4 nanoparticles as catalysts in PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Yuan, Muzhaozi

    As an alternative energy source, PEM fuel cell has low operating temperatures, low carbon dioxide emission and high power densities. However the high price of platinum electrodes restrains it from being widely used in industry. The sintering of platinum nanoparticles is another serious problem which acts as a barrier of PEM fuel cell popularization. Current research regarding PEM fuel cell is mainly focused on the design of catalyst used to improve the power output while reduce the cost. Our research brings out a new strategy to design a new type of catalyst of this kind by introducing the metal oxide into the gold nanostructure. In this thesis, the gold nanoparticles, Fe 3O4 nanoparticles as well as the nanoparticles (Au/ Fe 3O4) with Fe3O4 as core and gold as shell were synthesized at first. Then Langmuir-Blodgett (LB) trough technique was used to coat different nanoparticles onto the Nafion membranes. Membranes with coating and without coating were tested in PEM fuel cell device. The voltage and current were recorded to calculate the power output enhanced by each type of corresponding nanoparticles. It is shown in the test that the Au/ Fe3O4 catalyst boosted the performance of PEM fuel cell by increasing the power output to 117% of the control sample. The costs to the same level of power output when using different nanoparticles were analyzed and compared as well. The results show the Au/ Fe3O 4 nanoparticles have the best performance-cost ratio compared with pure gold nanoparticles and Fe3O4 nanoparticles.

  13. In-situ diagnostic tools for hydrogen transfer leak characterization in PEM fuel cell stacks part I: R&D applications

    NASA Astrophysics Data System (ADS)

    Niroumand, Amir M.; Pooyanfar, Oldooz; Macauley, Natalia; DeVaal, Jake; Golnaraghi, Farid

    2015-03-01

    This paper describes a diagnostic tool for in-situ characterization of hydrogen transfer leak in individual cells of a Polymer Electrolyte Membrane (PEM) fuel cell stack, suitable for Research and Development (R&D) applications. The technique is based on supplying hydrogen and nitrogen to the anode and cathode of a PEM fuel cell stack while maintaining a prescribed anode overpressure. Under these conditions, hydrogen crosses over from the anode to the cathode, and the Open Circuit Voltage (OCV) represents the ratio of hydrogen partial pressure in the two electrodes. It is shown that by measuring temperature, pressure, flow, humidity, and individual OCVs, the proposed technique can accurately estimate the rate of hydrogen transfer leak in individual cells of a PEM fuel cell stack. This diagnostic tool is suitable for characterizing hydrogen transfer leaks during fuel cell R&D, as it only requires gasses and measurements that are readily available on fuel cell test stations, and does not need disassembling or modifying the fuel cell stack.

  14. Brazed bipolar plates for PEM fuel cells

    DOEpatents

    Neutzler, Jay Kevin

    1998-01-01

    A liquid-cooled, bipolar plate separating adjacent cells of a PEM fuel cell comprising corrosion-resistant metal sheets brazed together so as to provide a passage between the sheets through which a dielectric coolant flows. The brazement comprises a metal which is substantially insoluble in the coolant.

  15. Brazed bipolar plates for PEM fuel cells

    DOEpatents

    Neutzler, J.K.

    1998-07-07

    A liquid-cooled, bipolar plate separating adjacent cells of a PEM fuel cell comprises corrosion-resistant metal sheets brazed together so as to provide a passage between the sheets through which a dielectric coolant flows. The brazement comprises a metal which is substantially insoluble in the coolant. 6 figs.

  16. Development of PEM fuel cell technology at international fuel cells

    SciTech Connect

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  17. Fault detection and isolation of PEM fuel cell system based on nonlinear analytical redundancy. An application via parity space approach

    NASA Astrophysics Data System (ADS)

    Aitouche, A.; Yang, Q.; Ould Bouamama, B.

    2011-05-01

    This paper presents a procedure dealing with the issue of fault detection and isolation (FDI) using nonlinear analytical redundancy (NLAR) technique applied in a proton exchange membrane (PEM) fuel cell system based on its mathematic model. The model is proposed and simplified into a five orders state space representation. The transient phenomena captured in the model include the compressor dynamics, the flow characteristics, mass and energy conservation and manifold fluidic mechanics. Nonlinear analytical residuals are generated based on the elimination of the unknown variables of the system by an extended parity space approach to detect and isolate actuator and sensor faults. Finally, numerical simulation results are given corresponding to a faults signature matrix.

  18. Pattern recognition monitoring of PEM fuel cell

    DOEpatents

    Meltser, Mark Alexander

    1999-01-01

    The CO-concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H.sub.2 fuel stream.

  19. Pattern recognition monitoring of PEM fuel cell

    DOEpatents

    Meltser, M.A.

    1999-08-31

    The CO-concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H{sub 2} fuel stream. 4 figs.

  20. Materials Challenges for Automotive PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Gasteiger, Hubert

    2004-03-01

    Over the past few years, significant R efforts aimed at meeting the challenging cost and performance targets required for the use of Polymer Electrolyte Membrane (PEM) fuel cells in automotive applications. Besides engineering advances in bipolar plate materials and design, the optimization of membrane-electrode assemblies (MEAs) was an important enabler in reducing the cost and performance gaps towards commercial viability for the automotive market. On the one hand, platinum loadings were reduced from several mgPt/cm2MEA [1] to values of 0.5-0.6 mgPt/cm2MEA in current applications and loadings as low as 0.25 mgPt/cm2MEA have been demonstrated on the research level [2]. On the other hand, implementation of thin membranes (20-30 micrometer) [3, 4] as well as improvements in diffusion medium materials, essentially doubled the achievable power density of MEAs to ca. 0.9 W/cm2MEA (at 0.65 V) [5], thereby not only reducing the size of a PEMFC fuel cell system, but also reducing its overall materials cost (controlled to a large extent by membrane and Pt-catalyst cost). While this demonstrated a clear path towards automotive applications, a renewed focus of R efforts is now required to develop materials and fundamental materials understanding to assure long-term durability of PEM fuel cells. This presentation therefore will discuss the state-of-the-art knowledge of catalyst, catalyst-support, and membrane degradation mechanisms. In the area of Pt-catalysts, experience with phosphoric acid fuel cells (PAFCs) has shown that platinum sintering leads to long-term performance losses [6]. While this is less critical at the lower PEMFC operating temperatures (<100C) compared to PAFCs (>200C), very little is known about the dependence of Pt-sintering on temperature, cell voltage, and catalyst type (i.e., Pt versus Pt-alloys) and will be discussed here. Similarly, carbon-support corrosion can contribute significantly to voltage degradation in PAFCs [7], and even in the PEMFC

  1. Degradation Mechanisms and Accelerated Testing in PEM Fuel Cells

    SciTech Connect

    Borup, Rodney L.

    2011-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel or oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability.

  2. Materials Challenges for Automotive PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Gasteiger, Hubert

    2004-03-01

    Over the past few years, significant R efforts aimed at meeting the challenging cost and performance targets required for the use of Polymer Electrolyte Membrane (PEM) fuel cells in automotive applications. Besides engineering advances in bipolar plate materials and design, the optimization of membrane-electrode assemblies (MEAs) was an important enabler in reducing the cost and performance gaps towards commercial viability for the automotive market. On the one hand, platinum loadings were reduced from several mgPt/cm2MEA [1] to values of 0.5-0.6 mgPt/cm2MEA in current applications and loadings as low as 0.25 mgPt/cm2MEA have been demonstrated on the research level [2]. On the other hand, implementation of thin membranes (20-30 micrometer) [3, 4] as well as improvements in diffusion medium materials, essentially doubled the achievable power density of MEAs to ca. 0.9 W/cm2MEA (at 0.65 V) [5], thereby not only reducing the size of a PEMFC fuel cell system, but also reducing its overall materials cost (controlled to a large extent by membrane and Pt-catalyst cost). While this demonstrated a clear path towards automotive applications, a renewed focus of R efforts is now required to develop materials and fundamental materials understanding to assure long-term durability of PEM fuel cells. This presentation therefore will discuss the state-of-the-art knowledge of catalyst, catalyst-support, and membrane degradation mechanisms. In the area of Pt-catalysts, experience with phosphoric acid fuel cells (PAFCs) has shown that platinum sintering leads to long-term performance losses [6]. While this is less critical at the lower PEMFC operating temperatures (<100C) compared to PAFCs (>200C), very little is known about the dependence of Pt-sintering on temperature, cell voltage, and catalyst type (i.e., Pt versus Pt-alloys) and will be discussed here. Similarly, carbon-support corrosion can contribute significantly to voltage degradation in PAFCs [7], and even in the PEMFC

  3. Development of a 10 kW PEM fuel cell for stationary applications

    SciTech Connect

    Barthels, H.; Mergel, J.; Oetjen, H.F.

    1996-12-31

    A 10 kW Proton Exchange Membrane Fuel Cell (PEMFC) is being developed as part of a long-term energy storage path for electricity in the photovoltaic demonstration plant called PHOEBUS at the Forschungszentrum Julich.

  4. Degradation mechanisms and accelerated testing in PEM fuel cells

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To

  5. In-situ diagnostic tools for hydrogen transfer leak characterization in PEM fuel cell stacks part II: Operational applications

    NASA Astrophysics Data System (ADS)

    Niroumand, Amir M.; Homayouni, Hooman; DeVaal, Jake; Golnaraghi, Farid; Kjeang, Erik

    2016-08-01

    This paper describes a diagnostic tool for in-situ characterization of the rate and distribution of hydrogen transfer leaks in Polymer Electrolyte Membrane (PEM) fuel cell stacks. The method is based on reducing the air flow rate from a high to low value at a fixed current, while maintaining an anode overpressure. At high air flow rates, the reduction in air flow results in lower oxygen concentration in the cathode and therefore reduction in cell voltages. Once the air flow rate in each cell reaches a low value at which the cell oxygen-starves, the voltage of the corresponding cell drops to zero. However, oxygen starvation results from two processes: 1) the electrochemical oxygen reduction reaction which produces current; and 2) the chemical reaction between oxygen and the crossed over hydrogen. In this work, a diagnostic technique has been developed that accounts for the effect of the electrochemical reaction on cell voltage to identify the hydrogen leak rate and number of leaky cells in a fuel cell stack. This technique is suitable for leak characterization during fuel cell operation, as it only requires stack air flow and voltage measurements, which are readily available in an operational fuel cell system.

  6. In situ PEM fuel cell water measurements

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary; Davey, John R; Spendalow, Jacob S

    2008-01-01

    Efficient PEM fuel cell performance requires effective water management. The materials used, their durability, and the operating conditions under which fuel cells run, make efficient water management within a practical fuel cell system a primary challenge in developing commercially viable systems. We present experimental measurements of water content within operating fuel cells. in response to operational conditions, including transients and freezing conditions. To help understand the effect of components and operations, we examine water transport in operating fuel cells, measure the fuel cell water in situ and model the water transport within the fuel cell. High Frequency Resistance (HFR), AC Impedance and Neutron imaging (using NIST's facilities) were used to measure water content in operating fuel cells with various conditions, including current density, relative humidity, inlet flows, flow orientation and variable GDL properties. Ice formation in freezing cells was also monitored both during operation and shut-down conditions.

  7. "Dedicated To The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications."

    SciTech Connect

    Dever, Thomas J.

    2011-11-29

    The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and the market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies operating large

  8. Thin catalyst layers based on carbon nanotubes for PEM-fuel cell applications

    NASA Astrophysics Data System (ADS)

    Bohnenberger, T.; Matovic, J.; Schmid, U.

    2011-06-01

    In this study, two approaches are compared to develop thin, multifunctional films of carbon nanotubes (CNT) which are targeted to serve as a catalyst layer in fuel cells. The first is based on the direct deposition of mixed multi- and single-wall CNTs on metalized silicon wafers, using the metallization as a sacrificial layer to subsequently detach the CNT film from the substrate. It is a less time consuming and a straight forward method compared to the alternative under investigation, the layer-by-layer technique (LbL). The LbL uses bilayers of charged nanotubes to slowly build up a film with an exactly defined thickness. The process is well controlled, but the time constants for deposition of each bilayer are rather high (i.e. about 1 h). With additional annealing steps implemented during film generation this method, however, is regarded advantageous as membranes results with improved mechanical stability and a good homogeneity.

  9. Applications and development of high pressure PEM systems

    SciTech Connect

    Leonida, A; Militsky, F; Myers, B; Weisberg, A H

    1999-06-01

    Many portable fuel cell applications require high pressure hydrogen, oxygen, or both. High pressure PEM systems that were originally designed and developed primarily for aerospace applications are being redesigned for use in portable applications. Historically, applications can be broken into weight sensitive and weight insensitive cell stack designs. Variants of the weight sensitive designs have been considered to refill oxygen bottles for space suits, to provide oxygen for space shuttle, to provide oxygen and/or reboost propellants to the space station, and to recharge oxygen bottles for commercial aviation. A long operating history has been generated for weight insensitive designs that serve as oxygen generators for submarines. Exciting future vehicle concepts and portable applications are enabled by carefully designing lightweight stacks which do not require additional pressure containment. These include high altitude long endurance solar rechargeable aircraft and airships, water refuelable spacecraft, and a variety of field portable systems. High pressure electrolyzers can refill compressed hydrogen storage tanks for fuel cell powered vehicles or portable fuel cells. Hamilton Standard has demonstrated many high pressure PEM water electrolyzer designs for a variety of applications. Electrolyzers with operational pressures up to 3000 psi (20.7 MPa) are currently used for US Navy submarine oxygen generators. An aerospace version has been demonstrated in the Integrated Propulsion Test Article (IPTA) program. Electrolyzers with operational pressures up to 6000 psi (41.4 MPa) have also been demonstrated in the High Pressure Oxygen Recharge System (HPORS). Onboard oxygen generator systems (OBOGS) that generate up to 2000 psi (13.8 MPa) oxygen and refill breathable oxygen tanks for commercial aviation have been designed and successfully demonstrated. Other hardware applications that require high pressure PEM devices are related to these proven applications.

  10. Direct-hydrogen-fueled proton-exchange-membrane (PEM) fuel cell system for transportation applications. Quarterly technical progress report No. 4, April 1, 1995--June 30, 1995

    SciTech Connect

    Oei, D.

    1995-08-03

    This is the fourth Technical Progress Report for DOE Contract No. DE-AC02-94CE50389 awarded to Ford Motor Company on July 1, 1994. The overall objective of this contract is to advance the Proton-Exchange-Membrane (PEM) fuel cell technology for automotive applications. Specifically, the objectives resulting from this contract are to: (1) Develop and demonstrate on a laboratory propulsion system within 2-1/2 years a fully functional PEM Fuel Cell Power System (including fuel cell peripherals, peak power augmentation and controls). This propulsion system will achieve, or will be shown to have the growth potential to achieve, the weights, volumes, and production costs which are competitive with those same attributes of equivalently performing internal combustion engine propulsion systems; (2) Select and demonstrate a baseline onboard hydrogen storage method with acceptable weight, volume, cost, and safety features and analyze future alternatives; and (3) Analyze the hydrogen infrastructure components to ensure that hydrogen can be safely supplied to vehicles at geographically widespread convenient sites and at prices which are less than current gasoline prices per vehicle-mile; (4) Identify any future R&D needs for a fully integrated vehicle and for achieving the system cost and performance goals.

  11. Design considerations for miniaturized PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Meyers, Jeremy P.; Maynard, Helen L.

    In this paper, we consider the design of a miniaturized proton-exchange membrane (PEM) fuel cell for powering 0.5-20 W portable telecommunication and computing devices. Our design is implemented on a silicon substrate to take advantage of advanced silicon processing technology in order to minimize production costs. The reduced length scales afforded by silicon processing allow us to consider designs that would be prohibited by excessive Ohmic losses in larger systems. We employ a mathematical model to quantify the effects of the secondary current distribution on two competing cell designs. In addition to the design of the cell itself, we discuss key integration issues and engineering trade-offs relevant to all miniaturized fuel cell systems: air movement, fuel delivery and water balance, thermal management and load handling.

  12. Dynamic behavior of PEM fuel cell and microturbine power plants

    NASA Astrophysics Data System (ADS)

    El-Sharkh, M. Y.; Sisworahardjo, N. S.; Uzunoglu, M.; Onar, O.; Alam, M. S.

    This paper presents a comparison between the dynamic behavior of a 250 kW stand-alone proton exchange membrane fuel cell power plant (PEM FCPP) and a 250 kW stand-alone microturbine (MT). Dynamic models for the two are introduced. To control the voltage and the power output of the PEM FCPP, voltage and power control loops are added to the model. For the MT, voltage, speed, and power control are used. Dynamic models are used to determine the response of the PEM FCPP and MT to a load step change. Simulation results indicate that the response of the MT to reach a steady state is about twice as fast as the PEM FCPP. For stand-alone operation of a PEM FCPP, a set of batteries or ultracapacitors is needed in order to satisfy the power mismatch during transient periods. Software simulation results are obtained by using MATLAB ®, Simulink ®, and SimPowerSystems ®.

  13. A High-Throughput Study of PtNiZr Catalysts for Application in PEM Fuel Cells

    SciTech Connect

    Whitacre, J.F.; Valdez, T.I.; Narayanan, S.R.

    2009-05-26

    The effects of adding Zr to PtNi oxygen reduction reaction (ORR) electrocatalyst alloys were examined in a study aimed at probing the possibility of creating catalysts with enhanced resistance to corrosion in a PEM fuel cell environment. Samples consisting of pure Pt or PtNiZr alloys with a range of compositions (not exceeding 11 at.% Zr) were fabricated using co-sputter deposition. A high-throughput fabrication approach was used wherein 18 distinct thin film catalyst alloy samples with varying compositions were deposited onto a large-area substrate with individual Au current collector structures. A multi-channel pseudo-potentiostat allowed for the simultaneous quantitative study of catalytic activity for all 18 electrodes in a single test bath, a first for the study of ORR electrocatalysts. A properly stirred oxygenated 1 M H{sub 2}SO{sub 4} electrolyte solution was used to provide each electrode with a steady-state flow of reactants during electrochemical evaluation. The onset potentials, absolute current density values, and Tafel analysis data obtained using this technique were compared with literature reports. The analyses showed that most PtNiZr alloys tested offered improvements over pure Pt, however those surfaces with a high mole fraction (>4 at.%) of Zr exhibited reduced activity that was roughly inversely correlated to the amount of Zr present. Film composition, morphology, and crystallographic properties were examined using X-ray energy dispersive spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), SEM, and synchrotron X-ray diffraction. These data were then correlated with electrochemical data to elucidate the relationships between composition, structure, and relative performance for this ternary system.

  14. In situ PEM fuel cell water measurements

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary; Davey, John R; Spendelow, Jacob S; Hussey, Daniel S; Jacobson, David L; Arif, Muhammad

    2009-01-01

    Efficient PEM (Polymer Electrolyte Membrane) fuel cell performance requires effective water management. To achieve a deeper understanding of water transport and performance issues associated with water management, we have conducted in situ water examinations to help understand the effects of components and operations. High Frequency Resistance (HFR), AC Impedance and Neutron imaging were used to measure water content in operating fuel cells, with various conditions, including current density, relative humidity, inlet flows, flow orientation and variable Gas Diffusion Layer (GDL) properties. High resolution neutron radiography was used to image fuel cells during a variety of conditions. The effect of specific operating conditions, including flow direction (co-flow or counter-flow) was examined. Counter-flow operation was found to result in higher water content than co-flow operation, which correlates to lower membrane resistivity. A variety of cells were used to quantify the membrane water in situ during exposure to saturated gases, during fuel cell operation, and during hydrogen pump operation. The quantitative results show lower membrane water content than previous results suggested.

  15. Gold Nanoparticles-Enhanced Proton Exchange Membrane (PEM) Fuel Cell

    NASA Astrophysics Data System (ADS)

    Li, Hongfei; Pan, Cheng; Liu, Ping; Zhu, Yimei; Adzic, Radoslav; Rafailovich, Miriam

    Proton exchange membrane fuel cells have drawn great attention and been taken as a promising alternated energy source. One of the reasons hamper the wider application of PEM fuel cell is the catalytic poison effect from the impurity of the gas flow. Haruta has predicted that gold nanoparticles that are platelet shaped and have direct contact with the metal oxide substrate to be the perfect catalysts of the CO oxidization, yet the synthesis method is difficult to apply in the Fuel Cell. In our approach, thiol-functionalized gold nanoparticles were synthesized through two-phase method developed by Brust et al. We deposit these Au particles with stepped surface directly onto the Nafion membrane in the PEM fuel cell by Langmuir-Blodgett method, resulting in over 50% enhancement of the efficiency of the fuel cell. DFT calculations were conducted to understand the theory of this kind of enhancement. The results indicated that only when the particles were in direct surface contact with the membrane, where AuNPs attached at the end of the Nafion side chains, it could reduce the energy barrier for the CO oxidation that could happen at T<300K.

  16. Transient analysis of water transport in PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Yan, Wei-Mon; Chu, Hsin-Sen; Chen, Jian-Yao; Soong, Chyi-Yeou; Chen, Falin

    This paper theoretically studies the water transport phenomena in PEM fuel cells, mainly investigating the transient behavior in the gas diffusion layer (GDL), catalyst layer (CL) and proton exchange membrane (PEM). In the PEM, both diffusion and electro-osmosis processes are considered, while in the GDL and CL, only diffusion process is taken into account. The process of water uptake is employed to account for the water transport at the interface between the PEM and CL. The results indicate that the water content in the PEM and the time for reaching the steady state in the start-up process are influenced by the humidification constant, k, the humidification, and the thickness of PEM. The rise of the k increases the water content in the membrane and shortens the time for reaching the steady state. Insufficient humidification causes relatively small water content and long steady time. When the PEM is thinner, the water is more uniformly distributed, the water content gets higher, and the time for reaching the steady state is distinctly shorter.

  17. Bipolar plates for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.

    The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.

  18. New electroplated aluminum bipolar plate for PEM fuel cell

    NASA Astrophysics Data System (ADS)

    El-Enin, Sanaa A. Abo; Abdel-Salam, Omar E.; El-Abd, Hammam; Amin, Ashraf M.

    Further improvement in the performance of the polymer electrolyte membrane fuel cells as a power source for automotive applications may be achieved by the use of a new material in the manufacture of the bipolar plate. Several nickel alloys were applied on the aluminum substrate, the use of aluminum as a bipolar plate instead of graphite is to reduce the bipolar plate cost and weight and the ease of machining. The electroplated nickel alloys on aluminum substrate produced a new metallic bipolar plate for PEM fuel cell with a higher efficiency and longer lifetime than the graphite bipolar plate due to its higher electrical conductivity and its lower corrosion rate. Different pretreatment methods were tested; the optimum method for pretreatment consists of dipping the specimen in a 12.5% NaOH for 3 min followed by electroless zinc plating for 2 min, then the specimen is dipped quickly in the electroplating bath after rinsing with distilled water. The produced electroplate was tested with different measurement techniques, chosen based on the requirement for a PEM fuel cell bipolar plate, including X-ray diffraction, EDAX, SEM, corrosion resistance, thickness measurement, microhardness, and electrical conductivity.

  19. Cerium migration during PEM fuel cell accelerated stress testing

    SciTech Connect

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humidity cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.

  20. Cerium migration during PEM fuel cell accelerated stress testing

    DOE PAGES

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humiditymore » cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.« less

  1. Recent Progress in Nanostructured Electrocatalysts for PEM Fuel Cells

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Yin, Geping; Lin, Yuehe

    2013-03-30

    Polymer electrolyte membrane (PEM) fuel cells are attracting much attention as promising clean power sources and an alternative to conventional internal combustion engines, secondary batteries, and other power sources. Much effort from government laboratories, industry, and academia has been devoted to developing PEM fuel cells, and great advances have been achieved. Although prototype cars powered by fuel cells have been delivered, successful commercialization requires fuel cell electrocatalysts, which are crucial components at the heart of fuel cells, meet exacting performance targets. In this review, we present a brief overview of the recent progress in fuel cell electrocatalysts, which involves catalyst supports, Pt and Pt-based electrocatalysts, and non-Pt electrocatalysts.

  2. Sensor Development for PEM Fuel Cell Systems

    SciTech Connect

    Steve Magee; Richard Gehman

    2005-07-12

    This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

  3. Fatigue and Mechanical Damage Propagation in Automotive PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Banan, Roshanak

    Polymer electrolyte membrane (PEM) fuel cells are generally exposed to high magnitude road-induced vibrations and impact loads, frequent humidity-temperature loading cycles, and freeze/thaw stresses when employed in automotive applications. The resultant mechanical stresses can play a significant role in the evolution of mechanical defects in the membrane electrode assembly (MEA). The focus of this research is to investigate fatigue challenges due to humidity-temperature (hygrothermal) cycles and vibrations and their effects on damage evolution in PEM fuel cells. To achieve this goal, this thesis is divided into three parts that provide insight into damage propagation in the MEA under i) hygrothermal cycles, ii) external applied vibrations, and iii) a combination of both to simulate realistic automotive conditions. A finite element damage model based on cohesive zone theory was developed to simulate the propagation of micro-scale defects (cracks and delaminations) in the MEA under fuel cell operating conditions. It was found that the micro-defects can propagate to critical states under start-up and shut-down cycles, prior to reaching the desired lifespan of the fuel cell. The simultaneous presence of hygrothermal cycles and vibrations severely intensified damage propagation and resulted in considerably large defects within 75% of the fuel cell life expectancy. However, the order of generated damage was found to be larger under hygrothermal cycles than vibrations. Under hygrothermal cycles, membrane crack propagation was more severe compared to delamination propagation. Conversely, the degrading influence of vibrations was more significant on delaminations. The presence of an anode/cathode channel offset under the combined loadings lead to a 2.5-fold increase in the delamination length compared to the aligned-channel case. The developed model can be used to investigate the damage behaviour of current materials employed in fuel cells as well as to evaluate the

  4. Development and validation of a two-phase, three-dimensional model for PEM fuel cells.

    SciTech Connect

    Chen, Ken Shuang

    2010-04-01

    The objectives of this presentation are: (1) To develop and validate a two-phase, three-dimensional transport modelfor simulating PEM fuel cell performance under a wide range of operating conditions; (2) To apply the validated PEM fuel cell model to improve fundamental understanding of key phenomena involved and to identify rate-limiting steps and develop recommendations for improvements so as to accelerate the commercialization of fuel cell technology; (3) The validated PEMFC model can be employed to improve and optimize PEM fuel cell operation. Consequently, the project helps: (i) address the technical barriers on performance, cost, and durability; and (ii) achieve DOE's near-term technical targets on performance, cost, and durability in automotive and stationary applications.

  5. Proton Exchange Membrane (PEM) fuel Cell for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.

    1999-01-01

    Development of a PEM fuel cell powerplant (PFCP) for use in the Space Shuttle offers multiple benefits to NASA. A PFCP with a longer design life than is delivered currently from the alkaline fuel will reduce Space Shuttle Program maintenance costs. A PFCP compatible with zero-gravity can be adapted for future NASA transportation and exploration programs. Also, the commercial PEM fuel cell industry ensures a competitive environment for select powerplant components. Conceptual designs of the Space Shuttle PFCP have resulted in identification of key technical areas requiring resolution prior to development of a flight system. Those technical areas include characterization of PEM fuel cell stack durability under operational conditions and water management both within and external to the stack. Resolution of the above issues is necessary to adequately control development, production, and maintenance costs for a PFCP.

  6. Phase 1 feasibility study of an integrated hydrogen PEM fuel cell system. Final report

    SciTech Connect

    Luczak, F.

    1998-03-01

    Evaluated in the report is the use of hydrogen fueled proton exchange membrane (PEM) fuel cells for devices requiring less than 15 kW. Metal hydrides were specifically analyzed as a method of storing hydrogen. There is a business and technical part to the study that were developed with feedback from each other. The business potential of a small PEM product is reviewed by examining the markets, projected sales, and required investment. The major technical and cost hurdles to a product are also reviewed including: the membrane and electrode assembly (M and EA), water transport plate (WTP), and the metal hydrides. It was concluded that the best potential stationary market for hydrogen PEM fuel cell less than 15 kW is for backup power use in telecommunications applications.

  7. Novel, low-cost separator plates and flow-field elements for use in PEM fuel cells

    SciTech Connect

    Edlund, D.J.

    1996-12-31

    PEM fuel cells offer promise for a wide range of applications including vehicular (e.g., automotive) and stationary power generation. The performance and cost targets that must be met for PEM technology to be commercially successful varies to some degree with the application. However, in general the cost of PEM fuel cell stacks must be reduced substantially if they are to see widespread use for electrical power generation. A significant contribution to the manufactured cost of PEM fuel cells is the machined carbon plates that traditionally serve as bipolar separator plates and flow-field elements. In addition, carbon separator plates are inherently brittle and suffer from breakage due to shock, vibration, and improper handling. This report describes a bifurcated separator device with low resistivity, low manufacturing cost, compact size and durability.

  8. Research and development of Proton-Exchange Membrane (PEM) fuel cell system for transportation applications: Initial conceptual design report

    NASA Astrophysics Data System (ADS)

    1993-11-01

    This report addresses Task 1.1, model development and application, and Task 1.2, vehicle mission definition. Overall intent is to produce a methanol-fueled 10-kW power source and to evaluate electrochemical engine (ECE) use in transportation. Major achievements include development of an ECE power source model and its integration into a comprehensive power source/electric vehicle propulsion model, establishment of candidate FCV (fuel cell powered electric vehicle) mission requirements, initial FCV studies, and a candidate FCV recommendation for further study.

  9. Research and Development of Proton-Exchange Membrane (PEM) Fuel Cell System for Transportation Applications: Initial Conceptual Design Report

    SciTech Connect

    Not Available

    1993-11-30

    This report addresses Task 1.1, model development and application, and Task 1.2, vehicle mission definition. Overall intent is to produce a methanol-fueled 10-kW power source, and to evaluate electrochemical engine (ECE) use in transportation. Major achievements include development of an ECE power source model and its integration into a comprehensive power source/electric vehicle propulsion model, establishment of candidate FCV (fuel cell powered electric vehicle) mission requirements, initial FCV studies, and a candidate FCV recommendation for further study.

  10. Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell

    DOEpatents

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    2000-01-01

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.

  11. Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell

    SciTech Connect

    Grot, S.A.; Meltser, M.A.; Gutowski, S.; Neutzler, J.K.; Borup, R.L.; Weisbrod, K.

    2000-05-16

    The CO concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H{sub 2} fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst, e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe, to keep the PEM-probe at peak performance levels.

  12. Operation of PEM fuel cells at 120-150 °C to improve CO tolerance

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Song, Ying; Kunz, H. Russell; Fenton, James M.

    Sulfonic acid modified perfluorocarbon polymer proton exchange membrane (PEM) fuel cells operated at elevated temperatures (120-150 °C) can greatly alleviate CO poisoning on anode catalysts. However, fuel cells with these PEMs operated at elevated temperature and atmospheric pressure typically experience low relative humidity (RH) and thus have increased membrane and electrode resistance. To operate PEM fuel cells at elevated temperature and high RH, work is needed to pressurize the anode and cathode reactant gases, thereby decreasing the efficiency of the PEM fuel cell system. A liquid-fed hydrocarbon-fuel processor can produce reformed gas at high pressure and high relative humidity without gas compression. If the anode is fed with this high-pressure, high-relative humidity stream, the water in the anode compartment will transport through the membrane and into the ambient pressure cathode structure, decreasing the cell resistance. This work studied the effect of anode pressurization on the cell resistance and performance using an ambient pressure cathode. The results show that high RH from anode pressurization at both 120 and 150 °C can decrease the membrane resistance and therefore increase the cell voltage. A cell running at 150 °C obtains a cell voltage of 0.43 V at 400 mA cm -2 even with 1% CO in H 2. The results presented here provide a concept for the application of a coupled steam reformer and PEM fuel cell system that can operate at 150 °C with reformate and an atmospheric air cathode.

  13. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    SciTech Connect

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  14. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    SciTech Connect

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  15. Engineered nano-scale ceramic supports for PEM fuel cells

    SciTech Connect

    Brosha, Eric L; Blackmore, Karen J; Burrell, Anthony K; Henson, Neil J; Phillips, Jonathan

    2010-01-01

    Catalyst support durability is currently a technical barrier for commercialization of polymer electrolyte membrane (PEM) fuel cells, especially for transportation applications. Degradation and corrosion of the conventional carbon supports leads to losses in active catalyst surface area and, consequently, reduced performance. As a result, the major aim of this work is to develop support materials that interact strongly with Pt, yet sustain bulk-like catalytic activities with very highly dispersed particles. This latter aspect is key to attaining the 2015 DOE technical targets for platinum group metal (PGM) loadings (0.20 mg/cm{sup 2}). The benefits of the use of carbon-supported catalysts to drastically reduce Pt loadings from the early, conventional Pt-black technology are well known. The supported platinum catalyzed membrane approach widely used today for fabrication of membrane electrode assemblies (MEAs) was developed shortly thereafter these early reports. Of direct relevance to this present work, are the investigations into Pt particle growth in PEM fuel cells, and subsequent follow-on work showing evidence of Pt particles suspended free of the support within the catalyst layer. Further, durability work has demonstrated the detrimental effects of potential cycling on carbon corrosion and the link between electrochemical surface area and particle growth. To avoid the issues with carbon degradation altogether, it has been proposed by numerous fuel cell research groups to replace carbon supports with conductive materials that are ceramic in nature. Intrinsically, these many conductive oxides, carbides, and nitrides possess the prerequisite electronic conductivity required, and offer corrosion resistance in PEMFC environments; however, most reports indicate that obtaining sufficient surface area remains a significant barrier to obtaining desirable fuel ceU performance. Ceramic materials that exhibit high electrical conductivity and necessary stability under fuel

  16. Diagnosis of PEM fuel cell stack dynamic behaviors

    NASA Astrophysics Data System (ADS)

    Chen, Jixin; Zhou, Biao

    In this study, the steady-state performance and dynamic behavior of a commercial 10-cell Proton Exchange Membrane (PEM) fuel cell stack was experimentally investigated using a self-developed PEM fuel cell test stand. The start-up characteristics of the stack to different current loads and dynamic responses after current step-up to an elevated load were investigated. The stack voltage was observed to experience oscillation at air excess coefficient of 2 due to the flooding/recovery cycle of part of the cells. In order to correlate the stack voltage with the pressure drop across the cathode/anode, fast Fourier transform was performed. Dominant frequency of pressure drop signal was obtained to indicate the water behavior in cathode/anode, thereby predicting the stack voltage change. Such relationship between frequency of pressure drop and stack voltage was found and summarized. This provides an innovative approach to utilize frequency of pressure drop signal as a diagnostic tool for PEM fuel cell stack dynamic behaviors.

  17. The importance of water control to PEM fuel cell performance

    SciTech Connect

    Cisar, A.; Murphy, O.J.; Simpson, S.F.

    1996-12-31

    All membranes currently in use in polymer electrolyte membrane (PEM) fuel cells have sulfonate (-SO{sub 3}{sup -}) groups as the anionic functionalities attached to the backbone of the polymer electrolyte. As a consequence of this fact, all PEM membranes depend on the presence of water in the electrolyte to facilitate proton transport. This includes perfluorinated membranes, such as Nafion{reg_sign} (DuPont), and Gore Select{trademark} (W. L. Gore), partially fluorinated membranes, such as the Ballard membrane, which is a derivatized trifluorostyrene, non-fluorinated membranes, including both sulfonated polyparaphenylene (Maxdem`s Poly-X{trademark}) and sulfonated styrene-butadiene (DAIS), and the various grafted materials that have been described in the literature. In every case, without water, the proton conductivity of the membrane is insufficient to support fuel cell operation.

  18. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  19. The use of experimental design to find the operating maximum power point of PEM fuel cells

    SciTech Connect

    Crăciunescu, Aurelian; Pătularu, Laurenţiu; Ciumbulea, Gloria; Olteanu, Valentin; Pitorac, Cristina; Drugan, Elena

    2015-03-10

    Proton Exchange Membrane (PEM) Fuel Cells are difficult to model due to their complex nonlinear nature. In this paper, the development of a PEM Fuel Cells mathematical model based on the Design of Experiment methodology is described. The Design of Experiment provides a very efficient methodology to obtain a mathematical model for the studied multivariable system with only a few experiments. The obtained results can be used for optimization and control of the PEM Fuel Cells systems.

  20. Commercial ballard PEM fuel cell natural gas power plant development

    SciTech Connect

    Watkins, D.S.; Dunnison, D.; Cohen, R.

    1996-12-31

    The electric utility industry is in a period of rapid change. Deregulation, wholesale and retail wheeling, and corporate restructuring are forcing utilities to adopt new techniques for conducting their business. The advent of a more customer oriented service business with tailored solutions addressing such needs as power quality is a certain product of the deregulation of the electric utility industry. Distributed and dispersed power are fundamental requirements for such tailored solutions. Because of their modularity, efficiency and environmental benefits, fuel cells are a favored solution to implement distributed and dispersed power concepts. Ballard Power Systems has been working to develop and commercialize Proton Exchange Membrane (PEM) fuel cell power plants for stationary power markets. PEM`s capabilities of flexible operation and multiple market platforms bodes well for success in the stationary power market. Ballard`s stationary commercialization program is now in its second phase. The construction and successful operation of a 10 kW natural gas fueled, proof-of-concept power plant marked the completion of phase one. In the second phase, we are developing a 250 kW market entry power plant. This paper discusses Ballard`s power plant development plan philosophy, the benefits from this approach, and our current status.

  1. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    SciTech Connect

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well

  2. Numerical Simulations of Droplet Dynamics in PEM Fuel Cell Microchannels

    NASA Astrophysics Data System (ADS)

    Cauble, Eric; Owkes, Mark

    2015-11-01

    Proton exchange membrane (PEM) fuel cells are of beneficial interest due to their capability of producing clean energy with zero emissions. An important design challenge hindering the performance of fuel cells is controlling water removal to maintain a hydrated membrane while avoiding excess water that may lead to channel blockage. Fuel cell water management requires a detailed knowledge of multiphase flow dynamics within microchannels. Direct observation of gas-liquid flows is difficult due to the small scale and viewing obstructions of the channels within the fuel cell. Instead, this work uses a CFD approach to compute the formation and dynamics of droplets in fuel cell channels. The method leverages a conservative volume-of-fluid (VOF) formulation coupled with a novel methodology to track dynamic contact angles. We present details of the numerical approach and simulation results relevant to water management in PEM fuel cells. In particular, it is shown that variation of the contact hysteresis angle influences the wetting properties of the droplet and significantly impacts water transport throughout the a fuel cell channel.

  3. Proton transport in functionalised additives for PEM fuel cells: contributions from atomistic simulations.

    PubMed

    Tölle, Pia; Köhler, Christof; Marschall, Roland; Sharifi, Monir; Wark, Michael; Frauenheim, Thomas

    2012-08-01

    The conventional polymer electrolyte membrane (PEM) materials for fuel cell applications strongly rely on temperature and pressure conditions for optimal performance. In order to expand the range of operating conditions of these conventional PEM materials, mesoporous functionalised SiO(2) additives are developed. It has been demonstrated that these additives themselves achieve proton conductivities approaching those of conventional materials. However, the proton conduction mechanisms and especially factors influencing charge carrier mobility under different hydration conditions are not well known and difficult to separate from concentration effects in experiments. This tutorial review highlights contributions of atomistic computer simulations to the basic understanding and eventual design of these materials. Some basic introduction to the theoretical and computational framework is provided to introduce the reader to the field, the techniques are in principle applicable to a wide range of other situations as well. Simulation results are directly compared to experimental data as far as possible.

  4. Real life testing of a Hybrid PEM Fuel Cell Bus

    NASA Astrophysics Data System (ADS)

    Folkesson, Anders; Andersson, Christian; Alvfors, Per; Alaküla, Mats; Overgaard, Lars

    Fuel cells produce low quantities of local emissions, if any, and are therefore one of the most promising alternatives to internal combustion engines as the main power source in future vehicles. It is likely that urban buses will be among the first commercial applications for fuel cells in vehicles. This is due to the fact that urban buses are highly visible for the public, they contribute significantly to air pollution in urban areas, they have small limitations in weight and volume and fuelling is handled via a centralised infrastructure. Results and experiences from real life measurements of energy flows in a Scania Hybrid PEM Fuel Cell Concept Bus are presented in this paper. The tests consist of measurements during several standard duty cycles. The efficiency of the fuel cell system and of the complete vehicle are presented and discussed. The net efficiency of the fuel cell system was approximately 40% and the fuel consumption of the concept bus is between 42 and 48% lower compared to a standard Scania bus. Energy recovery by regenerative braking saves up 28% energy. Bus subsystems such as the pneumatic system for door opening, suspension and brakes, the hydraulic power steering, the 24 V grid, the water pump and the cooling fans consume approximately 7% of the energy in the fuel input or 17% of the net power output from the fuel cell system. The bus was built by a number of companies in a project partly financed by the European Commission's Joule programme. The comprehensive testing is partly financed by the Swedish programme "Den Gröna Bilen" (The Green Car). A 50 kW el fuel cell system is the power source and a high voltage battery pack works as an energy buffer and power booster. The fuel, compressed hydrogen, is stored in two high-pressure stainless steel vessels mounted on the roof of the bus. The bus has a series hybrid electric driveline with wheel hub motors with a maximum power of 100 kW. Hybrid Fuel Cell Buses have a big potential, but there are

  5. PEM Fuel Cells Redesign Using Biomimetic and TRIZ Design Methodologies

    NASA Astrophysics Data System (ADS)

    Fung, Keith Kin Kei

    Two formal design methodologies, biomimetic design and the Theory of Inventive Problem Solving, TRIZ, were applied to the redesign of a Proton Exchange Membrane (PEM) fuel cell. Proof of concept prototyping was performed on two of the concepts for water management. The liquid water collection with strategically placed wicks concept demonstrated the potential benefits for a fuel cell. Conversely, the periodic flow direction reversal concepts might cause a potential reduction water removal from a fuel cell. The causes of this water removal reduction remain unclear. In additional, three of the concepts generated with biomimetic design were further studied and demonstrated to stimulate more creative ideas in the thermal and water management of fuel cells. The biomimetic design and the TRIZ methodologies were successfully applied to fuel cells and provided different perspectives to the redesign of fuel cells. The methodologies should continue to be used to improve fuel cells.

  6. Final Scientific Report, New Proton Conductive Composite Materials for PEM Fuel Cells

    SciTech Connect

    Lvov, Serguei

    2010-11-08

    This project covered one of the main challenges in present-day PEM fuel cell technology: to design a membrane capable of maintaining high conductivity and mechanical integrity when temperature is elevated and water vapor pressure is severely reduced. The DOE conductivity milestone of 0.1 S cm-1 at 120 degrees C and 50 % relative humidity (RH) for designed membranes addressed the target for the project. Our approach presumed to develop a composite membrane with hydrophilic proton-conductive inorganic material and the proton conductive polymeric matrix that is able to “bridge” the conduction paths in the membrane. The unique aspect of our approach was the use of highly functionalized inorganic additives to benefit from their water retention properties and high conductivity as well. A promising result turns out that highly hydrophilic phosphorsilicate gels added in Nafion matrix improved PEM fuel cell performance by over 50% compared with bare Nafion membrane at 120 degrees C and 50 % RH. This achievement realizes that the fuel cell operating pressure can be kept low, which would make the PEM fuel cell much more cost efficient and adaptable to practical operating conditions and facilitate its faster commercialization particularly in automotive and stationary applications.

  7. Endoreversible modeling of a PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Wagner, Katharina; Hoffmann, Karl Heinz

    2015-12-01

    Fuel cells are known for high efficiencies in converting chemical energy into electrical energy. Nonetheless, the processes taking place in a fuel cell still possess a number of irreversibilities that limit the power output to values below the reversible limit. To analyze these, we developed a model that captures the main irreversibilities occurring inside a proton exchange membrane or polymer electrolyte membrane fuel cell. We used the methods of endoreversible thermodynamics, which enable us to study the entropy production of the different sources of irreversibility in detail. Additionally, performance measures like efficiency and power output can be calculated with such a model, and the influence of different parameters, such as temperature and pressure, can be easily investigated. The comparison of the model predictions with realistic fuel cell data shows that the functional dependencies of the fuel cell characteristics can be captured quite well.

  8. Toward developing a computational capability for PEM fuel cell design and optimization.

    SciTech Connect

    Wang, Chao Yang; Luo, Gang; Jiang, Fangming; Carnes, Brian; Chen, Ken Shuang

    2010-05-01

    In this paper, we report the progress made in our project recently funded by the US Department of Energy (DOE) toward developing a computational capability, which includes a two-phase, three-dimensional PEM (polymer electrolyte membrane) fuel cell model and its coupling with DAKOTA (a design and optimization toolkit developed and being enhanced by Sandia National Laboratories). We first present a brief literature survey in which the prominent/notable PEM fuel cell models developed by various researchers or groups are reviewed. Next, we describe the two-phase, three-dimensional PEM fuel cell model being developed, tested, and later validated by experimental data. Results from case studies are presented to illustrate the utility of our comprehensive, integrated cell model. The coupling between the PEM fuel cell model and DAKOTA is briefly discussed. Our efforts in this DOE-funded project are focused on developing a validated computational capability that can be employed for PEM fuel cell design and optimization.

  9. Novel Hydrogen Purification Device Integrated with PEM Fuel Cells

    SciTech Connect

    Joseph Schwartz; Hankwon Lim; Raymond Drnevich

    2010-12-31

    A prototype device containing twelve membrane tubes was designed, built, and demonstrated. The device produced almost 300 scfh of purified hydrogen at 200 psig feed pressure. The extent of purification met the program target of selectively removing enough impurities to enable industrial-grade hydrogen to meet purity specifications for PEM fuel cells. An extrusion process was developed to produce substrate tubes. Membranes met several test objectives, including completing 20 thermal cycles, exceeding 250 hours of operating life, and demonstrating a flux of 965 scfh/ft2 at 200 psid and 400 C.

  10. Parallel operation characteristics of PEM fuel cell and microturbine power plants

    NASA Astrophysics Data System (ADS)

    Uzunoglu, M.; Onar, O.; El-Sharkh, M. Y.; Sisworahardjo, N. S.; Rahman, A.; Alam, M. S.

    This paper reports on the dynamic behavior of a 250 kW proton exchange membrane fuel cell power plant (PEM FCPP) and a 250 kW microturbine (MT) when operating in parallel. A load sharing control scheme is used to distribute the load equally between the PEM FCPP and the MT. For stand alone operation of a PEM FCPP, a set of batteries or ultracapacitors are needed in order to satisfy the power mismatch during transient periods. Using MT in parallel with the PEM FCPP helps in eliminating the need for storage devices. Models for the PEM FCPP and the MT with power, voltage and speed controls are used to determine the dynamic response of the system to a step change in the load. Simulation results indicate viability of parallel operation of the PEM FCPP and the MT. These results are obtained using MATLAB ®, Simulink ®, and SimPowerSystems ®.

  11. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect

    James E. McGrath

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 °C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and

  12. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect

    James E. McGrath; Donald G. Baird; Michael von Spakovsky

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic

  13. Next Generation Bipolar Plates for Automotive PEM Fuel Cells

    SciTech Connect

    Adrianowycz, Orest; Norley, Julian; Stuart, David J; Flaherty, David; Wayne, Ryan; Williams, Warren; Tietze, Roger; Nguyen, Yen-Loan H; Zawodzinski, Tom; Pietrasz, Patrick

    2010-04-15

    The results of a successful U.S. Department of Energy (DoE) funded two-year $2.9 MM program lead by GrafTech International Inc. (GrafTech) are reported and summarized. The program goal was to develop the next generation of high temperature proton exchange membrane (PEM) fuel cell bipolar plates for use in transportation fuel cell applications operating at temperatures up to 120 °C. The bipolar plate composite developed during the program is based on GrafTech’s GRAFCELL resin impregnated flexible graphite technology and makes use of a high temperature Huntsman Advanced Materials resin system which extends the upper use temperature of the composite to the DoE target. High temperature performance of the new composite is achieved with the added benefit of improvements in strength, modulus, and dimensional stability over the incumbent resin systems. Other physical properties, including thermal and electrical conductivity of the new composite are identical to or not adversely affected by the new resin system. Using the new bipolar plate composite system, machined plates were fabricated and tested in high temperature single-cell fuel cells operating at 120 °C for over 1100 hours by Case Western Reserve University. Final verification of performance was done on embossed full-size plates which were fabricated and glued into bipolar plates by GrafTech. Stack testing was done on a 10-cell full-sized stack under a simulated drive cycle protocol by Ballard Power Systems. Freeze-thaw performance was conducted by Ballard on a separate 5-cell stack and shown to be within specification. A third stack was assembled and shipped to Argonne National Laboratory for independent performance verification. Manufacturing cost estimate for the production of the new bipolar plate composite at current and high volume production scenarios was performed by Directed Technologies Inc. (DTI). The production cost estimates were consistent with previous DoE cost estimates performed by DTI for the

  14. Hydrogen PEM Fuel Cells: A Market Need Provides Research Opportunities

    SciTech Connect

    Payne, Terry L; Brown, Gilbert M; Bogomolny, David

    2010-01-01

    It has been said that necessity is the mother of invention. Another way this can be stated is that market demands create research opportunities. Because of the increasing demand for oil (especially for fueling vehicles utilizing internal combustion engines) and the fact that oil is a depleting (not renewable) energy source, a market need for a renewable source of energy has created significant opportunities for research. This paper addresses the research opportunities associated with producing a market competitive (i.e., high performance, low cost and durable) hydrogen proton exchange membrane (PEM) fuel cell. Of the many research opportunities, the primary ones to be addressed directly are: Alternative membrane materials, Alternative catalysts, Impurity effects, and Water transport. A status of Department of Energy-sponsored research in these areas will be summarized and the impact of each on the ability to develop a market-competitive hydrogen PEM fuel cell powered vehicle will be discussed. Also, activities of the International Partnership for the Hydrogen Economy in areas such as advanced membranes for fuel cells and materials for storage will be summarized.

  15. Cerium migration during PEM fuel cell assembly and operation

    SciTech Connect

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-10-02

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane cerium gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.

  16. Cerium migration during PEM fuel cell assembly and operation

    DOE PAGES

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-09-14

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane ceriummore » gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.« less

  17. Method of making MEA for PEM/SPE fuel cell

    DOEpatents

    Hulett, Jay S.

    2000-01-01

    A method of making a membrane-electrode-assembly (MEA) for a PEM/SPE fuel cell comprising applying a slurry of electrode-forming material directly onto a membrane-electrolyte film. The slurry comprises a liquid vehicle carrying catalyst particles and a binder for the catalyst particles. The membrane-electrolyte is preswollen by contact with the vehicle before the electrode-forming slurry is applied to the membrane-electrolyte. The swollen membrane-electrolyte is constrained against shrinking in the "x" and "y" directions during drying. Following assembly of the fuel cell, the MEA is rehydrated inside the fuel cell such that it swells in the "z" direction for enhanced electrical contact with contiguous electrically conductive components of the fuel cell.

  18. Cerium migration during PEM fuel cell assembly and operation

    SciTech Connect

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-09-14

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane cerium gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.

  19. Novel Polyoxometalate Containing Membranes for PEM Fuel Cells

    SciTech Connect

    Mason K. Harrup; Frederick F. Stewart; Thomas A Luther; Tammy Trowbridge

    2009-03-01

    Current proton exchange membrane (PEM) technologies are inadequate to address the projected needs for fuel cell performance above 80 ºC. Continuing research into traditional ion carriers in novel membrane materials offers the promise of marginal improvement, representing only an evolutionary increase in performance. This conclusion is supported by the role of water in conduction. Thus, the key to better PEMs is not to eliminate water, but to change the role of water by developing ion carriers that will bind water more tightly than traditional sulfur or phosphorus based carriers resulting in materials that will conduct at higher temperatures. This change entails having a carrier structure that interacts more intimately with water and by increasing the ion carrier anionic charge to result in more tightly held inner shell protonated waters of hydration. Both of these factors synergistically act to maintain a critical water concentration at the carrier necessary for conduction. In this work, polyoxometalate (POM) clusters were selected to serve as these different proton carriers.

  20. Abstract: Air, Thermal and Water Management for PEM Fuel Cell Systems

    SciTech Connect

    Mark K. Gee Zia Mirza

    2008-10-01

    PEM fuel cells are excellent candidates for transportation applications due to their high efficiencies. PEM fuel cell Balance of Plant (BOP) components, such as air, thermal, and water management sub-systems, can have a significant effect on the overall system performance, but have traditionally not been addressed in research and development efforts. Recognizing this, the U.S. Department of Energy and Honeywell International Inc. are funding an effort that emphasizes the integration and optimization of air, thermal and water management sub-systems. This effort is one of the major elements to assist the fuel cell system developers and original equipment manufacturers to achieve the goal of an affordable and efficient power system for transportation applications. Past work consisted of: (1) Analysis, design, and fabrication of a motor driven turbocompressor. (2) A systematic trade study to select the most promising water and thermal management systems from five different concepts (absorbent wheel humidifier, gas to gas membrane humidifier, porous metal foam humidifier, cathode recycle compressor, and water injection pump.) This presentation will discuss progress made in the research and development of air, water and thermal management sub-systems for PEM fuel cell systems in transportation applications. More specifically, the presentation will discuss: (1) Progress of the motor driven turbocompressor design and testing; (2) Progress of the humidification component selection and testing; and (3) Progress of the thermal management component preliminary design. The programs consist of: (1) The analysis, design, fabrication and testing of a compact motor driven turbocompressor operating on foil air bearings to provide contamination free compressed air to the fuel cell stack while recovering energy from the exhaust streams to improve system efficiency. (2) The analysis, design, fabrication and testing of selected water and thermal management systems and components to

  1. A portable power system using PEM fuel cells

    SciTech Connect

    Long, E.

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  2. Characterization of PEM fuel cell degradation by polarization change curves

    NASA Astrophysics Data System (ADS)

    Bezmalinovic, Dario; Simic, Boris; Barbir, Frano

    2015-10-01

    Polarization change curves, defined as a difference between the polarization curve at the beginning of life and the actual polarization curve after the cell has been operational for some time, were used to analyze degradation of a PEM fuel cell exposed to voltage cycling as an accelerated stress test for electrocatalyst degradation. Degradation, i.e., loss of voltage was due to increase of activation losses and increase of resistance in the catalyst layer, both most likely due to the loss of catalyst electrochemically active area. The results of the polarization change curves analysis correspond to the findings of the periodic individual tests performed during the accelerated stress test, such as electrochemical impedance spectroscopy, cyclic voltammetry and linear sweep voltammetry. Therefore, this method has potential to be used as a relatively quick and simple, yet effective, degradation diagnostic tool.

  3. Electrochemical energy storage using PEM systems

    SciTech Connect

    Vanderborgh, N.E.; Hedstrom, J.C.; Huff, J.R.

    1991-01-01

    This paper gives the results of an engineering assessment for future, long-lived space power systems for extraterrestrial applications. Solar-based, regenerative fuel cell power plants formed from either alkaline or PEM components are the focus. Test results on advanced PEM fuel cell stack components are presented. 7 refs., 4 figs., 1 tab.

  4. PEM fuel cell stack performance using dilute hydrogen mixture. Implications on electrochemical engine system performance and design

    SciTech Connect

    Inbody, M.A.; Vanderborgh, N.E.; Hedstrom, J.C.; Tafoya, J.I.

    1996-12-31

    Onboard fuel processing to generate a hydrogen-rich fuel for PEM fuel cells is being considered as an alternative to stored hydrogen fuel for transportation applications. If successful, this approach, contrasted to operating with onboard hydrogen, utilizes the existing fuels infrastructure and provides required vehicle range. One attractive, commercial liquid fuels option is steam reforming of methanol. However, expanding the liquid methanol infrastructure will take both time and capital. Consequently technology is also being developed to utilize existing transportation fuels, such as gasoline or diesel, to power PEM fuel cell systems. Steam reforming of methanol generates a mixture with a dry gas composition of 75% hydrogen and 25% carbon dioxide. Steam reforming, autothermal reforming, and partial oxidation reforming of C{sub 2} and larger hydrocarbons produces a mixture with a more dilute hydrogen concentration (65%-40%) along with carbon dioxide ({approx}20%) and nitrogen ({approx}10%-40%). Performance of PEM fuel cell stacks on these dilute hydrogen mixtures will affect the overall electrochemical engine system design as well as the overall efficiency. The Los Alamos Fuel Cell Stack Test facility was used to access the performance of a PEM Fuel cell stack over the range of gas compositions chosen to replicate anode feeds from various fuel processing options for hydrocarbon and alcohol fuels. The focus of the experiments was on the anode performance with dilute hydrogen mixtures with carbon dioxide and nitrogen diluents. Performance with other anode feed contaminants, such as carbon monoxide, are not reported here.

  5. Optimum design of bipolar plates for separate air flow cooling system of PEM fuel cells stacks

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro

    2015-12-01

    The paper discusses about thermal management of PEM fuel cells. The objective is to define criteria and guidelines for the design of the air flow cooling system of fuel cells stacks for different combination of power density, bipolar plates material, air flow rate, operating temperature It is shown that the optimization of the geometry of the channel permits interesting margins for maintaining the use of separate air flow cooling systems for high power density PEM fuel cells.

  6. Small Portable PEM Fuel Cell Systems for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2005-01-01

    Oxygen-Hydrogen PEM-based fuel cell systems are being examined as a portable power source alternative in addition to advanced battery technology. Fuel cell power systems have been used by the Gemini, Apollo, and Space Shuttle programs. These systems have not been portable, but have been integral parts of their spacecraft, and have used reactants from a separate cryogenic supply. These systems typically have been higher in power. They also have had significant ancillary equipment sections that perform the pumping of reactants and coolant through the fuel cell stack and the separation of the product water from the unused reactant streams. The design of small portable fuel cell systems will be a significant departure from these previous designs. These smaller designs will have very limited ancillary equipment, relying on passive techniques for reactant and thermal management, and the reactant storage will be an integral part of the fuel cell system. An analysis of the mass and volume for small portable fuel cell systems was done to evaluate and quantify areas of technological improvement. A review of current fuel cell technology as well as reactant storage and management technology was completed to validate the analysis and to identify technology challenges

  7. PEM fuel cell fault detection and identification using differential method: simulation and experimental validation

    NASA Astrophysics Data System (ADS)

    Frappé, E.; de Bernardinis, A.; Bethoux, O.; Candusso, D.; Harel, F.; Marchand, C.; Coquery, G.

    2011-05-01

    PEM fuel cell performance and lifetime strongly depend on the polymer membrane and MEA hydration. As the internal moisture is very sensitive to the operating conditions (temperature, stoichiometry, load current, water management…), keeping the optimal working point is complex and requires real-time monitoring. This article focuses on PEM fuel cell stack health diagnosis and more precisely on stack fault detection monitoring. This paper intends to define new, simple and effective methods to get relevant information on usual faults or malfunctions occurring in the fuel cell stack. For this purpose, the authors present a fault detection method using simple and non-intrusive on-line technique based on the space signature of the cell voltages. The authors have the objective to minimize the number of embedded sensors and instrumentation in order to get a precise, reliable and economic solution in a mass market application. A very low number of sensors are indeed needed for this monitoring and the associated algorithm can be implemented on-line. This technique is validated on a 20-cell PEMFC stack. It demonstrates that the developed method is particularly efficient in flooding case. As a matter of fact, it uses directly the stack as a sensor which enables to get a quick feedback on its state of health.

  8. Development of a 10 kW hydrogen/air PEM fuel cell stack

    SciTech Connect

    Barbir, F.; Marken, F.; Bahar, B.; Kolde, J.A.

    1996-12-31

    PEM fuel cells have potential for meeting automotive industry`s power density and cost requirements, such as 0.8 kW/kg, 0.8 kW/1 and $30/kW. For automotive applications, the fuel cell power requirements are in the 10-100 kW range. As the first phase in reaching this power output, a 10 kW PEM fuel cell stack has been developed at Energy Partners. The stack consists of 50 cells with relatively large active area of 780 cm{sup 2}. The main feature of the stack is the advanced membrane electrode assembly (MEA) developed by W.L. Gore & Associates, Inc. These novel MEAs consist of a thin composite perfluorinated polymer membrane with a catalyst layer with platinum loading of 0.3 Mg/cm{sup 2} on each side. The combination of reinforcement and thinness provides high membrane conductance and improved water distribution in the operating cell. In addition, the membrane has excellent mechanical properties (particularly when it is hydrated) and dimensional stability.

  9. Application of Thermo-Mechanical Measurements of Plastic Packages for Reliability Evaluation of PEMS

    NASA Technical Reports Server (NTRS)

    Sharma, Ashok K.; Teverovsky, Alexander

    2004-01-01

    Thermo-mechanical analysis (TMA) is typically employed for measurements of the glass transition temperature (Tg) and coefficients of thermal expansion (CTE) in molding compounds used in plastic encapsulated microcircuits (PEMs). Application of TMA measurements directly to PEMs allows anomalies to be revealed in deformation of packages with temperature, and thus indicates possible reliability concerns related to thermo-mechanical integrity and stability of the devices. In this work, temperature dependencies of package deformation were measured in several types of PEMs that failed environmental stress testing including temperature cycling, highly accelerated stress testing (HAST) in humid environments, and bum-in (BI) testing. Comparison of thermo-mechanical characteristics of packages and molding compounds in the failed parts allowed for explanation of the observed failures. The results indicate that TMA of plastic packages might be used for quality evaluation of PEMs intended for high-reliability applications.

  10. Highly conductive epoxy/graphite polymer composite bipolar plates in proton exchange membrane (PEM) fuel cells

    NASA Astrophysics Data System (ADS)

    Du, Ling

    In this work, highly conductive carbon-filled epoxy composites were developed for manufacturing bipolar plates in proton exchange membrane (PEM) fuel cells. These composites were prepared by solution intercalation mixing, followed by compression molding and curing. The in-plane and through-plane electrical conductivity, thermal and mechanical properties, gas barrier properties, and hygrothermal characteristics were determined as a function of carbon-filler type and content. For this purpose, expanded graphite and carbon black were used as a synergistic combination. Mixtures of aromatic and aliphatic epoxy resin were used as the polymer matrix to capitalize on the ductility of the aliphatic epoxy and chemical stability of the aromatic epoxy. The composites showed high glass transition temperatures (Tg ˜ 180°C), high thermal degradation temperatures (T2˜ 415°C), and in-plane conductivity of 200-500 S/cm with carbon fillers as low as 50 wt%. These composites also showed strong mechanical properties, such as flexural modulus, flexural strength, and impact strength, which either met or exceeded the targets. In addition, these composites showed excellent thermal conductivity greater than 50 W/m/K, small values of linear coefficient of thermal expansion, and dramatically reduced oxygen permeation rate. The values of mechanical and thermal properties and electrical conductivity of the composites did not change upon exposure to boiling water, aqueous sulfuric acid solution and hydrogen peroxide solution, indicating that the composites provided long-term reliability and durability under PEM fuel cell operating conditions. Experimental data show that the composites developed in this study are suitable for application as bipolar plates in PEM fuel cells.

  11. Transient response of high temperature PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Peng, J.; Shin, J. Y.; Song, T. W.

    A transient three-dimensional, single-phase and non-isothermal numerical model of polymer electrolyte membrane (PEM) fuel cell with high operating temperature has been developed and implemented in computational fluid dynamic (CFD) code. The model accounts for transient convective and diffusive transport, and allows prediction of species concentration. Electrochemical charge double-layer effect is considered. Heat generation according to electrochemical reaction and ohmic loss are involved. Water transportation across membrane is ignored due to low water electro-osmosis drag force of polymer polybenzimidazole (PBI) membrane. The prediction shows transient in current density which overshoots (undershoots) the stabilized state value when cell voltage is abruptly decreased (increased). The result shows that the peak of overshoot (undershoot) is related with cathode air stoichiometric mass flow rate instead of anode hydrogen stoichiometric mass flow rate. Current is moved smoothly and there are no overshoot or undershoot with the influence of charge double-layer effect. The maximum temperature is located in cathode catalyst layer and both fuel cell average temperature and temperature deviation are increased with increasing of current load.

  12. System Design of a Natural Gas PEM Fuel Cell Power Plant for Buildings

    SciTech Connect

    Joe Ferrall, Tim Rehg, Vesna Stanic

    2000-09-30

    The following conclusions are made based on this analysis effort: (1) High-temperature PEM data are not available; (2) Stack development effort for Phase II is required; (3) System results are by definition preliminary, mostly due to the immaturity of the high-temperature stack; other components of the system are relatively well defined; (4) The Grotthuss conduction mechanism yields the preferred system characteristics; the Grotthuss conduction mechanism is also much less technically mature than the vehicle mechanism; (5) Fuel processor technology is available today and can be procured for Phase II (steam or ATR); (6) The immaturity of high-temperature membrane technology requires that a robust system design be developed in Phase II that is capable of operating over a wide temperature and pressure range - (a) Unpressurized or Pressurized PEM (Grotthuss mechanism) at 140 C, Highest temperature most favorable, Lowest water requirement most favorable, Pressurized recommended for base loaded operation, Unpressurized may be preferred for load following; (b) Pressurized PEM (vehicle mechanism) at about 100 C, Pressure required for saturation, Fuel cell technology currently available, stack development required. The system analysis and screening evaluation resulted in the identification of the following components for the most promising system: (1) Steam reforming fuel processor; (2) Grotthuss mechanism fuel cell stack operating at 140 C; (3) Means to deliver system waste heat to a cogeneration unit; (4) Pressurized system utilizing a turbocompressor for a base-load power application. If duty cycling is anticipated, the benefits of compression may be offset due to complexity of control. In this case (and even in the base loaded case), the turbocompressor can be replaced with a blower for low-pressure operation.

  13. A new state-observer of the inner PEM fuel cell pressures for enhanced system monitoring

    NASA Astrophysics Data System (ADS)

    Bethoux, Olivier; Godoy, Emmanuel; Roche, Ivan; Naccari, Bruno; Amira Taleb, Miassa; Koteiche, Mohamad; Nassif, Younane

    2014-06-01

    In embedded systems such as electric vehicles, Proton exchange membrane fuel cell (PEMFC) has been an attractive technology for many years especially in automotive applications. This paper deals with PEMFC operation monitoring which is a current target for improvement for attaining extended durability. In this paper, supervision of the PEMFC is done using knowledge-based models. Without extra sensors, it enables a clear insight of state variables of the gases in the membrane electrode assembly (MEA) which gives the PEMFC controller the ability to prevent abnormal operating conditions and associated irreversible degradations. First, a new state-observer oriented model of the PEM fuel cell is detailed. Based on this model, theoretical and practical observability issues are discussed. This analysis shows that convection phenomena can be considered negligible from the dynamic point of view; this leads to a reduced model. Finally a state-observer enables the estimation of the inner partial pressure of the cathode by using only the current and voltage measurements. This proposed model-based approach has been successfully tested on a PEM fuel cell simulator using a set of possible fault scenarios.

  14. Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study

    SciTech Connect

    1996-11-01

    This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

  15. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    SciTech Connect

    Rich Chartrand

    2011-08-31

    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer. Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the efficiency and

  16. Bootstrapping a Sustainable North American PEM Fuel Cell Industry: Could a Federal Acquisition Program Make a Difference?

    SciTech Connect

    Greene, David L; Duleep, Dr. K. G.

    2008-10-01

    The North American Proton Exchange Membrane (PEM) fuel cell industry may be at a critical juncture. A large-scale market for automotive fuel cells appears to be several years away and in any case will require a long-term, coordinated commitment by government and industry to insure the co-evolution of hydrogen infrastructure and fuel cell vehicles (Greene et al., 2008). The market for non-automotive PEM fuel cells, on the other hand, may be much closer to commercial viability (Stone, 2006). Cost targets are less demanding and manufacturers appear to be close, perhaps within a factor of two, of meeting them. Hydrogen supply is a significant obstacle to market acceptance but may not be as great a barrier as it is for hydrogen-powered vehicles due to the smaller quantities of hydrogen required. PEM fuel cells appear to be potentially competitive in two markets: (1) Backup power (BuP) supply, and (2) electrically-powered MHE (Mahadevan et al., 2007a, 2007b). There are several Original Equipment Manufacturers (OEMs) of PEM fuel cell systems for these applications but production levels have been quite low (on the order of 100-200 per year) and cumulative production experience is also limited (on the order of 1,000 units to date). As a consequence, costs remain above target levels and PEM fuel cell OEMs are not yet competitive in these markets. If cost targets can be reached and acceptable solutions to hydrogen supply found, a sustainable North American PEM fuel cell industry could be established. If not, the industry and its North American supply chain could disappear within a year or two. The Hydrogen Fuel Cell and Infrastructure Technologies (HFCIT) program of the U.S. Department of Energy (DOE) requested a rapid assessment of the potential for a government acquisition program to bootstrap the market for non-automotive PEM fuel cells by driving down costs via economies of scale and learning-by-doing. The six week study included in-depth interviews of three manufacturers

  17. Analysis of liquid water formation in polymer electrolyte membrane (PEM) fuel cell flow fields with a dry cathode supply

    NASA Astrophysics Data System (ADS)

    Gößling, Sönke; Klages, Merle; Haußmann, Jan; Beckhaus, Peter; Messerschmidt, Matthias; Arlt, Tobias; Kardjilov, Nikolay; Manke, Ingo; Scholta, Joachim; Heinzel, Angelika

    2016-02-01

    PEM fuel cells can be operated within a wide range of different operating conditions. In this paper, the special case of operating a PEM fuel cell with a dry cathode supply and without external humidification of the cathode, is considered. A deeper understanding of the water management in the cells is essential for choosing the optimal operation strategy for a specific system. In this study a theoretical model is presented which aims to predict the location in the flow field at which liquid water forms at the cathode. It is validated with neutron images of a PEM fuel cell visualizing the locations at which liquid water forms in the fuel cell flow field channels. It is shown that the inclusion of the GDL diffusion resistance in the model is essential to describe the liquid water formation process inside the fuel cell. Good agreement of model predictions and measurement results has been achieved. While the model has been developed and validated especially for the operation with a dry cathode supply, the model is also applicable to fuel cells with a humidified cathode stream.

  18. The effects of clamp torque, humidity, and carbon oxygen poisoning on PEM fuel cell performance

    NASA Astrophysics Data System (ADS)

    Lee, Woo-Kum

    2000-10-01

    Proton exchange membrane fuel cell (PEMFC) is attracting much attention as a power source of electric vehicles due to high power density capability. Although there has been much research and development done on PEWC, there are still many problems to be solved. One of the major problems is water management inside the fuel cell. The performance of the fuel cell is strongly influenced by the state of hydration of the membrane. If the membrane is too dry, its conductivity drops resulting in reduced cell performance. An excess of water in the fuel cell can lead to flooding problems, also resulting in performance drop. This dissertation presents experimental data that may be used to verify numerical simulations of a PEM fuel cell. The key to this usefulness is the closure of a water balance in the fuel cell for various operating conditions. The closure results from experimental data showed that the inlet gas streams are not fully saturated with water vapor. Another key to the usefulness of the data is the measurement of the internal compression pressure that is exerted on the gas diffusion layer. Data is presented to show the effect of this compression on the performance of the PEMFC and on the water balance results. Another problem in application of a PEM fuel cell is CO poisoning on the MEA. Gas reformed from methanol or gasoline contains small amount of CO resulting in significant decreasing fuel cell performance. Several recovery techniques were discussed to solve the CO problem. The use of Pt-Ru alloys as anode catalyst has shown that CO is oxidized at more negative potentials as compared to pure Pt. According to the result, an improvement has been achieved at CO level 5 ppm. Another method to prevent CO poisoning has been described by blowing 5% of air into the anode side. The result shows that the performance recovers very quickly as the air is injected during reformate (50 ppm CO).

  19. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    SciTech Connect

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  20. High resolution neutron imaging of water in PEM fuel cells

    SciTech Connect

    Mukundan, Rangachary; Borup, Rodney L; Davey, John R; Spendelow, Jacob S

    2008-01-01

    Optimal water management in Polymer Electrolyte Membrane (PEM) fuel cells is critical to improving the performance and durability of fuel cell systems especially during transient, start-up and shut-down operations. For example, while a high water content is desirable for improved membrane and catalyst ionomer conductivity, high water content can also block gas access to the triple-phase boundary resulting in lowered performance due to catalyst and gas diffusion layer (GDL) flooding. Visualizing liquid water by neutron imaging has been used over the past decade to study the water distribution inside operating fuel cells. In this paper, the results from our imaging at NIST using their recently installed higher resolution ({approx} 25 mm) Microchannel Plate (MCP) detector with a pixel pitch of 14.7 mm are presented. This detector is capable of quantitatively imaging the water inside the MEA (Membrane Electrode Assembly)/GDL (Gas Diffusion Layer) of working fuel cells and can provide the water profiles within these various components in addition to the channel water. Specially designed fuel cells (active area = 2.25 cm{sup 2}) have been used in order to take advantage of the full detector resolution. The cell design is illustrated in a figure where one of the current collector/end plates is shown. The serpentine pattern was machined into a block of aluminum and plated with nickel and then gold to form the flow field. The measurements were performed using beam no. 1 and aperture no. 2 with a fluence rate of 1.9 x 10{sup 6} neutrons cm{sup -2} sec{sup -1}. The cells were assembled with Gore{sup TM} Primea{sup R} MEAs and SGL Sigracet {sup R} 24 series GDLs (PRIMEA, GORE-SELECT and GORE are trademarks of W. L. Gore & Associates, Inc). All the cells were tested at 80 {sup o}C with 1.2 stoichiometry H{sub 2} and 2.0 stoichiometry air flows.

  1. Novel Catalyst Support Materials for PEM Fuel Cells: Current Status and Future Prospects

    SciTech Connect

    Shao, Yuyan; Liu, Jun; Wang, Yong; Lin, Yuehe

    2008-12-15

    The catalyst supports exhibit great influence on the cost, performance, and durability of polymer electrolyte membrane (PEM) fuel cells. This review paper is to summarize several important kinds of novel support materials for PEM fuel cells (including direct methanol fuel cell, DMFC): nanostructured carbon materials (carbon nanotubes/carbon nanofibers, mesoporous carbon), conductive doped diamonds and nanodiamonds, conductive oxides (tin oxide/indium tin oxide, titanium oxide, tungsten oxide) and carbides (tungsten carbides). The advantages and disadvantages, the acting mechanism to promote electrocatalysis, and the strategies to improve present catalyst support materials and to search for new ones are discussed. This is expected to throw light on future development of catalyst support for PEM fuel cells.

  2. Final Report - MEA and Stack Durability for PEM Fuel Cells

    SciTech Connect

    Yandrasits, Michael A.

    2008-02-15

    Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets. The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain

  3. Simplified evaluation of PEM-fuel cells by reduction of measurement parameters and using optimised measurement algorithms

    NASA Astrophysics Data System (ADS)

    Purmann, M.; Styczynski, Z.

    PEM-fuel cells operated with hydrogen and air offer promising possibilities for the decentralised energy supply in stationary and mobile applications. But, there is still a remarkable need for more research for the optimisation of the single components even though the research, especially the development of membrane-electrode units and bipolar plates, has made considerable progress within recent years. This also applies to the definition of suitable test algorithms and parameters for recording the characteristics as well as long time tests. The investigations for single cells or stacks can thereby be subdivided into investigations in the stationary and the dynamic state. This paper shows a simplified approach for the evaluation and modelling of PEM-fuel cell stacks for the stationary state. Based on the definition of regression approaches for the dependence of several parameters the number of stack parameters is initially reduced to a sufficient number of values. The remaining parameters are used to form an energy model which can be combined with the energy models of auxiliary components like air compressors and sinus inverters [1]. Algorithms for recording the parameters still have to be defined. Therefore, the tests for the preparation of a set of characteristic curves can be very time consuming because of the multitude of variable parameters. This paper presents and discusses optimised measurement algorithms for the evaluation of PEM-fuel cell stacks to reduce this time exposure.

  4. The Corrosion of PEM Fuel Cell Catalyst Supports and Its Implications for Developing Durable Catalysts

    SciTech Connect

    Shao, Yuyan; Wang, Jun; Kou, Rong; Engelhard, Mark H.; Liu, Jun; Wang, Yong; Lin, Yuehe

    2009-01-03

    Studying the corrosion behavior of catalyst support materials is of great significance for understanding the degradation of PEM fuel cell performance and developing durable catalysts. The oxidation of Vulcan carbon black (the most widely-used catalyst support for PEM fuel cells) was investigated using various electrochemical stressing methods (fixed-potential holding vs. potential step cycling), among which the potential step cycling was considered to mimic more closely the real drive cycle operation of vehicle PEM fuel cells. The oxidation of carbon was accelerated under potential step conditions as compared with the fixed-potential holding condition. Increasing potential step frequency or decreasing the lower potential limit in the potential step can further accelerate the corrosion of carbon. The accelerated corrosion of carbon black was attributed to the cycle of consumption/regeneration of some easily oxidized species. These findings are being employed to develop a test protocol for fast screening durable catalyst support.

  5. Zero-CO2 emission and low-crossover 'rechargeable' PEM fuel cells using cyclohexane as an organic hydrogen reservoir.

    PubMed

    Kariya, Nobuko; Fukuoka, Atsushi; Ichikawa, Masaru

    2003-03-21

    High performance (open circuit voltage = 920 mV, maximum power density = 14-15 mW cm(-2)) of the PEM fuel cell was achieved by using cyclohexane as a fuel with zero-CO2 emission and lower-crossover through PEM than with a methanol-based fuel cell.

  6. Study of electrodeposited polypyrrole coatings for the corrosion protection of stainless steel bipolar plates for the PEM fuel cell

    NASA Astrophysics Data System (ADS)

    García, M. A. Lucio; Smit, Mascha A.

    Polypyrrole coatings were prepared on stainless steel SS304 in order to study the corrosion protection provided by the conductive polymer in a simulated PEM fuel cell environment. The polypyrrole was deposited by electrochemical polymerization with 0.04, 0.07 and 0.14 g cm -2 onto SS304 electrodes. Polarization curves, taken after immersion for 1, 3 or 24 h in 0.1 M sulphuric acid at either room temperature or 60 °C were used as an accelerated test. For short immersion times, it was found that corrosion current densities (at free corrosion potentials), diminished up to 2 orders of magnitude for samples tested at room temperature and up to 4 orders of magnitude for samples tested at 60 °C. Furthermore, at potentials in the range of the PEM fuel cell anode potential, corrosion rates also decreased up to several orders of magnitude. However, these protective properties were lost at longer times of immersion. The addition of DBSA to the polypyrrole coatings did lead to improved corrosion current densities at the free corrosion potential, however due to the loss of passivity of these samples, the corrosion rates in the potential range applicable to PEM fuel cells were either similar to or larger than bare metal. SEM was used to determine the morphology of the coatings and showed that the most homogeneous coating was obtained for 0.07 g cm -2 polypyrrole, without the incorporation of DBSA.

  7. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  8. Durability of Membrane Electrode Assemblies (MEAs) in PEM Fuel Cells Operated on Pure Hydrogen and Oxygen

    NASA Technical Reports Server (NTRS)

    Stanic, Vesna; Braun, James; Hoberecht, Mark

    2003-01-01

    Proton exchange membrane (PEM) fuel cells are energy sources that have the potential to replace alkaline fuel cells for space programs. Broad power ranges, high peak-to-nominal power capabilities, low maintenance costs, and the promise of increased life are the major advantages of PEM technology in comparison to alkaline technology. The probability of PEM fuel cells replacing alkaline fuel cells for space applications will increase if the promise of increased life is verified by achieving a minimum of 10,000 hours of operating life. Durability plays an important role in the process of evaluation and selection of MEAs for Teledyne s Phase I contract with the NASA Glenn Research Center entitled Proton Exchange Membrane Fuel cell (PEMFC) Power Plant Technology Development for 2nd Generation Reusable Launch Vehicles (RLVs). For this contract, MEAs that are typically used for H2/air operation were selected as potential candidates for H2/O2 PEM fuel cells because their catalysts have properties suitable for O2 operation. They were purchased from several well-established MEA manufacturers who are world leaders in the manufacturing of diverse products and have committed extensive resources in an attempt to develop and fully commercialize MEA technology. A total of twelve MEAs used in H2/air operation were initially identified from these manufacturers. Based on the manufacturers specifications, nine of these were selected for evaluation. Since 10,000 hours is almost equivalent to 14 months, it was not possible to perform continuous testing with each MEA selected during Phase I of the contract. Because of the lack of time, a screening test on each MEA was performed for 400 hours under accelerated test conditions. The major criterion for an MEA pass or fail of the screening test was the gas crossover rate. If the gas crossover rate was higher than the membrane intrinsic permeability after 400 hours of testing, it was considered that the MEA had failed the test. Three types of

  9. PEM fuel cell cost minimization using ``Design For Manufacture and Assembly`` techniques

    SciTech Connect

    Lomax, F.D. Jr.; James, B.D.; Mooradian, R.P.

    1997-12-31

    Polymer Electrolyte Membrane (PEM) fuel cells fueled with direct hydrogen have demonstrated substantial technical potential to replace Internal Combustion Engines (ICE`s) in light duty vehicles. Such a transition to a hydrogen economy offers the potential of substantial benefits from reduced criteria and greenhouse emissions as well as reduced foreign fuel dependence. Research conducted for the Ford Motor Co. under a US Department of Energy contract suggests that hydrogen fuel, when used in a fuel cell vehicle (FCV), can achieve a cost per vehicle mile less than or equal to the gasoline cost per mile when used in an ICE vehicle. However, fuel cost parity is not sufficient to ensure overall economic success: the PEM fuel cell power system itself must be of comparable cost to the ICE. To ascertain if low cost production of PEM fuel cells is feasible, a powerful set of mechanical engineering tools collectively referred to as Design for Manufacture and Assembly (DFMA) has been applied to several representative PEM fuel cell designs. The preliminary results of this work are encouraging, as presented.

  10. Water Transport Characteristics of Gas Diffusion Layer in a PEM Fuel Cell

    SciTech Connect

    Damle, Ashok S; Cole, J Vernon

    2008-11-01

    A presentation addressing the following: Water transport in PEM Fuel Cells - a DoE Project 1. Gas Diffusion Layer--Role and Characteristics 2. Capillary Pressure Determinations of GDL Media 3. Gas Permeability Measurements of GDL Media 4. Conclusions and Future Activities

  11. Partially unzipped carbon nanotubes as a superior catalyst support for PEM fuel cells.

    PubMed

    Long, Donghui; Li, Wei; Qiao, Wenming; Miyawaki, Jin; Yoon, Seong-Ho; Mochida, Isao; Ling, Licheng

    2011-09-01

    Partially unzipped carbon nanotubes prepared by strong oxidation and thermal expansion of carbon nanotubes were explored as an advanced catalyst support for PEM fuel cells. The unique hybrid structure of 1D nanotube and 2D double-side graphene resulted in an outstanding electrocatalytic performance.

  12. Test of Hydrogen-Oxygen PEM Fuel Cell Stack at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2003-01-01

    This paper describes performance characterization tests of a 64 cell hydrogen oxygen PEM fuel cell stack at NASA Glenn Research Center in February 2003. The tests were part of NASA's ongoing effort to develop a regenerative fuel cell for aerospace energy storage applications. The purpose of the tests was to verify capability of this stack to operate within a regenerative fuel cell, and to compare performance with earlier test results recorded by the stack developer. Test results obtained include polarization performance of the stack at 50 and 100 psig system pressure, and a steady state endurance run at 100 psig. A maximum power output of 4.8 kWe was observed during polarization runs, and the stack sustained a steady power output of 4.0 kWe during the endurance run. The performance data obtained from these tests compare reasonably close to the stack developer's results although some additional spread between best to worst performing cell voltages was observed. Throughout the tests, the stack demonstrated the consistent performance and repeatable behavior required for regenerative fuel cell operation.

  13. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    SciTech Connect

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated

  14. Degradation and reliability modelling of polymer electrolyte membrane (PEM) fuel cells

    NASA Astrophysics Data System (ADS)

    Fowler, Michael William

    To date there has been very little reliability or end of life analysis conducted for polymer electrolyte membrane (PEM) fuel cell systems. Voltage degradation as a fuel cell ages is a widely observed phenomenon, but little systematic information has been reported, nor has this phenomenon been included in electrochemical models. This work documents and classifies the failure modes that can be experienced in PEM fuel cells. A test station was adapted for the long term operation of a single, 50 cm2, internally hydrated, PEM fuel cell. An endurance test was conducted to age the cell under normal operating conditions for 1350 hours, at which time membrane failure was experienced. Changes in the polarization curve predicted by the Generalized Steady State Electrochemical Degradation Model (GSSEDM) are demonstrated from the data for the performance of typical PEM fuel cell hardware. This work develops and applies the generalized steady state electrochemical model for a PEM cell, and introduces two new terms to account for membrane electrode assembly (MEA) ageing, specifically the ageing of the MEA materials. One term is based on the concept that the water carrying capacity of the membrane deteriorates with time-in-service. The second term involves intrinsic rate constants associated with the reactions on the anode and cathode side, and the changes in catalytic activity due to catalyst degradation. The resulting model is largely mechanistic with most terms being derived from theory or including coefficients that have a theoretical basis, but also includes empirical parameters to deal with the changing performance. The value of such a generic model to predict or correlate PEM fuel cell stack voltages over the life of the fuel cell is demonstrated in this work. From the experimental data a membrane conductivity degradation rate, lambdaDR, was determined, and the value for lambdaDR was found to be -0.0007 hr -1. A term was introduced for degradation rate of the fuel cell due

  15. Research and development of a proton-exchange-membrane (PEM) fuel cell system for transportation applications. Progress report for Quarter 4 of the Phase II report

    SciTech Connect

    1995-10-20

    This 4th quarter report summarizes activity from July 1, 1995 through October 1, 1995; the report is organized as usual into sections describing background information and work performed under the main WBS categories: The Fuel Processor (WBS 1.0) team activity during this quarter focused on the continued design/development of the full scale fuel processing hardware. The combustor test stand has been completed allowing more detailed testing of the various parts of the combustor subsystem; this subsystem is currently being evaluated using the dual fuel (methanol/hydrogen) option to gain a better understanding of the control issues. The Fuel Cell Stack (WBS 2.0) team activity focused on material analysis and testing to determine the appropriate approach for the first GM stack. Five hundred hours of durability was achieved on a single cell fixture using coated titanium plates (anode and cathode) with no appreciable voltage degradation of the SEL (Stack Engineering Lab) produced MEA. Additionally, the voltage level drop across each of the plates remained low (<5mv) over the full test period; The system integration and control team focused on the initial layout and configuration of the system; and the Reference powertrain and commercialization studies are currently under review.

  16. Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell.

    PubMed

    Xu, Juan; Sheng, Guo-Ping; Luo, Hong-Wei; Li, Wen-Wei; Wang, Long-Fei; Yu, Han-Qing

    2012-04-15

    The fouling characteristics of proton exchange membrane (PEM) in microbial fuel cell (MFC) and the resulting deterioration of MFC performance were explored in this study. It was observed that the ion exchange capacity, conductivity and diffusion coefficients of cations of PEM were reduced significantly after fouling. Imaging analysis coupled with FTIR analysis indicated that the fouling layer attached on PEM consisted of microorganisms encased in extracellular polymers and inorganic salt precipitations. The results clearly demonstrate that PEM fouling deteriorated the performance of MFCs and led to a decrease in electricity generation. Cation transfer limitation might play an important role in the deterioration of MFC performance because of the membrane fouling. This was attributed to the physical blockage of charge transfer in the MFC resulted from the membrane fouling. With the experimental results, the effect of membrane fouling on the electrical generation of MFCs was evaluated. It was found that the decreased diffusion coefficients of cations and cathodic potential loss after membrane fouling contributed mainly to the deterioration of the MFC performance.

  17. Magnetic Resonance Imaging (MRI) of PEM Dehydration and Gas Manifold Flooding During Continuous Fuel Cell Operation

    SciTech Connect

    Minard, Kevin R.; Vishwanathan, Vilanyur V.; Majors, Paul D.; Wang, Li Q.; Rieke, Peter C.

    2006-10-27

    The methods, apparatus, and results are reported for in-situ, near real time, magnetic resonance imaging (MRI) of MEA dehydration and gas manifold flooding in an operating PEM fuel cell. To acquire high-resolution, artifact-free images for visualizing water distribution, acquisition parameters for a standard, two-dimensional (2D), spin-echo sequence were first optimized for the measured magnetic field heterogeneity induced by fuel cell components. 2D images of water inside the fuel cell were then acquired every 128 seconds during 11.4 hours of continuous operation under constant load. Collected images revealed that MEA dehydration proceeded non-uniformly across its plane, starting from gas inlets and ending at gas outlets, and that upon completion of this dehydration process manifold flooding began. To understand these observations, acquired images were correlated to the current output and operating characteristics of the fuel cell. Results demonstrate the power of MRI for in-situ, near real-time imaging of water distribution and non-uniformity in operating PEM fuel cells, and highlight its utility for understanding PEM fuel cell operation, the causes of cell failure, and for developing new strategies of water management.

  18. Hydrogen as fuel carrier in PEM fuelcell for automobile applications

    NASA Astrophysics Data System (ADS)

    Sk, Mudassir Ali; Venkateswara Rao, K.; Ramana Rao, Jagirdar V.

    2015-02-01

    The present work focuses the application of nanostructured materials for storing of hydrogen in different carbon materials by physisorption method. To market a hydrogen-fuel cell vehicle as competitively as the present internal combustion engine vehicles, there is a need for materials that can store a minimum of 6.5wt% of hydrogen. Carbon materials are being heavily investigated because of their promise to offer an economical solution to the challenge of safe storage of large hydrogen quantities. Hydrogen is important as a new source of energy for automotive applications. It is clear that the key challenge in developing this technology is hydrogen storage. Combustion of fossil fuels and their overuse is at present a serious concern as it is creates severe air pollution and global environmental problems; like global warming, acid rains, ozone depletion in stratosphere etc. This necessitated the search for possible alternative sources of energy. Though there are a number of primary energy sources available, such as thermonuclear energy, solar energy, wind energy, hydropower, geothermal energy etc, in contrast to the fossil fuels in most cases, these new primary energy sources cannot be used directly and thus they must be converted into fuels, that is to say, a new energy carrier is needed. Hydrogen fuel cells are two to three times more efficient than combustion engines. As they become more widely available, they will reduce dependence on fossil fuels. In a fuel cell, hydrogen and oxygen are combined in an electrochemical reaction that produces electricity and, as a byproduct, water.

  19. Radiation grafted and sulfonated (FEP-g-polysterene) - An alternative to perfluorinated membranes for PEM fuel cells?

    NASA Astrophysics Data System (ADS)

    Buechi, F. N.; Gupta, B.; Rouilly, M.; Hauser, P. C.; Chapiro, A.; Scherer, G. G.

    Partially fluorinated proton exchange membranes (PEMs) were synthesized for fuel cell applications by simultaneous radiation grafting of styrene on FEP films followed by sulfonation. Properties of the synthesized membranes can be tailored by varying the degree of grafting and crosslinking. The performance of these membranes was tested in H2/O2 fuel cells. Long time testing showed steady performance for high grafted membranes over periods of more than 300 h at a cell temperature of 60 C. Low grafted membranes and the Morgane CDS membrane showed considerable decay of cell power on the same time scale. A fast degradation of all membranes occurred at a cell temperature of 80 C. It is noted that grafting in film form makes this process a potentially cheap and easy technique for the preparation of solid polymer fuel cell electrolytes.

  20. Low Cost PEM Fuel Cell Metal Bipolar Plates

    SciTech Connect

    Wang, Conghua

    2013-05-30

    Bipolar plate is an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is the metal plate corrosion protection at low cost for the broad commercial applications. This project is aimed to develop innovative technological solutions to overcome the corrosion barrier of low cost metal plates. The feasibility of has been demonstrated and patented (US Patent 7,309,540). The plan is to further reduce the cost, and scale up the technology. The project is built on three pillars: 1) robust experimental evidence demonstrating the feasibility of our technology, 2) a team that consists of industrial leaders in fuel cell stack application, design, and manufactures; 3) a low-risk, significant-milestone driven program that proves the feasibility of meeting program objectives The implementation of this project will reduce the fuel cell stack metal bipolar separator plate cost which accounts 15-21% of the overall stack cost. It will contribute to the market adoption of fuel cell technologies. In addition, this corrosion protection technology can be used similar energy devices, such as batteries and electrolyzers. Therefore, the success of the project will be benefit in broad markets.

  1. Online Soft Sensor of Humidity in PEM Fuel Cell Based on Dynamic Partial Least Squares

    PubMed Central

    Long, Rong; Chen, Qihong; Zhang, Liyan; Ma, Longhua; Quan, Shuhai

    2013-01-01

    Online monitoring humidity in the proton exchange membrane (PEM) fuel cell is an important issue in maintaining proper membrane humidity. The cost and size of existing sensors for monitoring humidity are prohibitive for online measurements. Online prediction of humidity using readily available measured data would be beneficial to water management. In this paper, a novel soft sensor method based on dynamic partial least squares (DPLS) regression is proposed and applied to humidity prediction in PEM fuel cell. In order to obtain data of humidity and test the feasibility of the proposed DPLS-based soft sensor a hardware-in-the-loop (HIL) test system is constructed. The time lag of the DPLS-based soft sensor is selected as 30 by comparing the root-mean-square error in different time lag. The performance of the proposed DPLS-based soft sensor is demonstrated by experimental results. PMID:24453923

  2. Online soft sensor of humidity in PEM fuel cell based on dynamic partial least squares.

    PubMed

    Long, Rong; Chen, Qihong; Zhang, Liyan; Ma, Longhua; Quan, Shuhai

    2013-01-01

    Online monitoring humidity in the proton exchange membrane (PEM) fuel cell is an important issue in maintaining proper membrane humidity. The cost and size of existing sensors for monitoring humidity are prohibitive for online measurements. Online prediction of humidity using readily available measured data would be beneficial to water management. In this paper, a novel soft sensor method based on dynamic partial least squares (DPLS) regression is proposed and applied to humidity prediction in PEM fuel cell. In order to obtain data of humidity and test the feasibility of the proposed DPLS-based soft sensor a hardware-in-the-loop (HIL) test system is constructed. The time lag of the DPLS-based soft sensor is selected as 30 by comparing the root-mean-square error in different time lag. The performance of the proposed DPLS-based soft sensor is demonstrated by experimental results. PMID:24453923

  3. Online soft sensor of humidity in PEM fuel cell based on dynamic partial least squares.

    PubMed

    Long, Rong; Chen, Qihong; Zhang, Liyan; Ma, Longhua; Quan, Shuhai

    2013-01-01

    Online monitoring humidity in the proton exchange membrane (PEM) fuel cell is an important issue in maintaining proper membrane humidity. The cost and size of existing sensors for monitoring humidity are prohibitive for online measurements. Online prediction of humidity using readily available measured data would be beneficial to water management. In this paper, a novel soft sensor method based on dynamic partial least squares (DPLS) regression is proposed and applied to humidity prediction in PEM fuel cell. In order to obtain data of humidity and test the feasibility of the proposed DPLS-based soft sensor a hardware-in-the-loop (HIL) test system is constructed. The time lag of the DPLS-based soft sensor is selected as 30 by comparing the root-mean-square error in different time lag. The performance of the proposed DPLS-based soft sensor is demonstrated by experimental results.

  4. Design of a proton exchange membrane (PEM) fuel cell with variable catalyst loading

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Smirnova, A.; Verma, A.; Pitchumani, R.

    2015-09-01

    The performance and durability of proton exchange membrane (PEM) fuel cells is greatly affected by sharp temperature and stress gradients owing to the significant variation in local current density distribution. To improve the uniformity in local current density distribution and enhance the catalyst utilization, this paper proposes use of functionally graded catalyst loading in the cathode catalyst layer along the gas channel. A two-dimensional isothermal numerical model for PEM fuel cells combined with an optimization model was developed to determine the optimum cathode catalyst loadings and the associated local current density distributions for different operating conditions. Experiments were conducted to measure the local current density distribution for graded catalyst loading, using a segmented current collector. The results show that an optimized graded catalyst loading significantly reduces the current density variation along the length of the channel and enhances the catalyst utilization.

  5. Start-up analysis for automotive PEM fuel cell systems

    NASA Astrophysics Data System (ADS)

    De Francesco, M.; Arato, E.

    The development of fuel cell cars can play an important role in resolving transport problems, due to the high environmental compatibility and high efficiency of this kind of vehicle. Among the different types of fuel cells, proton-exchange membrane fuel cells (PEMFCs) are considered the best solution for automotive applications at the moment. In this work, constructive criteria are discussed with the aim of obtaining a power generation module adaptable to a wide range of cars. A particular problem in accomplishing the overall project is represented by the definition of the compressor system for air feeding. In this work, the design approach to the problem will be delineated: some options are reviewed and the best solution is analysed. The transient response of the system (fuel cell and compressor) is investigated in order to optimise the start-up running through a model of a fuel cell stack and a compressor simulation. The model and its results are proposed as a work procedure to solve the problem, by varying external conditions: in fact, to perform the system start-up under stable conditions, the air relative humidity and temperature must be maintained in a proper range of values. The approach here presented has been utilised for the definition of the characteristics of the power module and layout of a middle-size hybrid city bus in the framework of a project promoted by the European Union.

  6. Process for recycling components of a PEM fuel cell membrane electrode assembly

    DOEpatents

    Shore, Lawrence

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  7. Design of control systems for portable PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Vega-Leal, Alfredo P.; Palomo, F. Rogelio; Barragán, Felipe; García, Covadonga; Brey, J. Javier

    The current evolution in the design of fuel cell systems, together with the considerable development of integrated control techniques in microprocessor systems allows the development of portable fuel cell applications in which optimized control of the fuel cells performance is possible. Control, in the strict sense, implies a thorough knowledge of both the static and dynamic behaviour of the system comprising the stack, manifold and the compressor that enables oxygen supply. The objective of this control, far from being simply to maintain the stack free from oxygen and hydrogen shortages, is to achieve the necessary values of these gases, minimizing compressor consumption, which is the cause of the greatest inefficiency of fuel cells. This objective is essential when fuel cell systems are involved in situations where the net power of the stack is reduced and any unnecessary consumption lowers the total power available to the user. The design of an efficient control system requires the following steps: (1) modeling of the stack, compressor and other pneumatic elements involved in the system. (2) Calculation of the control equations and simulation of the entire system (including control). (3) Emulation of the stack and other pneumatic elements and simulation utilizing the designed control system. (4) Physical realization of the control system and testing within the fuel cell system. The design of a control system for fuel cell systems is introduced to manage PEMFC stacks. The control system will guarantee the correct performance of the stack around its optimal operation point, in which the net power is maximized. This means that both, the air flow and the stack temperature are controlled to a correct value.

  8. Flow distribution in the manifold of PEM fuel cell stack

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Hsien; Jung, Shiauh-Ping; Yen, Shi-Chern

    In this study, the pressure variation and the flow distribution in the manifold of a fuel-cell stack are simulated by a computational fluid dynamics (CFD) approach. Two dimensional stack model composed of 72 cells filled with porous media is constructed to evaluate pressure drop caused by channel flow resistance. In order to simplify this model, electrochemical reactions, heat and mass transport phenomena are ignored and air is treated as working fluid to investigate flow distribution in stacks. Design parameters such as the permeability of the porous media, the manifold width and the air feeding rate were changed to estimate uniformity of the flow distribution in the manifold. A momentum-balance theory and a pressure-drop model are presented to explain the physical mechanism of flow distribution. Modeling results indicate that both the channel resistance and the manifold width can enhance the uniformity of the flow distribution. In addition, a lower air feeding rate can also enhance the uniformity of flow distribution. However, excessive pressure drop is not beneficial for realistic applications of a fuel-cell stack and hence enhanced manifold width is a better solution for flow distribution.

  9. 160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT

    SciTech Connect

    L.G. Marianowski

    2001-12-21

    The objectives of this program were: (a) to develop and demonstrate a new polymer electrolyte membrane fuel cell (PEMFC) system that operates up to 160 C temperatures and at ambient pressures for stationary power applications, and (b) to determine if the GTI-molded composite graphite bipolar separator plate could provide long term operational stability at 160 C or higher. There are many reasons that fuel cell research has been receiving much attention. Fuel cells represent environmentally friendly and efficient sources of electrical power generation that could use a variety of fuel sources. The Gas Technology Institute (GTI), formerly Institute of Gas Technology (IGT), is focused on distributed energy stationary power generation systems. Currently the preferred method for hydrogen production for stationary power systems is conversion of natural gas, which has a vast distribution system in place. However, in the conversion of natural gas into a hydrogen-rich fuel, traces of carbon monoxide are produced. Carbon monoxide present in the fuel gas will in time cumulatively poison, or passivate the active platinum catalysts used in the anodes of PEMFC's operating at temperatures of 60 to 80 C. Various fuel processors have incorporated systems to reduce the carbon monoxide to levels below 10 ppm, but these require additional catalytic section(s) with sensors and controls for effective carbon monoxide control. These CO cleanup systems must also function especially well during transient load operation where CO can spike 300% or more. One way to circumvent the carbon monoxide problem is to operate the fuel cell at a higher temperature where carbon monoxide cannot easily adsorb onto the catalyst and poison it. Commercially available polymer membranes such as Nafion{trademark} are not capable of operation at temperatures sufficiently high to prevent this. Hence this project investigated a new polymer membrane alternative to Nafion{trademark} that is capable of operation at

  10. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.

    PubMed

    Li, Winton; Bonakdarpour, Arman; Gyenge, Előd; Wilkinson, David P

    2013-11-01

    The industrial anthraquinone auto-oxidation process produces most of the world's supply of hydrogen peroxide. For applications that require small amounts of H2 O2 or have economically difficult transportation means, an alternate, on-site H2 O2 production method is needed. Advanced drinking water purification technologies use neutral-pH H2 O2 in combination with UV treatment to reach the desired water purity targets. To produce neutral H2 O2 on-site and on-demand for drinking water purification, the electroreduction of oxygen at the cathode of a proton exchange membrane (PEM) fuel cell operated in either electrolysis (power consuming) or fuel cell (power generating) mode could be a possible solution. The work presented here focuses on the H2 /O2 fuel cell mode to produce H2 O2 . The fuel cell reactor is operated with a continuous flow of carrier water through the cathode to remove the product H2 O2 . The impact of the cobalt-carbon composite cathode catalyst loading, Teflon content in the cathode gas diffusion layer, and cathode carrier water flowrate on the production of H2 O2 are examined. H2 O2 production rates of up to 200 μmol h(-1)  cmgeometric (-2) are achieved using a continuous flow of carrier water operating at 30 % current efficiency. Operation times of more than 24 h have shown consistent H2 O2 and power production, with no degradation of the cobalt catalyst.

  11. EXPERIMENTAL AND NUMERICAL ANALYSIS OF SUBFREEZING OPERATION IN PEM FUEL CELLS

    SciTech Connect

    Mukherjee, Partha P

    2010-01-01

    In this work, we present the neutron radiography and analysis, as well as modeling predictions of cold-start operation of PEM fuel cells. Fuel cells with Gore or LANL MEAs and SGL or E-Tek ELAT GDLs are tested in varying subfreezing temperatures (-40 to 0 C) to determine time to failure, amount of water formation, and place of water formation. Theoretical modeling is also conducted and model predictions are compared with the cell voltage evolution during subfreezing operation. A higher PTFE-loading in the MPL is found to decrease loss in ESCA in our case.

  12. Different Approaches for Ensuring Performance/Reliability of Plastic Encapsulated Microcircuits (PEMs) in Space Applications

    NASA Technical Reports Server (NTRS)

    Gerke, R. David; Sandor, Mike; Agarwal, Shri; Moor, Andrew F.; Cooper, Kim A.

    1999-01-01

    This paper presents viewgraphs on Plastic Encapsulated Microcircuits (PEMs). Different approaches are addressed to ensure good performance and reliability of PEMs. The topics include: 1) Mitigating Risk; and 2) Program results.

  13. Investigation of low glass transition temperature on COTS PEM's reliability for space applications

    NASA Technical Reports Server (NTRS)

    Sandor, M.; Agarwal, S.; Peters, D.; Cooper, M. S.

    2003-01-01

    Plastic Encapsulated Microelectronics (PEM) reliability is affected by many factors. Glass transition temperature (Tg) is one such factor. In this presentation issues relating to PEM reliability and the effect of low glass transition temperature epoxy mold compounds are presented.

  14. Teledyne Energy Systems, Inc., Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant. Test Report: Initial Benchmark Tests in the Original Orientation

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton Exchange Membrane (PEM) fuel cell technology is the leading candidate to replace the alkaline fuel cell technology, currently used on the Shuttle, for future space missions. During a 5-yr development program, a PEM fuel cell powerplant was developed. This report details the initial performance evaluation test results of the powerplant.

  15. Final Report: Development of a Thermal and Water Management System for PEM Fuel Cell

    SciTech Connect

    Zia Mirza, Program Manager

    2011-12-06

    This final program report is prepared to provide the status of program activities performed over the period of 9 years to develop a thermal and water management (TWM) system for an 80-kW PEM fuel cell power system. The technical information and data collected during this period are presented in chronological order by each calendar year. Balance of plant (BOP) components of a PEM fuel cell automotive system represents a significant portion of total cost based on the 2008 study by TIAX LLC, Cambridge, MA. The objectives of this TWM program were two-fold. The first objective was to develop an advanced cooling system (efficient radiator) to meet the fuel cell cooling requirements. The heat generated by the fuel cell stack is a low-quality heat (small difference between fuel cell stack operating temperature and ambient air temperature) that needs to be dissipated to the ambient air. To minimize size, weight, and cost of the radiator, advanced fin configurations were evaluated. The second objective was to evaluate air humidification systems which can meet the fuel cell stack inlet air humidity requirements. The moisture from the fuel cell outlet air is transferred to inlet air, thus eliminating the need for an outside water source. Two types of humidification devices were down-selected: one based on membrane and the other based on rotating enthalpy wheel. The sub-scale units for both of these devices have been successfully tested by the suppliers. This project addresses System Thermal and Water Management.

  16. Technical design and economic evaluation of a PEM fuel cell system

    NASA Astrophysics Data System (ADS)

    Kamarudin, S. K.; Daud, W. R. W.; Som, A. Md.; Takriff, M. S.; Mohammad, A. W.

    The main objectives of this study are to develop the economic models and their characterization trends for the common unit processes and utilities in the fuel cell system. In this study, a proton electrolyte membrane fuel cell (PEMFC) system is taken as a case study. The overall system consists of five major units, namely auto-thermal reformer (ATR), water gas shift reactor (WGS), membrane, pressure swing adsorber (PSA) and fuel cell stack. Besides that, the process utilities like compressor, heat exchanger, water adsorber are also included in the system. From the result, it is determined that the specific cost of a PEM fuel cell stack is about US 500 per kW, while the specific manufacturing and capital investment costs are in the range of US 1200 per kW and US 2900 per kW, respectively. Besides that the electricity cost is calculated as US 0.04 kWh. The results also prove that the cost of PEM fuel cell system is comparable with other conventional internal engine.

  17. Direct PEM fuel cell using "organic chemical hydrides" with zero-CO2 emission and low-crossover.

    PubMed

    Kariya, Nobuko; Fukuoka, Atsushi; Ichikawa, Masaru

    2006-04-14

    A series of "organic chemical hydrides" such as cyclohexane, methylcyclohexane, cyclohexene, 2-propanol, and cyclohexanol were applied to the direct PEM fuel cell. High performances of the PEM fuel cell were achieved by using cyclohexane (OCV = 920 mV, PD(max) = 15 mW cm(-2)) and 2-propanol (OCV = 790 mV, PD(max) = 78 mW cm(-2)) as fuels without CO(2) emissions. The rates of fuel crossover for cyclohexane, 2-propanol, and methanol were estimated, and the rates of fuel permeation of cyclohexane and 2-propanol were lower than that of methanol. Water electrolysis and electro-reductive hydrogenation of acetone mediated by PEM were carried out and formation of 2-propanol in cathode side was observed. This system is the first example of a "rechargeable" direct fuel cell.

  18. Research on water discharge characteristics of PEM fuel cells by using neutron imaging technology at the NRF, HANARO.

    PubMed

    Kim, TaeJoo; Sim, CheulMuu; Kim, MooHwan

    2008-05-01

    An investigation into the water discharge characteristics of proton exchange membrane (PEM) fuel cells is carried out by using a feasibility test apparatus and the Neutron Radiography Facility (NRF) at HANARO. The feasibility test apparatus was composed of a distilled water supply line, a compressed air supply line, heating systems, and single PEM fuel cells, which were a 1-parallel serpentine type with a 100 cm(2) active area. Three kinds of methods were used: compressed air supply-only; heating-only; and a combination of the methods of a compressed air supply and heating, respectively. The resultant water discharge characteristics are different according to the applied methods. The compressed air supply only is suitable for removing the water at a flow field and a heating only is suitable for water at the MEA. Therefore, in order to remove all the water at PEM fuel cells, the combination method is needed at the moment.

  19. Three-wheel air turbocompressor for PEM fuel cell systems

    DOEpatents

    Rehg, Tim; Gee, Mark; Emerson, Terence P.; Ferrall, Joe; Sokolov, Pavel

    2003-08-19

    A fuel cell system comprises a compressor and a fuel processor downstream of the compressor. A fuel cell stack is in communication with the fuel processor and compressor. A combustor is downstream of the fuel cell stack. First and second turbines are downstream of the fuel processor and in parallel flow communication with one another. A distribution valve is in communication with the first and second turbines. The first and second turbines are mechanically engaged to the compressor. A bypass valve is intermediate the compressor and the second turbine, with the bypass valve enabling a compressed gas from the compressor to bypass the fuel processor.

  20. PEM Fuel Cell Freeze Durability and Cold Start Project

    SciTech Connect

    Patterson, T.; O'Neill, Jonathan

    2008-01-02

    UTC has taken advantage of the unique water management opportunities inherent in micro-porous bipolar-plates to improve the cold-start performance of its polymer electrolyte fuel cells (PEFC). Diagnostic experiments were used to determine the limiting factors in micro-porous plate PEFC freeze performance and the causes of any performance decay. Alternative cell materials were evaluated for their freeze performance. Freeze-thaw cycling was also performed to determine micro-porous plate PEFC survivability. Data from these experiments has formed the basis for continuing development of advanced materials capable of supporting DOE's cold-start and durability objectives.

  1. Transport Studies and Modeling in PEM Fuel Cells

    SciTech Connect

    Mittelsteadt, Cortney K.; Xu, Hui; Brawn, Shelly

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalent weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties

  2. On the influence of temperature on PEM fuel cell operation

    NASA Astrophysics Data System (ADS)

    Coppo, M.; Siegel, N. P.; Spakovsky, M. R. von

    The 3D implementation of a previously developed 2D PEMFC model [N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, A two-dimensional computational model of a PEMFC with liquid water transport, J. Power Sources 128 (2) (2004) 173-184; N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, Single domain PEMFC model based on agglomerate catalyst geometry, J. Power Sources 115 (2003) 81-89] has been used to analyze the various pathways by which temperature affects the operation of a proton exchange membrane fuel cell [M. Coppo, CFD analysis and experimental investigation of proton exchange membrane fuel cells, Ph.D. Dissertation, Politecnico di Torino, Turin, Italy, 2005]. The original model, implemented in a specially modified version of CFDesign ® [CFDesign ® V5.1, Blue Ridge Numerics, 2003] , accounts for all of the major transport processes including: (i) a three-phase model for water transport in the liquid, vapor and dissolved phases, (ii) proton transport, (iii) gaseous species transport and reaction, (iv) an agglomerate model for the catalyst layers and (v) gas phase momentum transport. Since the details of it have been published earlier [N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, A two-dimensional computational model of a PEMFC with liquid water transport, J. Power Sources 128 (2) (2004) 173-184; N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, Single domain PEMFC model based on agglomerate catalyst geometry, J. Power Sources 115 (2003) 81-89; N.P. Siegel, Development and validation of a computational model for a proton exchange membrane fuel cell, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2003], only new features are briefly discussed in the present work. In particular, the model has been extended in order to account for the temperature dependence of all of the physical properties involved in the model formulation. Moreover, a novel model has been developed to describe liquid

  3. Numerical study of changing the geometry of the flow field of a PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Khazaee, I.; Sabadbafan, H.

    2016-05-01

    The geometry of channels of a PEM fuel cell is an important parameter that affects the performance of it that the lower voltage loss in polarization curve can indicate the better performance. In this study a complete three-dimensional and single phase model is used to investigate the effect of increasing the number of serpentine channels in the bipolar plates and also increasing the area (depth) of channels of a PEM fuel cell with rectangular, triangular and elliptical cross-section geometry. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region is developed and numerically solved using a finite volume based computational fluid dynamics technique. The results show that there are good agreement with the numerical results and experimental results of the previous work of authors. Also the results show that by increasing the number of channels from one to four and eight, the performance improved about 18 % and by decreasing the area of channels from 2 to 1 mm2 the performance improved about 13 %.

  4. Mesoporous nanostructured Nb-doped titanium dioxide microsphere catalyst supports for PEM fuel cell electrodes.

    PubMed

    Chevallier, Laure; Bauer, Alexander; Cavaliere, Sara; Hui, Rob; Rozière, Jacques; Jones, Deborah J

    2012-03-01

    Crystalline microspheres of Nb-doped TiO(2) with a high specific surface area were synthesized using a templating method exploiting ionic interactions between nascent inorganic components and an ionomer template. The microspheres exhibit a porosity gradient, with a meso-macroporous kernel, and a mesoporous shell. The material has been investigated as cathode electrocatalyst support for polymer electrolyte membrane (PEM) fuel cells. A uniform dispersion of Pt particles on the Nb-doped TiO(2) support was obtained using a microwave method, and the electrochemical properties assessed by cyclic voltammetry. Nb-TiO(2) supported Pt demonstrated very high stability, as after 1000 voltammetric cycles, 85% of the electroactive Pt area remained compared to 47% in the case of commercial Pt on carbon. For the oxygen reduction reaction (ORR), which takes place at the cathode, the highest stability was again obtained with the Nb-doped titania-based material even though the mass activity calculated at 0.9 V vs RHE was slightly lower. The microspherical structured and mesoporous Nb-doped TiO(2) is an alternative support to carbon for PEM fuel cells.

  5. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells.

    PubMed

    Theodorakakos, A; Ous, T; Gavaises, M; Nouri, J M; Nikolopoulos, N; Yanagihara, H

    2006-08-15

    The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier-Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas-liquid-solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.

  6. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  7. Performance and durability of PEM fuel cells operated at sub-freezing temperatures

    SciTech Connect

    Mukundan, Rangachary; Davey, John R; Lujan, Roger W; Spendelow, Jacob S

    2008-01-01

    The durability of polymer electrolyte membrane (PEM) fuel cells operated at sub-freezing temperatures has received increasing attention in recent years. The Department of Energy's PEM fuel cell stack technical targets for the year 2010 include unassisted start-up from -40 {sup o}C and startup from -20 {sup o}C ambient in as low as 30 seconds with < 5 MJ energy consumption. Moreover, the sub-freezing operations should not have any impact on acieving other technical targets including 5000 hours durability. The effect of MEA preparation on the performance of single-PEM fuel cells operated at sub-freezing temperatures is presented. The cell performance and durability are dependent on the MEA and are probably influenced by the porosity of the catalyst layers. When a cell is operated isothermally at -10 {sup o}C in constant current mode, the voltage gradually decreases over time and eventually drops to zero. AC impedance analysis indicated that the rate of voltage loss is initially due to an increase in the charge transfer resistance and is gradual. After a period, the rate of decay accelerates rapidly due to mass transport limitations at the catalyst and/or gas diffusion layers. The high frequency resistance also increases over time during the isothermal operation at sub-freezing temperatures and was a function of the initial membrane water content. LANL prepared MEAs showed very little loss in the catalyst surface area with multiple sub-freezing operations, whereas the commercial MEAs exhibited significant loss in cathode surface area with the anode being unaffected. These results indicate that catalyst layer ice formation is influenced strongly by the MEA and is responsible for the long-term degradation of fuel cells operated at sub-freezing temperatures. This ice formation was monitored using neutron radiography and was found to be concentrated near cell edges at the flow field turns. The water distribution also indicated that ice may be forming mainly in the GDLs at

  8. Development of Polymer Electrolyte Mambrane (PEM) from Bisphonol S for Direct Methanol Fuel Cell (DMFC)

    NASA Astrophysics Data System (ADS)

    Changkhamchom, Sairung

    2009-03-01

    The currently used Proton Exchange Membrane (PEM) in a Direct Methanol Fuel Cell (DMFC) is Nafion^, an excellent proton conductor in a fully hydrated membrane. However, it has major drawbacks, such as very high cost, and loss of conductivity at elevated temperature and low humidity. In this work, a novel PEM based on sulfonated poly(ether ether ketone) (S-PEEK). Poly(ether ether ketone) (PEEK) was synthesized by the nucleophilic aromatic substitution polycondensation of Bisphonol-S and 4,4'-difluorobenzophenone for system A, and Bisphenol S and 4,4'-dichlorobenzophenone for system B. Bisphenol-S helps to increase the thermal stability due to its high melting point (245^oC). The post-sulfonation reaction was performed by using concentrated sulfuric acid. Sulfonated poly(ether ether ketone) (S-PEEK) samples were characterized by FTIR and ^1H-NMR to confirm the chemical structure of the S-PEEK, and by TGA to investigate the thermal property.

  9. Design and fabrication of miniaturized PEM fuel cell combined microreactor with self-regulated hydrogen mechanism

    NASA Astrophysics Data System (ADS)

    Balakrishnan, A.; Frei, M.; Kerzenmacher, S.; Reinecke, H.; Mueller, C.

    2015-12-01

    In this work we present the design and fabrication of the miniaturized PEM fuel cell combined microreactor system with hydrogen regulation mechanism and testing of prototype microreactor. The system consists of two components (i) fuel cell component and (ii) microreactor component. The fuel cell component represents the miniaturized PEM fuel cell system (combination of screen printed fuel cell assembly and an on-board hydrogen storage medium). Hydrogen production based on catalytic hydrolysis of chemical hydride takes place in the microreactor component. The self-regulated hydrogen mechanism based on the gaseous hydrogen produced from the catalytic hydrolysis of sodium borohydride (NaBH4) gets accumulated as bubbles at the vicinity of the hydrophobic coated hydrogen exhaust holes. When the built up hydrogen bubbles pressure exceeds the burst pressure at the hydrogen exhaust holes the bubble collapses. This collapse causes a surge of fresh NaBH4 solution onto the catalyst surface leading to the removal of the reaction by-products formed at the active sites of the catalyst. The catalyst used in the system is platinum deposited on a base substrate. Nickel foam, carbon porous medium (CPM) and ceramic plate were selected as candidates for base substrate for developing a robust catalyst surface. For the first time the platinum layer fabricated by pulsed electrodeposition and dealloying (EPDD) technique is used for hydrolysis of NaBH4. The major advantages of such platinum catalyst layers are its high surface area and their mechanical stability. Prototype microreactor system with self-regulated hydrogen mechanism is demonstrated.

  10. On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells

    SciTech Connect

    Thomas H. Vanderspurt; Zissis Dardas; Ying She; Mallika Gummalla; Benoit Olsommer

    2005-12-30

    Final Report of On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells. The objective of this effort was to technologically enable a compact, fast start-up integrated Water Gas Shift-Pd membrane reactor for integration into an On Board Fuel Processing System (FPS) for an automotive 50 kWe PEM Fuel Cell (PEM FC). Our approach was to: (1) use physics based reactor and system level models to optimize the design through trade studies of the various system design and operating parameters; and (2) synthesize, characterize and assess the performance of advanced high flux, high selectivity, Pd alloy membranes on porous stainless steel tubes for mechanical strength and robustness. In parallel and not part of this program we were simultaneously developing air tolerant, high volumetric activity, thermally stable Water Gas Shift catalysts for the WGS/membrane reactor. We identified through our models the optimum WGS/membrane reactor configuration, and best Pd membrane/FPS and PEM FC integration scheme. Such a PEM FC power plant was shown through the models to offer 6% higher efficiency than a system without the integrated membrane reactor. The estimated FPS response time was < 1 minute to 50% power on start-up, 5 sec transient response time, 1140 W/L power density and 1100 W/kg specific power with an estimated production cost of $35/kW. Such an FPS system would have a Catalytic Partial Oxidation System (CPO) rather than the slower starting Auto-Thermal Reformer (ATR). We found that at optimum WGS reactor configuration that H{sub 2} recovery efficiencies of 95% could be achieved at 6 atm WGS pressure. However optimum overall fuel to net electrical efficiency ({approx}31%) is highest at lower fuel processor efficiency (67%) with 85% H{sub 2} recovery because less parasitic power is needed. The H{sub 2} permeance of {approx}45 m{sup 3}/m{sup 2}-hr-atm{sup 0.5} at 350 C was assumed in these simulations. In the laboratory we achieved a H

  11. On-board diesel autothermal reforming for PEM fuel cells: Simulation and optimization

    SciTech Connect

    Cozzolino, Raffaello Tribioli, Laura

    2015-03-10

    Alternative power sources are nowadays the only option to provide a quick response to the current regulations on automotive pollutant emissions. Hydrogen fuel cell is one promising solution, but the nature of the gas is such that the in-vehicle conversion of other fuels into hydrogen is necessary. In this paper, autothermal reforming, for Diesel on-board conversion into a hydrogen-rich gas suitable for PEM fuel cells, has investigated using the simulation tool Aspen Plus. A steady-state model has been developed to analyze the fuel processor and the overall system performance. The components of the fuel processor are: the fuel reforming reactor, two water gas shift reactors, a preferential oxidation reactor and H{sub 2} separation unit. The influence of various operating parameters such as oxygen to carbon ratio, steam to carbon ratio, and temperature on the process components has been analyzed in-depth and results are presented.

  12. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  13. Structural Features in Heat Transfer Modeling of PEM Fuel Cell Materials

    NASA Astrophysics Data System (ADS)

    Botelho, Steven Joseph

    In this thesis, the impact of incorporating high resolution structural features into the thermal modeling of the polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) and microporous layer (MPL) is studied. Atomic force microscopy (AFM) has been used to image the surfaces of untreated Toray GDL fibres, and the nano-sized particles within Sigracet MPL. The validity of the GDL smooth fibre assumption commonly employed in literature is studied using a thermal resistance network approach. The MPL, which has been found to show structural variability between manufacturers, was also analyzed using AFM to obtain distributions for the particle size and filling radius. The equivalent thermal resistance between MPL particles was computed using the Gauss-Seidel iterative method, and was found to be sensitive to the particle separation distance and filling radius. Finally, unit-cell analysis is presented as a methodology for incorporating MPL nano-features into modeling of the MPL bulk regions.

  14. Experimental and theoretical study of a dual-layer gas diffusion layer in PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Park, Sehkyu

    2008-07-01

    The gas diffusion layer (GDL) in proton exchange membrane fuel cells (PEMFCs) functions as a diffuser and a current collector. The GDL typically consists of the microporous layer (MPL) and the macroporous substrate (MPS). The MPL reduces the ohmic losses and facilitates water removal in the MEA. In this study, a novel method was developed to prepare a dual-layer GDL that enhances the catalyst utilization and the overall fuel cell performance. Several characterization techniques, including mercury porosimetry, water permeation measurement, electrochemical polarization and ac impedance spectroscopy were performed to investigate how carbon loading (or MPL thickness) and PTFE content in the MPL and in the MPS control the water management in PEM fuel cells. An experimental study on carbon loading in the MPL showed that a relatively low carbon loading (0.5 mg cm-2 in this study) results in a balancing of water saturations in the catalyst layer and the GDL, thus improving the oxygen diffusion kinetics. Experimental studies on PTFE content in the MPL and in the MPS indicated that effective water management is attributed to the trade-off between the pore volume and the hydrophobic property of each diffusion layer. A theoretical study of a dual-layer GDL in PEM fuel cells demonstrated that saturation in the MPS is intimately coupled with both the fraction of hydrophilic surface and the average pore diameter. A thin and more hydrophobic MPL altered the pore geometry and the hydrophobic property of a MPS, resulting in better mass transport of reactants and products in the MEA.

  15. Engineered Nano-scale Ceramic Supports for PEM Fuel Cells. Tech Team Meeting Presentaion

    SciTech Connect

    Brosha, Eric L.; Elbaz Alon, Lior; Henson, Neil J.; Rockward, Tommy; Roy, Aaron; Serov, Alexey; Ward, Timothy

    2012-08-13

    Catalyst support durability is currently a technical barrier for commercialization of polymer electrolyte membrane (PEM) fuel cells, especially for transportation applications. Degradation and corrosion of the conventional carbon supports leads to losses in active catalyst surface area and, consequently, reduced performance. As a result, the goal of this work is to develop support materials that interact strongly with Pt, yet sustain bulk-like catalytic activities with very highly dispersed particles. Ceramic materials that are prepared using conventional solid-state methods have large grain sizes and low surface areas that can only be minimally ameliorated through grinding and ball milling. Other synthesis routes to produce ceramic materials must be investigated and utilized in order to obtain desired surface areas. In this work, several different synthesis methods are being utilized to prepare electronically conductive ceramic boride, nitride, and oxide materials with high surface areas and have the potential for use as PEMFC catalyst supports. Polymer-assisted deposition (PAD) and aerosol-through plasma (A-T-P) torch are among several methods used to obtain ceramic materials with surface areas that are equal to, or exceed Vulcan XC-72R supports. Cubic Mo-based ceramic phases have been prepared with average XRD-determined crystallite sizes as low as 1.6 nm (from full profile, XRD fitting) and a BET surface area exceeding 200 m{sup 2}/g. Additionally, black, sub-stoichiometric TiO{sub 2-x}, have been prepared with an average crystallite size in the 4 nm range and surface areas exceeding 250 m{sup 2}/gr. Pt disposition using an incipient wetness approach produced materials with activity for hydrogen redox reactions and ORR. Cyclic voltammetry data will be shown for a variety of potential Pt/ceramic catalysts. Initial experiments indicate enhanced Pt metal-support interactions as well. Plane wave periodic density functional calculations (VASP) are being used to

  16. Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review

    SciTech Connect

    Shao, Yuyan; Cheng, Yingwen; Duan, Wentao; Wang, Wei; Lin, Yuehe; Wang, Yong; Liu, Jun

    2015-12-04

    PEM fuel cells and redox flow batteries are two very similar technologies which share common component materials and device design. Electrocatalysts are the key components in these two devices. In this Review, we discuss recent progress of electrocatalytic materials for these two technologies with a focus on our research activities at Pacific Northwest National Laboratory (PNNL) in the past years. This includes (1) nondestructive functionalization of graphitic carbon as Pt support to improve its electrocatalytic performance, (2) triple-junction of metal–carbon–metal oxides to promote Pt performance, (3) nitrogen-doped carbon and metal-doped carbon (i.e., metal oxides) to improve redox reactions in flow batteries. A perspective on future research and the synergy between the two technologies are also discussed.

  17. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility.

    SciTech Connect

    Pratt, Joseph William; Harris, Aaron P

    2013-01-01

    A barge-mounted hydrogen-fueled proton exchange membrane (PEM) fuel cell system has the potential to reduce emissions and fossil fuel use of maritime vessels in and around ports. This study determines the technical feasibility of this concept and examines specific options on the U.S. West Coast for deployment practicality and potential for commercialization.The conceptual design of the system is found to be straightforward and technically feasible in several configurations corresponding to various power levels and run times.The most technically viable and commercially attractive deployment options were found to be powering container ships at berth at the Port of Tacoma and/or Seattle, powering tugs at anchorage near the Port of Oakland, and powering refrigerated containers on-board Hawaiian inter-island transport barges. Other attractive demonstration options were found at the Port of Seattle, the Suisun Bay Reserve Fleet, the California Maritime Academy, and an excursion vessel on the Ohio River.

  18. Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christoher P.; Jakupca, Ian J.

    2005-01-01

    The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at the NASA Glenn Research Center has successfully demonstrated closed cycle operation at rated power for multiple charge-discharge cycles. During charge cycle the RFC has absorbed input electrical power simulating a solar day cycle ranging from zero to 15 kWe peak, and delivered steady 5 kWe output power for periods exceeding 8 hr. Orderly transitions from charge to discharge mode, and return to charging after full discharge, have been accomplished without incident. Continuing test operations focus on: (1) Increasing the number of contiguous uninterrupted charge discharge cycles; (2) Increasing the performance envelope boundaries; (3) Operating the RFC as an energy storage device on a regular basis; (4) Gaining operational experience leading to development of fully automated operation; and (5) Developing instrumentation and in situ fluid sampling strategies to monitor health and anticipate breakdowns.

  19. THE EFFECT OF LOW CONCENTRATIONS OF TETRACHLOROETHYLENE ON THE PERFORMANCE OF PEM FUEL CELLS

    SciTech Connect

    COLON-MERCHADO, H.; MARTINEZ-RODRIGUEZ, M.; FOX, E.; RHODES, W.; MCWHORTER, C.; GREENWAY, S.

    2011-04-18

    Polymer electrolyte membrane (PEM) fuel cells use components that are susceptible to contaminants in the fuel stream. To ensure fuel quality, standards are being set to regulate the amount of impurities allowable in fuel. The present study investigates the effect of chlorinated impurities on fuel cell systems using tetrachloroethylene (PCE) as a model compound for cleaning and degreasing agents. Concentrations between 0.05 parts per million (ppm) and 30 ppm were studied. We show how PCE causes rapid drop in cell performances for all concentrations including 0.05 ppm. At concentrations of 1 and 0.05 ppm, PCE poisoned the cell at a rate dependent on the dosage of the contaminant delivered to the cell. PCE appears to affect the cell when the cell potential was over potentials higher than approximately 0.2 V. No effects were observed at voltages around or below 0.2 V and the cells could be recovered from previous poisoning performed at higher potentials. Recoveries at those low voltages could be induced by changing the operating voltage or by purging the system. Poisoning did not appear to affect the membrane conductivity. Measurements with long-path length IR results suggested catalytic decomposition of the PCE by hydrogen over the anode catalyst.

  20. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.

    PubMed

    Li, Junsheng; Wang, Zhengbang; Li, Junrui; Pan, Mu; Tang, Haolin

    2014-02-01

    As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.

  1. Design, fabrication and performance analysis of a 200 W PEM fuel cell short stack

    NASA Astrophysics Data System (ADS)

    Weng, Fang-Bor; Jou, Bo-Shian; Su, Ay; Chan, Shih Hung; Chi, Pei-Hung

    A PEM fuel cell short stack of 200 W capacity, with an active area of 100 cm 2 has been designed and fabricated in-house. The status of unit cell performance was 0.55 W cm -2. Based on the unit cell technology, a short stack has been developed. The proper design of uniform flow distribution, cooling plate and compressed end plate were important to achieve the best performance of the short stack. The performance of four cells stack was analyzed in static and dynamic modes. In the static mode of polarization curve, the stack has peak power density of 0.55 W cm -2 (220 W) at 0.5 V per cell, when the voltage was scanning from low to high voltage (1.5-3.5 V), and resulted in minimum water flooding inside the stack. In this study a series of dynamic loadings were tested to simulate the vehicle acceleration. The fuel cell performances respond to dynamic loading influenced by the hydrogen/air stoichiometric, back pressure, and dynamic-loading time. It was needed high hydrogen stoichiometric and back pressure to maintain high dynamic performance. In the long-time stable power testing, the stack was difficult to maintain at high performance, due to the water flooding at high output power. An adjusting cathode back-pressure method for purging water was proposed to prevent the water flooding at flow channels and maintain the stable output power at 170 W (0.42 W cm -2).

  2. Lattice Boltzmann Simulation of Multiphase Transport in Nanostructured PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Stiles, Christopher D.

    As the fossil fuel crisis becomes more critical, it is imperative to develop renewable sources of power generation. Polymer electrolyte membrane (PEM) fuel cells are considered a viable option. However, the cost of the platinum catalyst has hindered their commercialization. PEM fuel cells with platinum loading of >0.4 mg cm2 are common. Efforts towards further reducing this loading are currently underway utilizing nanostructured electrodes. A consequence of increased platinum utilization per unit area and thinner nanostructured electrodes is flooding, which is detrimental to fuel cell performance. Flooding causes a two-fold impact on cell performance: a drop in cell voltage and a rise in parasitic pumping power to overcome the increased pressure drop, which together result in a significant reduction in system efficiency. Proper water management is therefore crucial for optimum performance of the fuel cell and also for enhancing membrane durability. The goal of this thesis is to simulate the multiphase fluid transport in the nanostructured PEMFC of H2O in air with realistic density ratios. In order to pursue this goal, the ability of the pseudopotential based multiphase lattice Boltzmann method to realistically model the coexistence of the gas and liquid phases of H2O at low temperatures is explored. This method is expanded to include a gas mixture of O2 and N 2 into the multiphase H2O systems. Beginning with the examination of the phase transition region described by the current implementation of the multiphase pseudopotential lattice Boltzmann model. Following this, a modified form of the pressure term with the use of a scalar multiplier kappa for the Peng-Robinson equation of state is thoroughly investigated. This method proves to be very effective at enabling numerically stable simulations at low temperatures with large density ratios. It is found that for decreasing values of kappa, this model leads to an increase in multiphase interface thickness and a

  3. Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes

    NASA Astrophysics Data System (ADS)

    Pearlman, Joshua B.; Bhargav, Atul; Shields, Eric B.; Jackson, Gregory S.; Hearn, Patrick L.

    Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H 2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C 12H 23) and with H 2 purification in a water-gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.

  4. Experimental study of humidity changes on the performance of an elliptical single four-channel PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Mohammad; Ghazikhani, Mohsen; Khazaee, Iman

    2016-04-01

    Humidity and humidification in a proton exchange membrane fuel cells (PEM) can significantly affect the performance of these energy generating devices. Since protons (H+) needs to be accompanied by water molecules to pass from the anode side to the cathode side, the PEM fuel cell membrane should be sufficiently wet. Low or high amount of water in the membrane can interrupt the flow of protons and thus reduce the efficiency of the fuel cell. In this context, several experimental studies and modeling have been carried out on PEM fuel cell and interesting results have been achieved. In this paper, the humidity and flow rate of gas in the anode and cathode are modified to examine its effect on fuel cell performance. The results show that the effect of humidity changing in the anode side is greater than that of the cathode so that at zero humidity of anode and 70 % humidity of the cathode, a maximum current flow of 0.512 A/cm2 for 0.12 V was obtained. However, at 70 % anode humidity and zero cathode humidity, a maximum flow of 0.86 A/cm2 for 0.13 V was obtained.

  5. Hydrogen-Oxygen PEM Regenerative Fuel Cell at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2004-01-01

    The NASA Glenn Research Center has constructed a closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) to explore its potential use as an energy storage device for a high altitude solar electric aircraft. Built up over the last 2 years from specialized hardware and off the shelf components the Glenn RFC is a complete "brassboard" energy storage system which includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for re-use during the next cycle. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It specific developmental functions include: (1) Test fuel cells and fuel cell components under repeated closed-cycle operation (nothing escapes; everything is used over and over again). (2) Simulate diurnal charge-discharge cycles (3) Observe long-term system performance and identify degradation and loss mechanisms. (4) Develop safe and convenient operation and control strategies leading to the successful development of mission-capable, flight-weight RFC's.

  6. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest.

    PubMed

    Asensio, Juan Antonio; Sánchez, Eduardo M; Gómez-Romero, Pedro

    2010-08-01

    The development of high-temperature PEM fuel cells (working at 150-200 degrees C) is pursued worldwide in order to solve some of the problems of current cells based on Nafion (CO tolerance, improved kinetics, water management, etc.). Polybenzimidazole membranes nanoimpregnated with phosphoric acid have been studied as electrolytes in PEMFCs for more than a decade. Commercially available polybenzimidazole (PBI) has been the most extensively studied and used for this application in membranes doped with all sorts of strong inorganic acids. In addition to this well-known polymer we also review here studies on ABPBI and other polybenzimidazole type membranes. More recently, several copolymers and related derivatives have attracted many researchers' attention, adding variety to the field. Furthermore, besides phosphoric acid, many other strong inorganic acids, as well as alkaline electrolytes have been used to impregnate benzimidazole membranes and are analyzed here. Finally, we also review different hybrid materials based on polybenzimidazoles and several inorganic proton conductors such as heteropoly acids, as well as sulfonated derivatives of the polymers, all of which contribute to a quickly-developing field with many blooming results and useful potential which are the subject of this critical review (317 references).

  7. Performance evaluation and characterization of metallic bipolar plates in a proton exchange membrane (PEM) fuel cell

    NASA Astrophysics Data System (ADS)

    Hung, Yue

    Bipolar plate and membrane electrode assembly (MEA) are the two most repeated components of a proton exchange membrane (PEM) fuel cell stack. Bipolar plates comprise more than 60% of the weight and account for 30% of the total cost of a fuel cell stack. The bipolar plates perform as current conductors between cells, provide conduits for reactant gases, facilitate water and thermal management through the cell, and constitute the backbone of a power stack. In addition, bipolar plates must have excellent corrosion resistance to withstand the highly corrosive environment inside the fuel cell, and they must maintain low interfacial contact resistance throughout the operation to achieve optimum power density output. Currently, commercial bipolar plates are made of graphite composites because of their relatively low interfacial contact resistance (ICR) and high corrosion resistance. However, graphite composite's manufacturability, permeability, and durability for shock and vibration are unfavorable in comparison to metals. Therefore, metals have been considered as a replacement material for graphite composite bipolar plates. Since bipolar plates must possess the combined advantages of both metals and graphite composites in the fuel cell technology, various methods and techniques are being developed to combat metallic corrosion and eliminate the passive layer formed on the metal surface that causes unacceptable power reduction and possible fouling of the catalyst and the electrolyte. The main objective of this study was to explore the possibility of producing efficient, cost-effective and durable metallic bipolar plates that were capable of functioning in the highly corrosive fuel cell environment. Bulk materials such as Poco graphite, graphite composite, SS310, SS316, incoloy 800, titanium carbide and zirconium carbide were investigated as potential bipolar plate materials. In this work, different alloys and compositions of chromium carbide coatings on aluminum and SS316

  8. Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures

    SciTech Connect

    Mukundan, Rangachary; Luhan, Roger W; Davey, John R; Spendelow, Jacob S; Borup, Rodney L; Hussey, Daniel S; Jacobson, David L; Arif, Muhammad

    2009-01-01

    The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature ({approx} -10 C) and lower current density (0.02 A/cm{sup 2}) operations. These results are consistent with the longer-term durability observations that show more severe degradation at the lower temperatures.

  9. Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Scullin, Vincent J.; Chang, B. J.; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2006-01-01

    The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at NASA Glenn Research Center has demonstrated multiple back to back contiguous cycles at rated power, and round trip efficiencies up to 52 percent. It is the first fully closed cycle regenerative fuel cell ever demonstrated (entire system is sealed: nothing enters or escapes the system other than electrical power and heat). During FY2006 the system has undergone numerous modifications and internal improvements aimed at reducing parasitic power, heat loss and noise signature, increasing its functionality as an unattended automated energy storage device, and in-service reliability. It also serves as testbed towards development of a 600 W-hr/kg flight configuration, through the successful demonstration of lightweight fuel cell and electrolyser stacks and supporting components. The RFC has demonstrated its potential as an energy storage device for aerospace solar power systems such as solar electric aircraft, lunar and planetary surface installations; any airless environment where minimum system weight is critical. Its development process continues on a path of risk reduction for the flight system NASA will eventually need for the manned lunar outpost.

  10. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction.

    PubMed

    Bing, Yonghong; Liu, Hansan; Zhang, Lei; Ghosh, Dave; Zhang, Jiujun

    2010-06-01

    In this critical review, we present the current technological advances in proton exchange membrane (PEM) fuel cell catalysis, with a focus on strategies for developing nanostructured Pt-alloys as electrocatalysts for the oxygen reduction reaction (ORR). The achievements are reviewed and the major challenges, including high cost, insufficient activity and low stability, are addressed and discussed. The nanostructured Pt-alloy catalysts can be grouped into different clusters: (i) Pt-alloy nanoparticles, (ii) Pt-alloy nanotextures such as Pt-skins/monolayers on top of base metals, and (iii) branched or anisotropic elongated Pt or Pt-alloy nanostructures. Although some Pt-alloy catalysts with advanced nanostructures have shown remarkable activity levels, the dissolution of metals, including Pt and alloyed base metals, in a fuel cell operating environment could cause catalyst degradation, and still remains an issue. Another concern may be low retention of the nanostructure of the active catalyst during fuel cell operation. To facilitate further efforts in new catalyst development, several research directions are also proposed in this paper (130 references).

  11. Deformation of PEM fuel cell gas diffusion layers under compressive loading: An analytical approach

    NASA Astrophysics Data System (ADS)

    Norouzifard, Vahid; Bahrami, Majid

    2014-10-01

    In the PEM fuel cell stack, the fibrous porous gas diffusion layer (GDL) provides mechanical support for the membrane assembly against the compressive loads imposed by bipolar plates. In this study, a new mechanistic model is developed using fundamental beam theory that can accurately predict the mechanical deflection of GDL under compressive loads. The present analytical model is built on a unit cell approach, which assumes a simplified geometry for the complex and random GDL microstructure. The model includes salient microstructural parameters and properties of the fibrous porous medium including: carbon fiber diameter, fiber elastic modulus, pore size distribution, and porosity. Carbon fiber bending is proved to be the main deformation mechanism at the unit cell level. A comprehensive optical measurement study with statistical analysis is performed to determine the geometrical parameters of the model for a number of commercially available GDL samples. A comparison between the present model and our experimental stress-strain data shows a good agreement for the linear deformation region, where the compressive pressure is higher than 1 MPa.

  12. Analysis of on-board fuel processing designs for PEM fuel cell vehicles

    SciTech Connect

    Kartha, S.; Fischer, S.; Kreutz, T.

    1996-12-31

    As a liquid fuel with weight and volume energy densities comparable to those of gasoline, methanol is an attractive energy carrier for mobile power systems. It is available without contaminants such as sulfur, and can be easily reformed at relatively low temperatures with inexpensive catalysts. This study is concerned with comparing the net efficiencies of PEM fuel cell vehicles fueled with methanol and hydrogen, using fuel cell system models developed using ASPEN chemical process simulation software. For both the methanol and hydrogen systems, base case designs are developed and several variations are considered that differ with respect to the degree of system integration for recovery of heat and compressive work. The methanol systems are based on steam reforming with the water-gas shift reaction and preferential oxidation, and the hydrogen systems are based on compressed hydrogen. This analysis is an exercise in optimizing the system design for each fuel, which ultimately entails balancing system efficiency against a host of other considerations, including system complexity, performance, cost, reliability, weight and volume.

  13. Analyzing Structural Changes of Fe-N-C Cathode Catalysts in PEM Fuel Cell by Mößbauer Spectroscopy of Complete Membrane Electrode Assemblies.

    PubMed

    Kramm, Ulrike I; Lefèvre, Michel; Bogdanoff, Peter; Schmeißer, Dieter; Dodelet, Jean-Pol

    2014-11-01

    The applicability of analyzing by Mößbauer spectroscopy the structural changes of Fe-N-C catalysts that have been tested at the cathode of membrane electrode assemblies in proton exchange membrane (PEM) fuel cells is demonstrated. The Mößbauer characterization of powders of the same catalysts was recently described in our previous publication. A possible change of the iron species upon testing in fuel cell was investigated here by Mößbauer spectroscopy, energy-dispersive X-ray cross-sectional imaging, and neutron activation analysis. Our results show that the absorption probability of γ rays by the iron nuclei in Fe-N-C is strongly affected by the presence of Nafion and water content. A detailed investigation of the effect of an oxidizing treatment (1.2 V) of the non-noble cathode in PEM fuel cell indicates that the observed activity decay is mainly attributable to carbon oxidation causing a leaching of active iron sites hosted in the carbon matrix.

  14. Performance evaluation and characterization of metallic bipolar plates in a proton exchange membrane (PEM) fuel cell

    NASA Astrophysics Data System (ADS)

    Hung, Yue

    Bipolar plate and membrane electrode assembly (MEA) are the two most repeated components of a proton exchange membrane (PEM) fuel cell stack. Bipolar plates comprise more than 60% of the weight and account for 30% of the total cost of a fuel cell stack. The bipolar plates perform as current conductors between cells, provide conduits for reactant gases, facilitate water and thermal management through the cell, and constitute the backbone of a power stack. In addition, bipolar plates must have excellent corrosion resistance to withstand the highly corrosive environment inside the fuel cell, and they must maintain low interfacial contact resistance throughout the operation to achieve optimum power density output. Currently, commercial bipolar plates are made of graphite composites because of their relatively low interfacial contact resistance (ICR) and high corrosion resistance. However, graphite composite's manufacturability, permeability, and durability for shock and vibration are unfavorable in comparison to metals. Therefore, metals have been considered as a replacement material for graphite composite bipolar plates. Since bipolar plates must possess the combined advantages of both metals and graphite composites in the fuel cell technology, various methods and techniques are being developed to combat metallic corrosion and eliminate the passive layer formed on the metal surface that causes unacceptable power reduction and possible fouling of the catalyst and the electrolyte. The main objective of this study was to explore the possibility of producing efficient, cost-effective and durable metallic bipolar plates that were capable of functioning in the highly corrosive fuel cell environment. Bulk materials such as Poco graphite, graphite composite, SS310, SS316, incoloy 800, titanium carbide and zirconium carbide were investigated as potential bipolar plate materials. In this work, different alloys and compositions of chromium carbide coatings on aluminum and SS316

  15. Mechanism for degradation of Nafion in PEM fuel cells from quantum mechanics calculations.

    PubMed

    Yu, Ted H; Sha, Yao; Liu, Wei-Guang; Merinov, Boris V; Shirvanian, Pezhman; Goddard, William A

    2011-12-14

    We report results of quantum mechanics (QM) mechanistic studies of Nafion membrane degradation in a polymer electrolyte membrane (PEM) fuel cell. Experiments suggest that Nafion degradation is caused by generation of trace radical species (such as OH(●), H(●)) only when in the presence of H(2), O(2), and Pt. We use density functional theory (DFT) to construct the potential energy surfaces for various plausible reactions involving intermediates that might be formed when Nafion is exposed to H(2) (or H(+)) and O(2) in the presence of the Pt catalyst. We find a barrier of 0.53 eV for OH radical formation from HOOH chemisorbed on Pt(111) and of 0.76 eV from chemisorbed OOH(ad), suggesting that OH might be present during the ORR, particularly when the fuel cell is turned on and off. Based on the QM, we propose two chemical mechanisms for OH radical attack on the Nafion polymer: (1) OH attack on the S-C bond to form H(2)SO(4) plus a carbon radical (barrier: 0.96 eV) followed by decomposition of the carbon radical to form an epoxide (barrier: 1.40 eV). (2) OH attack on H(2) crossover gas to form hydrogen radical (barrier: 0.04 eV), which subsequently attacks a C-F bond to form HF plus carbon radicals (barrier as low as 1.00 eV). This carbon radical can then decompose to form a ketone plus a carbon radical with a barrier of 0.86 eV. The products (HF, OCF(2), SCF(2)) of these proposed mechanisms have all been observed by F NMR in the fuel cell exit gases along with the decrease in pH expected from our mechanism.

  16. A methodology for investigating new nonprecious metal catalysts for PEM fuel cells.

    PubMed

    Susac, D; Sode, A; Zhu, L; Wong, P C; Teo, M; Bizzotto, D; Mitchell, K A R; Parsons, R R; Campbell, S A

    2006-06-01

    This paper reports an approach to investigate metal-chalcogen materials as catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells. The methodology is illustrated with reference to Co-Se thin films prepared by magnetron sputtering onto a glassy-carbon substrate. Scanning Auger microscopy (SAM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) have been used, in parallel with electrochemical activity and stability measurements, to assess how the electrochemical performance relates to chemical composition. It is shown that Co-Se thin films with varying Se are active for oxygen reduction, although the open circuit potential (OCP) is lower than for Pt. A kinetically controlled process is observed in the potential range 0.5-0.7 V (vs reversible hydrogen electrode) for the thin-film catalysts studied. An initial exposure of the thin-film samples to an acid environment served as a pretreatment, which modified surface composition prior to activity measurements with the rotating disk electrode (RDE) method. Based on the SAM characterization before and after electrochemical tests, all surfaces demonstrating activity are dominated by chalcogen. XRD shows that the thin films have nanocrystalline character that is based on a Co(1-x)Se phase. Parallel studies on Co-Se powder supported on XC72R carbon show comparable OCP, Tafel region, and structural phase as for the thin-film model catalysts. A comparison for ORR activity has also been made between this Co-Se powder and a commercial Pt catalyst.

  17. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux

    NASA Astrophysics Data System (ADS)

    Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi

    2016-06-01

    In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.

  18. Simulation of a hydrogen production and purification system for a PEM fuel-cell using bioethanol as raw material

    NASA Astrophysics Data System (ADS)

    Giunta, Pablo; Mosquera, Carlos; Amadeo, Norma; Laborde, Miguel

    A process to produce "fuel-cell grade" hydrogen from ethanol steam reforming is analyzed from a thermodynamic point of view. The hydrogen purification process consists of WGS and COPROX reactors. Equations to evaluate the efficiency of the system, including the fuel cell, are presented. A heat exchange network is proposed in order to improve the exploitation of the available power. The effect of key variables such as the reformer temperature and the ethanol/water molar feed ratio on the fuel-cell efficiency is discussed. Results show that it is feasible to carry out the energy integration of the hydrogen catalytic production and purification-PEM fuel-cell system, using ethanol as raw material. The technology of "fuel-cell grade" hydrogen production using ethanol as raw material is a very attractive alternative to those technologies based in fossil fuels.

  19. Cooling channels design analysis with chaotic laminar trajectory for closed cathode air-cooled PEM fuel cells using non-reacting numerical approach

    NASA Astrophysics Data System (ADS)

    N, W. Mohamed W. A.

    2015-09-01

    The thermal management of Polymer Electrolyte Membrane (PEM) fuel cells contributes directly to the overall power output of the system. For a closed cathode PEM fuel cell design, the use of air as a cooling agent is a non-conventional method due to the large heat load involved, but it offers a great advantage for minimizing the system size. Geometrical aspects of the cooling channels have been identified as the basic parameter for improved cooling performance. Numerical investigation using STAR-CCM computational fluid dynamics platform was applied for non-reacting cooling effectiveness study of various channel geometries for fuel cell application. The aspect ratio of channels and the flow trajectory are the parametric variations. A single cooling plate domain was selected with an applied heat flux of 2400 W/m2 while the cooling air are simulated at Reynolds number of 400 that corresponds to normal air flow velocities using standard 6W fans. Three channel designs of similar number of channels (20 channels) are presented here to analyze the effects of having chaotic laminar flow trajectory compared to the usual straight path trajectory. The total heat transfer between the cooling channel walls and coolant were translated into temperature distribution, maximum temperature gradient, average plate temperature and overall cooling effectiveness analyses. The numerical analysis shows that the chaotic flow promotes a 5% to 10% improvement in cooling effectiveness, depending on the single-axis or multi-axis flow paths applied. Plate temperature uniformity is also more realizable using the chaotic flow designs.

  20. Integrated modeling and control of a PEM fuel cell power system with a PWM DC/DC converter

    NASA Astrophysics Data System (ADS)

    Choe, Song-Yul; Lee, Jung-Gi; Ahn, Jong-Woo; Baek, Soo-Hyun

    A fuel cell powered system is regarded as a high current and low voltage source. To boost the output voltage of a fuel cell, a DC/DC converter is employed. Since these two systems show different dynamics, they need to be coordinated to meet the demand of a load. This paper proposes models for the two systems with associated controls, which take into account a PEM fuel cell stack with air supply and thermal systems, and a PWM DC/DC converter. The integrated simulation facilitates optimization of the power control strategy, and analyses of interrelated effects between the electric load and the temperature of cell components. In addition, the results show that the proposed power control can coordinate the two sources with improved dynamics and efficiency at a given dynamic load.

  1. Dynamic modeling and analysis of a 20-cell PEM fuel cell stack considering temperature and two-phase effects

    NASA Astrophysics Data System (ADS)

    Park, Sang-Kyun; Choe, Song-Yul

    2008-05-01

    Dynamic characteristics and performance of a PEM fuel cell stack are crucial factors to ensure safe, effective and efficient operation. In particular, water and heat at varying loads are important factors that directly influence the stack performance and reliability. Herein, we present a new dynamic model that considers temperature and two-phase effects and analyze these effects on the characteristics of a stack. First, a model for a two-cell stack was developed and the simulated results were compared with experimental results. Next, a model for a 20-cell stack was constructed to investigate start-up and transient behavior. Start-up behavior under different conditions where the amplitudes and slopes of a load current, the temperature and flow rate of the coolant, and extra heating of end plates were varied were also analyzed. The transient analyses considered the dynamics of temperature, oxygen and vapor concentration in the gas diffusion media, liquid water saturation, and the variations of water content in the membranes at a multi-step load. Comparative studies revealed that the two-phase effect of water predominantly reduces oxygen concentration in the catalysts and subsequently increases the activation over-potential, while temperature gradients in the cells directly affect the ohmic over-potential. The results showed that the heat-up time at start-up to achieve a given reference working temperature was inversely proportional to the amplitude of the current density applied and the flow rate and temperature of the coolants. In addition, the asymmetric profile of the stack temperature in the stack was balanced when the temperature of the coolant supplied was reheated and elevated. Analyses of transient behaviors for a 20-cell stack showed that strong temperature gradients formed in the last four end cells, while temperature, oxygen concentration, vapor concentration, liquid water saturation, and membrane water content in the rest of the cells were uniform.

  2. Research and development of a Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Progress report for Quarter 8 of the Phase II effort, July 1, 1996--September 30, 1996

    SciTech Connect

    1996-11-08

    This eighth quarterly report summarizes activity from July 1, 1996 through September 30, 1996. The report is organized in sections describing background information and work performed under the main work breakdown structure (WBS) categories. The WBS categories included are fuel processor, fuel cell stack, and system integration and controls. Program scheduling and task progress are presented in the appendix.

  3. Measurement of effective gas diffusion coefficients of catalyst layers of PEM fuel cells with a Loschmidt diffusion cell

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Zhou, Jianqin; Astrath, Nelson G. C.; Navessin, Titichai; Liu, Zhong-Sheng (Simon); Lei, Chao; Rohling, Jurandir H.; Bessarabov, Dmitri; Knights, Shanna; Ye, Siyu

    In this work, using an in-house made Loschmidt diffusion cell, we measure the effective coefficient of dry gas (O 2-N 2) diffusion in cathode catalyst layers of PEM fuel cells at 25 °C and 1 atmosphere. The thicknesses of the catalyst layers under investigation are from 6 to 29 μm. Each catalyst layer is deposited on an Al 2O 3 membrane substrate by an automated spray coater. Diffusion signal processing procedure is developed to deduce the effective diffusion coefficient, which is found to be (1.47 ± 0.05) × 10 -7 m 2 s -1 for the catalyst layers. Porosity and pore size distribution of the catalyst layers are also measured using Hg porosimetry. The diffusion resistance of the interface between the catalyst layer and the substrate is found to be negligible. The experimental results show that the O 2-N 2 diffusion in the catalyst layers is dominated by the Knudsen effect.

  4. Proton exchange membrane fuel cell technology for transportation applications

    SciTech Connect

    Swathirajan, S.

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  5. Different Approaches for Ensuring Performance/Reliability of Plastic Encapsulated Microcircuits (PEMs) in Space Applications

    NASA Technical Reports Server (NTRS)

    Gerke, R. David; Sandor, Mike; Agarwal, Shri; Moor, Andrew F.; Cooper, Kim A.

    2000-01-01

    Engineers within the commercial and aerospace industries are using trade-off and risk analysis to aid in reducing spacecraft system cost while increasing performance and maintaining high reliability. In many cases, Commercial Off-The-Shelf (COTS) components, which include Plastic Encapsulated Microcircuits (PEMs), are candidate packaging technologies for spacecrafts due to their lower cost, lower weight and enhanced functionality. Establishing and implementing a parts program that effectively and reliably makes use of these potentially less reliable, but state-of-the-art devices, has become a significant portion of the job for the parts engineer. Assembling a reliable high performance electronic system, which includes COTS components, requires that the end user assume a risk. To minimize the risk involved, companies have developed methodologies by which they use accelerated stress testing to assess the product and reduce the risk involved to the total system. Currently, there are no industry standard procedures for accomplishing this risk mitigation. This paper will present the approaches for reducing the risk of using PEMs devices in space flight systems as developed by two independent Laboratories. The JPL procedure involves primarily a tailored screening with accelerated stress philosophy while the APL procedure is primarily, a lot qualification procedure. Both Laboratories successfully have reduced the risk of using the particular devices for their respective systems and mission requirements.

  6. Properties of graphite-stainless steel composite in bipolar plates in simulated anode and cathode environments of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Renata

    2014-09-01

    The use of a graphite-stainless steel composite as bipolar plates (BP) in polymer electrolyte membrane fuel cells (PEMFCs) has been evaluated. The study covers measurements of mechanical properties, microstructural examination, analysis of surface profile, wettability, porosity and corrosion resistance of the composite. The corrosion properties of the composite were examined in 0.1 mol·dm-3 H2SO4 + 2 ppm F- saturated with H2 or with O2 and in solutions with different pH: in Na2SO4+ 2 ppm F- (pH = 1.00, 3.00, 5.00) at 80 °C. The performed tests indicate that the graphite modified with stainless steel can be a good choice to be used as a bipolar plate in PEM fuel cells.

  7. Design, Fabrication and Prototype testing of a Chip Integrated Micro PEM Fuel Cell Accumulator combined On-Board Range Extender

    NASA Astrophysics Data System (ADS)

    Balakrishnan, A.; Mueller, C.; Reinecke, H.

    2014-11-01

    In this work we present the design, fabrication and prototype testing of Chip Integrated Micro PEM Fuel Cell Accumulator (CIμ-PFCA) combined On-Board Range Extender (O-BRE). CIμ-PFCA is silicon based micro-PEM fuel cell system with an integrated hydrogen storage feature (palladium metal hydride), the run time of CIμ-PFCA is dependent on the stored hydrogen, and in order to extend its run time an O-BRE is realized (catalytic hydrolysis of chemical hydride, NaBH4. Combining the CIμ-PFCA and O-BRE on a system level have few important design requirements to be considered; hydrogen regulation, gas -liquid separator between the CIμ-PFCA and the O-RE. The usage of traditional techniques to regulate hydrogen (tubes), gas-liquid phase membranes (porous membrane separators) are less desirable in the micro domain, due to its space constraint. Our approach is to use a passive hydrogen regulation and gas-liquid phase separation concept; to use palladium membrane. Palladium regulates hydrogen by concentration diffusion, and its property to selectively adsorb only hydrogen is used as a passive gas-liquid phase separator. Proof of concept is shown by realizing a prototype system. The system is an assembly of CIμ-PFCA, palladium membrane and the O-BRE. The CIμ-PFCA consist of 2 individually processed silicon chips, copper supported palladium membrane realized by electroplating followed by high temperature annealing process under inter atmosphere and the O-BRE is realized out of a polymer substrate by micromilling process with platinum coated structures, which functions as a catalyst for the hydrolysis of NaBH4. The functionality of the assembled prototype system is demonstrated by the measuring a unit cell (area 1 mm2) when driven by the catalytic hydrolysis of chemical hydride (NaBH4 and the prototype system shows run time more than 15 hours.

  8. To alloy or not to alloy? Cr modified Pt/C cathode catalysts for PEM fuel cells.

    PubMed

    Wells, Peter P; Qian, Yangdong; King, Colin R; Wiltshire, Richard J K; Crabb, Eleanor M; Smart, Lesley E; Thompsett, David; Russell, Andrea E

    2008-01-01

    The cathode electrocatalysts for proton exchange membrane (PEM) fuel cells are commonly platinum and platinum based alloy nanoparticles dispersed on a carbon support. Control over the particle size and composition has, historically, been attained empirically, making systematic studies of the effects of various structural parameters difficult. The controlled surface modification methodology used in this work has enabled the controlled modification of carbon supported Pt nanoparticles by Cr so as to yield nanoalloy particles with defined compositions. Subsequent heat treatment in 5% H2 in N2 resulted in the formation of a distinct Pt3Cr alloy phase which was either restricted to the surface of the particles or present throughout the bulk of the particle structure. Measurement of the oxygen reduction activity of the catalysts was accomplished using the rotating thin film electrode method and the activities obtained were related to the structure of the nanoalloy catalyst particles, largely determined using Cr K edge and Pt L3 edge XAS.

  9. Flow rate and humidification effects on a PEM fuel cell performance and operation

    NASA Astrophysics Data System (ADS)

    Guvelioglu, Galip H.; Stenger, Harvey G.

    A new algorithm is presented to integrate component balances along polymer electrolyte membrane fuel cell (PEMFC) channels to obtain three-dimensional results from a detailed two-dimensional finite element model. The analysis studies the cell performance at various hydrogen flow rates, air flow rates and humidification levels. This analysis shows that hydrogen and air flow rates and their relative humidity are critical to current density, membrane dry-out, and electrode flooding. Uniform current densities along the channels are known to be critical for thermal management and fuel cell life. This approach, of integrating a detailed two-dimensional across-the-channel model, is a promising method for fuel cell design due to its low computational cost compared to three-dimensional computational fluid dynamics models, its applicability to a wide range of fuel cell designs, and its ease of extending to fuel cell stack models.

  10. Proton Emission Membrane (PEM) Fuel Cell Stack Power Generation Using Cathode Humidification

    NASA Astrophysics Data System (ADS)

    Erikpara, Jolomi

    The replacement of the power source for stationary and aeronautic applications with alternative energy source has been the subject of countless research. The Proton Exchange membrane fuel cell (PEMFC) has been one of the most promising alternatives because of its quick start up advantages, portability, and quietness of operation with an ability to generate several kilowatts of power. In the short term, this power source can be employed to meet different energy needs and power a medium size Unpiloted Aerial Vehicle (UAV). Fuel Cells can also be applied as a source of emergency power needs for aeronautical applications. In the presence of all these advantages, the power optimization of the PEMFC system has been greatly inhibited by the water and heat generated as by-products of the electrochemical reactions. The operational parameters like pressure, temperature and relative humidity; have been shown to influence the overall water content of the cell and also improve the power generation through improved current density output. This research is aimed at improving the power generation of low temperature (< 100°C) fuel cells through the use of optimal operational parameters and electrode humidity control to mitigate the water effect within the cell. The effects of these processes were investigated with a two cell stack and the results compared with other laboratory experiments showed a power improvement of 0.4Watts using the method employed by this research. The same approach was employed on a 4-cell stack, and an improvement above 369Watts as given by present water management technique was achieved. Maximum power output of 382W was achieved at 0.45V from the 4-cell stack before mass transport limitations were reached.

  11. 75 FR 37384 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... identity of capping ligands affect the size and morphology of the nanoparticles. Justification for Duty... membrane (PEM) fuel cells; functionalized nanoparticles for optical applications; and more....

  12. PEM Degradation Investigation Final Technical Report

    SciTech Connect

    Dan Stevenson; Lee H Spangler

    2010-10-18

    This project conducted fundamental studies of PEM MEA degradation. Insights gained from these studies were disseminated to assist MEA manufacturers in understanding degradation mechanisms and work towards DOE 2010 fuel cell durability targets.

  13. Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding Performance for PEM Fuel Cells

    PubMed Central

    Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun

    2015-01-01

    For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm2 at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode. PMID:26538366

  14. Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding Performance for PEM Fuel Cells.

    PubMed

    Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun

    2015-01-01

    For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm(2) at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode. PMID:26538366

  15. Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding Performance for PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun

    2015-11-01

    For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm2 at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode.

  16. Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding Performance for PEM Fuel Cells.

    PubMed

    Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun

    2015-11-05

    For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm(2) at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode.

  17. Micro reactor integrated μ-PEM fuel cell system: a feed connector and flow field free approach

    NASA Astrophysics Data System (ADS)

    Balakrishnan, A.; Mueller, C.; Reinecke, H.

    2013-12-01

    A system level microreactor concept for hydrogen generation with Sodium Borohydride (NaBH4) is demonstrated. The uniqueness of the system is the transport and distribution feature of fuel (hydrogen) to the anode of the fuel cell without any external feed connectors and flow fields. The approach here is to use palladium film instead of feed connectors and the flow fields; palladium's property to adsorb and desorb the hydrogen at ambient and elevated condition. The proof of concept is demonstrated with a polymethyl methacrylate (PMMA) based complete system integration which includes microreactor, palladium transport layer and the self-breathing polymer electrolyte membrane (PEM) fuel cell. The hydrolysis of NaBH4 was carried out in the presence of platinum supported by nickel (NiPt). The prototype functionality is tested with NaBH4 chemical hydride. The characterization of the integrated palladium layer and fuel cell is tested with constant and switching load. The presented integrated fuel cell is observed to have a maximum power output and current of 60 mW and 280 mA respectively.

  18. Performance Evaluation of Electrochem's PEM Fuel Cell Power Plant for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; Hoberecht, Mark

    2003-01-01

    NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.

  19. Experimental investigation of water droplet-air flow interaction in a non-reacting PEM fuel cell channel

    NASA Astrophysics Data System (ADS)

    Esposito, Angelo; Montello, Aaron D.; Guezennec, Yann G.; Pianese, Cesare

    It has been well documented that water production in PEM fuel cells occurs in discrete locations, resulting in the formation and growth of discrete droplets on the gas diffusion layer (GDL) surface within the gas flow channels (GFCs). This research uses a simulated fuel cell GFC with three transparent walls in conjunction with a high speed fluorescence photometry system to capture videos of dynamically deforming droplets. Such videos clearly show that the droplets undergo oscillatory deformation patterns. Although many authors have previously investigated the air flow induced droplet detachment, none of them have studied these oscillatory modes. The novelty of this work is to process and analyze the recorded videos to gather information on the droplets induced oscillation. Plots are formulated to indicate the dominant horizontal and vertical deformation frequency components over the range of sizes of droplets from formation to detachment. The system is also used to characterize droplet detachment size at a variety of channel air velocities. A simplified model to explain the droplet oscillation mechanism is provided as well.

  20. An innovative hybrid 3D analytic-numerical model for air breathing parallel channel counter-flow PEM fuel cells.

    PubMed

    Tavčar, Gregor; Katrašnik, Tomaž

    2014-01-01

    The parallel straight channel PEM fuel cell model presented in this paper extends the innovative hybrid 3D analytic-numerical (HAN) approach previously published by the authors with capabilities to address ternary diffusion systems and counter-flow configurations. The model's core principle is modelling species transport by obtaining a 2D analytic solution for species concentration distribution in the plane perpendicular to the cannel gas-flow and coupling consecutive 2D solutions by means of a 1D numerical pipe-flow model. Electrochemical and other nonlinear phenomena are coupled to the species transport by a routine that uses derivative approximation with prediction-iteration. The latter is also the core of the counter-flow computation algorithm. A HAN model of a laboratory test fuel cell is presented and evaluated against a professional 3D CFD simulation tool showing very good agreement between results of the presented model and those of the CFD simulation. Furthermore, high accuracy results are achieved at moderate computational times, which is owed to the semi-analytic nature and to the efficient computational coupling of electrochemical kinetics and species transport.

  1. An innovative hybrid 3D analytic-numerical model for air breathing parallel channel counter-flow PEM fuel cells.

    PubMed

    Tavčar, Gregor; Katrašnik, Tomaž

    2014-01-01

    The parallel straight channel PEM fuel cell model presented in this paper extends the innovative hybrid 3D analytic-numerical (HAN) approach previously published by the authors with capabilities to address ternary diffusion systems and counter-flow configurations. The model's core principle is modelling species transport by obtaining a 2D analytic solution for species concentration distribution in the plane perpendicular to the cannel gas-flow and coupling consecutive 2D solutions by means of a 1D numerical pipe-flow model. Electrochemical and other nonlinear phenomena are coupled to the species transport by a routine that uses derivative approximation with prediction-iteration. The latter is also the core of the counter-flow computation algorithm. A HAN model of a laboratory test fuel cell is presented and evaluated against a professional 3D CFD simulation tool showing very good agreement between results of the presented model and those of the CFD simulation. Furthermore, high accuracy results are achieved at moderate computational times, which is owed to the semi-analytic nature and to the efficient computational coupling of electrochemical kinetics and species transport. PMID:25125112

  2. PemK Toxin of Bacillus anthracis Is a Ribonuclease

    PubMed Central

    Agarwal, Shivangi; Mishra, Neeraj Kumar; Bhatnagar, Sonika; Bhatnagar, Rakesh

    2010-01-01

    Bacillus anthracis genome harbors a toxin-antitoxin (TA) module encoding pemI (antitoxin) and pemK (toxin). This study describes the rPemK as a potent ribonuclease with a preference for pyrimidines (C/U), which is consistent with our previous study that demonstrated it as a translational attenuator. The in silico structural modeling of the PemK in conjunction with the site-directed mutagenesis confirmed the role of His-59 and Glu-78 as an acid-base couple in mediating the ribonuclease activity. The rPemK is shown to form a complex with the rPemI, which is in line with its function as a TA module. This rPemI-rPemK complex becomes catalytically inactive when both the proteins interact in a molar stoichiometry of 1. The rPemI displays vulnerability to proteolysis but attains conformational stability only upon rPemK interaction. The pemI-pemK transcript is shown to be up-regulated upon stress induction with a concomitant increase in the amount of PemK and a decline in the PemI levels, establishing the role of these modules in stress. The artificial perturbation of TA interaction could unleash the toxin, executing bacterial cell death. Toward this end, synthetic peptides are designed to disrupt the TA interaction. The peptides are shown to be effective in abrogating TA interaction in micromolar range in vitro. This approach can be harnessed as a potential antibacterial strategy against anthrax in the future. PMID:20022964

  3. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    SciTech Connect

    Wessel, Silvia; Harvey, David

    2013-06-28

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on

  4. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    NASA Astrophysics Data System (ADS)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  5. Parameter analysis of PEM fuel cell hysteresis effects for transient load use

    NASA Astrophysics Data System (ADS)

    Talj, R.; Azib, T.; Béthoux, O.; Remy, G.; Marchand, C.; Berthelot, E.

    2011-05-01

    This paper focuses on the hysteresis effect of the polarization characteristics of a polymer electrolyte membrane fuel cell (PEMFC), mainly due to the compressor-air supply system dynamics. Indeed in PEMFC/ultracapacitor hybrid vehicles, fuel cells can be used to supply the low frequencies of the power demand only. First, the different parts of a FC system are described and modeled in order to analyze the transient stack performance decrease and to identify its main influential factors for automotive applications. Then, apart from humidity and temperature variations, each phenomenon is dynamically described, leading to a complete mathematical model based on macroscopic component parameters. Thus, an analytical model based on this set of equations enables us to draw the static voltage versus current FC characteristics. Furthermore, the hysteresis effect on the V-I curve, which still occurs during low dynamic responses, is shown while temperature and humidity are kept constant. Finally, dynamic responses of the Ballard PEMFC Nexa 1200 W generator are analyzed, and detailed experimentation and simulation are carried out for a large magnitude sinusoidal waveform at different frequencies.

  6. Demonstration of a residential CHP system based on PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Gigliucci, G.; Petruzzi, L.; Cerelli, E.; Garzisi, A.; La Mendola, A.

    Fuel cell-based CHP systems are very attractive for stationary energy generation, since they allow production of electricity and heat in a decentralised, quiet, efficient and environmentally friendly way. As a means of evaluating this new technology, Enel Produzione installed a beta-version fuel cell CHP system, supplied by H-Power, at its experimental area sited in Livorno (Italy), and submitted it to a series of tests. The system is a co-generative unit, converting natural gas into electricity and heat: the former is delivered to local loads using electric load following capability; the latter is delivered to the experimental area hydraulic refrigeration circuit. Experiments were aimed at assessing the suitability of this kind of system to supply Italian residential customers. Factors such as performances, flexibility and operational requirements were evaluated under all the possible operating conditions, both under grid connected and stand alone configurations. At the same time, a mathematical model of the FC/CHP unit was developed to allow for the prediction of system performances and operating parameters under off-design conditions. This model can be used as an effective tool to optimise system operation when a particular customer has to be supplied. Results show that the prototype behaved as expected by a first "proof of concept" system and outline improvements to be achieved in order to satisfy the energy needs of small residential applications.

  7. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.

    PubMed

    Friebe, Sebastian; Geppert, Benjamin; Caro, Jürgen

    2015-06-26

    A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released.

  8. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  9. Investigation of water droplet dynamics in PEM fuel cell gas channels

    NASA Astrophysics Data System (ADS)

    Gopalan, Preethi

    Water management in Proton Exchange Membrane Fuel Cell (PEMFC) has remained one of the most important issues that need to be addressed before its commercialization in automotive applications. Accumulation of water on the gas diffusion layer (GDL) surface in a PEMFC introduces a barrier for transport of reactant gases through the GDL to the catalyst layer. Despite the fact that the channel geometry is one of the key design parameters of a fluidic system, very limited research is available to study the effect of microchannel geometry on the two-phase flow structure. In this study, the droplet-wall dynamics and two-phase pressure drop across the water droplet present in a typical PEMFC channel, were examined in auto-competitive gas channel designs (0.4 x 0.7 mm channel cross section). The liquid water flow pattern inside the gas channel was analyzed for different air velocities. Experimental data was analyzed using the Concus-Finn condition to determine the wettability characteristics in the corner region. It was confirmed that the channel angle along with the air velocity and the channel material influences the water distribution and holdup within the channel. Dynamic contact angle emerged as an important parameter in controlling the droplet-wall interaction. Experiments were also performed to understand how the inlet location of the liquid droplet on the GDL surface affects the droplet dynamic behavior in the system. It was found that droplets emerging near the channel wall or under the land lead to corner filling of the channel. Improvements in the channel design has been proposed based on the artificial channel roughness created to act as capillary grooves to transport the liquid water away from the land area. For droplets emerging near the center of the channel, beside the filling and no-filling behavior reported in the literature, a new droplet jumping behavior was observed. As droplets grew and touched the sidewalls, they jumped off to the sidewall leaving the

  10. Artificial Neural Network Modeling of Pt/C Cathode Degradation in PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Maleki, Erfan; Maleki, Nasim

    2016-08-01

    Use of computational modeling with a few experiments is considered useful to obtain the best possible result for a final product, without performing expensive and time-consuming experiments. Proton exchange membrane fuel cells (PEMFCs) can produce clean electricity, but still require further study. An oxygen reduction reaction (ORR) takes place at the cathode, and carbon-supported platinum (Pt/C) is commonly used as an electrocatalyst. The harsh conditions during PEMFC operation result in Pt/C degradation. Observation of changes in the Pt/C layer under operating conditions provides a tool to study the lifetime of PEMFCs and overcome durability issues. Recently, artificial neural networks (ANNs) have been used to solve, predict, and optimize a wide range of scientific problems. In this study, several rates of change at the cathode were modeled using ANNs. The backpropagation (BP) algorithm was used to train the network, and experimental data were employed for network training and testing. Two different models are constructed in the present study. First, the potential cycles, temperature, and humidity are used as inputs to predict the resulting Pt dissolution rate of the Pt/C at the cathode as the output parameter of the network. Thereafter, the Pt dissolution rate and Pt ion diffusivity are regarded as inputs to obtain values of the Pt particle radius change rate, Pt mass loss rate, and surface area loss rate as outputs. The networks are finely tuned, and the modeling results agree well with experimental data. The modeled responses of the ANNs are acceptable for this application.

  11. Synthesis and Characterization of CO- and H2S- Tolerant Electrocatalysts for PEM Fuel Cell

    SciTech Connect

    Shamsuddin Ilias

    2006-12-31

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we have synthesized a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. Co-catalytic activities were found for the elements Mo, Ru, and Ir. Both the ternary (Pt/Ru/Mo/C) and quaternary (Pt/Ru/Mo/Ir/C) metal catalysts in membrane electrode assemblies (MEA) outperformed pure Pt/C catalysts at all levels in presence of CO up to 100 ppm. Preliminary results suggest that by substituting Mo, Ru, and Ir in catalyst formulation, it is possible to reduce Pt-loading and increase CO-tolerance in PEMFC application. Comparison studies showed that the newly developed ternary and quaternary catalysts with lower Pt outperformed pure Pt catalyst in presence of CO-contaminated H{sub 2} fuel. High performance at low Pt loading of less than 0.4 mg/cm{sup 2} was achieved, thus exceeding the initial targets.

  12. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report.

    PubMed

    Steininger, H; Schuster, M; Kreuer, K D; Kaltbeitzel, A; Bingöl, B; Meyer, W H; Schauff, S; Brunklaus, G; Maier, J; Spiess, H W

    2007-04-21

    The melting behaviour and transport properties of straight chain alkanes mono- and difunctionalized with phosphonic acid groups have been investigated as a function of their length. The increase of melting temperature and decrease of proton conductivity with increasing chain length is suggested to be the consequence of an increasing ordering of the alkane segments which constrains the free aggregation of the phosphonic acid groups. However, the proton mobility is reduced to a greater extent than the proton diffusion coefficient indicating an increasing cooperativity of proton transport with increasing length of the alkane segment. The results clearly indicate that the "spacer concept", which had been proven successful in the optimization of the proton conductivity of heterocycle based systems, fails in the case of phosphonic acid functionalized polymers. Instead, a very high concentration of phosphonic acid functional groups forming "bulky" hydrogen bonded aggregates is suggested to be essential for obtaining very high proton conductivity. Aggregation is also suggested to reduce condensation reactions generally observed in phosphonic acid containing systems. On the basis of this understanding, the proton conductivities of poly(vinyl phosphonic acid) and poly(meta-phenylene phosphonic acid) are discussed. Though both polymers exhibit a substantial concentration of phosphonic acid groups, aggregation seems to be constrained to such an extent that intrinsic proton conductivity is limited to values below sigma = 10(-3) S cm(-1) at T = 150 degrees C. The results suggest that different immobilization concepts have to be developed in order to minimize the conductivity reduction compared to the very high intrinsic proton conductivity of neat phosphonic acid under quasi dry conditions. In the presence of high water activities, however, (as usually present in PEM fuel cells) the very high ion exchange capacities (IEC) possible for phosphonic acid functionalized ionomers (IEC

  13. Engineering invitro cellular microenvironment using polyelectrolyte multilayer films to control cell adhesion and for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Kidambi, Srivatsan

    Over the past decades, the development of new methods for fabricating thin films that provide precise control of the three-dimensional topography and cell adhesion has generated lots of interest. These films could lead to significant advances in the fields of tissue engineering, drug delivery and biosensors which have become increasingly germane areas of research in the field of chemical engineering. The ionic layer-by-layer (LbL) assembly technique called "Polyelectrolyte Multilayers (PEMs)", introduced by Decher in 1991, has emerged as a versatile and inexpensive method of constructing polymeric thin films, with nanometer-scale control of ionized species. PEMs have long been utilized in such applications as sensors, eletrochromics, and nanomechanical thin films but recently they have also been shown to be excellent candidates for biomaterial applications. In this thesis, we engineered these highly customizable PEM thin films to engineer in vitro cellular microenvironments to control cell adhesion and for drug delivery applications. PEM films were engineered to control the adhesion of primary hepatocytes and primary neurons without the aid of adhesive proteins/ligands. We capitalized upon the differential cell attachment and spreading of primary hepatocytes and neurons on poly(diallyldimethylammoniumchloride) (PDAC) and sulfonated polystyrene (SPS) surfaces to make patterned co-cultures of primary hepatocytes/fibroblasts and primary neurons/astrocytes on the PEM surfaces. In addition, we developed self-assembled monolayer (SAM) patterns of m-d-poly(ethylene glycol) (m-dPEG) acid molecules onto PEMs. The created m-dPEG acid monolayer patterns on PEMs acted as resistive templates, and thus prevented further deposits of consecutive poly(anion)/poly(cation) pairs of charged particles and resulted in the formation of three-dimensional (3-D) patterned PEM films or selective particle depositions atop the original multilayer thin films. These new patterned and structured

  14. The efficient and economic design of PEM fuel cell systems by multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Na, Woonki; Gou, Bei

    Since the efficiency of fuel cells is the ratio of the electrical power output and the fuel input, it is a function of power density, system pressure, and stoichiometric ratios of hydrogen and oxygen. Typically, the fuel cell efficiency decreases as its power output increases. In order for the fuel cell system to obtain highly efficient operation with the same power generation, more cells and other auxiliaries such as a high-capacity compressor system, etc. are required. In other words, fuel cell efficiency is closely related to fuel cell economics. Therefore, an optimum efficiency should exist and should result in the definition of a cost-effective fuel cell system. Using a multi-objective optimization technique, the sequential quadratic programming (SQP) method, the efficiency and cost of a fuel cell system have been optimized under various operating conditions. This paper has obtained some analytical results that provide a useful suggestion for the design of a cost-effective fuel cell system with high operation efficiency.

  15. PEM-INST-001: Instructions for Plastic Encapsulated Microcircuit (PEM) Selection, Screening, and Qualification

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander; Sahu, Kusum

    2003-01-01

    Potential users of plastic encapsulated microcircuits (PEMs) need to be reminded that unlike the military system of producing robust high-reliability microcircuits that are designed to perform acceptably in a variety of harsh environments, PEMs are primarily designed for use in benign environments where equipment is easily accessed for repair or replacement. The methods of analysis applied to military products to demonstrate high reliability cannot always be applied to PEMs. This makes it difficult for users to characterize PEMs for two reasons: 1. Due to the major differences in design and construction, the standard test practices used to ensure that military devices are robust and have high reliability often cannot be applied to PEMs that have a smaller operating temperature range and are typically more frail and susceptible to moisture absorption. In contrast, high-reliability military microcircuits usually utilize large, robust, high-temperature packages that are hermetically sealed. 2. Unlike the military high-reliability system, users of PEMs have little visibility into commercial manufacturers proprietary design, materials, die traceability, and production processes and procedures. There is no central authority that monitors PEM commercial product for quality, and there are no controls in place that can be imposed across all commercial manufacturers to provide confidence to high-reliability users that a common acceptable level of quality exists for all PEMs manufacturers. Consequently, there is no guaranteed control over the type of reliability that is built into commercial product, and there is no guarantee that different lots from the same manufacturer are equally acceptable. And regarding application, there is no guarantee that commercial products intended for use in benign environments will provide acceptable performance and reliability in harsh space environments. The qualification and screening processes contained in this document are intended to

  16. Magnetic resonance imaging of water content across the Nafion membrane in an operational PEM fuel cell.

    PubMed

    Zhang, Ziheng; Martin, Jonathan; Wu, Jinfeng; Wang, Haijiang; Promislow, Keith; Balcom, Bruce J

    2008-08-01

    Water management is critical to optimize the operation of polymer electrolyte membrane fuel cells. At present, numerical models are employed to guide water management in such fuel cells. Accurate measurements of water content variation in polymer electrolyte membrane fuel cells are required to validate these models and to optimize fuel cell behavior. We report a direct water content measurement across the Nafion membrane in an operational polymer electrolyte membrane fuel cell, employing double half k-space spin echo single point imaging techniques. The MRI measurements with T2 mapping were undertaken with a parallel plate resonator to avoid the effects of RF screening. The parallel plate resonator employs the electrodes inherent to the fuel cell to create a resonant circuit at RF frequencies for MR excitation and detection, while still operating as a conventional fuel cell at DC. Three stages of fuel cell operation were investigated: activation, operation and dehydration. Each profile was acquired in 6 min, with 6 microm nominal resolution and a SNR of better than 15.

  17. Investigation on "saw-tooth" behavior of PEM fuel cell performance during shutdown and restart cycles

    NASA Astrophysics Data System (ADS)

    Qi, Zhigang; Tang, Hao; Guo, Qunhui; Du, Bin

    It was sometimes observed that the performance of a proton-exchange membrane fuel cell improved after the cell went through shutdown and restart cycles. Such a performance recovery led to a "saw-tooth" performance pattern when multiple shutdowns and restarts occurred during the endurance test of a fuel cell. The shutdowns included both planned shutdowns and unintended ones due to station trips or emergency stops (E-stops). The length of the shutdown periods ranged from a few minutes to several weeks. Although such a "saw-tooth" behavior could be attributed to multiple reasons such as: (1) catalyst surface oxidation state change; (2) catalyst surface cleansing; or (3) water management, we found that it was mainly related to water management in our cases after a systematic investigation employing both single cells and stacks.

  18. Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell.

    PubMed

    Roth, Christina; Benker, Nathalie; Buhrmester, Thorsten; Mazurek, Marian; Loster, Matthias; Fuess, Hartmut; Koningsberger, Diederik C; Ramaker, David E

    2005-10-26

    A special in situ PEM fuel cell has been developed to allow X-ray absorption measurements during real fuel cell operation. Variations in both the coverage of O[H] (O[H] indicates O and/or OH) and CO (applying a novel Deltamu(L3) = mu(L3)(V) - mu(L3)(ref) difference technique), as well as in the geometric (EXAFS) and electronic (atomic XAFS) structure of the anode catalyst, are monitored as a function of the current. In hydrogen, the N(Pt)(-)(Ru) coordination number increases much slower than the N(Pt)(-)(Pt) with increasing current, indicating a more reluctant reduction of the surface Pt atoms near the hydrous Ru oxide islands. In methanol, both O[H] and CO adsorption are separately visible with the Deltamu technique and reveal a drop in CO and an increase in OH coverage in the range of 65-90 mA/cm(2). With increasing OH coverage, the Pt-O coordination number and the AXAFS intensity increase. The data allow the direct observation of the preignition and ignition regions for OH formation and CO oxidation, during the methanol fuel cell operation. It can be concluded that both a bifunctional mechanism and an electronic ligand effect are active in CO oxidation from a PtRu surface in a PEM fuel cell.

  19. 40 CFR 1065.920 - PEMS calibrations and verifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false PEMS calibrations and verifications....920 PEMS calibrations and verifications. (a) Subsystem calibrations and verifications. Use all the applicable calibrations and verifications in subpart D of this part, including the linearity verifications...

  20. 40 CFR 1065.920 - PEMS calibrations and verifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false PEMS calibrations and verifications....920 PEMS calibrations and verifications. (a) Subsystem calibrations and verifications. Use all the applicable calibrations and verifications in subpart D of this part, including the linearity verifications...

  1. Studies on Methanol Crossover in Liquid-Feed Direct Methanol Pem Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    The performance of liquid feed direct methanol fuel cells using various types of Nafion membranes as the solid polymer electrolyte have been studied. The rate of fuel crossover and electrical performance has been measured for cells with Nafion membranes of various thicknesses and equivalent weights. The crossover rate is found to decrease with increasing thickness and applied current. The dependence of crossover rate on current density can be understood in terms of a simple linear diffusion model which suggests that the crossover rate can be influenced by the electrode structure in addition to the membrane. The studies suggest that Nafion EW 1500 is a very promising alternate to Nafion EW 1100 for direct methanol fuel cells.

  2. A segmented model for studying water transport in a PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Chen, Yong-Song

    Fuel Cells are devices that generate electricity by electrochemically combining hydrogen and oxygen. Water management plays an important role in the durability and efficiency of a proton exchange membrane fuel cell (PEMFC). In this study, single cells are modeled as lumped models consisting of 15 interconnected segments, which are linked according to the flow field patterns of the anode and cathode but they are treated as individual lumped elements. Parameters of this model were calibrated based on neutron radiography experimental results obtained at the NIST Center for Neutron Research (NCNR). Three special single cells were designed for the purpose of detecting liquid water and water vapor simultaneously. The major difference between our design and traditional flow field designs is the fact the anode channels and cathode channels were shifted sideways, so that the anode and cathode channels do not overlap in the majority of the active areas. The liquid water is measured by using neutron radiography. The water vapor is measured by the twenty relative humidity sensors embedded in the anode and the cathode flow field plates. The effects of relative humidity and stoichiometry of cathode inlet on relative humidity distribution in the channels and on water accumulation in the GDLs were investigated in this study. The liquid water accumulation at steady-state was calculated by using imaging mask techniques and least-squares method. It is demonstrated that liquid water tends to accumulates in the gas diffusion layers under the rib. Modeling results suggest that opposite flow direction improve the cell performance at low humidity conditions. Accordingly, this segmented model is useful in designing flow field patterns and comparing the influence of different flow field patterns before they are machined on the flow field plates. That reduces the cost of developing and designing a fuel cell.

  3. Microwave-assisted synthesis of Pt/CNT nanocomposite electrocatalysts for PEM fuel cells.

    PubMed

    Zhang, Weimin; Chen, Jun; Swiegers, Gerhard F; Ma, Zi-Feng; Wallace, Gordon G

    2010-02-01

    Microwave-assisted heating of functionalized, single-wall carbon nanotubes (FCNTs) in ethylene glycol solution containing H(2)PtCl(6), led to the reductive deposition of Pt nanoparticles (2.5-4 nm) over the FCNTs, yielding an active catalyst for proton-exchange membrane fuel cells (PEMFCs). In single-cell testing, the Pt/FCNT composites displayed a catalytic performance that was superior to Pt nanoparticles supported by raw (unfunctionalized) CNTs (RCNTs) or by carbon black (C), prepared under identical conditions. The supporting single-wall carbon nanotubes (SWNTs), functionalized with carboxyl groups, were studied by thermogravimetric analysis (TGA), cyclic voltammetry (CV), and Raman spectroscopy. The loading level, morphology, and crystallinity of the Pt/SWNT catalysts were determined using TGA, SEM, and XRD. The electrochemically active catalytic surface area of the Pt/FCNT catalysts was 72.9 m(2)/g-Pt. PMID:20644806

  4. Using Heteropolyacids in the Anode Catalyst Layer of Dimethyl Ether PEM Fuel Cells

    SciTech Connect

    Ferrell III, J. R.; Turner, J. A.; Herring, A. M.

    2008-01-01

    In this study, polarization experiments were performed on a direct dimethyl ether fuel cell (DMEFC). The experimental setup allowed for independent control of water and DME flow rates. Thus the DME flow rate, backpressure, and water flow rate were optimized. Three heteropoly acids, phosphomolybdic acid (PMA), phosphotungstic acid (PTA), and silicotungstic acid (STA) were incorporated into the anode catalyst layer in combination with Pt/C. Both PTA-Pt and STA-Pt showed higher performance than the Pt control at 30 psig of backpressure. Anodic polarizations were also performed, and Tafel slopes were extracted from the data. The trends in the Tafel slope values are in agreement with the polarization data. The addition of phosphotungstic acid more than doubled the power density of the fuel cell, compared to the Pt control.

  5. Microwave-assisted synthesis of Pt/CNT nanocomposite electrocatalysts for PEM fuel cells.

    PubMed

    Zhang, Weimin; Chen, Jun; Swiegers, Gerhard F; Ma, Zi-Feng; Wallace, Gordon G

    2010-02-01

    Microwave-assisted heating of functionalized, single-wall carbon nanotubes (FCNTs) in ethylene glycol solution containing H(2)PtCl(6), led to the reductive deposition of Pt nanoparticles (2.5-4 nm) over the FCNTs, yielding an active catalyst for proton-exchange membrane fuel cells (PEMFCs). In single-cell testing, the Pt/FCNT composites displayed a catalytic performance that was superior to Pt nanoparticles supported by raw (unfunctionalized) CNTs (RCNTs) or by carbon black (C), prepared under identical conditions. The supporting single-wall carbon nanotubes (SWNTs), functionalized with carboxyl groups, were studied by thermogravimetric analysis (TGA), cyclic voltammetry (CV), and Raman spectroscopy. The loading level, morphology, and crystallinity of the Pt/SWNT catalysts were determined using TGA, SEM, and XRD. The electrochemically active catalytic surface area of the Pt/FCNT catalysts was 72.9 m(2)/g-Pt.

  6. The dynamic and steady state behavior of a PEM fuel cell as an electric energy source

    NASA Astrophysics Data System (ADS)

    Costa, R. A.; Camacho, J. R.

    The main objective of this work is to extract information on the internal behavior of three small polymer electrolyte membrane fuel cells under static and dynamic load conditions. A computational model was developed using Scilab [SCILAB 4, Scilab-a free scientific software package, http://www.scilab.org/, INRIA, France, December, 2005] to simulate the static and dynamic performance [J.M. Correa, A.F. Farret, L.N. Canha, An analysis of the dynamic performance of proton exchange membrane fuel cells using an electrochemical model, in: 27th Annual Conference of IEEE Industrial Electronics Society, 2001, pp. 141-146] of this particular type of fuel cell. This dynamic model is based on electrochemical equations and takes into consideration most of the chemical and physical characteristics of the device in order to generate electric power. The model takes into consideration the operating, design parameters and physical material properties. The results show the internal losses and concentration effects behavior, which are of interest for power engineers and researchers.

  7. Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2005-01-01

    Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.

  8. Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells

    SciTech Connect

    Park, Seh K.; Shao, Yuyan; Wan, Haiying; Rieke, Peter C.; Viswanathan, Vilayanur V.; Towne, Silas A.; Saraf, Laxmikant V.; Liu, Jun; Lin, Yuehe; Wang, Yong

    2011-03-01

    A series of cathodes using Pt supported onto graphene sheets with different contents of carbon black in the catalyst layer were prepared and characterized. Carbon black was added as a spacer between two-dimensional graphene sheets in the catalyst layer to study its effect on the performances of proton exchange membrane fuel cell. Electrochemical properties and surface morphology of the cathodes with and without carbon black were characterized using cyclic voltammetry, ac-impedance spectroscopy, electrochemical polarization technique, and scanning electron microscopy. The results indicated that carbon black effectively modifies the array of graphene supports, resulting in more Pt nanoparticles available for electrochemical reaction and better mass transport in the catalyst layer.

  9. Liquid-Water Uptake and Removal in PEM Fuel-Cell Components

    SciTech Connect

    Das, Prodip K.; Gunterman, Haluna P.; Kwong, Anthony; Weber, Adam Z.

    2011-09-23

    Management of liquid water is critical for optimal fuel-cell operation, especially at low temperatures. It is therefore important to understand the wetting properties and water holdup of the various fuel-cell layers. While the gas-diffusion layer is relatively hydrophobic and exhibits a strong intermediate wettability, the catalyst layer is predominantly hydrophilic. In addition, the water content of the ionomer in the catalyst layer is lower than that of the bulk membrane, and is affected by platinum surfaces. Liquid-water removal occurs through droplets on the surface of the gas-diffusion layer. In order to predict droplet instability and detachment, a force balance is used. While the pressure or drag force on the droplet can be derived, the adhesion or surface-tension force requires measurement using a sliding-angle approach. It is shown that droplets produced by forcing water through the gas-diffusion layer rather than placing them on top of it show much stronger adhesion forces owing to the contact to the subsurface water.

  10. Evaluation of the effect of impregnated platinum on PFSA degradation for PEM fuel cells.

    SciTech Connect

    Rodgers, Marianne; Pearman, Benjamin P; Bonville, Leonard J.; Cullen, David A; Mohajeri, Nahid; Slattery, Darlene

    2013-01-01

    One of the main sources of membrane degradation in fuel cells is attack by radicals formed wherever Pt, H2, and O2 are present. The effect of Pt precipitated in the membrane is under debate. Although Pt can provide another site for radical formation, it can also scavenge hydrogen peroxide and radicals in the membrane and improve durability. In this work, the effects of Pt particles within the membrane are evaluated and related to membrane degradation. Membranes were ex situ impregnated with 0, 10, 30, and 50 mol% Pt and then tested for 100 h in a fuel cell, at 90 C/100% relative humidity. The highest degradation was observed with the membranes containing 10 mol% Pt, with fluoride emissions of the same magnitude as those of catalyst coated membranes containing Pt/C. Membranes containing 0, 30, and 50 mol% Pt resulted in very low fluoride emission. The high degradation in the 10 mol% membrane was attributed to the low density of platinum particles, which allows generated radicals to attack the membrane before being deactivated. In the 30 mol% and 50 mol% membranes, where the platinum particles were denser, the generated radicals became deactivated on neighboring particles before they attacked the membrane.

  11. Mechanism of Pinhole Formation in Membrane Electrode Assemblies for PEM Fuel Cells

    NASA Technical Reports Server (NTRS)

    Stanic, Vesna; Hoberecht, Mark

    2004-01-01

    The pinhole formation mechanism was studied with a variety of MEAs using ex-situ and in-situ methods. The ex-situ tests included the MEA aging in oxygen and MEA heat of ignition. In-situ durability tests were performed in fuel cells at different operating conditions with hydrogen and oxygen. After the in-situ failure, MEAs were analyzed with an Olympus BX 60 optical microscope and Cambridge 120 scanning electron microscope. MEA chemical analysis was performed with an IXRF EDS microanalysis system. The MEA failure analyses showed that pinholes and tears were the MEA failure modes. The pinholes appeared in MEA areas where the membrane thickness was drastically reduced. Their location coincided with the stress concentration points, indicating that membrane creep was responsible for their formation. Some of the pinholes detected had contaminant particles precipitated within the membrane. This mechanism of pinhole formation was correlated to the polymer blistering.

  12. Investigation of aligned carbon nanotubes as a novel catalytic electrodes for PEM fuel cells.

    SciTech Connect

    Liu, D. J.; Yang, J.; Gosztola, D. J.

    2007-01-01

    Recent progress in synthesizing and characterizing aligned carbon nanotubes (ACNT) as the electrode catalyst material for proton exchange membrane fuel cells (PEMFC) is reported. Catalytically functionalized ACNT active towards the electrocatalytic reduction of oxygen were prepared by a chemical vapor deposition method. The electrocatalytic activities and the nanostructures of the ACNT layers were investigated by cyclic voltammetry and scanning electron microscopy. To understand the nature of the transition metal as the catalytically active site in the ACNT, we also conducted an in situ X-ray absorption spectroscopic investigation at the Advanced Photon Source at Argonne National Laboratory. The oxidation state and coordination structure of the transition metals embedded inside the nanotubes were monitored by examining the EXAFS spectra collected under different polarization potentials. We clearly observed the change in the electronic and coordinational structures during the oxygen reduction reaction.

  13. Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

    SciTech Connect

    Shamsuddin Ilias

    2006-05-18

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we used four Pt-based electrocatalysts (Pt/Ru/Mo/Se, Pt/Ru/Mo/Ir, Pt/Ru/Mo/W, Ptr/Ru/Mo/Co) in MEAs and these were evaluated for CO-tolerance with 20 and 100 ppm CO concentration in H{sub 2}-fuel. From current-voltage performance study, the catalytic activity was found in the increasing order of Pt/Ru/Mo/Ir > Pt/Ru/Mo/W > Pt/Ru/Mo/Co > Pt/Ru/MO/Se. From preliminary cost analysis it appears that could of the catalyst metal loading can reduced by 40% to 60% depending on the selection of metal combinations without compromising the fuel cell performance.

  14. Analysis of the energy efficiency of an integrated ethanol processor for PEM fuel cell systems

    NASA Astrophysics Data System (ADS)

    Francesconi, Javier A.; Mussati, Miguel C.; Mato, Roberto O.; Aguirre, Pio A.

    The aim of this work is to investigate the energy integration and to determine the maximum efficiency of an ethanol processor for hydrogen production and fuel cell operation. Ethanol, which can be produced from renewable feedstocks or agriculture residues, is an attractive option as feed to a fuel processor. The fuel processor investigated is based on steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying simulation techniques and using thermodynamic models the performance of the complete system has been evaluated for a variety of operating conditions and possible reforming reactions pathways. These models involve mass and energy balances, chemical equilibrium and feasible heat transfer conditions (Δ T min). The main operating variables were determined for those conditions. The endothermic nature of the reformer has a significant effect on the overall system efficiency. The highest energy consumption is demanded by the reforming reactor, the evaporator and re-heater operations. To obtain an efficient integration, the heat exchanged between the reformer outgoing streams of higher thermal level (reforming and combustion gases) and the feed stream should be maximized. Another process variable that affects the process efficiency is the water-to-fuel ratio fed to the reformer. Large amounts of water involve large heat exchangers and the associated heat losses. A net electric efficiency around 35% was calculated based on the ethanol HHV. The responsibilities for the remaining 65% are: dissipation as heat in the PEMFC cooling system (38%), energy in the flue gases (10%) and irreversibilities in compression and expansion of gases. In addition, it has been possible to determine the self-sufficient limit conditions, and to analyze the effect on the net efficiency of the input temperatures of the clean-up system reactors, combustion preheating, expander unit and crude ethanol as

  15. An XAS experimental approach to study low Pt content electrocatalysts operating in PEM fuel cells.

    PubMed

    Principi, Emiliano; Witkowska, Agnieszka; Dsoke, Sonia; Marassi, Roberto; Di Cicco, Andrea

    2009-11-21

    We present an X-ray absorption spectroscopy (XAS) study of a low Pt content catalyst layer (Pt loading 0.1 mg cm(-2)) operating at the cathode of a proton exchange membrane fuel cell (PEMFC). This catalyst is based on the use of a mesoporous inorganic matrix as a support for the catalyst Pt nanoparticles. Due to the high Pt dilution, in situ measurements of its structural properties by XAS are challenging and suitable experimental strategies must be devised for this purpose. In particular, we show that accurate XAS in situ fluorescence measurements can be obtained using an optimized fuel cell, suitable protocols for alignment of a focused X-ray beam and an appropriate filter for the background signal of the other atomic species contained in the electrodes. Details, advantages and limitations of the XAS technique for in situ measurements are discussed. Analysis of the near-edge XAS and EXAFS (extended X-ray absorption fine structure) data, corroborated by a HRTEM (high-resolution transmission electron microscopy) study, shows that the Pt particles have a local structure compatible with that of bulk Pt (fcc) and coordination numbers match those expected for particles with typical sizes in the 1.5-2.0 nm range. Substantial changes in the oxidation state and in local atomic arrangement of the Pt particles are found for different applied potentials. The catalyst support, containing W atoms, exhibits a partial reduction upon PEMFC activation, thus mimicking the catalyst behavior. This indicates a possible role of the mesoporous matrix in favouring the oxygen reduction reaction (ORR) and stimulates further research on active catalyst supports.

  16. Water Management In PEM Fuel Cell -“ A Lattice-Boltzmann Modeling Approach

    SciTech Connect

    Mukherjee, Shiladitya; Cole, James Vernon; Jain, Kunal; Gidwani, Ashok

    2009-06-01

    In Proton Exchange Membrane Fuel Cells (PEMFCs), water management and the effective transport of water through the gas-diffusion-layer (GDL) are key issues for improved performance at high power density and for durability during freeze-thaw cycles. The diffusion layer is a thin (~150-350{micro}m), porous material typically composed of a web of carbon fibers and particles, and is usually coated with hydrophobic Teflon to remove the excess water through capillary action. In-situ diagnostics of water movement and gas-reactant transport through this thin opaque substrate is challenging. Numerical analyses are typically based on simplified assumptions, such as Darcy's Law and Leverett functions for the capillary pressure. The objective of this work is to develop a high fidelity CFD modeling and analysis tool to capture the details of multiphase transport through the porous GDL. The tool can be utilized to evaluate GDL material design concepts and optimize systems based on the interactions between cell design, materials, and operating conditions. The flow modeling is based on the Lattice Boltzmann Method (LBM). LBM is a powerful modeling tool to simulate multiphase flows. Its strength is in its kinetic theory based foundation, which provides a fundamental basis for incorporating intermolecular forces that lead to liquid-gas phase separation and capillary effects without resorting to expensive or ad-hoc interface reconstruction schemes. At the heart of the solution algorithm is a discrete form of the well-known Boltzmann Transport Equation (BTE) for molecular distribution, tailored to recover the continuum Navier-Stokes flow. The solution advances by a streaming and collision type algorithm, mimicking actual molecular physics, which makes it suitable for porous media involving complex boundaries. We developed a numerical scheme to reconstruct various porous GDL microstructures including Teflon loading. Single and multiphase LBM models are implemented to compute

  17. SnO2:F Coated Duplex Stainless Steel for PEM Fuel Cell Bipolar Plates

    SciTech Connect

    Wang, H.; Turner, J. A.

    2008-01-01

    Duplex 2205 stainless steel was deposited with 0.6 {micro}m thick SnO2:F coating; coated steel was characterized for PEMFC bipolar plate application. Compared with bare alloy, interfacial contact resistance (ICR) values of the coated 2205 steel are higher. SnO2:F coating adds its own resistance to the air-formed film on the steel. In a PEMFC anode environment, a current peak of ca. 25 {micro}A/cm2 registered at ca. 30 min for coated 2205 steel. It stabilized at ca. 2.0 {approx} -1.0 {micro}A/cm2. This peak is related to the complicated process of coating dissolution and oxide-layer formation. Anodic-cathodic current transfer occurred at ca. 200 min polarization. In a PEMFC cathode environment, current was stable immediately after polarization. The stable current was ca. 0.5 {approx} 2.0 {micro}A/cm2 during the entire polarization period. AES depth profiles with tested samples and ICP analysis with the tested solutions confirmed the excellent corrosion resistance of the SnO2:F coated 2205 alloy in simulated PEMFC environments.

  18. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    SciTech Connect

    Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

    2013-01-01

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

  19. Simulation and experimental validation of droplet dynamics in microchannels of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Ashrafi, Moosa; Shams, Mehrzad; Bozorgnezhad, Ali; Ahmadi, Goodarz

    2016-02-01

    In this study, dynamics of droplets in the channels of proton exchange membrane fuel cells with straight and serpentine flow-fields was investigated. Tapered and filleted channels were suggested for the straight and serpentine flow-fields respectively in order to improve water removal in channels. Surface tension and wall adhesion forces were applied by using the volume of fluid method. The hydrophilic walls and hydrophobic gas diffusion layer were considered. The mechanism of droplets movement with different diameters was studied by using the Weber and capillary numbers in simple and tapered straight channels. It was illustrated that the flooding was reduced in tapered channel due to increase of water removal rate, and available reaction sites improved subsequently. In addition, film flow was formed in the tapered channel more than the simple channel, so pressure fluctuation was decreased in the tapered channel. Moreover, the water coverage ratio of hydrophilic tapered surface was more than the simple channel, which enhanced water removal from the channel. The filleted serpentine channel was introduced to improve water removal from the simple serpentine channel. It was shown by observation of the unsteady and time-averaged two-phase pressure drop that in the filleted serpentine channels, the two-phase pressure drop was far less than the simple serpentine channel, and also the accumulation of water droplets in the elbows was less leading to lower pressure fluctuation. The numerical simulation results were validated by experiments.

  20. Improved oxygen reduction reaction catalyzed by Pt/Clay/Nafion nanocomposite for PEM fuel cells.

    PubMed

    Narayanamoorthy, B; Datta, K K R; Eswaramoorthy, M; Balaji, S

    2012-07-25

    A novel Pt nanoparticle (Pt NP) embedded aminoclay/Nafion (Pt/AC/N) nanocomposite catalyst film was prepared for oxygen reduction reaction by sol-gel method. The prepared nanocomposite films were surface characterized using XRD and TEM and thermal stability was studied by TGA. The prepared film has firmly bound Pt NP and could exhibit an improved electro-reduction activity compared to vulcan carbon/Nafion supported Pt NP (Pt/VC/N). Moreover, the Pt/AC/N film possessed good stability in the acidic environment. The limiting current density of the Pt/AC/N film with 35.4 μg/cm(2) of Pt loading was found to be 4.2 mA/cm(2), which is 30% higher than that of the Pt/VC/N. The maximum H2O2 intermediate formation was found to be ∼1.6% and the reaction found to follow a four electron transfer mechanism. Accelerated durability test for 2000 potential cycles showed that ca. 78% of initial limiting current was retained. The results are encouraging for possible use of the Pt/AC/N as the free-standing electrocatalyst layer for polymer electrolyte membrane fuel cells.

  1. Characterization of PEM fuel cell membrane-electrode-assemblies by electrochemical methods and microanalysis

    SciTech Connect

    Borup, R.L.; Vanderborgh, N.E.

    1995-09-01

    Characterization of Membrane Electrode Assemblies (MEAs) is used to help optimize construction of the MEA. Characterization techniques include electron microscopies (SEM and TEM), and electrochemical evaluation of the catalyst. Electrochemical hydrogen adsorption/desorption (HAD) and CO oxidation are used to evaluate the active Pt surface area of fuel cell membrane electrode assemblies. Electrochemical surface area measurements have observed large active Pt surface areas, on the order of 50 m{sup 2}/g for 20% weight Pt supported on graphite. Comparison of the hydrogen adsorption/desorption with CO oxidation indicates that on the supported catalysts, the saturation coverage of CO/Pt is about 0.90, the same as observed in H{sub 2}SO{sub 4}. The catalyst surface area measurements are nearly a factor of 2 lower than the Pt surface area calculated from the 30 {angstrom} average particle size observed by TEM. The electrochemical measurements combined with microanalysis of membrane electrode assemblies, allow a greater understanding and optimization of process variables.

  2. Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

    SciTech Connect

    Shamsuddin Ilias

    2005-07-20

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we synthesized several tri-metallic electrocatalysts catalysts (Pt/Ru/Mo, Pt/Ru/Ir, Pt/Ru/W, Ptr/Ru/Co, and Pt/Ru/Se on Vulcan XG72 Carbon) by ultrasonication method. These catalysts were tested in MEAs for CO tolerance at 20 and 100 ppm CO concentrations. From Galvonstatic study the catalytic activity was found in the order of: Pt/Ru/Mo/C > Pt/Ru/Ir/C > Pt/Ru/W/C > Ptr/Ru/Co/C > and Pt/Ru/Se. The catalysts performed very well at 20 ppm CO but at 100 ppm CO performance dropped significantly.

  3. Development of poly(ether ether ketone)(PEEK) derived from bisphenol-S for proton exchange membrane (PEM) in direct methanol fuel cells (DMFC)

    NASA Astrophysics Data System (ADS)

    Changkhamchom, Sairung; Sirivat, Anuvat

    2008-03-01

    The currently used Proton Exchange Membrane (PEM) in Direct Methanol Fuel Cell (DMFC) is Nafion?, an excellent proton conductivity in fully hydrated membrane. However, it has major drawbacks such as very high cost, and lost of conductivity at elevated temperature and low humidity. In our work, the novel PEM was based on sulfonated poly(ether ether ketone) (S-PEEK) which was synthesized by the nucleophilic aromatic substitution polycondensation of bisphonol-S, 4,4'-dichlorobenzophenone (DCBP), and sodium 5,5'-carbonylbis(2-chlorobenzenesulfonate) (SDCBP). Bisphenol-S is expected to improve thermal stability due to its high melting point (245oC). S-PEEK was characterized by FTIR, 1H-NMR, TGA, DSC, and titration to determine the degree of sulfonation (D.S.). Composite membranes were prepared by using S-PEEK as polymer matrix and heteropolyacid (HPA) as an inorganic filler. The phosphotungstic acid (PTA) was used due to its highly proton conductivity at high temperature and low water uptake. The membranes were characterized by SEM, TGA, DSC, DMTA, and by the measurements of the water uptake (%), the swelling ratio (%), the ion exchange capacities (IEC), the methanol diffusion coefficient, and the proton conductivity.

  4. Plastic Encapsulated Microcircuits (PEMs) Reliability Guide

    NASA Technical Reports Server (NTRS)

    Sandor, M.

    2000-01-01

    It is reported by some users and has been demonstrated by others via testing and qualification that the quality and reliability of plastic-encapsulated microcircuits (PEMs) manufactured today are excellent in commercial applications and closely equivalent, and in some cases superior to their hemetic counterparts.

  5. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  6. Alkaline polymer electrolyte membranes for fuel cell applications.

    PubMed

    Wang, Yan-Jie; Qiao, Jinli; Baker, Ryan; Zhang, Jiujun

    2013-07-01

    In this review, we examine the most recent progress and research trends in the area of alkaline polymer electrolyte membrane (PEM) development in terms of material selection, synthesis, characterization, and theoretical approach, as well as their fabrication into alkaline PEM-based membrane electrode assemblies (MEAs) and the corresponding performance/durability in alkaline polymer electrolyte membrane fuel cells (PEMFCs). Respective advantages and challenges are also reviewed. To overcome challenges hindering alkaline PEM technology advancement and commercialization, several research directions are then proposed.

  7. Highly porous PEM fuel cell cathodes based on low density carbon aerogels as Pt-support: Experimental study of the mass-transport losses

    NASA Astrophysics Data System (ADS)

    Marie, Julien; Chenitz, Regis; Chatenet, Marian; Berthon-Fabry, Sandrine; Cornet, Nathalie; Achard, Patrick

    Carbon aerogels exhibiting high porous volumes and high surface areas, differentiated by their pore-size distributions were used as Pt-supports in the cathode catalytic layer of H 2/air-fed PEM fuel cell. The cathodes were tested as 50 cm 2 membrane electrode assemblies (MEAs). The porous structure of the synthesized catalytic layers was impacted by the nanostructure of the Pt-doped carbon aerogels (Pt/CAs). In this paper thus we present an experimental study aiming at establishing links between the porous structure of the cathode catalytic layers and the MEAs performances. For that purpose, the polarization curves of the MEAs were decomposed in 3 contributions: the kinetic loss, the ohmic loss and the mass-transport loss. We showed that the MEAs made with the different carbon aerogels had similar kinetic activities (low current density performance) but very different mass-transport voltage losses. It was found that the higher the pore-size of the initial carbon aerogel, the higher the mass-transport voltage losses. Supported by our porosimetry (N 2-adsorption and Hg-porosimetry) measurement, we interpret this apparent contradiction as the consequence of the more important Nafion penetration into the carbon aeorogel with larger pore-size. Indeed, the catalytic layers made from the larger pore-size carbon aerogel had lower porosities. We thus show in this work that carbon aerogels are materials with tailored nanostructured structure which can be used as model materials for experimentally testing the optimization of the PEM fuel cell catalytic layers.

  8. PEM Degradation Investigation Final Technical Report

    SciTech Connect

    Dan Stevenson; Lee H Spangler

    2007-11-02

    The objectives of this paper are: (1) Develop a system capable of measuring current and voltage performance for each membrane in a Polymer Electrolyte Membranes (PEM) fuel cell stack and record the performance of each individual cell; (2) Develop a single cell PEM FC to allow in situ synchrotron x-ray measurements of the cell in operation and to perform spatially resolved x-ray measurements on fuel cell elements before and after degradation; and (3) Perform initial magnetic resonance microimaging experiments on membrane materials. The Montana State University PEM Membrane Degradation program is geared towards determining how and why membranes in fuel cells degrade and fail. By monitoring every individual membrane in a fuel cell 2000 times/sec while the cell is subjected to real-world type use, we hope to: (1) cause the types of degradation users see, but in a controlled environment; (2) determine an electrical signature that will identify what causes failure, or at least warns of impending failure; (3) allows us to perform advanced x-ray and MRI characterization of the degraded membranes to provide information that may result in improvements of the membrane material; and (4) perhaps allow design of electronic control systems that will prevent fuel cells from operating under conditions where damage is likely to occur.

  9. Spontaneous oscillations of cell voltage, power density, and anode exit CO concentration in a PEM fuel cell.

    PubMed

    Lu, Hui; Rihko-Struckmann, Liisa; Sundmacher, Kai

    2011-10-28

    The spontaneous oscillations of the cell voltage and output power density of a PEMFC (with PtRu/C anode) using CO-containing H(2) streams as anodic fuels have been observed during galvanostatic operating. It is ascribed to the dynamic coupling of the CO adsorption (poisoning) and the electrochemical CO oxidation (reactivating) processes in the anode chamber of the single PEMFC. Accompanying the cell voltage and power density oscillations, the discrete CO concentration oscillations at the anode outlet of the PEMFC were also detected, which directly confirms the electrochemical CO oxidation taking place in the anode chamber during galvanostatic operating.

  10. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Hoehlich, D.; Scharf, I.; Lampke, T.; Hollaender, U.; Maier, H. J.

    2016-03-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W2N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing.

  11. Study of gas pressure and flow rate influences on a 500 W PEM fuel cell, thanks to the experimental design methodology

    NASA Astrophysics Data System (ADS)

    Wahdame, B.; Candusso, D.; Kauffmann, Jean-Marie

    The behaviour of a 500 W PEM fuel cell stack, fed by pure hydrogen and humidified compressed air, is currently investigated on the fuel cell test platform of Belfort. In this paper, the influences on fuel cell performance of gas pressure and flow rate parameters are studied. The fuel cell is operated in the pressure regulation mode: the gas flow rates are regulated thanks to mass flow controllers placed upstream of the stack and the gas pressures at stack inlets are controlled by regulation valves located downstream of the stack. The choice of the various tests to perform is made thanks to experimental design methodology, which is a suitable technique to characterise, analyse and to improve a complex system such as a fuel cell generator. In this study, the four physical factors considered are both hydrogen/air pressures and anode/cathode flow rates. Each factor has two levels, leading to a full factorial design requiring 16 experiments (16 current-voltage curves). The test bench developed at the laboratory allows setting the other factors (for instance: stack temperature, relative humidity and dew point temperature of the air at stack inlet) at fixed values. The test responses are the maximal output power and the efficiency computed for this power. Statistical sensitivity analyses (ANOVA analyses) are used to compute the effects and the contributions of the various factors to the fuel cell maximal power. The use of fractional designs shows also how it is possible to reduce the number of experiments. Some graphic representations are employed in order to display the results of the statistical analyses made for different current values.

  12. On-board reforming of biodiesel and bioethanol for high temperature PEM fuel cells: Comparison of autothermal reforming and steam reforming

    NASA Astrophysics Data System (ADS)

    Martin, Stefan; Wörner, Antje

    2011-03-01

    In the 21st century biofuels will play an important role as alternative fuels in the transportation sector. In this paper different reforming options (steam reforming (SR) and autothermal reforming (ATR)) for the on-board conversion of bioethanol and biodiesel into a hydrogen-rich gas suitable for high temperature PEM (HTPEM) fuel cells are investigated using the simulation tool Aspen Plus. Special emphasis is placed on thermal heat integration. Methyl-oleate (C19H36O2) is chosen as reference substance for biodiesel. Bioethanol is represented by ethanol (C2H5OH). For the steam reforming concept with heat integration a maximum fuel processing efficiency of 75.6% (76.3%) is obtained for biodiesel (bioethanol) at S/C = 3. For the autothermal reforming concept with heat integration a maximum fuel processing efficiency of 74.1% (75.1%) is obtained for biodiesel (bioethanol) at S/C = 2 and λ = 0.36 (0.35). Taking into account the better dynamic behaviour and lower system complexity of the reforming concept based on ATR, autothermal reforming in combination with a water gas shift reactor is considered as the preferred option for on-board reforming of biodiesel and bioethanol. Based on the simulation results optimum operating conditions for a novel 5 kW biofuel processor are derived.

  13. Potential Usage of Thermoelectric Devices in a High-Temperature Polymer Electrolyte Membrane (PEM) Fuel Cell System: Two Case Studies

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Chen, Min; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2012-06-01

    Methanol-fueled, high-temperature polymer electrolyte membrane fuel cell (HTPEMFC) power systems are promising as the next generation of vehicle engines, efficient and environmentally friendly. Currently, their performance still needs to be improved, and they still rely on a large Li-ion battery for system startup. In this article, to handle these two issues, the potential of thermoelectric (TE) devices applied in a HTPEMFC power system has been preliminarily evaluated. First, right after the fuel cell stack or the methanol reformer, thermoelectric generators (TEGs) are embedded inside a gas-liquid heat exchanger to form a heat recovery subsystem jointly for electricity production. It is calculated that the recovered power can increase the system efficiency and mitigate the dependence on Li-ion battery during system startup. To improve the TEG subsystem performance, a finite-difference model is then employed and two main parameters are identified. Second, TE coolers are integrated into the methanol steam reformer to regulate heat fluxes herein and improve the system dynamic performance. Similar modification is also done on the evaporator to improve its dynamic performance as well as to reduce the heat loss during system startup. The results demonstrate that the TE-assisted heat flux regulation and heat-loss reduction can also effectively help solve the abovementioned two issues. The preliminary analysis in this article shows that a TE device application inside HTPEMFC power systems is of great value and worthy of further study.

  14. Lattice-Boltzmann Simulations of Multiphase Flows in Gas-Diffusion-Layer (GDL) of a PEM Fuel Cell

    SciTech Connect

    Mukherjeea, Shiladitya; Cole, J Vernon; Jainb, Kunal; Gidwania, Ashok

    2008-11-01

    Improved power density and freeze-thaw durability in automotive applications of Proton Exchange Membrane Fuel Cells (PEMFCs) requires effective water management at the membrane. This is controlled by a porous hydrophobic gas-diffusion-layer (GDL) inserted between the membrane catalyst layer and the gas reactant channels. The GDL distributes the incoming gaseous reactants on the catalyst surface and removes excess water by capillary action. There is, however, limited understanding of the multiphase, multi-component transport of liquid water, vapor and gaseous reactants within these porous materials. This is due primarily to the challenges of in-situ diagnostics for such thin (200 -“ 300 {microns}), optically opaque (graphite) materials. Transport is typically analyzed by fitting Darcy's Law type expressions for permeability, in conjunction with capillary pressure relations based on formulations derived for media such as soils. Therefore, there is significant interest in developing predictive models for transport in GDLs and related porous media. Such models could be applied to analyze and optimize systems based on the interactions between cell design, materials, and operating conditions, and could also be applied to evaluating material design concepts. Recently, the Lattice Boltzmann Method (LBM) has emerged as an effective tool in modeling multiphase flows in general, and flows through porous media in particular. This method is based on the solution of a discrete form of the well-known Boltzmann Transport Equation (BTE) for molecular distribution, tailored to recover the continuum Navier-Stokes flow. The kinetic theory basis of the method allows simple implementation of molecular forces responsible for liquid-gas phase separation and capillary effects. The solution advances by a streaming and collision type algorithm that makes it suitable to implement for domains with complex boundaries. We have developed both single and multiphase LB models and applied them to

  15. Synthesis and Characterization of Polymers for Fuel Cells Application

    NASA Technical Reports Server (NTRS)

    Tytko, Stephen F.

    2003-01-01

    The goal of this summer research is to prepare Polymer Exchange Membranes (PEM s) for fuel cell application. Several high temperature polymers such as polybenzimidazoles and polyether ketones were known to possess good high temperature stability and had been investigated by post-sulfonation to yield sulfonated polymers. The research project will involve two approaches: 1. Synthesis of polybenzimidazoles and then react with alkyl sultonse to attach an aliphatic sulfonic groups. 2. Synthesis of monomers containing sulfonic acid units either on a aromatic ring or on an aliphatic chain and then polymerize the monomers to form high molecular weight sulfonate polymers.

  16. DOE/FORD fuel cell contract for automotive application

    SciTech Connect

    Djong-Gie Oei

    1995-08-01

    The objectives of the contract are twofold. The first objective is to assess the feasibility of using a direct hydrogen fueled PEM fuel cell engine to power a midsize passenger car through the various drive cycles and test such a propulsion system on a test bed. The second objective is to study the supply infrastructure and safety aspects of hydrogen for future practical implementation of PEM fuel cells.

  17. Advanced fuel cells for transportation applications. Final report

    SciTech Connect

    1998-02-10

    This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

  18. Influence of air contaminants on planar, self-breathing hydrogen PEM fuel cells in an outdoor environment

    NASA Astrophysics Data System (ADS)

    Biesdorf, Johannes; Zamel, Nada; Kurz, Timo

    2014-02-01

    In this study, the effects of air contaminants on the operation of air-breathing fuel cells in an outdoor environment are investigated. For this purpose, a unique testing platform, which allows continuous operation of 30 cells at different locations, was developed. Three of these testing platforms were placed at different sites in Freiburg im Breisgau, Germany, with high variances of weather and pollution patterns. These locations range from a highly polluted place next to a busy highway to a location with virtually pure air at an altitude of 1205 m. The fuel cells were tested at all sites for over 4500 h in continuous operation. The degradation of the cells due to air pollutants was measured as a voltage decrease for three different operation loads and membranes from two different manufactures. As the temperature of the fuel cells has not been regulated, the irreversible degradation of the cell voltages could not be isolated from the dominant influence of the temperature in the raw data. With the use of the measured data, the impact of real mixtures of air contaminants was observed to be mainly reversible.

  19. A Rapid Method to Regenerate Piezoelectric Microcantilever Sensors (PEMS)

    PubMed Central

    Loo, LiNa; Wu, Wei; Shih, Wan Y.; Shih, Wei-Heng; Borghaei, Hossein; Pourrezaei, Kambiz; Adams, Gregory P.

    2011-01-01

    Piezoelectric microcantilever sensors (PEMS) can be sensitive tools for the detection of proteins and cells in biological fluids. However, currently available PEMS can only be used a single time or must be completely stripped and refunctionalized prior to subsequent uses. Here we report the successful use of an alternative regeneration protocol employing high salt concentrations to remove the target, leaving the functional probe immobilized on the microcantilever surface. Our model system employed the extracellular domain (ECD) of recombinant human Epidermal Growth Factor Receptor (EGFR) as the probe and anti-human EGFR polyclonal antibodies as the target. We report that high concentrations of MgCl2 dissociated polyclonal antibodies specifically bound to EGFR ECD immobilized on the sensor surface without affecting its bioactivity. This simple regeneration protocol both minimized the time required to re-conjugate the probe and preserved the density of probe immobilized on PEMS surface, yielding identical biosensor sensitivity over a series of assays. PMID:22413149

  20. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels.

    PubMed

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0-100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.

  1. Use of impedance spectroscopy to investigate factors that influence the performance and durability of proton exchange membrane (PEM) fuel cells

    NASA Astrophysics Data System (ADS)

    Roy, Sunil K.

    Impedance spectroscopy provides the opportunity for in-situ identification and quantification of physical processes and has been used extensively to study the behavior of the fuel cell. However, a key question to be answered is whether the features seen in the impedance response are caused by an artifact or represent a physical process taking place in the system. The measurement model developed by our group can be used to identify the frequency ranges unaffected by bias errors associated with instrument artifacts and non-stationary behavior. Impedance measurements were performed with the 850C fuel-cell test station supplied by Scribner Associates and with a Gamry Instruments FC350 impedance analyzer coupled with a Dynaload electronic load. All electrochemical measurements were performed with a two-electrode cell in which the anode served as a pseudo-reference electrode. The experiments were conducted in galavanostatic mode for a frequency range of 0.001-3000 Hz with 10 mA peak-to-peak sinusoidal perturbation, and ten points were collected per frequency decade. Ultra pure hydrogen was used as the anode fuel, and compressed air was used as oxidant. The measurement model was used to show that low-frequency inductive loops were, in some cases, fully self consistent, and, therefore, the inductive loops could be attributed to processes occurring in the fuel cell. Then we developed first-principle models that incorporate processes that may be responsible for the inductive response seen at low frequencies. We found that side reactions producing hydrogen peroxide intermediates and reactions causing Pt deactivation could yield inductive loops. These side reactions and the intermediates can degrade fuel cell components such as membranes and electrodes, thereby reducing the lifetime the fuel cells. The hypothesized reaction involving of peroxide and PtO formation were supported by microstructural characterization. A more sensitive manner of using impedance spectroscopy to gain

  2. PEM public key certificate cache server

    NASA Astrophysics Data System (ADS)

    Cheung, T.

    1993-12-01

    Privacy Enhanced Mail (PEM) provides privacy enhancement services to users of Internet electronic mail. Confidentiality, authentication, message integrity, and non-repudiation of origin are provided by applying cryptographic measures to messages transferred between end systems by the Message Transfer System. PEM supports both symmetric and asymmetric key distribution. However, the prevalent implementation uses a public key certificate-based strategy, modeled after the X.509 directory authentication framework. This scheme provides an infrastructure compatible with X.509. According to RFC 1422, public key certificates can be stored in directory servers, transmitted via non-secure message exchanges, or distributed via other means. Directory services provide a specialized distributed database for OSI applications. The directory contains information about objects and then provides structured mechanisms for accessing that information. Since directory services are not widely available now, a good approach is to manage certificates in a centralized certificate server. This document describes the detailed design of a centralized certificate cache serve. This server manages a cache of certificates and a cache of Certificate Revocation Lists (CRL's) for PEM applications. PEMapplications contact the server to obtain/store certificates and CRL's. The server software is programmed in C and ELROS. To use this server, ISODE has to be configured and installed properly. The ISODE library 'libisode.a' has to be linked together with this library because ELROS uses the transport layer functions provided by 'libisode.a.' The X.500 DAP library that is included with the ELROS distribution has to be linked in also, since the server uses the DAP library functions to communicate with directory servers.

  3. Polarization Losses under Accelerated Stress Test Using Multiwalled Carbon Nanotube Supported Pt Catalyst in PEM Fuel Cells

    SciTech Connect

    Park, Seh K.; Shao, Yuyan; Kou, Rong; Viswanathan, Vilayanur V.; Towne, Silas A.; Rieke, Peter C.; Liu, Jun; Lin, Yuehe; Wang, Yong

    2011-03-01

    The electrochemical behavior for Pt catalysts supported on multiwalled carbon nanotubes and Vulcan XC-72 in proton exchange membrane fuel cells under accelerated stress test was examined by cyclic voltammetry, electrochemical impedance spectroscopy, and polarization technique. Pt catalyst supported on multiwalled carbon nanotubes exhibited highly stable electrochemical surface area, oxygen reduction kinetics, and fuel cell performance at a highly oxidizing condition, indicating multiwalled carbon nanotubes show high corrosion resistance and strong interaction with Pt nanoparticles. The Tafel slope, ohmic resistances, and limiting current density determined were used to differentiate kinetic, ohmic, mass-transfer polarization losses from the actual polarization curve. Kinetic contribution to the total overpotential was larger throughout the stress test. However, the fraction of kinetic overpotential decreased and mass-transfer overpotential portion remained quite constant during accelerated stress test, whereas the fraction of ohmic overpotential primarily originating from severe proton transport limitation in the catalyst layer increased under the anodic potential hold.

  4. Microwave decoration of Pt nanoparticles on entangled 3D carbon nanotube architectures as PEM fuel cell cathode.

    PubMed

    Sherrell, Peter C; Zhang, Weimin; Zhao, Jie; Wallace, Gordon G; Chen, Jun; Minett, Andrew I

    2012-07-01

    Proton-exchange membrane fuel cells (PEMFCs) are expected to provide a complementary power supply to fossil fuels in the near future. The current reliance of fuel cells on platinum catalysts is undesirable. However, even the best-performing non-noble metal catalysts are not as efficient. To drive commercial viability of fuel cells forward in the short term, increased utilization of Pt catalysts is paramount. We have demonstrated improved power and energy densities in a single PEMFC using a designed cathode with a Pt loading of 0.1 mg cm(-2) on a mesoporous conductive entangled carbon nanotube (CNT)-based architecture. This electrode allows for rapid transfer of both fuel and waste to and from the electrode, respectively. Pt particles are bound tightly, directly to CNT sidewalls by a microwave-reduction technique, which provided increased charge transport at this interface. The Pt entangled CNT cathode, in combination with an E-TEK 0.2 mg cm(-2) anode, has a maximum power and energy density of 940 mW cm(-2) and 2700 mA cm(-2), respectively, and a power and energy density of 4.01 W mg(Pt)(-1) and 6.35 A mg(Pt)(-1) at 0.65 V. These power densities correspond to a specific mass activity of 0.81 g Pt per kW for the combined mass of both anode and cathode electrodes, approaching the current US Department of Energy efficiency target.

  5. Polarization losses under dynamic load cycle using multiwall carbon nanotube supported Pt catalyst in PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Irmawati, Yuyun; Indriyati, Chaldun, Elsy Rahimi; Devianto, Hary

    2016-02-01

    Durability is one of the most important issues that are still being a hindrance for commercialization of polymer electrolyte membrane fuel cell (PEMFC). In this study, the degradation of PEMFC using multiwall carbon nanotube supported Pt catalyst (Pt/CNT) was investigated under dynamic load cycle procedure. The degradation was characterized by current density-voltage curves, cross-sectional scanning electron microscopy (SEM) images, and Fourier transforms infrared spectroscopy (FTIR) spectra. The load-cycle procedure was carried out for 50 cycles, where one cycle consisted of three steps (OCV-load current-constant voltage). An analysis of cell overpotentials indicated that the predominant source of performance degradation was due to ohmic losses, especially significant increase in the area specific resistance (Ra). After 50 cycles, Ra was calculated three times higher than that before durability test, from 0.67 to 1.74 Ωcm2. Based on the results from SEM images and FTIR spectra, there was no evidence of membrane degradation or thinning. Noticeable degradation was only observed from the increase in the interface gap between membrane, catalyst layer, and gas diffusion layer.

  6. Carbon nanofiber growth optimization for their use as electrocatalyst support in proton exchange membrane (PEM) fuel cells.

    PubMed

    Lázaro, M J; Sebastián, D; Suelves, I; Moliner, R

    2009-07-01

    Carbon nanofiber (CNF) growth by catalytic decomposition of methane in a fixed-bed reactor was studied out to elucidate the influence of some important reaction conditions: temperature, space velocity and reactant partial pressure, in the morphological properties of the carbonaceous material obtained. The main objective is to synthesize a suitable carbonaceous nanomaterial to be used as support in platinum based electrocatalysts for Proton Exchange Membrane Fuel Cells (PEMFC) which improves current carbon blacks. High specific surface area is required in an electrocatalyst support since platinum dispersion is enhanced and so a cost-effective usage and high catalytic activity. Good electrical conductivity of carbon support is also required since the fuel cell power density is improved. With this proposal, characterization was carried out by nitrogen physisorption, XRD, SEM and TPO. The results were analysed by a factorial design and analysis of variance (ANOVA) in order to find an empirical correlation between operating conditions and CNF characteristics. It was found that the highest specific surface area and pore volume were found at 823 K and at a space velocity of 10 L gcat(-1) h(-1). The graphitic character of CNF, which is known to influence the electrical conductivity, presented a maximum value at temperatures between 923 K and 973 K. SEM images showed a narrow size distribution of CNF diameter between 40 and 90 nm and homogeneous appearance.

  7. Numerical investigation of interfacial mass transport resistance and two-phase flow in PEM fuel cell air channels

    NASA Astrophysics Data System (ADS)

    Koz, Mustafa

    Proton exchange membrane fuel cells (PEMFCs) are efficient and environmentally friendly electrochemical engines. The performance of a PEMFC is adversely affected by oxygen (O2) concentration loss from the air flow channel to the cathode catalyst layer (CL). Oxygen transport resistance at the gas diffusion layer (GDL) and air channel interface is a non-negligible component of the O2 concentration loss. Simplified PEMFC performance models in the available literature incorporate the O2 resistance at the GDL-channel interface as an input parameter. However, this parameter has been taken as a constant so far in the available literature and does not reflect variable PEMFC operating conditions and the effect of two-phase flow in the channels. This study numerically calculates the O2 transport resistance at the GDL-air channel interface and expresses this resistance through the non-dimensional Sherwood number (Sh). Local Sh is investigated in an air channel with multiple droplets and films inside. These water features are represented as solid obstructions and only air flow is simulated. Local variations of Sh in the flow direction are obtained as a function of superficial air velocity, water feature size, and uniform spacing between water features. These variations are expressed with mathematical expressions for the PEMFC performance models to utilize and save computational resources. The resulting mathematical correlations for Sh can be utilized in PEMFC performance models. These models can predict cell performance more accurately with the help of the results of this work. Moreover, PEMFC performance models do not need to use a look-up table since the results were expressed through correlations. Performance models can be kept simplified although their predictions will become more realistic. Since two-phase flow in channels is experienced mostly at lower temperatures, performance optimization at low temperatures can be done easier.

  8. Determination of polymer electrolyte membrane (PEM) degradation products in fuel cell water using electrospray ionization tandem mass spectrometry.

    PubMed

    Zedda, Marco; Tuerk, Jochen; Peil, Stefan; Schmidt, Torsten C

    2010-12-30

    Within the scope of research of membrane degradation phenomena during fuel cell operation a reliable analytical procedure for the extraction, detection and quantification of possible membrane oxidation products has been developed. These oxidation products originate from the attack of hydroxyl or peroxyl radicals on the membrane polymer. Such radicals are formed in situ (during fuel cell operation) or ex situ (Fenton test as oxidative stress simulation). The analysis of membrane oxidation products was carried out by electrospray ionization tandem mass spectrometry. Five potential membrane oxidation products (4-hydroxybenzoic acid (4-HBA), 4-hydroxybenzaldehyde (4-HBAD), 4,4-biphenol (4,4-BP), 4-hydroxybenzenesulfonate (4-HBS), and 4,4-sulfonylbiphenol (4,4-SBP)) were selected based on the molecular structure of the sulfonated polyarylether membrane used. In conjunction with the development of a multiple reaction monitoring (MRM) method, the ionization and fragmentation of the selected compounds were investigated. For 4,4-BP a molecular ion (M(+•) ) was observed in the positive ionization mode and used for MRM method development. Reproducible extraction of the model compounds was achieved using a mixed-mode sorbent material with both weak anion-exchange and reversed-phase retention properties. By using the developed analytical procedure, the identities of two membrane degradation products (4-HBA and 4-HBAD) were determined in situ and ex situ. In addition to the investigation of membrane degradation phenomena, the combination of extraction on a mixed-mode sorbent material and tandem mass spectrometric detection is attractive for the analysis of aromatic sulfonic acids, phenolic acids and phenols.

  9. Microstructural analysis of mass transport phenomena in gas diffusion media for high current density operation in PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Kotaka, Toshikazu; Tabuchi, Yuichiro; Mukherjee, Partha P.

    2015-04-01

    Cost reduction is a key issue for commercialization of fuel cell electric vehicles (FCEV). High current density operation is a solution pathway. In order to realize high current density operation, it is necessary to reduce mass transport resistance in the gas diffusion media commonly consisted of gas diffusion layer (GDL) and micro porous layer (MPL). However, fundamental understanding of the underlying mass transport phenomena in the porous components is not only critical but also not fully understood yet due to the inherent microstructural complexity. In this study, a comprehensive analysis of electron and oxygen transport in the GDL and MPL is conducted experimentally and numerically with three-dimensional (3D) microstructural data to reveal the structure-transport relationship. The results reveal that the mass transport in the GDL is strongly dependent on the local microstructural variations, such as local pore/solid volume fractions and connectivity. However, especially in the case of the electrical conductivity of MPL, the contact resistance between carbon particles is the dominant factor. This suggests that reducing the contact resistance between carbon particles and/or the number of contact points along the transport pathway can improve the electrical conductivity of MPL.

  10. Synthesis and Characterization of CO-and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

    SciTech Connect

    Shamsuddin Ilias

    2005-12-22

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we synthesized four Pt-based electrocatalysts catalysts (Pt/Ru/Mo/Se, Pt/Ru/Mo/Ir, Pt/Ru/Mo/W, Ptr/Ru/Mo/Co) on Vulcan XG72 Carbon support by both conventional and ultra-sonication method. From current-voltage performance study, the catalytic activity was found in the increasing order of Pt/Ru/Mo/Ir > Pt/Ru/Mo/W > Pt/Ru/Mo/Co > Pt/Ru/MO/Se. Sonication method appears to provide better dispersion of catalysts on carbon support.

  11. SYNTHESIS AND CHARACTERIZATION OF CO-AND H2S-TOLERANT ELECTROCATALYSTS FOR PEM FUEL CELL

    SciTech Connect

    Shamsuddin Ilias

    2005-03-29

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period several bi-metallic electrocatalysts were synthesized using ultra-sonication. These catalysts (Pt/Ru, Pt/Mo and Pt/Ir) were tested in MEAs. From Galvonstatic study the catalytic activity was found in the order of: Pt/Ru/C > Pt/Mo/C > Pt/Ir/C. It appears that electrocatalysts prepared by ultra-sonication process are more active compared to the conventional technique. Work is in progress to further study these catalysts for CO-tolerance in PEMFC and identify potential candidate metals for synthesis of tri-metallic electrocatalysts.

  12. SYNTHESIS AND CHARACTERIZATION OF CO- AND H{sub 2}S-TOLERANT ELECTROCATALYSTS FOR PEM FUEL CELL

    SciTech Connect

    Shamsuddin Ilias

    2005-04-05

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period several tri-metallic electrocatalysts were synthesized using both ultra-sonication and conventional method. These catalysts (Pt/Ru/Mo, Pt/Ru/Ir, Pt/Ru/W, Ptr/Ru/Co, and Pt/Ru/Se on carbon) were tested in MEAs. From Galvonstatic study the catalytic activity was found in the order of: Pt/Ru/Mo/C > Pt/Ru/Ir/C > Pt/Ru/W/C > Ptr/Ru/Co/C > and Pt/Ru/Se. It appears that electrocatalysts prepared by ultra-sonication process are more active compared to the conventional technique. Work is in progress to further study these catalysts for CO-tolerance in PEMFC.

  13. Analysis and Test of a Proton Exchange Membrane Fuel Cell Power System for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Varanauski, Donald; Clark, Robert, Jr.

    2000-01-01

    An effort is underway to develop a prototype Proton Exchange Membrane (PEM) Fuel Cell breadboard system for fuhlre space applications. This prototype will be used to develop a comprehensive design basis for a space-rated PEM fuel cell powerplant. The prototype system includes reactant pressure regulators, ejector-based reactant pumps, a 4-kW fuel cell stack and cooling system, and a passive, membranebased oxygen / water separator. A computer model is being developed concurrently to analytically predict fluid flow in the oxidant reactant system. Fuel cells have historically played an important role in human-rated spacecraft. The Gemini and Apollo spacecraft used fuel cells for vehicle electrical power. The Space Shuttle currently uses three Alkaline Fuel Cell Powerplants (AFCP) to generate all of the vehicle's 15-20kW electrical power. Engineers at the Johnson Space Center have leveraged off the development effort ongoing in the commercial arena to develop PEM fuel cel ls for terrestrial uses. The prototype design originated from efforts to develop a PEM fuel cell replacement for the current Space Shuttle AFCP' s. In order to improve on the life and an already excellent hi storical record of reliability and safety, three subsystems were focused on. These were the fuel cell stack itself, the reactant circulation devices, and reactant / product water separator. PEM fuel cell stack performance is already demonstrating the potential for greater than four times the useful life of the current Shuttle's AFCP. Reactant pumping for product water removal has historically been accomplished with mechanical pumps. Ejectors offer an effective means of reactant pumping as well as the potential for weight reduction, control simplification, and long life. Centrifugal water separation is used on the current AFCP. A passive, membrane-based water separator offers compatibility with the micro-gravity environment of space, and the potential for control simplification, elimination of

  14. Fuel cell systems for personal and portable power applications

    SciTech Connect

    Fateen, S. A.

    2001-01-01

    Fuel cells are devices that electrochemically convert fuel, usually hydrogen gas, to directly produce electricity. Fuel cells were initially developed for use in the space program to provide electricity and drinking water for astronauts. Fuel cells are under development for use in the automobile industry to power cars and buses with the advantage of lower emissions and higher efficiency than internal combustion engines. Fuel cells also have great potential to be used in portable consumer products like cellular phones and laptop computers, as well as military applications. In fact, any products that use batteries can be powered by fuel cells. In this project, we examine fuel cell system trade-offs between fuel cell type and energy storage/hydrogen production for portable power generation. The types of fuel cells being examined include stored hydrogen PEM (polymer electrolyte), direct methanol fuel cells (DMFC) and indirect methanol fuel cells, where methanol is reformed producing hydrogen. These fuel cells systems can operate at or near ambient conditions, which make them potentially optimal for use in manned personal power applications. The expected power production for these systems is in the range of milliwatts to 500 watts of electrical power for either personal or soldier field use. The fuel cell system trade-offs examine hydrogen storage by metal hydrides, carbon nanotubes, and compressed hydrogen tanks. We examine the weights each system, volume, fuel storage, system costs, system peripherals, power output, and fuel cell feasibility in portable devices.

  15. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications.

    PubMed

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T C Mike

    2015-12-04

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young's modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO₂• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.

  16. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications

    PubMed Central

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T.C. Mike

    2015-01-01

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications. PMID:26690232

  17. Novel Materials for Cell Studies and Harvesting

    SciTech Connect

    Barkhudarova, Sophia M.

    2012-08-01

    The ease and versatility in assembling polyelectrolyte multilayers (PEMs) has resulted in numerous wide ranging applications of these materials. For instance: (1) Biomedicine - Biomaterials, biosensors; (2) Tissue engineering - Enhanced ability for cell lines to attach to culture plates (3) Regenerative medicine; and (4) Drug delivery - Multilayered films exhibit very good pH and thermal stability and greater control over dosage and timing. Some results are: (1) PEM thickness varied linearly with the number of layers deposited; (2) Homogenization of the multilayered structure; (3) No cyto-toxicity observed; (4) The PEM substrates proved suitable for 3T3 and HEK-293 growth; and (5) Lipids spread homogeneously.

  18. Polybenzimidazole block copolymers for fuel cell: synthesis and studies of block length effects on nanophase separation, mechanical properties, and proton conductivity of PEM.

    PubMed

    Maity, Sudhangshu; Jana, Tushar

    2014-05-14

    A series of meta-polybenzimidazole-block-para-polybenzimidazole (m-PBI-b-p-PBI), segmented block copolymers of PBI, were synthesized with various structural motifs and block lengths by condensing the diamine terminated meta-PBI (m-PBI-Am) and acid terminated para-PBI (p-PBI-Ac) oligomers. NMR studies and existence of two distinct glass transition temperatures (Tg), obtained from dynamical mechanical analysis (DMA) results, unequivocally confirmed the formation of block copolymer structure through the current polymerization methodology. Appropriate and careful selection of oligomers chain length enabled us to tailor the block length of block copolymers and also to make varieties of structural motifs. Increasingly distinct Tg peaks with higher block length of segmented block structure attributed the decrease in phase mixing between the meta-PBI and para-PBI blocks, which in turn resulted into nanophase segregated domains. The proton conductivities of proton exchange membrane (PEM) developed from phosphoric acid (PA) doped block copolymer membranes were found to be increasing substantially with increasing block length of copolymers even though PA loading of these membranes did not alter appreciably with varying block length. For example when molecular weight (Mn) of blocks were increased from 1000 to 5500 then the proton conductivities at 160 °C of resulting copolymers increased from 0.05 to 0.11 S/cm. Higher block length induced nanophase separation between the blocks by creating less morphological barrier within the block which facilitated the movement of the proton in the block and hence resulting higher proton conductivity of the PEM. The structural varieties also influenced the phase separation and proton conductivity. In comparison to meta-para random copolymers reported earlier, the current meta-para segmented block copolymers were found to be more suitable for PBI-based PEM.

  19. Characterization of Leishmania major phosphatidylethanolamine methyltransferases LmjPEM1 and LmjPEM2 and their inhibition by choline analogs.

    PubMed

    Bibis, Stergios S; Dahlstrom, Kelly; Zhu, Tongtong; Zufferey, Rachel

    2014-09-01

    Phosphatidylcholine (PC) is the most abundant phospholipid in the membranes of the human parasite Leishmania. It is synthesized via two metabolic routes, the de novo pathway that starts with the uptake of choline, and the threefold methylation of phosphatidylethanolamine. Choline was shown to be dispensable for Leishmania; thus, the methylation pathway likely represents the primary route for PC production. Here, we have identified and characterized two phosphatidylethanolamine methyltransferases, LmjPEM1 and LmjPEM2. Both enzymes are expressed in promastigotes as well as in the vertebrate form amastigotes, suggesting that these methyltransferases are important for the development of the parasite throughout its life cycle. These enzymes are maximally expressed during the log phase of growth which correlates with the demand of PC synthesis during cell multiplication. Immunofluorescence studies combined with cell fractionation have shown that both methyltransferases are localized at the endoplasmic reticulum membrane. Heterologous expression in yeast has demonstrated that LmjPEM1 and LmjPEM2 complement the choline auxotrophy phenotype of a yeast double null mutant lacking phosphatidylethanolamine methyltransferase activity. LmjPEM1 catalyzes the first, and to a lesser extent, the second methylation reaction. In contrast, LmjPEM2 has the capacity to add the second and third methyl group onto phosphatidylethanolamine to yield (lyso)PC; it can also add the first methyl group, albeit with very low efficiency. Finally, we have demonstrated using inhibition studies with choline analogs that miltefosine and octadecyltrimethylammonium bromide are potent inhibitors of this metabolic pathway. PMID:25176160

  20. Characterization of Leishmania major phosphatidylethanolamine methyltransferases LmjPEM1 and LmjPEM2 and their inhibition by choline analogs.

    PubMed

    Bibis, Stergios S; Dahlstrom, Kelly; Zhu, Tongtong; Zufferey, Rachel

    2014-09-01

    Phosphatidylcholine (PC) is the most abundant phospholipid in the membranes of the human parasite Leishmania. It is synthesized via two metabolic routes, the de novo pathway that starts with the uptake of choline, and the threefold methylation of phosphatidylethanolamine. Choline was shown to be dispensable for Leishmania; thus, the methylation pathway likely represents the primary route for PC production. Here, we have identified and characterized two phosphatidylethanolamine methyltransferases, LmjPEM1 and LmjPEM2. Both enzymes are expressed in promastigotes as well as in the vertebrate form amastigotes, suggesting that these methyltransferases are important for the development of the parasite throughout its life cycle. These enzymes are maximally expressed during the log phase of growth which correlates with the demand of PC synthesis during cell multiplication. Immunofluorescence studies combined with cell fractionation have shown that both methyltransferases are localized at the endoplasmic reticulum membrane. Heterologous expression in yeast has demonstrated that LmjPEM1 and LmjPEM2 complement the choline auxotrophy phenotype of a yeast double null mutant lacking phosphatidylethanolamine methyltransferase activity. LmjPEM1 catalyzes the first, and to a lesser extent, the second methylation reaction. In contrast, LmjPEM2 has the capacity to add the second and third methyl group onto phosphatidylethanolamine to yield (lyso)PC; it can also add the first methyl group, albeit with very low efficiency. Finally, we have demonstrated using inhibition studies with choline analogs that miltefosine and octadecyltrimethylammonium bromide are potent inhibitors of this metabolic pathway.

  1. The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian

    2011-01-01

    NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.

  2. Mitochondrially-targeted bacterial phosphatidylethanolamine methyltransferase sustained phosphatidylcholine synthesis of a Saccharomyces cerevisiae Δpem1 Δpem2 double mutant without exogenous choline supply.

    PubMed

    Kobayashi, Shingo; Mizuike, Aya; Horiuchi, Hiroyuki; Fukuda, Ryouichi; Ohta, Akinori

    2014-09-01

    In eukaryotic cells, phospholipids are synthesized exclusively in the defined organelles specific for each phospholipid species. To explain the reason for this compartmental specificity in the case of phosphatidylcholine (PC) synthesis, we constructed and characterized a Saccharomyces cerevisiae strain that lacked endogenous phosphatidylethanolamine (PE) methyltransferases but had a recombinant PE methyltransferase from Acetobacter aceti, which was fused with a mitochondrial targeting signal from yeast Pet100p and a 3×HA epitope tag. This fusion protein, which we named as mitopmt, was determined to be localized to the mitochondria by fluorescence microscopy and subcellular fractionation. The expression of mitopmt suppressed the choline auxotrophy of a double deletion mutant of PEM1 and PEM2 (pempem2Δ) and enabled it to synthesize PC in the absence of choline. This growth suppression was observed even if the Kennedy pathway was inactivated by the repression of PCT1 encoding CTP:phosphocholine cytidylyltransferase, suggesting that PC synthesized in the mitochondria is distributed to other organelles without going through the salvage pathway. The pempem2Δ strain deleted for PSD1 encoding the mitochondrial phosphatidylserine decarboxylase was able to grow because of the expression of mitopmt in the presence of ethanolamine, implying that PE from other organelles, probably from the ER, was converted to PC by mitopmt. These results suggest that PC could move out of the mitochondria, and raise the possibility that its movement is not under strict directional limitations.

  3. HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers

    SciTech Connect

    Smith, W.F.; Molter, T.M.

    1997-12-31

    PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

  4. Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable inheritance of pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. PemK toxin and PemI antitoxin were over-expre...

  5. The NASA fuel cell upgrade program for the Space Shuttle Orbiter

    SciTech Connect

    Warshay, M.; Prokopius, P.; Le, M.; Voecks, G.

    1997-12-31

    As part of NASA`s overall efforts to improve the Space Shuttle operations, a program to upgrade the existing fuel cell powerplant has begun. The upgrade will involve replacing the alkaline fuel cell (AFC) system with a proton exchange membrane (PEM) fuel cell system, resulting in a much lower life cycle cost of the powerplant. The program is being implemented by a team comprised of NASA/JSC, NASA/LeRC, and JPL personnel, with support from NASA/KSC. With extremely high annual maintenance costs and subsystem replacement costs, the need for a lower cost Orbiter fuel cell powerplant is obvious. Earlier NASA plant to upgrade the shuttle fuel cell were not adequately funded and only focused upon upgrading the existing AFC. For the current program, the PEM fuel cell system will be implemented because the projected long life (10,000 hrs. vs. 2,000 hrs. for AFC), high power density (PEM projected to produce 50% more power), and enhanced system reliability and safety all lead to significantly lower life cycle powerplant costs. And in addition to the Orbiter application, PEM fuel cell development would support a number of important space applications that the AFC would not, such as Lunar/Mars transportation, the Reusable Launch Vehicle (RLV), Space Station emergency power and/or future energy storage applications, and various portable applications. NASA is also leveraging all of the large scale PEM fuel cell development activities that are ongoing for DOE, DOD, and commercial applications. There is no activity in the AFC area. The Shuttle Fuel Cell Upgrade plan of the JSC/LeRC/JPL team includes the following key elements: (1) Systems Analyses to assure compatibility/maximum utilization by shuttle of the best PEM fuel cell characteristics; (2) Short Stack Testing of the leading PEM fuel cell contractors` hardware; (3) Detailed Task Objective (DTO) Flight Experiment to verify PEM system water management and thermal management under zero-g operation; (4) A Downselect to the best

  6. Experimental characterization of the Clear-PEM scanner spectrometric performance

    NASA Astrophysics Data System (ADS)

    Bugalho, R.; Carriço, B.; Ferreira, C. S.; Frade, M.; Ferreira, M.; Moura, R.; Ortigão, C.; Pinheiro, J. F.; Rodrigues, P.; Rolo, I.; Silva, J. C.; Trindade, A.; Varela, J.

    2009-10-01

    In the framework of the Clear-PEM project for the construction of a high-resolution and high-specificity scanner for breast cancer imaging, a Positron Emission Mammography tomograph has been developed and installed at the Instituto Português de Oncologia do Porto hospital. The Clear-PEM scanner is mainly composed by two planar detector heads attached to a robotic arm, trigger/data acquisition electronics system and computing servers. The detector heads hold crystal matrices built from 2 × 2 × 20 mm3 LYSO:Ce crystals readout by Hamamatsu S8550 APD arrays. The APDs are optically coupled to both ends of the 6144 crystals in order to extract the DOI information for each detected event. Each one of 12288 APD's pixels is read and controlled by Application Specific Integrated Circuits water-cooled by an external cooling unit. The Clear-PEM frontend boards innovative design results in a unprecedented integration of the crystal matrices, APDs and ASICs, making Clear-PEM the PET scanner with the highest number of APD pixels ever integrated so far. In this paper, the scanner's main technical characteristics, calibration strategies and the first spectrometric performance evaluation in a clinical environment are presented. The first commissioning results show 99.7% active channels, which, after calibration, have inter-pixel and absolute gain distributions with dispersions of, respectively, 12.2% and 15.3%, demonstrating that despite the large number of channels, the system is uniform. The mean energy resolution at 511 keV is of 15.9%, with a 8.8% dispersion, and the mean CDOI-1 is 5.9%/mm, with a 7.8% dispersion. The coincidence time resolution, at 511 keV, for a energy window between 400 and 600 keV, is 5.2 ns FWHM.

  7. Improving dynamic performance of proton-exchange membrane fuel cell system using time delay control

    NASA Astrophysics Data System (ADS)

    Kim, Young-Bae

    Transient behaviour is a key parameter for the vehicular application of proton-exchange membrane (PEM) fuel cell. The goal of this presentation is to construct better control technology to increase the dynamic performance of a PEM fuel cell. The PEM fuel cell model comprises a compressor, an injection pump, a humidifier, a cooler, inlet and outlet manifolds, and a membrane-electrode assembly. The model includes the dynamic states of current, voltage, relative humidity, stoichiometry of air and hydrogen, cathode and anode pressures, cathode and anode mass flow rates, and power. Anode recirculation is also included with the injection pump, as well as anode purging, for preventing anode flooding. A steady-state, isothermal analytical fuel cell model is constructed to analyze the mass transfer and water transportation in the membrane. In order to prevent the starvation of air and flooding in a PEM fuel cell, time delay control is suggested to regulate the optimum stoichiometry of oxygen and hydrogen, even when there are dynamical fluctuations of the required PEM fuel cell power. To prove the dynamical performance improvement of the present method, feed-forward control and Linear Quadratic Gaussian (LQG) control with a state estimator are compared. Matlab/Simulink simulation is performed to validate the proposed methodology to increase the dynamic performance of a PEM fuel cell system.

  8. XPS analysis of carbon-supported platinum electrodes and characterization of CO oxidation on PEM fuel cell anodes by electrochemical half cell methods

    NASA Astrophysics Data System (ADS)

    Rheaume, J. M.; Müller, B.; Schulze, M.

    An analysis using X-ray induced photoelectron spectroscopy (XPS) on an as received, 20 weight percent (wt.%) Pt/C electrode (E-TEK) indicates the presence of a nanometer thin layer of polytetrafluorethylene (PTFE) on the surface which degrades during potentiodynamic cycling from 0 to 1.5 V RHE. Half cell measurements verify this observation by exhibiting an increase in the transferred charge and thus active surface area. An electrode manufactured by a rolling process containing 20 wt.% Pt/C on a carbon cloth (catalysts powders and cloth from E-TEK) did not have such a layer according to XPS analysis or exhibit such behavior during electrochemical, potentiodynamic cycling. In addition, cyclic voltammetry in a half cell was used to characterize CO oxidation on these two electrodes in addition to one consisting of 20 wt.% Pt-Ru/C catalyst on a carbon backing also produced by the rolling process. Measurements in 0.5 M H 2SO 4 electrolyte of rotating disk electrodes (RDEs) show recognizable CO oxidation during stripping experiments at potentials comparable to those shown by smooth electrodes, although peak definition for supported electrodes is highly inferior. The labyrinth nature of the pore systems of supported electrodes complicated stripping measurements and called into question the benefit of using RDEs for porous electrodes due to undefinable mass transport conditions within the electrode.

  9. Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application

    SciTech Connect

    1995-09-05

    This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

  10. Instructions for Plastic Encapsulated Microcircuit(PEM) Selection, Screening and Qualification.

    NASA Technical Reports Server (NTRS)

    King, Terry; Teverovsky, Alexander; Leidecker, Henning

    2002-01-01

    The use of Plastic Encapsulated Microcircuits (PEMs) is permitted on NASA Goddard Space Flight Center (GSFC) spaceflight applications, provided each use is thoroughly evaluated for thermal, mechanical, and radiation implications of the specific application and found to meet mission requirements. PEMs shall be selected for their functional advantage and availability, not for cost saving; the steps necessary to ensure reliability usually negate any initial apparent cost advantage. A PEM shall not be substituted for a form, fit and functional equivalent, high reliability, hermetic device in spaceflight applications. Due to the rapid change in wafer-level designs typical of commercial parts and the unknown traceability between packaging lots and wafer lots, lot specific testing is required for PEMs, unless specifically excepted by the Mission Assurance Requirements (MAR) for the project. Lot specific qualification, screening, radiation hardness assurance analysis and/or testing, shall be consistent with the required reliability level as defined in the MAR. Developers proposing to use PEMs shall address the following items in their Performance Assurance Implementation Plan: source selection (manufacturers and distributors), storage conditions for all stages of use, packing, shipping and handling, electrostatic discharge (ESD), screening and qualification testing, derating, radiation hardness assurance, test house selection and control, data collection and retention.

  11. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  12. Protein energy malnutrition (PEM), brain and various facets of child development.

    PubMed

    Udani, P M

    1992-01-01

    Protein energy malnutrition (PEM) is a global problem. Nearly 150 million children under 5 years in the world and 70-80 million in India suffer from PEM, nearly 20 million in the world and 4 million in India suffer from severe forms of PEM, viz., marasmus, kwashiorkor and marasmic kwashiorkor. The studies in experimental animals in the west and children in developing countries have revealed the adverse effects of PEM on the biochemistry of developing brain which leads to tissue damage and tissue contents, growth arrest, developmental differentiation, myelination, reduction of synapses, synaptic transmitters and overall development of dendritic activity. Many of these adverse effects have been described in children in clinical data, biochemical studies, reduction in brain size, histology of the spinal cord, quantitative studies and electron microscopy of sural nerve, neuro -CT scan, magnetic resonance imaging (MRI) and morphological changes in the cerebellar cells. Longer the PEM, younger the child, poorer the maternal health and literacy, more adverse are the effects of PEM on the nervous system. Just like the importance of nutrients on the developing brain, so are the adverse effects on the child development of lack of environmental stimulation, emotional support and love and affection to the child. When both the adverse factors are combined, the impact is severe. Hence prevention of PEM in pregnant and lactating mothers, breast feeding, adequate home based supplements, family support and love will improve the physical growth, mental development, social competence and academic performance of the child. Hence nutritional rehabilitation, psychosocial and psychomotor development of the child should begin in infancy and continue throughout. It should be at all levels, most important being in family, school, community and various intervention programmes, local, regional and national. Moreover medical students, health personnel, all medical disciplines concerned with

  13. Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture

    SciTech Connect

    Walczyk, Daniel F.

    2015-08-26

    The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurement techniques for use by industry.

  14. Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications through the Fundamental Understanding of Membrane and MEA Degradation Pathways

    SciTech Connect

    Perry, Randal L.

    2013-10-31

    The Project focused on mitigation of degradation processes on membrane electrode assemblies. The approach was to develop a model to improve understanding of the mechanisms, and to use it to focus mitigation strategies. The detailed effects of various accelerated stress tests (ASTs) were evaluated to determine the best subset to use in model development. A combination of ASTs developed by the Fuel Cell Commercialization Conference of Japan and the Fuel Cell Tech Team were selected for use. The ASTs were compared by measuring effects on performance, running in-situ diagnostics, and performing microscopic analyses of the membrane electrode assemblies after the stress tests were complete. Nissan ran FCCJ AST protocols and performed in situ and ex-situ electrochemical testing. DuPont ran FCTT and USFCC AST protocols, performed scanning and transmission electron microscopy and ran in-situ electrochemical tests. Other ex-situ testing was performed by IIT, along with much of the data analysis and model development. These tests were then modified to generate time-dependent data of the degradation mechanisms. Three different catalyst types and four membrane variants were then used to generate data for a theoretically-based degradation model. An important part of the approach was to use commercially available materials in the electrodes and membranes made in scalable semiworks processes rather than lab-based materials. This constraint ensured all materials would be practicable for full-scale testing. The initial model for the electrode layer was tested for internal consistency and agreement with the data. A Java-based computer application was developed to analyze the time-dependent AST data using polarization curves with four different cathode gas feeds and generate model parameters. Data showed very good reproducibility and good consistency as cathode catalyst loadings were varied. At the point of termination of the project, a basic electrode model was in hand with several

  15. Center for Fuel Cell Research and Applications development phase. Final report

    SciTech Connect

    1998-12-01

    The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center will enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.

  16. Current Fed Step-up DC/DC Converter for Fuel Cell Inverter Applications

    NASA Astrophysics Data System (ADS)

    Andreičiks, Aleksandrs; Vitols, Kristaps; Krievs, Oskars; Steiks, Ingars

    2009-01-01

    In order to use hydrogen fuel cells in domestic applications either as main power supply or backup source, their low DC output voltage has to be matched to the level and frequency of the utility grid AC voltage. Such power converter systems usually consist of a DC-DC converter and a DC-AC inverter. Comparison of different current fed step-up DC/DC converters is done in this paper and a double inductor step-up push-pull converter investigated, presenting simulation and experimental results. The converter is elaborated for 1200 W power to match the rated power of the proton exchange membrane (PEM) fuel cell located in hydrogen fuel cell research laboratory of Riga Technical University.

  17. Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells.

    PubMed

    Xu, Feng; Mu, Shichun

    2014-02-01

    This review reports on the functions and applications of nanoceramic oxides in proton exchange membrane fuel cells (PEMFCs). Such materials are mainly used as fillers to enhance the water uptake and proton conductivity of polymeric matrices at high temperatures under low relative humidity. To further enhance the mechanical property of proton exchange membranes (PEMs), the functionalized ceramic oxides with organic groups are introduced. Furthermore, the inorganic PEMs are developed to improve their proton conductivities at elevated temperatures. Due to the inherent disadvantages of polymeric PEMs, it is believed that the inorganic PEMs based on porous ceramic oxides are a promising new candidate as solid electrolyte membranes in PEMFCs at high temperatures and with low relative humidity.

  18. A retrospective on the LBNL PEM project

    SciTech Connect

    Huber, J.S.; Moses, W.W.; Wang, G.C.; Derenzo, S.E.; Huesman,R.H.; Qi, J.; Virador, P.; Choong, W.S.; Mandelli, E.; Beuville, E.; Pedrali-Noy, M.; Krieger, B.; Meddeler, G.

    2004-11-15

    We present a retrospective on the LBNL Positron EmissionMammography (PEM) project, looking back on our design and experiences.The LBNL PEM camera utilizes detector modules that are capable ofmeasuring depth of interaction (DOI) and places them into 4 detectorbanks in a rectangular geometry. In order to build this camera, we had todevelop the DOI detector module, LSO etching, Lumirror-epoxy reflectorfor the LSO array (to achieve optimal DOI), photodiode array, custom IC,rigid-flex readout board, packaging, DOI calibration and reconstructionalgorithms for the rectangular camera geometry. We will discuss thehighlights (good and bad) of these developments.

  19. A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Tianchi; Shao, Rong; Chen, Song; He, Xuemei; Qiao, Jinli; Zhang, Jiujun

    2015-10-01

    The past two decades have witnessed many efforts to develop radiation-grafted alkaline membranes for alkaline PEM fuel cell applications, as such membranes have certain advantages over other kinds of alkaline membranes, including well-controlled composition, functionality, and other promising properties. To facilitate research and development in this area, the present paper reviews radiation-grafted alkaline membranes. We examine their synthesis/fabrication/characterization, membrane material selection, and theoretical approaches for fundamental understanding. We also present detailed examinations of their application in fuel cell in terms of the working principles of the radiation grafting process, the fabrication of MEAs using radiation-grafted membranes, the membranes' corresponding performance in alkaline PEM fuel cells, as well as performance optimization. The paper also summarizes the challenges and mitigation strategies for radiation-grafted alkaline membranes and their application in PEM fuel cells, presenting an overall picture of the technology as it presently stands.

  20. Laser Ablation Increases PEM/Catalyst Interfacial Area

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; Yalisove, Steve

    2009-01-01

    An investigational method of improving the performance of a fuel cell that contains a polymer-electrolyte membrane (PEM) is based on the concept of roughening the surface of the PEM, prior to deposition of a thin layer of catalyst, in order to increase the PEM/catalyst interfacial area and thereby increase the degree of utilization of the catalyst. The roughening is done by means of laser ablation under carefully controlled conditions. Next, the roughened membrane surface is coated with the thin layer of catalyst (which is typically platinum), then sandwiched between two electrode/catalyst structures to form a membrane/ele c t - rode assembly. The feasibility of the roughening technique was demonstrated in experiments in which proton-conducting membranes made of a perfluorosulfonic acid-based hydrophilic, protonconducting polymer were ablated by use of femtosecond laser pulses. It was found that when proper combinations of the pulse intensity, pulse-repetition rate, and number of repetitions was chosen, the initially flat, smooth membrane surfaces became roughened to such an extent as to be converted to networks of nodules interconnected by filaments (see Figure 1). In further experiments, electrochemical impedance spectroscopy (EIS) was performed on a pristine (smooth) membrane and on two laser-roughened membranes after the membranes were coated with platinum on both sides. Some preliminary EIS data were interpreted as showing that notwithstanding the potential for laser-induced damage, the bulk conductivities of the membranes were not diminished in the roughening process. Other preliminary EIS data (see Figure 2) were interpreted as signifying that the surface areas of the laser-roughened membranes were significantly greater than those of the smooth membrane. Moreover, elemental analyses showed that the sulfur-containing molecular groups necessary for proton conduction remained intact, even near the laser-roughened surfaces. These preliminary results can be taken

  1. Polyelectrolytes Multilayers to Modulate Cell Adhesion: A Study of the Influence of Film Composition and Polyelectrolyte Interdigitation on the Adhesion of the A549 Cell Line.

    PubMed

    Muzzio, Nicolás E; Pasquale, Miguel A; Gregurec, Danijela; Diamanti, Eleftheria; Kosutic, Marija; Azzaroni, Omar; Moya, Sergio E

    2016-04-01

    Polyelectrolyte multilayers (PEMs) with different polycation/polyanion pairs are fabricated by the layer-by-layer technique employing synthetic, natural, and both types of polyelectrolytes. The impact of the chemical composition of PEMs on cell adhesion is assessed by studying cell shape, spreading area, focal contacts, and cell proliferation for the A549 cell line. Cells exhibit good adhesion on PEMs containing natural polycations and poly(sodium 4-styrenesulfonate) (PSS) as polyanion, but limited adhesion is observed on PEMs fabricated from both natural polyelectrolytes. PEMs are then assembled, depositing a block of natural polyelectrolytes on top of a stiffer block with PSS as polyanion. Cell adhesion is enhanced on top of the diblock PEMs compared to purely natural PEMs. This fact could be explained by the interdigitation between polyelectrolytes from the two blocks. Diblock PEM assembly provides a simple means to tune cell adhesion on biocompatible PEMs.

  2. Emerging Fuel Cell Technology Being Developed: Offers Many Benefits to Air Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Civinskas, Kestutis C.

    2004-01-01

    Fuel cells, which have recently received considerable attention for terrestrial applications ranging from automobiles to stationary power generation, may enable new aerospace missions as well as offer fuel savings, quiet operations, and reduced emissions for current and future aircraft. NASA has extensive experience with fuel cells, having used them on manned space flight systems over four decades. Consequently, the NASA Glenn Research Center has initiated an effort to investigate and develop fuel cell technologies for multiple aerospace applications. Two promising fuel cell types are the proton exchange membrane (PEM) and solid oxide fuel cell (SOFC). PEM technology, first used on the Gemini spacecraft in the sixties, remained unutilized thereafter until the automotive industry recently recognized the potential. PEM fuel cells are low-temperature devices offering quick startup time but requiring relatively pure hydrogen fuel. In contrast, SOFCs operate at high temperatures and tolerate higher levels of impurities. This flexibility allows SOFCs to use hydrocarbon fuels, which is an important factor considering our current liquid petroleum infrastructure. However, depending on the specific application, either PEM or SOFC can be attractive. As only NASA can, the Agency is pursuing fuel cell technology for civil uninhabited aerial vehicles (UAVs) because it offers enhanced scientific capabilities, including enabling highaltitude, long-endurance missions. The NASA Helios aircraft demonstrated altitudes approaching 100,000 ft using solar power in 2001, and future plans include the development of a regenerative PEM fuel cell to provide nighttime power. Unique to NASA's mission, the high-altitude aircraft application requires the PEM fuel cell to operate on pure oxygen, instead of the air typical of terrestrial applications.

  3. A Materials-Based Mitigation Strategy for SU/SD in PEM Fuel Cells: Properties and Performance-Specific Testing of IrRu OER Catalysts.

    SciTech Connect

    Atanasoski, Radoslav; Cullen, David A; Vernstrom, George; Haugen, Gregory; Atanasoska, Liliana

    2013-01-01

    Catalysts that enable proton exchange membrane fuel cells to weather the damaging conditions experienced during transient periods of fuel starvation have been developed. The addition of minute amounts of iridium and ruthenium to the cathode enhances the oxygen evolution reaction (OER) during start-up/shutdown events, thus lowering the peak cell voltage closer to the onset of water oxidation. The catalyst loadings ranged from 1 to 10 g/cm2, but showed surprisingly high activity and durability. At such low loadings, it is possible to fully integrate the OER catalysts with negligible interference on fuel cell performance and a marginal increase in catalyst cost.

  4. In situ observations of water production and distribution in an operating H2/O2 PEM fuel cell assembly using 1H NMR microscopy.

    PubMed

    Feindel, Kirk W; LaRocque, Logan P-A; Starke, Dieter; Bergens, Steven H; Wasylishen, Roderick E

    2004-09-22

    Proton NMR imaging was used to investigate in situ the distribution of water in a polymer electrolyte membrane fuel cell operating on H2 and O2. In a single experiment, water was monitored in the gas flow channels, the membrane electrode assembly, and in the membrane surrounding the catalysts. Radial gradient diffusion removes water from the catalysts into the surrounding membrane. This research demonstrates the strength of 1H NMR microscopy as an aid for designing fuel cells to optimize water management.

  5. Measurement of Species Distributions in Operating Fuel Cells

    SciTech Connect

    Partridge Jr, William P; Toops, Todd J; Parks, II, James E; Armstrong, Timothy R.

    2004-10-01

    Measurement and understanding of transient species distributions across and within fuel cells is a critical need for advancing fuel cell technology. The Spatially Resolved Capillary Inlet Mass Spectrometer (SpaciMS) instrument has been applied for in-situ measurement of transient species distributions within operating reactors; including diesel catalyst, air-exhaust mixing systems, and non-thermal plasma reactors. The work described here demonstrates the applicability of this tool to proton exchange membrane (PEM) and solid oxide fuel cells (SOFC) research. Specifically, we have demonstrated SpaciMS measurements of (1) transient species dynamics across a PEM fuel cell (FC) associated with load switching, (2) intra-PEM species distributions, and transient species dynamics at SOFC temperatures associated with FC load switching.

  6. Breaking down the barriers to commercialization of fuel cells in transportation through Government - industry R&D programs

    SciTech Connect

    Chalk, S.G.; Venkateswaran, S.R.

    1996-12-31

    PEM fuel cell technology is rapidly emerging as a viable propulsion alternative to the internal combustion engine. Fuel cells offer the advantages of low emissions, high efficiency, fuel flexibility, quiet and continuous operation, and modularity. Over the last decade, dramatic advances have been achieved in the performance and cost of PEM fuel cell technologies for automotive applications. However, significant technical barriers remain to making fuel cell propulsion systems viable alternatives to the internal combustion engine. This paper focuses on the progress achieved and remaining technical barriers while highlighting Government-industry R&D efforts that are accelerating fuel cell technology toward commercialization.

  7. Evaluation of a 2.5 kWel automotive low temperature PEM fuel cell stack with extended operating temperature range up to 120 °C

    NASA Astrophysics Data System (ADS)

    Ruiu, Tiziana; Dreizler, Andreas M.; Mitzel, Jens; Gülzow, Erich

    2016-01-01

    Nowadays, the operating temperature of polymer electrolyte membrane fuel cell stacks is typically limited to 80 °C due to water management issues of membrane materials. In the present work, short-term operation at elevated temperatures up to 120 °C and long-term steady-state operation under automotive relevant conditions at 80 °C are examined using a 30-cell stack developed at DLR. The high temperature behavior is investigated by using temperature cycles between 90 and 120 °C without adjustment of the gases dew points, to simulate a short-period temperature increase, possibly caused by an extended power demand and/or limited heat removal. This galvanostatic test demonstrates a fully reversible performance decrease of 21 ± 1% during each thermal cycle. The irreversible degradation rate is about a factor of 6 higher compared to the one determined by the long-term test. The 1200-h test at 80 °C demonstrates linear stack voltage decay with acceptable degradation rate, apart from a malfunction of the air compressor, which results in increased catalyst degradation effects on individual cells. This interpretation is based on an end-of-life characterization, aimed to investigate catalyst, electrode and membrane degradation, by determining hydrogen crossover rates, high frequency resistances, electrochemically active surface areas and catalyst particle sizes.

  8. Hydrogen Research for Spaceport and Space-Based Applications: Fuel Cell Projects

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Fuel cell research focused on proton exchange membranes (PEM), solid oxide fuel cells (SOFC). Specific technologies included aircraft fuel cell reformers, new and improved electrodes, electrolytes, interconnect, and seals, modeling of fuel cells including CFD coupled with impedance spectroscopy. Research was conducted on new materials and designs for fuel cells, along with using embedded sensors with power management electronics to improve the power density delivered by fuel cells. Fuel cell applications considered were in-space operations, aviation, and ground-based fuel cells such as; powering auxiliary power units (APUs) in aircraft; high power density, long duration power supplies for interplanetary missions (space science probes and planetary rovers); regenerative capabilities for high altitude aircraft; and power supplies for reusable launch vehicles.

  9. A catalyst layer optimisation approach using electrochemical impedance spectroscopy for PEM fuel cells operated with pyrolysed transition metal-N-C catalysts

    NASA Astrophysics Data System (ADS)

    Malko, Daniel; Lopes, Thiago; Ticianelli, Edson A.; Kucernak, Anthony

    2016-08-01

    The effect of the ionomer to carbon (I/C) ratio on the performance of single cell polymer electrolyte fuel cells is investigated for three different types of non-precious metal cathodic catalysts. Polarisation curves as well as impedance spectra are recorded at different potentials in the presence of argon or oxygen at the cathode and hydrogen at the anode. It is found that a optimised ionomer content is a key factor for improving the performance of the catalyst. Non-optimal ionomer loading can be assessed by two different factors from the impedance spectra. Hence this observation could be used as a diagnostic element to determine the ideal ionomer content and distribution in newly developed catalyst-electrodes. An electrode morphology based on the presence of inhomogeneous resistance distribution within the porous structure is suggested to explain the observed phenomena. The back-pressure and relative humidity effect on this feature is also investigated and supports the above hypothesis. We give a simple flowchart to aid optimisation of electrodes with the minimum number of trials.

  10. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers

    NASA Astrophysics Data System (ADS)

    Gago, A. S.; Ansar, S. A.; Saruhan, B.; Schulz, U.; Lettenmeier, P.; Cañas, N. A.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Arnold, J.; Friedrich, K. A.

    2016-03-01

    Proton exchange membrane (PEM) electrolysis is a promising technology for large H2 production from surplus electricity from renewable sources. However, the electrolyser stack is costly due to the manufacture of bipolar plates (BPP). Stainless steel can be used as an alternative, but it must be coated. Herein, dense titanium coatings are produced on stainless steel substrates by vacuum plasma spraying (VPS). Further surface modification of the Ti coating with Pt (8 wt% Pt/Ti) deposited by physical vapour deposition (PVD) magnetron sputtering reduces the interfacial contact resistance (ICR). The Ti and Pt/Ti coatings are characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). Subsequently, the coatings are evaluated in simulated and real PEM electrolyser environments, and they managed to fully protect the stainless steel substrate. In contrast, the absence of the thermally sprayed Ti layer between Pt and stainless steel leads to pitting corrosion. The Pt/Ti coating is tested in a PEM electrolyser cell for almost 200 h, exhibiting an average degradation rate of 26.5 μV h-1. The results reported here demonstrate the possibility of using stainless steel as a base material for the stack of a PEM electrolyser.

  11. On-road particle number measurements using a portable emission measurement system (PEMS)

    NASA Astrophysics Data System (ADS)

    Gallus, Jens; Kirchner, Ulf; Vogt, Rainer; Börensen, Christoph; Benter, Thorsten

    2016-01-01

    In this study the on-road particle number (PN) performance of a Euro-5 direct-injection (DI) gasoline passenger car was investigated. PN emissions were measured using the prototype of a portable emission measurement system (PEMS). PN PEMS correlations with chassis dynamometer tests show a good agreement with a chassis dynamometer set-up down to emissions in the range of 1·1010 #/km. Parallel on-line soot measurements by a photo acoustic soot sensor (PASS) were applied as independent measurement technique and indicate a good on-road performance for the PN-PEMS. PN-to-soot ratios were 1.3·1012 #/mg, which was comparable for both test cell and on-road measurements. During on-road trips different driving styles as well as different road types were investigated. Comparisons to the world harmonized light-duty test cycle (WLTC) 5.3 and to European field operational test (euroFOT) data indicate the PEMS trips to be representative for normal driving. Driving situations in varying traffic seem to be a major contributor to a high test-to-test variability of PN emissions. However, there is a trend to increasing PN emissions with more severe driving styles. A cold start effect is clearly visible for PN, especially at low ambient temperatures down to 8 °C.

  12. Synthesis of transport layers with controlled anisotropy and application thereof to study proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Todd, Devin; Mérida, Walter

    2016-04-01

    We report on a novel method for the synthesis of fibre-based proton exchange membrane (PEM) fuel cell porous transport layers (PTLs) with controllable fibre alignment. We also report the first application of such layers as diagnostics tools to probe the effect of within-plane PTL anisotropy upon PEM fuel cell performance. These structures are realized via adaptation of electrospinning technology. Electrospun layers with progressive anisotropy magnitude are produced and evaluated. This novel approach is distinguished from the state-of-the-art because an equivalent study using commercially available materials is impossible due to lack of structurally similar substrates with different anisotropies. The anisotropy is visualized via scanning electron microscopy, and quantified using electrical resistivity. The capacity is demonstrated to achieve fibre alignment, and the associated impact on transport properties. A framework is presented for assessing the in-situ performance, whereby transport layer orientation versus bipolar plate flow-field geometry is manipulated. While an effect upon the commercial baseline cannot be discerned, electrospun transport layers with greater anisotropy magnitude suggest greater sensitivity to orientation; where greater performance is obtained with fibres cross-aligned to flow-field channels. Our approach of electrospun transport enables deterministic structures by which fuel cell performance can be explained and optimized.

  13. Unveiling N-protonation and anion-binding effects on Fe/N/C-catalysts for O2 reduction in PEM fuel cells.

    PubMed

    Herranz, Juan; Jaouen, Frédéric; Lefèvre, Michel; Kramm, Ulrike I; Proietti, Eric; Dodelet, Jean-Pol; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Bertrand, Patrick; Arruda, Thomas M; Mukerjee, Sanjeev

    2011-11-18

    The high cost of proton-exchange-membrane fuel cells would be considerably reduced if platinumbased catalysts were replaced by iron-based substitutes, which have recently demonstrated comparable activity for oxygen reduction, but whose cause of activity decay in acidic medium has been elusive. Here, we reveal that the activity of Fe/N/C-catalysts prepared through a pyrolysis in NH3 is mostly imparted by acid-resistant FeN4-sites whose turnover frequency for the O2 reduction can be regulated by fine chemical changes of the catalyst surface. We show that surface N-groups protonate at pH 1 and subsequently bind anions. This results in decreased activity for the O2 reduction. The anions can be removed chemically or thermally, which restores the activity of acid-resistant FeN4-sites. These results are interpreted as an increased turnover frequency of FeN4-sites when specific surface N-groups protonate. These unprecedented findings provide new perspective for stabilizing the most active Fe/N/C-catalysts known to date.

  14. Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications

    SciTech Connect

    McTaggart, Paul

    2004-12-31

    In this program TIAX LLC conducted the development of an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The overall objective of this program was to develop a hybrid compressor/expander module, based on both scroll and high-speed turbomachinery technologies, which will combine the strengths of each technology to create a concept with superior performance at minimal size and cost. The resulting system was expected to have efficiency and pressure delivery capability comparable to that of a scroll-only machine, at significantly reduced system size and weight when compared to scroll-only designs. Based on the results of detailed designs and analyses of the critical system elements, the Hybrid Compressor/Expander Module concept was projected to deliver significant improvements in weight, volume and manufacturing cost relative to previous generation systems.

  15. Fuel cell CO sensor

    DOEpatents

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    1999-12-14

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  16. Fuel cell CO sensor

    SciTech Connect

    Grot, S.A.; Meltser, M.A.; Gutowski, S.; Neutzler, J.K.; Borup, R.L.; Weisbrod, K.

    1999-12-14

    The CO concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H{sub 2} fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  17. Industrial applications of immobilized cells

    SciTech Connect

    Linko, P.; Linko, Y.Y.

    1984-01-01

    Although the application of the natural attraction of many microorganisms to surfaces has been applied in vinegar production since the early 1980s, and has long been utilized in waste water purification, the development of microbial cell immobilization techniques for special applications dates back only to the early 1960s. The immobilization may involve whole cells, cell fragments, or lysed cells. Whole cells may retain their metabolic activity with their complex multienzyme systems and cofactor regeneration mechanisms intact, or they may be killed in the process with only a few desired enzymes remaining active in the final biocatalyst. Cells may also be coimmobilized with an enzyme to carry out special reactions. Although relatively few industrial scale applications exist today, some are of very large scale. Current applications vary from relatively small scale steroid conversions to amino acid production and high fructose syrup manufacture. A vast number of potential applications are already known, and one of the most interesting applications may be in continuous fermentation such as ethanol production by immobilized living microorganisms. 373 references.

  18. Design of Current Source Dc/Dc Converter for Interfacing a 5 Kw Pem Fuel Cell / Paaugstinošā Strāvas Avota Līdzsprieguma Pārveidotāja Izstrāde 5 Kw Ūdeņraža Degvielas Elementam

    NASA Astrophysics Data System (ADS)

    Andreičiks, A.; Steiks, I.; Krievs, O.

    2013-08-01

    In domestic applications the low DC output voltage of a hydrogen fuel cell used as the main power supply or a backup power source has to be matched to the level and frequency of the AC voltage of utility grid. The interfacing power converter system usually consists of a DC/DC converter and an inverter. In this work, a DC/DC step-up converter stage is designed for interfacing a 5kW proton exchange membrane (PEM) fuel cell. The losses of DC/DC conversion are estimated and, basing on the relevant analysis, the most appropriate configuration of converter modules is selected for a DC/DC converter stage of increased efficiency. The authors present the results of experimental analysis and simulation for the selected configuration of four double inductor step-up push-pull converter modules Ūdeņraža degvielas elementa invertoru sistēmas mājsaimniecības pielietojumiem parasti sastāv no līdzsprieguma paaugstināšanas un invertēšanas mezgliem. Šis raksts ir veltīts paaugstinošā līdzsprieguma pārveidotāja izstrādei 5 kW protonu apmaiņas membrānas degvielas elementam. Rakstā izpētīts divu induktoru divtaktu strāvas avota paaugstinošais līdzsprieguma pārveidotājs, aplūkojot gan datormodelēšanas, gan eksperimentālos rezultātus. Lai palielinātu DC/DC pārveidotāja efektivitāti var izmantot vairākus pārveidotāja moduļus, kam ieejas savienotas paralēli un izejās - virkne. Analīze Šajā raksta ir veikta analīze, balstoties uz kuras var izvēlieties skaitu pārveidotāj moduļu skaitu, kuri nodrošina vislabāko efektivitāti DC/DC pārveidotāja posmā. Kopējais eksperimentāli noteiktais izstrādātās degvielas elementa pārveidotāju sistēmas fizikālā modeļa lietderības koeficients ir 93%

  19. Alkaline fuel cells applications

    NASA Astrophysics Data System (ADS)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  20. Current-fed Step-up DC/DC Converter for Fuel Cell Applications with Active Overvoltage Clamping

    NASA Astrophysics Data System (ADS)

    Andreiciks, Aleksandrs; Steiks, Ingars; Krievs, Oskars

    2010-01-01

    In order to use hydrogen fuel cells in domestic applications either as main power supply or backup source, their low DC output voltage has to be matched to the level and frequency of the utility grid AC voltage. Such power converter systems usually consist of a DC-DC converter and a DC-AC inverter. A double inductor step-up push-pull converter is investigated in this paper, presenting simulation and experimental results for passive and active overvoltage clamping. The prototype of the investigated converter is elaborated for 1200 W power to match the rated power of the proton exchange membrane (PEM) fuel cell located in hydrogen fuel cell research laboratory.

  1. PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane

    SciTech Connect

    Hamdan, Monjid

    2013-08-29

    The Department of Energy (DOE) has identified hydrogen production by electrolysis of water at forecourt stations as a critical technology for transition to the hydrogen economy; however, the cost of hydrogen produced by present commercially available electrolysis systems is considerably higher than the DOE 2015 and 2020 cost targets. Analyses of proton-exchange membrane (PEM) electrolyzer systems indicate that reductions in electricity consumption and electrolyzer stack and system capital cost are required to meet the DOE cost targets. The primary objective is to develop and demonstrate a cost-effective energy-based system for electrolytic generation of hydrogen. The goal is to increase PEM electrolyzer efficiency and to reduce electrolyzer stack and system capital cost to meet the DOE cost targets for distributed electrolysis. To accomplish this objective, work was conducted by a team consisting of Giner, Inc. (Giner), Virginia Polytechnic Institute & University (VT), and domnick hunter group, a subsidiary of Parker Hannifin (Parker). The project focused on four (4) key areas: (1) development of a high-efficiency, high-strength membrane; (2) development of a long-life cell-separator; (3) scale-up of cell active area to 290 cm2 (from 160 cm²); and (4) development of a prototype commercial electrolyzer system. In each of the key stack development areas Giner and our team members conducted focused development in laboratory-scale hardware, with analytical support as necessary, followed by life-testing of the most promising candidate materials. Selected components were then scaled up and incorporated into low-cost scaled-up stack hardware. The project culminated in the fabrication and testing of a highly efficient electrolyzer system for production of 0.5 kg/hr hydrogen and validation of the stack and system in testing at the National Renewable Energy Laboratory (NREL).

  2. Atmospheric Layers Measured from the NASA DC-8 During PEM-West B and Comparison with PEM-West A

    NASA Technical Reports Server (NTRS)

    Wu, Zhongxiang; Newell, Reginald E.; Zhu, Yong; Anderson, Bruce E.; Browell, Edward V.; Gregory, Gerald L.; Sachse, Glen W.; Collins, James E., Jr.

    1997-01-01

    The Pacific Exploratory Mission-West B (PEM-West B) explored atmospheric layer structure using measurements of O3, H2O, CO, and CH4 from the NASA DC-8 fast-response instruments. The mission took place in February-March 1994 over the western Pacific, mainly in the northern hemisphere. Results were compared with similar measurements made during the Pacific Exploratory Mission-West A (PEM-West A) in September-October 1991. PEM-West B sampled 94 vertical profiles, with an average atmospheric depth per profile of 6.4 km, and this sampling yielded 254 discrete layers. PEM-West A sampled 105 profiles, also with a 6.4 km average depth, yielding 538 layers. Both missions revealed that layers containing high ozone and low water vapor were the most abundant, and low ozone and high water vapor layers were the next most abundant. Lidar images and potential vorticity cross sections showed the former associated with subsidence from the stratosphere in middle latitudes, spreading into the tropics. The latter was associated with convection from the boundary layer. The partition among different types of layers only changed slightly in the two missions, although PEM-West B had half as many layers. Compared to PEM-West A, PEM-West B showed only one-third the number of layers associated with polluted continental air. However, PEM-West B revealed significantly more layers showing characteristics of descended clean marine air. In some cases these layers originated from the southern hemisphere. For ozone- and water-vapor-rich layers, the ozone deviation amplitude was higher in low latitudes and lower in high latitudes in PEM-West B. The mean thickness of layers increased from about 450 m in PEM-West A to 680 in in PEM-West B. Layers also existed in the Intertropical Convergence Zone. CO2 measurements had sufficient vertical resolution to show layer structure as well.

  3. NASA lithium cell applications

    NASA Technical Reports Server (NTRS)

    Juvinall, G. L.

    1978-01-01

    The advantages of lithium systems are described and a general summary of their application in present and future NASA programs is presented. Benefits of the lithium systems include an increased payload weight and an increased cost effectiveness to the customer. This also allows for more flexibility in the design of future space transportation systems.

  4. 40 CFR 1065.925 - PEMS preparation for field testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false PEMS preparation for field testing. 1065.925 Section 1065.925 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065.925 PEMS preparation for field testing....

  5. PEM Electrolysis H2A Production Case Study Documentation

    SciTech Connect

    James, Brian; Colella, Whitney; Moton, Jennie; Saur, G.; Ramsden, T.

    2013-12-31

    This report documents the development of four DOE Hydrogen Analysis (H2A) case studies for polymer electrolyte membrane (PEM) electrolysis. The four cases characterize PEM electrolyzer technology for two hydrogen production plant sizes (Forecourt and Central) and for two technology development time horizons (Current and Future).

  6. 40 CFR 1065.920 - PEMS calibrations and verifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... test conditions. As provided in 40 CFR 1068.5, we will deem your system to not meet the requirements of... 40 Protection of Environment 33 2014-07-01 2014-07-01 false PEMS calibrations and verifications....920 PEMS calibrations and verifications. (a) Subsystem calibrations and verifications. Use all...

  7. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications

    SciTech Connect

    Oei, D.; Adams, J.A.; Kinnelly, A.A.

    1997-07-01

    In partial fulfillment of the U.S. Department of Energy Contract No. DE-ACO2-94CE50389, {open_quotes}Direct Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}, this conceptual vehicle design report addresses the design and packaging of battery augmented fuel cell powertrain vehicles. This report supplements the {open_quotes}Conceptual Vehicle Design Report - Pure Fuel Cell Powertrain Vehicle{close_quotes} and includes a cost study of the fuel cell power system. The three classes of vehicles considered in this design and packaging exercise are the same vehicle classes that were studied in the previous report: the Aspire, representing the small vehicle class; the AIV (Aluminum Intensive Vehicle) Sable, representing the mid-size vehicle; and the E-150 Econoline, representing the van-size class. A preliminary PEM fuel cell power system manufacturing cost study is also presented. As in the case of the previous report concerning the {open_quotes}Pure Fuel Cell Powertrain Vehicle{close_quotes}, the same assumptions are made for the fuel cell power system. These assumptions are fuel cell system power densities of 0.33 kW/ka and 0.33 kW/l, platinum catalyst loading of less than or equal to 0.25 mg/cm{sup 2} total, and hydrogen tanks containing compressed gaseous hydrogen under 340 atm (5000 psia) pressure. The batteries considered for power augmentation of the fuel cell vehicle are based on the Ford Hybrid Electric Vehicle (HEV) program. These are state-of-the-art high power lead acid batteries with power densities ranging from 0.8 kW/kg to 2 kW/kg. The results reported here show that battery augmentation provides the fuel cell vehicle with a power source to meet instant high power demand for acceleration and start-up. Based on the assumptions made in this report, the packaging of the battery augmented fuel cell vehicle appears to be as feasible as the packaging of the pure fuel cell powered vehicle.

  8. Applications of Microbial Cell Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of microbial cell sensors have been developed as analytical tools. The microbial cell sensor utilizes microbes as a sensing element and a transducer. The characteristics of microbial cell sensors as sensing devices are a complete contrast to those of enzyme sensors or immunosensors, which are highly specific for the substrates of interest, although the specificity of the microbial cell sensor has been improved by genetic modification of the microbe used as the sensing element. Microbial cell sensors have the advantages of tolerance to measuring conditions, a long lifetime, and good cost performance, and have the disadvantage of a long response time. In this review, applications of microbial cell sensors are summarized.

  9. Hydrogen production by a PEM electrolyser

    NASA Astrophysics Data System (ADS)

    Aragón-González, G.; León-Galicia, A.; González-Huerta, R.; Rivera Camacho, J. M.; Uribe-Salazar, M.

    2015-01-01

    A PEM electrolyser for hydrogen production was evaluated. It was fed with water and a 400 mA, 3.5 V cc electrical power source. The electrolyser was built with two acrylic plates to form the anode and the cathode, two meshes to distribute the current, two seals, two gas diffusers and an assembly membrane-electrode. A small commercial neoprene sheet 1.7 mm thin was used to provide for the water deposit in order to avoid the machining of the structure. For the assembly of the proton interchange membrane a thin square 50 mm layer of Nafion 115 was used.

  10. Hierarchy carbon paper for the gas diffusion layer of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Du, Chunyu; Wang, Baorong; Cheng, Xinqun

    This communication described the fabrication of a hierarchy carbon paper, and its application to the gas diffusion layer (GDL) of proton exchange membrane (PEM) fuel cells. The carbon paper was fabricated by growing carbon nanotubes (CNTs) on carbon fibers via covalently assembling metal nanocatalysts. Surface morphology observation revealed a highly uniform distribution of hydrophobic materials within the carbon paper. The contact angle to water of this carbon paper was not only very large but also particularly even. Polarization measurements verified that the hierarchy carbon paper facilitated the self-humidifying of PEM fuel cells, which could be mainly attributed to its higher hydrophobic property as diagnosed by electrochemical impedance spectroscopy (EIS).

  11. Fuel cell development for transportation: Catalyst development

    SciTech Connect

    Doddapaneni, N.

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  12. Development of an eight-channel NMR system using RF detection coils for measuring spatial distributions of current density and water content in the PEM of a PEFC.

    PubMed

    Ogawa, Kuniyasu; Yokouchi, Yasuo; Haishi, Tomoyuki; Ito, Kohei

    2013-09-01

    The water generation and water transport occurring in a polymer electrolyte fuel cell (PEFC) can be estimated from the current density generated in the PEFC, and the water content in the polymer electrolyte membrane (PEM). In order to measure the spatial distributions and time-dependent changes of current density generated in a PEFC and the water content in a PEM, we have developed an eight-channel nuclear magnetic resonance (NMR) system. To detect a NMR signal from water in a PEM at eight positions, eight small planar RF detection coils of 0.6 mm inside diameter were inserted between the PEM and the gas diffusion layer (GDL) in a PEFC. The local current density generated at the position of the RF detection coil in a PEFC can be calculated from the frequency shift of the obtained NMR signal due to an additional magnetic field induced by the local current density. In addition, the water content in a PEM at the position of the RF detection coil can be calculated by the amplitude of the obtained NMR signal. The time-dependent changes in the spatial distributions were measured at 4 s intervals when the PEFC was operated with supply gas under conditions of fuel gas utilization of 0.67 and relative humidity of the fuel gas of 70%RH. The experimental result showed that the spatial distributions of the local current density and the water content in the PEM within the PEFC both fluctuated with time.

  13. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells.

    PubMed

    Lv, Haifeng; Wu, Peng; Wan, Wei; Mu, Shichun

    2014-09-01

    Carbon nanospheres is wildly used to support noble metal nanocatalysts in proton exchange membrane (PEM) fuel cells, however they show a low resistance to electrochemical corrosion. In this study, the N-doped treatment of carbon nanospheres (Vulcan XC-72) is carried out in ammonia gas. The effect of heating treatment (up to 1000 degrees C) on resistances to electrochemical oxidation of the N-doped carbon nanospheres (HNC) is investigated. The resistance to electrochemical oxidation of carbon supports and stability of the catalysts are investigated with potentiostatic oxidation and accelerated durability test by simulating PEM fuel cell environment. The HNC exhibit a higher resistance to electrochemical oxidation than traditional Vulcan XC-72. The results show that the N-doped carbon nanospheres have a great potential application in PEM fuel cells.

  14. Clear-PEM, a dedicated PET camera for mammography

    NASA Astrophysics Data System (ADS)

    Lecoq, P.; Varela, J.

    2002-06-01

    Preliminary results suggest that Positron Emission Mammography (PEM) can offer a noninvasive method for the diagnosis of breast cancer. Metabolic images from PEM contain unique information not available from conventional morphologic imaging techniques and aid in expeditiously establishing the diagnosis of cancer. A dedicated machine seems to offer better perspectives in terms of position resolution and sensitivity. This paper describes the concept of Clear-PEM, the system presently developed by the Crystal Clear Collaboration at CERN for an evaluation of this approach. This device is based on new crystals introduced by the Crystal Clear as well as on modern data acquisition techniques developed for the large experiments in high energy physics experiments.

  15. Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mössbauer spectroscopy and other techniques.

    PubMed

    Kramm, Ulrike I; Lefèvre, Michel; Larouche, Nicholas; Schmeisser, Dieter; Dodelet, Jean-Pol

    2014-01-22

    The aim of this work is to clarify the origin of the enhanced PEM-FC performance of catalysts prepared by the procedures described in Science 2009, 324, 71 and Nat. Commun. 2011, 2, 416. Catalysts were characterized after a first heat treatment in argon at 1050 °C (Ar) and a second heat treatment in ammonia at 950 °C (Ar + NH3). For the NC catalysts a variation of the nitrogen precursor was also implemented. (57)Fe Mössbauer spectroscopy, X-ray photoelectron spectroscopy, neutron activation analysis, and N2 sorption measurements were used to characterize all catalysts. The results were correlated to the mass activity of these catalysts measured at 0.8 V in H2/O2 PEM-FC. It was found that all catalysts contain the same FeN4-like species already found in INRS Standard (Phys. Chem. Chem. Phys. 2012, 14, 11673). Among all FeN4-like species, only D1 sites, assigned to FeN4/C, and D3, assigned to N-FeN2+2 /C sites, were active for the oxygen reduction reaction (ORR). The difference between INRS Standard and the new catalysts is simply that there are many more D1 and D3 sites available in the new catalysts. All (Ar + NH3)-type catalysts have a much larger porosity than Ar-type catalysts, while the maximum number of their active sites is only slightly larger after a second heat treatment in NH3. The large difference in activity between the Ar-type catalysts and the Ar + NH3 ones stems from the availability of the sites to perform ORR, as many sites of the Ar-type catalysts are secluded in the material, while they are available at the surface of the Ar + NH3-type catalysts.

  16. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs

    NASA Astrophysics Data System (ADS)

    Lee, Kwan-Soo; Spendelow, Jacob S.; Choe, Yoong-Kee; Fujimoto, Cy; Kim, Yu Seung

    2016-09-01

    Fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100 ∘C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180 ∘C however, these devices degrade when exposed to water below 140 ∘C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibit stable performance at 80–160 ∘C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.

  17. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs

    DOE PAGES

    Lee, Kwan -Soo; Spendelow, Jacob Schatz; Choe, Yoong -Kee; Fujimoto, Cy; Kim, Yu Seung

    2016-08-22

    Here, fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100°C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180°C; however, these devices degrade when exposed to water below 140°C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibitmore » stable performance at 80–160°C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.« less

  18. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs

    NASA Astrophysics Data System (ADS)

    Lee, Kwan-Soo; Spendelow, Jacob S.; Choe, Yoong-Kee; Fujimoto, Cy; Kim, Yu Seung

    2016-09-01

    Fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100 ∘C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180 ∘C however, these devices degrade when exposed to water below 140 ∘C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibit stable performance at 80-160 ∘C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.

  19. Navy fuel cell demonstration project.

    SciTech Connect

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  20. Development and application of an actively controlled hybrid proton exchange membrane fuel cell-Lithium-ion battery laboratory test-bed based on off-the-shelf components

    NASA Astrophysics Data System (ADS)

    Yufit, V.; Brandon, N. P.

    The use of commercially available components enables rapid prototyping and assembling of laboratory scale hybrid test-bed systems, which can be used to evaluate new hybrid configurations. The development of such a test-bed using an off-the-shelf PEM fuel cell, lithium-ion battery and DC/DC converter is presented here, and its application to a hybrid configuration appropriate for an unmanned underwater vehicle is explored. A control algorithm was implemented to regulate the power share between the fuel cell and the battery with a graphical interface to control, record and analyze the electrochemical and thermal parameters of the system. The results demonstrate the applicability of the test-bed and control algorithm for this application, and provide data on the dynamic electrical and thermal behaviour of the hybrid system.

  1. Fuel Cell Activities at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Fuel cells have a long history in space applications and may have potential application in aeronautics as well. A fuel cell is an electrochemical energy conversion device that directly transforms the chemical energy of a fuel and oxidant into electrical energy. Alkaline fuel cells have been the mainstay of the U.S. space program, providing power for the Apollo missions and the Space Shuttle. However, Proton Exchange Membrane (PEM) fuel cells offer potential benefits over alkaline systems and are currently under development for the next generation Reusable Launch Vehicle (RLV). Furthermore, primary and regenerative systems utilizing PEM technology are also being considered for future space applications such as surface power and planetary aircraft. In addition to these applications, the NASA Glenn Research Center is currently studying the feasibility of the use of both PEM and solid oxide fuel cells for low- or zero-emission electric aircraft propulsion. These types of systems have potential applications for high altitude environmental aircraft, general aviation and commercial aircraft, and high attitude airships. NASA Glenn has a unique set of capabilities and expertise essential to the successful development of advanced fuel cell power systems for space and aeronautics applications. NASA Glenn's role in past fuel cell development programs as well as current activities to meet these new challenges will be presented

  2. Optimal design of a hybridization scheme with a fuel cell using genetic optimization

    NASA Astrophysics Data System (ADS)

    Rodriguez, Marco A.

    Fuel cell is one of the most dependable "green power" technologies, readily available for immediate application. It enables direct conversion of hydrogen and other gases into electric energy without any pollution of the environment. However, the efficient power generation is strictly stationary process that cannot operate under dynamic environment. Consequently, fuel cell becomes practical only within a specially designed hybridization scheme, capable of power storage and power management functions. The resultant technology could be utilized to its full potential only when both the fuel cell element and the entire hybridization scheme are optimally designed. The design optimization in engineering is among the most complex computational tasks due to its multidimensionality, nonlinearity, discontinuity and presence of constraints in the underlying optimization problem. this research aims at the optimal utilization of the fuel cell technology through the use of genetic optimization, and advance computing. This study implements genetic optimization in the definition of optimum hybridization rules for a PEM fuel cell/supercapacitor power system. PEM fuel cells exhibit high energy density but they are not intended for pulsating power draw applications. They work better in steady state operation and thus, are often hybridized. In a hybrid system, the fuel cell provides power during steady state operation while capacitors or batteries augment the power of the fuel cell during power surges. Capacitors and batteries can also be recharged when the motor is acting as a generator. Making analogies to driving cycles, three hybrid system operating modes are investigated: 'Flat' mode, 'Uphill' mode, and 'Downhill' mode. In the process of discovering the switching rules for these three modes, we also generate a model of a 30W PEM fuel cell. This study also proposes the optimum design of a 30W PEM fuel cell. The PEM fuel cell model and hybridization's switching rules are postulated

  3. Chitosan biopolymer for fuel cell applications.

    PubMed

    Ma, Jia; Sahai, Yogeshwar

    2013-02-15

    Fuel cell is an electrochemical device which converts chemical energy stored in a fuel into electrical energy. Fuel cells have been receiving attention due to its potential applicability as a good alternative power source. Recently, cost-effective and eco-friendly biopolymer chitosan has been extensively studied as a material for membrane electrolytes and electrodes in low to intermediate temperature hydrogen polymer electrolyte fuel cell, direct methanol fuel cell, alkaline fuel cell, and biofuel cell. This paper reviews structure and property of chitosan with respect to its applications in fuel cells. Recent achievements and prospect of its applications have also been included.

  4. Dramatic improvement in water retention and proton conductivity in electrically aligned functionalized CNT/SPEEK nanohybrid PEM.

    PubMed

    Gahlot, Swati; Kulshrestha, Vaibhav

    2015-01-14

    Nanohybrid membranes of electrically aligned functionalized carbon nanotube f CNT with sulfonated poly ether ether ketone (SPEEK) have been successfully prepared by solution casting. Functionalization of CNTs was done through a carboxylation and sulfonation route. Further, a constant electric field (500 V·cm(-2)) has been applied to align CNTs in the same direction during the membrane drying process. All the membranes are characterized chemically, thermally, and mechanically by the means of FTIR, DSC, DMA, UTM, SEM, TEM, and AFM techniques. Intermolecular interactions between the components in hybrid membranes are established by FTIR. Physicochemical measurements were done to analyze membrane stability. Membranes are evaluated for proton conductivity (30-90 °C) and methanol crossover resistance to reveal their potential for direct methanol fuel cell application. Incorporation of f CNT reasonably increases the ion-exchange capacity, water retention, and proton conductivity while it reduces the methanol permeability. The maximum proton conductivity has been found in the S-sCNT-5 nanohybrid PEM with higher methanol crossover resistance. The prepared membranes can be also used for electrode material for fuel cells and batteries.

  5. Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications

    SciTech Connect

    Carlstrom, Charles, M., Jr.

    2009-07-07

    This report is the final technical report for DOE Program DE-FC36-04GO14301 titled “Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications”. Due to the public nature of this report some of the content reported in confidential reports and meetings to the DOE is not covered in detail in this report and some of the content has been normalized to not show actual values. There is a comparison of the projects accomplishments with the objectives, an overview of some of the key subsystem work, and a review of the three levels of prototypes demonstrated during the program. There is also a description of the eventual commercial product and market this work is leading towards. The work completed under this program has significantly increased the understanding of how Direct Methanol Fuel Cells (DMFC) can be deployed successfully to power consumer electronic devices. The prototype testing has demonstrated the benefits a direct methanol fuel cell system has over batteries typically used for powering consumer electronic devices. Three generations of prototypes have been developed and tested for performance, robustness and life. The technologies researched and utilized in the fuel cell stack and related subsystems for these prototypes are leveraged from advances in other industries such as the hydrogen fueled PEM fuel cell industry. The work under this program advanced the state of the art of direct methanol fuel cells. The system developed by MTI micro fuel cells aided by this program differs significantly from conventional DMFC designs and offers compelling advantages in the areas of performance, life, size, and simplicity. The program has progressed as planned resulting in the completion of the scope of work and available funding in December 2008. All 18 of the final P3 prototypes builds have been tested and the results showed significant improvements over P2 prototypes in build yield, initial performance, and durability. The systems have

  6. Development of structured polymer electrolyte membranes for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Gasa, Jeffrey

    The objective of this research was to explore structure-property relationships to develop the understanding needed for introduction of superior PEM materials. Polymer electrolyte membranes based on sulfonated poly(ether ketone ketone) (SPEKK) were fabricated using N-methyl pyrrolidone as casting solvent. The membranes were characterized in terms of properties that were relevant to fuel cell applications, such as proton conductivity, methanol permeability, and swelling properties, among others. It was found in this study that the proton conductivity of neat SPEKK membranes could reach the conductivity of commercial membranes such as NafionRTM. However, when the conductivity of SPEKK was comparable to NafionRTM, the swelling of SPEKK in water was quite excessive. The swelling problem was remedied by modifying the microstructure of SPEKK using different techniques. One of them involved blending of lightly sulfonated PEKK with highly acidic particles (sulfonated crosslinked polystyrene-SXLPS). Low sulfonation level of SPEKK was used to reduce the swelling of the membrane in water and the role of the highly acidic particles was to enhance the proton conductivity of the membrane. Because of the residual crystallinity in SPEKK with low sulfonation levels (IEC < 1 meq/g), the composite membranes exhibited excellent dimensional stability in water at elevated temperatures (30-90 °C). Also, the resistance to swelling of these composite membranes in methanol-water mixtures was far better than NafionRTM, and so was the methanol permeability. Another technique explored was blending with non-conductive polymers (poly(ether imide) and poly(ether sulfone)) to act as mechanical reinforcement. It was found that miscibility behavior of the blends had a significant impact on the transport and swelling properties of these blends, which could be explained by the blend microstructure. The miscibility behavior was found to be strongly dependent on the sulfonation level of SPEKK. The

  7. Conducting polymer-coated corrosion resistant metallic bipolar plates for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Joseph, Shine

    2005-11-01

    Concerns over depleting stocks of natural resources and a growing awareness of the environmental damage caused by widespread burning of fossil fuels, and more energy demands brought the idea of alternative energy systems. Proton Exchange Membrane (PEM) fuel cells are one of the fast growing alternative energy technologies. PEM fuel cells generate electricity from an electrochemical reaction between hydrogen and oxygen and produce electricity, a small amount of heat and water and therefore, they are environmentally friendly. Fuel cells are more efficient than internal combustion engines and operate continuously as long as fuel is supplied from an external tank. Fuel cells in stacks are used for most applications because the current output of a PEM fuel cell is around 0.3--0.5 A/cm2. In fuel cell stacks, bipolar plates combine two cells in series with anode and cathode of adjacent cells. The main functions of bipolar plates are electron and gas transport. Bipolar plates are major components in weight and volume of the PEM fuel cell stack and are a significant contributor to the stack cost. The bipolar plate is therefore a key component if power density is to increase and cost to come down. Bipolar plate material should be corrosion resistant, conductive, gas impermeable, light weight (mobile applications) and economical. Graphite plates are used for bipolar plate applications but they are expensive, are brittle to make in thin plates with gas channels on sides, have high manufacturing cost and are gas permeable if too thin. Metals are preferable for bipolar plate application because of better mechanical properties, higher electrical conductivity, lower gas permeability and low cost. In this work Al 6061 and 304 stainless steel alloys are the materials selected for bipolar plates. These metals form non-conductive surface oxides in a PEM fuel cell environment and cause a high contact resistance. This internal resistance lowers the efficiency of PEM fuel cell system. In

  8. PemK toxin encoded by the Xylella fastidiosa IncP-1 plasmid pXF-RIV11 is a ribonuclease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable inheritance of the IncP-1 plasmid pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. Here, PemK toxin and PemI ant...

  9. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Astrophysics Data System (ADS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant. Proton Exchange Membrane (PEM) fuel cell based power plant project for use in the first demonstration of this concept in conjunction with rover applications will be presented in detail.

  10. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Technical Reports Server (NTRS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant, Proton Exchange Membrane (PEM) fuel cell based power plant project to demonstrate the concept in conjunction with rover applications will be presented in detail.

  11. Opportunities for portable Ballard Fuel Cells

    SciTech Connect

    Voss, H.H.; Huff, J.R.

    1996-12-31

    With the increasing proliferation and sophistication of portable electronic devices in both commercial and military markets, the need has arisen for small, lightweight power supplies that can provide increased operating life over those presently available. A solution to this power problem is the development of portable Ballard Fuel Cell power systems that operate with a hydrogen fuel source and air. Ballard has developed PEM fuel cell stacks and power systems in the 25 to 100 watt range for both of these markets. For military use, Ballard has teamed with Ball Corporation and Hydrogen Consultants, Inc. and has provided the Ballard Fuel Cell stack for an ambient PEM fuel cell power system for the DoD. The system provides power from idle to I 00 watts and has the capability of delivering overloads of 125 watts for short periods of time. The system is designed to operate over a wide range of temperature, relative humidity and altitude. Hydrogen is supplied as a compressed gas, metal hydride or chemical hydride packaged in a unit that is mated to the power/control unit. The hydrogen sources provide 1.5, 5 and 15 kWh of operation, respectively. The design of the fuel cell power system enables the unit to operate at 12 volts or 24 volts depending upon the equipment being used. For commercial applications, as with the military, fuel cell power sources in the 25 to 500 watt range will be competing with advanced batteries. Ambient PEM fuel cell designs and demonstrators are being developed at 25 watts and other low power levels. Goals are minimum stack volume and weight and greatly enhanced operating life with reasonable system weight and volume. This paper will discuss ambient PEM fuel cell designs and performance and operating parameters for a number of power levels in the multiwatt range.

  12. 2. Credit PEM. View of Martinsburg Power Company steam generating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Credit PEM. View of Martinsburg Power Company steam generating plant. From right to left: original 1889 generating building, transformer room, new generating room and, adjacent to draft stack is boiler room addition. Photo c. 1911. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV

  13. 5. Credit PEM. Interior of Martinsburg Plant, showing Atlas Corliss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Credit PEM. Interior of Martinsburg Plant, showing Atlas Corliss 1000 hp steam engine and sheave wheel which powered a Warren 500 KW revolving field generator (which doesn't appear in this photo). Photo c. 1907. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV

  14. 6. Credit PEM. Interior of Martinsburg Plant, showing installation of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Credit PEM. Interior of Martinsburg Plant, showing installation of Warren 500 KW, 2200 Volt revolving field a.c. generator and sheave wheel, to be connected to Atlas Corliss 1000 hp steam engine (which doesn't appear in this photo). Photo c. 1907 - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV

  15. Stem cell applications in diabetes.

    PubMed

    Noguchi, Hirofumi

    2012-01-01

    Diabetes mellitus is a devastating disease and the World Health Organization (WHO) expects that the number of diabetic patients will increase to 300 million by the year 2025. Patients with diabetes experience decreased insulin secretion that is linked to a significant reduction in the number of islet cells. Type 1 diabetes is characterized by the selective destruction of pancreatic β cells caused by an autoimmune attack. Type 2 diabetes is a more complex pathology that, in addition to β cell loss caused by apoptotic programs, includes β cell de-differentiation and peripheric insulin resistance. The success achieved over the last few years with islet transplantation suggests that diabetes can be cured by the replenishment of deficient β cells. These observations are proof of the concept and have intensified interest in treating diabetes or other diseases not only by cell transplantation but also by stem cells. An increasing body of evidence indicates that, in addition to embryonic stem cells, several potential adult stem/progenitor cells derived from the pancreas, liver, spleen, and bone marrow could differentiate into insulin-producing cells in vitro or in vivo. However, significant controversy currently exists in this field. Pharmacological approaches aimed at stimulating the in vivo/ex vivo regeneration of β cells have been proposed as a way of augmenting islet cell mass. Overexpression of embryonic transcription factors in stem cells could efficiently induce their differentiation into insulin-expressing cells. A new technology, known as protein transduction, facilitates the differentiation of stem cells into insulin-producing cells. Recent progress in the search for new sources of β cells has opened up several possibilities for the development of new treatments for diabetes.

  16. [Stem cells - biology and therapeutic application].

    PubMed

    Sikora, Magdalena A; Olszewski, Waldemar L

    2004-04-01

    Enormous hope is connected with stem cells with regard to cell therapy, and this has become one of the most dynamically developing areas of science at the moment. A stem cell has unlimited potential for self-renewal. It appears that it can be a source of in vitro differentiated progeny cells capable of repairing damaged tissue. These review provides information about the biological properties of embryonic stem cells, i.e. ESs (embryonic stem cells), EGs (embryonic germ cells), and ECs (embryonic carcinoma cells). Possible human embryonic stem cell applications are described, with consideration of the desired cell line and the signals involved in their differentiation. The information about adult stem cells present - hemopoietic stem cells and the cells residing in selected tissues and organs: endothelium, pancreas, liver, epithelium, and gastrointestinal tract. Methods of their identification using the cell surfaces are also presented: the possibilities of in vitro transdifferentation, the phenomenon of in vivo plasticity, as well as morphological and genetic properties. Some topics of cell therapy and its clinical application in diabetics amplification are included. PMID:15114255

  17. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  18. Feeder Layer Cell Actions and Applications.

    PubMed

    Llames, Sara; García-Pérez, Eva; Meana, Álvaro; Larcher, Fernando; del Río, Marcela

    2015-08-01

    Cultures of growth-arrested feeder cells have been used for years to promote cell proliferation, particularly with low-density inocula. Basically, feeder cells consist in a layer of cells unable to divide, which provides extracellular secretions to help another cell to proliferate. It differs from a coculture system because only one cell type is capable to proliferate. It is known that feeder cells support the growth of target cells by releasing growth factors to the culture media, but this is not the only way that feeder cells promote the growth of target cells. In this work, we discuss the different mechanisms of action of feeder cells, tackling questions as to why for some cell cultures the presence of feeder cell layers is mandatory, while in some other cases, the growth of target cells can be achieved with just a conditioned medium. Different treatments to avoid feeder cells to proliferate are revised, not only the classical treatments as mitomycin or γ-irradiation but also the not so common treatments as electric pulses or chemical fixation. Regenerative medicine has been gaining importance in recent years as a discipline that moves biomedical technology from the laboratory to the patients. In this context, human stem and pluripotent cells play an important role, but the presence of feeder cells is necessary for these progenitor cells to grow and differentiate. This review addresses recent specific applications, including those associated to the growth of embryonic and induced pluripotent stem cells. In addition, we have also dealt with safety issues, including feeder cell sources, as major factors of concern for clinical applications.

  19. Feeder Layer Cell Actions and Applications

    PubMed Central

    García-Pérez, Eva; Meana, Álvaro; Larcher, Fernando; del Río, Marcela

    2015-01-01

    Cultures of growth-arrested feeder cells have been used for years to promote cell proliferation, particularly with low-density inocula. Basically, feeder cells consist in a layer of cells unable to divide, which provides extracellular secretions to help another cell to proliferate. It differs from a coculture system because only one cell type is capable to proliferate. It is known that feeder cells support the growth of target cells by releasing growth factors to the culture media, but this is not the only way that feeder cells promote the growth of target cells. In this work, we discuss the different mechanisms of action of feeder cells, tackling questions as to why for some cell cultures the presence of feeder cell layers is mandatory, while in some other cases, the growth of target cells can be achieved with just a conditioned medium. Different treatments to avoid feeder cells to proliferate are revised, not only the classical treatments as mitomycin or γ-irradiation but also the not so common treatments as electric pulses or chemical fixation. Regenerative medicine has been gaining importance in recent years as a discipline that moves biomedical technology from the laboratory to the patients. In this context, human stem and pluripotent cells play an important role, but the presence of feeder cells is necessary for these progenitor cells to grow and differentiate. This review addresses recent specific applications, including those associated to the growth of embryonic and induced pluripotent stem cells. In addition, we have also dealt with safety issues, including feeder cell sources, as major factors of concern for clinical applications. PMID:25659081

  20. Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis

    NASA Astrophysics Data System (ADS)

    Kadakia, Karan Sandeep; Jampani, Prashanth H.; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Park, Sung Kyoo; Hong, Dae Ho; Chung, Sung Jae; Kumta, Prashant N.

    2014-12-01

    Fluorine doped iridium oxide (IrO2:F) powders with varying F content ranging from 0 to 20 wt.% has been synthesized by using a modification of the Adams fusion method. The precursors (IrCl4 and NH4F) are mixed with NaNO3 and heated to elevated temperatures to form high surface area nanomaterials as electro-catalysts for PEM based water electrolysis. The catalysts were then coated on a porous Ti substrate and have been studied for the oxygen evolution reaction in PEM based water electrolysis. The IrO2:F with an optimum composition of IrO2:10 wt.% F shows remarkably superior electrochemical activity and chemical stability compared to pure IrO2. The results have also been supported via kinetic studies by conducting rotating disk electrode (RDE) experiments. The RDE studies confirm that the electro-catalysts follow the two electron transfer reaction for electrolysis with calculated activation energy of ∼25 kJ mol-1. Single full cell tests conducted also validate the superior electrochemical activity of the 10 wt.% F doped IrO2.

  1. Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells.

    PubMed

    Taghizadeh, Mohammad Taghi; Vatanparast, Morteza

    2016-12-01

    Zirconium dioxide (ZrO2) nanoparticles were fabricated successfully via ultrasonic-assisted method using ZrO(NO3)2·H2O, ethylenediamine and hydrazine as precursors in aqueous solution. Morphology, structure and composition of the obtained products were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR) and diffuse reflectance spectroscopy (DRS). Then, the synthesized nanoparticles were used to prepare Nafion/ZrO2 nanocomposite membranes. The properties of the membranes were studied by ion exchange capacity (IEC) proton conductivity (σ), thermal stability and water uptake measurements. The ex-situ Fenton's test was used to investigate the chemical stability of the membranes. From our results, compared with Nafion membrane, the nanocomposite membrane exhibited lower fluoride release and weight loss. Therefore, it can concluded that Nafion/ZrO2 nanocomposite exhibit more chemical stability than the pure Nafion membrane. ATR-FTIR spectra and SEM surface images of membranes also confirm these results. PMID:27544443

  2. Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells.

    PubMed

    Taghizadeh, Mohammad Taghi; Vatanparast, Morteza

    2016-12-01

    Zirconium dioxide (ZrO2) nanoparticles were fabricated successfully via ultrasonic-assisted method using ZrO(NO3)2·H2O, ethylenediamine and hydrazine as precursors in aqueous solution. Morphology, structure and composition of the obtained products were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR) and diffuse reflectance spectroscopy (DRS). Then, the synthesized nanoparticles were used to prepare Nafion/ZrO2 nanocomposite membranes. The properties of the membranes were studied by ion exchange capacity (IEC) proton conductivity (σ), thermal stability and water uptake measurements. The ex-situ Fenton's test was used to investigate the chemical stability of the membranes. From our results, compared with Nafion membrane, the nanocomposite membrane exhibited lower fluoride release and weight loss. Therefore, it can concluded that Nafion/ZrO2 nanocomposite exhibit more chemical stability than the pure Nafion membrane. ATR-FTIR spectra and SEM surface images of membranes also confirm these results.

  3. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; West, M. M.; Cooper, G.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  4. US Navy lithium cell applications

    NASA Technical Reports Server (NTRS)

    Bowers, F. M.

    1978-01-01

    Applications of lithium systems that are already in the fleet are discussed. The approach that the Navy is taking in the control of the introduction of lithium batteries into the fleet is also discussed.

  5. Five Kilowatt Fuel Cell Demonstration for Remote Power Applications

    SciTech Connect

    Dennis Witmer; Tom Johnson; Jack Schmid

    2008-12-31

    While most areas of the US are serviced by inexpensive, dependable grid connected electrical power, many areas of Alaska are not. In these areas, electrical power is provided with Diesel Electric Generators (DEGs), at much higher cost than in grid connected areas. The reasons for the high cost of power are many, including the high relative cost of diesel fuel delivered to the villages, the high operational effort required to maintain DEGs, and the reverse benefits of scale for small utilities. Recent progress in fuel cell technologies have lead to the hope that the DEGs could be replaced with a more efficient, reliable, environmentally friendly source of power in the form of fuel cells. To this end, the University of Alaska Fairbanks has been engaged in testing early fuel cell systems since 1998. Early tests were conducted on PEM fuel cells, but since 2001, the focus has been on Solid Oxide Fuel Cells. In this work, a 5 kW fuel cell was delivered to UAF from Fuel Cell Technologies of Kingston, Ontario. The cell stack is of a tubular design, and was built by Siemens Westinghouse Fuel Cell division. This stack achieved a run of more than 1 year while delivering grid quality electricity from natural gas with virtually no degradation and at an electrical efficiency of nearly 40%. The project was ended after two control system failures resulted in system damage. While this demonstration was successful, considerable additional product development is required before this technology is able to provide electrical energy in remote Alaska. The major issue is cost, and the largest component of system cost currently is the fuel cell stack cost, although the cost of the balance of plant is not insignificant. While several manufactures are working on schemes for significant cost reduction, these systems do not as yet provide the same level of performance and reliability as the larger scale Siemens systems, or levels that would justify commercial deployment.

  6. Self-humidified proton exchange membrane fuel cells: Operation of larger cells and fuel cell stacks

    SciTech Connect

    Dhar, H.P.; Lee, J.H.; Lewinski, K.A.

    1996-12-31

    The PEM fuel cell is promising as the power source for use in mobile and stationary applications primarily because of its high power density, all solid components, and simplicity of operation. For wide acceptability of this power source, its cost has to be competitive with the presently available energy sources. The fuel cell requires continuous humidification during operation as a power source. The humidification unit however, increases fuel cell volume, weight, and therefore decreases its overall power density. Great advantages in terms of further fuel cell simplification can be achieved if the humidification process can be eliminated or minimized. In addition, cost reductions are associated with the case of manufacturing and operation. At BCS Technology we have developed a technology of self-humidified operation of PEM fuel cells based on the mass balance of the reactants and products and the ability of membrane electrode assembly (MEA) to retain water necessary for humidification under the cell operating conditions. The reactants enter the fuel cell chambers without carrying any form of water, whether in liquid or vapor form. Basic principles of self-humidified operation of fuel cells as practiced by BCS Technology, Inc. have been presented previously in literature. Here, we report the operation of larger self-humidified single cells and fuel cell stacks. Fuel cells of areas Up to 100 cm{sup 2} have been operated. We also show the self-humidified operation of fuel cell stacks of 50 and 100 cm{sup 2} electrode areas.

  7. A small portable proton exchange membrane fuel cell and hydrogen generator for medical applications.

    PubMed

    Adlhart, O J; Rohonyi, P; Modroukas, D; Driller, J

    1997-01-01

    Small, lightweight power sources for total artificial hearts (TAH), left ventricular assist devices (LVAD), and other medical products are under development. The new power source will provide 2 to 3 times the capacity of conventional batteries. The implications of this new power source are profound. For example, for the Heartmate LVAD, 5 to 8 hours of operation are obtained with 3 lb of lead acid batteries (Personal Communication Mr. Craig Sherman, Thermo Cardiosystems, Inc TCI 11/29/96). With the same weight, as much as 14 hours of operation appear achievable with the proton exchange membrane (PEM) fuel cell power source. Energy densities near 135 watt-hour/L are achievable. These values significantly exceed those of most conventional and advanced primary and secondary batteries. The improvement is mission dependent and even applies for the short deployment cited above. The comparison to batteries becomes even more favorable if the mission length is increased. The higher capacity requires only replacement of lightweight hydride cartridges and logistically available water. Therefore, when one spare 50 L hydride cartridge weighing 115 g is added to the reactant supply the energy density of the total system increases to 230 watt-hour/kg. This new power source is comprised of a hydrogen fueled, air-breathing PEM fuel cell and a miniature hydrogen generator (US Patent No 5,514,353). The fuel cell is of novel construction and differs from conventional bipolar PEM fuel cells by the arrangement of cells on a single sheet of ion-exchange membrane. The construction avoids the weight and volume penalty of conventional bipolar stacks. The hydrogen consumed by the fuel cell is generated load-responsively in the miniature hydrogen generator, by reacting calcium hydride with water, forming in the process hydrogen and lime. The generator is cartridge rechargeable and available in capacities providing up to several hundred watt-hours of electric power.

  8. A review on the performance and modelling of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Boucetta, A.; Ghodbane, H.; Ayad, M. Y.; Bahri, M.

    2016-07-01

    Proton Exchange Membrane Fuel Cells (PEMFC), are energy efficient and environmentally friendly alternative to conventional energy conversion for various applications in stationary power plants, portable power device and transportation. PEM fuel cells provide low operating temperature and high-energy efficiency with near zero emission. A PEM fuel cell is a multiple distinct parts device and a series of mass, energy, transport through gas channels, electric current transport through membrane electrode assembly and electrochemical reactions at the triple-phase boundaries. These processes play a decisive role in determining the performance of the Fuel cell, so that studies on the phenomena of gas flows and the performance modelling are made deeply. This paper gives a comprehensive overview of the state of the art on the Study of the phenomena of gas flow and performance modelling of PEMFC.

  9. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2006-01-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  10. Engineering Stem Cells for Biomedical Applications.

    PubMed

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-01

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.

  11. Essentials of PEM Fellowship Part 2: The Profession in Entrustable Professional Activities.

    PubMed

    Hsu, Deborah; Nypaver, Michele; Fein, Daniel M; McAneney, Constance; Santen, Sally; Nagler, Joshua; Zuckerbraun, Noel; Roskind, Cindy Ganis; Reynolds, Stacy; Zaveri, Pavan; Stankovic, Curt; House, Joseph B; Langhan, Melissa; Titus, M Olivia; Dahl-Grove, Deanna; Klasner, Ann E; Ramirez, Jose; Chang, Todd; Jacobs, Elizabeth; Chapman, Jennifer; Lumba-Brown, Angela; Thompson, Tonya; Mittiga, Matthew; Eldridge, Charles; Heffner, Viday; Herman, Bruce E; Kennedy, Christopher; Madhok, Manu; Kou, Maybelle

    2016-06-01

    This article is the second in a 7-part series that aims to comprehensively describe the current state and future directions of pediatric emergency medicine (PEM) fellowship training from the essential requirements to considerations for successfully administering and managing a program to the careers that may be anticipated upon program completion. This article describes the development of PEM entrustable professional activities (EPAs) and the relationship of these EPAs with existing taxonomies of assessment and learning within PEM fellowship. It summarizes the field in concepts that can be taught and assessed, packaging the PEM subspecialty into EPAs. PMID:27253361

  12. Development and testing of a PEM SO2-depolarized electrolyzer and an operating method that prevents sulfur accumulation

    DOE PAGES

    Steimke, John L.; Steeper, Timothy J.; Colon-Mercado, Hector R.; Gorensek, Maximilian B.

    2015-09-02

    The hybrid sulfur (HyS) cycle is being developed as a technology to generate hydrogen by splitting water, using heat and electrical power from a nuclear or solar power plant. A key component is the SO2-depolarized electrolysis (SDE) cell, which reacts SO2 and water to form hydrogen and sulfuric acid. SDE could also be used in once-through operation to consume SO2 and generate hydrogen and sulfuric acid for sale. A proton exchange membrane (PEM) SDE cell based on a PEM fuel cell design was fabricated and tested. Measured cell potential as a function of anolyte pressure and flow rate, sulfuric acidmore » concentration, and cell temperature are presented for this cell. Sulfur accumulation was observed inside the cell, which could have been a serious impediment to further development. A method to prevent sulfur formation was subsequently developed. As a result, this was made possible by a testing facility that allowed unattended operation for extended periods.« less

  13. Solar Cells for Lunar Application

    NASA Technical Reports Server (NTRS)

    Freundlich, Alex; Ignatiev, Alex

    1997-01-01

    In this work a preliminary study of the vacuum evaporation of silicon extracted from the lunar regolith has been undertaken. An electron gun vacuum evaporation system has been adapted for this purpose. Following the calibration of the system using ultra high purity silicon deposited on Al coated glass substrates, thin films of lunar Si were evaporated on a variety of crystalline substrates as well as on glass and lightweight 1 mil (25 microns) Al foil. Extremely smooth and featureless films with essentially semiconducting properties were obtained. Optical absorption analysis sets the bandgap (about 1.1 eV) and the refractive index (n=3.5) of the deposited thin films close to that of crystalline silicon. Secondary ion mass spectroscopy and energy dispersive spectroscopy analysis indicated that these films are essentially comparable to high purity silicon and that the evaporation process resulted in a substantial reduction of impurity levels. All layers exhibited a p-type conductivity suggesting the presence of a p-type dopant in the fabricated layers. While the purity of the 'lunar waste material' is below that of the 'microelectronic-grade silicon', the vacuum evaporated material properties seems to be adequate for the fabrication of average performance Si-based devices such as thin film solar cells. Taking into account solar cell thickness requirements (greater than 10 microns) and the small quantities of lunar material available for this study, solar cell fabrication was not possible. However, the high quality of the optical and electronic properties of evaporated thin films was found to be similar to those obtained using ultra-high purity silicon suggest that thin film solar cell production on the lunar surface with in situ resource utilization may be a viable approach for electric power generation on the moon.

  14. Distribution and seasonality of selected hydrocarbons and halocarbons over the western Pacific basin during PEM-West A and PEM-West B

    NASA Astrophysics Data System (ADS)

    Blake, Nicola J.; Blake, Donald R.; Chen, Tai-Yih; Collins, James E.; Sachse, Glen W.; Anderson, Bruce E.; Rowland, F. Sherwood

    1997-12-01

    Nonmethane hydrocarbons (NMHCs) and halocarbons were measured in the troposphere over the northwestern Pacific as part of the airborne component of NASA's Pacific Exploratory Mission-West Phase B (PEM-West B). This study took place in late winter of 1994, a period characterized by maximum outflow from the Asian continent. The results are compared to those from Pacific Exploratory Mission-West Phase A (PEM-West A), which was flown in the same region during late summer of 1991, when flow from the subtropical western Pacific dominated the lower troposphere. Mixing ratios of NMHCs, tetrachloroethene (C2Cl4), and methyl bromide (CH3Br) were significantly higher during PEM-West B than during PEM-West A, particularly at latitudes north of 25°N and altitudes lower than 6 km. The primary reasons for these higher ambient concentrations were the seasonal increase in the atmospheric lifetimes of trace gases controlled by HO radical reactions, and the more frequent input of continental air masses. During PEM-West B, air masses of continental origin observed north of 25°N latitude were augmented with urban signature gases such as C2Cl4. By contrast, more southerly continental outflow had characteristics associated with combustion sources such as biomass burning, including wood fuel burning. During the summer PEM-West A period, the spatial distribution of methyl iodide (CH3I) was consistent with effective oceanic sources at all latitudes, being especially strong in tropical and subtropical regions. At low latitudes, PEM-West B CH3I mixing ratios in the lower troposphere were similar to PEM-West A, but at latitudes greater than about 25°N PEM-West B concentrations were significantly reduced. Equatorial regions exhibited enhanced CH3I mixing ratios extending into the upper tropical troposphere, consistent with fast vertical transport of air from the tropical marine boundary layer.

  15. Distribution and Seasonality of Selected Hydrocarbons and Halocarbons over the Western Pacific Basin During PEM-West A and PEM-West B

    NASA Technical Reports Server (NTRS)

    Blake, Nicola J.; Blake, Donald R.; Chen, Tai-Yih; Collins, James E., Jr.; Sachse, Glen W.; Anderson, Bruce E.; Rowland, F. Sherwood

    1997-01-01

    Nonmethane hydrocarbons (NMHCs) and halocarbons were measured in the troposphere over the northwestern Pacific as part of the airborne component of NASA's Pacific Exploratory Mission-West Phase B (PEM-West B). This study took place in late winter of 1994, a period characterized by maximum outflow from the Asian continent. The results are compared to those from Pacific Exploratory Mission-West Phase A (PEM-West A), which was flown in the same region during late summer of 1991, when flow from the subtropical western Pacific dominated the lower troposphere. Mixing ratios of NMHCs, tetrachloroethene (C2Cl4), and methyl bromide (CH3Br) were significantly higher during PEM-West B than during PEM-West A, particularly at latitudes north of 25 deg N and altitudes lower than 6 km. The primary reasons for these higher ambient concentrations were the seasonal increase in the atmospheric lifetimes of trace gases controlled by HO radical reactions, and the more frequent input of continental air masses. During PEM-West B, air masses of continental origin observed north of 25 deg N latitude were augmented with urban signature gases such as C2Cl4. By contrast, more southerly continental outflow had characteristics associated with combustion sources such as biomass burning, including wood fuel burning. During the summer PEM-West A period, the spatial distribution of methyl iodide (CH3I) was consistent with effective oceanic sources at all latitudes, being especially strong in tropical and subtropical regions. At low latitudes, PEM-West B CH3I mixing ratios in the lower troposphere were similar to PEM-West A, but at latitudes greater than about 25 deg N PEM-West B concentrations were significantly reduced. Equatorial regions exhibited enhanced CH3I mixing ratios extending into the upper tropical troposphere, consistent with fast vertical transport of air from the tropical marine boundary layer.

  16. New applications for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stickles, R. P.; Breuer, C. T.

    1983-01-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on site total energy systems, industrial cogeneration, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting are power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  17. New applications for phosphoric acid fuel cells

    SciTech Connect

    Stickles, R.P.; Breuer, C.T.

    1983-11-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on-site total energy systems, industrial co-generation, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting is power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  18. Microencapsulation of probiotic cells for food applications.

    PubMed

    Heidebach, Thomas; Först, Petra; Kulozik, Ulrich

    2012-01-01

    The addition of microencapsulated probiotic cells to food products is a relatively new functional food concept. Most of the published scientific research in this field is not older than ten years. However, the technological background reaches back to the 1980s, where lactic acid bacteria were microencapsulated within the concept of the so-called immobilized cell technology (ICT). Target applications of ICT were continuous fermentation processes and improved biomass production. The methods adopted from immobilized cell technology were applied for the microencapsulation of probiotics, often optimized towards specific requirements associated with the protection of probiotic cells in food applications. However, there are still significant hurdles with respect to currently available methods for probiotic cell microencapsulation. This is mainly due to the fact that important characteristics of microcapsules based on ICT appear to be in conflict with the requirements arising from an application of probiotic microcapsules in food products, with particle size and inappropriate matrix characteristics being the most prominent ones. Based on this situation the aim of this review is to give a critical overview of the current approaches regarding the microencapsulation of probiotic cells for food applications and to report on emerging developments.

  19. Fuel cells for extraterrestrial and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Srinivasan, S.

    The fuel cell is a nineteenth century invention and a twentieth century technology development. Due to the high power and energy density, high efficiency, reliability, and production of pure water, hydrogen-oxygen fuel cell systems have no competition as auxiliary power sources for space vehicles. The alkaline fuel cell system is a well developed and proven technology for this application. The solid polymer electrolyte system may be its future competitor. The energy crisis of 1973 stimulated research, development and demonstration of the phosphoric acid, molten carbonate, solid oxide and solid polymer electrolyte fuel cell systems using natural gas, petroleum or coal derived hydrogen (and carbon monoxide for the high temperature systems) for terrestrial applications. The direct methanol-air fuel cell is still an electrochemist's dream. Though considerable technological advances have been made, the present price of crude oil, and the high capital costs and limited lifetime of fuel cell systems impede their terrestrial applications in the developed countries. Conversely, the potential for lower capital costs of labor intensive manufacturing processes and the relatively higher fossil fuel prices make these systems more attractive for such applications in the developing countries.

  20. Fuel cells for extraterrestrial and terrestrial applications

    SciTech Connect

    Srinivasan, S.

    1987-01-01

    The fuel cell is a nineteenth century invention and a twentieth century technology development. Due to the high power and energy density, high efficiency, reliability, and production of pure water, hydrogen-oxygen fuel cell systems have no competition as auxiliary power sources for space vehicles. The alkaline fuel cell system is a well developed and proven technology for this application. The solid polymer electrolyte system may be its future competitor. The energy crisis of 1973 stimulated research, development and demonstration of the phosphoric acid, molten carbonate, solid oxide and solid polymer electrolyte fuel cell systems using natural gas, petroleum or coal derived hydrogen (and carbon monoxide for the high temperature systems) for terrestrial applications. The direct methanol-air fuel cell is still an electrochemist's dream. Though considerable technological advances have been made, the present price of crude oil, and the high capital costs and limited lifetime of fuel cell systems impede their terrestrial applications in the developed countries. Conversely, the potential for lower capital costs of labor intensive manufacturing processes and the relatively higher fossil fuel prices make these systems more attractive for such applications in the developing countries. 11 refs.

  1. US Army lithium cell applications

    NASA Technical Reports Server (NTRS)

    Legath, A. J.

    1978-01-01

    The how, why and where the Army is applying lithium batteries are addressed. The Army is committing its efforts to the utilization of lithium batteries in new equipment that will be going into the field possibly from FY-80 and thereafter. The Army's philosophy is to guide their users and the equipment designers, to use battery packs are opposed to singel cells. After a detailed description of the battery types that are being considered, a discussion is presented in which questions and comments are exchanged among the Workshop participants.

  2. GREENHOUSE GAS (GHG) VERIFICATION GUIDELINE SERIES: ANR Pipeline Company PARAMETRIC EMISSIONS MONITORING SYSTEM (PEMS) VERSION 1.0

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Parametric Emissions Monitoring System (PEMS) manufactured by ANR Pipeline Company, a subsidiary of Coastal Corporation, now El Paso Corporation. The PEMS predicts carbon doixide (CO2...

  3. [The Study of Large OPD's PEM Based on Micro Trapezoidal Photo-Elastic Crystals].

    PubMed

    Zhang, Rui; Wang, Zhi-bin; Wang, Yao-li; Chen, You-hua; Chen, Yuan-yuan

    2015-07-01

    Existing Photoelastic Modulator (PEM), whose optical path difference (OPD) is small, has strict requirements on the incident spot size and is poor in the aspect of light use efficiency under multiple reflections. What's more, Photoelastic Modulator based Fourier transform spectrometer (PEM-FTS) spectral resolution is relatively poor. Because there are these disadvantages in the PEM, this paper presents a method of large optical path difference whose PEM is based on micro trapezoidal photoelastic crystals. By improving the structure of photoelastic crystal, the PEM becomes micro trapezoidal octagonal structure. And two transmission surfaces are changed slightly into a certain angle. Therefore, the PEM improved can not only increase the optical path difference of the PEM, but also have less requirements on the incident spot size. Firstly, a detailed analysis of the maximum modulation optical path difference was made in this paper. Secondly, the equation of maximum optical path difference was deduced under any angle and any position of incident light, vibration displacement and stress distribution of PEM are analyzed by the way of COMSOL Multiphysics 4.3a. Again, a method was analyzed to find the best angle of incidence, combining with maximum optical path difference and energy efficiency. Then the large OP's PEM is designed and processed, including two parts: photoelastic crystal and piezoelectric crystal. Moreover, ZnSe crystal is used as photoelastic crystal, and piezoelectric quartz crystal is used as piezoelectric crystal. With experiment analyzed by 632. 8 nm He-Ne laser, the results show that under the same driving voltage, the optical path difference of the PEM improved is about 19. 25 times bigger than the normal PEM, and the relative error is 1.3%. PMID:26717731

  4. Ex-situ and In-situ Stability Studies of PEM Fuel Cell Catalysts: the effect of carbon type and humidification on the thermal degradation of carbon supported catalysts

    SciTech Connect

    Haugen, G. M.; Stevens, D. A.; Hicks, M. T.; Dahn, J. R.

    2005-11-01

    One of the most significant challenges for proton exchange membrane fuel cells in stationary power generation systems is lifetime, where 40,000 hours of operation with less than 10% decay in performance is desired. There are several different membrane electrode assembly (MEA) associated degradation mechanisms inhibiting MEAs from obtaining their desired lifetime targets. The focus of this research is on the loss of cathode surface area over time, which results in MEA performance losses, since MEA performance is proportional to cathode catalyst surface area. Two proposed mechanisms, support oxidation and platinum dissolution, are studied using different accelerated tests. These results are compared to cathode catalyst surface area loss data from real-time fuel cell tests in order to decouple the two degradation mechanisms.

  5. Facile preparation and multifunctional applications of boron nitride quantum dots

    NASA Astrophysics Data System (ADS)

    Lei, Zhouyue; Xu, Shengjie; Wan, Jiaxun; Wu, Peiyi

    2015-11-01

    Boron nitride quantum dots are obtained by a facile sonication-solvothermal technique. They are proven to be promising fluorescent bioimaging probes for bioimaging with remarkably low cytotoxicity and easily integrated into high-performance proton exchange membranes. This work will probably trigger research interest in BN and its new applications in a variety of fields.Boron nitride quantum dots are obtained by a facile sonication-solvothermal technique. They are proven to be promising fluorescent bioimaging probes for bioimaging with remarkably low cytotoxicity and easily integrated into high-performance proton exchange membranes. This work will probably trigger research interest in BN and its new applications in a variety of fields. Electronic supplementary information (ESI) available: AFM images of BN nanosheets, TEM, HRTEM and AFM images of BN QDs prepared in DMSO, digital photographs of DMF, DMSO, DMF with the addition of BN raw materials and DMSO with the addition of BN raw materials, UV-vis and FTIR spectra of the BN QDs, cell viability of the BN QDs, a summary of cell viabilities of different fluorescent QDs, digital photographs and CLSM images of the as-prepared PEMs, TGA and DSC curves of the PEMs, and AFM images of the PEMs. See DOI: 10.1039/c5nr05960g

  6. Mobile fuel cell development at Siemens

    NASA Astrophysics Data System (ADS)

    Strasser, K.

    1992-01-01

    Recent mobile fuel cell developments are reported with particular attention given to fuel cell technology based on photon exchange membrane (PEM) as electrolyte. Advantages of PEM fuel cells over conventional systems include their overload capacity, low power degradation, long lifetime, and the possibility to operate the fuel cell at different temperatures. The PEM fuel cells can be operated with CO2-containing reactants and have a considerable potential for increasing power. These facts make it possible to construct energy storage systems with H2/air fuel cells for electric cars or long-term storage facilities for regenerative energy systems.

  7. Management of PEM public key certificates using X.500 directory service: Some problems and solutions

    SciTech Connect

    Cheung, Terry C.

    1993-08-01

    Internet Privacy Enhanced Mail (PEM) provides security services to users of Internet electronic mail. While the prevalent PEM implementation uses a public key certificate-based strategy, certificates are mostly distributed vie e-mail exchanges, which raises several security and performance issues. This paper discusses some problems with this strategy, explores the relevant issues, and develops an approach to address them.

  8. Energy Storage for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.

    2001-01-01

    The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.

  9. ARPA advanced fuel cell development

    SciTech Connect

    Dubois, L.H.

    1995-08-01

    Fuel cell technology is currently being developed at the Advanced Research Projects Agency (ARPA) for several Department of Defense applications where its inherent advantages such as environmental compatibility, high efficiency, and low noise and vibration are overwhelmingly important. These applications range from man-portable power systems of only a few watts output (e.g., for microclimate cooling and as direct battery replacements) to multimegawatt fixed base systems. The ultimate goal of the ARPA program is to develop an efficient, low-temperature fuel cell power system that operates directly on a military logistics fuel (e.g., DF-2 or JP-8). The absence of a fuel reformer will reduce the size, weight, cost, and complexity of such a unit as well as increase its reliability. In order to reach this goal, ARPA is taking a two-fold, intermediate time-frame approach to: (1) develop a viable, low-temperature proton exchange membrane (PEM) fuel cell that operates directly on a simple hydrocarbon fuel (e.g., methanol or trimethoxymethane) and (2) demonstrate a thermally integrated fuel processor/fuel cell power system operating on a military logistics fuel. This latter program involves solid oxide (SOFC), molten carbonate (MCFC), and phosphoric acid (PAFC) fuel cell technologies and concentrates on the development of efficient fuel processors, impurity scrubbers, and systems integration. A complementary program to develop high performance, light weight H{sub 2}/air PEM and SOFC fuel cell stacks is also underway. Several recent successes of these programs will be highlighted.

  10. Fuel processors for fuel cell APU applications

    NASA Astrophysics Data System (ADS)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  11. Human progenitor cells for bone engineering applications.

    PubMed

    de Peppo, G M; Thomsen, P; Karlsson, C; Strehl, R; Lindahl, A; Hyllner, J

    2013-06-01

    In this report, the authors review the human skeleton and the increasing burden of bone deficiencies, the limitations encountered with the current treatments and the opportunities provided by the emerging field of cell-based bone engineering. Special emphasis is placed on different sources of human progenitor cells, as well as their pros and cons in relation to their utilization for the large-scale construction of functional bone-engineered substitutes for clinical applications. It is concluded that, human pluripotent stem cells represent a valuable source for the derivation of progenitor cells, which combine the advantages of both embryonic and adult stem cells, and indeed display high potential for the construction of functional substitutes for bone replacement therapies.

  12. PEM Anchorage on Titanium Using Catechol Grafting

    PubMed Central

    Marie, Hélène; Barrere, Amélie; Schoentstein, Frédérique; Chavanne, Marie-Hélène; Grosgogeat, Brigitte; Mora, Laurence

    2012-01-01

    Background This study deals with the anchorage of polyelectrolyte films onto titanium surfaces via a cathecol-based linker for biomedical applications. Methodology The following study uses a molecule functionalized with a catechol and a carboxylic acid: 3-(3,4-dihydroxyphenyl)propanoic acid. This molecule is anchored to the TiO2 substrate via the catechol while the carboxylic acid reacts with polymers bearing amine groups. By providing a film anchorage of chemisorption type, it makes possible to deposit polyelectrolytes on the surface of titanium. Principal Findings Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), contact angle and atomic force microscopy (AFM) measurements show that the different steps of grafting have been successfully performed. Conclusions This method based on catechol anchorage of polyelectrolytes open a window towards large possibilities of clinical applications. PMID:23226262

  13. Characterization of PM-PEMS for in-use measurements conducted during validation testing for the PM-PEMS measurement allowance program

    NASA Astrophysics Data System (ADS)

    Khan, M. Yusuf; Johnson, Kent C.; Durbin, Thomas D.; Jung, Heejung; Cocker, David R.; Bishnu, Dipak; Giannelli, Robert

    2012-08-01

    This study provides an evaluation of the latest Particulate Matter-Portable Emissions Measurement Systems (PM-PEMS) under different environmental and in-use conditions. It characterizes four PM measurement systems based on different measurement principles. At least three different units were tested for each PM-PEMS to account for variability. These PM-PEMS were compared with a UC Riverside's mobile reference laboratory (MEL). PM measurements were made from a class 8 truck with a 2008 Cummins diesel engine with a diesel particulate filter (DPF). A bypass around the DPF was installed in the exhaust to achieve a brake specific PM (bsPM) emissions level of 25 mg hp-1h-1. PM was dominated by elemental carbon (EC) during non-regeneration conditions and by hydrated sulfate (H2SO4.6H2O) during regeneration. The photo-acoustic PM-PEMS performed best, with a linear regression slope of 0.90 and R2 of 0.88 during non-regenerative conditions. With the addition of a filter, the photo-acoustic PM-PEMS slightly over reported than the total PM mass (slope = 1.10, R2 = 0.87). Under these same non-regeneration conditions, a PM-PEMS equipped with a quartz crystal microbalance (QCM) technology performed the poorest, and had a slope of 0.22 and R2 of 0.13. Re-tests performed on upgraded QCM PM-PEMS showed a better slope (0.66), and a higher R2 of 0.25. In the case of DPF regeneration, all PM-PEMS performed poorly, with the best having a slope of 0.20 and R2 of 0.78. Particle size distributions (PSD) showed nucleation during regeneration, with a shift of particle size to smaller diameters (˜64 nm to ˜13 nm) with elevated number concentrations when compared to non-regeneration conditions.

  14. Glovebox for GeoLab Subsystem in HDU1-PEM

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia; Calaway, Michael J.; Bell, Mary

    2012-01-01

    The GeoLab glovebox was designed to enable the preliminary examination, by astronauts, of geological samples collected from the surface of another planetary body. The collected information would then aid scientists in making decisions about sample curation and prioritization for return to Earth for study. This innovation was designed around a positive- pressure-enriched nitrogen environment glovebox to reduce sample handling contamination. The structure was custom-designed to fit in section H of NASA s Habitat Demonstration Unit 1 Pressurized Excursion Module (HDU1- PEM). In addition, the glovebox was designed to host analytical instruments in a way that prevents sample contamination.

  15. 4. Credit PEM. Interior of Martinsburg Plant; on right showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Credit PEM. Interior of Martinsburg Plant; on right showing Taylor 150 hp steam engine belt-connected to a Warren 150 KW, 2200 Volt a.c. generator. On left, a Fisher 400 hp steam engine belt-connected to a Warren 200 KW, 2200 Volt a.c. generator. In center, also belt-connected to Fisher 400 hp engine is a Bail 120 light, arc-light generator. Photo c. 1905. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV

  16. Stem cell applications in military medicine.

    PubMed

    Christopherson, Gregory T; Nesti, Leon J

    2011-10-19

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers--and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research.

  17. Stem cell applications in military medicine.

    PubMed

    Christopherson, Gregory T; Nesti, Leon J

    2011-01-01

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers--and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research. PMID:22011454

  18. Stem cell applications in military medicine

    PubMed Central

    2011-01-01

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers - and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research. PMID:22011454

  19. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    SciTech Connect

    Tribioli, L. Cozzolino, R.; Barbieri, M.

    2015-03-10

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared.

  20. A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Anderson, Ryan; Zhang, Lifeng; Ding, Yulong; Blanco, Mauricio; Bi, Xiaotao; Wilkinson, David P.

    Water management in PEM fuel cells has received extensive attention due to its key role in fuel cell performance. The unavoidable water, from humidified gas streams and electrochemical reaction, leads to gas-liquid two-phase flow in the flow channels of fuel cells. The presence of two-phase flow increases the complexity in water management in PEM fuel cells, which remains a challenging hurdle in the commercialization of this technology. Unique water emergence from the gas diffusion layer, which is different from conventional gas-liquid two-phase flow where water is introduced from the inlet together with the gas, leads to different gas-liquid flow behaviors, including pressure drop, flow pattern, and liquid holdup along flow field channels. These parameters are critical in flow field design and fuel cell operation and therefore two-phase flow has received increasing attention in recent years. This review emphasizes gas-liquid two-phase flow in minichannels or microchannels related to PEM fuel cell applications. In situ and ex situ experimental setups have been utilized to visualize and quantify two-phase flow phenomena in terms of flow regime maps, flow maldistribution, and pressure drop measurements. Work should continue to make the results more relevant for operating PEM fuel cells. Numerical simulations have progressed greatly, but conditions relevant to the length scales and time scales experienced by an operating fuel cell have not been realized. Several mitigation strategies exist to deal with two-phase flow, but often at the expense of overall cell performance due to parasitic power losses. Thus, experimentation and simulation must continue to progress in order to develop a full understanding of two-phase flow phenomena so that meaningful mitigation strategies can be implemented.

  1. Microbial fuel cells for biosensor applications.

    PubMed

    Yang, Huijia; Zhou, Minghua; Liu, Mengmeng; Yang, Weilu; Gu, Tingyue

    2015-12-01

    Microbial fuel cells (MFCs) face major hurdles for real-world applications as power generators with the exception of powering small sensor devices. Despite tremendous improvements made in the last two decades, MFCs are still too expensive to build and operate and their power output is still too small. In view of this, in recently years, intensive researches have been carried out to expand the applications into other areas such as acid and alkali production, bioremediation of aquatic sediments, desalination and biosensors. Unlike power applications, MFC sensors have the immediate prospect to be practical. This review covers the latest developments in various proposed biosensor applications using MFCs including monitoring microbial activity, testing biochemical oxygen demand, detection of toxicants and detection of microbial biofilms that cause biocorrosion.

  2. Integrated microchemical systems for fuel processing in micro fuel cell applications

    NASA Astrophysics Data System (ADS)

    Pattekar, Ashish V.

    Rapid advances in microelectronics technology over the last decade have led to the search for novel applications of miniaturization to all aspects of engineering. Microreaction engineering, which involves the development of miniature reactors on microchips for novel applications, has been a key area of interest in this quest for miniaturization. The idea of a fully integrated microplant with embedded control electronics, sensors and actuators on a single silicon chip has been gaining increasing acceptance as significant progress is being made in this area. The aim of this project has been to demonstrate a working microreaction system for hydrogen delivery to miniature proton exchange membrane (PEM) fuel cells through the catalytic steam reforming of methanol. The complete reformer - fuel cell unit is proposed as an alternative to conventional portable sources of electricity such as batteries due to its ability to provide an uninterrupted supply of electricity as long as a supply of methanol and water can be provided. This technology also offers significantly higher energy storage densities, which translates into less frequent 'recharging' through the refilling of methanol fuel. Various aspects of the design of a miniature methanol reformer on a silicon substrate are discussed with a focus on the theoretical understanding of microreactor operation and optimum utilization of the semiconductor-processing techniques used for fabricating the devices. Three prototype microreactor designs have been successfully fabricated and tested. Issues related to microchannel capping, on-chip heating and temperature sensing, introduction and trapping of catalyst particles in microchannels, microfluidic interfacing, pressure drop reduction, and thermal insulation have been addressed. Details regarding modeling and simulation of the designs to provide an insight into the working of the microreactor are presented along with a description of the microfabrication steps followed to

  3. Fuel cells for low power applications

    NASA Astrophysics Data System (ADS)

    Heinzel, A.; Hebling, C.; Müller, M.; Zedda, M.; Müller, C.

    Electronic devices show an ever-increasing power demand and thus, require innovative concepts for power supply. For a wide range of power and energy capacity, membrane fuel cells are an attractive alternative to conventional batteries. The main advantages are the flexibility with respect to power and capacity achievable with different devices for energy conversion and energy storage, the long lifetime and long service life, the good ecological balance, very low self-discharge. Therefore, the development of fuel cell systems for portable electronic devices is an attractive, although also a challenging, goal. The fuel for a membrane fuel cell might be hydrogen from a hydride storage system or methanol/water as a liquid alternative. The main differences between the two systems are the much higher power density for hydrogen fuel cells, the higher energy density per weight for the liquid fuel, safety aspects and infrastructure for fuel supply for hydride materials. For different applications, different system designs are required. High power cells are required for portable computers, low power methanol fuel cells required for mobile phones in hybrid systems with batteries and micro-fuel cells are required, e.g. for hand held PCs in the sub-Watt range. All these technologies are currently under development. Performance data and results of simulations and experimental investigations will be presented.

  4. HDU Pressurized Excursion Module (PEM) Prototype Systems Integration

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott

    2010-01-01

    The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a skunk-works approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process included establishment of design standards, negotiation of interfaces between subsystems, and scheduling fit checks and installation activities. A major tool used in integration was a coordinated effort to accurately model all the subsystems using CAD, so that conflicts were identified before physical components came together. Some of the major conclusions showed that up-front modularity that emerged as an artifact of construction, such as the eight 45 degree "pie slices" making up the module whose steel rib edges defined structural mounting and loading points, dictated much of the configurational interfaces between the major subsystems and workstations. Therefore, 'one of the lessons learned included the need to use modularity as a tool for organization in advance, and to work harder to prevent non-critical aspects of the platform from dictating the modularity that may eventually inform the fight system.

  5. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells.

    PubMed

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-02-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells.

  6. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    PubMed Central

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  7. Low-temperature fuel cell systems for commercial airplane auxiliary power.

    SciTech Connect

    Curgus, Dita Brigitte; Pratt, Joseph William; Akhil, Abbas Ali; Klebanoff, Leonard E.

    2010-11-01

    This presentation briefly describes the ongoing study of fuel cell systems on-board a commercial airplane. Sandia's current project is focused on Proton Exchange Membrane (PEM) fuel cells applied to specific on-board electrical power needs. They are trying to understand how having a fuel cell on an airplane would affect overall performance. The fuel required to accomplish a mission is used to quantify the performance. Our analysis shows the differences between the base airplane and the airplane with the fuel cell. There are many ways of designing a system, depending on what you do with the waste heat. A system that requires ram air cooling has a large mass penalty due to increased drag. The bottom-line impact can be expressed as additional fuel required to complete the mission. Early results suggest PEM fuel cells can be used on airplanes with manageable performance impact if heat is rejected properly. For PEMs on aircraft, we are continuing to perform: (1) thermodynamic analysis (investigate configurations); (2) integrated electrical design (with dynamic modeling of the micro grid); (3) hardware assessment (performance, weight, and volume); and (4) galley and peaker application.

  8. ``Backpack'' Functionalized Living Immune Cells

    NASA Astrophysics Data System (ADS)

    Swiston, Albert; Um, Soong Ho; Irvine, Darrell; Cohen, Robert; Rubner, Michael

    2009-03-01

    We demonstrate that functional polymeric ``backpacks'' built from polyelectrolyte multilayers (PEMs) can be attached to a fraction of the surface area of living, individual lymphocytes. Backpacks containing fluorescent polymers, superparamagnetic nanoparticles, and commercially available quantum dots have been attached to B and T-cells, which may be spatially manipulated using a magnetic field. Since the backpack does not occlude the entire cellular surface from the environment, this technique allows functional synthetic payloads to be attached to a cell that is free to perform its native functions, thereby synergistically utilizing both biological and synthetic functionalities. For instance, we have shown that backpack-modified T-cells are able to migrate on surfaces for several hours following backpack attachment. Possible payloads within the PEM backpack include drugs, vaccine antigens, thermally responsive polymers, nanoparticles, and imaging agents. We will discuss how this approach has broad potential for applications in bioimaging, single-cell functionalization, immune system and tissue engineering, and cell-based therapeutics where cell-environment interactions are critical.

  9. Understanding the transport processes in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  10. Mesenchymal stem cell applications to tendon healing

    PubMed Central

    Chaudhury, Salma

    2012-01-01

    Summary Tendons are often subject to age related degenerative changes that coincide with a diminished regenerative capacity. Torn tendons often heal by forming scar tissue that is structurally weaker than healthy native tendon tissue, predisposing to mechanical failure. There is increasing interest in providing biological stimuli to increase the tendon reparative response. Stem cells in particular are an exciting and promising prospect as they have the potential to provide appropriate cellular signals to encourage neotendon formation during repair rather than scar tissue. Currently, a number of issues need to be investigated further before it can be determined whether stem cells are an effective and safe therapeutic option for encouraging tendon repair. This review explores the in-vitro and invivo evidence assessing the effect of stem cells on tendon healing, as well as the potential clinical applications. PMID:23738300

  11. Carbon corrosion in PEM fuel cells during drive cycle operation

    SciTech Connect

    Borup, Rodney L.; Papadias, D. D.; Mukundan, Rangachary; Spernjak, Dusan; Langlois, David Alan; Ahluwalia, Rajesh; More, Karen L.; Grot, Steve

    2015-09-14

    One of the major contributors to degradation involves the electrocatalyst, including the corrosion of the carbons used as catalyst supports, which leads to changes in the catalyst layer structure. We have measured and quantified carbon corrosion during drive cycle operation and as a variation of the upper and lower potential limits used during drive cycle operation. The amount of carbon corrosion is exacerbated by the voltage cycling inherent in the drive cycle compared with constant potential operation. The potential gap between upper and lower potentials appears to be more important than the absolute operating potentials in the normal operating potential regime (0.40V to 0.95V) as changes in the measured carbon corrosion are similar when the upper potential was lower compared to raising the lower potential. Catalyst layer thinning was observed during the simulated drive cycle operation which had an associated decrease in catalyst layer porosity. This catalyst layer thinning is not due solely to carbon corrosion, although carbon corrosion likely plays a role; much of this thinning must be from compaction of the material in the catalyst layer. As a result, the decrease in catalyst layer porosity leads to additional performance losses due to mass transport losses.

  12. Carbon corrosion in PEM fuel cells during drive cycle operation

    DOE PAGES

    Borup, Rodney L.; Papadias, D. D.; Mukundan, Rangachary; Spernjak, Dusan; Langlois, David Alan; Ahluwalia, Rajesh; More, Karen L.; Grot, Steve

    2015-09-14

    One of the major contributors to degradation involves the electrocatalyst, including the corrosion of the carbons used as catalyst supports, which leads to changes in the catalyst layer structure. We have measured and quantified carbon corrosion during drive cycle operation and as a variation of the upper and lower potential limits used during drive cycle operation. The amount of carbon corrosion is exacerbated by the voltage cycling inherent in the drive cycle compared with constant potential operation. The potential gap between upper and lower potentials appears to be more important than the absolute operating potentials in the normal operating potentialmore » regime (0.40V to 0.95V) as changes in the measured carbon corrosion are similar when the upper potential was lower compared to raising the lower potential. Catalyst layer thinning was observed during the simulated drive cycle operation which had an associated decrease in catalyst layer porosity. This catalyst layer thinning is not due solely to carbon corrosion, although carbon corrosion likely plays a role; much of this thinning must be from compaction of the material in the catalyst layer. As a result, the decrease in catalyst layer porosity leads to additional performance losses due to mass transport losses.« less

  13. Water management of proton exchange membrane fuel cell based on control of hydrogen pressure drop

    NASA Astrophysics Data System (ADS)

    Song, Mancun; Pei, Pucheng; Zha, Hongshan; Xu, Huachi

    2014-12-01

    Flooding experiments in various conditions are developed and the hydrogen pressure drop is investigated on a two-piece PEM fuel cell in this study. A two-level characteristic of hydrogen pressure drop is observed and analyzed in combination with water droplet accumulation in channels. Based on the characteristic, the flooding process can be divided into four continuous periods, which are the proper period, the humid period, the transitional period and the flooding period. The voltage shows the segmented tendency during these periods. Experimental results show that current and temperature have little influence on the growth rate of the two levels, while the effects of pressure and hydrogen stoichiometry are remarkable. The growth rate can be calculated through the channel dimensions and matches the experimental results well. Hydrogen purge is not a fundamental method to solve flooding. The end of the humid period should be the boundary before flooding. The moist section can be obtained in the beginning part of the humid period. In this section PEM fuel cell is neither flooding nor dehydration by adjusting the cell temperature, which is verified by two additional experiments. This water management is convenient and swift for PEM fuel cell applications and the fault diagnosis.

  14. Sealed-cell nickel-cadmium battery applications manual

    NASA Technical Reports Server (NTRS)

    Scott, W. R.; Rusta, D. W.

    1979-01-01

    The design, procurement, testing, and application of aerospace quality, hermetically sealed nickel-cadmium cells and batteries are presented. Cell technology, cell and battery development, and spacecraft applications are emphasized. Long term performance is discussed in terms of the effect of initial design, process, and application variables. Design guidelines and practices are given.

  15. Yeast fuel cell: Application for desalination

    NASA Astrophysics Data System (ADS)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  16. Gasifiers optimized for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Steinfeld, G.; Fruchtman, J.; Hauserman, W. B.; Lee, A.; Meyers, S. J.

    Conventional coal gasification carbonate fuel cell systems are typically configured so that the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45-53 percent (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

  17. Chrysler Pentastar direct hydrogen fuel cell program

    SciTech Connect

    Kimble, M.; Deloney, D.

    1995-08-01

    The Chrysler Pentastar Electronics, Inc. Direct Hydrogen Fueled PEM Fuel Cell Hybrid Vehicle Program (DPHV) was initiated 1 July, 1994 with the following mission, {open_quotes}Design, fabricate, and test a Direct Hydrogen Fueled Proton Exchange Membrane (PEM) Fuel Cell System including onboard hydrogen storage, an efficient lightweight fuel cell, a gas management system, peak power augmentation and a complete system controls that can be economically mass produced and comply with all safety environmental and consumer requirements for vehicle applications for the 21st century.{close_quotes} The Conceptual Design for the entire system based upon the selection of an applicable vehicle and performance requirements that are consistent with the PNGV goals will be discussed. A Hydrogen Storage system that has been selected, packaged, and partially tested in accordance with perceived Hydrogen Safety and Infrastructure requirements will be discussed in addition to our Fuel Cell approach along with design of the {open_quotes}real{close_quotes} module. The Gas Management System and the Load Leveling System have been designed and the software programs have been developed and will be discussed along with a complete fuel cell test station that has the capability to test up to a 60 kW fuel cell system.

  18. Fuel Cells Today: Early Market Applications and Learning Demonstrations

    SciTech Connect

    2015-09-09

    This MP3 provides an overview of early market fuel cell applications including today's commercially available fuel cells and "learning demonstrations" to validate fuel cell technology in real world conditions.

  19. Preventing CO poisoning in fuel cells

    DOEpatents

    Gottesfeld, Shimshon

    1990-01-01

    Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.

  20. Measurements of OH during PEM-Tropics A

    NASA Astrophysics Data System (ADS)

    Mauldin, R. L.; Tanner, D. J.; Eisele, F. L.

    1999-03-01

    Results are presented for measurements of the concentration of OH performed aboard the NASA P3-B aircraft using the Selected Ion Chemical Ionization Mass Spectrometry technique during the Pacific Exploratory Mission-Tropics (PEM) study. Typical midday boundary layer OH concentrations of 6-8 × 106 molecules cm-3 were observed. Diurnally averaged boundary layer OH values obtained near Christmas Island, Kiribati, combined with SO2 and filter measurements of non-sea-salt sulfate reveal that only 12% of the sulfate found in the particulate form can be attributed to gas phase H2SO4 production/condensation. Measurements performed over clouds yielded [OH] 2-3 times larger than those typically observed under similar cloudless conditions.

  1. A regulatory role for Staphylococcus aureus toxin-antitoxin system PemIKSa.

    PubMed

    Bukowski, Michal; Lyzen, Robert; Helbin, Weronika M; Bonar, Emilia; Szalewska-Palasz, Agnieszka; Wegrzyn, Grzegorz; Dubin, Grzegorz; Dubin, Adam; Wladyka, Benedykt

    2013-01-01

    Toxin-antitoxin systems were shown to be involved in plasmid maintenance when they were initially discovered, but other roles have been demonstrated since. Here we identify and characterize a novel toxin-antitoxin system (pemIKSa) located on Staphylococcus aureus plasmid pCH91. The toxin (PemKSa) is a sequence-specific endoribonuclease recognizing the tetrad sequence U↓AUU, and the antitoxin (PemISa) inhibits toxin activity by physical interaction. Although the toxin-antitoxin system is responsible for stable plasmid maintenance our data suggest the participation of pemIKSa in global regulation of staphylococcal virulence by alteration of the translation of large pools of genes. We propose a common mechanism of reversible activation of toxin-antitoxin systems based on antitoxin transcript resistance to toxin cleavage. Elucidation of this mechanism is particularly interesting because reversible activation is a prerequisite for the proposed general regulatory role of toxin-antitoxin systems.

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT ANR PIPELINE COMPANY PARAMETRIC EMISSIONS MONITORING SYSTEM (PEMS)

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of a gaseous-emissions monitoring system for large, natural-gas-fired internal combustion engines. The device tested is the Parametric Emissions Monitoring System (PEMS) manufactured by ANR ...

  3. Ion pair reinforced semi-interpenetrating polymer network for direct methanol fuel cell applications.

    PubMed

    Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang

    2012-06-01

    This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.

  4. Application of proton exchange membrane fuel cells for the monitoring and direct usage of biohydrogen produced by Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Oncel, S.; Vardar-Sukan, F.

    Photo-biologically produced hydrogen by Chlamydomonas reinhardtii is integrated with a proton exchange (PEM) fuel cell for online electricity generation. To investigate the fuel cell efficiency, the effect of hydrogen production on the open circuit fuel cell voltage is monitored during 27 days of batch culture. Values of volumetric hydrogen production, monitored by the help of the calibrated water columns, are related with the open circuit voltage changes of the fuel cell. From the analysis of this relation a dead end configuration is selected to use the fuel cell in its best potential. After the open circuit experiments external loads are tested for their effects on the fuel cell voltage and current generation. According to the results two external loads are selected for the direct usage of the fuel cell incorporating with the photobioreactors (PBR). Experiments with the PEM fuel cell generate a current density of 1.81 mA cm -2 for about 50 h with 10 Ω load and 0.23 mA cm -2 for about 80 h with 100 Ω load.

  5. Food applications of bacterial cell wall hydrolases.

    PubMed

    Callewaert, Lien; Walmagh, Maarten; Michiels, Chris W; Lavigne, Rob

    2011-04-01

    Bacterial cell wall hydrolases (BCWHs) display a remarkable structural and functional diversity that offers perspectives for novel food applications, reaching beyond those of the archetype BCWH and established biopreservative hen egg white lysozyme. Insights in BCWHs from bacteriophages to animals have provided concepts for tailoring BCWHs to target specific pathogens or spoilage bacteria, or, conversely, to expand their working range to Gram-negative bacteria. Genetically modified foods expressing BCWHs in situ showed successful, but face regulatory and ethical concerns. An interesting spin-off development is the use of cell wall binding domains of bacteriophage BCWHs for detection and removal of foodborne pathogens. Besides for improving food safety or stability, BCWHs may also find use as functional food ingredients with specific health effects.

  6. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    SciTech Connect

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  7. A performance study of PEMS applied to the Hsinta power station of Taipower

    NASA Astrophysics Data System (ADS)

    Chien, T. W.; Chu, H.; Hsu, W. C.; Tu, Y. Y.; Tsai, H. S.; Chen, K. Y.

    2005-01-01

    Predictive emission monitoring systems (PEMS) have been shown to be a promising technology for calculating the emissions from gas-fired stationary sources. One of the first demonstration PEMS in Taiwan was installed and operated successfully at the Hsinta power plant of the Taiwan Power Company (Taipower) in 2000. To improve the accuracy of this PEMS model, further studies were conducted at the same combined cycle gas turbine (CCGT) unit #1 of the Hsinta power plant. To optimize the NOX PEMS model, several functions were progressively developed including a log model, a one-level linear model, a three-level linear model, a 15-variable linear model, and a 15-variable with start-up mode model. The latter gave the relative accuracies (RA) and correlation coefficients between PEMS and a continuous emission monitoring system (CEMS) in the range of 3.38-14.77% and 0.955-0.989, respectively, which fulfill the criteria of the USEPA draft on PEMS performance specifications. Similarly, this model demonstrated RAs for low, medium, high level, and a three-level average less than 20% which meet CEMS requirements set out by Taiwan EPA.

  8. Nanocluster production for solar cell applications

    SciTech Connect

    Al Dosari, Haila M.; Ayesh, Ahmad I.

    2013-08-07

    This research focuses on the fabrication and characterization of silver (Ag) and silicon (Si) nanoclusters that might be used for solar cell applications. Silver and silicon nanoclusters have been synthesized by means of dc magnetron sputtering and inert gas condensation inside an ultra-high vacuum compatible system. We have found that nanocluster size distributions can be tuned by various source parameters, such as the sputtering discharge power, flow rate of argon inert gas, and aggregation length. Quadrupole mass filter and transmission electron microscopy were used to evaluate the size distribution of Ag and Si nanoclusters. Ag nanoclusters with average size in the range of 3.6–8.3 nm were synthesized (herein size refers to the nanocluster diameter), whereas Si nanoclusters' average size was controlled to range between 2.9 and 7.4 nm by controlling the source parameters. This work illustrates the ability of controlling the Si and Ag nanoclusters' sizes by proper optimization of the operation conditions. By controlling nanoclusters' sizes, one can alter their surface properties to suit the need to enhance solar cell efficiency. Herein, Ag nanoclusters were deposited on commercial polycrystalline solar cells. Short circuit current (I{sub SC}), open circuit voltage (V{sub OC}), fill factor, and efficiency (η) were obtained under light source with an intensity of 30 mW/cm{sup 2}. A 22.7% enhancement in solar cell efficiency could be measured after deposition of Ag nanoclusters, which demonstrates that Ag nanoclusters generated in this work are useful to enhance solar cell efficiency.

  9. Primary and secondary electrical space power based on advanced PEM systems

    NASA Technical Reports Server (NTRS)

    Vanderborgh, N. E.; Hedstrom, J. C.; Stroh, K. R.; Huff, J. R.

    1993-01-01

    For new space ventures, power continues to be a pacing function for mission planning and experiment endurance. Although electrochemical power is a well demonstrated space power technology, current hardware limitations impact future mission viability. In order to document and augment electrochemical technology, a series of experiments for the National Aeronautics and Space Administration Lewis Research Center (NASA LeRC) are underway at the Los Alamos National Laboratory that define operational parameters on contemporary proton exchange membrane (PEM) hardware operating with hydrogen and oxygen reactants. Because of the high efficiency possible for water electrolysis, this hardware is also thought part of a secondary battery design built around stored reactants - the so-called regenerative fuel cell. An overview of stack testing at Los Alamos and of analyses related to regenerative fuel cell systems are provided in this paper. Finally, this paper describes work looking at innovative concepts that remove complexity from stack hardware with the specific intent of higher system reliability. This new concept offers the potential for unprecedented electrochemical power system energy densities.

  10. Amnion-derived stem cells: in quest of clinical applications.

    PubMed

    Miki, Toshio

    2011-05-19

    In the promising field of regenerative medicine, human perinatal stem cells are of great interest as potential stem cells with clinical applications. Perinatal stem cells could be isolated from normally discarded human placentae, which are an ideal cell source in terms of availability, the fewer number of ethical concerns, less DNA damage, and so on. Numerous studies have demonstrated that some of the placenta-derived cells possess stem cell characteristics like pluripotent differentiation ability, particularly in amniotic epithelial (AE) cells. Term human amniotic epithelium contains a relatively large number of stem cell marker-positive cells as an adult stem cell source. In this review, we introduce a model theory of why so many AE cells possess stem cell characteristics. We also describe previous work concerning the therapeutic applications and discuss the pluripotency of the AE cells and potential pitfalls for amnion-derived stem cell research.

  11. Miniaturized biological and electrochemical fuel cells: challenges and applications.

    PubMed

    Yang, Jie; Ghobadian, Sasan; Goodrich, Payton J; Montazami, Reza; Hashemi, Nastaran

    2013-09-14

    This paper discusses the fundamentals and developments of miniaturized fuel cells, both biological and electrochemical. An overview of microfluidic fuel cells, miniaturized microbial fuel cells, enzymatic biofuel cells, and implanted biofuel cells in an attempt to provide green energy and to power implanted microdevices is provided. Also, the challenges and applications of each type of fuel cell are discussed in detail. Most recent developments in fuel cell technologies such as novel catalysts, compact designs, and fabrication methods are reviewed.

  12. Development and testing of a PEM SO2-depolarized electrolyzer and an operating method that prevents sulfur accumulation

    SciTech Connect

    Steimke, John L.; Steeper, Timothy J.; Colon-Mercado, Hector R.; Gorensek, Maximilian B.

    2015-09-02

    The hybrid sulfur (HyS) cycle is being developed as a technology to generate hydrogen by splitting water, using heat and electrical power from a nuclear or solar power plant. A key component is the SO2-depolarized electrolysis (SDE) cell, which reacts SO2 and water to form hydrogen and sulfuric acid. SDE could also be used in once-through operation to consume SO2 and generate hydrogen and sulfuric acid for sale. A proton exchange membrane (PEM) SDE cell based on a PEM fuel cell design was fabricated and tested. Measured cell potential as a function of anolyte pressure and flow rate, sulfuric acid concentration, and cell temperature are presented for this cell. Sulfur accumulation was observed inside the cell, which could have been a serious impediment to further development. A method to prevent sulfur formation was subsequently developed. As a result, this was made possible by a testing facility that allowed unattended operation for extended periods.

  13. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    SciTech Connect

    Nelson, Douglas

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  14. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  15. Status of PEM-based polarimetric MSE development at KSTAR

    NASA Astrophysics Data System (ADS)

    Ko, Jinseok; Chung, Jinil; Oh, Seung Tae; Ko, Won-Ha; de Bock, Maarten; Ong, Henry; Lange, Guido

    2014-10-01

    A multi-chord PEM (photo elastic modulator)-based polarimetric motional Stark effect (MSE) system is under development for the KSTAR tokamak. The conceptual design for the front optics was optimized to preserve not only the polarization state of the input light for the MSE measurements but also the signal intensity of the existing charge exchange spectroscopy (CES) system that will share the front optics with the MSE. The optics design incorporates how to determine the number of channels and the number of fibers for each channel. A dielectric coating will be applied on the mirror to minimize the relative reflectivity and the phase shift between the two orthogonal polarization components of the incident light. Lenses with low stress-birefringence constants will be adopted to minimize non-linear and random changes in the polarization through the lenses, which is a trade-off with the rather high Faraday rotation in the lenses because the latter effect is linear and can be relatively easily calibrated out. Intensive spectrum measurements and their comparisons with the simulated spectra are done to assist the design of the bandpass filter system that will also use tilting stages to remotely control the passband. Following the system installation in 2014, the MSE measurements are expected to be performed during the 2015 KSTAR campaign.

  16. [Application of capillary electrophoresis in analysis of intact mammalian cells].

    PubMed

    Zhang, Lu; Qu, Feng; Lou, Beilei

    2012-02-01

    Cell is the basic structural and functional unit of human body. The research of cells' structure, function and behavior is very important. Capillary electrophoresis (CE) is a powerful tool for the separation and analysis, the application of which in cell analysis has progressed significantly. In this paper, the developments of CE applied in the intact mammalian cell analysis are reviewed, which consist of cell population and single cell analysis. The erythrocyte, boar sperm, HeLa cells, SH-SY5Y cells, Caco-2 cells, K562 cells and rat cerebellar granule cells are involved in this review. The methods and conditions for the intact mammalian cell analysis are summarized. In addition, the problems caused by the breakage, aggregation, sedimentation, adsorption and electrophoretic heterogeneity of the cell in the intact mammalian cell analysis by CE are discussed, and the corresponding solutions are introduced. Also, the future research trends are presented. Forty nine papers in all are reviewed.

  17. Cell-laden Polymeric Microspheres for Biomedical Applications.

    PubMed

    Leong, Wenyan; Wang, Dong-An

    2015-11-01

    Microsphere technology serves as an efficient and effective platform for cell applications (in vitro cell culture and in vivo cell delivery) due to its mimicry of the 3D native environment, high surface area:volume ratio, and ability to isolate the entrapped cells from the environment. Properties of cell-laden microspheres are determined by the type of application and the cell. While high cell densities are preferable for large-scale therapeutic biomolecule production in vitro, an immunoprotective barrier is most important for allogeneic pancreatic islet transplantation into patients. Furthermore, the biological cells require a suitable microenvironment in terms of its physical and biochemical properties. Here, we discuss applications of cell-laden microspheres and their corresponding design parameters. PMID:26475118

  18. Induced pluripotent stem cells: origins, applications, and future perspectives.

    PubMed

    Zhao, Jing; Jiang, Wen-jie; Sun, Chen; Hou, Cong-zhe; Yang, Xiao-Mei; Gao, Jian-gang

    2013-12-01

    Embryonic stem (ES) cells are widely used for different purposes, including gene targeting, cell therapy, tissue repair, organ regeneration, and so on. However, studies and applications of ES cells are hindered by ethical issues regarding cell sources. To circumvent ethical disputes, great efforts have been taken to generate ES cell-like cells, which are not derived from the inner cell mass of blastocyst-stage embryos. In 2006, Yamanaka et al. first reprogrammed mouse embryonic fibroblasts into ES cell-like cells called induced pluripotent stem (iPS) cells. About one year later, Yamanaka et al. and Thomson et al. independently reprogrammed human somatic cells into iPS cells. Since the first generation of iPS cells, they have now been derived from quite a few different kinds of cell types. In particular, the use of peripheral blood facilitates research on iPS cells because of safety, easy availability, and plenty of cell sources. Now iPS cells have been used for cell therapy, disease modeling, and drug discovery. In this review, we describe the generations, applications, potential issues, and future perspectives of iPS cells.

  19. Induced pluripotent stem cells: origins, applications, and future perspectives.

    PubMed

    Zhao, Jing; Jiang, Wen-jie; Sun, Chen; Hou, Cong-zhe; Yang, Xiao-Mei; Gao, Jian-gang

    2013-12-01

    Embryonic stem (ES) cells are widely used for different purposes, including gene targeting, cell therapy, tissue repair, organ regeneration, and so on. However, studies and applications of ES cells are hindered by ethical issues regarding cell sources. To circumvent ethical disputes, great efforts have been taken to generate ES cell-like cells, which are not derived from the inner cell mass of blastocyst-stage embryos. In 2006, Yamanaka et al. first reprogrammed mouse embryonic fibroblasts into ES cell-like cells called induced pluripotent stem (iPS) cells. About one year later, Yamanaka et al. and Thomson et al. independently reprogrammed human somatic cells into iPS cells. Since the first generation of iPS cells, they have now been derived from quite a few different kinds of cell types. In particular, the use of peripheral blood facilitates research on iPS cells because of safety, easy availability, and plenty of cell sources. Now iPS cells have been used for cell therapy, disease modeling, and drug discovery. In this review, we describe the generations, applications, potential issues, and future perspectives of iPS cells. PMID:24302707

  20. Endothelial cell micropatterning: Methods, effects, and applications

    PubMed Central

    Anderson, Deirdre E.J.; Hinds, Monica T.

    2012-01-01

    The effects of flow on endothelial cells have been widely examined for the ability of fluid shear stress to alter cell morphology and function; however, the effects of endothelial cell morphology without flow have only recently been observed. An increase in lithographic techniques in cell culture spurred a corresponding increase in research aiming to confine cell morphology. These studies lead to a better understanding of how morphology and cytoskeletal configuration affect the structure and function of the cells. This review examines endothelial cell micropatterning research by exploring both the many alternative methods used to alter endothelial cell morphology and the resulting changes in cellular shape and phenotype. Micropatterning induced changes in endothelial cell proliferation, apoptosis, cytoskeletal organization, mechanical properties, and cell functionality. Finally, the ways these cellular manipulation techniques have been applied to biomedical engineering research, including angiogenesis, cell migration, and tissue engineering, is discussed. PMID:21761242

  1. Application of the cell sheet technique in tissue engineering

    PubMed Central

    CHEN, GUANGNAN; QI, YIYING; NIU, LIE; DI, TUOYU; ZHONG, JINWEI; FANG, TINGTING; YAN, WEIQI

    2015-01-01

    The development and application of the tissue engineering technique has shown a significant potential in regenerative medicine. However, the limitations of conventional tissue engineering methods (cell suspensions, scaffolds and/or growth factors) restrict its application in certain fields. The novel cell sheet technique can overcome such disadvantages. Cultured cells can be harvested as intact sheets without the use of proteolytic enzymes, such as trypsin or dispase, which can result in cell damage and loss of differentiated phenotypes. The cell sheet is a complete layer, which contains extracellular matrix, ion channel, growth factor receptors, nexin and other important cell surface proteins. Mesenchymal stem cells (MSCs), which have the potential for multiple differentiation, are promising candidate seed cells for tissue engineering. The MSC sheet technique may have potential in the fields of regenerative medicine and tissue engineering in general. Additionally, induced pluripotent stem cell and embryonic stem cell-derived cell sheets have been proposed for tissue regeneration. Currently, the application of cell sheet for tissue reconstruction includes: Direct recipient sites implantation, superposition of cell sheets to construct three-dimensional structure for implantation, or cell sheet combined with scaffolds. The present review discusses the progress in cell sheet techniques, particularly stem cell sheet techniques, in tissue engineering. PMID:26623011

  2. Current overview on dental stem cells applications in regenerative dentistry

    PubMed Central

    Bansal, Ramta; Jain, Aditya

    2015-01-01

    Teeth are the most natural, noninvasive source of stem cells. Dental stem cells, which are easy, convenient, and affordable to collect, hold promise for a range of very potential therapeutic applications. We have reviewed the ever-growing literature on dental stem cells archived in Medline using the following key words: Regenerative dentistry, dental stem cells, dental stem cells banking, and stem cells from human exfoliated deciduous teeth. Relevant articles covering topics related to dental stem cells were shortlisted and the facts are compiled. The objective of this review article is to discuss the history of stem cells, different stem cells relevant for dentistry, their isolation approaches, collection, and preservation of dental stem cells along with the current status of dental and medical applications. PMID:25810631

  3. Compendium of NASA data base for the global tropospheric experiment's Pacific Exploratory Mission West-B (PEM West-B)

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Scott, A. Donald, Jr.

    1995-01-01

    This compendium describes aircraft data that are available from NASA's Pacific Exploratory Mission West-B (PEM West-B). PEM West is a component of the International Global Atmospheric Chemistry's (IGAC) East Asia/North Pacific Regional Study (APARE) project. Objectives of PEM West are to investigate the atmospheric chemistry of ozone over the northwest Pacific -- natural budgets and the impact of anthropogenic/continental sources; and to investigate sulfur chemistry -- continental and marine sulfur sources. The PEM West program encompassed two expeditions. PEM West-A was conducted in September 1991 during which the predominance of tropospheric air was from mid-Pacific (marine) regions, but (at times) was modified by Asian outflow. PEM West-B was conducted during February 1994, a period characterized by maximum Asian outflow. Results from PEM West-A and B are public domain. PEM West-A data are summarized in NASA TM 109177 (published February 1995). Flight experiments were based at Guam, Hong Kong, and Japan. This document provides a representation of NASA DC-8 aircraft data that are available from NASA Langley's Distributed Active Archive Center (DAAC). The DAAC includes numerous other data such as meteorological and modeling products, results from surface studies, satellite observations, and sonde releases.

  4. Compendium of NASA data base for the Global Tropospheric Experiment's Pacific Exploratory Mission West-A (PEM West-A)

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Scott, A. D., Jr.

    1995-01-01

    This compendium describes aircraft data that are available from NASA's Pacific Exploratory Mission West-A (PEM West-A). PEM West is a component of the International Global Atmospheric Chemistry's (IGAC) East Asia/North Pacific Regional Study (APARE) project. The PEM- West program encompassed two expeditions to study contrasting meteorological regimes in the Pacific. Objectives of PEM West are to investigate the atmospheric chemistry of ozone over the northwest Pacific -- natural budgets and the impact of anthropogenic sources; and to investigate sulfur chemistry -- continental versus marine sulfur sources. PEM West-A was conducted in September 1991 during which the predominance of tropospheric air is from the mid-Pacific (marine) regions, but (at times) is modified/mixed with Asian continental outflow. PEM West-B was conducted during February 1994, a period characterized by maximum continental outflow. PEM-B data (not included) will become public domain during the Summer of 1995. PEM West-A flight experiments were based at Japan, Hong Kong, and Guam. This document provides a representation of NASA DC-8 aircraft data that are available from NASA Langley's Distributed Active Archive Center (DAAC), which include numerous data such as meteorological observations, modeling products, results from surface studies, satellite observations, and sonde releases.

  5. Effects of Treatment on Disruptive Behaviors: A Quantitative Synthesis of Single-Subject Researches Using the PEM Approach

    ERIC Educational Resources Information Center

    Chen, Chiu-Wen; Ma, Hsen-Hsing

    2007-01-01

    The present study uses the PEM approach to synthesize the effectiveness of treatment on disruptive behaviors and simultaneously tests whether the higher validity of the PEM approach than that of the PND approach is repeatable. A hand search of the "Journal of Applied Behavior Analysis" was conducted, and reference lists from reviewed articles were…

  6. Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for Fuel Cell Applications

    SciTech Connect

    Mays, Jimmy W.

    2011-03-07

    The goal of this research project was to create and develop fuel cell membranes having high proton conductivity at high temperatures and high chemical and mechanical durability. Poly(1,3-cyclohexadiene) (PCHD) is of interest as an alternative polymer electrolyte membrane (PEM) material due to its ring-like structure which is expected to impart superior mechanical and thermal properties, and due to the fact that PCHD can readily be incorporated into a range of homopolymer and copolymer structures. PCHD can be aromatized, sulfonated, or fluorinated, allowing for tuning of key performance structure and properties. These factors include good proton transport, hydrophilicity, permeability (including fuel gas impermeability), good mechanical properties, morphology, thermal stability, crystallinity, and cost. The basic building block, 1,3-cyclohexadiene, is a hydrocarbon monomer that could be inexpensively produced on a commercial scale (pricing typical of other hydrocarbon monomers). Optimal material properties will result in novel low cost PEM membranes engineered for high conductivity at elevated temperatures and low relative humidities, as well as good performance and durability. The primary objectives of this project were: (1) To design, synthesize and characterize new non-Nafion PEM materials that conduct protons at low (25-50%) RH and at temperatures ranging from room temperature to 120 C; and (2) To achieve these objectives, a range of homopolymer and copolymer materials incorporating poly(cyclohexadiene) (PCHD) will be synthesized, derivatized, and characterized. These two objectives have been achieved. Sulfonated and crosslinked PCHD homopolymer membranes exhibit proton conductivities similar to Nafion in the mid-RH range, are superior to Nafion at higher RH, but are poorer than Nafion at RH < 50%. Thus to further improve proton conductivity, particularly at low RH, poly(ethylene glycol) (PEG) was incorporated into the membrane by blending and by

  7. Fuel cell and membrane therefore

    DOEpatents

    Aindow, Tai-Tsui

    2016-08-09

    A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially aligned with the high value direction of the flow field plate.

  8. Micropallets for cell and biological assay applications

    NASA Astrophysics Data System (ADS)

    Jensen-McMullin, Cynthia

    2007-12-01

    Interest in the subjects of microfluidics, nanotechnology and lab-on-a-chip is ever increasing. Several features of microanalysis and biological assays are desired, such as low reagent use and rapid results. These features can be achieved by developing a flexible, encoded technology capable of multiplexing. The work presented in this dissertation introduces microcarriers referred to as 'micropallets' which are encoded structures ranging in size from 25mum to several hundred microns. These small structures are fabricated using photoresist or other polymer materials. Micropallets may be used in static detection systems or for the transportation and manipulation of attached biological or chemical samples through a microfluidic system. Encoding options for micropallets are discussed. Encoding may be accomplished through the use of barcodes or other markings and may be engineered to optimally suit the application. This work presents the encoded micropallet microcarriers and the corresponding microfluidic and static systems used with micropallets. We discuss the importance of encoding towards the development of flexible, multiplexed assays and decoding strategies used or under development. Cell and antibody assays were selected and investigated to assess the utility of micropallets. We conclude from the results of this work, as well as ongoing interests, micropallets achieve the goals of improving biological techniques including cellular and other biological assays through the options of encoding and multiplexing.

  9. Improved stability and cell response by intrinsic cross-linking of multilayers from collagen I and oxidized glycosaminoglycans.

    PubMed

    Zhao, Mingyan; Li, Lihua; Zhou, Changren; Heyroth, Frank; Fuhrmann, Bodo; Maeder, Karsten; Groth, Thomas

    2014-11-10

    Stability of surface coatings against environmental stress, such as pH, high ionic strength, mechanical forces, and so forth, is crucial for biomedical application of implants. Here, a novel extracellular-matrix-like polyelectrolyte multilayer (PEM) system composed of collagen I (Col I) and oxidized glycosaminoglycans (oGAGs) was stabilized by intrinsic cross-linking due to formation of imine bonds between aldehydes of oxidized chondroitin sulfate (oCS) or hyaluronan (oHA) and amino groups of Col I. It was also found that Col I contributed significantly more to overall mass in CS-Col I than in HA-Col I multilayer systems and fibrillized particularly in the presence of native and oxidized CS. Adhesion and proliferation studies with murine C3H10T1/2 embryonic fibroblasts demonstrated that covalent cross-linking of oGAG with Col I had no adverse effects on cell behavior. By contrast, it was found that cell size and polarization was more pronounced on oGAG-based multilayer systems, which corresponded also to the higher stiffness of cross-linked multilayers as observed by studies with quartz crystal microbalance (QCM). Overall, PEMs prepared from oGAG and Col I give rise to stable PEM constructs due to intrinsic cross-linking that may be useful for making bioactive coatings of implants and tissue engineering scaffolds.

  10. Design and Development of Highly Sulfonated Polymers as Proton Exchange Membranes for High Temperature Fuel Cell Applications

    NASA Astrophysics Data System (ADS)

    Dang, Thuy D.; Bai, Zongwu; Yoonessi, Mitra

    attributed to the presence of water molecules. The changes in the scattering features of the water in SPTES-70 membrane were examined as a function of drying time during an in situ drying experiment. The in situ small angle X-ray scattering from water swollen SPTES-70 membrane in a drying experiment exhibited a decrease in the water domain size morphology. AFM studies of SPTES-70 membrane in a humidity range (35 - 65 % RH) revealed an increased size of hydrophilic clusters with increasing humidity. SEM examination of cryofractured dry and swollen SPTES-70 membrane surface indicated a change from a smooth brittle fracture to a fractured surface with plastic deformation, verifying the plasticizing effects of the water molecules in the swollen membrane. Membrane electrode assemblies (MEAs), fabricated using SPTES-50 polymer as proton exchange membrane (PEM) incorporating conventional electrode application techniques, exhibit high proton mobility. The electrochemical performance of SPTES-50 membrane in the MEA was superior to that of Nafion. The SPTES polymers have been demonstrated to be promising candidates for high temperature PEM in fuel cell applications.

  11. Storage and production of hydrogen for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Aiello, Rita

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. The objective of this work is to develop and test new methods for the storage and production of hydrogen for fuel cells. Six ligand-stabilized hydrides were synthesized and tested as hydrogen storage media for use in portable fuel cells. These novel compounds are more stable than classical hydrides (e.g., NaBH4, LiAlH4) and react to release hydrogen less exothermically upon hydrolysis with water. Three of the compounds produced hydrogen in high yield (88 to 100 percent of the theoretical) and at significantly lower temperatures than those required for the hydrolysis of NaBH4 and LiAlH4. However, a large excess of water and acid were required to completely wet the hydride and keep the pH of the reaction medium neutral. The hydrolysis of the classical hydrides with steam can overcome these limitations. This reaction was studied in a flow reactor and the results indicate that classical hydrides can be hydrolyzed with steam in high yields at low temperatures (110 to 123°C) and in the absence of acid. Although excess steam was required, the pH of the condensed steam was neutral. Consequently, steam could be recycled back to the reactor. Production of hydrogen for large-scale transportation fuel cells is primarily achieved via the steam reforming, partial oxidation or autothermal reforming of natural gas or the steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed because the Pt-based electrocatalyst used in the fuel cells is poisoned by its presence. The direct cracking of methane over a Ni/SiO2 catalyst can produce CO-free hydrogen. In addition to hydrogen, filamentous carbon is also produced. This material accumulates on the catalyst and eventually deactivates it. The Ni/SiO2 catalyst

  12. Cryopreservation of Human Stem Cells for Clinical Application: A Review

    PubMed Central

    Hunt, Charles J.

    2011-01-01

    Summary Stem cells have been used in a clinical setting for many years. Haematopoietic stem cells have been used for the treatment of both haematological and non-haematological disease; while more recently mesenchymal stem cells derived from bone marrow have been the subject of both laboratory and early clinical studies. Whilst these cells show both multipotency and expansion potential, they nonetheless do not form stable cell lines in culture which is likely to limit the breadth of their application in the field of regenerative medicine. Human embryonic stem cells are pluripotent cells, capable of forming stable cell lines which retain the capacity to differentiate into cells from all three germ layers. This makes them of special significance in both regenerative medicine and toxicology. Induced pluripotent stem (iPS) cells may also provide a similar breadth of utility without some of the confounding ethical issues surrounding embryonic stem cells. An essential pre-requisite to the commercial and clinical application of stem cells are suitable cryopreservation protocols for long-term storage. Whilst effective methods for cryopreservation and storage have been developed for haematopoietic and mesenchymal stem cells, embryonic cells and iPS cells have proved more refractory. This paper reviews the current state of cryopreservation as it pertains to stem cells and in particular the embryonic and iPS cell. PMID:21566712

  13. Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers

    NASA Technical Reports Server (NTRS)

    Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.

    1989-01-01

    Hydrogen-oxygen solid polymer electrolyte (SPE) fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. These solid electrolyte devices have been under continuous development for over 30 years. This experience has resulted in a demonstrated ten-year SPE cell life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluoride loss rates and average expected ultimate cell life. This relationship is shown. Several features have been introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability has been demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density.

  14. Applicability of the Meyer-Neldel rule to solar cells

    NASA Technical Reports Server (NTRS)

    Goradia, C.; Weizer, V. G.

    1984-01-01

    A comparison of data taken on high quality silicon, GaAs, and GaInAs solar cells with those taken on a variety of homojunction, heterojunction, and metal-insulator-semiconductor devices indicates that while the Meyer-Neldel rule may be applicable to certain types of solar cells it is not applicable to well-behaved, diffusion-controlled homojunction devices. It cannot be used, therefore, as a universal rule to predict maximum achievable solar cell voltages.

  15. Mesenchymal stem cell therapy for nonmusculoskeletal diseases: emerging applications.

    PubMed

    Kuo, Tom K; Ho, Jennifer H; Lee, Oscar K

    2009-01-01

    Mesenchymal stem cells are stem/progenitor cells originated from the mesoderm and can different into multiple cell types of the musculoskeletal system. The vast differentiation potential and the relative ease for culture expansion have established mesenchymal stem cells as the building blocks in cell therapy and tissue engineering applications for a variety of musculoskeletal diseases, including repair of fractures and bone defects, cartilage regeneration, treatment of osteonecrosis of the femoral head, and correction of genetic diseases such as osteogenesis imperfect. However, research in the past decade has revealed differentiation potentials of mesenchymal stem cells beyond lineages of the mesoderm, suggesting broader applications than originally perceived. In this article, we review the recent developments in mesenchymal stem cell research with respect to their emerging properties and applications in nonmusculoskeletal diseases. PMID:19523328

  16. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics.

    PubMed

    Mahla, Ranjeet Singh

    2016-01-01

    Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation.

  17. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics

    PubMed Central

    2016-01-01

    Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation. PMID:27516776

  18. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics.

    PubMed

    Mahla, Ranjeet Singh

    2016-01-01

    Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation. PMID:27516776

  19. High efficiency solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, G. A.

    1995-01-01

    Understanding solar cell response to pulsed laser outputs is important for the evaluation of power beaming applications. The time response of high efficiency GaAs and silicon solar cells to a 25 nS monochromatic pulse input is described. The PC-1D computer code is used to analyze the cell current during and after the pulse for various conditions.

  20. [Application of dendritic cells in clinical tumor therapy].

    PubMed

    Li, Yan; Xian, Li-jian

    2002-04-01

    The active immunotherapy of dendritic cells is hot in tumor therapy research area. This article is a review of the source of dendritic cells, loading antigen, immunotherapy pathway, clinical application, choice of patients, and so on. It makes preparation for further research of dendritic cells. PMID:12452029

  1. Toroidal cell and battery. [Patent application

    SciTech Connect

    Nagle, W.J.

    1981-04-01

    A toroidal storage battery designed to handle relatively high amp-hour loads is described. The cell includes a wound core disposed within a pair of toroidal channel shaped electrodes spaced apart by nylon insulator. The shape of the case electrodes of this toroidal cell allows a first planar doughnut shaped surface and the inner cylindrical case wall to be used as a first electrode and a second planar doughnut shaped surface and the outer cylindrical case wall to be used as a second electrode. Connectors may be used to stack two or more toroidal cells together by connecting substantially the entire surface area of the first electrode of a first cell to substantially the entire surface area of the second electrode of a second cell. The central cavity of each toroidal cell may be used as a conduit for pumping a fluid through the toroidal cell to thereby cool the cell. Official Gazette of the U.S. Patent and Trademark Office

  2. Nanoparticles and clinically applicable cell tracking

    PubMed Central

    Guenoun, Jamal; van Tiel, Sandra T; Krestin, Gabriel P

    2015-01-01

    In vivo cell tracking has emerged as a much sought after tool for design and monitoring of cell-based treatment strategies. Various techniques are available for pre-clinical animal studies, from which much has been learned and still can be learned. However, there is also a need for clinically translatable techniques. Central to in vivo cell imaging is labelling of cells with agents that can give rise to signals in vivo, that can be detected and measured non-invasively. The current imaging technology of choice for clinical translation is MRI in combination with labelling of cells with magnetic agents. The main challenge encountered during the cell labelling procedure is to efficiently incorporate the label into the cell, such that the labelled cells can be imaged at high sensitivity for prolonged periods of time, without the labelling process affecting the functionality of the cells. In this respect, nanoparticles offer attractive features since their structure and chemical properties can be modified to facilitate cellular incorporation and because they can carry a high payload of the relevant label into cells. While these technologies have already been applied in clinical trials and have increased the understanding of cell-based therapy mechanism, many challenges are still faced. PMID:26248872

  3. Fuel Cells for Space Science Applications

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2003-01-01

    Fuel cell technology has been receiving more attention recently as a possible alternative to the internal combustion engine for our automobile. Improvements in fuel cell designs as well as improvements in lightweight high-pressure gas storage tank technology make fuel cell technology worth a look to see if fuel cells can play a more expanded role in space missions. This study looks at the specific weight density and specific volume density of potential fuel cell systems as an alternative to primary and secondary batteries that have traditionally been used for space missions. This preliminary study indicates that fuel cell systems have the potential for energy densities of greater than 500 W-hr/kg, greater than 500W/kg and greater than 400 W-hr/liter, greater than 200 W/liter. This level of performance makes fuel cells attractive as high-power density, high-energy density sources for space science probes, planetary rovers and other payloads. The power requirements for these space missions are, in general, much lower than the power levels where fuel cells have been used in the past. Adaptation of fuel cells for space science missions will require down-sizing the fuel cell stack and making the fuel cell operate without significant amounts of ancillary equipment.

  4. Critical concerns, solutions and guidelines for use of plastic encapsulated microcircuits for space flight applications

    NASA Technical Reports Server (NTRS)

    Virmani, Nick; Shaw, Jack

    1997-01-01

    Some of the concerns and risk mitigation procedures for using plastic encapsulated microcircuits (PEMs) for space applications are discussed. Despite their advantages, PEMs cannot be implemented in all space applications by replacing military parts numbers with their commercial counterparts in product designs and part lists. The technical and procurement concerns are summarized, and suggestions for high reliability procurements are given. The ability to withstand deleterious environmental effects and to meet mission critical reliability is the key to the successful use of PEMs for space applications.

  5. Chloride contamination effects on proton exchange membrane fuel cell performance and durability

    NASA Astrophysics Data System (ADS)

    Li, Hui; Wang, Haijiang; Qian, Weimin; Zhang, Shengsheng; Wessel, Silvia; Cheng, Tommy T. H.; Shen, Jun; Wu, Shaohong

    2011-08-01

    Chlorine is a major fuel contaminant when by-product hydrogen from the chlor-alkali industry is used as the fuel for proton exchange membrane (PEM) fuel cells. Understanding the effects of chlorine contamination on fuel cell performance and durability is essential to address fuel cell applications for the automotive and stationary markets. This paper reports our findings of chloride contamination effects on PEM fuel cell performance and durability, as our first step in understanding the effects of chlorine contamination. Fuel cell contamination tests were conducted by injecting ppm levels of contaminant into the fuel cell from either the fuel stream or the air stream. In situ and ex situ diagnosis were performed to investigate the contamination mechanisms. The results show that cell voltage during chloride contamination is characterized by an initial sudden drop followed by a plateau, regardless of which side the contaminant is introduced into the fuel cell. The drop in cell performance is predominantly due to increased cathode charge transfer resistance as a result of electrochemical catalyst surface area (ECSA) loss attributable to the blocking of active sites by Cl- and enhanced Pt dissolution.

  6. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  7. Potential high efficiency solar cells: Applications from space photovoltaic research

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  8. Large-Volume Microfluidic Cell Sorting for Biomedical Applications.

    PubMed

    Warkiani, Majid Ebrahimi; Wu, Lidan; Tay, Andy Kah Ping; Han, Jongyoon

    2015-01-01

    Microfluidic cell-separation technologies have been studied for almost two decades, but the limited throughput has restricted their impact and range of application. Recent advances in microfluidics enable high-throughput cell sorting and separation, and this has led to various novel diagnostic and therapeutic applications that previously had been impossible to implement using microfluidics technologies. In this review, we focus on recent progress made in engineering large-volume microfluidic cell-sorting methods and the new applications enabled by them. PMID:26194427

  9. Indium phosphide solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Lasers can be used to transmit power to photovoltaic cells. Solar cell efficiencies are enhanced significantly under monochromatic light, and therefore a laser beam of proper wavelength could be a very effective source of illumination for a solar array operating at very high efficiencies. This work reviews the modeling studies made on indium phosphide solar cells for such an application. These cells are known to be very radiation resistant and have a potential for high efficiency. Effects of cell series resistance, laser intensity, and temperature on cell performance have been discussed.

  10. Human adipose stem cells: current clinical applications.

    PubMed

    Gir, Phanette; Oni, Georgette; Brown, Spencer A; Mojallal, Ali; Rohrich, Rod J

    2012-06-01

    Adipose-derived stem cells are multipotent cells that can easily be extracted from adipose tissue, are capable of expansion in vitro, and have the capacity to differentiate into multiple cell lineages, which have the potential for use in regenerative medicine. However, several issues need to be studied to determine safe human use. For example, there are questions related to isolation and purification of adipose-derived stem cells, their effect on tumor growth, and the enforcement of U.S. Food and Drug Administration regulations. Numerous studies have been published, with the interest in the potential for regenerative medicine continually growing. Several clinical trials using human adipose stem cell therapy are currently being performed around the world, and there has been a rapid evolution and expansion of their number. The purpose of this article was to review the current published basic science evidence and ongoing clinical trials involving the use of adipose-derived stem cells in plastic surgery and in regenerative medicine in general. The results of the studies and clinical trials using adipose-derived stem cells reported in this review seem to be promising not only in plastic surgery but also in a wide variety of other specialties. Nevertheless, those reported showed disparity in the way adipose-derived stem cells were used. Further basic science experimental studies with standardized protocols and larger randomized trials need to be performed to ensure safety and efficacy of adipose-derived stem cells use in accordance with U.S. Food and Drug Administration guidelines.

  11. LANDFILL GAS PRETREATMENT FOR FUEL CELL APPLICATIONS

    EPA Science Inventory

    The paper discusses the U.S. EPA's program, underway at International Fuel Cells Corporation, to demonstrate landfill methane control and the fuel cell energy recovery concept. In this program, two critical issues are being addressed: (1) a landfill gas cleanup method that would ...

  12. Mesenchymal stem cells for clinical application.

    PubMed

    Sensebé, L; Krampera, M; Schrezenmeier, H; Bourin, P; Giordano, R

    2010-02-01

    Mesenchymal Stem Cells/Multipotent Marrow Stromal Cells (MSC) are multipotent adult stem cells present in all tissues, as part of the perivascular population. As multipotent cells, MSCs can differentiate into different tissues originating from mesoderm ranging from bone and cartilage, to cardiac muscle. Conflicting data show that MSCs could be pluripotent and able to differentiate into tissues and cells of non-mesodermic origin as neurons or epithelial cells. Moreover, MSCs exhibit non-HLA restricted immunosuppressive properties. This wide range of properties leads to increasing uses of MSC for immunomodulation or tissue repair. Based on their immunosuppressive properties MSC are used particularly in the treatment of graft versus host disease, For tissue repair, MSCs can work by different ways from cell replacement to paracrine effects through the release of cytokines and to regulation of immune/inflammatory responses. In regenerative medicine, trials are in progress or planed for healing/repair of different tissue or organs as bone, cartilage, vessels, myocardium, or epithelia. Although it has been demonstrated that ex-vivo expansion processes using fetal bovine serum, recombinant growth factors (e.g. FGF2) or platelet lysate are feasible, definitive standards to produce clinical-grade MSC are still lacking. MSCs have to be produced according GMP and regulation constraints. For answering to the numerous challenges in this fast developing field of biology and medicine, integrative networks linking together research teams, cell therapy laboratories and clinical teams are needed.

  13. Comparison of the Relative Effectiveness of Different Kinds of Reinforcers: A PEM Approach

    ERIC Educational Resources Information Center

    Ma, Hsen-Hsing

    2009-01-01

    The purpose of the present study was to apply the percentage of data points exceeding the median of baseline phase (PEM) approach for a meta-analysis of single-case experiments to compare the relative effectiveness of different kinds of reinforcers used in behavior modification. Altogether 153 studies were located, which produced 1091 effect…

  14. HO(x) Measurements in PEM Tropics B with the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS)

    NASA Technical Reports Server (NTRS)

    Brune, William H.

    2001-01-01

    The primary objective of PEM Tropics B was to study the processes responsible for the production and loss of tropospheric ozone over the tropical Pacific. This region of the globe contains very clean air as well as aged, polluted air that was advected from both the Asian and American continents. Understanding ozone requires understanding of HO(x) (HO(x) = OH + HO2) chemistry, since the reaction between H02 and NO leads to ozone production and the production of OH often requires ozone loss. In addition, OH is the atmosphere's primary oxidant. Since most atmospheric oxidation is thought to occur in the tropical lower troposphere, measurements during PEM Tropics B should provide an important test of the OH abundances and distributions. Thus, understanding and thoroughly testing HO(x) processes was an important objective of PEM Tropics B. Several issues need to be tested, One is HO, production rates and sources, since HO,, production directly affects ozone production and loss. Another is HO(x) behavior in and around clouds, since HO(x) is lost to cloud particles, but convection may bring HO(x) precursors from near the surface to the upper troposphere. A third is the rise and fall of HO(x) at sunrise and sunset, since these variations give strong indications of the important sources and sinks of HO(x). Making and interpreting high-quality OH and H02 measurements from the NASA DC-8 during PEM Tropics B is the objective of this research effort.

  15. Patriot Script 1.0.13 User Guide for PEM 1.3.2

    SciTech Connect

    Cleland, Timothy James; Kubicek, Deborah Ann; Stroud, Phillip David; Cuellar-Hengartner, Leticia; Mathis, Mark

    2015-11-02

    This document provides an updated user guide for Patriot Script Version 1.0.13, for release with PEM 1.3.1 (LAUR-1422817) that adds description and instructions for the new excursion capability (see section 4.5.1).

  16. Optical Oxygen Sensors for Applications in Microfluidic Cell Culture

    PubMed Central

    Grist, Samantha M.; Chrostowski, Lukas; Cheung, Karen C.

    2010-01-01

    The presence and concentration of oxygen in biological systems has a large impact on the behavior and viability of many types of cells, including the differentiation of stem cells or the growth of tumor cells. As a result, the integration of oxygen sensors within cell culture environments presents a powerful tool for quantifying the effects of oxygen concentrations on cell behavior, cell viability, and drug effectiveness. Because microfluidic cell culture environments are a promising alternative to traditional cell culture platforms, there is recent interest in integrating oxygen-sensing mechanisms with microfluidics for cell culture applications. Optical, luminescence-based oxygen sensors, in particular, show great promise in their ability to be integrated with microfluidics and cell culture systems. These sensors can be highly sensitive and do not consume oxygen or generate toxic byproducts in their sensing process. This paper presents a review of previously proposed optical oxygen sensor types, materials and formats most applicable to microfluidic cell culture, and analyzes their suitability for this and other in vitro applications. PMID:22163408

  17. Interim solar cell testing procedures for terrestrial applications

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.; Hickey, J.; Curtis, H.

    1975-01-01

    This report presents an interim draft of procedures for testing solar cells for terrestrial applications that resulted from the terrestrial photovoltaic workshop sessions. A final version of the test procedures manual is planned for the summer of 1976.

  18. Shock Wave Application to Cell Cultures

    PubMed Central

    Holfeld, Johannes; Tepeköylü, Can; Kozaryn, Radoslaw; Mathes, Wolfgang; Grimm, Michael; Paulus, Patrick

    2014-01-01

    Shock waves nowadays are well known for their regenerative effects. Basic research findings showed that shock waves do cause a biological stimulus to target cells or tissue without any subsequent damage. Therefore, in vitro experiments are of increasing interest. Various methods of applying shock waves onto cell cultures have been described. In general, all existing models focus on how to best apply shock waves onto cells. However, this question remains: What happens to the waves after passing the cell culture? The difference of the acoustic impedance of the cell culture medium and the ambient air is that high, that more than 99% of shock waves get reflected! We therefore developed a model that mainly consists of a Plexiglas built container that allows the waves to propagate in water after passing the cell culture. This avoids cavitation effects as well as reflection of the waves that would otherwise disturb upcoming ones. With this model we are able to mimic in vivo conditions and thereby gain more and more knowledge about how the physical stimulus of shock waves gets translated into a biological cell signal (“mechanotransduction"). PMID:24747842

  19. Protein-energy malnutrition halts hemopoietic progenitor cells in the G0/G1 cell cycle stage, thereby altering cell production rates.

    PubMed

    Borelli, P; Barros, F E V; Nakajima, K; Blatt, S L; Beutler, B; Pereira, J; Tsujita, M; Favero, G M; Fock, R A

    2009-06-01

    Protein energy malnutrition (PEM) is a syndrome that often results in immunodeficiency coupled with pancytopenia. Hemopoietic tissue requires a high nutrient supply and the proliferation, differentiation and maturation of cells occur in a constant and balanced manner, sensitive to the demands of specific cell lineages and dependent on the stem cell population. In the present study, we evaluated the effect of PEM on some aspects of hemopoiesis, analyzing the cell cycle of bone marrow cells and the percentage of progenitor cells in the bone marrow. Two-month-old male Swiss mice (N = 7-9 per group) were submitted to PEM with a low-protein diet (4%) or were fed a control diet (20% protein) ad libitum. When the experimental group had lost about 20% of their original body weight after 14 days, we collected blood and bone marrow cells to determine the percentage of progenitor cells and the number of cells in each phase of the cell cycle. Animals of both groups were stimulated with 5-fluorouracil. Blood analysis, bone marrow cell composition and cell cycle evaluation was performed after 10 days. Malnourished animals presented anemia, reticulocytopenia and leukopenia. Their bone marrow was hypocellular and depleted of progenitor cells. Malnourished animals also presented more cells than normal in phases G0 and G1 of the cell cycle. Thus, we conclude that PEM leads to the depletion of progenitor hemopoietic populations and changes in cellular development. We suggest that these changes are some of the primary causes of pancytopenia in cases of PEM.

  20. Study terrestrial applications of solar cell powered systems

    NASA Technical Reports Server (NTRS)

    Ravin, J. W.

    1973-01-01

    Terrestrial applications of solar cells and design systems are considered for those applications that show the most promise for becoming practical and accepted by users within the next five years. The study includes the definition, categorization, evaluation and screening of the most attractive potential terrestrial applications for solar cells. Potential markets are initially grouped and categorized in a general sense and are weighted in priority by their business volume, present and future. From a categorized list including marine, transportation, security, communication, meteorological and others, 66 potential solar cell applications have been cataloged. A methodology was formulated to include the criteria for evaluation and screening. The evaluation process covers all parts and components of the complete system required for each application and gives consideration to all factors, such as engineering, economic, production, marketing and other factors that may have an influence on the acceptance of the system.