Plasmid-dependent attachment of Agrobacterium tumefaciens to plant tissue culture cells.
Matthysse, A G; Wyman, P M; Holmes, K V
1978-11-01
Kinetic, microscopic, and biochemical studies show that virulent Ti (tumor inducing)-plasmid-containing strains of Agrobacterium attach to normal tobacco and carrot tissue culture cells. Kinetic studies showed that virulent strains of A. tumefaciens attach to the plant tissue culture cells in increasing numbers during the first 1 to 2 h of incubation of the bacteria with the plant cells. Five Ti-plasmid-containing virulent Agrobacterium strains showed greater attachment to tobacco cells than did five avirulent strains. Light and scanning electron microscopic observations confirmed that virulent strains showed little attachment. Bacterial attachment was blocked by prior incubation of the plant cells with lipopolysaccharide extracted from A. tumefaciens, but not from A. radiobacter, suggesting that bacterial lipopolysaccharide is one of the components involved in the attachment process. At least one other bacterial product may be required for attachment in tissue culture because the virulent A. tumefaciens NT1, which lacks the Ti plasmid, does not itself attach to tobacco cells, but its lipopolysaccharide does inhibit the attachment of virulent strains.
Plasmid-dependent attachment of Agrobacterium tumefaciens to plant tissue culture cells.
Matthysse, A G; Wyman, P M; Holmes, K V
1978-01-01
Kinetic, microscopic, and biochemical studies show that virulent Ti (tumor inducing)-plasmid-containing strains of Agrobacterium attach to normal tobacco and carrot tissue culture cells. Kinetic studies showed that virulent strains of A. tumefaciens attach to the plant tissue culture cells in increasing numbers during the first 1 to 2 h of incubation of the bacteria with the plant cells. Five Ti-plasmid-containing virulent Agrobacterium strains showed greater attachment to tobacco cells than did five avirulent strains. Light and scanning electron microscopic observations confirmed that virulent strains showed little attachment. Bacterial attachment was blocked by prior incubation of the plant cells with lipopolysaccharide extracted from A. tumefaciens, but not from A. radiobacter, suggesting that bacterial lipopolysaccharide is one of the components involved in the attachment process. At least one other bacterial product may be required for attachment in tissue culture because the virulent A. tumefaciens NT1, which lacks the Ti plasmid, does not itself attach to tobacco cells, but its lipopolysaccharide does inhibit the attachment of virulent strains. Images PMID:730370
Gonococcal attachment to eukaryotic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, J.F.; Lammel, C.J.; Draper, D.L.
The attachment of Neisseria gonorrhoeae to eukaryotic cells grown in tissue culture was analyzed by use of light and electron microscopy and by labeling of the bacteria with (/sup 3/H)- and (/sup 14/C)adenine. Isogenic piliated and nonpiliated N. gonorrhoeae from opaque and transparent colonies were studied. The results of light microscopy studies showed that the gonococci attached to cells of human origin, including Flow 2000, HeLa 229, and HEp 2. Studies using radiolabeled gonococci gave comparable results. Piliated N. gonorrhoeae usually attached in larger numbers than nonpiliated organisms, and those from opaque colonies attached more often than isogenic variants frommore » transparent colonies. Day-to-day variation in rate of attachment was observed. Scanning electron microscopy studies showed the gonococcal attachment to be specific for microvilli of the host cells. It is concluded that more N. gonorrhoeae from opaque colonies, as compared with isogenic variants from transparent colonies, attach to eukaryotic cells grown in tissue culture.« less
Zheng, Yue-Mao; Dang, Yong-Hui; Qiu, Shuang; Qi, Ying-Pei; Xu, Yong-Ping; Sai, Wu-Jia-Fu
2011-08-01
The aims of this study were (i) to determine whether NSCs (neural stem cells) could be isolated from the brain of embryonic day 98 fetal goat, (ii) to determine if these stem cells have the capability of multipotent differentiation following transfection with a reporter gene, EGFP (enhanced green fluorescent protein) and (iii) to study the characteristics of the stem cells cultured in attached and non-attached plates. NSCs were isolated from embryonic day 98 fetal goat brain, transfected with EGFP gene using lipofection, and subcultured in attached and non-attached plates respectively. The transgenic stem cells were induced to differentiate into osteogenic and endothelial cells in vitro respectively. Markers associated with undifferentiated NSCs and their differentiated cells were tested by RT-PCR (reverse transcription-PCR). The results demonstrated that stem cells could be isolated from embryonic day 98 fetal goat brain, and EGFP gene could be transfected into the cells. The transgenic NSCs were capable of self-renewal, a defining property of stem cells, and were grown as free-floating neurospheres in non-attached plates. When the neurospheres were transferred and cultured in attached plates, cells migrate from the neurospheres and are grown as spindle cells. The stem cells were grown as quasi-circular cells when the single stem cells were cultured in attached plates. Both the NSCs cultured in non-attached and attached plates could express Hes1 (hairy and enhancer of split 1), Oct4 (octamer-binding protein 4), Nanog, Sox2 [SRY (sex-determining region Y)-box 2] and Nestin, while following differentiation cells expressed markers for osteogenic cells (Osteocalcin+ and Osteonectin+) and endothelium (CD34+ and eNOS+). The results demonstrated that the goat EGFP gene transgenic NSCs have the capability of multipotent differentiation, which means that the transgenic NSCs may be useful in cell transplantation studies in future.
Tan, Michelle Sze-Fan; Moore, Sean C; Tabor, Rico F; Fegan, Narelle; Rahman, Sadequr; Dykes, Gary A
2016-09-15
Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface. We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin. Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.
The Role of Depression and Attachment Styles in Predicting Students' Addiction to Cell Phones.
Ghasempour, Abdollah; Mahmoodi-Aghdam, Mansour
2015-01-01
The present study aimed at investigating the role of depression and attachment styles in predicting cell phone addiction. In this descriptive correlational study, a sample including 100 students of Payame Noor University (PNU), Reyneh Center, Iran, in the academic year of 2013-2014 was selected using volunteer sampling. Participants were asked to complete the adult attachment inventory (AAI), Beck depression inventory-13 (BDI-13) and the cell phone overuse scale (COS). Results of the stepwise multiple regression analysis showed that depression and avoidant attachment style were the best predictors of students' cell phone addiction (R(2) = 0.23). The results of this study highlighted the predictive value of depression and avoidant attachment style concerning students' cell phone addiction.
Smoot, L M; Pierson, M D
1998-10-01
Attachment of Listeria monocytogenes Scott A to Buna-N rubber and stainless steel under different temperature and pH conditions at the time of cell growth or at the time of attachment was investigated. All experiments were conducted using sterile phosphate buffer to avoid cell growth during exposure to the test surfaces. Numbers of attached cells increased with increasing attachment temperature (10 to 45 degrees C) and exposure time for both test surfaces. Maximum levels of attached cells were obtained when cell growth occurred at 30 degrees C. Downward, but not upward, shifts in the cell suspension holding temperature prior to attachment to Buna-N rubber resulted in reduced adhered cell populations. Maximum levels of adhered cells to Buna-N rubber were not affected by adjustments of the attachment medium pH between 4 and 9. However, after short contact times (i.e., less than 30 min), levels of attached cells were lower when attachment occurred under alkaline conditions. Growth pH was also found to affect the levels of adhered cell populations to Buna-N rubber. L. monocytogenes Scott A attached to stainless steel at higher levels for all temperature and pH parameters evaluated in this study.
Evidence of femtosecond-laser pulse induced cell membrane nanosurgery
NASA Astrophysics Data System (ADS)
Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y.
2017-02-01
The mechanism of femtosecond laser nanosurgical attachment is investigated in the following article. Using sub-10 femtosecond laser pulses with 800 nm central wavelength were used to attach retinoblastoma cells. During the attachment process the cell membrane phospholipid bilayers hemifuse into one shared phospholipid bilayer, at the location of attachment. Transmission electron microscopy was used in order to verify the above hypothesis. Based on the imaging results, it was concluded that the two cell membrane coalesce to form one single shared membrane. The technique of cell-cell attachment via femtosecond laser pulses could potentially serve as a platform for precise cell membrane manipulation. Manipulation of the cellular membrane is valuable for studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.
Interaction of Chlamydia trachomatis organisms and HeLa 229 cells.
Kuo, C C; Grayston, T
1976-01-01
The infection of HeLa 229 cells in monolayer culture with trachoma (B/TW-5/OT) and lymphogranuloma venereum (LGV) (L2/434/Bu) organism was studied in terms of two parameters: radioactivity counts of cell-associated tritium labeled organisms at the initial stage of inoculation for measurement of attachment, and inclusion counts of infection cells after incubation for measurement of growth. Factors affecting attachment and inclusion formation and correlation of the two are presented. It was shown that attachment is an important initial step in infection by Chlamydia trachomatis. The rate of attachment was temperature dependent. The attachment of LGV organisms was affected more profoundly by temperature than was that of trachoma organisms. Attachment and inclusion formation of trachoma and LGV organisms were inhibited by heparin. Diethylaminoethyl-dextran was again shown to enhance attachment and inclusion formation of trachoma but not LGV organisms. NaF had no effect on attachment, but inhibited inclusion formation of both trachoma and LGV organisms. Both attachment and inclusion formation of trachoma organisms were strongly enhanced by centrifugation of the inoculum onto the cell monolayer. Although inclusion formation of trachoma organism was much greater in susceptible cells (HeLa 229) than relatively insusceptible cells (fetal tonsil), attachment was only slightly greater. The results based on the test of two cell lines suggested that attachment prpbably is not a critical factor in determing a cell line's susceptibility to infection with trachoma organisms. PMID:179950
Lankford, Miles; Behm, Carolyn Z; Yeh, James; Klibanov, Alexander L; Robinson, Peter; Lindner, Jonathan R
2006-10-01
Molecular imaging with contrast-enhanced ultrasound (CEU) relies on the detection of microbubbles retained in regions of disease. The aim of this study was to determine whether microbubble attachment to cells influences their acoustic signal generation and stability. Biotinylated microbubbles were attached to streptavidin-coated plates to derive density versus intensity relations during low- and high-power imaging. To assess damping from microbubble attachment to solid or cell surfaces, in vitro imaging was performed for microbubbles charge-coupled to methacrylate spheres and for vascular cell adhesion molecule-1-targeted microbubbles attached to endothelial cells. Signal enhancement on plates increased according to acoustic power and microbubble site density up to 300 mm. Microbubble signal was reduced by attachment to solid spheres during high- and low-power imaging but was minimally reduced by attachment to endothelial cells and only at low power. Attachment of targeted microbubbles to rigid surfaces results in damping and a reduction of their acoustic signal, which is not seen when microbubbles are attached to cells. A reliable concentration versus intensity relationship can be expected from microbubble attachment to 2-dimensional surfaces until a very high site density is reached.
Attachment Anxiety is Linked to Alterations in Cortisol Production and Cellular Immunity
Jaremka, Lisa M.; Glaser, Ronald; Loving, Timothy J.; Malarkey, William B.; Stowell, Jeffrey R.; Kiecolt-Glaser, Janice K.
2013-01-01
Although evidence suggests that attachment anxiety may increase risk for health problems, the mechanisms are not well understood. Married couples (N = 85, Mage = 38.67) provided saliva samples over three days and blood samples on two occasions. Participants with higher attachment anxiety produced more cortisol and had fewer numbers of CD3+ T-cells, CD45+ T-cells, CD3+CD4+ helper T-cells, and CD3+CD8+ cytotoxic T-cells than those with lower attachment anxiety. Higher cortisol was also related to fewer numbers of CD3+, CD45+, CD3+CD4+, and CD3+CD8+, which is mechanistically consistent with research showing that cortisol alters the cellular immune response. These data suggest that attachment anxiety may have physiological costs and provide a glimpse into the pathways through which social relationships impact health. The current study also extends attachment theory in an important new direction by utilizing a psychoneuroimmunological approach to the study of attachment anxiety, stress, and health. PMID:23307944
Substrate effects on endothelial cell adherence rates.
Scott, W J; Mann, P
1990-01-01
Endothelial cell attachment to a synthetic substrate was studied using an in vitro model system. Attachment rate was defined as the number of tritium-labeled endothelial cells attached to a synthetic substrate after 30 minutes. The surface of the synthetic substrate was chemically modified with either laminin or fibronectin. Labeled endothelial cells attached more rapidly to synthetic substrate, chemically modified with biomolecules, as compared with the untreated substrate controls. Unlabeled endothelial cells were grown to confluency on a second set of modified and untreated substrates. The cells were removed with 1% Triton, and the rate of re-endothelialization with tritium-labeled endothelial cells was determined. The rate was 11-13 times that of the same cells on untreated substrate. These data confirm that biomolecules increase the attachment rate of endothelial cells to synthetic substrate, and also suggest that endothelial cells may secrete a Triton-insoluble product (Sigma, St. Louis, MO) into subendothelial matrix that increases re-endothelialization.
Tan, Michelle S F; Rahman, Sadequr; Dykes, Gary A
2017-04-01
This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm 2 ) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Hailin; Feng, Shoushuai; Xin, Yu; Wang, Wu
2014-02-01
The community dynamics of attached and free cells of Acidithiobacillus sp. were investigated and compared during chalcopyrite bioleaching process. In the mixed strains system, Acidithiobacillus ferrooxidans was the dominant species at the early stage while Acidithiobacillus thiooxidans owned competitive advantage from the middle stage to the end of bioprocess. Meanwhile, compared to A. ferrooxidans, more significant effects of attached cells on free biomass with A. thiooxidans were shown in either the pure or mixed strains systems. Moreover, the effects of attached cells on key chemical parameters were also studied in different adsorption-deficient systems. Consistently, the greatest reduction of key chemical ion was shown with A. thiooxidans and the loss of bioleaching efficiency was high to 50.5%. These results all demonstrated the bioleaching function of attached cells was more efficient than the free cells, especially with A. thiooxidans. These notable results would help us to further understand the chalcopyrite bioleaching. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hassan, A N; Frank, J F
2004-10-01
This study investigated the effect of growth in tryptic soy broth (TSB) and nutrient broth (NB) on the ability Escherichia coli O157:H7 to attach to lettuce and apple surfaces. In addition, cell surface hydrophobicity, charge and capsule production were determined on cells grown in these media. Cells grown in NB attached less to lettuce and apple surfaces than did those grown in TSB. TSB, but not NB, supported capsule production by E. coli O157:H7. Cells grown in TSB were more hydrophilic than those grown in NB. No difference was found in the electrokinetic properties of cells grown in these media. Electrostatic and hydrophobic interactions and surface proteins did not appear to play an important role in the attachment of E. coli O157:H7 to these surfaces. Of the factors studied, only capsule production was associated with attachment ability. Copyright 2003 Elsevier B.V.
Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration
Fiorellini, Joseph P.
2017-01-01
Background For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Methods In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusions Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits. PMID:29090249
Chlorine stress mediates microbial surface attachment in drinking water systems.
Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei
2015-03-01
Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.
[Metapneumovirus expands the understanding of Paramyxovirus cell fusion--a review].
Liu, Xiaoyu; Zhang, Xiaodong; Wei, Yongwei
2014-04-04
For most viruses in Paramyxoviridae, cell fusion requires both attachment protein and fusion protein. The attachment protein is responsible for the binding to its cognate receptors, while the interaction between fusion protein and attachment protein triggers the fusion protein which is responsible for the fusion. However, the Metapneumovirus fusion in Pneumovirinae subfamily displayed different mechanism where the attachment protein is not required. The cell fusion is accomplished by fusion protein alone without the help of the attachment protein. Recent studies indicate that low pH is required for cell fusion promoted by some hMPV strains. The fusion protein of aMPV type A is highly fusogenic, whereas that of type B is low. The original fusion models for Paramyxovirus cannot explain the phenomenon above. The mechanism to regulate the cell fusion of Metapneumovirus is poorly understood. It is becoming a hot spot for the study of cell fusion triggered by Paramyxovirus where it enlarged the traditional scope of Paramyxovirus fusion. In this review, we discuss the new achievements and advances in the understanding of cell fusion triggered by Metapneumovirus.
Characterization of femtosecond-laser pulse induced cell membrane nanosurgical attachment.
Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y
2016-07-01
This article provides insight into the mechanism of femtosecond laser nanosurgical attachment of cells. We have demonstrated that during the attachment of two retinoblastoma cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength, the phospholipid molecules of both cells hemifuse and form one shared phospholipid bilayer, at the attachment location. In order to verify the hypothesis that hemifusion takes place, transmission electron microscope images of the cell membranes of retinoblastoma cells were taken. It is shown that at the attachment interface, the two cell membranes coalesce and form one single membrane shared by both cells. Thus, further evidence is provided to support the hypothesis that laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane, which resulted in cross-linking of the phospholipid molecules in each membrane. This process of hemifusion occurs throughout the entire penetration depth of the femtosecond laser pulse train. Thus, the attachment between the cells takes place across a large surface area, which affirms our findings of strong physical attachment between the cells. The femtosecond laser pulse hemifusion technique can potentially provide a platform for precise molecular manipulation of cellular membranes. Manipulation of the cellular membrane is an important procedure that could aid in studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.
Agladze, Konstantin; Wang, Xin; Romeo, Tony
2005-01-01
Using fast Fourier transform (FFT) analysis, we previously observed that cells within Escherichia coli biofilm are organized in nonrandom or periodic spatial patterns (K. Agladze et al., J. Bacteriol. 185:5632-5638, 2003). Here, we developed a gravity displacement assay for examining cell adherence and used it to quantitatively monitor the formation of two distinct forms of cell attachment, temporary and permanent, during early biofilm development. Temporarily attached cells were mainly surface associated by a cell pole; permanent attachments were via the lateral cell surface. While temporary attachment precedes permanent attachment, both forms can coexist in a population. Exposure of attached cells to gravity liberated an unattached population capable of rapidly reassembling a new monolayer, composed of temporarily attached cells, and possessing periodicity. A csrA mutant, which forms biofilm more vigorously than its wild-type parent, exhibited an increased proportion of permanently attached cells and a form of attachment that was not apparent in the parent strain, permanent polar attachment. Nevertheless, it formed periodic attachment patterns. In contrast, biofilm mutants with altered lipopolysaccharide synthesis (waaG) exhibited increased cell-cell interactions, bypassed the polar attachment step, and produced FFT spectra characteristic of aperiodic cell distribution. Mutants lacking the polysaccharide adhesin β-1,6-N-acetyl-d-glucosamine (ΔpgaC) also exhibited aperiodic cell distribution, but without apparent cell-cell interactions, and were defective in forming permanent attachments. Thus, spatial periodicity of biofilm microstructure is genetically determined and evident during the formation of temporary cell surface attachments. PMID:16321928
Femtosecond laser-induced cell-cell surgical attachment.
Katchinskiy, Nir; Godbout, Roseline; Goez, Helly R; Elezzabi, Abdulhakem Y
2014-04-01
Laser-induced cell-cell surgical attachment using femtosecond laser pulses is reported. We have demonstrated the ability to attach single cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength delivered from a Ti:Sapphire laser. To check that the cells did not go through a cell-fusion process, a fluorescent dye Calcein AM was used to verify that the fluorescent dye did not migrate from a dyed cell to a non-dyed cell. The mechanical integrity of the attached joint was assessed using an optical tweezer. Attachment of cells was performed without the induction of cell-cell fusion, with attachment efficiency of 95%, and while preserving the cells' viability. Cell-cell attachment was achieved by delivery of one to two trains of femtosecond laser pulses lasting 15 ms each. Laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane. The inner cell membrane remained intact during the attachment procedure, and isolation of the cells' cytoplasm from the surrounding medium was obtained. A strong physical attachment between the cells was obtained due to the bonding of the membranes' ionized phospholipid molecules and the formation of a joint cellular membrane at the connection point. The cellular attachment technique, femtosecond laser-induced cell-cell surgical attachment, can potentially provide a platform for the creation of engineered tissue and cell cultures. © 2014 Wiley Periodicals, Inc.
Harms, H; Zehnder, A J
1994-01-01
Dibenzofuran uptake-associated kinetic parameters of suspended and attached Sphingomonas sp. strain HH19k cells were compared. The suspended cells were studied in a batch system, whereas glass beads in percolated columns were used as the solid support for attached cells. The maximum specific activities of cells in the two systems were the same. The apparent half-maximum uptake rate-associated concentrations (Kt') of attached cells, however, were considerably greater than those of suspended cells and depended on cell density and on percolation velocity. A mathematical model was developed to explain the observed differences in terms of substrate transport to the cells. This model was based on the assumptions that the intrinsic half-maximum uptake rate-associated concentration (Kt) was unchanged and that deviations of Kt' from Kt resulted from the stereometry and the hydrodynamics around the cells. Our calculations showed that (i) diffusion to suspended cells and to single attached cells is efficient and therefore only slightly affects Kt'; (ii) diffusion to cells located on crowded surfaces is considerably lower than that to single attached cells and greatly increases Kt', which depends on the cell density; (iii) the convective-diffusive transport to attached cells that occurs in a percolated column is influenced by the liquid flow and results in dependency of Kt' on the flow rate; and (iv) higher specific affinity of cells correlates with higher susceptibility to diffusion limitation. Properties of the experimental system which limited quantitative proof of exclusively transport-controlled variations of Kt' are discussed. PMID:8085817
van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs
2010-04-01
Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.
Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae).
Correia, Sandra M; Canhoto, Jorge M
2010-06-01
The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.
Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena
2013-07-02
Gallium nitride is a wide band gap semiconductor that demonstrates a unique set of optical and electrical properties as well as aqueous stability and biocompatibility. This combination of properties makes gallium nitride a strong candidate for use in chemical and biological applications such as sensors and neural interfaces. Molecular modification can be used to enhance the functionality and properties of the gallium nitride surface. Here, gallium nitride surfaces were functionalized with a PC12 cell adhesion promoting peptide using covalent and affinity driven attachment methods. The covalent scheme proceeded by Grignard reaction and olefin metathesis while the affinity driven scheme utilized the recognition peptide isolated through phage display. This study shows that the method of attaching the adhesion peptide influences PC12 cell adhesion and differentiation as measured by cell density and morphological analysis. Covalent attachment promoted monolayer and dispersed cell adhesion while affinity driven attachment promoted multilayer cell agglomeration. Higher cell density was observed on surfaces modified using the recognition peptide. The results suggest that the covalent and affinity driven attachment methods are both suitable for promoting PC12 cell adhesion to the gallium nitride surface, though each method may be preferentially suited for distinct applications.
The RhoA-ROCK-PTEN pathway as a molecular switch for anchorage dependent cell behavior.
Yang, Seungwon; Kim, Hyun-Man
2012-04-01
The proliferation of anchorage-dependent cells of mesenchymal origin requires the attachment of the cells to substrates. Thus, cells that are poorly attached to substrates exhibit retarded cell cycle progression or apoptotic death. A major disadvantage of most polymers used in tissue engineering is their hydrophobicity; hydrophobic surfaces do not allow cells to attach firmly and, therefore, do not allow normal proliferation rates. In this study, we investigated the molecular mechanism underlying the reduced proliferation rate of cells that are poorly attached to substrates. There was an inverse relationship between the activity of the small GTPase RhoA (RhoA) and the cell proliferation rate. RhoA activity correlated inversely with the strength of cell adhesion to the substrates. The high RhoA activity in the cells poorly attached to substrates caused an increase in the activity of Rho-associated kinase (ROCK), a well-known effector of RhoA that upregulated the activity of phosphatase and tensin homolog (PTEN). The resulting activated PTEN downregulated Akt activity, which is essential for cell proliferation. Thus, the cells that were poorly attached to substrates showed low levels of cell proliferation because the RhoA-ROCK-PTEN pathway was hyperactive. In addition, RhoA activity seemed to be related to focal adhesion kinase (FAK) activity. Weak FAK activity in these poorly attached cells failed to downregulate the high RhoA activity that restrained cell proliferation. Interestingly, reducing the expression of any component of the RhoA-ROCK-PTEN pathway rescued the proliferation rate without physico-chemical surface modifications. Based on these results, we suggest that the RhoA-ROCK-PTEN pathway acts as a molecular switch to control cell proliferation and determine anchorage dependence. In cells that are poorly attached to substrates, its inhibition is sufficient to restore cell proliferation without the need for physico-chemical modification of the material surface. Copyright © 2012 Elsevier Ltd. All rights reserved.
Belal, Mahmoud Helmy; Watanabe, Hisashi
2014-10-01
Clinical application of lasers in periodontal therapy has continued to expand in last decades; however there are still some controversies. The present study aimed to compare the conditioning effects of the carbon dioxide (CO2) or erbium-doped: yttrium, aluminum and garnet (Er:YAG) laser on periodontally diseased root surfaces following scaling and root planing (SRP) in terms of the alteration of morphologies as well as the attachment of periodontal ligament cells. Forty-five periodontally affected root specimens were prepared and randomly assigned into three groups: I control (untreated diseased), II. SRP+CO2 laser (pulsed, noncontact mode), and III. SRP+Er:YAG laser (slight contact mode). After treatment, five specimens in each group were used for surface topographic examination. The remaining 10 specimens in each group were incubated with human periodontal ligament cell suspension. All the specimens were finally evaluated by scanning electron microscopy. The control specimens showed the lowest number of cultured cells, mostly in oval shape, with no tightly attached cells. The CO2 lased specimens showed a significant increase in the number of attached cells compared with controls, but demonstrated some major thermal alterations on the surfaces. The Er:YAG lased specimens showed the significantly highest number of attached cells, mostly in flat form, and did not show distinct thermal damage. The present study suggests that compared with the CO2 laser, the Er:YAG laser may constitute a more useful conditioning tool for enhancing periodontal cell attachment to periodontally diseased root surfaces, with fewer undesirable thermal side effects.
Choi, Chang K; English, Anthony E; Kihm, Kenneth D; Margraves, Charles H
2007-01-01
This study quantifies the dynamic attachment and spreading of porcine pulmonary artery endothelial cells (PPAECs) on optically thin, indium tin oxide (ITO) biosensors using simultaneous differential interference contrast microscopy (DICM) and electrical microimpedance spectroscopy. A lock-in amplifier circuit monitored the impedance of PPAECs cultivated on the transparent ITO bioelectrodes as a function of frequency between 10 Hz and 100 kHz and as a function of time, while DICM images were simultaneously acquired. A digital image processing algorithm quantified the cell-covered electrode area as a function of time. The results of this study show that the fraction of the cell-covered electrode area is in qualitative agreement with the electrical impedance during the attachment phase following the cell settling on the electrode surface. The possibility of several distinctly different states of electrode coverage and cellular attachment giving rise to similar impedance signals is discussed.
Krebs, Shelly J; Taylor, Ronald K
2011-10-01
Colonization of the human small intestine by Vibrio cholerae is an essential step in pathogenesis that requires the type IV toxin-coregulated pilus (TCP). To date, three functions of TCP have been characterized: it serves as the CTXΦ receptor, secretes the colonization factor TcpF, and functions in microcolony formation by mediating bacterium-bacterium interactions. Although type IV pili in other pathogenic bacteria have been characterized as playing a major role in attachment to epithelial cells, there are very few studies to suggest that TCP acts as an attachment factor. Taking this into consideration, we investigated the function of TCP in attachment to Caco-2 cells and found that mutants lacking TCP were defective in attachment compared to the wild type. Overexpression of ToxT, the activator of TCP, significantly increased attachment of wild-type V. cholerae to Caco-2 cells. Using field-emission scanning electron microscopy (FESEM), we also observed TCP-mediated attachment to the small intestines of infected infant mice by using antibodies specific to TCP and V. cholerae. Remarkably, we also visualized matrices comprised of TCP appearing to engulf V. cholerae during infection, and we demonstrated that these matrices protected the bacteria from a component of bile, disclosing a possible new role of this pilus in protection of the bacterial cells from antimicrobial agents. This study provides new insights into TCP's function in V. cholerae colonization of the small intestine, describing additional roles in mediating attachment and protection of V. cholerae bacterial cells.
Fluorescence lifetime microscopy for monitoring cell adhesion using metal induced energy transfer
NASA Astrophysics Data System (ADS)
Hwang, Wonsang; Seo, JinWon; Song, Jun ho; Kim, DongEun; Won, YoungJae; Choi, In-Hong; Yoo, Kyung-Hwa; Kim, Dug Young
2018-02-01
A precise control and a reliable monitoring tool for the adhesion properties of a cell are very important in atherosclerosis studies. If endothelial cells in contact with the intracellular membrane are not attached securely, low-density lipoprotein (LDL) particles can enter into the inner membrane. It is therefore necessary to measure conditions under which endothelial cell detachment occurs. When a cell is attached to a metal thin film, the lifetime of a fluorescence probe attached to the membrane of the cell is reduced by the metal-induced energy transfer (MIET). Fluorescence lifetime imaging microscopy (FLIM) is used to monitor the attachment condition of a cell to a metal surface using FRET. However, this requires high numerical aperture (NA) objective lens because axial confocal resolution must be smaller than the cell thickness. This requirement limits the field of view of the measurement specimen. In this study we provides a new method which can measure adhesion properties of endothelial cells even with a low NA objective lens by resolving two lifetime components in FLIM.
Liang, Xiao; Liao, Chunyu; Soupir, Michelle L; Jarboe, Laura R; Thompson, Michael L; Dixon, Philip M
2017-01-01
E. coli bacteria move in streams freely in a planktonic state or attached to suspended particulates. Attachment is a dynamic process, and the fraction of attached microorganisms is thought to be affected by both bacterial characteristics and particulate properties. In this study, we investigated how the properties of cell surfaces and stream particulates influence attachment. Attachment assays were conducted for 77 E. coli strains and three model particulates (ferrihydrite, Ca-montmorillonite, or corn stover) under environmentally relevant conditions. Surface area, particle size distribution, and total carbon content were determined for each type of particulate. Among the three particulates, attachment fractions to corn stover were significantly larger than the attachments to 2-line ferrihydrite (p-value = 0.0036) and Ca-montmorillonite (p-value = 0.022). Furthermore, attachment to Ca-montmorillonite and corn stover was successfully modeled by a Generalized Additive Model (GAM) using cell characteristics as predictor variables. The natural logarithm of the net charge on the bacterial surface had a significant, positive, and linear impact on the attachment of E. coli bacteria to Ca-montmorillonite (p-value = 0.013), but it did not significantly impact the attachment to corn stover (p-value = 0.36). The large diversities in cell characteristics among 77 E. coli strains, particulate properties, and attachment fractions clearly demonstrated the inadequacy of using a static parameter or linear coefficient to predict the attachment behavior of E. coli in stream water quality models.
A Review of Cell Adhesion Studies for Biomedical and Biological Applications.
Khalili, Amelia Ahmad; Ahmad, Mohd Ridzuan
2015-08-05
Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events.
A Review of Cell Adhesion Studies for Biomedical and Biological Applications
Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan
2015-01-01
Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901
The effect of nicotine and cotinine on human gingival fibroblasts attachment to root surfaces.
Esfahrood, Zeinab Rezaei; Zamanian, Amirhosein; Torshabi, Maryam; Abrishami, Maryam
2015-09-01
Different compounds of smoking (e.g., nicotine and cotinine) are risk factors for various diseases such as oral cancer and periodontal diseases. Some studies reported the negative effects of nicotine on cell proliferation and differentiation. The present in vitro study assessed the effects of nicotine and cotinine (long-acting metabolite of nicotine) on the attachment and viability of human gingival fibroblast (HGF) cells to tooth root surfaces. A total of 70 teeth specimens were placed into 48-well culture plates and covered with HGF cell suspension, in complete Dulbecco's modified Eagle's medium culture medium containing 1 nM, 1 μm, 1 mM, and 5 mM of nicotine and cotinine concentrations. Cellular attachment and viability measured using an MTT assay and a scanning electron microscope were used for cell morphological evaluation. After 24 h, low (nanomolar and micromolar) and high concentrations (millimolar) of nicotine and cotinine caused a significant reduction in the initial cell adhesion in comparison with the control group, but no significant difference was observed between the nicotine and the cotinine groups (p<0.05). Dentally attached cells with low concentrations of nicotine and cotinine proliferated 48 h after exposure, the same as the control group. However, dentally attached cells with high concentrations of nicotine and cotinine (especially 5 mM) did not proliferate 24 h after exposure (p<0.05). Low concentrations of nicotine and cotinine caused a reduction in the initial cell adhesion. However, no significant adverse effects on the proliferation of attached cells were seen in the longer period. High concentrations of nicotine and cotinine have adverse effects on the cell adhesion and proliferation of HGF cells.
Toh, Pey Yi; Ng, Bee Wah; Ahmad, Abdul Latif; Chieh, Derek Chan Juinn; Lim, JitKang
2014-11-07
Successful application of a magnetophoretic separation technique for harvesting biological cells often relies on the need to tag the cells with magnetic nanoparticles. This study investigates the underlying principle behind the attachment of iron oxide nanoparticles (IONPs) onto microalgal cells, Chlorella sp. and Nannochloropsis sp., in both freshwater and seawater, by taking into account the contributions of various colloidal forces involved. The complex interplay between van der Waals (vdW), electrostatic (ES) and Lewis acid-base interactions (AB) in dictating IONP attachment was studied under the framework of extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis. Our results showed that ES interaction plays an important role in determining the net interaction between the Chlorella sp. cells and IONPs in freshwater, while the AB and vdW interactions play a more dominant role in dictating the net particle-to-cell interaction in high ionic strength media (≥100 mM NaCl), such as seawater. XDLVO predicted effective attachment between cells and surface functionalized IONPs (SF-IONPs) with an estimated secondary minimum of -3.12 kT in freshwater. This prediction is in accordance with the experimental observation in which 98.89% of cells can be magnetophoretically separated from freshwater with SF-IONPs. We have observed successful magnetophoretic separation of microalgal cells from freshwater and/or seawater for all the cases as long as XDLVO analysis predicts particle attachment. For both the conditions, no pH adjustment is required for particle-to-cell attachment.
Felt, Sébastien A.; Droby, Gaith N.
2017-01-01
ABSTRACT Vesicular stomatitis virus (VSV) is a promising oncolytic virus (OV). Although VSV is effective against a majority of pancreatic ductal adenocarcinoma cell (PDAC) cell lines, some PDAC cell lines are highly resistant to VSV, and the mechanisms of resistance are still unclear. JAK1/2 inhibitors (such as ruxolitinib and JAK inhibitor I) strongly stimulate VSV replication and oncolysis in all resistant cell lines but only partially improve the susceptibility of resistant PDACs to VSV. VSV tumor tropism is generally dependent on the permissiveness of malignant cells to viral replication rather than on receptor specificity, with several ubiquitously expressed cell surface molecules playing a role in VSV attachment to host cells. However, as VSV attachment to PDAC cells has never been tested before, here we examined if it was possibly inhibited in resistant PDAC cells. Our data show a dramatically weaker attachment of VSV to HPAF-II cells, the most resistant human PDAC cell line. Although sequence analysis of low-density lipoprotein (LDL) receptor (LDLR) mRNA did not reveal any amino acid substitutions in this cell line, HPAF-II cells displayed the lowest level of LDLR expression and dramatically lower LDL uptake. Treatment of cells with various statins strongly increased LDLR expression levels but did not improve VSV attachment or LDL uptake in HPAF-II cells. However, LDLR-independent attachment of VSV to HPAF-II cells was dramatically improved by treating cells with Polybrene or DEAE-dextran. Moreover, combining VSV with ruxolitinib and Polybrene or DEAE-dextran successfully broke the resistance of HPAF-II cells to VSV by simultaneously improving VSV attachment and replication. IMPORTANCE Oncolytic virus (OV) therapy is an anticancer approach that uses viruses that selectively infect and kill cancer cells. This study focuses on oncolytic vesicular stomatitis virus (VSV) against pancreatic ductal adenocarcinoma (PDAC) cells. Although VSV is effective against most PDAC cells, some are highly resistant to VSV, and the mechanisms are still unclear. Here we examined if VSV attachment to cells was inhibited in resistant PDAC cells. Our data show very inefficient attachment of VSV to the most resistant human PDAC cell line, HPAF-II. However, VSV attachment to HPAF-II cells was dramatically improved by treating cells with polycations. Moreover, combining VSV with polycations and ruxolitinib (which inhibits antiviral signaling) successfully broke the resistance of HPAF-II cells to VSV by simultaneously improving VSV attachment and replication. We envision that this novel triple-combination approach could be used in the future to treat PDAC tumors that are highly resistant to OV therapy. PMID:28566376
Chorianopoulos, Nikos; Giaouris, Efstathios; Grigoraki, Ioanna; Skandamis, Panagiotis; Nychas, George-John
2011-02-28
The aim of this study was to investigate the potential effect of adaptive stationary phase acid tolerance response (ATR) of Listeria monocytogenes Scott A cells on their attachment to stainless steel (SS) under low pH or/and high salt conditions and on the subsequent resistance of sessile cells to strong acid challenge. Nonadapted or acid-adapted stationary-phase L. monocytogenes cells were used to inoculate (ca. 10⁸ CFU/ml) Brain Heart (BH) broth (pH 7.4, 0.5% w/v NaCl) in test tubes containing vertically placed SS coupons (used as abiotic substrates for bacterial attachment). Incubation was carried out at 16 °C for up to 15 days, without any nutrient refreshment. L. monocytogenes cells, prepared as described above, were also exposed to low pH (4.5; adjusted with HCl) or/and high salt (5.5% w/v NaCl) stresses, during attachment. On the 5th, 10th and 15th day of incubation, cells attached to SS coupons were detached (through bead vortexing) and enumerated (by agar plating). Results revealed that ATR significantly (p<0.05) affected bacterial attachment, when the latter took place under moderate acidic conditions (pH 4.5, 0.5 or 5.5% w/v NaCl), with the acid-adapted cells adhering slightly more than the nonadapted ones. Regardless of acidity/salinity conditions during attachment, ATR also enhanced the resistance of sessile cells to subsequent lethal acid challenge (exposure to pH 2 for 6 min; pH adjusted with either hydrochloric or lactic acid). The trend observed with viable count data agreed well with conductance measurements, used to indirectly quantify remaining attached bacteria (following the strong acid challenge) via their metabolic activity. To sum, this study demonstrates that acid adaptation of L. monocytogenes cells during their planktonic growth enhances their subsequent attachment to SS under extended exposure (at 16 °C for up to 15 days) to mild acidic conditions (pH 4.5), while it also improves the resistance of sessile cells to extreme acid treatment (pH 2). Therefore, the ATR of bacterial cells should be carefully considered when applying acidic decontamination strategies to eradicate L. monocytogenes attached to food processing equipment. Copyright © 2011 Elsevier B.V. All rights reserved.
Watch Out for the "Living Dead": Cell-Free Enzymes and Their Fate.
Baltar, Federico
2017-01-01
Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the "gatekeepers" of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell's fate. In contrast, cell-free enzymes belong to a kind of "living dead" realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go "beyond the living things," studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles.
Nitric acid passivation does not affect in vitro biocompatibility of titanium.
Faria, Adriana C L; Beloti, Márcio M; Rosa, Adalberto L
2003-01-01
In general, both chemical composition and surface features of implants affect cell response. The aim of this study was to evaluate the effect of titanium (Ti) passivation on the response of rat bone marrow cells, considering cell attachment, cell morphology, cell proliferation, total protein content, alkaline phosphatase (ALP) activity, and bonelike nodule formation. Cells were cultured on both commercially pure titanium (cpTi) and titanium-aluminium-vanadium alloy (Ti-6Al-4V) discs, either passivated or not. For attachment evaluation, cells were cultured for 4 and 24 hours. Cell morphology was evaluated after 4 days. After 7, 14, and 21 days, cell proliferation, total protein content, and ALP activity were evaluated. Bonelike nodule formation was evaluated after 21 days. Data were compared by analysis of variance and the Duncan multiple range test. Cell attachment, cell morphology, cell proliferation, total protein content, ALP activity, and bonelike nodule formation all were unaffected by Ti composition or passivation. Although the protocol for passivation used here could interfere with the pattern of ions released from Ti-6Al-4V and cpTi surfaces, the present study did not show any effect of this surface treatment on in vitro biocompatibility of Ti as evaluated by osteoblast attachment, proliferation, and differentiation.
Seidel, Robin; Bohn, Holger Florian; Speck, Thomas
2012-01-01
Summary Plant surfaces showing hierarchical structuring are frequently found in plant organs such as leaves, petals, fruits and stems. In our study we focus on the level of cell shape and on the level of superimposed microstructuring, leading to hierarchical surfaces if both levels are present. While it has been shown that epicuticular wax crystals and cuticular folds strongly reduce insect attachment, and that smooth papillate epidermal cells in petals improve the grip of pollinators, the impact of hierarchical surface structuring of plant surfaces possessing convex or papillate cells on insect attachment remains unclear. We performed traction experiments with male Colorado potato beetles on nine different plant surfaces with different structures. The selected plant surfaces showed epidermal cells with either tabular, convex or papillate cell shape, covered either with flat films of wax, epicuticular wax crystals or with cuticular folds. On surfaces possessing either superimposed wax crystals or cuticular folds we found traction forces to be almost one order of magnitude lower than on surfaces covered only with flat films of wax. Independent of superimposed microstructures we found that convex and papillate epidermal cell shapes slightly enhance the attachment ability of the beetles. Thus, in plant surfaces, cell shape and superimposed microstructuring yield contrary effects on the attachment of the Colorado potato beetle, with convex or papillate cells enhancing attachment and both wax crystals or cuticular folds reducing attachment. However, the overall magnitude of traction force mainly depends on the presence or absence of superimposed microstructuring. PMID:22428097
Cui, Yue; Walcott, Ronald
2017-01-01
ABSTRACT Vegetable seeds have the potential to disseminate and transmit foodborne bacterial pathogens. This study was undertaken to assess the abilities of selected Salmonella and enterohemorrhagic Escherichia coli (EHEC) strains to attach to fungicide-treated versus untreated, and intact versus mechanically damaged, seeds of alfalfa, fenugreek, lettuce, and tomato. Surface-sanitized seeds (2 g) were exposed to four individual strains of Salmonella or EHEC at 20°C for 5 h. Contaminated seeds were rinsed twice, each with 10 ml of sterilized water, before being soaked overnight in 5 ml of phosphate-buffered saline at 4°C. The seeds were then vortexed vigorously for 1 min, and pathogen populations in seed rinse water and soaking buffer were determined using a standard plate count assay. In general, the Salmonella cells had higher attachment ratios than the EHEC cells. Lettuce seeds by unit weight had the highest numbers of attached Salmonella or EHEC cells, followed by tomato, alfalfa, and fenugreek seeds. In contrast, individual fenugreek seeds had more attached pathogen cells, followed by lettuce, alfalfa, and tomato seeds. Significantly more Salmonella and EHEC cells attached to mechanically damaged seeds than to intact seeds (P < 0.05). Although, on average, significantly more Salmonella and EHEC cells were recovered from untreated than fungicide-treated seeds (P < 0.05), fungicide treatment did not significantly affect the attachment of individual bacterial strains to vegetable seeds (P > 0.05), with a few exceptions. This study fills gaps in the current body of literature and helps explain bacterial interactions with vegetable seeds with differing surface characteristics. IMPORTANCE Vegetable seeds, specifically sprout seeds, have the potential to disseminate and transmit foodborne bacterial pathogens. This study investigated the interaction between two important bacterial pathogens, i.e., Salmonella and EHEC, and vegetable seeds with differing surface characteristics. This research helps understand whether seed surface structure, integrity, and fungicide treatment affect the interaction between bacterial cells and vegetable seeds. PMID:28130295
Cui, Yue; Walcott, Ronald; Chen, Jinru
2017-04-01
Vegetable seeds have the potential to disseminate and transmit foodborne bacterial pathogens. This study was undertaken to assess the abilities of selected Salmonella and enterohemorrhagic Escherichia coli (EHEC) strains to attach to fungicide-treated versus untreated, and intact versus mechanically damaged, seeds of alfalfa, fenugreek, lettuce, and tomato. Surface-sanitized seeds (2 g) were exposed to four individual strains of Salmonella or EHEC at 20°C for 5 h. Contaminated seeds were rinsed twice, each with 10 ml of sterilized water, before being soaked overnight in 5 ml of phosphate-buffered saline at 4°C. The seeds were then vortexed vigorously for 1 min, and pathogen populations in seed rinse water and soaking buffer were determined using a standard plate count assay. In general, the Salmonella cells had higher attachment ratios than the EHEC cells. Lettuce seeds by unit weight had the highest numbers of attached Salmonella or EHEC cells, followed by tomato, alfalfa, and fenugreek seeds. In contrast, individual fenugreek seeds had more attached pathogen cells, followed by lettuce, alfalfa, and tomato seeds. Significantly more Salmonella and EHEC cells attached to mechanically damaged seeds than to intact seeds ( P < 0.05). Although, on average, significantly more Salmonella and EHEC cells were recovered from untreated than fungicide-treated seeds ( P < 0.05), fungicide treatment did not significantly affect the attachment of individual bacterial strains to vegetable seeds ( P > 0.05), with a few exceptions. This study fills gaps in the current body of literature and helps explain bacterial interactions with vegetable seeds with differing surface characteristics. IMPORTANCE Vegetable seeds, specifically sprout seeds, have the potential to disseminate and transmit foodborne bacterial pathogens. This study investigated the interaction between two important bacterial pathogens, i.e., Salmonella and EHEC, and vegetable seeds with differing surface characteristics. This research helps understand whether seed surface structure, integrity, and fungicide treatment affect the interaction between bacterial cells and vegetable seeds. Copyright © 2017 American Society for Microbiology.
Morphological Heterogeneity and Attachment of Phaeobacter inhibens.
Segev, Einat; Tellez, Adèle; Vlamakis, Hera; Kolter, Roberto
2015-01-01
The Roseobacter clade is a key group of bacteria in the ocean exhibiting diverse metabolic repertoires and a wide range of symbiotic life-styles. Many Roseobacters possess remarkable capabilities of attachment to both biotic and abiotic surfaces. When attached to each other, these bacteria form multi-cellular structures called rosettes. Phaeobacter inhibens, a well-studied Roseobacter, exhibits various cell sizes and morphologies that are either associated with rosettes or occur as single cells. Here we describe the distribution of P. inhibens morphologies and rosettes within a population. We detect an N-acetylglucosamine-containing polysaccharide on the poles of some cells and at the center of all rosettes. We demonstrate that rosettes are formed by the attachment of individual cells at the polysaccharide-containing pole rather than by cell division. Finally, we show that P. inhibens attachment to abiotic surfaces is hindered by the presence of DNA from itself, but not from other bacteria. Taken together, our findings demonstrate that cell adhesiveness is likely to play a significant role in the life cycle of P. inhibens as well as other Roseobacters.
Morphological Heterogeneity and Attachment of Phaeobacter inhibens
Segev, Einat; Tellez, Adèle; Vlamakis, Hera; Kolter, Roberto
2015-01-01
The Roseobacter clade is a key group of bacteria in the ocean exhibiting diverse metabolic repertoires and a wide range of symbiotic life-styles. Many Roseobacters possess remarkable capabilities of attachment to both biotic and abiotic surfaces. When attached to each other, these bacteria form multi-cellular structures called rosettes. Phaeobacter inhibens, a well-studied Roseobacter, exhibits various cell sizes and morphologies that are either associated with rosettes or occur as single cells. Here we describe the distribution of P. inhibens morphologies and rosettes within a population. We detect an N-acetylglucosamine-containing polysaccharide on the poles of some cells and at the center of all rosettes. We demonstrate that rosettes are formed by the attachment of individual cells at the polysaccharide-containing pole rather than by cell division. Finally, we show that P. inhibens attachment to abiotic surfaces is hindered by the presence of DNA from itself, but not from other bacteria. Taken together, our findings demonstrate that cell adhesiveness is likely to play a significant role in the life cycle of P. inhibens as well as other Roseobacters. PMID:26560130
NASA Astrophysics Data System (ADS)
Han, Inho; Vagaska, Barbora; Joo Park, Bong; Lee, Mi Hee; Jin Lee, Seung; Park, Jong-Chul
2011-06-01
Successful tissue integration of implanted medical devices depends on appropriate initial cellular response. In this study, the effect of helium atmospheric pressure glow discharge (He-APGD) treatment of titanium on selective protein adsorption and the initial attachment processes and focal adhesion formation of osteoprogenitor cells and stem cells were examined. Titanium disks were treated in a self-designed He-APGD system. Initial attachment of MC3T3-E1 mouse pre-osteoblasts and human mesenchymal stem cells (MSCs) was evaluated by MTT assay and plasma membrane staining followed by morphometric analysis. Fibronectin adsorption was investigated by Enzyme-Linked ImmunoSorbant Assay. MSCs cell attachment to treated and non-treated titanium disks coated with different proteins was verified also in serum-free culture. Organization of actin cytoskeleton and focal adhesions was evaluated microscopically. He-APGD treatment effectively modified the titanium surfaces by creating a super-hydrophilic surface, which promoted selectively higher adsorption of fibronectin, a protein of critical importance for cell/biomaterial interaction. In two different types of cells, the He-APGD treatment enhanced the number of attaching cells as well as their attachment area. Moreover, cells had higher organization of actin cytoskeleton and focal adhesions. Faster acceptance of the material by the progenitor cells in the early phases of tissue integration after the implantation may significantly reduce the overall healing time; therefore, titanium treatment with He-APGD seems to be an effective method of surface modification of titanium for improving its tissue inductive properties.
Fiorentin, L; Panangala, V S; Zhang, Y; Toivio-Kinnucan, M
1998-01-01
Tissue- and cell-specific attachment of mycoplasmas is a key aspect of the host-parasite relationship. In this study, monoclonal antibodies (MAbs) recognizing surface membrane polypeptides with molecular masses of 46 kD (p46) and 65 kD (p65), respectively, were examined in a microtiter cell attachment (agglutination) inhibition assay. MAbs MI3, MI6, and MI12 reacting with p65 polypeptide of Mycoplasma iowae inhibited attachment of the organisms to chicken lymphoma (DT 40) cells. One MAb (MI2) that reacted with p65 in immunoblots did not inhibit cell attachment, possibly because of the intrinsic native conformation of the epitope(s) in intact mycoplasmas as opposed to the linear state (sodium dodecyl sulfate denatured) in immunoblots. More pronounced M. iowae adherence inhibition was demonstrated by polyclonal turkey and mouse anti-M. iowae antisera compared with MAbs. Immunogold labelling followed by electron microscopy allowed us to localize the MAb-recognized epitopes on the membrane surface of M. iowae. On the basis of the cell attachment inhibition of M. iowae by specific MAbs (MI3, MI6, and MI12), we propose that the p65 polypeptide plays a role in cytadherence. The ability of polyclonal antisera to inhibit attachment of M. iowae more efficiently than the MAbs suggests that additional epitopes within p65 and/or other proteins are involved in cell attachment.
Cell attachment functionality of bioactive conducting polymers for neural interfaces.
Green, Rylie A; Lovell, Nigel H; Poole-Warren, Laura A
2009-08-01
Bioactive coatings for neural electrodes that are tailored for cell interactions have the potential to produce superior implants with improved charge transfer capabilities. In this study synthetically produced anionically modified laminin peptides DEDEDYFQRYLI and DCDPGYIGSR were used to dope poly(3,4-ethylenedioxythiophene) (PEDOT) electrodeposited on platinum (Pt) electrodes. Performance of peptide doped films was compared to conventional polymer PEDOT/paratoluene sulfonate (pTS) films using SEM, XPS, cyclic voltammetry, impedance spectroscopy, mechanical hardness and adherence. Bioactivity of incorporated peptides and their affect on cell growth was assessed using a PC12 neurite outgrowth assay. It was demonstrated that large peptide dopants produced softer PEDOT films with a minimal decrease in electrochemical stability, compared to the conventional dopant, pTS. Cell studies revealed that the YFQRYLI ligand retained neurite outgrowth bioactivity when DEDEDYFQRYLI was used as a dopant, but the effect was strongly dependant on initial cell attachment. Alternate peptide dopant, DCDPGYIGSR was found to impart superior cell attachment properties when compared to DEDEDYFQRYLI, but attachment on both peptide doped polymers could be enhanced by coating with whole native laminin.
Nakano, Tomoyuki; Kanai, Yoshihiko; Amano, Yusuke; Yoshimoto, Taichiro; Matsubara, Daisuke; Shibano, Tomoki; Tamura, Tomoko; Oguni, Sachiko; Katashiba, Shizuka; Ito, Takeshi; Murakami, Yoshinori; Fukayama, Masashi; Murakami, Takashi; Endo, Shunsuke; Niki, Toshiro
2017-01-01
Decreased cell-substratum adhesion is crucially involved in metastasis. Previous studies demonstrated that lung cancer with floating cell clusters in histology is more likely to develop metastasis. In the present study, we investigated whether cancer cells in long-term, three-dimensional low attachment cultures acquire high metastatic potential; these cells were then used to examine the mechanisms underlying metastasis. Two KRAS-mutated adenocarcinoma cell lines (A549 and H441) were cultured and selected on ultra-low attachment culture dishes, and the resulting cells were defined as FL (for floating) sublines. Cancer cells were inoculated into NOD/SCID mice via an intracardiac injection, and metastasis was evaluated using luciferase-based imaging and histopathology. In vitro cell growth (in attachment or suspension cultures), migration, and invasion were assayed. A whole genomic analysis was performed to identify key molecular alterations in FL sublines. Upon detachment on low-binding dishes, parental cells initially formed rounded spheroids with limited growth activity. However, over time in cultures, cells gradually formed smaller spheroids that grew slowly, and, after 3–4 months, we obtained FL sublines that regained prominent growth potential in suspension cultures. On ordinary dishes, FL cells reattached and exhibited a more spindle-shaped morphology than parental cells. No marked differences were observed in cell growth with attachment, migration, or invasion between FL sublines and parental cell lines; however, FL cells exhibited markedly increased growth potential under suspended conditions in vitro and stronger metastatic abilities in vivo. A genomic analysis identified epithelial-mesenchymal transition (EMT) and c-Myc amplification in A549-FL and H441-FL cells, respectively, as candidate mechanisms for metastasis. The growth potential of FL cells was markedly inhibited by lentiviral ZEB1 knockdown in A549-FL cells and by the inhibition of c-Myc through lentiviral knockdown or the pharmacological inhibitor JQ1 in H441-FL cells. Long-term three-dimensional low attachment cultures may become a useful method for investigating the mechanisms underlying metastasis mediated by decreased cell-substratum adhesion. PMID:28786996
UV laser-ablated surface textures as potential regulator of cellular response.
Chandra, Prafulla; Lai, Karen; Sung, Hak-Joon; Murthy, N Sanjeeva; Kohn, Joachim
2010-06-01
Textured surfaces obtained by UV laser ablation of poly(ethylene terephthalate) films were used to study the effect of shape and spacing of surface features on cellular response. Two distinct patterns, cones and ripples with spacing from 2 to 25 μm, were produced. Surface features with different shapes and spacings were produced by varying pulse repetition rate, laser fluence, and exposure time. The effects of the surface texture parameters, i.e., shape and spacing, on cell attachment, proliferation, and morphology of neonatal human dermal fibroblasts and mouse fibroblasts were studied. Cell attachment was the highest in the regions with cones at ∼4 μm spacing. As feature spacing increased, cell spreading decreased, and the fibroblasts became more circular, indicating a stress-mediated cell shrinkage. This study shows that UV laser ablation is a useful alternative to lithographic techniques to produce surface patterns for controlling cell attachment and growth on biomaterial surfaces.
Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate
Baltar, Federico
2018-01-01
Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles. PMID:29354095
Anamelechi, Charles C.; Clermont, Edward C.; Novak, Matthew T.; Reichert, William M.
2014-01-01
Surfaces decorated with high affinity ligands can be used to facilitate rapid attachment of endothelial cells; however, standard equilibrium cell detachment studies are poorly suited for assessing these initial adhesion events. Here, a dynamic seeding and cell retention method was used to examine the initial attachment of perfusing human umbilical vein endothelial cells (HUVECs) to bare Teflon-AF substrates, substrates pre-adsorbed with fibronectin alone, or substrates co-pre-adsorbed with two dual-function cell-adhesion ligands: biotinylated fibronectin (bFN) and RGD-streptavidin mutant (RGD-SA). Cell attachment was evaluated as a function of cell trypsinization (integrin digestion), surface protein formulation, and cell perfusion rate. Surfaces co-pre-adsorbed with bFN and RGD-SA showed the highest density of attached cells after 8 min of perfusion and the highest percent retention when subjected to shear flow at 60 dynes/cm2 for 2 min. Surfaces with no ligand treatment showed the lowest cell attachment and retention under flow in all cases. HUVECs trypsinized with mild 0.025% trypsin/ethylenediaminetetraacetic acid (EDTA) showed greater cell adhesion after perfusion and higher percent retention after shear flow than those trypsinized using harsher 0.05% trypsin/EDTA. The preferential affinities of the two dual-function ligands for α5β1 and αvβ3 integrins were also examined by surface plasmon resonance (SPR) spectroscopy. The dynamic cell seeding studies confirmed that the dual-function ligand system promotes HUVEC adhesion and retention at short time points when tested using a perfusion assay. SPR studies showed that the two ligands exhibited equal affinity for both α5β1 and αvβ3 integrins but that the combined ligands bound more total integrins than the two ligands tested separately. PMID:19348476
The effect of nicotine on reproduction and attachment of human gingival fibroblasts in vitro.
Peacock, M E; Sutherland, D E; Schuster, G S; Brennan, W A; O'Neal, R B; Strong, S L; Van Dyke, T E
1993-07-01
The ability of fibroblasts to reproduce and attach to teeth is of paramount importance in re-establishing the lost connective tissue attachment after periodontal therapy. This study examined the effect of nicotine, a major component of the particulate phase of tobacco smoke, on human gingival fibroblast (HGF) reproduction and attachment to tissue culture surfaces. Pooled HGF cultures made from explants of gingival biopsies were utilized between passages 5 and 10 and plated in 96-well plates at 1.0 x 10(4) cells per well. Cell numbers were determined using 3-(4,5-dimethylthiazol-2-y)-2,5-diphenyl tetrazolium bromide (MTT), which is a reflection of mitochondrial dehydrogenase activity. The concentrations of nicotine used were 0.025, 0.05, 0.1, 0.2, and 0.4 microM, the average serum concentration for a smoker being approximately 0.1 microM. The effect of continuous nicotine exposure on HGF reproduction was determined by incubating cell cultures and media containing nicotine for up to 48 hours. Residual toxicity was determined by preincubating cells with nicotine for 1 or 6 hours. HGF suspensions and increasing concentrations of nicotine were added together to determine the effect on attachment. Results showed an enhanced effect of nicotine on HGF attachment, with increasing numbers of cells attaching with increasing nicotine concentrations, compared to the control. Low concentrations of nicotine had a stimulatory effect on cell replication, while higher concentrations of nicotine appear to have no significant effect on HGF reproduction. The responses of cells to some concentrations of nicotine may persist after its removal.
Amirikia, Mehdi; Shariatzadeh, Seyed Mohammad Ali; Jorsaraei, Seyed Gholam Ali; Soleimani Mehranjani, Malek
2017-12-01
Cell behaviours such as proliferation and attachment can be affected by the length of pre-incubation period of the scaffolds in the culture medium for long term. The aim of this study was to investigate the long term pre-incubation of 3D silk fibroin scaffolds in complete culture medium on cell attachment and proliferation. After the preparation of silk fibroin scaffolds by the technique of freeze drying, the scaffolds were pre-incubated in complete culture medium for 2 d, 6 d or 10 d before apical papilla stem cells (SCAP) seeding. Modifications of the scaffold surface and wettability were examined by FE-SEM and water contact angle, respectively. Results showed a decrease both in roughness and water contact angle as pre-incubation time increases. DNA measurement after 18h and 10 d cell seeding showed a significant increase of DNA concentration which represents better attachment and proliferation with pre-incubation time increase. Qualitative examination, live&dead assay or H&E staining method after 30h and 10 d cell seeding respectively, indicated that pre-incubation of scaffolds has time dependent effect on cell proliferation and attachment. This suggests that improvement of cell attachment and proliferation may be mediated by differences in the amount of wettability (decreased water contact angle) after exposure of scaffold to culture medium for long term which, in turn, causes more protein adsorption in the surface of silk fibroin scaffold (decreased roughness). Copyright © 2017. Published by Elsevier Ltd.
Zhang, Justina Su; Guri, Anilda; Corredig, Milena; Morales-Rayas, Rocio; Hassan, Ashraf; Griffiths, Mansel; LaPointe, Gisèle
2016-12-01
Lactococcus lactis subsp. cremoris JFR1 has been studied in reduced fat cheese due to its ability to produce exopolysaccharides (EPS) in situ, contributing to improved textural and organoleptic properties. In this study, the effect of strain JFR1 on virulence gene expression and attachment of Salmonella to HT-29 human colon carcinoma cells was investigated. Overnight cultures of L. lactis subsp. cremoris JFR1 containing EPS, grown in M17 media with 0.5% glucose supplementation, decreased attachment as well as down regulated virulence gene expression in Salmonella enterica subsp. enterica when tested on HT-29 cells. However, EPS isolated from milk fermented with L. lactis subsp. cremoris JFR1 did not affect Salmonella virulence gene expression or attachment to HT-29 cells. These results suggest that EPS does not contribute to the attachment of Salmonella to human intestinal cells. However, the possibility that the isolation process may have affected the structural features of EPS cannot be ruled out. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu
2009-03-10
Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Agmore » and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.« less
Berrang, Mark E; Hofacre, Charles L; Frank, Joseph F
2014-12-01
Listeria monocytogenes can colonize a poultry processing plant as a resident in floor drains. Limiting growth and attachment to drain surfaces may help lessen the potential for cross-contamination of product. The objective of this study was to compare a hydrogen peroxide-peroxyacetic acid-based chemical to chitosan-arginine or heat to prevent attachment of or destroy existing L. monocytogenes on the inner surface of model floor drains. L. monocytogenes was introduced to result in about 10(9) planktonic and attached cells within untreated polyvinyl chloride model drain pipes. Treatments (0.13 % peroxide-based sanitizer, 0.1 % chitosan-arginine, or 15 s of hot water at 95 to 100°C) were applied immediately after inoculation or after 24 h of incubation. Following treatment, all pipes were incubated for an additional 24 h; planktonic and attached cells were enumerated by plate count. All treatments significantly (P < 0.05) lowered numbers of planktonic and attached cells recovered. Chitosan-arginine resulted in approximately a 6-log reduction in planktonic cells when applied prior to incubation and a 3-log reduction after the inoculum had a chance to grow. Both heat and peroxide significantly outperformed chitosan-arginine (8- to 9-log reduction) and were equally effective before and after incubation. Heat was the only treatment that eliminated planktonic L. monocytogenes. All treatments were less effective against attached cells. Chitosan-arginine provided about a 4.5-log decrease in attached cells when applied before incubation and no significant decrease when applied after growth. Like with planktonic cells, peroxide-peroxyacetic acid and heat were equally effective before or after incubation, causing decreases ranging from 7 to 8.5 log for attached L. monocytogenes. Applied at the most efficacious time, any of these techniques may lessen the potential for L. monocytogenes to remain as a long-term resident in processing plant floor drains.
Govindarajan, Tina; Shandas, Robin
2018-01-01
Shape Memory Polymers (SMPs) are smart materials that can recall their shape upon the application of a stimulus, which makes them appealing materials for a variety of applications, especially in biomedical devices. Most prior SMP research has focused on tuning bulk properties; studying surface effects of SMPs may extend the use of these materials to blood-contacting applications, such as cardiovascular stents, where surfaces that support rapid endothelialization have been correlated to stent success. Here, we evaluate endothelial attachment onto the surfaces of a family of SMPs previously developed in our group that have shown promise for biomedical devices. Nine SMP formulations containing varying amounts of tert-Butyl acrylate (tBA) and Poly(ethylene glycol) dimethacrylate (PEGDMA) were analyzed for endothelial cell attachment. Dynamic mechanical analysis (DMA), contact angle studies, and atomic force microscopy (AFM) were used to verify bulk and surface properties of the SMPs. Human umbilical vein endothelial cell (HUVEC) attachment and viability was verified using fluorescent methods. Endothelial cells preferentially attached to SMPs with higher tBA content, which have rougher, more hydrophobic surfaces. HUVECs also displayed an increased metabolic activity on these high tBA SMPs over the course of the study. This class of SMPs may be promising candidates for next generation blood-contacting devices. PMID:29707382
CEKICI, Ali; MADEN, Ilay; YILDIZ, Sercan; SAN, Tangul; ISIK, Gulden
2013-01-01
Background: Periodontal regeneration is dependent on the uninterrupted adhesion, maturation and absorption of fibrin clots to a periodontally compromised root surface. The modification of the root surface with different agents has been used for better fibrin clot formation and blood cell attachment. It is known that Er:YAG laser application on dentin removes the smear layer succesfully. Aim: The aim of this study is to observe blood cell attachment and fibrin network formation following ER:YAG laser irradiation on periodontally compromised root surfaces in comparison to chemical root conditioning techniques in vitro. Materials and methods: 40 dentin blocks prepared from freshly extracted periodontally compromised hopeless teeth. Specimens were divided in 5 groups; those applied with PBS, EDTA, Citric acid and Er:YAG. They were further divided into two groups: those which had received these applications, and the control group. The specimens were evaluated with scanning electron microscope and micrographs were taken. Smear layer and blood cell attachment scoring was performed. Results: In the Er:YAG laser applied group, smear layer were totally removed. In the blood applied specimens, better fibrin clot formation and blood cell attachment were observed in the Er:YAG group. In the group that had been applied with citric acid, the smear layer was also removed. The smear layer could not be fully removed in the EDTA group. Conclusion: Er:YAG laser application on the root dentin seems to form a suitable surface for fibrin clot formation and blood cell attachment. Further clinical studies to support these results are necessitated. PMID:23533017
Chahal, Aman S; Schweikle, Manuel; Heyward, Catherine A; Tiainen, Hanna
2018-08-01
Strategies that enable hydrogel substrates to support cell attachment typically incorporate either entire extracellular matrix proteins or synthetic peptide fragments such as the RGD (arginine-glycine-aspartic acid) motif. Previous studies have carefully analysed how material characteristics can affect single cell morphologies. However, the influence of substrate stiffness and ligand presentation on the spatial organisation of human mesenchymal stem cells (hMSCs) have not yet been examined. In this study, we assessed how hMSCs organise themselves on soft (E = 7.4-11.2 kPa) and stiff (E = 27.3-36.8 kPa) poly(ethylene glycol) (PEG) hydrogels with varying concentrations of RGD (0.05-2.5 mM). Our results indicate that hMSCs seeded on soft hydrogels clustered with reduced cell attachment and spreading area, irrespective of RGD concentration and isoform. On stiff hydrogels, in contrast, cells spread with high spatial coverage for RGD concentrations of 0.5 mM or higher. In conclusion, we identified that an interplay of hydrogel stiffness and the availability of cell attachment motifs are important factors in regulating hMSC organisation on PEG hydrogels. Understanding how cells initially interact and colonise the surface of this material is a fundamental prerequisite for the design of controlled platforms for tissue engineering and mechanobiology studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rapuano, Bruce E.; MacDonald, Daniel E.
2010-01-01
In the current study, we have altered the surface oxide properties of a Ti6Al4V alloy using heat treatment or radiofrequency glow discharge (RFGD) in order to evaluate the relationship between the physico-chemical and biological properties of the alloy's surface oxide. The effects of surface pretreatments on the attachment of cells from two osteogenic cell lines (MG63 and MC3T3) and a mesenchymal stem cell line (C3H10T1/2) to fibronectin adsorbed to the alloy were measured. Both heat and RFGD pretreatments produced a several-fold increase in the number of cells that attached to fibronectin adsorbed to the alloy (0.001 and 10 nM FN) for each cell line tested. An antibody (HFN7.1) directed against the central integrin binding domain of fibronectin produced a 65-70% inhibition of cell attachment to fibronectin-coated disks, incdicating that cell attachment to the metal discs was dependent on fibronectin binding to cell integrin receptors. Both treatments also accelerated the cell spreading response manifested by extensive flattening and an increase in mean cellular area. The treatment-induced increases in the cell attachment activity of adsorbed fibronectin were correlated with previously demonstrated increases in Ti6Al4V oxide negative net surface charge at physiological pH produced by both heat and RFGD pretreatments. Since neither treatment increased the adsorption mass of fibronectin, these findings suggest that negatively charged surface oxide functional groups in Ti6Al4V can modulate fibronectin's integrin receptor activity by altering the adsorbed protein's conformation. Our results further suggest that negatively charged functional groups in the surface oxide can play a prominent role in the osseointegration of metallic implant materials. PMID:20884181
Su, H; Watkins, N G; Zhang, Y X; Caldwell, H D
1990-01-01
The major outer membrane protein (MOMP) of Chlamydia trachomatis is characterized by four symmetrically spaced variable domains (VDs I to IV) whose sequences vary among serotypes. The surface-exposed portions of these VDs contain contiguous sequences that are both serotyping determinants and in vivo target sites for neutralizing antibodies. Previous studies using surface proteolysis of C. trachomatis B implicated VDs II and IV of the MOMP of this serotype in the attachment of chlamydiae to host cells. In this study, we used monoclonal antibodies (MAbs) specific to antigenic determinants located in VDs II and IV of the MOMP of serotype B to further investigate the role of the MOMP in the attachment of chlamydiae to host cells. MABs specific to serotype- and subspecies-specific epitopes located in exposed VDs II and IV, respectively, neutralized chlamydial infectivity for hamster kidney cells by blocking chlamydial attachment. We radioiodinated these MAbs and used them to determine the number and topology of the surface-exposed VDs II and IV epitopes on chlamydial elementary bodies. VDs II and IV each comprised approximately 2.86 x 10(4) negatively charged sites and were in proximity on the chlamydial cell surface. These studies suggest that the MAbs blocked chlamydial attachment by inhibiting electrostatic interactions with host cells. We examined the effects of thermal inactivation on both chlamydial attachment and conformation of the MOMP. Heat-inactivated chlamydiae failed to attach to host cells and exhibited a conformational change in an inaccessible invariant hydrophobic nonapeptide sequence located within VD IV of the MOMPs of C. trachomatis serotypes. These findings suggest that in addition to electrostatic interactions, a common hydrophobic component of the MOMP also contributes to the binding of chlamydiae to host cells. Thus, we propose that the MOMP functions as a chlamydial adhesin by promoting nonspecific (electrostatic and hydrophobic) interactions with host cells. Surface-accessible negatively charged VDs appear to be important in electrostatic binding, while the invariant region of VD IV may provide a subsurface hydrophobic depression which further promotes binding of chlamydiae to host cells through hydrophobic interactions. Images PMID:2318528
MC3T3-E1 Cells on Titanium Surfaces with Nanometer Smoothness and Fibronectin Immobilization
Hayakawa, Tohru; Yoshida, Eiji; Yoshimura, Yoshitaka; Uo, Motohiro; Yoshinari, Masao
2012-01-01
The present study was aimed to evaluate the viability and total protein contents of osteoblast-like cells on the titanium surface with different surface mechanical treatment, namely, nanometer smoothing (Ra: approximately 2.0 nm) and sandblasting (Ra: approximately 1.0 μm), and biochemical treatment, namely, with or without fibronectin immobilization. Fibronectin could be easily immobilized by tresyl chloride-activation technique. MC3T3-E1 cells were seeded on the different titanium surfaces. Cell viability was determined by MTT assay. At 1 day of cell culture, there were no significant differences in cell viability among four different titanium surfaces. At 11 days, sandblasted titanium surface with fibronectin immobilization showed the significantly highest cell viability than other titanium surface. No significant differences existed for total protein contents among four different titanium surfaces at 11 days of cell culture. Scanning electron microscopy observation revealed that smoothness of titanium surface produced more spread cell morphologies, but that fibronectin immobilization did not cause any changes of the morphologies of attached cells. Fibronectin immobilization provided greater amount of the number of attached cells and better arrangement of attached cells. In conclusion, the combination of sandblasting and fibronectin immobilization enhanced the cell viability and fibronectin immobilization providing better arrangements of attached cells. PMID:22675359
How Escherichia coli lands and forms cell clusters on a surface: a new role of surface topography
Gu, Huan; Chen, Aaron; Song, Xinran; Brasch, Megan E.; Henderson, James H.; Ren, Dacheng
2016-01-01
Bacterial response to surface topography during biofilm formation was studied using 5 μm tall line patterns of poly (dimethylsiloxane) (PDMS). Escherichia coli cells attached on top of protruding line patterns were found to align more perpendicularly to the orientation of line patterns when the pattern narrowed. Consistently, cell cluster formation per unit area on 5 μm wide line patterns was reduced by 14-fold compared to flat PDMS. Contrasting the reduced colony formation, cells attached on narrow patterns were longer and had higher transcriptional activities, suggesting that such unfavorable topography may present a stress to attached cells. Results of mutant studies indicate that flagellar motility is involved in the observed preference in cell orientation on narrow patterns, which was corroborated by the changes in cell rotation pattern before settling on different surface topographies. These findings led to a set of new design principles for creating antifouling topographies, which was validated using 10 μm tall hexagonal patterns. PMID:27412365
Effects of wound dressings on cultured primary keratinocytes.
Esteban-Vives, Roger; Young, Matthew T; Ziembicki, Jenny; Corcos, Alain; Gerlach, Jörg C
2016-02-01
Autologous cell-spray grafting of non-cultured epidermal cells is an innovative approach for the treatment of severe second-degree burns. After treatment, wounds are covered with dressings that are widely used in wound care management; however, little is known about the effects of wound dressings on individually isolated cells. The sprayed cells have to actively attach, spread, proliferate, and migrate in the wound for successful re-epithelialization, during the healing process. It is expected that exposure to wound dressing material might interfere with cell survival, attachment, and expansion. Two experiments were performed to determine whether some dressing materials have a negative impact during the early phases of wound healing. In one experiment, freshly isolated cells were seeded and cultured for one week in combination with eight different wound dressings used during burn care. Cells, which were seeded and cultured with samples of Adaptic(®), Xeroform(®), EZ Derm(®), and Mepilex(®) did not attach, nor did they survive during the first week. Mepitel(®), N-Terface(®), Polyskin(®), and Biobrane(®) dressing samples had no negative effect on cell attachment and cell growth when compared to the controls. In a second experiment, the same dressings were exposed to pre-cultured cells in order to exclude the effects of attachment and spreading. The results confirm the above findings. This study could be of interest for establishing skin cell grafting therapies in burn medicine and also for wound care in general. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Mechanics of membrane-cytoskeleton attachment in Paramecium
NASA Astrophysics Data System (ADS)
Campillo, C.; Jerber, J.; Fisch, C.; Simoes-Betbeder, M.; Dupuis-Williams, P.; Nassoy, P.; Sykes, C.
2012-12-01
In this paper we assess the role of the protein MKS1 (Meckel syndrome type 1) in the cortical membrane mechanics of the ciliated protist Paramecium. This protein is known to be crucial in the process of cilium formation, and we investigate its putative role in membrane-cytoskeleton attachment. Therefore, we compare cells where the gene coding for MKS1 is silenced to wild-type cells. We found that scanning electron microscopy observation of the cell surface reveals a cup-like structure in wild-type cells that is lost in silenced cells. Since this structure is based on the underlying cytoskeleton, one hypothesis to explain this observation is a disruption of membrane attachment to the cytoskeleton in the absence of MKS1 that should affect plasma membrane mechanics. We test this by probing the mechanics of wild-type and silenced cells by micropipette aspiration. Strikingly, we observe that, at the same aspiration pressure, the membrane of silenced cells is easily aspirated by the micropipette whereas that of wild-type cells enters only at a moderate velocity, an effect that suggests a detachment of the membrane from the underlying cytoskeleton in silenced cells. We quantify this detachment by measuring the deformation of the cell cortex and the rate of cell membrane entry in the micropipette. This study offers a new perspective for the characterization of membrane-cytoskeleton attachment in protists and paves the way for a better understanding of the role of membrane-cortex attachment in cilium formation.
Jeong, Yong-Hoon; Choe, Han-Cheol
2015-01-01
The aim of this study was to investigate the electrochemical characteristics of nano crystallized Si-HA coating on Ti-Nb-Zr alloy after human osteoblast like (HOB) cell attachment. The Ti-Nb-Zr alloy was manufactured with 35 wt.% of Nb and 10 wt.% of Zr by arc melting furnace to appropriate physical properties as biomaterials. The HA and Si-substituted coatings were prepared by electron-beam physical vapor deposition method with 0.5, 0.8 and 1.2 wt.% of Si contents, and nano aging treatment was performed 500 degrees C for 1 h. The characteristics of coating surface were analyzed by field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. To evaluate of cell attachment on cell cultured surface, the potentiodynamic test was performed on the surface using HOB cells. The results showed that the Si-HA coating surface showed higher tendency of cell attachment than that of single HA coating, corrosion resistance value was increased by dense of cell attachment.
Magnetic resonance investigation of magnetic-labeled baker's yeast cells
NASA Astrophysics Data System (ADS)
Godoy Morais, J. P. M.; Azevedo, R. B.; Silva, L. P.; Lacava, Z. G. M.; Báo, S. N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P. C.
2004-05-01
In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall.
Hommel, Johannes; Lauchnor, Ellen; Gerlach, Robin; ...
2015-12-16
Attachment of bacteria in porous media is a complex mixture of processes resulting in the transfer and immobilization of suspended cells onto a solid surface within the porous medium. However, quantifying the rate of attachment is difficult due to the many simultaneous processes possibly involved in attachment, including straining, sorption, and sedimentation, and the difficulties in measuring metabolically active cells attached to porous media. Preliminary experiments confirmed the difficulty associated with measuring active Sporosarcina pasteurii cells attached to porous media. However, attachment is a key process in applications of biofilm-mediated reactions in the subsurface such as microbially induced calcite precipitation.more » Independent of the exact processes involved, attachment determines both the distribution and the initial amount of attached biomass and as such the initial reaction rate. As direct experimental investigations are difficult, this study is limited to a numerical investigation of the effect of various initial biomass distributions and initial amounts of attached biomass. This is performed for various injection strategies, changing the injection rate as well as alternating between continuous and pulsed injections. The results of this study indicate that, for the selected scenarios, both the initial amount and the distribution of attached biomass have minor influence on the Ca 2+ precipitation efficiency as well as the distribution of the precipitates compared to the influence of the injection strategy. The influence of the initial biomass distribution on the resulting final distribution of the precipitated calcite is limited, except for the continuous injection at intermediate injection rate. But even for this injection strategy, the Ca 2+ precipitation efficiency shows no significant dependence on the initial biomass distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hommel, Johannes; Lauchnor, Ellen; Gerlach, Robin
Attachment of bacteria in porous media is a complex mixture of processes resulting in the transfer and immobilization of suspended cells onto a solid surface within the porous medium. However, quantifying the rate of attachment is difficult due to the many simultaneous processes possibly involved in attachment, including straining, sorption, and sedimentation, and the difficulties in measuring metabolically active cells attached to porous media. Preliminary experiments confirmed the difficulty associated with measuring active Sporosarcina pasteurii cells attached to porous media. However, attachment is a key process in applications of biofilm-mediated reactions in the subsurface such as microbially induced calcite precipitation.more » Independent of the exact processes involved, attachment determines both the distribution and the initial amount of attached biomass and as such the initial reaction rate. As direct experimental investigations are difficult, this study is limited to a numerical investigation of the effect of various initial biomass distributions and initial amounts of attached biomass. This is performed for various injection strategies, changing the injection rate as well as alternating between continuous and pulsed injections. The results of this study indicate that, for the selected scenarios, both the initial amount and the distribution of attached biomass have minor influence on the Ca 2+ precipitation efficiency as well as the distribution of the precipitates compared to the influence of the injection strategy. The influence of the initial biomass distribution on the resulting final distribution of the precipitated calcite is limited, except for the continuous injection at intermediate injection rate. But even for this injection strategy, the Ca 2+ precipitation efficiency shows no significant dependence on the initial biomass distribution.« less
Watanabe, Hiroaki; Saito, Kensuke; Kokubun, Katsutoshi; Sasaki, Hodaka; Yoshinari, Masao
2012-01-01
The objectives of this study were to characterize change in surface properties of tetragonal zirconia polycrystals (TZP) after hydrophilic treatment, and to determine the effect of such changes on initial attachment of osteoblast-like cells. Roughened surfaces were produced by alumina-blasting and acid-etching. Hydrophilic treatment comprised application of immediately after blasting and acid-etching (Blast/Etch), oxygen plasma (O2-Plasma), ultraviolet light (UV). Specimens stored in air were used as a control. The water contact angle was determined and surface analysis was performed using an X-ray photoelectron spectroscopy. Blast/Etch, O2-Plasma and UV specimens showed superhydrophilicity, and these hydrophilic treatments to TZP elicited a marked decrease in carbon content and an increase in hydroxyl groups. Hydrophilic treatments enhanced initial attachment of osteoblast-like cells and a change in cell morphologies. These results indicate that Blast/Etch, O2-Plasma, or UV treatment has potential in the creation and maintenance of superhydrophilic surfaces and enhancing initial attachment of osteoblast-like cells.
Effect of bovine manure on fecal coliform attachment to soil and soil particles of different sizes.
Guber, Andrey K; Pachepsky, Yakov A; Shelton, Daniel R; Yu, Olivia
2007-05-01
Manure-borne bacteria can be transported in runoff as free cells, cells attached to soil particles, and cells attached to manure particles. The objectives of this work were to compare the attachment of fecal coliforms (FC) to different soils and soil fractions and to assess the effect of bovine manure on FC attachment to soil and soil fractions. Three sand fractions of different sizes, the silt fraction, and the clay fraction of loam and sandy clay loam soils were separated and used along with soil samples in batch attachment experiments with water-FC suspensions and water-manure-FC suspensions. In the absence of manure colloids, bacterial attachment to soil, silt, and clay particles was much higher than the attachment to sand particles having no organic coating. The attachment to the coated sand particles was similar to the attachment to silt and clay. Manure colloids in suspensions decreased bacterial attachment to soils, clay and silt fractions, and coated sand fractions, but did not decrease the attachment to sand fractions without the coating. The low attachment of bacteria to silt and clay particles in the presence of manure colloids may cause predominantly free-cell transport of manure-borne FC in runoff.
High Ringxiety: Attachment Anxiety Predicts Experiences of Phantom Cell Phone Ringing.
Kruger, Daniel J; Djerf, Jaikob M
2016-01-01
Mobile cell phone users have reported experiencing ringing and/or vibrations associated with incoming calls and messages, only to find that no call or message had actually registered. We believe this phenomenon can be understood as a human signal detection issue, with potentially important influences from psychological attributes. We hypothesized that individuals higher in attachment anxiety would report more frequent phantom cell phone experiences, whereas individuals higher in attachment avoidance would report less frequent experiences. If these experiences are primarily psychologically related to attributes of interpersonal relationships, associations with attachment style should be stronger than for general sensation seeking. We also predicted that certain contexts would interact with attachment style to increase or decrease the likelihood of experiencing phantom cell phone calls and messages. Attachment anxiety directly predicted the frequency of phantom ringing and notification experiences, whereas attachment avoidance and sensation seeking did not directly predict frequency. Attachment anxiety and attachment avoidance interacted with contextual factors (expectations for a call or message and concerned about an issue that one may be contacted about) in the expected directions for predicting phantom cell phone experiences.
Kim, Hyonchol; Yamagishi, Ayana; Imaizumi, Miku; Onomura, Yui; Nagasaki, Akira; Miyagi, Yohei; Okada, Tomoko; Nakamura, Chikashi
2017-07-01
Intercellular adhesion between a macrophage and cancer cells was quantitatively measured using atomic force microscopy (AFM). Cup-shaped metal hemispheres were fabricated using polystyrene particles as a template, and a cup was attached to the apex of the AFM cantilever. The cup-attached AFM chip (cup-chip) approached a murine macrophage cell (J774.2), the cell was captured on the inner concave of the cup, and picked up by withdrawing the cup-chip from the substrate. The cell-attached chip was advanced towards a murine breast cancer cell (FP10SC2), and intercellular adhesion between the two cells was quantitatively measured. To compare cell adhesion strength, the work required to separate two adhered cells (separation work) was used as a parameter. Separation work was almost 2-fold larger between a J774.2 cell and FP10SC2 cell than between J774.2 cell and three additional different cancer cells (4T1E, MAT-LyLu, and U-2OS), two FP10SC2 cells, or two J774.2 cells. FP10SC2 was established from 4T1E as a highly metastatic cell line, indicates separation work increased as the malignancy of cancer cells became higher. One possible explanation of the strong adhesion of macrophages to cancer cells observed in this study is that the measurement condition mimicked the microenvironment of tumor-associated macrophages (TAMs) in vivo, and J774.2 cells strongly expressed CD204, which is a marker of TAMs. The results of the present study, which were obtained by measuring cell adhesion strength quantitatively, indicate that the fabricated cup-chip is a useful tool for measuring intercellular adhesion easily and quantitatively. Copyright © 2017 Elsevier B.V. All rights reserved.
Fundamentals in Microalgae Harvesting: From Flocculation to Self-attachment
NASA Astrophysics Data System (ADS)
Cui, Yan
Microalgae are a very promising source of biodiesel and other renewable energy due to their fast grow rates, high lipid contents and tremendous potential for water conservation and CO2 biofixation. However, a bottleneck issue with algae biofuel manufacturing is the lack of cost-effective harvesting methods. This research focuses on the technologies for improved microalgae harvesting to enable commercially viable and environmentally friendly biodiesel production. The first objective of this study was to optimize flocculation of marine microalga Nannochloropsis oculata with metal salts, aluminum sulfate (A.S.) and ferric chloride (F.C.) via response surface methodology. It was found that there existed a positive stoichiometric relationship between the flocculant dose (FD) and the initial biomass concentration (IABC). Optimum flocculation conditions were predicted at IABC of 1.7 g/l, pH 8.3, and FD of 383.5 microM for A.S., and IABC of 2.2 g/l, pH 7.9, and FD of 438.1 microM for F.C., under which the predicted maximum harvested solid concentration of algae were 32.98 and 30.10 g/l by using A.S. and F.C., respectively. The second objective was to investigate the mechanism of microalgae flocculation with metal salts. The theory of Derjaguin, Landau, Verwey and Overbeek (DLVO) was applied to understand the flocculation mechanism of a freshwater alga Scenedesmus dimorphus and a marine alga Nannochloropsis oculata under various pH and aluminum sulphate ionic strengths. Effective flocculation was achieved as a result of charge neutralization and sweep flocculation. When low flocculant dosage (<0.1 mM) was applied, charge neutralization seemed to be predominating and the DLVO predicted flocculation trends were found quantitatively accurate in matching the experimental results. In the case of high flocculant dosage, the DLVO theory failed to explain the results since sweep flocculation was found to predominate at alum dose above 1 mM. Understanding of cell-to-cell interactions of microalgae offered possibilities in design of a novel semi-immobilized algal production and harvesting method, which exploited cell to substrata interactions instead of cell-to-cell interactions. In such method, a solid carrier was used to grow and accumulate algal cells and the cost of harvesting and drying can be simply reduced by easy algae-water separation. In order to enable the envisioned algal attachment, the third objective was to investigate the cell to substrata attachment by a thermodynamic model. Based on the theoretical analysis, when the polar surface energy of the cell is greater than that of water, cellular attachment would be more favorable on materials with higher dispersive surface energy but lower polar surface energy. If the polar surface energy of the cell is smaller than that of water, more cell attachment would be expected on materials that are higher in both dispersive and polar surface energies. The model was also validated its capability in designing, selecting, and matching algal strains and solid carrier materials to enhance cell attachment. The forth objective was to investigate the effect of surface texturing on algal attachment. It was found that surface texturing had a greater effect than surface free energy, by changing the liquid wetting behavior and real contact area. The attachment is preferred when the feature size is close to the diameter of the cell attempting to settle. Larger or smaller feature dimensions have the potential to reduce cellular attachment. The fifth objective was to study the role of carrier materials and their surface roughness in attachment. If the surface chemical composition was similar, the attachment and orientation of algal cells was found to depend on the surface average roughness, wherein rougher surfaces resulted in increased attachment. Whereas, the attachment was strongly related to surface free energy as described by the thermodynamic model if materials were chemically different.
Protein and cell micropatterning and its integration with micro/nanoparticles assembly.
Yap, F L; Zhang, Y
2007-01-15
Micropatterning of proteins and cells has become very popular over the past decade due to its importance in the development of biosensors, microarrays, tissue engineering and cellular studies. This article reviews the techniques developed for protein and cell micropatterning and its biomedical applications. The prospect of integrating micro and nanoparticles with protein and cell micropatterning is discussed. The micro/nanoparticles are assembled into patterns and form the substrate for proteins and cell attachment. The assembled particles create a micro or nanotopography, depending on the size of the particles employed. The nonplanar structure can increase the surface area for biomolecules attachment and therefore enhance the sensitivity for detection in biosensors. Furthermore, a nanostructured substrate can influence the conformation and functionality of protein attached to it, while cellular response in terms of morphology, adhesion, proliferation, differentiation, etc. can be affected by a surface expressing micro or nanoscale structures. Proteins and cells tend to lose their normal functions upon attachment to substrate. By recognizing the types of topography that are favourable for preserving proteins and cell behaviour, and integrating it with micropattering will lead to the development of functional protein and cell patterns.
Sapir, Yulia; Kryukov, Olga; Cohen, Smadar
2011-03-01
Cardiac tissue engineering aims to repair damaged myocardial tissues by applying heart patches created in vitro. Herein, we explored the possible role of a combination of two matrix-attached peptides, the adhesion peptide G(4)RGDY and heparin-binding peptide G(4)SPPRRARVTY (HBP) in cardiac tissue regeneration. Neonatal rat cardiac cells were seeded into unmodified, single peptide or double peptide-attached alginate scaffolds, all having the same physical features of porosity, hydrogel forming and matrix stiffness. The cardiac tissue developed in the HBP/RGD-attached scaffolds revealed the best features of a functional muscle tissue, as judged by all studied parameters, i.e., immunostaining of cardiac cell markers, histology, western blot of protein expressions and metabolic activity. By day 7, well-developed myocardial fibers were observed in these cell constructs. At 14 days the HBP/RGD-attached constructs presented an isotropic myofiber arrangement, while no such arrangement was seen in the other constructs. The expression levels of α-actinin, N-cadherin and Connexin-43, showing preservation and an increase in Connexin-43 expression (Cx-43) with time, further supported the formation a contractile muscle tissue in the HBP/RGD-attached scaffolds. Collectively, the attachment of combinatorial peptides representing different signaling in ECM-cell interactions proved to play a key role, contributing to the formation of a functional cardiac muscle tissue, in vitro. Copyright © 2010 Elsevier Ltd. All rights reserved.
Snellen, J E; Savage, D C
1978-01-01
A freeze-fracture study has provided new information about the filamentous, segmented microorganism known to live in the murine small bowel. The intracellular bodies produced by this microbe appear to arise by a modified sporogenesis so that they are enclosed in an envelopment membrane at least prior to release by the filament mother cell. At least some of the intracellular bodies divide while still within the mother cell, suggesting a reproductive role for these structures. The host epithelial membrane remains intact at the site of attachment, but does appear to have a reduced concentration of intramembrane particles. Changes in the host cytoplasm adjacent to the attachment site are documented and interpreted to be a sol-gel transformation which may stabilize the attachment socket. Images PMID:659364
Jain, Sudeep; Chen, Jinru
2007-11-01
This study was undertaken to quantify thin aggregative fimbriae and cellulose produced by Salmonella and to evaluate their roles in attachment and biofilm formation on polystyrene and glass surfaces. Thin aggregative fimbriae and cellulose produced by four wild-type and two pairs of Salmonella, representing four different colony morphotypes (rdar: red, dry, and rough; pdar: pink, dry, and rough; bdar: brown, dry, and rough; and saw: smooth and white), were quantified. The ability of the Salmonella cells to attach and form biofilms on the selected surfaces was evaluated in Luria-Bertani (LB) broth with or without salt (0.5%) or glucose (2%) at 28 degrees C during a 7-day period. The cells expressing the rdar or pdar colony morphotypes produced significantly greater amounts of thin aggregative fimbriae and cellulose on LB no salt agar, respectively. The cells expressing the rdar colony morphotype attached in higher numbers and formed more biofilm than did the cells expressing the pdar colony morphotype. The members of the pairs expressing the bdar colony morphotype attached more efficiently and formed more biofilm on the tested surfaces than did their counterparts expressing the saw colony morphotype. These results indicated that thin aggregative fimbriae impart attachment ability to Salmonella and, upon coexpression with cellulose, enhance biofilm formation on certain abiotic surfaces. The knowledge acquired in the study may help develop better cleaning strategies for food processing equipment.
Zhao, Feihu; Vaughan, Ted J; Mcnamara, Laoise M
2015-04-01
Recent studies have shown that mechanical stimulation, by means of flow perfusion and mechanical compression (or stretching), enhances osteogenic differentiation of mesenchymal stem cells and bone cells within biomaterial scaffolds in vitro. However, the precise mechanisms by which such stimulation enhances bone regeneration is not yet fully understood. Previous computational studies have sought to characterise the mechanical stimulation on cells within biomaterial scaffolds using either computational fluid dynamics or finite element (FE) approaches. However, the physical environment within a scaffold under perfusion is extremely complex and requires a multiscale and multiphysics approach to study the mechanical stimulation of cells. In this study, we seek to determine the mechanical stimulation of osteoblasts seeded in a biomaterial scaffold under flow perfusion and mechanical compression using multiscale modelling by two-way fluid-structure interaction and FE approaches. The mechanical stimulation, in terms of wall shear stress (WSS) and strain in osteoblasts, is quantified at different locations within the scaffold for cells of different attachment morphologies (attached, bridged). The results show that 75.4 % of scaffold surface has a WSS of 0.1-10 mPa, which indicates the likelihood of bone cell differentiation at these locations. For attached and bridged osteoblasts, the maximum strains are 397 and 177,200 με, respectively. Additionally, the results from mechanical compression show that attached cells are more stimulated (maximum strain = 22,600 με) than bridged cells (maximum strain = 10.000 με)Such information is important for understanding the biological response of osteoblasts under in vitro stimulation. Finally, a combination of perfusion and compression of a tissue engineering scaffold is suggested for osteogenic differentiation.
TIM-1 Promotes Hepatitis C Virus Cell Attachment and Infection.
Wang, Jing; Qiao, Luhua; Hou, Zhouhua; Luo, Guangxiang
2017-01-15
Human TIM and TAM family proteins were recently found to serve as phosphatidylserine (PS) receptors which promote infections by many different viruses, including dengue virus, West Nile virus, Ebola virus, Marburg virus, and Zika virus. In the present study, we provide substantial evidence demonstrating that TIM-1 is important for efficient infection by hepatitis C virus (HCV). The knockdown of TIM-1 expression significantly reduced HCV infection but not HCV RNA replication. Likewise, TIM-1 knockout in Huh-7.5 cells remarkably lowered HCV cell attachment and subsequent HCV infection. More significantly, the impairment of HCV infection in the TIM-1 knockout cells could be restored completely by ectopic expression of TIM-1 but not TIM-3 or TIM-4. Additionally, HCV infection and cell attachment were inhibited by PS but not by phosphatidylcholine (PC), demonstrating that TIM-1-mediated enhancement of HCV infection is PS dependent. The exposure of PS on the HCV envelope was confirmed by immunoprecipitation of HCV particles with a PS-specific monoclonal antibody. Collectively, these findings demonstrate that TIM-1 promotes HCV infection by serving as an attachment receptor for binding to PS exposed on the HCV envelope. TIM family proteins were recently found to enhance infections by many different viruses, including several members of the Flaviviridae family. However, their importance in HCV infection has not previously been examined experimentally. The TIM family proteins include three members in humans: TIM-1, TIM-3, and TIM-4. The findings derived from our studies demonstrate that TIM-1, but not TIM-3 or TIM-4, promotes HCV infection by functioning as an HCV attachment factor. Knockout of the TIM-1 gene resulted in a remarkable reduction of HCV cell attachment and infection. PS-containing liposomes blocked HCV cell attachment and subsequent HCV infection. HCV particles could also be precipitated with a PS-specific monoclonal antibody. These findings suggest that TIM-1 and its binding ligand, PS, may serve as novel targets for antiviral intervention. Copyright © 2017 American Society for Microbiology.
Aberkane, A; Essahib, W; Spits, C; De Paepe, C; Sermon, K; Adriaenssens, T; Mackens, S; Tournaye, H; Brosens, J J; Van de, Velde H
2018-05-26
What are the changes in human embryos, in terms of morphology and gene expression, upon attachment to endometrial epithelial cells? Apposition and adhesion of human blastocysts to endometrial epithelial cells are predominantly initiated at the embryonic pole and these steps are associated with changes in expression of adhesion and extracellular matrix (ECM) genes in the embryo. Both human and murine embryos have been co-cultured with Ishikawa cells, although embryonic gene expression associated with attachment has not yet been investigated in an in-vitro implantation model. Vitrified human blastocysts were warmed and co-cultured for up to 48 h with Ishikawa cells, a model cell line for receptive endometrial epithelium. Six-days post fertilisation (6dpf) human embryos were co-cultured with Ishikawa cells for 12 h, 24 h (7dpf) or 48 h (8dpf) and attachment rate and morphological development investigated. Expression of 84 adhesion and ECM genes was analysed by quantitative PCR. Immunofluorescence microscopy was used to assess the expression of three informative genes at the protein level. Data are reported on 115 human embryos. Mann-Whitney U was used for statistical analysis between two groups, with P < 0.05 considered significant. The majority of embryos attached to Ishikawa cells at the level of the polar trophectoderm; 41% of co-cultured embryos were loosely attached after 12 h and 86% firmly attached after 24 h. Outgrowth of hCG-positive embryonic cells at 8dpf indicated differentiation of trophectoderm into invasive syncytiotrophoblast. Gene expression analysis was performed on loosely attached and unattached embryos co-cultured with Ishikawa cells for 12 h. In contrast to unattached embryos, loosely attached embryos expressed THBS1, TNC, COL12A1, CTNND2, ITGA3, ITGAV, and LAMA3 and had significantly higher CD44 and TIMP1 transcript levels (P = 0.014 and P = 0.029, respectively). LAMA3, THBS1 and TNC expression was validated at the protein level in firmly attached 7dpf embryos. Thrombospondin 1 (THBS1) resided in the cytoplasm of embryonic cells whereas laminin subunit alpha 3 (LAMA3) and tenascin C (TNC) were expressed on the cell surface of trophectoderm cells. Incubation with a neutralizing TNC antibody did not affect the rate of embryo attachment or hCG secretion. None. This in-vitro study made use of an endometrial adenocarcinoma cell line to mimic receptive luminal epithelium. Also, the number of embryos was limited. Contamination of recovered embryos with Ishikawa cells was unlikely based on their differential gene expression profiles. Taken together, we provide a 'proof of concept' that initiation of the implantation process coincides with the induction of specific embryonic genes. Genome-wide expression profiling of a larger sample set may provide insights into the molecular embryonic pathways underlying successful or failed implantation. A.A. was supported by a grant from the "Instituut voor Innovatie door Wetenschap en Technologie" (IWT, 121716, Flanders, Belgium). This work was supported by the "Wetenschappelijk Fonds Willy Gepts" (WFWG G142 and G170, Universitair Ziekenhuis Brussel). The authors declare no conflict of interest.
Crouzet, Marc; Claverol, Stéphane; Lomenech, Anne-Marie; Le Sénéchal, Caroline; Costaglioli, Patricia; Barthe, Christophe; Garbay, Bertrand; Bonneu, Marc
2017-01-01
Biofilms are present in all environments and often result in negative effects due to properties of the biofilm lifestyle and especially antibiotics resistance. Biofilms are associated with chronic infections. Controlling bacterial attachment, the first step of biofilm formation, is crucial for fighting against biofilm and subsequently preventing the persistence of infection. Thus deciphering the underlying molecular mechanisms involved in attachment could allow discovering molecular targets from it would be possible to develop inhibitors against bacterial colonization and potentiate antibiotherapy. To identify the key components and pathways that aid the opportunistic pathogen Pseudomonas aeruginosa in attachment we performed for the first time a proteomic analysis as early as after 20 minutes of incubation using glass wool fibers as a surface. We compared the protein contents of the attached and unattached bacteria. Using mass spectrometry, 3043 proteins were identified. Our results showed that, as of 20 minutes of incubation, using stringent quantification criteria 616 proteins presented a modification of their abundance in the attached cells compared to their unattached counterparts. The attached cells presented an overall reduced gene expression and characteristics of slow-growing cells. The over-accumulation of outer membrane proteins, periplasmic folding proteins and O-antigen chain length regulators was also observed, indicating a profound modification of the cell envelope. Consistently the sigma factor AlgU required for cell envelope homeostasis was highly over-accumulated in attached cells. In addition our data suggested a role of alarmone (p)ppGpp and polyphosphate during the early attachment phase. Furthermore, almost 150 proteins of unknown function were differentially accumulated in the attached cells. Our proteomic analysis revealed the existence of distinctive biological features in attached cells as early as 20 minutes of incubation. Analysis of some mutants demonstrated the interest of this proteomic approach in identifying genes involved in the early phase of adhesion to a surface. PMID:28678862
Linnemann, Amelia K; Krawetz, Stephen A
2009-05-01
DNA loop organization by nuclear scaffold/matrix attachment is a key regulator of gene expression that may provide a means to modulate phenotype. We have previously shown that attachment of genes to the NaCl-isolated nuclear matrix correlates with their silencing in HeLa cells. In contrast, expressed genes were associated with the lithium 3,5-diiodosalicylate (LIS)-isolated nuclear scaffold. To define their role in determining phenotype matrix attached regions (MARs) on human chromosomes 14-18 were identified as a function of expression in a primary cell line. The locations of MARs in aortic adventitial fibroblast (AoAF) cells were very stable (r = 0.909) and 96% of genes attached at MARs are silent (P < 0.001). Approximately one-third of the genes uniquely expressed in AoAF cells were associated with the HeLa cell nuclear matrix and silenced. Comparatively, 81% were associated with the AoAF cell nuclear scaffold (P < 0.001) and expressed. This suggests that nuclear scaffold/matrix association mediates a portion of cell type-specific gene expression thereby modulating phenotype. Interestingly, nuclear matrix attachment and thus silencing of specific genes that regulate proliferation and maintain the integrity of the HeLa cell genome suggests that transformation may at least in part be achieved through aberrant nuclear matrix attachment.
Schmidlin, Patrick R; Fujioka-Kobayashi, Masako; Mueller, Heinz-Dieter; Sculean, Anton; Lussi, Adrian; Miron, Richard J
2017-06-01
The aim of this study is to examine morphological changes of dentin surfaces following air polishing or amino acid buffered hypochlorite solution application and to assess their influence on periodontal ligament (PDL) cell survival, attachment, and spreading to dentin discs in vitro. Bovine dentin discs were treated with either (i) Classic, (ii) Plus, or (iii) Perio powder (EMS). Furthermore, Perisolv® a hypochlorite solution buffered with various amino acids was investigated. Untreated dentin discs served as controls. Morphological changes to dentin discs were assessed using scanning electron microscopy (SEM). Human PDL cells were seeded onto the respectively treated discs, and samples were then investigated for PDL cell survival, attachment, and spreading using a live/dead assay, adhesion assay, and SEM imaging, respectively. Both control and Perisolv®-rinsed dentin discs demonstrated smooth surfaces at low and high magnifications. The Classic powders demonstrated the thickest coating followed by the Powder Plus. The Perio powder demonstrated marked alterations of dentin discs by revealing the potential to open dentinal tubules even before rinsing. Seeding of PDL cells demonstrated an almost 100 % survival rate on all samples demonstrating very high biocompatibility for all materials. Significantly higher PDL cell numbers were observed on samples treated with the Perio powder and the Perisolv® solution (approximately 40 % more cells; p < 0.05). SEM imaging revealed the potential for PDL cells to attach and spread on all surfaces. The results from the present study demonstrate that cell survival and spreading of PDL cells on root surfaces is possible following either air polishing or application with Perisolv®. Future in vitro and animal testing is necessary to further characterize the beneficial effects of either system in a clinical setting. The use of air polishing or application with Perisolv amino acid buffered hypochlorite solution was effective in treating root surfaces and allowed for near 100 % PDL cell survival, attachment, and spreading onto all root surfaces.
Feng, Shoushuai; Yang, Hailin; Wang, Wu
2016-01-01
The effects of free cells on community structure of attached cells and chalcopyrite bioleaching by Acidithiobacillus sp. during different stages were investigated. The attached cells of Acidithiobacillus thiooxidans owned the community advantage from 14thd to the end of bioprocess in the normal system. The community structure of attached cells was greatly influenced in the free cells-deficient systems. Compared to A. thiooxidans, the attached cells community of Acidithiobacillus ferrooxidans had a higher dependence on its free cells. Meanwhile, the analysis of key biochemical parameters revealed that the effects of free cells on chalcopyrite bioleaching in different stages were diverse, ranging from 32.8% to 64.3%. The bioleaching contribution of free cells of A. ferrooxidans in the stationary stage (8-14thd) was higher than those of A. thiooxidans, while the situation was gradually reversed in the jarosite passivation inhibited stage (26-40thd). These results may be useful in guiding chalcopyrite bioleaching. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of modified pectin molecules on the growth of bone cells.
Kokkonen, Hanna E; Ilvesaro, Joanna M; Morra, Marco; Schols, Henk A; Tuukkanen, Juha
2007-02-01
The aim of this study was to investigate molecular candidates for bone implant nanocoatings, which could improve biocompatibility of implant materials. Primary rat bone cells and murine preosteoblastic MC3T3-E1 cells were cultured on enzymatically modified hairy regions (MHR-A and MHR-B) of apple pectins. MHRs were covalently attached to tissue culture polystyrene (TCPS) or glass. Uncoated substrata or bone slices were used as controls. Cell attachment, proliferation, and differentiation were investigated with fluorescence and confocal microscopy. Bone cells seem to prefer MHR-B coating to MHR-A coating. On MHR-A samples, the overall numbers as well as proportions of active osteoclasts were diminished compared to those on MHR-B, TCPS, or bone. Focal adhesions indicating attachment of the osteoblastic cells were detected on MHR-B and uncoated controls but not on MHR-A. These results demonstrate the possibility to modify surfaces with pectin nanocoatings.
Agrobacterium tumefaciens mutants affected in attachment to plant cells.
Douglas, C J; Halperin, W; Nester, E W
1982-01-01
An analysis of Agrobacterium tumefaciens mutants with Tn5 insertions in chromosomal DNA showed that the chromosome of A. tumefaciens codes for a specific ability of this bacterium to attach to plant cells. This ability is associated with tumorigenesis by A. tumefaciens, the ability of avirulent A. tumefaciens to inhibit tumorigenesis, and the ability to adsorb certain phages. A second class of chromosomal mutations affects tumorigenesis without altering the ability to attach to plant cells. The attachment of A. tumefaciens to plant cells was assayed by mixing radiolabeled bacteria with suspensions of tobacco tissue culture cells or freshly isolated Zinnia leaf mesophyll cells. Under the conditions of this assay, an avirulent Ti plasmid-cured strain attached to the same extent as the same strain containing pTiB6806. Six of eight avirulent mutants with Tn5 insertions in chromosomal DNA showed defective attachment, whereas two retained wild-type attachment ability. In contrast to the strains showing wild-type attachment, the attachment-defective mutants failed to inhibit tumorigenesis when inoculated onto Jerusalem artichoke slices before inoculation of a virulent strain and also showed a loss of sensitivity to two Agrobacterium phages. The loss of phage sensitivity appeared to be due to a loss of ability to adsorb the phages. Staining with Calcofluor indicated that the mutants retained the ability to synthesize cellulose fibrils, which have been implicated in the attachment process. Southern filter hybridizations demonstrated that each mutant contained a single Tn5 insertion, and genetic linkage between the Tn5 insertion in one mutant and the attachment phenotype has also been demonstrated. Images PMID:6292165
Engineered microtopographies and surface chemistries direct cell attachment and function
NASA Astrophysics Data System (ADS)
Magin, Chelsea Marie
Harrison, in 1914, first recognized that cells respond to physicochemical cues such as substratum topography when he observed that fibroblasts elongated while cultured on spider silk. Recently, techniques developed in the micro-electronics industry have been used to create molds for producing microscaled topographies with various shapes and spatial arrangements. Although these patterning techniques are well-established, very little is known about the mechanisms underlying cell sensing and response to microtopographies. In this work cellular micro-environments with varying surface topographies and chemistries were evaluated with marine organisms and mammalian cells to investigate cellular sensing and response. Biofouling---the accumulation of micro-organisms, plants, and animals on submerged surfaces---is an environmental and economic concern. Engineered topographies, replicated in polydimethylsiloxane elastomer (PDMSe) and functionalized poly(ethylene glycol)-dimethacrylate (PEGDMA) hydrogels, were evaluated for inhibition of marine fouling organism attachment. Microtopographies replicated in PDMSe inhibited attachment of the marine bacterium, Cobetia marina up to 99% versus smooth. The average normalized attachment densities of cells of C. marina and zoospores of the green algae Ulva on PDMSe topographies scaled inversely with the Engineered Roughness Index (ERIII), a representation of surface energy. Attachment densities of Ulva from four assays and C. marina from two growth phases to PDMSe surfaces scaled inversely with one equation: ERI II multiplied by the Reynolds number of the organism (Re) (R 2 = 0.77). The same microtopographies created in PDMSe reduced the initial attachment density and attachment strength of cells of the diatoms Navicula incerta and Seminavis robusta compared to smooth PDMSe. The average normalized attachment density of Navicula after exposure to shear stress (48 Pa) was correlated with the contact area between the diatom and a topographically modified surface (R2=0.82). Functionalized PEGDMA hydrogels significantly reduced attachment and attachment strength of Navicula and C. marina. These hydrogels also reduced attachment of zoospores of Ulva compared to PDMSe. Attachment of Ulva to microtopographies in PDMSe and PEGDMA-co-HEMA negatively correlated with ERIII*Re (R2 = 0.94 and R2 = 0.99, respectively). Incorporating a surface energy term into this equation created a correlation between the attachment densities of cells from two evolutionarily diverse groups on substrates of two surface chemistries with an equation that describes the various microtopographies and surface chemistries in terms of surface energy (R2 = 0.80). The current Attachment Model can now be used to design engineered antifouling surface microtopographies and chemistries that inhibit the attachment of organisms from three evoluntionarily diverse groups. Hydrogels based on PEGDMA were also chosen as a substratum material for mammalian cell culture. Capturing endothelial progenitor cells (EPCs) and inducing differentiation into the endothelial cell (EC) phenotype is the ideal way to re-endothelialize a small-diameter vascular graft. Substratum elasticity has been reported to direct stem cell differentiation into specific lineages. Functionalized PEGDMA hydrogels provided good compliance, high fidelity of topographic features and sites for surface modification with biomolecules. Fibronectin grafting and topography both increased EC attachment. This combination of adjustable elasticity, surface chemistry and topography has the potential to promote the capture and differentiation of EPCs into a confluent EC monolayer. Engineered microtopographies replicated in PDMSe directed elongation and alignment of human coronary artery endothelial cells (HCAECs) and human coronary artery smooth muscle cells (HCASMCs) compared to smooth surfaces. Engineered cellular micro-environments were created with specific surface energies defined by chemistry and topography to successfully direct cell attachment and function.
Quantification of Agrobacterium tumefaciens C58 attachment to Arabidopsis thaliana roots.
Petrovicheva, Anna; Joyner, Jessica; Muth, Theodore R
2017-10-02
Agrobacterium tumefaciens is the causal agent of crown gall disease and is a vector for DNA transfer in transgenic plants. The transformation process by A. tumefaciens has been widely studied, but the attachment stage has not been well characterized. Most measurements of attachment have used microscopy and colony counting, both of which are labor and time intensive. To reduce the time and effort required to analyze bacteria attaching to plant tissues, we developed a quantitative real-time PCR (qPCR) assay to quantify attached A. tumefaciens using the chvE gene as marker for the presence of the bacteria. The qPCR detection threshold of A. tumefaciens from pure culture was 104 cell equivalents/ml. The A. tumefaciens minimum threshold concentration from root-bound populations was determined to be 105 cell equivalents/ml inoculum to detect attachment above background. The qPCR assay can be used for measuring A. tumefaciens attachment in applications such as testing the effects of mutations on bacterial adhesion molecules or biofilm formation, comparing attachment across various plant species and ecotypes, and detecting mutations in putative attachment receptors expressed in plant roots. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Magnetic targeting of mechanosensors in bone cells for tissue engineering applications.
Hughes, Steven; Dobson, Jon; El Haj, Alicia J
2007-01-01
Mechanical signalling plays a pivotal role in maintaining bone cell function and remodelling of the skeleton. Our previous work has highlighted the potential role of mechano-induction in tissue engineering applications. In particular, we have highlighted the potential for using magnetic particle techniques for tissue engineering applications. Previous studies have shown that manipulation of integrin attached magnetic particles leads to changes in intracellular calcium signalling within osteoblasts. However, due to the phenomenon of particle internalisation, previous studies have typically focused on short-term stimulation experiments performed within 1-2 h of particle attachment. For tissue engineering applications, bone tissue growth occurs over a period of 3-5 weeks. To date, no study has investigated the cellular responses elicited from osteoblasts over time following stimulation with internalised magnetic particles. Here, we demonstrate the long-term biocompatibility of 4.5 microm RGD-coated particles with osteoblasts up to 21 days in culture, and detail a time course of responses elicited from osteoblasts following mechanical stimulation with integrin attached magnetic particles (<2h post attachment) and internalised particles (>48h post attachment). Mechanical manipulation of both integrin attached and internalised particles were found to induce intracellular calcium signalling. It is concluded that magnetic particles offer a tool for applying controlled mechanical forces to osteoblasts, and can be used to stimulate intracellular calcium signalling over prolonged periods of time. Magnetic particle technology presents a potentially valuable tool for tissue engineering which permits the delivery of highly localised mechano-inductive forces directly to cells.
Li, Boqiang; Peng, Huaimin; Tian, Shiping
2016-01-01
Rhodotorula glutinis as an antagonism show good biocontrol performance against various post-harvest diseases in fruits. In the present study, strong attachment capability of R. glutinis to spores and hyphae of Botrytis cinerea was observed. Further analysis showed that certain protein components on the yeast cell surface played critical role during the interaction between R. glutinis and B. cinerea. The components mainly distributed at the poles of yeast cells and might contain glycosylation modification, as tunicamycin treated yeast cells lost attachment capability to B. cinerea. To investigate contributions of attachment capability of R. glutinis to its biocontrol efficacy, yeast cells were mutagenized with 3% methane-sulfonic acid ethyl ester (EMS), and a mutant CE4 with stable non-attaching phenotype was obtained. No significant difference was found on colony, cell morphology, reproductive ability, and capsule formation between the mutant and wild-type. However, there was a distinct difference in India ink positive staining patterns between the two strains. Moreover, wild-type strain of R. glutinis showed better performance on inhibiting spore germination and mycelial growth of B. cinerea than CE4 strain when yeast cells and B. cinerea were co-cultured in vitro. In biocontrol assay, both wild-type and CE4 strains showed significant biocontrol efficacy against gray mold caused by B. cinerea in apple fruit, whereas, control effect of CE4 strain was lower than that of wild-type. Our findings provided new evidences that attachment capability of R. glutinis to B. cinerea contributed to its biocontrol efficacy.
Li, Boqiang; Peng, Huaimin; Tian, Shiping
2016-01-01
Rhodotorula glutinis as an antagonism show good biocontrol performance against various post-harvest diseases in fruits. In the present study, strong attachment capability of R. glutinis to spores and hyphae of Botrytis cinerea was observed. Further analysis showed that certain protein components on the yeast cell surface played critical role during the interaction between R. glutinis and B. cinerea. The components mainly distributed at the poles of yeast cells and might contain glycosylation modification, as tunicamycin treated yeast cells lost attachment capability to B. cinerea. To investigate contributions of attachment capability of R. glutinis to its biocontrol efficacy, yeast cells were mutagenized with 3% methane-sulfonic acid ethyl ester (EMS), and a mutant CE4 with stable non-attaching phenotype was obtained. No significant difference was found on colony, cell morphology, reproductive ability, and capsule formation between the mutant and wild-type. However, there was a distinct difference in India ink positive staining patterns between the two strains. Moreover, wild-type strain of R. glutinis showed better performance on inhibiting spore germination and mycelial growth of B. cinerea than CE4 strain when yeast cells and B. cinerea were co-cultured in vitro. In biocontrol assay, both wild-type and CE4 strains showed significant biocontrol efficacy against gray mold caused by B. cinerea in apple fruit, whereas, control effect of CE4 strain was lower than that of wild-type. Our findings provided new evidences that attachment capability of R. glutinis to B. cinerea contributed to its biocontrol efficacy. PMID:27199931
Mandal, Amal Kumar; Sreejith, Sivaramapanicker; He, Tingchao; Maji, Swarup Kumar; Wang, Xiao-Jun; Ong, Shi Li; Joseph, James; Sun, Handong; Zhao, Yanli
2015-05-26
We report an experimental observation of aggregation-induced enhanced luminescence upon three-photon excitation in aggregates formed from a class of unsymmetrical cyanostilbene derivatives. Changing side chains (-CH3, -C6H13, -C7H15O3, and folic acid) attached to the cyanostilbene core leads to instantaneous formation of aggregates with sizes ranging from micrometer to nanometer scale in aqueous conditions. The crystal structure of a derivative with a methyl side chain reveals the planarization in the unsymmetrical cyanostilbene core, causing luminescence from corresponding aggregates upon three-photon excitation. Furthermore, folic acid attached cyanostilbene forms well-dispersed spherical nanoaggregates that show a high three-photon cross-section of 6.0 × 10(-80) cm(6) s(2) photon(-2) and high luminescence quantum yield in water. In order to demonstrate the targeted bioimaging capability of the nanoaggregates, three cell lines (HEK293 healthy cell line, MCF7 cancerous cell line, and HeLa cancerous cell line) were employed for the investigations on the basis of their different folate receptor expression level. Two kinds of nanoaggregates with and without the folic acid targeting ligand were chosen for three-photon bioimaging studies. The cell viability of three types of cells incubated with high concentration of nanoaggregates still remained above 70% after 24 h. It was observed that the nanoaggregates without the folic acid unit could not undergo the endocytosis by both healthy and cancerous cell lines. No obvious endocytosis of folic acid attached nanoaggregates was observed from the HEK293 and MCF7 cell lines having a low expression of the folate receptor. Interestingly, a significant amount of endocytosis and internalization of folic acid attached nanoaggregates was observed from HeLa cells with a high expression of the folate receptor under three-photon excitation, indicating targeted bioimaging of folic acid attached nanoaggregates to the cancer cell line. This study presents a paradigm of using organic nanoaggregates for targeted three-photon bioimaging.
Nagahara, Yukitoshi; Sekine, Hiroaki; Otaki, Mari; Hayashi, Masakazu; Murase, Norio
2016-02-01
Animal cells are generally cryopreserved in cryovials in a cell suspension state containing 5%-10% v/v dimethyl sulfoxide (DMSO) used as a cryoprotective agent. However, cryopreservation of cells in an attached state has not been intensively studied, and the effective freezing solution remains unknown. Here we determined the suitable DMSO concentration for the cryopreservation of human hepatoma HepG2 cells attached to glass and polydimethylsiloxane (PDMS) matrices coated with poly-l-lysine. With the use of the glass matrix, the rate of cell adhesion increased with the DMSO concentration up to 30% v/v in the freezing solution. In contrast, the cell-adhesion rate remained constant in the case of the PDMS matrix irrespective of the DMSO concentration between 10% v/v and 30% v/v. The viability of post-thawed cells attached to glass or PDMS matrix was also investigated. The viability was highest at the DMSO concentration of 20% v/v in the freezing solution. The DMSO concentration of 30% v/v, however, had a cytotoxic effect on the cell viability. Thus, the 20% v/v DMSO concentration was found to be most suitable for the cryopreservation of HepG2 cells in the attached state. This dose is high compared to the DMSO concentration used for the cryopreservation of cells in the suspended state. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Yi; Lee, Sui M; Dykes, Gary A
2013-01-01
Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.
Epifanio, Monica; Inguva, Saikumar; Kitching, Michael; Mosnier, Jean-Paul; Marsili, Enrico
2015-12-01
The attachment of electrochemically active microorganisms (EAM) on an electrode is determined by both the chemistry and topography of the electrode surface. Pre-treatment of the electrode surface by atmospheric air plasma introduces hydrophilic functional groups, thereby increasing cell attachment and electroactivity in short-term experiments. In this study, we use graphite and carbon felt electrodes to grow the model EAM Shewanella loihica PV-4 at oxidative potential (0.2 V vs. Ag/AgCl). Cell attachment and electroactivity are measured through electrodynamic methods. Atmospheric air plasma pre-treatment increases cell attachment and current output at graphite electrodes by 25%, while it improves the electroactivity of the carbon felt electrodes by 450%. Air plasma pre-treatment decreased the coulombic efficiency on both carbon felt and graphite electrodes by 60% and 80%, respectively. Microbially produced flavins adsorb preferentially at the graphite electrode, and air plasma pre-treatment results in lower flavin adsorption at both graphite and carbon felt electrodes. Results show that air plasma pre-treatment is a feasible option to increase current output in bioelectrochemical systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Zhaoyang; Li, Shihui; Chen, Niancao; Yang, Cheng; Wang, Yong
2013-04-08
Extensive studies have been recently carried out to achieve dynamic control of cell-material interactions primarily through physicochemical stimulation. The purpose of this study was to apply reversible intermolecular hybridization to program cell-hydrogel interactions in physiological conditions based on DNA-antibody chimeras and complementary oligonucleotides. The results showed that DNA oligonucleotides could be captured to and released from the immobilizing DNA-functionalized hydrogels with high specificity via DNA hybridization. Accordingly, DNA-antibody chimeras were captured to the hydrogels, successfully inducing specific cell attachment. The cell attachment to the hydrogels reached the plateau at approximately half an hour after the functionalized hydrogels and the cells were incubated together. The attached cells were rapidly released from the bound hydrogels when triggering complementary oligonucleotides were introduced to the system. However, the capability of the triggering complementary oligonucleotides in releasing cells was affected by the length of intermolecular hybridization. The length needed to be at least more than 20 base pairs in the current experimental setting. Notably, because the procedure of intermolecular hybridization did not involve any harsh condition, the released cells maintained the same viability as that of the cultured cells. The functionalized hydrogels also exhibited the potential to catch and release cells repeatedly. Therefore, this study demonstrates that it is promising to regulate cell-material interactions dynamically through the DNA-programmed display of DNA-protein chimeras.
Söderlund, G; Kihlström, E
1983-01-01
The kinetics of attachment and ingestion of Chlamydia trachomatis serotype L1 by monolayers of McCoy cells were studied by using a method that discriminated between attachment and uptake. When about 1% of the McCoy cells was infected, the proteinase K-resistant chlamydial fraction, regarded as ingested chlamydiae, reached a constant value after about 3 h of incubation at 37 degrees C. Uptake of chlamydiae at 4 degrees C could not be demonstrated. The attached and ingested chlamydial fractions were constant over an eightfold increase in chlamydial inoculum. Chitobiose and chitotriose, the di- and trisaccharides of N-acetyl-D-glucosamine, reduced the association of C. trachomatis serotype L1 with McCoy cells. Higher concentrations of chitobiose also selectively inhibited ingestion of chlamydiae. A corresponding effect of chitobiose was also observed on the number of chlamydial inclusions. Wheat germ agglutinin, specific for N-acetyl-D-glucosamine residues, reduced the association of chlamydiae when incubated at 4 degrees C, but not at 37 degrees C. A small inhibiting effect of concanavalin A on association of chlamydiae, but no effect of the corresponding carbohydrates, indicates a nonspecific effect on chlamydial attachment of this lectin. These results suggest that beta 1 leads to 4-linked oligomers of N-acetyl-D-glucosamine are important in the specificity of attachment of C. trachomatis to McCoy cells. PMID:6642670
Differentiation of anchoring junctions in tracheal basal cells in the growing rat.
Evans, M J; Cox, R A; Burke, A S; Moller, P C
1992-02-01
A function of airway basal cells is to attach ciliated and nonciliated columnar cells to the basal lamina. The significance of the basal cell in attachment is related to the height of the columnar epithelium. In taller epithelia, basal cells are more numerous and differentiated with respect to anchoring junctional adhesion mechanisms (desmosomes, hemidesmosomes, and the cytoskeleton) than in shorter epithelia. In this study, we determined if basal cell anchoring junctional adhesion mechanisms differentiated during growth of the airway. Tracheas from five 3-day-old, five 30-day-old, and five 90-day-old rats were prepared for electron microscopy and morphometrically studied by standard techniques. The circumference of the trachea increased from 2.5 +/- 0.2 to 7.5 +/- 0.4 mm during growth. The height of the columnar cell increased from 13.4 +/- 1.5 to 24.6 +/- 3.9 microns, and the number of basal cells per millimeter increased from 3.2 +/- 0.7 to 9.6 +/- 1.8 during growth. The number of desmosomes per basal cell profile increased significantly from 1.5 +/- 0.1 to 2.1 +/- 0.1, as did keratin filament volume density from 0.046 +/- 0.05 to 0.098 +/- 0.032. The amount of hemidesmosome attachment per basal cell did not increase significantly during growth of the airway. These data demonstrate that as tracheas grow in circumference, the columnar cells increase in height, basal cells increase in number, and anchoring junctional adhesion mechanisms differentiate in the basal cells. These changes are closely related to the height of the epithelium and result in maintaining a constant amount of attachment between the columnar epithelium and the basal lamina as the epithelium increases in height.
The role of basal cells in adhesion of columnar epithelium to airway basement membrane.
Evans, M J; Plopper, C G
1988-08-01
In this report, we present a new concept of the role of the basal cell in airway epithelium. Previously, the basal cell was thought to be the progenitor cell for the columnar epithelium. However, several studies have shown that this concept may not be correct. The morphologic aspects of the basal cell suggest that it could play a role in adhesion of the columnar epithelium to the basement membrane. Basal cells form attachments with columnar cells (desmosomes) and with the basement membrane (hemidesmosomes). Columnar cells do not form hemidesmosome attachments with the basement membrane. Basal cells could strengthen the adhesion of columnar cells to the basement membrane by forming hemidesmosome attachments to the basement membrane and desmosome attachments with adjacent columnar cells. Incidental evidence from 2 existing publications concerning airway microanatomy support this concept. As columnar cells grow taller, the proportion of the cell surface in contact with the basement membrane becomes progressively smaller, and thus the cell surface area related to adhesion also becomes smaller. It was found that the number of basal cells per millimeter of basement membrane was closely related to the height of the columnar cell epithelium (r = 0.98), but not to the number of columnar cells (r = 0.42). The consistency of the relationship between increased columnar cell height (and thus decreased surface area for adhesion) and the number of basal cells present (r = 0.98) supports the concept that the basal cell plays a role in adhesion of columnar cells to the basement membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
Zhao, Nan; Zhu, Donghui
2014-01-01
Magnesium (Mg) biomaterials are a new generation of biodegradable materials and have promising potential for orthopedic applications. After implantation in bone tissues, these materials will directly interact with extracellular matrix (ECM) biomolecules and bone cells. Type I collagen, the major component of bone ECM, forms the architecture scaffold that provides physical support for bone cell attachment. However, it is still unknown how Mg substrate affects collagen assembly on top of it as well as subsequent cell attachment and growth. Here, we studied the effects of collagen monomer concentration, pH, assembly time, and surface roughness of two Mg materials (pure Mg and AZ31) on collagen fibril formation. Results showed that formation of fibrils would not initiate until the monomer concentration reached a certain level depending on the type of Mg material. The thickness of collagen fibril increased with the increase of assembly time. The structures of collagen fibrils formed on semi-rough surfaces of Mg materials have a high similarity to that of native bone collagen. Next, cell attachment and growth after collagen assembly were examined. Materials with rough surface showed higher collagen adsorption but compromised bone cell attachment. Interestingly, surface roughness and collagen structure did not affect cell growth on AZ31 for up to a week. Findings from this work provide some insightful information on Mg-tissue interaction at the interface and guidance for future surface modifications of Mg biomaterials. PMID:25303459
Ahmed, Hany Mohamed Aly; Luddin, Norhayati; Kannan, Thirumulu Ponnuraj; Mokhtar, Khairani Idah; Ahmad, Azlina
2014-10-01
The attachment and spreading of mammalian cells on endodontic biomaterials are an area of active research. The purpose of this review is to discuss the cell attachment properties of Portland cement (PC)-based materials by using scanning electron microscope (SEM). In addition, methodological aspects and technical challenges are discussed. A PubMed electronic search was conducted by using appropriate key words to identify the available investigations on the cell attachment properties of PC-based endodontic materials. After retrieving the full text of related articles, the cross citations were also identified. A total of 23 articles published between January 1993 and October 2013 were identified. This review summarizes the cell attachment properties of commercial and experimental PC-based materials on different cell cultures by using SEM. Methodological procedures, technical challenges, and relevance of SEM in determining the biological profile of PC-based materials are discussed. SEM observations demonstrate that commercial MTA formulations show favorable cell attachment properties, which is consistent with their successful clinical outcomes. The favorable cell attachment properties of PC and its modified formulations support its potential use as a substitute for mineral trioxide aggregate. However, researchers should carefully select cell types for their SEM investigations that would be in contact with the proposed PC-based combinations in the clinical situation. Despite being a technical challenge, SEM provides useful information on the cell attachment properties of PC-based materials; however, other assays for cell proliferation and viability are essential to come up with an accurate in vitro biological profile of any given PC-based formulation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Linnemann, Amelia K.; Krawetz, Stephen A.
2009-01-01
DNA loop organization by nuclear scaffold/matrix attachment is a key regulator of gene expression that may provide a means to modulate phenotype. We have previously shown that attachment of genes to the NaCl-isolated nuclear matrix correlates with their silencing in HeLa cells. In contrast, expressed genes were associated with the lithium 3,5-diiodosalicylate (LIS)-isolated nuclear scaffold. To define their role in determining phenotype matrix attached regions (MARs) on human chromosomes 14–18 were identified as a function of expression in a primary cell line. The locations of MARs in aortic adventitial fibroblast (AoAF) cells were very stable (r = 0.909) and 96% of genes attached at MARs are silent (P < 0.001). Approximately one-third of the genes uniquely expressed in AoAF cells were associated with the HeLa cell nuclear matrix and silenced. Comparatively, 81% were associated with the AoAF cell nuclear scaffold (P < 0.001) and expressed. This suggests that nuclear scaffold/matrix association mediates a portion of cell type-specific gene expression thereby modulating phenotype. Interestingly, nuclear matrix attachment and thus silencing of specific genes that regulate proliferation and maintain the integrity of the HeLa cell genome suggests that transformation may at least in part be achieved through aberrant nuclear matrix attachment. PMID:19276204
Integrin Expression Regulates Neuroblastoma Attachment and Migration1
Meyer, Amy; van Golen, Cynthia M.; Kim, Bhumsoo; van Golen, Kenneth L.; Feldman, Eva L.
2004-01-01
Abstract Neuroblastoma (NBL) is the most common malignant disease of infancy, and children with bone metastasis have a mortality rate greater than 90%. Two major classes of proteins, integrins and growth factors, regulate the metastatic process. We have previously shown that tumorigenic NBL cells express higher levels of the type I insulin-like growth factor receptor (IGF-IR) and that β1 integrin expression is inversely proportional to tumorigenic potential in NBL. In the current study, we analyze the effect of β1 integrin and IGF-IR on NBL cell attachment and migration. Nontumorigenic S-cells express high levels of β1 integrin, whereas tumorigenic N-cells express little β1 integrin. Alterations in β1 integrin are due to regulation at the protein level, as translation is decreased in N-type cells. Moreover, inhibition of protein synthesis shows that β1 integrin is degraded more slowly in S-type cells (SHEP) than in N-type cells (SH-SY5Y and IMR32). Inhibition of α5β1 integrin prevents SHEP (but not SH-SY5Y or IMR32) cell attachment to fibronectin and increases SHEP cell migration. Increases in IGF-IR decrease β1 integrin expression, and enhance SHEP cell migration, potentially through increased expression of αvβ3. These data suggest that specific classes of integrins in concert with IGF-IR regulate NBL attachment and migration. PMID:15256055
Substratum interfacial energetic effects on the attachment of marine bacteria
NASA Astrophysics Data System (ADS)
Ista, Linnea Kathryn
Biofilms represent an ancient, ubiquitous and influential form of life on earth. Biofilm formation is initiated by attachment of bacterial cells from an aqueous suspension onto a suitable attachment substratum. While in certain, well studied cases initial attachment and subsequent biofilm formation is mediated by specific ligand-receptor pairs on the bacteria and attachment substratum, in the open environment, including the ocean, it is assumed to be non-specific and mediated by processes similar to those that drive adsorption of colloids at the water-solid interface. Colloidal principles are studied to determine the molecular and physicochemical interactions involved in the attachment of the model marine bacterium, Cobetia marina to model self-assembled monolayer surfaces. In the simplest application of colloidal principles the wettability of attachment substrata, as measured by the advancing contact angle of water (theta AW) on the surface, is frequently used as an approximation for the surface tension. We demonstrate the applicability of this approach for attachment of C. marina and algal zoospores and extend it to the development of a means to control attachment and release of microorganisms by altering and tuning surface thetaAW. In many cases, however, thetaAW does not capture all the information necessary to model attachment of bacteria to attachment substrata; SAMs with similar thetaAW attach different number of bacteria. More advanced colloidal models of initial bacterial attachment have evolved over the last several decades, with the emergence of the model proposed by van Oss, Chaudhury and Good (VCG) as preeminent. The VCG model enables calculation of interfacial tensions by dividing these into two major interactions thought to be important at biointerfaces: apolar, Lifshitz-van der Waals and polar, Lewis acid-base (including hydrogen bonding) interactions. These interfacial tensions are combined to yield DeltaGadh, the free energy associated with attachment of bacteria to a substratum. We use VCG to model DeltaGadh and interfacial tensions as they relate to model bacterial attachment on SAMs that accumulate cells to different degrees. Even with the more complex interactions measured by VCG, surface energy of the attachment substratum alone was insufficient to predict attachment. VCG was then employed to model attachment of C. marina to a series of SAMs varying systematically in the number of ethylene glycol residues present in the molecule; an identical series has been previously shown to vary dramatically in the number of cells attached as a function of ethylene glycols present. Our results indicate that while VCG adequately models the interfacial tension between water and ethylene glycol SAMs in a manner that predicts bacterial attachment, DeltaGadh as calculated by VCG neither qualitatively nor quantitatively reflects the attachment data. The VCG model, thus, fails to capture specific information regarding the interactions between the attaching bacteria, water, and the SAM. We show that while hydrogen-bond accepting interactions are very well captured by this model, the ability for SAMs and bacteria to donate hydrogen bonds is not adequately described as the VCG model is currently applied. We also describe ways in which VCG fails to capture two specific biological aspects that may be important in bacterial attachment to surfaces:1.) specific interactions between molecules on the surface and bacteria and 2.) bacterial cell surface heterogeneities that may be important in differential attachment to different substrata.
Jungreuthmayer, C; Jaasma, M J; Al-Munajjed, A A; Zanghellini, J; Kelly, D J; O'Brien, F J
2009-05-01
Tissue-engineered bone shows promise in meeting the huge demand for bone grafts caused by up to 4 million bone replacement procedures per year, worldwide. State-of-the-art bone tissue engineering strategies use flow perfusion bioreactors to apply biophysical stimuli to cells seeded on scaffolds and to grow tissue suitable for implantation into the patient's body. The aim of this study was to quantify the deformation of cells seeded on a collagen-GAG scaffold which was perfused by culture medium inside a flow perfusion bioreactor. Using a microCT scan of an unseeded collagen-GAG scaffold, a sequential 3D CFD-deformation model was developed. The wall shear stress and the hydrostatic wall pressure acting on the cells were computed through the use of a CFD simulation and fed into a linear elastostatics model in order to calculate the deformation of the cells. The model used numerically seeded cells of two common morphologies where cells are either attached flatly on the scaffold wall or bridging two struts of the scaffold. Our study showed that the displacement of the cells is primarily determined by the cell morphology. Although cells of both attachment profiles were subjected to the same mechanical load, cells bridging two struts experienced a deformation up to 500 times higher than cells only attached to one strut. As the scaffold's pore size determines both the mechanical load and the type of attachment, the design of an optimal scaffold must take into account the interplay of these two features and requires a design process that optimizes both parameters at the same time.
Histatin 1 Enhances Cell Adhesion to Titanium in an Implant Integration Model.
van Dijk, I A; Beker, A F; Jellema, W; Nazmi, K; Wu, G; Wismeijer, D; Krawczyk, P M; Bolscher, J G M; Veerman, E C I; Stap, J
2017-04-01
Cellular adhesion is essential for successful integration of dental implants. Rapid soft tissue integration is important to create a seal around the implant and prevent infections, which commonly cause implant failure and can result in bone loss. In addition, soft tissue management is important to obtain good dental aesthetics. We previously demonstrated that the salivary peptide histatin 1 (Hst1) causes a more than 2-fold increase in the ability of human adherent cells to attach and spread on a glass surface. Cells treated with Hst1 attached more rapidly and firmly to the substrate and to each other. In the current study, we examine the potential application of Hst1 for promotion of dental implant integration. Our results show that Hst1 enhances the attachment and spreading of soft tissue cell types (oral epithelial cells and fibroblasts) to titanium (Ti) and hydroxyapatite (HAP), biomaterials that have found wide applications as implant material in dentistry and orthopedics. For improved visualization of cell adhesion to Ti, we developed a novel technique that uses sputtering to deposit a thin, transparent layer of Ti onto glass slides. This approach allows detailed, high-resolution analysis of cell adherence to Ti in real time. Furthermore, our results suggest that Hst1 has no negative effects on cell survival. Given its natural occurrence in the oral cavity, Hst1 could be an attractive agent for clinical application. Importantly, even though Hst1 is specific for saliva of humans and higher primates, it stimulated the attachment and spreading of canine cells, paving the way for preclinical studies in canine models.
Ng, Wy Ching; Londrigan, Sarah L.; Nasr, Najla; Cunningham, Anthony L.; Turville, Stuart; Brooks, Andrew G.
2015-01-01
ABSTRACT It is well established that influenza A virus (IAV) attachment to and infection of epithelial cells is dependent on sialic acid (SIA) at the cell surface, although the specific receptors that mediate IAV entry have not been defined and multiple receptors may exist. Lec2 Chinese hamster ovary (CHO) cells are SIA deficient and resistant to IAV infection. Here we demonstrate that the expression of the C-type lectin receptor langerin in Lec2 cells (Lec2-Lg) rendered them permissive to IAV infection, as measured by replication of the viral genome, transcription of viral mRNA, and synthesis of viral proteins. Unlike SIA-dependent infection of parental CHO cells, IAV attachment and infection of Lec2-Lg cells was mediated via lectin-mediated recognition of mannose-rich glycans expressed by the viral hemagglutinin glycoprotein. Lec2 cells expressing endocytosis-defective langerin bound IAV efficiently but remained resistant to IAV infection, confirming that internalization via langerin was essential for infectious entry. Langerin-mediated infection of Lec2-Lg cells was pH and dynamin dependent, occurred via clathrin- and caveolin-mediated endocytic pathways, and utilized early (Rab5+) but not late (Rab7+) endosomes. This study is the first to demonstrate that langerin represents an authentic receptor that binds and internalizes IAV to facilitate infection. Moreover, it describes a unique experimental system to probe specific pathways and compartments involved in infectious entry following recognition of IAV by a single cell surface receptor. IMPORTANCE On the surface of host cells, sialic acid (SIA) functions as the major attachment factor for influenza A viruses (IAV). However, few studies have identified specific transmembrane receptors that bind and internalize IAV to facilitate infection. Here we identify human langerin as a transmembrane glycoprotein that can act as an attachment factor and a bone fide endocytic receptor for IAV infection. Expression of langerin by an SIA-deficient cell line resistant to IAV rendered cells permissive to infection. As langerin represented the sole receptor for IAV infection in this system, we have defined the pathways and compartments involved in infectious entry of IAV into cells following recognition by langerin. PMID:26468543
Modulation of osteoblast attachment and growth in vitro by inertial forces
NASA Astrophysics Data System (ADS)
Kacena, Melissa Ann
1999-11-01
Spaceflight exploration and associated experiments show that human bones lose in density during inertial unloading, due principally to their demineralization. This research project examines the effect of gravity on osteoblast attachment and function in various inertial environments. Chicken calvarial osteoblasts were cultured under the following inertial conditions: spaceflight, simulated shuttle launch accelerations and vibrations, centrifugation, clino-rotation, and inversion. Cultures exposed to these conditions were compared with cultures grown in the laboratory as static 1G controls. Electron and light microscopy revealed the number of total osteoblasts attached to their substrate. Biochemical assays discerned changes in viable cell number, alkaline phosphatase levels, and mineralization. Immunohistochemical assays were used to investigate differences in cytoskeletal and extracellular matrix protein concentrations in the cultures, the percentage of proliferative cells, and cell viability. Compared to controls, spaceflight results indicated that the number of attached osteoblast cells was reduced. Launch simulation data indicated that the associated accelerations and vibrations may contribute to the reduction of attached osteoblasts in spaceflight cultures. Following centrifugation, the number of attached cells was unaltered; however, immunostaining of actin, fibronectin, and vinculin did show alterations in cultures exposed to hypergravity. Confluent cultures that were right side up, inverted, and clino-rotated contained a comparable number of attached cells and functioned similarly on the basis of measured alkaline phosphatase and bound calcium content. Sparse clino-rotated or inverted cultures showed an immediate response of diminished viable osteoblast numbers, but this effect disappeared with time and all remaining attached cells functioned similarly (APase and bound calcium). On the basis of these data osteoblast attachment and function in confluent cultures is minimally, if at all, affected by alterations in inertial environments. However, in sparse cultures about half as many cells are found attached initially. The remaining attached cells appear to multiply and function normally. These results suggest that the effects of spaceflight on bone are thus not likely to be caused by direct intrinsic effects of gravity on single osteoblasts that can be simulated in laboratory experiments in vitro experiments.
Tymchenko, Nina; Nilebäck, Erik; Voinova, Marina V; Gold, Julie; Kasemo, Bengt; Svedhem, Sofia
2012-12-01
The mechanical properties and responses of cells to external stimuli (including drugs) are closely connected to important phenomena such as cell spreading, motility, activity, and potentially even differentiation. Here, reversible changes in the viscoelastic properties of surface-attached fibroblasts were induced by the cytoskeleton-perturbing agent cytochalasin D, and studied in real-time by the quartz crystal microbalance with dissipation (QCM-D) technique. QCM-D is a surface sensitive technique that measures changes in (dynamically coupled) mass and viscoelastic properties close to the sensor surface, within a distance into the cell that is usually only a fraction of its size. In this work, QCM-D was combined with light microscopy to study in situ cell attachment and spreading. Overtone-dependent changes of the QCM-D responses (frequency and dissipation shifts) were first recorded, as fibroblast cells attached to protein-coated sensors in a window equipped flow module. Then, as the cell layer had stabilised, morphological changes were induced in the cells by injecting cytochalasin D. This caused changes in the QCM-D signals that were reversible in the sense that they disappeared upon removal of cytochalasin D. These results are compared to other cell QCM-D studies. Our results stress the combination of QCM-D and light microscopy to help interpret QCM-D results obtained in cell assays and thus suggests a direction to develop the QCM-D technique as an even more useful tool for real-time cell studies.
Wan, Minxi; Hou, Dongmei; Li, Yuanguang; Fan, Jianhua; Huang, Jianke; Liang, Songtao; Wang, Weiliang; Pan, Ronghua; Wang, Jun; Li, Shulan
2014-07-01
As the optimal source of astaxanthin, Haematococcus pluvialis was cultured for commercial production of astaxanthin through two continuous phases: cell growth and astaxanthin induction. In this study, the efficiency of an attached system for producing astaxanthin from H. pluvialis was investigated and compared to that of the suspended system (bubble column bioreactor) under various conditions. Results showed that this attached system is more suitable for photoinduction of H. pluvialis than the suspended bioreactor. Under the optimal conditions, the astaxanthin productivity of the attached system was 65.8 mg m(-2)d(-1) and 2.4-fold of that in the suspended system. This attached approach also offers other advantages over suspended systems, such as, producing astaxanthin under a wide range of light intensities and temperatures, saving water, ease to harvest cells, resisting contamination. Therefore, the attached approach can be considered an economical, environmentally friendly and highly-efficient technology for producing astaxanthin from H. pluvialis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mouse embryo attachment to substratum and interaction of trophoblast with cultured cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, R.H.; Spindle, A.I.; Pedersen, R.A.
1979-06-01
Hatching, attachment, and trophoblast outgrowth of mouse embryos in vitro were examined as a model for implantation. Mouse embryos attached and grew out on glass cover slips that were partially covered with cultured mouse cells (L cells, liver cells, transformed JLS-V11 cells, and teratocarcinoma cells). Scanning electron microscopy showed that processes of these cells made contact with trophoblast, but there was no evidence of cell lysis or of phagocytosis of the cells by trophoblast. Time-lapse cinematography showed that after contact the cultured mouse cells retracted from the trophoblast, which then spread into the areas vacated by those cells. This suggestsmore » a means by which the trophoblast gains entry into the endometrium without destruction of maternal cells. Neuraminidase (100 or 250 units/ml) had no effect on attachment of mouse embryos to glass. However, attachment was inhibited by trypsin at concentrations of 0.25%, 0.025%, and 0.0025%. Treatment of early blastocysts with diazooxo-norleucine, an inhibitor of glycoprotein synthesis, decreased the number of embryos hatching from the zona pellucida; treatment at the late blastocyst stage decreased hatching to a lesser extent. Among the late blastocysts that did hatch, the number forming trophoblast outgrowths was lower than in controls. These results suggest that glycoproteins may be of importance for embryo hatching, attachment, and outgrowth.« less
Effect of C-implantation on Nerve-Cell Attachment to Polystyrene Films
NASA Astrophysics Data System (ADS)
Sommani, Piyanuch; Tsuji, Hiroshi; Kitamura, Tsuyoshi; Hattori, Mitsutaka; Yamada, Tetsuya; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo
The surfaces of the polystyrene films spin-coated on glass were modified by carbon negative-ion implantation with various ion doses from 1×1014 to 3×1016 ions/cm2 at 5 and 10 keV. The implantation conditions with and without a pattering mask were for investigation of the cell-attachment properties and for evaluation of surface physical properties of contact angle, respectively. The contact angles of modified surface were investigated by pure water drop and air bubble method. The lowest angle value of the implanted films at 5 and 10 keV were approximately 72° at 3×1015 ions/cm2 after dipping in the de-ionized water for 2 hours. The lowering of contact angles on C-implanted surfaces when increase the ion dose is due to formation of the OH and C-O bonds. Nerve-cell-attachment properties of modified surface were investigated by the nerve-like cell of rat adrenal pheochromocytoma (PC12h) in vitro. After 2 days culture of the PC12h cells, no cells attached on the polystyrene films implanted with low ion dose from 1×1014 to 3×1014 ions/cm2. On the polystyrene films implanted with the dose order of 1015 ions/cm2, the cells selectively attached only on the implanted region. Whereas on the surfaces implanted with high dose such as 1×1016 and 3×1016 ions/cm2 mostly cells attached on the implanted region, and some attached on the unimplanted region, as well as cells were abnormal in shape and large size. Therefore, the suitable dose implantation for the selective-attachment of nerve-cells on the polystyrene films implanted at 5 and 10 keV were obtained around the dose order of 1015 ions/cm2, and the best condition for the selective attachment properties was at 3×1015 ions/cm2 corresponding to the lowest contact angle.
Pless-Petig, Gesine; Walter, Björn; Bienholz, Anja
2018-01-01
Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/106 cells after cold storage, 5 ± 3 nmol/106 cells after rewarming vs. control 29 ± 6 nmol/106 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec−1 per 106 cells after rewarming vs. control 232 ± 83 pmol sec−1 per 106 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/106 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production—as elicited by an inhibitor of the respiratory chain, antimycin A—can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment with subsequent energy deficiency is a key factor for the lack of attachment of cold-stored hepatocyte suspensions. PMID:29390882
Pless-Petig, Gesine; Walter, Björn; Bienholz, Anja; Rauen, Ursula
2017-12-01
Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/10 6 cells after cold storage, 5 ± 3 nmol/10 6 cells after rewarming vs. control 29 ± 6 nmol/10 6 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec -1 per 10 6 cells after rewarming vs. control 232 ± 83 pmol sec -1 per 10 6 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/10 6 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production-as elicited by an inhibitor of the respiratory chain, antimycin A-can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment with subsequent energy deficiency is a key factor for the lack of attachment of cold-stored hepatocyte suspensions.
Megakaryocyte Polyploidization and Proplatelet Formation in Low-Attachment Conditions.
Schlinker, Alaina C; Duncan, Mark T; DeLuca, Teresa A; Whitehead, David C; Miller, William M
2016-07-15
In vitro -derived platelets (PLTs), which could provide an alternative source of PLTs for patient transfusions, are formed from polyploid megakaryocytes (MKs) that extend long cytoplasmic projections, termed proplatelets (proPLTs). In this study, we compared polyploidization and proPLT formation (PPF) of MKs cultured on surfaces that either promote or inhibit protein adsorption and subsequent cell adhesion. A megakaryoblastic cell line exhibited increased polyploidization and arrested PPF on a low-attachment surface. Primary human MKs also showed low levels of PPF on the same surface, but no difference in ploidy. Importantly, both cell types exhibited accelerated PPF after transfer to a surface that supports attachment, suggesting that pre-culture on a non-adhesive surface may facilitate synchronization of PPF and PLT generation in culture.
The Laminin Receptor Is a Cellular Attachment Receptor for Classical Swine Fever Virus
Chen, Jianing; He, Wen-Rui; Shen, Liang; Dong, Hong; Yu, Jiahui; Wang, Xiao; Yu, Shaoxiong; Li, Yongfeng; Li, Su; Luo, Yuzi; Sun, Yuan
2015-01-01
ABSTRACT Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious, economically important viral disease in many countries. The Erns and E2 envelope glycoproteins are responsible for the binding to and entry into the host cell by CSFV. To date, only one cellular receptor, heparan sulfate (HS), has been identified as being involved in CSFV attachment. HS is also present on the surface of various cells that are nonpermissive to CSFV. Hence, there must be another receptor(s) that has been unidentified to date. In this study, we used a set of small interfering RNAs (siRNAs) against a number of porcine cell membrane protein genes to screen cellular proteins involved in CSFV infection. This approach resulted in the identification of several proteins, and of these, the laminin receptor (LamR) has been demonstrated to be a cellular receptor for several viruses. Confocal analysis showed that LamR is colocalized with CSFV virions on the membrane, and a coimmunoprecipitation assay indicated that LamR interacts with the CSFV Erns protein. In inhibition assays, anti-LamR antibodies, soluble laminin, or LamR protein significantly inhibited CSFV infection in a dose-dependent manner. Transduction of PK-15 cells with a recombinant lentivirus expressing LamR yielded higher viral titers. Moreover, an attachment assay demonstrated that LamR functions during virus attachment. We also demonstrate that LamR acts as an alternative attachment receptor, especially in SK6 cells. These results indicate that LamR is a cellular attachment receptor for CSFV. IMPORTANCE Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), an economically important viral disease affecting the pig industry in many countries. To date, only heparan sulfate (HS) has been identified to be an attachment receptor for CSFV. Here, using RNA interference screening with small interfering RNAs (siRNAs) against a number of porcine membrane protein genes, we identified the laminin receptor (LamR) to be another attachment receptor. We demonstrate the involvement of LamR together with HS in virus attachment, and we elucidate the relationship between LamR and HS. LamR also serves as an attachment receptor for many viral pathogens, including dengue virus, a fatal human flavivirus. The study will help to enhance our understanding of the life cycle of flaviviruses and the development of antiviral strategies for flaviviruses. PMID:25694590
Krause, Sabrina; Boeck, Christina; Gumpp, Anja M.; Rottler, Edit; Schury, Katharina; Karabatsiakis, Alexander; Buchheim, Anna; Gündel, Harald; Kolassa, Iris-Tatjana; Waller, Christiane
2018-01-01
Background: Child maltreatment (CM) and attachment experiences are closely linked to alterations in the human oxytocin (OXT) system. However, human data about oxytocin receptor (OXTR) protein levels are lacking. Therefore, we investigated oxytocin receptor (OXTR) protein levels in circulating immune cells and related them to circulating levels of OXT in peripheral blood. We hypothesized reduced OXTR protein levels, associated with both, experiences of CM and an insecure attachment representation. Methods: OXTR protein expressions were analyzed by western blot analyses in peripheral blood mononuclear cells (PBMC) and plasma OXT levels were determined by radioimmunoassay (RIA) in 49 mothers. We used the Childhood Trauma Questionnaire (CTQ) to assess adverse childhood experiences. Attachment representations (secure vs. insecure) were classified using the Adult Attachment Projective Picture System (AAP) and levels of anxiety and depression were assessed with the German version of the Hospital Depression and Anxiety scale (HADS-D). Results: CM-affected women showed significantly lower OXTR protein expression with significantly negative correlations between the OXTR protein expression and the CTQ sum score, whereas plasma OXT levels showed no significant differences in association with CM. Lower OXTR protein expression in PBMC were particularly pronounced in the group of insecurely attached mothers compared to the securely attached group. Anxiety levels were significantly higher in CM-affected women. Conclusion: This study demonstrated a significant association between CM and an alteration of OXTR protein expression in human blood cells as a sign for chronic, long-lasting alterations in this attachment-related neurobiological system. PMID:29535656
Bernhardt, Anne; Lode, Anja; Peters, Fabian; Gelinsky, Michael
2013-04-01
Granule-shaped calcium phosphate-based bone graft materials are often required for bone regeneration especially in implant dentistry. Two newly developed bone graft materials are Ceracell(®) , an open-celled highly porous bioceramic from β-tricalcium phosphate (β-TCP) under addition of bioglass and Osseolive(®) , an open porous glass ceramic with the general formula Ca2 KNa(PO4 )2 . The goal of this study was to characterize different modifications of the two bone graft materials in vitro in comparison to already established ceramic bone grafts Cerasorb M(®) , NanoBone(®) and BONIT Matrix(®) . Adhesion and proliferation of SaOS-2 osteoblast-like cells were evaluated quantitatively by determining DNA content and lactate dehydrogenase (LDH) activity and qualitatively by scanning electron microscopy (SEM). In addition, MTT cell-vitality staining was applied to confirm the attachment of viable cells to the different materials. Osteogenic differentiation was evaluated by measurement of alkaline phosphatase (ALP) activity as well as gene expression analysis of osteogenic markers using reverse transcriptase PCR. DNA content and LDH activity revealed good cell attachment and proliferation for Ceracell and Cerasorb M. When pre-incubated with cell-culture medium, also Osseolive showed good cell attachment and proliferation. Attachment and proliferation of osteoblast-like cells on NanoBone and BONIT Matrix was very low, even after pre-incubation with cell-culture medium. Specific ALP activity on Ceracell(®) , Osseolive (®) and Cerasorb M(®) increased with time and expression of bone-related genes ALP, osteonectin, osteopontin and bone sialoprotein II was demonstrated. Ceracell as well as Osseolive granules support proliferation and osteogenic differentiation in vitro and may be promising candidates for in vivo applications. © 2011 John Wiley & Sons A/S.
Yamamura, Keisuke; Miura, Tadashi; Kou, I; Muramatsu, Takashi; Furusawa, Masahiro; Yoshinari, Masao
2015-01-01
The purpose of this study was to investigate the influence of superhydrophilic treatments of titanium on the behavior of osteoblastlike cells. Superhydrophilic specimens were prepared with sandblast and acid-etching (DW), oxygen plasma (Plasma) and ultraviolet light (UV), and were stored in distilled water for 3 days immediately after these treatments. Specimens stored in air for 3 weeks were used as a control Air group. Initial cell attachment, proliferation, alkaline phosphatase activity, and osteocalcin secretion of mouse osteoblast-like cells MC3T3-E1 were enhanced more on superhydrophilic groups than were Air specimens. On confocal laser scanning microscope images of cell morphology, the expression of actin filaments was observed on the superhydrophilic groups, whereas relatively little actin filament expression was seen on the Air surfaces on all culture periods. These results indicate that DW, Plasma, or UV treatment has potential for the creation and maintenance of superhydrophilic surfaces and the enhancement of the initial attachment, proliferation, and differentiation of osteoblast-like cells.
Stylostome organization in feeding Leptotrombidium larvae (Acariformes: Trombiculidae).
Shatrov, Andrew B; Takahashi, Mamoru; Noda, Shinichi; Misumi, Hitoko
2014-01-01
The stylostome of larvae of the trombiculids Leptotrombidium scutellare (Nagayo et al.), Leptotrombidium fletcheri (Womersley et Heaslip) and Leptotrombidium deliense (Walch) was studied experimentally at different time intervals after larval attachment using the histological method. The stylostome of these species has the same organization and belongs to the epidermal combined with the mixed type, developing more in width than in length. Neither transverse nor conspicuous longitudinal layers are present within the stylostome walls, which stain predominantly in red with Azan, also showing longitudinal portions with blue staining. Larvae tend to attach closely to each other and scabs, consisting of the hyperkeratotic epidermal layers fusing with migrating inflammatory cells, develop around the attachment sites. The dermis shows inflammatory foci with dilated capillaries and inflammatory cells inserting in the connective tissue layer underneath the stylostome. The feeding cavity, which is moderately expressed, may be found either in the epidermis or in the dermis. It contains inflammatory cells and their debris in the liquefied host tissues. The stylostome length depends on the character of the attachment site (the thicker epidermis or scab the longer the stylostome), and does not directly correspond to the stages of larval feeding. Nevertheless, at the 48-h time interval, nearly all attached larvae are found to be fully fed and their midgut cells are filled with nutritional globules.
Bioreactor and methods for producing synchronous cells
NASA Technical Reports Server (NTRS)
Helmstetter, Charles E. (Inventor); Thornton, Maureen (Inventor); Gonda, Steve (Inventor)
2005-01-01
Apparatus and methods are directed to a perfusion culture system in which a rotating bioreactor is used to grow cells in a liquid culture medium, while these cells are attached to an adhesive-treated porous surface. As a result of this arrangement and its rotation, the attached cells divide, with one cell remaining attached to the substrate, while the other cell, a newborn cell is released. These newborn cells are of approximately the same age, that are collected upon leaving the bioreactor. The populations of newborn cells collected are of synchronous and are minimally, if at all, disturbed metabolically.
NASA Astrophysics Data System (ADS)
Tanii, Takashi; Sasaki, Kosuke; Ichisawa, Kota; Demura, Takanori; Beppu, Yuichi; Vu, Hoan Anh; Thanh Chi, Hoan; Yamamoto, Hideaki; Sato, Yuko
2011-06-01
The adhesive ability of two human pancreatic cancer cell lines was evaluated using organosilane monolayer templates (OMTs). Using the OMT, the spreading area of adhered cells can be limited, and this enables us to focus on the initial attachment process of adhesion. Moreover, it becomes possible to arrange the cells in an array and to quantitatively evaluate the number of attached cells. The adhesive ability of the cancer cells cultured on the OMT was controlled by adding (-)-epigallocatechin-3-gallate (EGCG), which blocks a receptor that mediates cell adhesion and is overexpressed in cancer cells. Measurement of the relative ability of the cancer cells to attach to the OMT revealed that the ability for attachment decreased with increasing EGCG concentration. The results agreed well with the western blot analysis, indicating that the OMT can potentially be employed to evaluate the adhesive ability of various cancer cells.
Inhibition and enhancement of microbial surface colonization: the role of silicate composition
Roberts, Jennifer A.
2004-01-01
Classical treatment of cell attachment by models of filtration or coulombic attraction assumes that attachment of cells to mineral surfaces would be controlled by factors such as response to predation, collision efficiency, or coulombic attraction between the charged groups at the mineral and cell surfaces. In the study reported here, the passive model of attachment was investigated using a native microbial consortium and a variety of Al- and Fe-bearing silicates and oxides to determine if other controls, such as mineral composition, also influence the interaction between cells and surfaces. Results from in situ colonization studies in an anaerobic groundwater at pH 6.8 combined with most probable number analyses (MPN) of surface-adherent cells demonstrate that electrostatic effects dominate microbial colonization on positively charged oxide surfaces regardless of mineral composition. In contrast, on negatively charged silicate minerals and glasses, the solid phase composition is a factor in determining the extent of microbial colonization, as well as the diversity of the attached community. In particular, silicates containing more than 1.2% Al exhibit less biomass than Al-poor silicates and MPN suggests a shift in community diversity, possibly indicating Al toxicity on these surfaces. When Fe is present in the silicate, however, this trend is reversed and abundant colonization of the surface is observed. Here, microorganisms preferentially colonize those silicate surfaces that offer beneficial nutrients and avoid those that contain potentially toxic elements.
Chan, C W; Hussain, I; Waugh, D G; Lawrence, J; Man, H C
2014-09-01
The objectives of this study were to investigate the effect of laser-induced surface features on the morphology, attachment and viability of mesenchymal stem cells (MSCs) at different periods of time, and to evaluate the biocompatibility of different zones: laser-melted zone (MZ), heat-affected zone (HAZ) and base metal (BM) in laser-treated NiTi alloy. The surface morphology and composition were studied by scanning electron microscope (SEM) and X-ray photoemission spectroscopy (XPS), respectively. The cell morphology was examined by SEM while the cell counting and viability measurements were done by hemocytometer and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The results indicated that the laser-induced surface features, such as surface roughening, presence of anisotropic dendritic pattern and complete surface Ni oxidation were beneficial to improve the biocompatibility of NiTi as evidenced by the highest cell attachment (4 days of culture) and viability (7 days of culture) found in the MZ. The biocompatibility of the MZ was the best, followed by the BM with the HAZ being the worst. The defective and porous oxide layer as well as the coarse grained structure might attribute to the inferior cell attachment (4 days of culture) and viability (7 days of culture) on the HAZ compared with the BM which has similar surface morphology. Copyright © 2014 Elsevier B.V. All rights reserved.
Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L
2010-09-01
Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Pless-Petig, Gesine; Singer, Bernhard B; Rauen, Ursula
2012-01-01
Primary hepatocytes are of great importance for basic research as well as cell transplantation. However, their stability, especially in suspension, is very low. This feature severely compromises storage and shipment. Based on previous studies with adherent cells, we here assessed cold storage injury in rat hepatocyte suspensions and aimed to find a cold storage solution that preserves viability, attachment ability and functionality of these cells. Rat hepatocyte suspensions were stored in cell culture medium, organ preservation solutions and modified TiProtec solutions at 4°C for one week. Viability and cell volume were determined by flow cytometry. Thereafter, cells were seeded and density and metabolic capacity (reductive metabolism, forskolin-induced glucose release, urea production) of adherent cells were assessed. Cold storage injury in hepatocyte suspensions became evident as cell death occurring during cold storage or rewarming or as loss of attachment ability. Cell death during cold storage was not dependent on cell swelling and was almost completely inhibited in the presence of glycine and L-alanine. Cell attachment could be greatly improved by use of chloride-poor solutions and addition of iron chelators. Using a chloride-poor, potassium-rich storage solution containing glycine, alanine and iron chelators, cultures with 75% of the density of control cultures and with practically normal cell metabolism could be obtained after one week of cold storage. In the solution presented here, cold storage injury of hepatocyte suspensions, differing from that of adherent hepatocytes, was effectively inhibited. The components which acted on the different injurious processes were identified.
NASA Astrophysics Data System (ADS)
Carlsson, Roland; Engvall, Eva; Freeman, Aaron; Ruoslahti, Erkki
1981-04-01
Laminin, a basement membrane glycoprotein isolated from cultures of mouse endodermal cells and rat yolk sac carcinoma cells, promoted the attachment of liver cells obtained from regenerating mouse liver. Cells from normal mouse liver attached readily to dishes coated with fibronectin but attached poorly to surfaces coated with laminin. Both proteins efficiently promoted the attachment of cells from livers undergoing regeneration. After regeneration, the attachment to laminin returned to the low levels found in animals not subjected to partial hepatectomy but attachment to fibronectin remained high. Immunofluorescent staining of sections of normal liver with antilaminin revealed the presence of laminin in or adjacent to the walls of the bile ducts and blood vessels. After induction of regeneration by partial hepatectomy, increased amounts of laminin appeared in the sinusoidal areas. After carbon tetrachloride poisoning, staining for laminin was especially pronounced in the necrotic and postnecrotic areas around the central veins. This additional expression of laminin was transient. It reached a maximum around 5-6 days after the injury and then gradually disappeared. These findings show that laminin is an adhesive protein. The increase of laminin in regenerating liver and the adhesiveness of cells from such livers to laminin suggest a role for laminin in the maintenance of a proper tissue organization during liver regeneration.
Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles.
van Gestel, Jordi; Nowak, Martin A
2016-02-01
Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a 'sticky' cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles.
Koga, Hideyuki; Shimaya, Masayuki; Muneta, Takeshi; Nimura, Akimoto; Morito, Toshiyuki; Hayashi, Masaya; Suzuki, Shiro; Ju, Young-Jin; Mochizuki, Tomoyuki; Sekiya, Ichiro
2008-01-01
Current cell therapy for cartilage regeneration requires invasive procedures, periosteal coverage and scaffold use. We have developed a novel transplantation method with synovial mesenchymal stem cells (MSCs) to adhere to the cartilage defect. For ex vivo analysis in rabbits, the cartilage defect was faced upward, filled with synovial MSC suspension, and held stationary for 2.5 to 15 minutes. The number of attached cells was examined. For in vivo analysis in rabbits, an autologous synovial MSC suspension was placed on the cartilage defect, and the position was maintained for 10 minutes to adhere the cells to the defect. For the control, either the same cell suspension was injected intra-articularly or the defects were left empty. The three groups were compared macroscopically and histologically. For ex vivo analysis in humans, in addition to the similar experiment in rabbits, the expression and effects of neutralizing antibodies for adhesion molecules were examined. Ex vivo analysis in rabbits demonstrated that the number of attached cells increased in a time-dependent manner, and more than 60% of cells attached within 10 minutes. The in vivo study showed that a large number of transplanted synovial MSCs attached to the defect at 1 day, and the cartilage defect improved at 24 weeks. The histological score was consistently better than the scores of the two control groups (same cell suspension injected intra-articularly or defects left empty) at 4, 12, and 24 weeks. Ex vivo analysis in humans provided similar results to those in rabbits. Intercellular adhesion molecule 1-positive cells increased between 1 minute and 10 minutes, and neutralizing antibodies for intercellular adhesion molecule 1, vascular cell adhesion molecule 1 and activated leukocyte-cell adhesion molecule inhibited the attachment. Placing MSC suspension on the cartilage defect for 10 minutes resulted in adherence of >60% of synovial MSCs to the defect, and promoted cartilage regeneration. This adherent method makes it possible to adhere MSCs with low invasion, without periosteal coverage, and without a scaffold.
CPV Cell Infant Mortality Study
NASA Astrophysics Data System (ADS)
Bosco, Nick; Sweet, Cassi; Silverman, Timothy J.; Kurtz, Sarah
2011-12-01
Six hundred and fifty CPV cells were characterized before packaging and then after a four-hour concentrated on-sun exposure. An observed infant mortality failure rate was reproduced and attributed to epoxy die-attach voiding at the corners of the cells. These voids increase the local thermal resistance allowing thermal runaway to occur under normal operating conditions in otherwise defect-free cells. FEM simulations and experiments support this hypothesis. X-ray transmission imaging of the affected assemblies was found incapable of detecting all suspect voids and therefore cannot be considered a reliable screening technique in the case of epoxy die-attach.
Vilardell, A M; Cinca, N; Garcia-Giralt, N; Dosta, S; Cano, I G; Nogués, X; Guilemany, J M
2018-06-01
Three different surface treatments on a Ti6Al4V alloy have been in vitro tested for possible application in cementless joint prosthesis. All of them involve the novelty of using the Cold Spray technology for their deposition: (i) an as-sprayed highly rough titanium and, followed by the deposition of a thin hydroxyapatite layer with (ii) microcrystalline or (iii) nanocrystalline structure. Primary human osteoblasts were extracted from knee and seeded onto the three different surfaces. Cell viability was tested by MTS and LIVE/DEAD assays, cell differentiation by alkaline phosphatase (ALP) quantification and cell morphology by Phalloidin staining. All tests were carried out at 1, 7 and 14 days of cell culture. Different cell morphologies between titanium and hydroxyapatite surfaces were exhibited. At 1 day of cell culture, cells on the titanium coating were spread and flattened, expanding the filopodia actin filaments in all directions, while cells on the hydroxyapatite coatings showed round like-shape morphology due to slower attachment. Higher cell viability was detected at all times of cell culture on titanium coating due to a better attachment at 1 day. However, from 7 days of cell culture, cells on hydroxyapatite showed good attachment onto surfaces and highly increased their proliferation, mostly on nanocrystalline, achieving similar cell viability levels than titanium coatings. ALP levels were significantly higher in titanium, in part, because of greatest cell number. Overall, the best cell functional results were obtained on titanium coatings whereas microcrystalline hydroxyapatite presented the worst cellular parameters. However, results indicate that nanocrystalline hydroxyapatite coatings may achieve promising results for the faster cell proliferation once cells are attached on the surface. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Jiao; Guo, Ling; Zhou, Xia; Dong, Fengyun; Li, Liqun; Cheng, Zuowang; Xu, Yinghua; Liang, Jiyong; Xie, Qi; Liu, Ju
2016-01-01
Angiogenesis is required for the growth and metastasis of solid tumors. The anti-malarial agent dihydroartemisinin (DHA) demonstrates potent anti-angiogenic activity, but the underlying molecular mechanisms are not yet fully understood. During the process of angiogenesis, endothelial cells migrating from existing capillaries may undergo programmed cell death after detaching from the extracellular matrix, a process that is defined as anchorage-dependent apoptosis or anoikis. In the present study, DHA-induced cell death was compared in human umbilical vein endothelial cells (HUVECs) cultured in suspension and attached to culture plates. In suspended HUVECs, the cell viability was decreased and apoptosis was increased with the treatment of 50 µM DHA for 5 h, while the same treatment did not affect the attached HUVECs. In addition, 50 µM DHA increased the phosphorylation of c-Jun N-terminal kinase (JNK) in suspended HUVECs, but not in attached HUVECs, for up to 5 h of treatment. The JNK inhibitor, SP600125, reversed DHA-induced cell death in suspended HUVECs, suggesting that the JNK pathway may mediate DHA-induced endothelial cell anoikis. The data from the present study indicates a novel mechanism for understanding the anti-angiogenic effects of DHA, which may be used as a component for chemotherapy. PMID:27602117
Pedersen, Gitte A; Jensen, Helene H; Schelde, Anne-Sofie B; Toft, Charlotte; Pedersen, Hans N; Ulrichsen, Maj; Login, Frédéric H; Amieva, Manuel R; Nejsum, Lene N
2017-01-01
Foodborne Enteropathogenic Escherichia coli (EPEC) infections of the small intestine cause diarrhea especially in children and are a major cause of childhood death in developing countries. EPEC infects the apical membrane of the epithelium of the small intestine by attaching, effacing the microvilli under the bacteria and then forming microcolonies on the cell surface. We first asked the question where on epithelial cells EPEC attaches and grows. Using models of polarized epithelial monolayers, we evaluated the sites of initial EPEC attachment to the apical membrane and found that EPEC preferentially attached over the cell-cell junctions and formed microcolonies preferentially where three cells come together at tricellular tight junctions. The ability of EPEC to adhere increased when host cell polarity was compromised yielding EPEC access to basolateral proteins. EPEC pedestals contain basolateral cytoskeletal proteins. Thus, we asked if attached EPEC causes reorganization the protein composition of the host cell plasma membrane at sites of microcolony formation. We found that EPEC microcolony growth at the apical membrane resulted in a local accumulation of basolateral plasma membrane proteins surrounding the microcolony. Basolateral marker protein aquaporin-3 localized to forming EPEC microcolonies. Components of the basolateral vesicle targeting machinery were re-routed. The Exocyst (Exo70) was recruited to individual EPEC as was the basolateral vesicle SNARE VAMP-3. Moreover, several Rab variants were also recruited to the infection site, and their dominant-negative equivalents were not. To quantitatively study the recruitment of basolateral proteins, we created a pulse of the temperature sensitive basolateral VSVG, VSVG3-SP-GFP, from the trans-Golgi Network. We found that after release from the TGN, significantly more VSVG3-SP-GFP accumulated at the site of microcolony growth than on equivalent membrane regions of uninfected cells. This suggests that trafficking of vesicles destined for the basolateral membrane are redirected to the apical site of microcolony growth. Thus, in addition to disrupting host cell fence function, local host cell plasma membrane protein composition is changed by altered protein trafficking and recruitment of basolateral proteins to the apical microcolony. This may aid EPEC attachment and subsequent microcolony growth.
Pedersen, Gitte A.; Jensen, Helene H.; Schelde, Anne-Sofie B.; Toft, Charlotte; Pedersen, Hans N.; Ulrichsen, Maj; Login, Frédéric H.; Amieva, Manuel R.
2017-01-01
Foodborne Enteropathogenic Escherichia coli (EPEC) infections of the small intestine cause diarrhea especially in children and are a major cause of childhood death in developing countries. EPEC infects the apical membrane of the epithelium of the small intestine by attaching, effacing the microvilli under the bacteria and then forming microcolonies on the cell surface. We first asked the question where on epithelial cells EPEC attaches and grows. Using models of polarized epithelial monolayers, we evaluated the sites of initial EPEC attachment to the apical membrane and found that EPEC preferentially attached over the cell-cell junctions and formed microcolonies preferentially where three cells come together at tricellular tight junctions. The ability of EPEC to adhere increased when host cell polarity was compromised yielding EPEC access to basolateral proteins. EPEC pedestals contain basolateral cytoskeletal proteins. Thus, we asked if attached EPEC causes reorganization the protein composition of the host cell plasma membrane at sites of microcolony formation. We found that EPEC microcolony growth at the apical membrane resulted in a local accumulation of basolateral plasma membrane proteins surrounding the microcolony. Basolateral marker protein aquaporin-3 localized to forming EPEC microcolonies. Components of the basolateral vesicle targeting machinery were re-routed. The Exocyst (Exo70) was recruited to individual EPEC as was the basolateral vesicle SNARE VAMP-3. Moreover, several Rab variants were also recruited to the infection site, and their dominant-negative equivalents were not. To quantitatively study the recruitment of basolateral proteins, we created a pulse of the temperature sensitive basolateral VSVG, VSVG3-SP-GFP, from the trans-Golgi Network. We found that after release from the TGN, significantly more VSVG3-SP-GFP accumulated at the site of microcolony growth than on equivalent membrane regions of uninfected cells. This suggests that trafficking of vesicles destined for the basolateral membrane are redirected to the apical site of microcolony growth. Thus, in addition to disrupting host cell fence function, local host cell plasma membrane protein composition is changed by altered protein trafficking and recruitment of basolateral proteins to the apical microcolony. This may aid EPEC attachment and subsequent microcolony growth. PMID:28636623
Megakaryocyte Polyploidization and Proplatelet Formation in Low-Attachment Conditions
Schlinker, Alaina C.; Whitehead, David C.; Miller, William M.
2016-01-01
In vitro-derived platelets (PLTs), which could provide an alternative source of PLTs for patient transfusions, are formed from polyploid megakaryocytes (MKs) that extend long cytoplasmic projections, termed proplatelets (proPLTs). In this study, we compared polyploidization and proPLT formation (PPF) of MKs cultured on surfaces that either promote or inhibit protein adsorption and subsequent cell adhesion. A megakaryoblastic cell line exhibited increased polyploidization and arrested PPF on a low-attachment surface. Primary human MKs also showed low levels of PPF on the same surface, but no difference in ploidy. Importantly, both cell types exhibited accelerated PPF after transfer to a surface that supports attachment, suggesting that pre-culture on a non-adhesive surface may facilitate synchronization of PPF and PLT generation in culture. PMID:27087780
Chia, Teck Wah R; Nguyen, Vu Tuan; McMeekin, Thomas; Fegan, Narelle; Dykes, Gary A
2011-06-01
Bacterial attachment onto materials has been suggested to be stochastic by some authors but nonstochastic and based on surface properties by others. We investigated this by attaching pairwise combinations of two Salmonella enterica serovar Sofia (S. Sofia) strains (with different physicochemical and attachment properties) with one strain each of S. enterica serovar Typhimurium, S. enterica serovar Infantis, or S. enterica serovar Virchow (all with similar physicochemical and attachment abilities) in ratios of 0.428, 1, and 2.333 onto glass, stainless steel, Teflon, and polysulfone. Attached bacterial cells were recovered and counted. If the ratio of attached cells of each Salmonella serovar pair recovered was the same as the initial inoculum ratio, the attachment process was deemed stochastic. Experimental outcomes from the study were compared to those predicted by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. Significant differences (P < 0.05) between the initial and the attached ratios for serovar pairs containing S. Sofia S1296a for all different ratios were apparent for all materials. For S. Sofia S1635-containing pairs, 7 out of 12 combinations of serovar pairs and materials had attachment ratios not significantly different (P > 0.05) from the initial ratio of 0.428. Five out of 12 and 10 out of 12 samples had attachment ratios not significantly different (P > 0.05) from the initial ratios of 1 and 2.333, respectively. These results demonstrate that bacterial attachment to different materials is likely to be nonstochastic only when the key physicochemical properties of the bacteria were significantly different (P < 0.05) from each other. XDLVO theory could successfully predict the attachment of some individual isolates to particular materials but could not be used to predict the likelihood of stochasticity in pairwise attachment experiments.
Identification of Cell Adhesive Sequences in the N-terminal Region of the Laminin α2 Chain*
Hozumi, Kentaro; Ishikawa, Masaya; Hayashi, Takemitsu; Yamada, Yuji; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi
2012-01-01
The laminin α2 chain is specifically expressed in the basement membrane surrounding muscle and nerve. We screened biologically active sequences in the mouse laminin N-terminal region of α2 chain using 216 soluble peptides and three recombinant proteins (rec-a2LN, rec-a2LN+, and rec-a2N) by both the peptide- or protein-coated plate and the peptide-conjugated Sepharose bead assays. Ten peptides showed cell attachment activity in the plate assay, and 8 peptides were active in the bead assay. Seven peptides were active in the both assays. Five peptides promoted neurite outgrowth with PC12 cells. To clarify the cellular receptors, we examined the effects of heparin and EDTA on cell attachment to 11 active peptides. Heparin inhibited cell attachment to 10 peptides, and EDTA significantly affected only A2-8 peptide (YHYVTITLDLQQ, mouse laminin α2 chain, 117–128)-mediated cell attachment. Cell attachment to A2-8 was also specifically inhibited by anti-integrin β1 and anti-integrin α2β1 antibodies. These results suggest that A2-8 promotes an integrin α2β1-mediated cell attachment. The rec-a2LN protein, containing the A2-8 sequence, bound to integrin α2β1 and cell attachment to rec-a2LN was inhibited by A2-8 peptide. Further, alanine substitution analysis of both the A2-8 peptide and the rec-a2LN+ protein revealed that the amino acids Ile-122, Leu-124, and Asp-125 were involved in integrin α2β1-mediated cell attachment, suggesting that the A2-8 site plays a functional role as an integrin α2β1 binding site in the LN module. These active peptides may provide new insights on the molecular mechanism of laminin-receptor interactions. PMID:22654118
Shi, Zhaohao; Baker, Christopher A; Lee, Sang In; Park, Si Hong; Kim, Sun Ae; Ricke, Steven C
2016-09-01
Salmonella serovars, one of the leading contributors to foodborne illness and are especially problematic for foods that are not cooked before consumption, such as fresh produce. The shipping containers that are used to transport and store fresh produce may play a role in cross contamination and subsequent illnesses. However, methods for quantitatively attached cells are somewhat variable. The overall goal of this study was to compare conventional plating with molecular methods for quantitating attached representative strains for Salmonella Typhimurium and Heidelberg on reusable plastic containers (RPC) coupons, respectively. We attached Salmonella enterica serovar Typhimurium ATCC 14028 and serovar Heidelberg SL486 (parent and an antibiotic resistant marker strain) to plastic coupons (2.54 cm(2)) derived from previously used shipping containers by growing for 72 h in tryptic soy broth. The impact of the concentration of sanitizer on log reductions between unsanitized and sanitized coupons was evaluated by exposing attached S. Typhimurium cells to 200 ppm and 200,000 ppm sodium hypochlorite (NaClO). Differences in sanitizer effectiveness between serovars were also evaluated with attached S. Typhimurium compared to attached S. Heidelberg populations after being exposed to 200 ppm peracetic acid (PAA). Treatment with NaClO caused an average of 2.73 ± 0.23 log CFU of S. Typhimurium per coupon removed with treatment at 200 ppm while 3.36 ± 0.54 log CFU were removed at 200,000 ppm. Treatment with PAA caused an average of 2.62 ± 0.15 log CFU removed for S. Typhimurium and 1.41 ± 0.17 log CFU for S. Heidelberg (parent) and 1.61 ± 0.08 log CFU (marker). Lastly, scanning electron microscopy (SEM) was used to visualize cell attachment and coupon surface topography. SEM images showed that remaining attached cell populations were visible even after sanitizer application. Conventional plating and qPCR yielded similar levels of enumerated bacterial populations indicating a high concordance between the two methods. Therefore, qPCR could be used for the rapid quantification of Salmonella attached on RPC.
Croze, Roxanne H.; Thi, William J.; Clegg, Dennis O.
2016-01-01
Purpose Nonexudative (dry) age-related macular degeneration (AMD), a leading cause of blindness in the elderly, is associated with the loss of retinal pigmented epithelium (RPE) cells and the development of geographic atrophy, which are areas devoid of RPE cells and photoreceptors. One possible treatment option would be to stimulate RPE attachment and proliferation to replace dying/dysfunctional RPE and bring about wound repair. Clinical trials are underway testing injections of RPE cells derived from pluripotent stem cells to determine their safety and efficacy in treating AMD. However, the factors regulating RPE responses to AMD-associated lesions are not well understood. Here, we use cell culture to investigate the role of RhoA coiled coil kinases (ROCKs) in human embryonic stem cell–derived RPE (hESC-RPE) attachment, proliferation, and wound closure. Methods H9 hESC were spontaneously differentiated into RPE cells. hESC-RPE cells were treated with a pan ROCK1/2 or a ROCK2 only inhibitor; attachment, and proliferation and cell size within an in vitro scratch assay were examined. Results Pharmacological inhibition of ROCKs promoted hESC-RPE attachment and proliferation, and increased the rate of closure of in vitro wounds. ROCK inhibition decreased phosphorylation of cofilin and myosin light chain, suggesting that regulation of the cytoskeleton underlies the mechanism of action of ROCK inhibition. Conclusions ROCK inhibition promotes attachment, proliferation, and wound closure in H9 hESC-RPE cells. ROCK isoforms may have different roles in wound healing. Translational Relevance Modulation of the ROCK-cytoskeletal axis has potential in stimulating wound repair in transplanted RPE cells and attachment in cellular therapies. PMID:27917311
Siuti, Piro; Green, Calvin; Edwards, Amanda Nicole; Doktycz, Mitchel J; Alexandre, Gladys
2011-10-01
The Azospirillum brasilense chemotaxis-like Che1 signal transduction pathway was recently shown to modulate changes in adhesive cell surface properties that, in turn, affect cell-to-cell aggregation and flocculation behaviors rather than flagellar-mediated chemotaxis. Attachment to surfaces and root colonization may be functions related to flocculation. Here, the conditions under which A. brasilense wild-type Sp7 and che1 mutant strains attach to abiotic and biotic surfaces were examined using in vitro attachment and biofilm assays combined with atomic force microscopy and confocal microscopy. The nitrogen source available for growth is found to be a major modulator of surface attachment by A. brasilense and could be promoted in vitro by lectins, suggesting that it depends on interaction with surface-exposed residues within the extracellular matrix of cells. However, Che1-dependent signaling is shown to contribute indirectly to surface attachment, indicating that distinct mechanisms are likely underlying flocculation and attachment to surfaces in A. brasilense. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery.
Alexander, Colleen M; Hamner, Kristen L; Maye, Mathew M; Dabrowiak, James C
2014-07-16
In this report we describe the synthesis, characterization, and cytotoxic properties of DNA-capped gold nanoparticles having attached folic acid (FA), a thermoresponsive polymer (p), and/or poly(ethylene glycol) (PEG) oligomers that could be used to deliver the anticancer drug doxorubicin (DOX) in chemotherapy. The FA-DNA oligomer used in the construction of the delivery vehicle was synthesized through the reaction of the isolated folic acid N-hydroxysuccinimide ester with the amino-DNA and the conjugated DNA product was purified using high performance liquid chromatography (HPLC). This approach ultimately allowed control of the amount of FA attached to the surface of the delivery vehicle. Cytotoxicity studies using SK-N-SH neuroblastoma cells with drug loaded delivery vehicles were carried out using a variety of exposure times (1-48 h) and recovery times (1-72 h), and in order to access the effects of varying amounts of attached FA, in culture media deficient in FA. DOX loaded delivery vehicles having 50% of the DNA strands with attached FA were more cytotoxic than when all of the strands contained FA. Since FA stimulates cell growth, the reduced cytotoxicity of vehicles fully covered with FA suggests that the stimulatory effects of FA can more than compensate for the cytotoxic effects of the drug on the cell population. While attachment of hexa-ethylene glycol PEG(18) to the surface of the delivery vehicle had no effect on cytotoxicity, 100% FA plus the thermoresponsive polymer resulted in IC50 = 0.48 ± 0.01 for an exposure time of 24 h and a recovery time of 1 h, which is an order of magnitude more cytotoxic than free DOX. Confocal microscopic studies using fluorescence detection showed that SK-N-SH neuroblastoma cells exposed to DOX-loaded vehicles have drug accumulation inside the cell and, in the case of vehicles with attached FA and thermoresponsive polymer, the drug appears more concentrated. Since the biological target of DOX is DNA, the latter observation is consistent with the high cytotoxicity of vehicles having both FA and the thermoresponsive polymer. The study highlights the potential of DNA-capped gold nanoparticles as delivery vehicles for doxorubicin in cancer chemotherapy.
Ng, Wy Ching; Londrigan, Sarah L; Nasr, Najla; Cunningham, Anthony L; Turville, Stuart; Brooks, Andrew G; Reading, Patrick C
2016-01-01
It is well established that influenza A virus (IAV) attachment to and infection of epithelial cells is dependent on sialic acid (SIA) at the cell surface, although the specific receptors that mediate IAV entry have not been defined and multiple receptors may exist. Lec2 Chinese hamster ovary (CHO) cells are SIA deficient and resistant to IAV infection. Here we demonstrate that the expression of the C-type lectin receptor langerin in Lec2 cells (Lec2-Lg) rendered them permissive to IAV infection, as measured by replication of the viral genome, transcription of viral mRNA, and synthesis of viral proteins. Unlike SIA-dependent infection of parental CHO cells, IAV attachment and infection of Lec2-Lg cells was mediated via lectin-mediated recognition of mannose-rich glycans expressed by the viral hemagglutinin glycoprotein. Lec2 cells expressing endocytosis-defective langerin bound IAV efficiently but remained resistant to IAV infection, confirming that internalization via langerin was essential for infectious entry. Langerin-mediated infection of Lec2-Lg cells was pH and dynamin dependent, occurred via clathrin- and caveolin-mediated endocytic pathways, and utilized early (Rab5(+)) but not late (Rab7(+)) endosomes. This study is the first to demonstrate that langerin represents an authentic receptor that binds and internalizes IAV to facilitate infection. Moreover, it describes a unique experimental system to probe specific pathways and compartments involved in infectious entry following recognition of IAV by a single cell surface receptor. On the surface of host cells, sialic acid (SIA) functions as the major attachment factor for influenza A viruses (IAV). However, few studies have identified specific transmembrane receptors that bind and internalize IAV to facilitate infection. Here we identify human langerin as a transmembrane glycoprotein that can act as an attachment factor and a bone fide endocytic receptor for IAV infection. Expression of langerin by an SIA-deficient cell line resistant to IAV rendered cells permissive to infection. As langerin represented the sole receptor for IAV infection in this system, we have defined the pathways and compartments involved in infectious entry of IAV into cells following recognition by langerin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Tapsir, Zafirah; Jamaludin, Farah H; Pingguan-Murphy, Belinda; Saidin, Syafiqah
2018-02-01
The utilisation of hydroxyapatite and collagen as bioactive coating materials could enhance cells attachment, proliferation and osseointegration. However, most methods to form crystal hydroxyapatite coating do not allow the incorporation of polymer/organic compound due to production phase of high sintering temperature. In this study, a polydopamine film was used as an intermediate layer to immobilise hydroxyapatite-collagen without the introduction of high sintering temperature. The surface roughness, coating adhesion, bioactivity and osteoblast attachment on the hydroxyapatite-collagen coating were assessed as these properties remains unknown on the polydopamine grafted film. The coating was developed by grafting stainless steel 316L disks with a polydopamine film. Collagen type I fibres were then immobilised on the grafted film, followed by the biomineralisation of hydroxyapatite. The surface roughness and coating adhesion analyses were later performed by using AFM instrument. An Alamar Blue assay was used to determine the cytotoxicity of the coating, while an alkaline phosphatase activity test was conducted to evaluate the osteogenic differentiation of human fetal osteoblasts on the coating. Finally, the morphology of cells attachment on the coating was visualised under FESEM. The highest RMS roughness and coating adhesion were observed on the hydroxyapatite-collagen coating (hydroxyapatite-coll-dopa). The hydroxyapatite-coll-dopa coating was non-toxic to the osteoblast cells with greater cells proliferation, greater level of alkaline phosphate production and more cells attachment. These results indicate that the immobilisation of hydroxyapatite and collagen using an intermediate polydopamine is identical to enhance coating adhesion, osteoblast cells attachment, proliferation and differentiation, and thus could be implemented as a coating material on orthopaedic and dental implants.
Ng, Wy Ching; Liong, Stella; Tate, Michelle D.; Irimura, Tatsuro; Denda-Nagai, Kaori; Brooks, Andrew G.; Londrigan, Sarah L.
2014-01-01
Specific protein receptors that mediate internalization and entry of influenza A virus (IAV) have not been identified for any cell type. Sialic acid (SIA), the primary attachment factor for IAV hemagglutinin, is expressed by numerous cell surface glycoproteins and glycolipids, confounding efforts to identify specific receptors involved in virus infection. Lec1 Chinese hamster ovary (CHO) epithelial cells express cell surface SIA and bind IAV yet are largely resistant to infection. Here, we demonstrate that expression of the murine macrophage galactose-type lectin 1 (MGL1) by Lec1 cells enhanced Ca2+-dependent IAV binding and restored permissivity to infection. Lec1 cells expressing MGL1 were infected in the presence or absence of cell surface SIA, indicating that MGL1 can act as a primary receptor or as a coreceptor with SIA. Lec1 cells expressing endocytosis-deficient MGL1 mediated Ca2+-dependent IAV binding but were less sensitive to IAV infection, indicating that direct internalization via MGL1 can result in cellular infection. Together, these studies identify MGL1 as a cell surface glycoprotein that can act as an authentic receptor for both attachment and infectious entry of IAV. PMID:24257596
Double-chimera proteins to enhance recruitment of endothelial cells and their progenitor cells.
Behjati, M; Kazemi, M; Hashemi, M; Zarkesh-Esfahanai, S H; Bahrami, E; Hashemi-Beni, B; Ahmadi, R
2013-08-20
Enhanced attraction of selective vascular reparative cells is of great importance in order to increase vascular patency after endovascular treatments. We aimed to evaluate efficient attachment of endothelial cells and their progenitors on surfaces coated with mixture of specific antibodies, L-selectin and VE-cadherin, with prohibited platelet attachment. The most efficient conditions for coating of L-selectin-Fc chimera and VE-cadherin-Fc chimera proteins were first determined by protein coating on ELISA plates. The whole processes were repeated on titanium substrates, which are commonly used to coat stents. Endothelial progenitor cells (EPCs) and human umbilical vein endothelial cells (HUVECs) were isolated and characterized by flow cytometry. Cell attachment, growth, proliferation, viability and surface cytotoxicity were evaluated using nuclear staining and MTT assay. Platelet and cell attachment were evaluated using scanning electron microscopy. Optimal concentration of each protein for surface coating was 50 ng/ml. The efficacy of protein coating was both heat and pH independent. Calcium ions had significant impact on simultaneous dual-protein coating (P<0.05). Coating stability data revealed more than one year stability for these coated proteins at 4°C. L-selectin and VE-cadherin (ratio of 50:50) coated surface showed highest EPC and HUVEC attachment, viability and proliferation compared to single protein coated and non-coated titanium surfaces (P<0.05). This double coated surface did not show any cytotoxic effect. Surfaces coated with L-selectin and VE-cadherin are friendly surface for EPC and endothelial cell attachment with less platelet attachment. These desirable factors make the L-selectin and VE-cadherin coated surfaces perfect candidate endovascular device. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Correlation of open cell-attached and excised patch clamp techniques.
Filipovic, D; Hayslett, J P
1995-11-01
The excised patch clamp configuration provides a unique technique for some types of single channel analyses, but maintenance of stable, long-lasting preparations may be confounded by rundown and/or rapid loss of seal. Studies were performed on the amiloride-sensitive Na+ channel, located on the apical surface of A6 cells, to determine whether the nystatin-induced open cell-attached patch could serve as an alternative configuration. Compared to excised inside-out patches, stable preparations were achieved more readily with the open cell-attached patch (9% vs. 56% of attempts). In both preparations, the current voltage (I-V) relation was linear, current amplitudes were equal at opposite equivalent clamped voltages, and Erev was zero in symmetrical Na+ solutions, indicating similar Na+ activities on the cytosolic and external surfaces of the patch. Moreover, there was no evidence that nystatin altered channel activity in the patch because slope conductance (3-4pS) and Erev (75 mV), when the bath was perfused with a high K:low Na solution (ENa = 80 mV), were nearly equal in both patch configurations. Our results therefore indicate that the nystatin-induced open cell-attached patch can serve as an alternative approach to the excised inside-out patch when experiments require modulation of univalent ions in the cytosol.
Miron, Richard J; Bosshardt, Dieter D; Hedbom, Erik; Zhang, Yufeng; Haenni, Beat; Buser, Daniel; Sculean, Anton
2012-07-01
The use of various combinations of enamel matrix derivative (EMD) and grafting materials has been shown to promote periodontal wound healing/regeneration. However, the downstream cellular behavior of periodontal ligament (PDL) cells and osteoblasts has not yet been studied. Furthermore, it is unknown to what extent the bleeding during regenerative surgery may influence the adsorption of exogenous proteins to the surface of bone grafting materials and the subsequent cellular behavior. In the present study, the aim is to test EMD adsorption to the surface of natural bone mineral (NBM) particles in the presence of blood and determine the effect of EMD coating to NBM particles on downstream cellular pathways, such as adhesion, proliferation, and differentiation of primary human osteoblasts and PDL cells. NBM particles were precoated in various settings with EMD or human blood and analyzed for protein adsorption patterns via fluorescent imaging and high-resolution immunocytochemistry with an anti-EMD antibody. Cell attachment and cell proliferation were quantified using fluorescent double-stranded DNA-binding dye. Cell differentiation was analyzed using real-time polymerase chain reaction for genes encoding runt-related transcription factor 2, alkaline phosphatase (ALP), osteocalcin (OC), and collagen1α1 (COL1A1), and mineralization was assessed using red dye staining. Analysis of cell attachment and cell proliferation revealed significantly higher osteoblast and PDL cell attachment on EMD-coated surfaces when compared with control and blood-coated surfaces. EMD also stimulated release of growth factors and cytokines, including bone morphogenetic protein 2 and transforming growth factor β1. Moreover, there were significantly higher mRNA levels of osteoblast differentiation markers, including COL1A1, ALP, and OC, in osteoblasts and PDL cells cultured on EMD-coated NBM particles. The present results suggest that 1) EMD enhances osteoblast and PDL cell attachment, proliferation, and differentiation on NBM particles, and 2) blood contamination of the grafting material before mixing with EMD may inhibit EMD adsorption.
Bone regeneration performance of surface-treated porous titanium.
Amin Yavari, Saber; van der Stok, Johan; Chai, Yoke Chin; Wauthle, Ruben; Tahmasebi Birgani, Zeinab; Habibovic, Pamela; Mulier, Michiel; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir Abbas
2014-08-01
The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone-implant biomechanics is, however, not trivial. Copyright © 2014 Elsevier Ltd. All rights reserved.
Garrigues, H Jacques; Rubinchikova, Yelena E; Rose, Timothy M
2014-03-01
Cell surface structures initiating attachment of Kaposi's sarcoma-associated herpesvirus (KSHV) were characterized using purified hapten-labeled virions visualized by confocal microscopy with a sensitive fluorescent enhancement using tyramide signal amplification (TSA). KSHV attachment sites were present in specific cellular domains, including actin-based filopodia, lamellipodia, ruffled membranes, microvilli and intercellular junctions. Isolated microdomains were identified on the dorsal surface, which were heterogeneous in size with a variable distribution that depended on cellular confluence and cell cycle stage. KSHV binding domains ranged from scarce on interphase cells to dense and continuous on mitotic cells, and quantitation of bound virus revealed a significant increase on mitotic compared to interphase cells. KSHV also bound to a supranuclear domain that was distinct from microdomains in confluent and interphase cells. These results suggest that rearrangement of the cellular membrane during mitosis induces changes in cell surface receptors implicated in the initial attachment stage of KSHV entry. Copyright © 2014 Elsevier Inc. All rights reserved.
Barahona, Sergio; Dorador, Cristina; Zhang, Ruiyong; Aguilar, Pablo; Sand, Wolfgang; Vera, Mario; Remonsellez, Francisco
2014-11-01
Microorganisms are used to aid the extraction of valuable metals from low-grade sulfide ores in mines worldwide, but relatively little is known about this process in cold environments. This study comprises a preliminary analysis of the bacterial diversity of the polyextremophilic acid River Aroma located in the Chilean Altiplano, and revealed that Betaproteobacteria was the most dominant bacterial group (Gallionella-like and Thiobacillus-like). Taxa characteristic of leaching environments, such Acidithiobacillus and Leptospirillum, were detected at low abundances. Also, bacteria not associated with extremely acidic, metal-rich environments were found. After enrichment in iron- and sulfur-oxidizing media, we isolated and identified a novel psychrotolerant Acidithiobacillus ferrivorans strain ACH. This strain can grow using ferrous iron, sulfur, thiosulfate, tetrathionate and pyrite, as energy sources. Optimal growth was observed in the presence of pyrite, where cultures reached a cell number of 6.5 · 10(7) cells mL(-1). Planktonic cells grown with pyrite showed the presence of extracellular polymeric substances (10 °C and 28 °C), and a high density of cells attached to pyrite grains were observed at 10 °C by electron microscopy. The attachment of cells to pyrite coupons and the presence of capsular polysaccharides were visualized by using epifluorescence microscopy, through nucleic acid and lectin staining with Syto(®)9 and TRITC-Con A, respectively. Interestingly, we observed high cell adhesion including the formation of microcolonies within 21 days of incubation at 4 °C, which was correlated with a clear induction of capsular polysaccharides production. Our data suggests that attachment to pyrite is not temperature-dependent in At. ferrivorans ACH. The results of this study highlight the potential of this novel psychrotolerant strain in oxidation and attachment to minerals under low-temperature conditions. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Sudheesh Kumar, P T; Raj, N Mincy; Praveen, G; Chennazhi, Krishna Prasad; Nair, Shantikumar V; Jayakumar, R
2013-02-01
In this work, we have developed chitosan hydrogel/nanofibrin composite bandages (CFBs) and characterized using Fourier transform-infrared spectroscopy and scanning electron microscopy. The homogeneous distribution of nanofibrin in the prepared chitosan hydrogel matrix was confirmed by phosphotungstic acid-hematoxylin staining. The mechanical strength, swelling, biodegradation, porosity, whole-blood clotting, and platelet activation studies were carried out. In addition, the cell viability, cell attachment, and infiltration of the prepared CFBs were evaluated using human umbilical vein endothelial cells (HUVECs) and human dermal fibroblast (HDF) cells. It was found that the CFBs were microporous, flexible, biodegradable, and showed enhanced blood clotting and platelet activity compared to the one without nanofibrin. The prepared CFBs were capable of absorbing fluid and this was confirmed when immersed in phosphate buffered saline. Cell viability studies on HUVECs and HDF cells proved the nontoxic nature of the CFBs. Cell attachment and infiltration studies showed that the cells were found attached and proliferated on the CFBs. In vivo experiments were carried out in Sprague-Dawley rats and found that the wound healing occurred within 2 weeks when treated with CFBs than compared to the bare wound and wound treated with Kaltostat. The deposition of collagen was found to be more on CFB-treated wounds compared to the control. The above results proved the use of these CFBs as an ideal candidate for skin tissue regeneration and wound healing.
Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles
van Gestel, Jordi; Nowak, Martin A.
2016-01-01
Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a ‘sticky’ cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles. PMID:26894881
Biocompatibility Study of Zirconium-Based Bulk Metallic Glasses for Orthopedic Applications
NASA Astrophysics Data System (ADS)
He, Wei; Chuang, Andrew; Cao, Zheng; Liaw, Peter K.
2010-07-01
Bulk metallic glasses (BMGs) represent an emerging class of materials that offer an attractive combination of properties, such as high strength, low modulus, good fatigue limit, and near-net-shape formability. The BMGs have been explored in mechanical, chemical, and magnetic applications. However, little research has been attracted in the biomedical field. In this work, we study the potential of BMGs for the orthopedic repair and replacement. We report the biocompatibility study of zirconium (Zr)-based solid BMGs using mouse osteoblast cells. Cell attachment, proliferation, and differentiation are compared to Ti-6Al-4V, a well-studied alloy biomaterial. Our in-vitro study has demonstrated that cells cultured on the Zr-based BMG substrate showed higher attachment, alkaline phosphatase activity, and bone matrix deposition compared to those grown on the control Ti alloy substrate. Cytotoxicity staining also revealed the remarkable viability of cells growing on the BMG substrates.
Tauchman, Eric C; Boehm, Frederick J; DeLuca, Jennifer G
2015-12-01
During mitosis, duplicated sister chromatids attach to microtubules emanating from opposing sides of the bipolar spindle through large protein complexes called kinetochores. In the absence of stable kinetochore-microtubule attachments, a cell surveillance mechanism known as the spindle assembly checkpoint (SAC) produces an inhibitory signal that prevents anaphase onset. Precisely how the inhibitory SAC signal is extinguished in response to microtubule attachment remains unresolved. To address this, we induced formation of hyper-stable kinetochore-microtubule attachments in human cells using a non-phosphorylatable version of the protein Hec1, a core component of the attachment machinery. We find that stable attachments are sufficient to silence the SAC in the absence of sister kinetochore bi-orientation and strikingly in the absence of detectable microtubule pulling forces or tension. Furthermore, we find that SAC satisfaction occurs despite the absence of large changes in intra-kinetochore distance, suggesting that substantial kinetochore stretching is not required for quenching the SAC signal.
Surface contact stimulates the just-in-time deployment of bacterial adhesins.
Li, Guanglai; Brown, Pamela J B; Tang, Jay X; Xu, Jing; Quardokus, Ellen M; Fuqua, Clay; Brun, Yves V
2012-01-01
The attachment of bacteria to surfaces provides advantages such as increasing nutrient access and resistance to environmental stress. Attachment begins with a reversible phase, often mediated by surface structures such as flagella and pili, followed by a transition to irreversible attachment, typically mediated by polysaccharides. Here we show that the interplay between pili and flagellum rotation stimulates the rapid transition between reversible and polysaccharide-mediated irreversible attachment. We found that reversible attachment of Caulobacter crescentus cells is mediated by motile cells bearing pili and that their contact with a surface results in the rapid pili-dependent arrest of flagellum rotation and concurrent stimulation of polar holdfast adhesive polysaccharide. Similar stimulation of polar adhesin production by surface contact occurs in Asticcacaulis biprosthecum and Agrobacterium tumefaciens. Therefore, single bacterial cells respond to their initial contact with surfaces by triggering just-in-time adhesin production. This mechanism restricts stable attachment to intimate surface interactions, thereby maximizing surface attachment, discouraging non-productive self-adherence, and preventing curing of the adhesive. © 2011 Blackwell Publishing Ltd.
Tauchman, Eric C.; Boehm, Frederick J.; DeLuca, Jennifer G.
2015-01-01
During mitosis, duplicated sister chromatids attach to microtubules emanating from opposing sides of the bipolar spindle through large protein complexes called kinetochores. In the absence of stable kinetochore–microtubule attachments, a cell surveillance mechanism known as the spindle assembly checkpoint (SAC) produces an inhibitory signal that prevents anaphase onset. Precisely how the inhibitory SAC signal is extinguished in response to microtubule attachment remains unresolved. To address this, we induced formation of hyper-stable kinetochore–microtubule attachments in human cells using a non-phosphorylatable version of the protein Hec1, a core component of the attachment machinery. We find that stable attachments are sufficient to silence the SAC in the absence of sister kinetochore bi-orientation and strikingly in the absence of detectable microtubule pulling forces or tension. Furthermore, we find that SAC satisfaction occurs despite the absence of large changes in intra-kinetochore distance, suggesting that substantial kinetochore stretching is not required for quenching the SAC signal. PMID:26620470
Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules.
Tal-Singer, R; Peng, C; Ponce De Leon, M; Abrams, W R; Banfield, B W; Tufaro, F; Cohen, G H; Eisenberg, R J
1995-01-01
The entry of herpes simplex virus (HSV) into mammalian cells is a multistep process beginning with an attachment step involving glycoproteins gC and gB. A second step requires the interaction of glycoprotein gD with a cell surface molecule. We explored the interaction between gC and the cell surface by using purified proteins in the absence of detergent. Truncated forms of gC and gD, gC1(457t), gC2(426t), and gD1(306t), lacking the transmembrane and carboxyl regions were expressed in the baculovirus system. We studied the ability of these proteins to bind to mammalian cells, to bind to immobilized heparin, to block HSV type 1 (HSV-1) attachment to cells, and to inhibit plaque formation by HSV-1. Each of these gC proteins bound to conformation-dependent monoclonal antibodies and to human complement component C3b, indicating that they maintained the same conformation of gC proteins expressed in mammalian cells. Biotinylated gC1(457t) and gC2(426t) each bind to several cell lines. Binding was inhibited by an excess of unlabeled gC but not by gD, indicating specificity. The attachment of gC to cells involves primarily heparan sulfate proteoglycans, since heparitinase treatment of cells reduced gC binding by 50% but had no effect on gD binding. Moreover, binding of gC to two heparan sulfate-deficient L-cell lines, gro2C and sog9, both of which are mostly resistant to HSV infection, was markedly reduced. Purified gD1 (306t), however, bound equally well to the two mutant cell lines. In contrast, saturating amounts of gC1(457t) interfered with HSV-1 attachment to cells but failed to block plaque formation, suggesting a role for gC in attachment but not penetration. A mutant form of gC lacking residues 33 to 123, gC1(delta 33-123t), expressed in the baculovirus system, bound significantly less well to cells than did gC1(457t) and competed poorly with biotinylated gC1(457t) for binding. These results suggest that residues 33 to 123 are important for gC attachment to cells. In contrast, both the mutant and wild-type forms of gC bound to immobilized heparin, indicating that binding of these proteins to the cell surface involves more than a simple interaction with heparin. To determine that the contribution of the N-terminal region of gC is important for HSV attachment, we compared several properties of a mutant HSV-1 which contains gC lacking amino acids 33 to 123 to those of its parental virus, which contains full-length gC. The mutant bound less well to cells than the parental virus but exhibited normal growth properties.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7769707
Adherence of carp leucocytes to adults and cercariae of the blood fluke Sanguinicola inermis.
Richards, D T; Hoole, D; Lewis, J W; Ewens, E; Arme, C
1996-03-01
Live adult and cercarial stages of Sanguinicola inermis Plehn, 1905 (Trematoda:Sanguinicolidae) were maintained in vitro in the presence of carp (Cyprinus carpio L.) leucocytes. Cells and parasites were fixed at intervals from 0.25 to 48 h and examined using light microscopy, SEM and TEM. Within 12 h of exposure, leucocytes were found attached to cercariae although, by 24 h, fewer cells were found attached to postcercarial, juvenile adult stages that had shed their tails. Neutrophils and macrophages were found attached to the damaged tegument of cercarie that had not transformed by 48 h. Few cells were attached to the tegument of adult flukes that were alive when fixed. However, there was extensive tegumental damage and numerous cells were attached to adult flukes that had died before fixation. The results are discussed with reference to parasite survival within the vascular system of the host.
Ghandi, Mostafa; Houshmand, Behzad; Nekoofar, Mohammad H; Tabor, Rachel K; Yadeghari, Zahra; Dummer, Paul M H
2013-03-01
Root surface debridement (RSD) is necessary to create an environment suitable for reattachment of the periodontium. Root surface conditioning may aid the formation of a biocompatible surface suitable for cell reattachment. BioPure™ MTAD (mixture of Doxycycline, citric acid and a detergent) is an endodontic irrigant with antibacterial properties and the ability to remove smear layer. It was hypothesized that MTAD may be useful for root surface conditioning. The efficacy of MTAD as a conditioner was measured by examining fibroblast attachment to root surfaces. Thirty-two specimens of human teeth with advanced periodontal disease were used. The surfaces were root planed until smooth. Half of the specimens were treated with 0.9% saline and the other samples with Biopure MTAD. As a negative control group, five further samples were left unscaled with surface calculus. Human gingival fibroblast cells HGF1-PI1 were cultured and poured over the tooth specimens and incubated. After fixation, the samples were sputter-coated with gold and examined with a SEM. The morphology and number of attached, fixed viable cells were examined. The data was analysed using the Mann-Whitney-U statistical test. There was no significant difference between the numbers of attached cells in the experimental group treated with MTAD and the control group treated with saline. Little or no attached cells were seen in the negative control group. RSD created an environment suitable for cell growth and attachment in a laboratory setting. The use of MTAD did not promote the attachment and growth of cells on the surface of human roots following RSD.
Mueller, Andrea; Fujioka-Kobayashi, Masako; Mueller, Heinz-Dieter; Lussi, Adrian; Sculean, Anton; Schmidlin, Patrick R; Miron, Richard J
2017-05-01
Hyaluronic acid (HA) is a natural constituent of connective tissues and plays an important role in their development, maintenance, and regeneration. Recently, HA has been shown to improve wound healing. However, no basic in vitro study to date has investigated its mode of action. Therefore, the purpose of this study was to examine morphological changes of dentin surfaces following HA coating and thereafter investigate the influence of periodontal ligament (PDL) cell survival, attachment, and spreading to dentin discs. HA was coated onto dentin discs utilizing either non-cross-linked (HA) or cross-linked (HA cl) delivery systems. Morphological changes to dentin discs were then assessed using scanning electron microscopy (SEM). Thereafter, human PDL cells were seeded under three in vitro conditions including (1) dilution of HA (1:100), (2) dilution of HA (1:10), and (3) HA coated directly to dentin discs. Samples were then investigated for PDL cell survival, attachment, and spreading using a live/dead assay, cell adhesion assay, and SEM imaging, respectively. While control dentin discs demonstrated smooth surfaces both at low and high magnification, the coating of HA altered surface texture of dentin discs by increasing surface roughness. HA cl further revealed greater surface texture/roughness likely due to the cross-linking carrier system. Thereafter, PDL cells were seeded on control and HA coated dentin discs and demonstrated a near 100 % survival rate for all samples demonstrating high biocompatibility of HA at dilutions of both 1:100 and 1:10. Interestingly, non-cross-linked HA significantly increased cell numbers at 8 h, whereas cross-linked HA improved cell spreading as qualitatively assessed by SEM. The results from the present study demonstrate that both carrier systems for HA were extremely biocompatible and demonstrated either improved cell numbers or cell spreading onto dentin discs. Future in vitro and animal research is necessary to further characterize the optimal delivery system of HA for improved clinical use. HA is a highly biocompatible material that may improve PDL cell attachment or spreading on dentin.
Elzarrad, M Khair; Haroon, Abu; Willecke, Klaus; Dobrowolski, Radoslaw; Gillespie, Mark N; Al-Mehdi, Abu-Bakr
2008-01-01
Background The modulation of gap junctional communication between tumor cells and between tumor and vascular endothelial cells during tumorigenesis and metastasis is complex. The notion of a role for loss of gap junctional intercellular communication in tumorigenesis and metastasis has been controversial. While some of the stages of tumorigenesis and metastasis, such as uncontrolled cell division and cellular detachment, would necessitate the loss of intercellular junctions, other stages, such as intravasation, endothelial attachment, and vascularization, likely require increased cell-cell contact. We hypothesized that, in this multi-stage scheme, connexin-43 is centrally involved as a cell adhesion molecule mediating metastatic tumor attachment to the pulmonary endothelium. Methods Tumor cell attachment to pulmonary vasculature, tumor growth, and connexin-43 expression was studied in metastatic lung tumor sections obtained after tail-vein injection into nude mice of syngeneic breast cancer cell lines, overexpressing wild type connexin-43 or dominant-negatively mutated connexin-43 proteins. High-resolution immunofluorescence microscopy and Western blot analysis was performed using a connexin-43 monoclonal antibody. Calcein Orange Red AM dye transfer by fluorescence imaging was used to evaluate the gap junction function. Results Adhesion of breast cancer cells to the pulmonary endothelium increased with cancer cells overexpressing connexin-43 and markedly decreased with cells expressing dominant-negative connexin-43. Upregulation of connexin-43 was observed in tumor cell-endothelial cell contact areas in vitro and in vivo, and in areas of intratumor blood vessels and in micrometastatic foci. Conclusion Connexin-43 facilitates metastatic 'homing' by increasing adhesion of cancer cells to the lung endothelial cells. The marked upregulation of connexin-43 in tumor cell-endothelial cell contact areas, whether in preexisting 'homing' vessels or in newly formed tumor vessels, suggests that connexin-43 can serve as a potential marker of micrometastases and tumor vasculature and that it may play a role in the early incorporation of endothelial cells into small tumors as seeds for vasculogenesis. PMID:18647409
Elzarrad, M Khair; Haroon, Abu; Willecke, Klaus; Dobrowolski, Radoslaw; Gillespie, Mark N; Al-Mehdi, Abu-Bakr
2008-07-22
The modulation of gap junctional communication between tumor cells and between tumor and vascular endothelial cells during tumorigenesis and metastasis is complex. The notion of a role for loss of gap junctional intercellular communication in tumorigenesis and metastasis has been controversial. While some of the stages of tumorigenesis and metastasis, such as uncontrolled cell division and cellular detachment, would necessitate the loss of intercellular junctions, other stages, such as intravasation, endothelial attachment, and vascularization, likely require increased cell-cell contact. We hypothesized that, in this multi-stage scheme, connexin-43 is centrally involved as a cell adhesion molecule mediating metastatic tumor attachment to the pulmonary endothelium. Tumor cell attachment to pulmonary vasculature, tumor growth, and connexin-43 expression was studied in metastatic lung tumor sections obtained after tail-vein injection into nude mice of syngeneic breast cancer cell lines, overexpressing wild type connexin-43 or dominant-negatively mutated connexin-43 proteins. High-resolution immunofluorescence microscopy and Western blot analysis was performed using a connexin-43 monoclonal antibody. Calcein Orange Red AM dye transfer by fluorescence imaging was used to evaluate the gap junction function. Adhesion of breast cancer cells to the pulmonary endothelium increased with cancer cells overexpressing connexin-43 and markedly decreased with cells expressing dominant-negative connexin-43. Upregulation of connexin-43 was observed in tumor cell-endothelial cell contact areas in vitro and in vivo, and in areas of intratumor blood vessels and in micrometastatic foci. Connexin-43 facilitates metastatic 'homing' by increasing adhesion of cancer cells to the lung endothelial cells. The marked upregulation of connexin-43 in tumor cell-endothelial cell contact areas, whether in preexisting 'homing' vessels or in newly formed tumor vessels, suggests that connexin-43 can serve as a potential marker of micrometastases and tumor vasculature and that it may play a role in the early incorporation of endothelial cells into small tumors as seeds for vasculogenesis.
Identification of a unique gene cluster of Brucella spp. that mediates adhesion to host cells
Czibener, Cecilia; Ugalde, Juan Esteban
2011-01-01
Brucella, the causative agent of brucellosis, a major zoonotic disease affecting a broad range of mammals, is a gram negative bacterium whose virulence is dependent on the capacity to attach and invade different cells of the host. The bacterium is able to infect through a diverse repertoire of epitheliums: skin, airways or gastric. Although much has been studied on the mechanisms Brucella uses to establish an intracellular replication niche, almost none is known on how the bacterium adheres and invades host cells. We report here the identification of a pathogenicity island that harbors a gene homologous to proteins with bacterial immunoglobulin-like domains present in other pathogens that play a role in attachment and invasion. Deletion of the entire island results in a mutant with a reduced attachment capacity measured by intracellular replication and adhesion assays. Intraperitoneal and oral experimental infection of mice strongly suggests that this island plays a role during the oral infection probably mediating attachment and trespassing of the gastric epithelium to establish a systemic infection. PMID:21911075
Identification of a unique gene cluster of Brucella spp. that mediates adhesion to host cells.
Czibener, Cecilia; Ugalde, Juan Esteban
2012-01-01
Brucella, the causative agent of brucellosis, a major zoonotic disease affecting a broad range of mammals, is a gram-negative bacterium whose virulence is dependent on the capacity to attach and invade different cells of the host. The bacterium is able to infect through a diverse repertoire of epitheliums: skin, airways or gastric. Although much has been studied on the mechanisms Brucella uses to establish an intracellular replication niche, almost none is known on how the bacterium adheres and invades host cells. We report here the identification of a pathogenicity island that harbors a gene homologous to proteins with bacterial immunoglobulin-like domains present in other pathogens that play a role in attachment and invasion. Deletion of the entire island results in a mutant with a reduced attachment capacity measured by intracellular replication and adhesion assays. Intraperitoneal and oral experimental infection of mice strongly suggests that this island plays a role during the oral infection probably mediating attachment and trespassing of the gastric epithelium to establish a systemic infection. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Iodine susceptibility of pseudomonads grown attached to stainless steel surfaces
NASA Technical Reports Server (NTRS)
Pyle, B. H.; McFeters, G. A.
1990-01-01
Pseudomonads were adapted to grow in phosphate-buffered water and on stainless steel surfaces to study the iodine sensitivity of attached and planktonic cells. Cultures adapted to low nutrient growth were incubated at room temperature in a circulating reactor system with stainless steel coupons to allow biofilm formation on the metal surfaces. In some experiments, the reactor was partially emptied and refilled with buffer at each sampling time to simulate a "fill-and-draw" water system. Biofilms of attached bacteria, resuspended biofilm bacteria, and reactor suspension, were exposed to 1 mg l-1 iodine for 2 min. Attached bacterial populations which established on coupons within 3 to 5 days displayed a significant increase in resistance to iodine. Increased resistance was also observed for resuspended cells from the biofilm and planktonic bacteria in the system suspension. Generally, intact biofilms and resuspended biofilm cells were most resistant, followed by planktonic bacteria and phosphate buffer cultures. Thus, biofilm formation on stainless steel surfaces within water systems can result in significantly increased disinfection resistance of commonly-occurring water-borne bacteria that may enhance their ability to colonise water treatment and distribution systems.
Dimorphism in methane seep-dwelling ecotypes of the largest known bacteria
Bailey, Jake V; Salman, Verena; Rouse, Gregory W; Schulz-Vogt, Heide N; Levin, Lisa A; Orphan, Victoria J
2011-01-01
We present evidence for a dimorphic life cycle in the vacuolate sulfide-oxidizing bacteria that appears to involve the attachment of a spherical Thiomargarita-like cell to the exteriors of invertebrate integuments and other benthic substrates at methane seeps. The attached cell elongates to produce a stalk-like form before budding off spherical daughter cells resembling free-living Thiomargarita that are abundant in surrounding sulfidic seep sediments. The relationship between the attached parent cell and free-living daughter cell is reminiscent of the dimorphic life modes of the prosthecate Alphaproteobacteria, but on a grand scale, with individual elongate cells reaching nearly a millimeter in length. Abundant growth of attached Thiomargarita-like bacteria on the integuments of gastropods and other seep fauna provides not only a novel ecological niche for these giant bacteria, but also for animals that may benefit from epibiont colonization. PMID:21697959
Lorenz, Jonas; Blume, Maximilian; Barbeck, Mike; Teiler, Anna; Kirkpatrick, C James; Sader, Robert A; Ghanaati, Shahram
2017-05-01
Attached peri-implant gingiva has proven to have an influence on the long-term stability of dental implants. In patients with head and neck cancer, a functional peri-implant gingiva is even more of critical importance. The aim of the presented prospective study was to investigate a three-dimensional xenogeneic collagen matrix for augmentation around dental implants in patients with former head and neck cancer. Eight patients presenting with insufficient peri-implant gingiva underwent vestibuloplasty on 51 implants using a xenogeneic collagen matrix. The clinical performance and the shrinking tendency of the matrix were analyzed in a cohort study. Furthermore, eight biopsies from the augmented regions were examined histologically to determine the biomaterial-related tissue reaction. Initially after vestibuloplasty, a mean width of attached gingiva of 4.4 ± 0.94 mm could be achieved. At clinical follow up investigation 6 months after vestibuloplasty, a mean width of 3.9 ± 0.65 mm attached peri-implant gingiva with a mean shrinking tendency of 14 % could be detected. Histological analysis of the biopsies revealed a well integrated collagen22 matrix covered with epithelium. Within the compact layer, mononuclear cells were observed only, while the spongious layer was infiltrated with a cell-rich connective tissue. Within its limits, the presented study revealed that the investigated collagen matrix is suitable to enlarge the peri-implant attached gingiva in head and neck cancer patients without adverse reactions or a multinucleated giant cell-triggered tissue reaction. The application of the investigated three-dimensional collagen matrix in vestibuloplasty achieved a sufficient amount of peri-implant attached gingiva in head and neck cancer patients. The favorable tissue reaction and the low shrinking tendency make the collagen matrix a promising alternative to autologous tissue grafts.
Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells
Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi
2015-01-01
The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908
Torkamani, Niloufar; Rufaut, Nicholas; Jones, Leslie; Sinclair, Rodney
2017-01-01
Proximally, the arrector pili muscle (APM) attaches to the follicular stem cell niche in the bulge, but its distal properties are comparatively unclear. In this work, a novel method employing an F-actin probe, phalloidin, was employed to visualize the APM anatomy. Phalloidin staining of the APM was validated by comparison with conventional antibodies/stains and by generating three-dimensional reconstructions. The proximal attachment of the APM to the bulge in 8 patients with androgenic alopecia was studied using Masson's trichrome stain. Phalloidin visualized extensive branching of the APM. The distal end of the human APM exhibits a unique "C"-shaped structure connecting to the dermal-epidermal junction. The proximal APM attachment was observed to be lost or extremely miniaturized in androgenic alopecia. The unique shape, location, and attachment sites of the APM suggest a significant role for this muscle in maintaining follicular integrity. Proximally, the APM encircles the follicular unit and only attaches to the primary hair follicle in the bulge; this attachment is lost in irreversible hair loss. The APM exhibits an arborized morphology as it ascends toward the epidermis, and anchors to the basement membrane.
Photodynamic toxicity of hematoporphyrin derivatives to human keratinocytes in culture.
Kappus, H; Reinhold, C; Artuc, M
Human keratinocytes in culture were able to take up hematoporphyrin derivatives (HPDs) used during photodynamic chemotherapy of tumors. In the absence of light, HPDs showed no cytotoxic effects to keratinocytes. However, after irradiation with visible light, HPDs induced immediate cytotoxicity as measured by the neutral red uptake assay. On the other hand, cell attachment as measured by protein estimation was not affected. When the cells treated with HPDs and irradiated with light were cultured for a further 72 h, they partially lost their ability to attach to the collagen surface. Most of the cells remaining attached after 72 h were no longer viable following treatment with HPDs and light. All parameters measured depended on the intracellular concentration of HPDs used (7-50 ng/10(5) cells) and the time of irradiation (0-30 min). These results suggest that human keratinocytes are a good model to study cytotoxic effects of photodynamically active drugs. Further, keratinocytes were unable to recover after damage caused by HPDs and light.
Envelope Protein Dynamics in Paramyxovirus Entry
Plattet, Philippe; Plemper, Richard K.
2013-01-01
ABSTRACT Paramyxoviruses include major pathogens with significant global health and economic impact. This large family of enveloped RNA viruses infects cells by employing two surface glycoproteins that tightly cooperate to fuse their lipid envelopes with the target cell plasma membrane, an attachment and a fusion (F) protein. Membrane fusion is believed to depend on receptor-induced conformational changes within the attachment protein that lead to the activation and subsequent refolding of F. While structural and mechanistic studies have considerably advanced our insight into paramyxovirus cell adhesion and the structural basis of F refolding, how precisely the attachment protein links receptor engagement to F triggering remained poorly understood. Recent reports based on work with several paramyxovirus family members have transformed our understanding of the triggering mechanism of the membrane fusion machinery. Here, we review these recent findings, which (i) offer a broader mechanistic understanding of the paramyxovirus cell entry system, (ii) illuminate key similarities and differences between entry strategies of different paramyxovirus family members, and (iii) suggest new strategies for the development of novel therapeutics. PMID:23820396
Envelope protein dynamics in paramyxovirus entry.
Plattet, Philippe; Plemper, Richard K
2013-07-02
Paramyxoviruses include major pathogens with significant global health and economic impact. This large family of enveloped RNA viruses infects cells by employing two surface glycoproteins that tightly cooperate to fuse their lipid envelopes with the target cell plasma membrane, an attachment and a fusion (F) protein. Membrane fusion is believed to depend on receptor-induced conformational changes within the attachment protein that lead to the activation and subsequent refolding of F. While structural and mechanistic studies have considerably advanced our insight into paramyxovirus cell adhesion and the structural basis of F refolding, how precisely the attachment protein links receptor engagement to F triggering remained poorly understood. Recent reports based on work with several paramyxovirus family members have transformed our understanding of the triggering mechanism of the membrane fusion machinery. Here, we review these recent findings, which (i) offer a broader mechanistic understanding of the paramyxovirus cell entry system, (ii) illuminate key similarities and differences between entry strategies of different paramyxovirus family members, and (iii) suggest new strategies for the development of novel therapeutics.
Leulmi, Selma; Chauchet, Xavier; Morcrette, Melissa; Ortiz, Guillermo; Joisten, Hélène; Sabon, Philippe; Livache, Thierry; Hou, Yanxia; Carrière, Marie; Lequien, Stéphane; Dieny, Bernard
2015-10-14
Cancer cells develop resistance to chemotherapy, and the side effects encountered seriously limit the effectiveness of treatments. For these reasons, the search for alternative therapies that target cancer cells without affecting healthy tissues is currently one of the most active areas of research on cancer. The present study focuses on a recently proposed approach for cancer cell destruction based on the targeted triggering of cancer cell spontaneous death through the mechanical vibration of anisotropic magnetic micro/nanoparticles attached to the cell membranes at low frequencies (∼20 Hz) and in weak magnetic fields (∼30 mT). The study was conducted in vitro, on human renal cancer cells with superparamagnetic-like particles. Three types of such particles made of NiFe or magnetite were prepared and characterized (either synthetic antiferromagnetic, vortex or polycrystalline with random grain anisotropy). The triggering of the apoptosis of these cancer cells was demonstrated with NiFe vortex particles and statistically characterized by flow-cytometry studies. The death pathway via apoptosis and not necrosis was identified by the clear observation of caspase activation.
NASA Astrophysics Data System (ADS)
Leulmi, Selma; Chauchet, Xavier; Morcrette, Melissa; Ortiz, Guillermo; Joisten, Hélène; Sabon, Philippe; Livache, Thierry; Hou, Yanxia; Carrière, Marie; Lequien, Stéphane; Dieny, Bernard
2015-09-01
Cancer cells develop resistance to chemotherapy, and the side effects encountered seriously limit the effectiveness of treatments. For these reasons, the search for alternative therapies that target cancer cells without affecting healthy tissues is currently one of the most active areas of research on cancer. The present study focuses on a recently proposed approach for cancer cell destruction based on the targeted triggering of cancer cell spontaneous death through the mechanical vibration of anisotropic magnetic micro/nanoparticles attached to the cell membranes at low frequencies (~20 Hz) and in weak magnetic fields (~30 mT). The study was conducted in vitro, on human renal cancer cells with superparamagnetic-like particles. Three types of such particles made of NiFe or magnetite were prepared and characterized (either synthetic antiferromagnetic, vortex or polycrystalline with random grain anisotropy). The triggering of the apoptosis of these cancer cells was demonstrated with NiFe vortex particles and statistically characterized by flow-cytometry studies. The death pathway via apoptosis and not necrosis was identified by the clear observation of caspase activation.
Inorganic Nanoparticle as a Carrier for Hepatitis B Viral Capsids
NASA Astrophysics Data System (ADS)
Dekhtyar, Yu.; Romanova, M.; Kachanovska, A.; Skrastiņa, D.; Reinhofa, R.; Pumpens, P.; Patmalnieks, A.
Virus like particles (VLP) are used to transport immune response-modulating agents to target cells to treat them. In order to deliver a high concentration of VLP to the cell, a number of VLP can be attached to a nanoparticle to be used as a nanolorry. In this study, SiO2 nanoparticles were attached to Hepatitis B VLP. Spectrophotometry measurements, electron, and fluorescent microscopy evidence showed that the SiO2 - Hepatitis B VLP complexes were formed.
Biocompatibility of orthodontic bands following exposure to dental plaque.
Hornikel, Sandra; Erbe, Christina; Schmidtmann, Irene; Wehrbein, Heiner
2011-03-01
The aim of this study was to assess the biocompatibility of orthodontic bands following exposure to the human oral environment. Cell adherence and cell morphology of gingival fibroblasts grown on 32 orthodontic bands were tested. The bands were in place intraorally for 6 to 37 months. We observed cell adherence in 76% of the previously plaque-free surfaces. Cell morphology was 50% spherical and 50% elongated. The surfaces that had had plaque attached demonstrated cell adherence in 84% of the given areas; those cells were spherical in 42% and elongated in 58%. We conclude that individual oral hygiene habits during orthodontic treatment seem to have no effect on the biocompatibility of orthodontic bands, as we failed to discern a difference in either cell adherence or cell morphology in areas with and without prior plaque attachment.
NASA Astrophysics Data System (ADS)
Kauffman, M. E.; Kauffman, M. E.; Keener, W. K.; Watwood, M. E.; Lehman, R. M.
2001-12-01
Toluene-oxidizing bacteria produce enzymes that cometabolically degrade trichloroethylene (TCE). These inducible enzymes are produced only in the presence of certain aromatic substrates such as toluene or phenol. Recent laboratory studies have utilized analog chemical substrates to identify production of bacterial enzymes capable of degrading trichloroethylene. These analog substrates produce chromogenic and/or fluorescent products when biotransformed by the enzymes of interest. In this study, 3-hydroxyphenylacetylene (3-HPA) was identified as an activity-dependent enzymatic probe for the detection of three of the four known toluene oxygenase enzymes capable of TCE degradation. Laboratory studies were conducted using pure cultures of Burkholderia cepacia G4, Burkholderia pickettii PKO1, and Pseudomonas putida F1. Cell cultures grown on lactate (non-enzyme inducing) or lactate and toluene (inducing) were trapped trapped on black polycarbonate filters, exposed to 3-HPA, and examined for fluorescence using an epifluorescent microscope. Additionally, B. cepacia G4 cells were grown under the same conditions, but in the presence of mineral and basalt specimens to allow for bacterial attachment. The specimens were then exposed to 3-HPA and examined under an epifluorescent microscope. Our results demonstrate that cells induced for the production of oxygenase enzymes, both unattached and attached, are able to transform 3-HPA to a fluorescent product, although cells attached to geologic materials, such as basalt, take substantially longer to transform the probe. Cells grown under non-inducing conditions do not transform the probe, regardless of their attachment status. Additionally, well water samples taken from a TCE-contaminated aquifer were successfully assayed using the 3-HPA enzymatic probe. The development of this enzyme activity-dependent enzymatic assay provides a fast and reliable method to assess the potential for TCE and aromatic contaminant bioremediation.
In vitro study of antibiotic effect on bacterial adherence to acrylic intraocular lenses.
Gaál, Valéria; Kilár, Ferenc; Acs, Barnabás; Szijjártó, Zsuzsanna; Kocsis, Béla; Kustos, Ildikó
2005-11-10
Implantation of artificial intraocular lenses into the eye during ophthalmic surgical procedures ensures an unliving surface on which bacterial pathogens may attach and form biofilms. Despite antibiotic treatment bacteria growing in biofilms might cause inflammation and serious complications. In this study the adhesive ability of 7 Staphylococcus aureus and 11 coagulase-negative Staphylococcus (CNS) strains to the surface of acrylic intraocular lenses had been examined by the ultrasonic method. In untreated cases adhesion of the S. aureus and CNS strains did not differ significantly. We could not demonstrate significant differences between the adhesive ability of the standard strains and the clinical isolates. In this study a single--60 min long--antibiotic (ciprofloxacin and tobramycin) treatment had been applied, that correlate well with the single or intermittant antibiotic prophylaxis of patients. Ciprofloxacin administration was able to reduce significantly the number of attached cells on the surface of acrylic lenses both in the case of S. aureus and CNS strains. Dependence of the effect from concentration could also be demonstrated. Tobramycin treatment was able to inhibit significantly the attachment of S. aureus cells. Despite the debate on antibiotic prophylaxis we presented in our experiments that a single antibiotic administration can decrease the attachment of bacterial cells to the surface of acrylic intraocular lenses, and might be effective in the prevention of postoperative endophthalmitis, that is a rare but serious complication of ophthalmic surgery.
Kolos, Elizabeth; Ruys, Andrew J
2015-01-01
In this study porous alumina samples were prepared and then coated using the biomimetic coating technique using a five times Simulated Body Fluid (5.0SBF) as the growth solution. A coating was achieved after pre-treatment with concentrated acid. From elemental analysis, the coating contained calcium and phosphorous, but also sodium and chlorine. Halite was identified by XRD, a sodium chloride phase. Sintering was done to remove the halite phase. Once halite was burnt off, the calcium phosphate crystals were not covered with halite and, therefore, the apatite phases can be clearly observed. Cell culturing showed sufficient cell attachment to the less porous alumina, Sample B, that has more calcium phosphate growth, while the porous alumina, Sample A, with minimal calcium phosphate growth attained very little cell attachment. This is likely due to the contribution that calcium phosphate plays in the attachment of bone-like cells to a bioinert ceramic such as alumina. These results were repeated on both SEM and confocal microscopy analysis. Confocal microscopy was a novel characterisation approach which gave useful information and was a visual aid.
A Novel Three-Dimensional Immune Oncology Model for High-Throughput Testing of Tumoricidal Activity.
Sherman, Hilary; Gitschier, Hannah J; Rossi, Ann E
2018-01-01
The latest advancements in oncology research are focused on autologous immune cell therapy. However, the effectiveness of this type of immunotherapy for cancer remediation is not equivalent for all patients or cancer types. This suggests the need for better preclinical screening models that more closely recapitulate in vivo tumor biology. The established method for investigating tumoricidal activity of immunotherapies has been study of two-dimensional (2D) monolayer cultures of immortalized cancer cell lines or primary tumor cells in standard tissue culture vessels. Indeed, a proven means to examine immune cell migration and invasion are 2D chemotaxis assays in permeabilized supports or Boyden chambers. Nevertheless, the more in vivo -like three-dimensional (3D) multicellular tumor spheroids are quickly becoming the favored model to examine immune cell invasion and tumor cell cytotoxicity. Accordingly, we have developed a 3D immune oncology model by combining 96-well permeable support systems and 96-well low-attachment microplates. The use of the permeable support system enables assessment of immune cell migration, which was tested in this study as chemotactic response of natural killer NK-92MI cells to human stromal-cell derived factor-1 (SDF-1α). Immune invasion was assessed by measuring NK-92MI infiltration into lung carcinoma A549 cell spheroids that were formed in low-attachment microplates. The novel pairing of the permeable support system with low-attachment microplates permitted simultaneous investigation of immune cell homing, immune invasion of tumor spheroids, and spheroid cytotoxicity. In effect, the system represents a more comprehensive and in vivo -like immune oncology model that can be utilized for high-throughput study of tumoricidal activity.
NASA Astrophysics Data System (ADS)
Sommani, P.; Tsuji, H.; Sato, H.; Kitamura, T.; Hattori, M.; Gotoh, Y.; Ishikawa, J.
2007-04-01
The minimum line width of the negative-ion-modified polystyrene (PS) for guidance and immobilizations of nerve-cell body and neurite extension have been investigated. Carbon negative ions were implanted into PS at fluence of 3 × 1015 ions/cm2 and energy of 5-20 keV through the various triangle apertures of the micro-pattern mask. After in vitro culture of the nerve-like cells of rat adrenal pheochromocytoma (PC12h), results showed that the minimum line widths for a single cell attachment and for neurite extension were 5-7 and 3-5 μm, respectively. While the minimum line width for attachment of cell group with long neurite was about 20 μm. The suitable widths for a large number of cells and for neurite extension were 20 and 5 μm, respectively. Therefore, the guidance for a clear separation of the attachment size of cell body and neurite extension could be achieved by the different modified line widths.
Adherence of Trichomonas vaginalis to cell culture monolayers.
Martinotti, M G; Martinetto, P; Savoia, D
1986-06-01
The in vitro adherence to WISH cells of a pathogenic Trichomonas vaginalis strain was studied with a method utilizing thymidine-labeled protozoa. A marked dose-related adherence was observed. Glutaraldehyde fixed trichomonads were not adherent. The presence of fetal calf serum during the assay did not influence attachment. Concanavalin A inhibited adherence of protozoa. Complete or partial inhibition of adherence was achieved by preincubating WISH cells with Lactobacillus fermentum or Streptococcus agalactiae. Finally, pretreatment of cells with alpha-estradiol, beta-estradiol, progesterone and estrone influenced attachment of protozoa, whereas estriol was ineffective. These results suggest that adherence of Trichomonas vaginalis is dependent on different factors, whose manipulation may have clinical relevance in preventing recurrence of trichomonad vaginitis.
Ghandi, Mostafa; Houshmand, Behzad; Nekoofar, Mohammad H.; Tabor, Rachel K.; Yadeghari, Zahra; Dummer, Paul M. H.
2013-01-01
Background: Root surface debridement (RSD) is necessary to create an environment suitable for reattachment of the periodontium. Root surface conditioning may aid the formation of a biocompatible surface suitable for cell reattachment. BioPure™ MTAD (mixture of Doxycycline, citric acid and a detergent) is an endodontic irrigant with antibacterial properties and the ability to remove smear layer. It was hypothesized that MTAD may be useful for root surface conditioning. The efficacy of MTAD as a conditioner was measured by examining fibroblast attachment to root surfaces. Materials and Methods: Thirty-two specimens of human teeth with advanced periodontal disease were used. The surfaces were root planed until smooth. Half of the specimens were treated with 0.9% saline and the other samples with Biopure MTAD. As a negative control group, five further samples were left unscaled with surface calculus. Human gingival fibroblast cells HGF1-PI1 were cultured and poured over the tooth specimens and incubated. After fixation, the samples were sputter-coated with gold and examined with a SEM. The morphology and number of attached, fixed viable cells were examined. The data was analysed using the Mann-Whitney-U statistical test. Results: There was no significant difference between the numbers of attached cells in the experimental group treated with MTAD and the control group treated with saline. Little or no attached cells were seen in the negative control group. Conclusion: RSD created an environment suitable for cell growth and attachment in a laboratory setting. The use of MTAD did not promote the attachment and growth of cells on the surface of human roots following RSD. PMID:23869124
Reduction of Fe(III) colloids by Shewanella putrefaciens: A kinetic model
NASA Astrophysics Data System (ADS)
Bonneville, Steeve; Behrends, Thilo; van Cappellen, Philippe; Hyacinthe, Christelle; Röling, Wilfred F. M.
2006-12-01
A kinetic model for the microbial reduction of Fe(III) oxyhydroxide colloids in the presence of excess electron donor is presented. The model assumes a two-step mechanism: (1) attachment of Fe(III) colloids to the cell surface and (2) reduction of Fe(III) centers at the surface of attached colloids. The validity of the model is tested using Shewanella putrefaciens and nanohematite as model dissimilatory iron reducing bacteria and Fe(III) colloidal particles, respectively. Attachment of nanohematite to the bacteria is formally described by a Langmuir isotherm. Initial iron reduction rates are shown to correlate linearly with the relative coverage of the cell surface by nanohematite particles, hence supporting a direct electron transfer from membrane-bound reductases to mineral particles attached to the cells. Using internally consistent parameter values for the maximum attachment capacity of Fe(III) colloids to the cells, Mmax, the attachment constant, KP, and the first-order Fe(III) reduction rate constant, k, the model reproduces the initial reduction rates of a variety of fine-grained Fe(III) oxyhydroxides by S. putrefaciens. The model explains the observed dependency of the apparent Fe(III) half-saturation constant, Km∗, on the solid to cell ratio, and it predicts that initial iron reduction rates exhibit saturation with respect to both the cell density and the abundance of the Fe(III) oxyhydroxide substrate.
An SU-8-based microprobe with a nanostructured surface enhances neuronal cell attachment and growth
NASA Astrophysics Data System (ADS)
Kim, Eunhee; Kim, Jin-Young; Choi, Hongsoo
2017-12-01
Microprobes are used to repair neuronal injury by recording electrical signals from neuronal cells around the surface of the device. Following implantation into the brain, the immune response results in formation of scar tissue around the microprobe. However, neurons must be in close proximity to the microprobe to enable signal recording. A common reason for failure of microprobes is impaired signal recording due to scar tissue, which is not related to the microprobe itself. Therefore, the device-cell interface must be improved to increase the number of neurons in contact with the surface. In this study, we developed nanostructured SU-8 microprobes to support neuronal growth. Nanostructures of 200 nm diameter and depth were applied to the surface of microprobes, and the attachment and neurite outgrowth of PC12 cells on the microprobes were evaluated. Neuronal attachment and neurite outgrowth on the nanostructured microprobes were significantly greater than those on non-nanostructured microprobes. The enhanced neuronal attachment and neurite outgrowth on the nanostructured microprobes occurred in the absence of an adhesive coating, such as poly- l-lysine, and so may be useful for implantable devices for long-term use. Therefore, nanostructured microprobes can be implanted without adhesive coating, which can cause problems in vivo over the long term.
Modeling the locomotion of the African trypanosome using multi-particle collision dynamics
NASA Astrophysics Data System (ADS)
Babu, Sujin B.; Stark, Holger
2012-08-01
The African trypanosome is a single flagellated micro-organism that causes the deadly sleeping sickness in humans and animals. We study the locomotion of a model trypanosome by modeling the spindle-shaped cell body using an elastic network of vertices with additional bending rigidity. The flagellum firmly attached to the model cell body is either straight or helical. A bending wave propagates along the flagellum and pushes the trypanosome forward in its viscous environment, which we simulate with the method of multi-particle collision dynamics. The relaxation dynamics of the model cell body due to a static bending wave reveals the sperm number from elastohydrodynamics as the relevant parameter. Characteristic cell body conformations for the helically attached flagellum resemble experimental observations. We show that the swimming velocity scales as the root of the angular frequency of the bending wave reminiscent of predictions for an actuated slender rod attached to a large viscous load. The swimming velocity for one geometry collapses on a single master curve when plotted versus the sperm number. The helically attached flagellum leads to a helical swimming path and a rotation of the model trypanosome about its long axis as observed in experiments. The simulated swimming velocity agrees with the experimental value.
Mata, Marcia M; da Silva, Wladimir P; Wilson, Richard; Lowe, Edwin; Bowman, John P
2015-02-06
Contamination of industrial and domestic food usage environments by the attachement of bacterial food-borne pathogen Listeria monocytogenes has public health and economic implications. Comprehensive proteomics experiments using label-free liquid chromatography/tandem mass spectrometry were used to compare the proteomes of two different L. monocytogenes strains (Siliken_1/2c and F2365_4b), which show very different capacities to attach to surfaces. Growth temperature and strain type were highly influential on the proteomes in both attached and planktonic cells. On the basis of the proteomic data, it is highly unlikely that specific surface proteins play a direct role in adherence to inanimate surfaces. Instead, strain-dependent responses related to cell envelope polymer biosynthesis and stress response regulation likely contribute to a different ability to attach and also to survive external stressors. Collectively, the divergent proteome-level responses observed define strain- and growth-temperature-dependent differences relevant to attachment efficacy, highlight relevant proteins involved in stress protection in attached cells, and suggest that strain differences and growth conditions are important in relation to environmental persistence.
Advantages and mechanisms of polarity and cell shape determination in Caulobacter crescentus.
Lawler, Melanie L; Brun, Yves V
2007-12-01
The tremendous diversity of bacterial cell shapes and the targeting of proteins and macromolecular complexes to specific subcellular sites strongly suggest that cellular organization provides important advantages to bacteria in their environment. Key advances have been made in the understanding of the mechanism and function of polarity and cell shape by studying the aquatic bacterium Caulobacter crescentus, whose cell cycle progression involves the ordered synthesis of different polar structures, and culminates in the biosynthesis of a thin polar cell envelope extension called the stalk. Recent results indicate that the important function of polar development is to maximize cell attachment to surfaces and to improve nutrient uptake by nonmotile and attached cells. Major progress has been made in understanding the regulatory network that coordinates polar development and morphogenesis and the role of polar localization of regulatory proteins.
Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications.
Jayakumar, R; Ramachandran, Roshni; Divyarani, V V; Chennazhi, K P; Tamura, H; Nair, S V
2011-03-01
In this study, we prepared chitin-chitosan/nano TiO(2) composite scaffolds using lyophilization technique for bone tissue engineering. The prepared composite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the composite scaffolds were evaluated. The developed composite scaffold showed controlled swelling and degradation when compared to the control scaffold. Cytocompatibility of the scaffold was assessed by MTT assay and cell attachment studies using osteoblast-like cells (MG-63), fibroblast cells (L929) and human mesenchymal stem cells (hMSCs). Results indicated no sign of toxicity and cells were found attached to the pore walls within the scaffolds. These results suggested that the developed composite scaffold possess the prerequisites for tissue engineering scaffolds and it can be used for tissue engineering applications. Copyright © 2010 Elsevier B.V. All rights reserved.
Chile, Nancy; Evangelista, Julio; Gilman, Robert H.; Arana, Yanina; Palma, Sandra; Sterling, Charles R; Garcia, Hector H.; Gonzalez, Armando; Verastegui, Manuela
2012-01-01
To fully understand the preliminary stages of Taenia solium oncosphere attachment in the gut, adequate tools and assays are necessary to observe and quantify this event that leads to infection. A fluorescent-based quantitative adhesion assay, using biotinylated activated-oncospheres and monolayers of Chinese hamster ovary cells (CHO-K1) or human intestinal monolayer cells (INT-407, HCT-8 or HT-29), was developed to study initial events during the infection of target cells and to rapidly quantify the in vitro adhesion of T. solium oncospheres. Fluorescein streptavidin was used to identify biotinylated activated-oncospheres adhered to cells. This adherence was quantified using an automated fluorescence plate reader, and the results were expressed as fluorescence intensity values. A series of three assays were performed. The first was to identify the optimum number of biotinylated activated-oncospheres to be used in the adhesion assay. The goal of the second assay was to validate this novel method with the established oncosphere-binding system using the immunofluorescent-antibody assay (IFA) method to quantify oncosphere adhesion. A total of 10,000 biotinylated activated-oncospheres were utilized to assess the role of sera and laminin (LM) in oncosphere adherence to a CHO-K1 cell monolayer. The findings that sera and LM increase the adhesion of oncospheres to monolayer cells were similar to results that were previously obtained using the IFA method. The third assay compared the adherence of biotinylated activated-oncospheres to different types of human intestinal monolayer cells. In this case, the fluorescence intensity was greatest when using the INT-407 cell monolayer. We believe this new method of quantification offers the potential for rapid, large-scale screening to study and elucidate specific molecules and mechanisms involved in oncosphere-host cell attachment. PMID:22178422
Joy, Abraham; Cohen, Daniel M.; Luk, Arnold; Anim-Danso, Emmanuel; Chen, Christopher; Kohn, Joachim
2011-01-01
A focused library of methacrylate terpolymers was synthesized to explore the effects of varying surface chemistry and adhesive peptide ligands on cell function. The chemical diversity of methacrylate monomers enabled construction of a library of polymers in which one can systematically vary the chemical composition to achieve a wide range of contact angle, Young's modulus, and Tg values. Furthermore, the materials were designed to allow surface immobilization of bioactive peptides. We then examined the effects of these material compositions on protein adsorption and cell attachment, proliferation, and differentiation. We observed that chemical composition of the polymers was an important determinant for NIH 3T3 cell attachment and proliferation, as well as human mesenchymal stem cell differentiation, and correlated directly with the ability of the polymers to adsorb proteins that mediate cell adhesion. Importantly, functionalization of the methacrylate terpolymer library with an adhesive GRGDS peptide normalized cellular responses. RGD-functionalized polymers uniformly exhibited robust attachment, proliferation, and differentiation irrespective of the underlying substrate chemistry. These studies provide a library-based approach to rapidly explore the biological functionality of biomaterials with a wide range of compositions, and highlights the importance of cell and protein cell adhesion in predicting their performance. PMID:21226505
Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R
2015-07-06
The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.
Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R.
2015-01-01
The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed. PMID:26109634
Silkworth, William T.; Nardi, Isaac K.; Scholl, Lindsey M.; Cimini, Daniela
2009-01-01
Many cancer cells display a CIN (Chromosome Instability) phenotype, by which they exhibit high rates of chromosome loss or gain at each cell cycle. Over the years, a number of different mechanisms, including mitotic spindle multipolarity, cytokinesis failure, and merotelic kinetochore orientation, have been proposed as causes of CIN. However, a comprehensive theory of how CIN is perpetuated is still lacking. We used CIN colorectal cancer cells as a model system to investigate the possible cellular mechanism(s) underlying CIN. We found that CIN cells frequently assembled multipolar spindles in early mitosis. However, multipolar anaphase cells were very rare, and live-cell experiments showed that almost all CIN cells divided in a bipolar fashion. Moreover, fixed-cell analysis showed high frequencies of merotelically attached lagging chromosomes in bipolar anaphase CIN cells, and higher frequencies of merotelic attachments in multipolar vs. bipolar prometaphases. Finally, we found that multipolar CIN prometaphases typically possessed γ-tubulin at all spindle poles, and that a significant fraction of bipolar metaphase/early anaphase CIN cells possessed more than one centrosome at a single spindle pole. Taken together, our data suggest a model by which merotelic kinetochore attachments can easily be established in multipolar prometaphases. Most of these multipolar prometaphase cells would then bi-polarize before anaphase onset, and the residual merotelic attachments would produce chromosome mis-segregation due to anaphase lagging chromosomes. We propose this spindle pole coalescence mechanism as a major contributor to chromosome instability in cancer cells. PMID:19668340
Williamson, Matthew R; Shuttleworth, Adrian; Canfield, Ann E; Black, Richard A; Kielty, Cay M
2007-12-01
The endothelium is an essential modulator of vascular tone and thrombogenicity and a critical barrier between the vessel wall and blood components. In tissue-engineered small-diameter vascular constructs, endothelial cell detachment in flow can lead to thrombosis and graft failure. The subendothelial extracellular matrix provides stable endothelial cell anchorage through interactions with cell surface receptors, and influences the proliferation, migration, and survival of both endothelial cells and smooth muscle cells. We have tested the hypothesis that these desired physiological characteristics can be conferred by surface coatings of natural vascular matrix components, focusing on the elastic fiber molecules, fibrillin-1, fibulin-5 and tropoelastin. On fibrillin-1 or fibulin-5-coated surfaces, endothelial cells exhibited strong integrin-mediated attachment in static conditions (82% and 76% attachment, respectively) and flow conditions (67% and 78% cell retention on fibrillin-1 or fibulin-5, respectively, at 25 dynes/cm2), confluent monolayer formation, and stable functional characteristics. Adhesion to these two molecules also strongly inhibited smooth muscle cell migration to the endothelial monolayer. In contrast, on elastin, endothelial cells attached poorly, did not spread, and had markedly impaired functional properties. Thus, fibrillin-1 and fibulin-5, but not elastin, can be exploited to enhance endothelial stability, and to inhibit SMC migration within vascular graft scaffolds. These findings have important implications for the design of vascular graft scaffolds, the clinical performance of which may be enhanced by exploiting natural cell-matrix biology to regulate cell attachment and function.
Effect of Micro- and Nanoscale Topography on the Adhesion of Bacterial Cells to Solid Surfaces
Hsu, Lillian C.; Fang, Jean; Borca-Tasciuc, Diana A.; Worobo, Randy W.
2013-01-01
Attachment and biofilm formation by bacterial pathogens on surfaces in natural, industrial, and hospital settings lead to infections and illnesses and even death. Minimizing bacterial attachment to surfaces using controlled topography could reduce the spreading of pathogens and, thus, the incidence of illnesses and subsequent human and financial losses. In this context, the attachment of key microorganisms, including Escherichia coli, Listeria innocua, and Pseudomonas fluorescens, to silica and alumina surfaces with micron and nanoscale topography was investigated. The results suggest that orientation of the attached cells occurs preferentially such as to maximize their contact area with the surface. Moreover, the bacterial cells exhibited different morphologies, including different number and size of cellular appendages, depending on the topographical details of the surface to which they attached. This suggests that bacteria may utilize different mechanisms of attachment in response to surface topography. These results are important for the design of novel microbe-repellant materials. PMID:23416997
Nuclear Matrix Association: Switching to the Invasive Cytotrophoblast
Drennan, Kathryn J.; Linnemann, Amelia K.; Platts, Adrian E.; Heng, Henry H.; Armant, D. Randall; Krawetz, Stephen A.
2010-01-01
Abnormal trophoblast invasion is associated with the most common and most severe complications of human pregnancy. The biology of invasion, as well as the etiology of abnormal invasion remains poorly understood. The aim of this study was to characterize the transcriptome of the HTR-8/SVneo human cytotrophoblast cell line which displays well characterized invasive and non-invasive behavior, and to correlate the activity of the transcriptome with nuclear matrix attachment and cell phenotype. Comparison of the invasive to non-invasive HTR transcriptomes was unremarkable. In contrast, comparison of the MARs on chromosomes 14–18 revealed an increased number of MARs associated with the invasive phenotype. These attachment areas were more likely to be associated with silent rather than actively transcribed genes. This study supports that view that that nuclear matrix attachment may play an important role in cytotrophoblast invasion by ensuring specific silencing that facilitates invasion. PMID:20346505
2013-01-01
Background Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel. Findings This study investigated the effect of five commercial tea (green, oolong, black, pu-erh and chrysanthemum) extracts and tea components (epigallocatechin gallate and gallic acid) on the attachment of five oral pathogens (Streptococcus mutans ATCC 25175, Streptococcus mutans ATCC 35668, Streptococcus mitis ATCC 49456, Streptococcus salivarius ATCC 13419 and Actinomyces naeslundii ATCC 51655) to the HGF-1 gingival cell line. Extracts of two of the teas (pu-erh and chrysanthemum) significantly (p < 0.05) reduced attachment of all the Streptococcus strains by up to 4 log CFU/well but effects of other teas and components were small. Conclusions Pu-erh and chrysanthemum tea may have the potential to reduce attachment of oral pathogens to gingival tissue and improve the health of oral soft tissues. PMID:23578062
Wang, Yi; Chung, Felicia F L; Lee, Sui M; Dykes, Gary A
2013-04-11
Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel. This study investigated the effect of five commercial tea (green, oolong, black, pu-erh and chrysanthemum) extracts and tea components (epigallocatechin gallate and gallic acid) on the attachment of five oral pathogens (Streptococcus mutans ATCC 25175, Streptococcus mutans ATCC 35668, Streptococcus mitis ATCC 49456, Streptococcus salivarius ATCC 13419 and Actinomyces naeslundii ATCC 51655) to the HGF-1 gingival cell line. Extracts of two of the teas (pu-erh and chrysanthemum) significantly (p < 0.05) reduced attachment of all the Streptococcus strains by up to 4 log CFU/well but effects of other teas and components were small. Pu-erh and chrysanthemum tea may have the potential to reduce attachment of oral pathogens to gingival tissue and improve the health of oral soft tissues.
Tendon-to-bone attachment: from development to maturity.
Zelzer, Elazar; Blitz, Einat; Killian, Megan L; Thomopoulos, Stavros
2014-03-01
The attachment between tendon and bone occurs across a complex transitional tissue that minimizes stress concentrations and allows for load transfer between muscles and skeleton. This unique tissue cannot be reconstructed following injury, leading to high incidence of recurrent failure and stressing the need for new clinical approaches. This review describes the current understanding of the development and function of the attachment site between tendon and bone. The embryonic attachment unit, namely, the tip of the tendon and the bone eminence into which it is inserted, was recently shown to develop modularly from a unique population of Sox9- and Scx-positive cells, which are distinct from tendon fibroblasts and chondrocytes. The fate and differentiation of these cells is regulated by transforming growth factor beta and bone morphogenetic protein signaling, respectively. Muscle loads are then necessary for the tissue to mature and mineralize. Mineralization of the attachment unit, which occurs postnatally at most sites, is largely controlled by an Indian hedgehog/parathyroid hormone-related protein feedback loop. A number of fundamental questions regarding the development of this remarkable attachment system require further study. These relate to the signaling mechanism that facilitates the formation of an interface with a gradient of cellular and extracellular phenotypes, as well as to the interactions between tendon and bone at the point of attachment. Copyright © 2014 Wiley Periodicals, Inc.
Mante, Francis K; Little, Kevin; Mante, Mamle O; Rawle, Christopher; Baran, George R
2004-01-01
The aim of this study was to compare the efficacy of attachment of arginine-glycine-aspartic acid (RGD) peptide to titanium surfaces oxidized by different methods. Titanium surfaces were treated as follows: (1) treatment A: passivation in nitric acid, (2) treatment B: heated in air at 400 degrees C for 1 hour, (3) treatment C: immersed in 8.8 M H2O2/0.1 M HCl at 80 degrees C for 30 minutes, and (4) treatment D: treated as in treatment C and then heated at 400 degrees C for 1 hour. RGD was attached to titanium samples treated as in treatments A through D. The quantity of attached RGD was determined by an enzyme-linked immunoabsorbent assay. Mineralization of a rat bone marrow stromal cell (RMSC) culture on the titanium surfaces after 21 days was determined y atomic absorption spectroscopy. The treatments were ranked according to quantity of RGD attached as C, A, B, and D. Twenty-one days after RMSC culture, the degree of mineralization was significantly higher for treatment C than for treatments A, B, and D and for controls. The efficacy of RGD attachment varies with the oxidation treatment given to titanium. Oxidation in H2O2/0.1 M HCl at 80 degrees C provided the best overall surface for RGD attachment as well as calcified matrix formation of RMSCs.
Senapati, Shantibhusan; Chaturvedi, Pallavi; Chaney, William G; Chakraborty, Subhankar; Gnanapragassam, Vinayaga S; Sasson, Aaron R; Batra, Surinder K
2011-01-15
Several studies have reported aberrant expression of MUC4 in pancreatic cancer (PC), which is associated with tumorigenicity and metastasis. Mechanisms through which MUC4 promote metastasis of PC cells to distant organs are poorly defined. Identification of MUC4-galectin-3 interaction and its effect on the adhesion of cancer cells to endothelial cells were done by immunoprecipitation and cell-cell adhesion assays, respectively. Serum galectin-3 level for normal and PC patients were evaluated through ELISA. In the present study, we have provided clinical evidence that the level of galectin-3 is significantly elevated in the sera of PC patients with metastatic disease compared with patients without metastasis (P = 0.04) and healthy controls (P = 0.00001). Importantly, for the first time, we demonstrate that MUC4 present on the surface of circulating PC cells plays a significant role in the transient and reversible attachment (docking) of circulating tumor cells to the surface of endothelial cells. Further, exogenous galectin-3 at concentrations similar to that found in the sera of PC patients interacts with MUC4 via surface glycans such as T antigens, which results in the clustering of MUC4 on the cell surface and a stronger attachment (locking) of circulating tumor cells to the endothelium. Altogether, these findings suggest that PC cell-associated MUC4 helps in the docking of tumor cells on the endothelial surface. During cancer progression, MUC4-galectin-3 interaction-mediated clustering of MUC4 may expose the surface adhesion molecules, which in turn promotes a stronger attachment (locking) of tumor cells to the endothelial surface. ©2010 AACR.
NASA Astrophysics Data System (ADS)
Abdel-Fattah, Amr I.; Roberts, Peter M.
2006-05-01
It is well known that colloid attachment and detachment at solid surfaces are influenced strongly by physico-chemical conditions controlling electric double layer (EDL) and solvation-layer effects. We present experimental observations demonstrating that, in addition, acoustic waves can produce strong effects on colloid/surface interactions that can alter the behavior of colloid and fluid transport in porous media. Microscopic colloid visualization experiments were performed with polystyrene micro-spheres suspended in water in a parallel-plate glass flow cell. When acoustic energy was applied to the cell at frequencies from 500 kHz to 5 MHz, changes in colloid attachment to and detachment from the glass cell surfaces were observed. Quantitative measurements of acoustically-induced detachment of 300-nm microspheres in 0.1M NaCl solution demonstrated that roughly 30% of the colloids that were attached to the glass cell wall during flow alone could be detached rapidly by applying acoustics at frequencies in the range of 0.7 to 1.2 MHz. The remaining attached colloids could not be detached by acoustics. This implies the existence of both "strong" and "weak" attachment sites at the cell surface. Subsequent re-attachment of colloids with acoustics turned off occurred only at new, previously unoccupied sites. Thus, acoustics appears to accelerate simultaneously both the deactivation of existing weak sites where colloids are already attached, and the activation of new weak sites where future attachments can occur. Our observations indicate that acoustics (and, in general, dynamic stress) can influence colloid-colloid and colloid-surface interactions in ways that could cause significant changes in porous-media permeability and mass transport. This would occur due to either buildup or release of colloids present in the porous matrix.
Dalby, M J; Di Silvio, L; Harper, E J; Bonfield, W
2002-03-01
A bone cement, poly(ethylmethacrylate)/n-butylmethacrylate (PEMA/nBMA) has been developed with lower exotherm and monomer leaching compared to the traditional poly(methylmethacrylate)/methylmethacrylate (PMMA/MMA) cement. This study compares the in vitro biological response to the cements using primary human osteoblast-like cells (HOB). Cell attachment was qualified by immunolocalization of vinculin and actin cytoskeleton, showing more organization on PEMA/nBMA compared to PMMA/MMA. Proliferation was assessed using tritiated thymidine incorporation, and phenotype expression determined by measuring alkaline phosphatase (ALP) activity. An increase in proliferation and ALP activity was observed on PEMA/nBMA compared to PMMA/MMA. The results confirm the biocompatability of PEMA/nBMA, and an enhanced cell attachment and expression of differentiated cell phenotype.
Amir Afshar, Hamideh; Ghaee, Azadeh
2016-10-20
The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in cell culture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nel-Themaat, L; Gómez, M C; Damiani, P; Wirtu, G; Dresser, B L; Bondioli, K R; Lyons, L A; Pope, C E; Godke, R A
2007-01-01
Semen and milk are potential sources of somatic cells for genome banks. In the present study, we cultured and characterised cells from: (1) cooled sheep milk; (2) fresh, cooled and frozen-thawed semen from Gulf Coast native (GCN) sheep (Ovis aries); and (3) fresh eland (Taurotragus oryx) semen. Cells attached to the culture surface from fresh (29%), cooled (43%) and slow-frozen (1 degrees C/min; 14%) ram semen, whereas no attachment occurred in the fast-frozen (10 degrees C/min) group. Proliferation occurred in fresh (50%) and cooled (100%) groups, but no cells proliferated after passage 1 (P1). Eland semen yielded cell lines (100%) that were cryopreserved at P1. In samples from GCN and cross-bred milk, cell attachment (83% and 95%, respectively) and proliferation (60% and 37%, respectively) were observed. Immunocytochemical detection of cytokeratin indicated an epithelial origin of semen-derived cells, whereas milk yielded either fibroblasts, epithelial or a mixture of cell types. Deoxyribonucleic acid microsatellite analysis using cattle-derived markers confirmed that eland cells were from the semen donor. Eland epithelial cells were transferred into eland oocytes and 12 (71%), six (35%) and two (12%) embryos cleaved and developed to morulae or blastocyst stages, respectively. In conclusion, we have developed a technique for obtaining somatic cells from semen. We have also demonstrated that semen-derived cells can serve as karyoplast donors for nuclear transfer.
Methods for Maintaining Insect Cell Cultures
Lynn, Dwight E.
2002-01-01
Insect cell cultures are now commonly used in insect physiology, developmental biology, pathology, and molecular biology. As the field has advanced from methods development to a standard procedure, so has the diversity of scientists using the technique. This paper describes methods that are effective for maintaining various insect cell lines. The procedures are differentiated between loosely or non-attached cell strains, attached cell strains, and strongly adherent cell strains. PMID:15455043
Bråten, T
1975-01-01
The development of the rhizoid cells of the green alga Ulva mutabilis was investigated at the ultrastructural level paying special attention to the mechanism of attachment of the plant. Cytochemical data concerning the initial settling of the early zygote are also given. On the basis of histochemical staining and enzyme treatment it is concluded that the adhesive material secreted by the rhizoid cells is chemically different from that secreted by the zygote during the initial settling of the alga.
Kodama, Yuuki; Fujishima, Masahiro
2013-09-01
Paramecium bursaria harbor several hundred symbiotic Chlorella spp. Each alga is enclosed in a perialgal vacuole membrane, which can attach to the host cell cortex. How the perialgal vacuole attaches beneath the host cell cortex remains unknown. High-speed centrifugation (> 1000×g) for 1min induces rapid detachment of the algae from the host cell cortex and concentrates the algae to the posterior half of the host cell. Simultaneously, most of the host acidosomes and lysosomes accumulate in the anterior half of the host cell. Both the detached algae and the dislocated acidic vesicles recover their original positions by host cyclosis within 10min after centrifugation. These recoveries were inhibited if the host cytoplasmic streaming was arrested by nocodazole. Endosymbiotic algae during the early reinfection process also show the capability of desorption after centrifugation. These results demonstrate that adhesion of the perialgal vacuole beneath the host cell cortex is repeatedly inducible, and that host cytoplasmic streaming facilitates recovery of the algal attachment. This study is the first report to illuminate the mechanism of the induction to desorb for symbiotic algae and acidic vesicles, and will contribute to the understanding of the mechanism of algal and organelle arrangements in Paramecium. Copyright © 2013 Elsevier GmbH. All rights reserved.
Yack, J E; Roots, B I
1992-03-01
The structure of a simple chordotonal organ, the presumed homologue of the noctuoid moth tympanal organ, is described in the atympanate moth, Actias luna. The organ consists of a proximal scolopidial region and a distal strand, which attaches peripherally to the membraneous cuticle ventral to the hindwing alula. The strand is composed of elongate, microtubule-rich cells encased in an extracellular connective tissue sheath. The scolopidial region houses three mononematic, monodynal scolopidia, each comprised of a sensory cell, scolopale cell, and attachment cell. The dendritic apex is octagonally shaped in transverse section, its inner membrane lined by a laminated structure reminiscent of the noctuoid tympanal organ 'collar'. A 9 + 0-type cilium emerges from the dendritic apex, passes through both the scolopale lumen and cap, and terminates in an extracellular space distal to the latter. Proximal extensions of the attachment cell and distal prolongations of the scolopale cell surrounding the cap are joined by an elaborate desmosome, with which is associated an extensive electron-dense fibrillar plaque. Within the scolopale cell, this plaque constitutes the scolopale 'rod' material. The data are discussed in terms of both the organ's potential function, and its significance as the evolutionary prototype of the noctuoid moth ear.
Cell adhesion to borate glasses by colloidal probe microscopy.
Wiederhorn, Sheldon M; Chae, Young-Hun; Simon, Carl G; Cahn, Jackson; Deng, Yan; Day, Delbert
2011-05-01
The adhesion of osteoblast-like cells to silicate and borate glasses was measured in cell growth medium using colloidal probe microscopy. The probes consisted of silicate and borate glass spheres, 25-50 μm in diameter, attached to atomic force microscope cantilevers. Variables of the study included glass composition and time of contact of the cell to the glasses. Increasing the time of contact from 15 to 900 s increased the force of adhesion. The data could be plotted linearly on a log-log plot of adhesive force versus time. Of the seven glasses tested, five had slopes close to 0.5, suggesting a square root dependence of the adhesive force on the contact time. Such behavior can be interpreted as a diffusion limited process occurring during the early stages of cell attachment. We suggest that the rate limiting step in the adhesion process is the diffusion of integrins resident in the cell membrane to the area of cell attachment. Data presented in this paper support the hypothesis of Hench et al. that strong adhesion depends on the formation of a calcium phosphate reaction layer on the surfaces of the glass. Glasses that did not form a calcium phosphate layer exhibited a weaker adhesive force relative to those glasses that did form a calcium phosphate layer. Published by Elsevier Ltd.
On the robustness of SAC silencing in closed mitosis
NASA Astrophysics Data System (ADS)
Ruth, Donovan; Liu, Jian
Mitosis equally partitions sister chromatids to two daughter cells. This is achieved by properly attaching these chromatids via their kinetochores to microtubules that emanate from the spindle poles. Once the last kinetochore is properly attached, the spindle microtubules pull the sister chromatids apart. Due to the dynamic nature of microtubules, however, kinetochore-microtubule attachment often goes wrong. When this erroneous attachment occurs, it locally activates an ensemble of proteins, called the spindle assembly checkpoint proteins (SAC), which halts the mitotic progression until all the kinetochores are properly attached by spindle microtubules. The timing of SAC silencing thus determines the fidelity of chromosome segregation. We previously established a spatiotemporal model that addresses the robustness of SAC silencing in open mitosis for the first time. Here, we focus on closed mitosis by examining yeast mitosis as a model system. Though much experimental work has been done to study the SAC in cells undergoing closed mitosis, the processes responsible are not well understood. We leverage and extend our previous model to study SAC silencing mechanism in closed mitosis. We show that a robust signal of the SAC protein accumulation at the spindle pole body can be achieved. This signal is a nonlinear increasing function of number of kinetochore-microtubule attachments, and can thus serve as a robust trigger to time the SAC silencing. Together, our mechanism provides a unified framework across species that ensures robust SAC silencing and fidelity of chromosome segregation in mitosis. Intramural research program in NHLBI at NIH.
Endometrial stromal cell attachment and matrix homeostasis in abdominal wall endometriomas.
Itoh, Hiroko; Mogami, Haruta; Bou Nemer, Laurice; Word, Larry; Rogers, David; Miller, Rodney; Word, R Ann
2018-02-01
How does progesterone alter matrix remodeling in abdominal wall endometriomas compared with normal endometrium? Progesterone may prevent attachment of endometrial cells to the abdominal wall, but does not ameliorate abnormal stromal cell responses of abdominal wall endometriomas. Menstruation is a tightly orchestrated physiologic event in which steroid hormones and inflammatory cells cooperatively initiate shedding of the endometrium. Abdominal wall endometriomas represent a unique form of endometriosis in which endometrial cells inoculate fascia or dermis at the time of obstetrical or gynecologic surgery. Invasion of endometrium into ectopic sites requires matrix metalloproteinases (MMPs) for tissue remodeling but endometrium is not shed externally. Observational study in 14 cases and 19 controls. Tissues and stromal cells isolated from 14 abdominal wall endometriomas were compared with 19 normal cycling endometrium using immunohistochemistry, quantitative PCR, gelatin zymography and cell attachment assays. P values < 0.05 were considered significant and experiments were repeated in at least three different cell preps to provide scientific rigor to the conclusions. The results indicate that MMP2 and MMP9 are not increased by TGFβ1 in endometrioma stromal cells. Although progesterone prevents attachment of endometrioma cells to matrix components of the abdominal wall, it does not ameliorate these abnormal stromal cell responses to TGFβ1. N/A. Endometriomas were collected from women identified pre-operatively. Not all endometriomas were collected. Stromal cells from normal endometrium were from different patients, not women undergoing endometrioma resection. This work provides insight into the mechanisms by which progesterone may prevent abdominal wall endometriomas but, once established, are refractory to progesterone treatment. Tissue acquisition was supported by NIH P01HD087150. Authors have no competing interests. © The Author(s) 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Ni, Siyu; Chang, Jiang; Chou, Lee; Zhai, Wanyin
2007-01-01
Calcium silicate ceramics have been proposed as new bone repair biomaterials, since they have proved to be bioactive, degradable, and biocompatible. Beta-tricalcium phosphate ceramic is a well-known degradable material for bone repair. This study compared the effects of CaSiO3 (alpha-, and beta-CaSiO3) and beta-Ca3(PO4)2 (beta-TCP) ceramics on the early stages of rat osteoblast-like cell attachment, proliferation, and differentiation. Osteoblast-like cells were cultured directly on CaSiO3 (alpha-, and beta-CaSiO3) and beta-TCP ceramics. Attachment of a greater number of cells was observed on CaSiO3 (alpha-, and beta-CaSiO3) ceramics compared with beta-TCP ceramics after incubation for 6 h. SEM observations showed an intimate contact between cells and the substrates, significant cells adhesion, and that the cells spread and grew on the surfaces of all the materials. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of the cells on the CaSiO3 (alpha-, and beta-CaSiO3) ceramics were improved when compared with the beta-TCP ceramics. In the presence of CaSiO3, elevated levels of calcium and silicon in the culture medium were observed throughout the 7-day culture period. In conclusion, the results of the present study revealed that CaSiO3 ceramics showed greater ability to support cell attachment, proliferation, and differentiation than beta-TCP ceramic. 2006 Wiley Periodicals, Inc.
Niedermayer, Stefan; Weiss, Veronika; Herrmann, Annika; Schmidt, Alexandra; Datz, Stefan; Müller, Katharina; Wagner, Ernst; Bein, Thomas; Bräuchle, Christoph
2015-05-07
A highly stable modular platform, based on the sequential covalent attachment of different functionalities to the surface of core-shell mesoporous silica nanoparticles (MSNs) for targeted drug delivery is presented. A reversible pH-responsive cap system based on covalently attached poly(2-vinylpyridine) (PVP) was developed as drug release mechanism. Our platform offers (i) tuneable interactions and release kinetics with the cargo drug in the mesopores based on chemically orthogonal core-shell design, (ii) an extremely robust and reversible closure and release mechanism based on endosomal acidification of the covalently attached PVP polymer block, (iii) high colloidal stability due to a covalently coupled PEG shell, and (iv) the ability to covalently attach a wide variety of dyes, targeting ligands and other functionalities at the outer periphery of the PEG shell. The functionality of the system was demonstrated in several cell studies, showing pH-triggered release in the endosome, light-triggered endosomal escape with an on-board photosensitizer, and efficient folic acid-based cell targeting.
NASA Astrophysics Data System (ADS)
Edén, C. Svanborg; Freter, R.; Hagberg, L.; Hull, R.; Hull, S.; Leffler, H.; Schoolnik, G.
1982-08-01
It has been shown that the establishment of urinary tract infection by Escherichia coli is dependent on attachment of the bacteria to epithelial cells1-4. The attachment involves specific epithelial cell receptors, which have been characterized as glycolipids5-10. Reversible binding to cell-surface mannosides may also be important4,11-13. This suggests an approach to the treatment of infections-that of blocking bacterial attachment with cell membrane receptor analogues. Using E. coli mutants lacking one or other of the two binding specificities (glycolipid and mannose), we show here that glycolipid analogues can block in vitro adhesion and in vivo urinary tract infection.
Thrombospondin-induced adhesion of human keratinocytes.
Varani, J; Nickoloff, B J; Riser, B L; Mitra, R S; O'Rourke, K; Dixit, V M
1988-01-01
Human epidermal keratinocytes obtained from normal skin attached and spread on thrombospondin (TSP)-coated plastic dishes but failed to attach and spread on untreated plastic culture dishes or dishes coated with fibronectin or laminin. These cells produced minimal amounts of immunoreactive TSP. Keratinocytes established in culture on MCDB 153 medium and maintained for one to three passages in an undifferentiated state by continued cultivation in this low Ca2+-containing medium attached and spread on plastic dishes as well as on TSP-coated dishes. These cells also secreted significant amounts of TSP into the culture medium. When the keratinocytes were incubated for one day in MCDB 153 medium supplemented with high Ca2+ or in MEM (which also contains high Ca2+), there was decreased secretion of TSP into the culture medium concomitant with a reduction in attachment and spreading on plastic culture dishes. Proteolytic fragments of TSP were examined for stimulation of keratinocyte attachment and spreading. A 140-kd fragment produced by removal of the 25-kd heparin-binding domain had similar activity to the intact molecule while the 25-kd fragment was without effect. Further proteolytic treatment of the 140-kd fragment gave rise to a fragment consisting of 120 kd and 18-D moieties held together in disulphide linkage. This fragment did not support attachment or spreading. This study reveals that normal epidermal keratinocytes grown under conditions that maintain the undifferentiated state are able to produce TSP and utilize it as an attachment factor. When keratinocytes are grown under conditions that promote differentiation, ability to produce and utilize TSP is diminished. Since TSP is present at the dermal-epidermal junction and because TSP promotes keratinocyte attachment and spreading, this molecule may play an important role in maintaining normal growth of the basal cell layer and may also participate in reepithelialization during wound repair. Images PMID:2452837
An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells.
Baxter, Frances R; Turner, Irene G; Bowen, Christopher R; Gittings, Jonathan P; Chaudhuri, Julian B
2009-08-01
Electrically active ceramics are of interest as bone graft substitute materials. This study investigated the ferroelectric properties of hydroxyapatite-barium titanate (HABT) composites and the behaviour of osteoblast-like cells seeded on their surfaces. A piezoelectric coefficient (d(33)) of 57.8 pCN(-1) was observed in HABT discs prepared for cell culture. The attachment, proliferation, viability, morphology and metabolic activity of cells cultured on unpoled HABT were comparable to those observed on commercially available hydroxyapatite at all time points. No indication of the cytotoxicity of HABT was detected. At one day after seeding, cell attachment was modified on both the positive and negative surfaces of poled HABT. After longer incubations, all parameters observed were comparable on poled and unpoled ceramics. The results indicate that HABT ceramics are biocompatible in the short term in vitro and that further investigation of cell responses to these materials under mechanical load and at longer incubation times is warranted.
High accuracy indirect optical manipulation of live cells with functionalized microtools
NASA Astrophysics Data System (ADS)
Vizsnyiczai, Gaszton; Aekbote, Badri L.; Buzás, András.; Grexa, István.; Ormos, Pál.; Kelemen, Lóránd
2016-09-01
Optical micro manipulation of live cells has been extensively used to study a wide range of cellular phenomena with relevance in basic research or in diagnostics. The approaches span from manipulation of many cells for high throughput measurement or sorting, to more elaborated studies of intracellular events on trapped single cells when coupled with modern imaging techniques. In case of direct cell trapping the damaging effects of light-cell interaction must be minimized, for instance with the choice of proper laser wavelength. Microbeads have already been used for trapping cells indirectly thereby reducing the irradiation damage and increasing trapping efficiency with their high refractive index contrast. We show here that such intermediate objects can be tailor-made for indirect cell trapping to further increase cell-to-focal spot distance while maintaining their free and fast maneuverability. Carefully designed structures were produced with two-photon polymerization with shapes optimized for effective manipulation and cell attachment. Functionalization of the microstructures is also presented that enables cell attachment to them within a few seconds with strength much higher that the optical forces. Fast cell actuation in 6 degrees of freedom is demonstrated with the outlook to possible applications in cell imaging.
HaCaT anchorage blockade leads to oxidative stress, DNA damage and DNA methylation changes.
da Silva, Rodrigo A; Sammartino Mariano, Flavia; Planello, Aline C; Line, Sergio R P; de Souza, Ana Paula
2015-07-01
Cell adhesion plays an important role in neoplastic transformation. Thus, anchorage-independent growth and epithelial-mesenchymal transition, which are features associated to anoikis-resistance, are vital steps in cancer progression and metastatic colonization. Cell attachment loss may induce intracellular oxidative stress, which triggers DNA damage as methylation changes. HaCaT lineage cells were submitted to periods of 1, 3, 5 and 24 h of anchorage blockage with the purpose of study of oxidative stress effect on changes in the DNA methylation pattern, derived from attachment blockade. Through this study, HaCaT anchorage blockage-induced oxidative stress was reported to mediate alterations in global DNA methylation changes and into TP53 gene promoter pattern during anoikis-resistance acquisition. Furthermore, at the first experimental time-periods (1, 3 and 5 h), genome hypermethylation was found; however, genome hypomethylation was observed in later time-periods (24 h) of attachment impediment. The TP 53 methylation analyses were performed after 24 h of replated anoikis-resistance cells and same methylation pattern was observed, occurring an early (1 and 3 h) hypermethylation that was followed by late (5 and 24 h) hypomethylation. However, LINE-1, a marker of genomic instability, was perceived in time-dependent hypomethylation. The mRNA levels of the DNMTs enzymes were influenced by cell attachment blockage, but non-conclusive results were obtained in order to match DNMTs transcription to pattern methylation results. In conclusion, DNA damage was found, leaded by oxidative stress that has come up from HaCaT anchorage blockade, which rises a global genome hypomethylation tendency as consequence, which might denote genomic instability.
Influence of Natural Organic Matter on Attachment Kinetics of Salmonella Typhimurium
NASA Astrophysics Data System (ADS)
Chowdhury, I.; Zorlu, O.; Hill, J. E.; Walker, S. L.
2011-12-01
Salmonella enterica serovar Typhimurium is one of the most common and virulent bacterial pathogens, usually found in food and water. This waterborne pathogen has been attributed to causing gastroenteritis and typhoid fever, leading to 16 million cases and over half a million deaths worldwide each year. Natural organic matter (NOM) is ubiquitous in environment and previous work has shown NOM to enhance the stability and transport of bacteria cells; hence NOM will certainly interact with Salmonella and affect its transport in environment. The objective of this study was to investigate the influence of NOM (Suwannee River humic acid standard II, SRHA) on the attachment kinetics of a model Salmonella (Salmonella enterica serovar Typhimurium SA5983) to glass. The transport study was conducted in a parallel plate flow chamber using fluorescent microscope to visualize the bacterial cells, which were tagged with green fluorescent protein (GFP). The solution pH was unadjusted, and the flow rate through parallel plate channel was 0.1 mL/min to simulate groundwater conditions. Parameters varied in this study were NOM presence, ion valence (K+, Ca2+) as well as cell growth phase (mid-exponential and late-exponential growth phases). These parameters were chosen because ion valence may alter the NOM conformation and capacity for bridging, as well growth phase impacts the cellular surface chemistry. Extensive characterization of the bacterial cells was conducted including measurements of electrophoretic mobility, hydrophobicity, acidity, surface charge density and extracellular polymeric substance content. Additionally, electrokintic characterization was conducted for the glass. Preliminary results demonstrated the sensitivity of cell attachment to ionic valence and cell growth phase. Also the addition of NOM reduced the attachment of the Salmonella cells significantly under all of these conditions. Without NOM, attachment efficiencies (α) in KCl were similar at both growth phases; however, in the presence of the divalent ion, α decreased as the cells aged. In presence of NOM and KCl, α was significantly lower at late exponential phase than mid exponential phase; whereas, the opposite was observed with divalent ions. These trends indicate the complex role of NOM, which is coupled with ion valence and growth phase, in the transport of Salmonella. Detailed results will be presented along with proposed mechanisms involved in the interactions between Salmonella and NOM. These mechanisms highlight the role this important naturally occurring macromolecule plays in the fate of Salmonella. This understanding will improve our ability to predict the behavior of this pathogen in environmentally relevant conditions.
John, Cathy Nisha; Stephen, Lawrence Xavier; Joyce Africa, Charlene Wilma
2013-12-03
The immunosuppresion in HIV patients makes them highly susceptible to microbial infections. The aim of the study was to establish whether HIV stage (as depicted by CD4+ T lymphocyte counts) could independently be associated with periodontal status (as revealed by the measurement of clinical indices). One hundred and twenty HIV-infected patients attending an infectious diseases clinic in the Western Cape, South Africa were included in the study. The periodontal clinical indices such as plaque index, gingival index, pocket probing depth and clinical attachment levels were measured on the mesial aspect of the six Ramfjord teeth. The CD4 + T cell counts were taken from the patients' medical records and patients' HIV stage determined and grouped according to their CD4+ T cell counts into A (<200 cells /mm3), B (200-500 cells /mm3) and C (>500 cells /mm3). The mean age of 120 HIV-positive patients was 33.25 years and the mean CD4 + T cell count was 293.43 cells/mm3. The probing depth and clinical attachment loss were found to be significantly associated with the total CD4 + T cell counts but not with HIV stage. Significant correlations were found between age and all clinical indices except for clinical attachment loss. No correlation was found between age and HIV stage of the patients. The use of antiretroviral therapy was significantly associated with probing depth and clinical attachment loss, but not with plaque nor gingival index. Significant associations were observed between smoking and all of the clinical indices except for the gingival index. A significant association was observed between the use of interdental aids and all the clinical indices except for probing depth, while brushing was significantly associated with plaque index only. CD4 + T cell counts were significantly associated with brushing frequency (p = 0.0190) and the use of interdental aids (p = 0.0170). The findings of this study conclude that HIV stage, ART and age are not independent risk factors for changes in the periodontal status of HIV-positive subjects but rather that smoking and oral hygiene habits determine their susceptibility to disease.
Lam, Chui-Wan; AbuBakar, Sazaly; Chang, Li-Yen
2017-05-01
Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus with unusual broad host tropism and is designated as a Category C pathogen by the U.S. National Institute of Allergy and Infectious Diseases. NiV infection is initiated after binding of the viral G glycoprotein to the host cell receptor. The aim of this study was to map the NiV G glycoprotein cell binding domain using a phage display system. The NiV G extracellular domain was truncated and displayed as attachment proteins on M13 phage g3p minor coat protein. The binding efficiency of recombinant phages displaying different regions of NiV G to mammalian cells was evaluated. Results showed that regions of NiV G consisting of amino acids 396-602 (recombinant phage G4) and 498-602 (recombinant phage G5) demonstrated the highest binding to both Vero (5.5×10 3 cfu/ml and 5.6×10 3 cfu/ml) and THP-1 cells (3.5×10 3 cfu/ml and 2.9×10 3 cfu/ml). However, the binding of both of these recombinant phages to THP-1 cells was significantly lower than to Vero cells, and this could be due to the lack of primary host cell receptor expression on THP-1 cells. Furthermore, the binding between these two recombinant phages was competitive suggesting that there was a common host cell attachment site. This study employed an approach that is suitable for use in a biosafety level 2 containment laboratory without the need to use live virus to show that NiV G amino acids 498-602 play an important role for attachment to host cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Benjamin, M
1989-01-01
The development of hyaline-cell cartilage attached to membrane (dentary, maxilla, nasal, lacrimal and cleithrum) and cartilage (basioccipital) bones has been studied in the viviparous black molly, Poecilia sphenops. Intramembranous ossification commences before the first appearance of hyaline cells. As hyaline-cell cartilage is densely cellular and as that attached to the dentary, maxilla and cleithrum develops from the periosteum of these membrane bones, it must be regarded as secondary cartilage according to current concepts. It is also argued that the hyaline-cell cartilage attached to the perichondral bone of the basioccipital (a cartilage bone), could also be viewed as secondary. The status of the cartilage on the nasal and lacrimal bones is less clear, for it develops, at least in part, from mucochondroid (mucous connective) tissue. This is the first definitive report of secondary cartilage in any lower vertebrate. The tissue is therefore not restricted to birds and mammals as hitherto believed, and a multipotential periosteum must have arisen early in vertebrate evolution. Images Fig. 1 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 PMID:2481666
Xylella fastidiosa Differentially Accumulates Mineral Elements in Biofilm and Planktonic Cells
Cobine, Paul A.; Cruz, Luisa F.; Navarrete, Fernando; Duncan, Daniel; Tygart, Melissa; De La Fuente, Leonardo
2013-01-01
Xylella fastidiosa is a bacterial plant pathogen that infects numerous plant hosts. Disease develops when the bacterium colonizes the xylem vessels and forms a biofilm. Inductively coupled plasma optical emission spectroscopy was used to examine the mineral element content of this pathogen in biofilm and planktonic states. Significant accumulations of copper (30-fold), manganese (6-fold), zinc (5-fold), calcium (2-fold) and potassium (2-fold) in the biofilm compared to planktonic cells were observed. Other mineral elements such as sodium, magnesium and iron did not significantly differ between biofilm and planktonic cells. The distribution of mineral elements in the planktonic cells loosely mirrors the media composition; however the unique mineral element distribution in biofilm suggests specific mechanisms of accumulation from the media. A cell-to-surface attachment assay shows that addition of 50 to 100 µM Cu to standard X. fastidiosa media increases biofilm, while higher concentrations (>200 µM) slow cell growth and prevent biofilm formation. Moreover cell-to-surface attachment was blocked by specific chelation of copper. Growth of X. fastidiosa in microfluidic chambers under flow conditions showed that addition of 50 µM Cu to the media accelerated attachment and aggregation, while 400 µM prevented this process. Supplementation of standard media with Mn showed increased biofilm formation and cell-to-cell attachment. In contrast, while the biofilm accumulated Zn, supplementation to the media with this element caused inhibited growth of planktonic cells and impaired biofilm formation. Collectively these data suggest roles for these minerals in attachment and biofilm formation and therefore the virulence of this pathogen. PMID:23349991
Xylella fastidiosa differentially accumulates mineral elements in biofilm and planktonic cells.
Cobine, Paul A; Cruz, Luisa F; Navarrete, Fernando; Duncan, Daniel; Tygart, Melissa; De La Fuente, Leonardo
2013-01-01
Xylella fastidiosa is a bacterial plant pathogen that infects numerous plant hosts. Disease develops when the bacterium colonizes the xylem vessels and forms a biofilm. Inductively coupled plasma optical emission spectroscopy was used to examine the mineral element content of this pathogen in biofilm and planktonic states. Significant accumulations of copper (30-fold), manganese (6-fold), zinc (5-fold), calcium (2-fold) and potassium (2-fold) in the biofilm compared to planktonic cells were observed. Other mineral elements such as sodium, magnesium and iron did not significantly differ between biofilm and planktonic cells. The distribution of mineral elements in the planktonic cells loosely mirrors the media composition; however the unique mineral element distribution in biofilm suggests specific mechanisms of accumulation from the media. A cell-to-surface attachment assay shows that addition of 50 to 100 µM Cu to standard X. fastidiosa media increases biofilm, while higher concentrations (>200 µM) slow cell growth and prevent biofilm formation. Moreover cell-to-surface attachment was blocked by specific chelation of copper. Growth of X. fastidiosa in microfluidic chambers under flow conditions showed that addition of 50 µM Cu to the media accelerated attachment and aggregation, while 400 µM prevented this process. Supplementation of standard media with Mn showed increased biofilm formation and cell-to-cell attachment. In contrast, while the biofilm accumulated Zn, supplementation to the media with this element caused inhibited growth of planktonic cells and impaired biofilm formation. Collectively these data suggest roles for these minerals in attachment and biofilm formation and therefore the virulence of this pathogen.
Crystal structure of reovirus attachment protein σ1 in complex with sialylated oligosaccharides.
Reiter, Dirk M; Frierson, Johnna M; Halvorson, Elizabeth E; Kobayashi, Takeshi; Dermody, Terence S; Stehle, Thilo
2011-08-01
Many viruses attach to target cells by binding to cell-surface glycans. To gain a better understanding of strategies used by viruses to engage carbohydrate receptors, we determined the crystal structures of reovirus attachment protein σ1 in complex with α-2,3-sialyllactose, α-2,6-sialyllactose, and α-2,8-di-siallylactose. All three oligosaccharides terminate in sialic acid, which serves as a receptor for the reovirus serotype studied here. The overall structure of σ1 resembles an elongated, filamentous trimer. It contains a globular head featuring a compact β-barrel, and a fibrous extension formed by seven repeating units of a triple β-spiral that is interrupted near its midpoint by a short α-helical coiled coil. The carbohydrate-binding site is located between β-spiral repeats two and three, distal from the head. In all three complexes, the terminal sialic acid forms almost all of the contacts with σ1 in an identical manner, while the remaining components of the oligosaccharides make little or no contacts. We used this structural information to guide mutagenesis studies to identify residues in σ1 that functionally engage sialic acid by assessing hemagglutination capacity and growth in murine erythroleukemia cells, which require sialic acid binding for productive infection. Our studies using σ1 mutant viruses reveal that residues 198, 202, 203, 204, and 205 are required for functional binding to sialic acid by reovirus. These findings provide insight into mechanisms of reovirus attachment to cell-surface glycans and contribute to an understanding of carbohydrate binding by viruses. They also establish a filamentous, trimeric carbohydrate-binding module that could potentially be used to endow other trimeric proteins with carbohydrate-binding properties.
Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces.
Voss, Alexandra; Wei, HongYing; Zhang, Yi; Turner, Stuart; Ceccone, Giacomo; Reithmaier, Johann Peter; Stengl, Monika; Popov, Cyril
2016-07-01
Diamond is a promising material for a number of bio-applications, including the fabrication of platforms for attachment and investigation of neurons and of neuroprostheses, such as retinal implants. In the current work ultrananocrystalline diamond (UNCD) films were deposited by microwave plasma chemical vapor deposition, modified by UV/O3 treatment or NH3 plasma, and comprehensively characterized with respect to their bulk and surface properties, such as crystallinity, topography, composition and chemical bonding nature. The interactions of insect circadian pacemaker neurons with UNCD surfaces with H-, O- and NH2-terminations were investigated with respect to cell density and viability. The fast and strong attachment achieved without application of adhesion proteins allowed for advantageous modification of dispersion protocols for the preparation of primary cell cultures. Centrifugation steps, which are employed for pelletizing dispersed cells to separate them from dispersing enzymes, easily damage neurons. Now centrifugation can be avoided since dispersed neurons quickly and strongly attach to the UNCD surfaces. Enzyme solutions can be easily washed off without losing many of the dispersed cells. No adverse effects on the cell viability and physiological responses were observed as revealed by calcium imaging. Furthermore, the enhanced attachment of the neurons, especially on the modified UNCD surfaces, was especially advantageous for the immunocytochemical procedures with the cell cultures. The cell losses during washing steps were significantly reduced by one order of magnitude in comparison to controls. In addition, the integration of a titanium grid structure under the UNCD films allowed for individual assignment of physiologically characterized neurons to immunocytochemically stained cells. Thus, employing UNCD surfaces free of foreign proteins improves cell culture protocols and immunocytochemistry with cultured cells. The fast and strong attachment of neurons was attributed to a favorable combination of topography, surface chemistry and wettability. Copyright © 2016 Elsevier B.V. All rights reserved.
Thomas, Richard J; Brooks, Tim J
2004-02-01
Legionnaire's disease is caused by the intracellular pathogen Legionella pneumophila, presenting as an acute pneumonia. Attachment is the key step during infection, often relying on an interaction between host cell oligosaccharides and bacterial adhesins. Inhibition of this interaction by receptor mimics offers possible novel therapeutic treatments. L. pneumophila attachment to the A549 cell line was significantly reduced by treatment with tunicamycin (73.6%) and sodium metaperiodate (63.7%). This indicates the importance of cell surface oligosaccharide chains in adhesion. A number of putative anti-adhesion compounds inhibited attachment to the A549 and U937 cell lines. The most inhibitory compounds were polymeric saccharides, GalNAcbeta1-4Gal, Galbeta1-4GlcNAc and para-nitrophenol. These compounds inhibited adhesion to a range of human respiratory cell lines, including nasal epithelial, bronchial epithelial and alveolar epithelial cell lines and the human monocytic cell line, U937. Some eukaryotic receptors for L. pneumophila were determined to be the glycolipids, asialo-GM1 and asialo-GM2 that contain the inhibitory saccharide moiety, GalNAcbeta1-4Gal. The identified compounds have the potential to be used as novel treatments for Legionnaire's disease.
Wine, Eytan; Shen-Tu, Grace; Gareau, Mélanie G; Goldberg, Harvey A; Licht, Christoph; Ngan, Bo-Yee; Sorensen, Esben S; Greenaway, James; Sodek, Jaro; Zohar, Ron; Sherman, Philip M
2010-09-01
Although osteopontin (OPN) is up-regulated in inflammatory bowel diseases, its role in disease pathogenesis remains controversial. The objective of this study was to determine the role of OPN in host responses to a non-invasive bacterial pathogen, Citrobacter rodentium, which serves as a murine infectious model of colitis. OPN gene knockout and wild-type mice were infected orogastrically with either C. rodentium or Luria-Bertani (LB) broth. Mouse-derived OPN(+/+) and OPN(-/-) fibroblasts were incubated with C. rodentium and attaching-effacing lesions were demonstrated using transmission electron microscopy and immunofluorescence. Colonic expression of OPN was increased by C. rodentium infection of wild-type mice. Furthermore, colonic epithelial cell hyperplasia, the hallmark of C. rodentium infection, was reduced in OPN(-/-) mice, and spleen enlargement by infection was absent in OPN(-/-) mice. Rectal administration of OPN to OPN(-/-) mice restored these effects. There was an 8- to 17-fold reduction in bacterial colonization in OPN(-/-) mice, compared with wild-type mice, which was accompanied by reduced attaching-effacing lesions, both in infected OPN(-/-) mice and OPN(-/-) mouse fibroblasts. Moreover, adhesion pedestals were restored in OPN(-/-) cells complemented with human OPN. Therefore, lack of OPN results in decreased pedestal formation, colonization, and colonic epithelial cell hyperplasia responses to C. rodentium infection, indicating that OPN impacts disease pathogenesis through bacterial attachment and altered host immune responses.
Sangani, Rajnikumar; Pandya, Chirayu D; Bhattacharyya, Maryka H; Periyasamy-Thandavan, Sudharsan; Chutkan, Norman; Markand, Shanu; Hill, William D; Hamrick, Mark; Isales, Carlos; Fulzele, Sadanand
2014-03-01
Bone marrow stromal cell (BMSC) adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38) and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions. Published by Elsevier B.V.
Gilleard, Chris; Hyde, Martin; Higgs, Paul
2007-07-01
We investigated the following question: Would access to and use of domestic information and communication technology affect people's attachment to place in later life? Drawing upon data on ownership of cell phones and use of Internet/e-mail from the English Longitudinal Study of Ageing, we measured the association between access to such technology and self-rated attachment to one's neighborhood. There was a significant negative association between attachment to place and ownership and use of domestic information and communication technology, particularly the Internet. This association remained after taking account of age/cohort differences, as well as the influence of gender, disability, socioeconomic status of the neighborhood, differences in income and educational status, and length of residence in the area. The results suggest that ownership and use of domestic information and communication technology reduces the sense of attachment to the local neighborhood among individuals 50 and older in England. It does not, however, influence the perceived sense of trust in or perceived friendliness of people in the neighborhood. We suggest that domestic information and communication technology may be more liberating of neighborhood boundedness than destructive of social capital.
Taherkhani, Samira; Mohammadi, Mahmood; Daoud, Jamal; Martel, Sylvain; Tabrizian, Maryam
2014-05-27
The targeted and effective delivery of therapeutic agents remains an unmet goal in the field of controlled release systems. Magnetococcus marinus MC-1 magnetotactic bacteria (MTB) are investigated as potential therapeutic carriers. By combining directional magnetotaxis-microaerophilic control of these self-propelled agents, a larger amount of therapeutics can be delivered surpassing the diffusion limits of large drug molecules toward hard-to-treat hypoxic regions in solid tumors. The potential benefits of these carriers emphasize the need to develop an adequate method to attach therapeutic cargos, such as drug-loaded nanoliposomes, without substantially affecting the cell's ability to act as delivery agents. In this study, we report on a strategy for the attachment of liposomes to MTB (MTB-LP) through carbodiimide chemistry. The attachment efficacy, motility, and magnetic response of the MTB-LP were investigated. Results confirm that a substantial number of nanoliposomes (∼70) are efficiently linked with MTB without compromising functionality and motility. Cytotoxicity assays using three different cell types (J774, NIH/3T3, and Colo205) reveal that liposomal attachments to MTB formulation improve the biocompatibility of MTB, whereas attachment does not interfere with liposomal uptake.
Duffy, E A; Cisneros-Zevallos, L; Castillo, A; Pillai, S D; Ricke, S C; Acuff, G R
2005-04-01
To study the effect of processing and storage parameters on the survival of Salmonella on fresh Italian parsley, parsley bunches were dipped for 3 or 15 min in suspensions that were preequilibrated to 5, 25, or 35 degrees C and inoculated with Salmonella transformed to express enhanced green fluorescent protein. Loosely attached and/or associated, strongly attached and/or associated, and internalized and/or entrapped Salmonella cells were enumerated over 0, 1, and 7 days of storage at 25 degrees C and over 0, 1, 7, 14, and 30 days of storage at 4 degrees C using surface-plating procedures. Leaf sections obtained from samples after 0, 1, and 7 days of storage were examined using confocal scanning laser microscopy. Temperature of the dip suspension had little effect on the attachment and survival of Salmonella cells on parsley. Regardless of the temperature or duration of dip, Salmonella was internalized. Immersion for longer times resulted in higher numbers of attached and internalized cells. Microscopic observations supported these results and revealed Salmonella cells near the stomata and within cracks in the cuticle. Storage temperature had the greatest impact on the survival of Salmonella cells on parsley. When stored at 25 degrees C, parsley had a shelf life of 7 days, and Salmonella populations significantly increased over the 7 days of storage. For parsley stored at 4 degrees C, numbers of Salmonella cells decreased over days 0, 1, and 7. After 7 days of storage, there were no viable internalized Salmonella cells detected. Storage temperature represents an important control point for the safety of fresh parsley.
Yang, Kai-Hung; Nguyen, Alexander K; Goering, Peter L; Sumant, Anirudha V; Narayan, Roger J
2018-06-06
Ultrananocrystalline diamond (UNCD) has been demonstrated to have attractive features for biomedical applications and can be combined with nanoporous membranes for applications in drug delivery systems, biosensing, immunoisolation and single molecule analysis. In this study, free-standing nanoporous UNCD membranes with pore sizes of 100 or 400 nm were fabricated by directly depositing ultrathin UNCD films on nanoporous silicon nitride membranes and then etching away silicon nitride using reactive ion etching. Successful deposition of UNCD on the substrate with a novel process was confirmed with Raman spectroscopy, X-ray photoelectron spectroscopy, cross-section scanning electron microscopy (SEM) and transmission electron microscopy. Both sample types exhibited uniform geometry and maintained a clear hexagonal pore arrangement. Cellular attachment of SK-N-SH neuroblastoma endothelial cells was examined using confocal microscopy and SEM. Attachment of SK-N-SH cells onto UNCD membranes on both porous regions and solid surfaces was shown, indicating the potential use of UNCD membranes in biomedical applications such as biosensors and tissue engineering scaffolds.
The comparison of the effect of endodontic irrigation on cell adherence to root canal dentin.
Ring, Karla C; Murray, Peter E; Namerow, Kenneth N; Kuttler, Sergio; Garcia-Godoy, Franklin
2008-12-01
The purpose of this study was to compare the effect of 10 different endodontic irrigation and chelating treatments on dental pulp stem cell (DPSC) attachment to root canal surfaces. Thirty-eight extracted human nondiseased single-canal teeth were cleaned and shaped using ProTaper and ProFile rotary instrumentation (Tulsa Dentsply, Tulsa, OK). The irrigation treatments investigated were 6% sodium hypochlorite, 2% chlorhexidine gluconate, Aquatine Endodontic Cleanser, and Morinda citrifolia juice. The irrigation treatments were used in conjunction with EDTA or MTAD. The instrumented teeth were immediately placed in cell culture with confluent DPSCs for 1 week. The number of attached DPSCs appeared to be correlated with the cytotoxicity of the root canal irrigating solution (analysis of variance, p < 0.0001). The presence or absence of the smear layer had little influence on DPSC activity (chi-square, p > 0.05). The results suggest that biocompatible irrigants are needed to promote DPSC attachment to root canal dentin, which is essential to accomplish some regenerative endodontic therapies.
In vitro bioactivity of micro metal injection moulded stainless steel with defined surface features.
Bitar, Malak; Friederici, Vera; Imgrund, Philipp; Brose, Claudia; Bruinink, Arie
2012-05-04
Micrometre- and nanometre-scale surface structuring with ordered topography features may dramatically enhance orthopaedic implant integration. In this study we utilised a previously optimised micron metal injection moulding (µ-MIM) process to produce medical grade stainless steel surfaces bearing micrometre scale, protruding, hemispheres of controlled dimensions and spatial distribution. Additionally, the structured surfaces were characterised by the presence of submicrometre surface roughness resulting from metal grain boundary formation. Following cytocompatibility (cytotoxicity) evaluation using 3T3 mouse fibroblast cell line, the effect on primary human cell functionality was assessed focusing on cell attachment, shape and cytoskeleton conformation. In this respect, and by day 7 in culture, significant increase in focal adhesion size was associated with the microstructured surfaces compared to the planar control. The morphological conformation of the seeded cells, as revealed by fluorescence cytoskeleton labelling, also appeared to be guided in the vertical dimension between the hemisphere bodies. Quantitative evaluation of this guidance took place using live cytoplasm fluorescence labelling and image morphometry analysis utilising both, compactness and elongation shape descriptors. Significant increase in cell compactness was associated with the hemisphere arrays indicating collective increase in focused cell attachment to the hemisphere bodies across the entire cell population. Micrometre-scale hemisphere array patterns have therefore influenced cell attachment and conformation. Such influence may potentially aid in enhancing key cellular events such as, for example, neo-osteogenesis on implanted orthopaedic surfaces.
Morphological study of the TK cholangiocarcinoma cell line with three-dimensional cell culture.
Akiyoshi, Kohei; Kamada, Minori; Akiyama, Nobutake; Suzuki, Masafumi; Watanabe, Michiko; Fujioka, Kouki; Ikeda, Keiichi; Mizuno, Shuichi; Manome, Yoshinobu
2014-04-01
Cholangiocarcinoma is an intractable carcinoma originating from the bile duct epithelium. To gain an understanding of the cell biology of cholangiocarcinoma, in vitro cell culture is valuable. However, well‑characterized cell lines are limited. In the present study, the morphology of the TK cholangiocarcinoma cell line was analyzed by three‑dimensional culture. Dispersed TK cells were injected into a gelatin mesh scaffold and cultivated for 3‑20 days. The morphology of the TK cells was investigated by phase‑contrast microscopy, optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TK cells were observed to proliferate three-dimensionally in the scaffold. The cells exhibited a globoid structure and attached to the scaffold. The SEM observation demonstrated typical microvilli and plicae on the surface of the structure. Light microscopy and TEM confirmed intercellular and cell‑to‑scaffold attachment in the three‑dimensional mesh. The culture also exhibited the formation of a duct-like structure covered by structured microvilli. In conclusion, three‑dimensional culture of TK cells demonstrated the morphological characteristics of cholangiocarcinoma in vitro. Production of high levels of carbohydrate antigen (CA)19‑9, CA50 and carcinoembryonic antigen was previously confirmed in the TK cell line. As a characteristic morphology was demonstrated in the present study, the TK cholangiocarcinoma cell line may be useful as an experimental model for further study of cholangiocarcinoma.
The effect of hypogravity and hypergravity on cells of the immune system
NASA Technical Reports Server (NTRS)
Cogoli, A.
1993-01-01
This article reviews the gravity effects discovered in T lymphocytes and other cells of the immune system. The strong depression of mitogenic activation first observed in an experiment conducted in Spacelab 1 in 1983 triggered several other investigations in space and on the ground in the clinostat and in the centrifuge in the past 10 years. During this period, great progress was made in our knowledge of the complex mechanism of T cell activation as well as the technology to analyze the lymphokines produced during stimulation. Nevertheless, several aspects of the steps leading to activation are not yet clear. Studies in hypogravity and hypergravity may contribute to answering some of the questions. A recent investigation in the U.S. Spacelab SLS-1, based on a new technology in which leukocytes are attached to microcarrier beads, showed that the strong inhibition of activation in microgravity is due to a malfunction of monocytes acting as accessory cells. In fact, interleukin-1 production is nearly nil in resuspended monocytes, whereas T cell activation is doubled in attached cells. In hypergravity, but not at 1g, concanavalin A bound to erythrocytes activates B lymphocytes in addition to T cells. The activation of Jurkat cells is also severely impaired in space. These recent results have raised new questions that have to be answered in experiments to be conducted in space and on Earth in this decade. The experimental system, based on the mitogenic activation of T lymphocytes and accessory cells attached to microcarriers, offers an optimum model for studying basic biological mechanisms of the cell to assess the immunological fitness of humans in space and to test the feasibility of bioprocesses in space as well as on Earth.
Chiotaki, Rena; Polioudaki, Hara; Theodoropoulos, Panayiotis A
2014-08-01
Cancer cells often exhibit characteristic aberrations in their nuclear architecture, which are indicative of their malignant potential. In this study, we have examined the nuclear and cytoskeletal composition, attachment configuration dynamics, and osmotic or drug treatment response of invasive (Hs578T and MDA-MB-231) and non-invasive (MCF-10A and MCF-7) breast cancer cell lines. Unlike MCF-10A and MCF-7, Hs578T and MDA-MB-231 cells showed extensive nuclear elasticity and deformability and displayed distinct kinetic profiles during substrate attachment. The nuclear shape of MCF-10A and MCF-7 cells remained almost unaffected upon detachment, hyperosmotic shock, or cytoskeleton depolymerization, while Hs578T and MDA-MB-231 revealed dramatic nuclear contour malformations following actin reorganization.
Oocyte Degeneration Associated with Follicle Cells in Female Mactra chinensis (Bivalvia: Mactridae)
Kim, Sung Han; Chung, Ee-Yung; Lee, Ki-Young
2014-01-01
Ultrastructural studies of oocyte degeneration in the oocyte, and the functions of follicle cells during oocyte degeneration are described to clarify the reproductive mechanism on oocyte degeneration of Mactra chinensis using cytological methods. Commonly, the follicle cells are attached to the oocyte. Follicle cells play an important role in oocyte degeneration. In particular, the functions of follicle cells during oocyte degeneration are associated with phagocytosis and the intracellular digestion of products. In this study, morphologically similar degenerated phagosomes (various lysosomes), which were observed in the degenerated oocytes, appeared in the follicle cells. After the spawning of the oocytes, the follicle cells were involved in oocyte degeneration through phagocytosis by phagolysosomes. Therefore, it can be assumed that follicle cells reabsorb phagosomes from degenerated oocytes. In this study, the presence of lipid granules, which occurred from degenerating yolk granules, gradually increased in degenerating oocytes. The function of follicle cells can accumulate reserves of lipid granules and glycogen in the cytoplasm, which can be employed by the vitellogenic oocyte. Based on observations of follicle cells attached to degenerating oocytes after spawning, the follicle cells of this species are involved in the lysosomal induction of oocyte degeneration for the reabsorption of phagosomes (phagolysosomes) in the cytoplasm for nutrient storage, as seen in other bivalves. PMID:25949203
Rineh, Ardeshir; Dolla, Naveen K; Ball, Anthony R; Magana, Maria; Bremner, John B; Hamblin, Michael R; Tegos, George P; Kelso, Michael J
2017-10-13
Antimicrobial photodynamic inactivation (aPDI) uses photosensitizers (PSs) and harmless visible light to generate reactive oxygen species (ROS) and kill microbes. Multidrug efflux systems can moderate the phototoxic effects of PSs by expelling the compounds from cells. We hypothesized that increasing intracellular concentrations of PSs by inhibiting efflux with a covalently attached efflux pump inhibitor (EPI) would enhance bacterial cell phototoxicity and reduce exposure of neighboring host cells to damaging ROS. In this study, we tested the hypothesis by linking NorA EPIs to methylene blue (MB) and examining the photoantimicrobial activity of the EPI-MB hybrids against the human pathogen methicillin-resistant Staphylococcus aureus (MRSA). Photochemical/photophysical and in vitro microbiological evaluation of 16 hybrids carrying four different NorA EPIs attached to MB via four linker types identified INF55-(Ac)en-MB 12 as a lead. Compound 12 showed increased uptake into S. aureus cells and enhanced aPDI activity and wound healing effects (relative to MB) in a murine model of an abrasion wound infected by MRSA. The study supports a new approach for treating localized multidrug-resistant MRSA infections and paves the way for wider exploration of the EPI-PS hybrid strategy in aPDI.
Isolation and culture of corneal cells and their interactions with dissociated trigeminal neurons.
Chan, K Y; Haschke, R H
1982-08-01
The three cell types of rabbit cornea (epithelium, stromal fibroblasts and endothelium) were isolated by an improved method using both microdissection and selective enzyme treatment. This technique reproducibly resulted in an almost total recovery of each cell type from a given cornea. When maintained in culture, the three cell types showed different morphologic characteristics, each resembling the in vivo counterpart. The epithelial culture consisted of both attached and floating cells. The attached cells located at the marginal area of a colony were irregular in shape and possessed pseudopodia, while those in the confluent area were polygonal. Floating cells were typically vacuolated, curve-shaped and joined in groups of 2-4 cells as a spherical body enclosing a lucent interior. Comparison of mitotic rates, ultrastructure, keratin levels and other cytologic evidence suggested that the attached cells may correspond to the basal cells and less differentiated wing cells, while the floating cells may be analogous to the more differentiated wing cells and superficial cells. Neurons dissociated from neonatal rabbit trigeminal (Gasserian) ganglia were plated into multiwells partially covered with a given corneal cell type. The percentages of viable and neurite-bearing neurons were evaluated on the first three days. When neurons were grown in contact with each of the corneal cell types, neurites were extended in every case. However, when neurons were not in contact with the corneal cells in the coculture, only epithelial cells permitted neurite outgrowth. The data suggested two types of cellular interactions between corneal cells and sensory neurons, one of which may be the specific release of a neuronotrophic factor by epithelial cells. This culture system represents the first step towards developing an in vitro model for studying various cornea-trigeminal interactions.
Pingle, Hitesh; Wang, Peng-Yuan; Thissen, Helmut; McArthur, Sally; Kingshott, Peter
2015-12-02
Biofilm formation on medical implants and subsequent infections are a global problem. A great deal of effort has focused on developing chemical contrasts based on micro- and nanopatterning for studying and controlling cells and bacteria at surfaces. It has been known that micro- and nanopatterns on surfaces can influence biomolecule adsorption, and subsequent cell and bacterial adhesion. However, less focus has been on precisely controlling patterns to study the initial bacterial attachment mechanisms and subsequently how the patterning influences the role played by biomolecular adsorption on biofilm formation. In this work, the authors have used colloidal self-assembly in a confined area to pattern surfaces with colloidal crystals and used them as masks during allylamine plasma polymer (AAMpp) deposition to generate highly ordered patterns from the micro- to the nanoscale. Polyethylene glycol (PEG)-aldehyde was grafted to the plasma regions via "cloud point" grafting to prevent the attachment of bacteria on the plasma patterned surface regions, thereby controlling the adhesive sites by choice of the colloidal crystal morphology. Pseudomonas aeruginosa was chosen to study the bacterial interactions with these chemically patterned surfaces. Scanning electron microscope, x-ray photoelectron spectroscopy (XPS), atomic force microscopy, and epifluorescence microscopy were used for pattern characterization, surface chemical analysis, and imaging of attached bacteria. The AAMpp influenced bacterial attachment because of the amine groups displaying a positive charge. XPS results confirm the successful grafting of PEG on the AAMpp surfaces. The results showed that PEG patterns can be used as a surface for bacterial patterning including investigating the role of biomolecular patterning on bacterial attachment. These types of patterns are easy to fabricate and could be useful in further applications in biomedical research.
Kwon, Yong-Dae; Choi, Hyun-jung; Lee, Heesu; Lee, Jung-Woo; Weber, Hans-Peter
2014-01-01
PURPOSE The objective of this study was to investigate the biologic effects of enamel matrix derivative (EMD) with different concentrations on cell viability and the genetic expression of human gingival fibroblasts (HGF) to zirconia surfaces. MATERIALS AND METHODS Immortalized human gingival fibroblasts (HGF) were cultured (1) without EMD, (2) with EMD 25 µg/mL, and (3) with EMD 100 µg/mL on zirconia discs. MTT assay was performed to evaluate the cell proliferation activity and SEM was carried out to examine the cellular morphology and attachment. The mRNA expression of collagen type I, osteopontin, fibronectin, and TGF-β1 was evaluated with the real-time polymerase chain reaction (RT-PCR). RESULTS From MTT assay, HGF showed more proliferation in EMD 25 µg/mL group than control and EMD 100 µg/mL group (P<.05). HGFs showed more flattened cellular morphology on the experimental groups than on the control group after 4h culture and more cellular attachments were observed on EMD 25 µg/mL group and EMD 100 µg/mL group after 24h culture. After 48h of culture, cellular attachment was similar in all groups. The mRNA expression of type I collagen increased in a concentration dependent manner. The genetic expression of osteopontin, fibronectin, and TGF-β1 was increased at EMD 100 µg/mL. However, the mRNA expression of proteins associated with cellular attachment was decreased at EMD 25 µg/mL. CONCLUSION Through this short term culture of HGF on zirconium discs, we conclude that EMD affects the proliferation, attachment, and cell morphology of HGF cells. Also, EMD stimulates production of extracellular matrix collagen, osteopontin, and TGF-β1 in high concentration levels. CLINICAL RELEVANCE With the use of EMD, protective barrier between attached gingiva and transmucosal zirconia abutment may be enhanced leading to final esthetic results with implants. PMID:25352963
NASA Astrophysics Data System (ADS)
Quynh, Luu Manh; Nam, Nguyen Hoang; Kong, K.; Nhung, Nguyen Thi; Notingher, I.; Henini, M.; Luong, Nguyen Hoang
2016-05-01
The surface-enhanced Raman signals of 4-aminothiophenol (4-ATP) attached to the surface of colloidal gold nanoparticles with size distribution of 2 to 5 nm were used as a labeling agent to detect basal cell carcinoma (BCC) of the skin. The enhanced Raman band at 1075 cm-1 corresponding to the C-S stretching vibration in 4-ATP was observed during attachment to the surface of the gold nanoparticles. The frequency and intensity of this band did not change when the colloids were conjugated with BerEP4 antibody, which specifically binds to BCC. We show the feasibility of imaging BCC by surface-enhanced Raman spectroscopy, scanning the 1075 cm-1 band to detect the distribution of 4-ATP-coated gold nanoparticles attached to skin tissue ex vivo.
Single-Cell Force Spectroscopy of Probiotic Bacteria
Beaussart, Audrey; El-Kirat-Chatel, Sofiane; Herman, Philippe; Alsteens, David; Mahillon, Jacques; Hols, Pascal; Dufrêne, Yves F.
2013-01-01
Single-cell force spectroscopy is a powerful atomic force microscopy modality in which a single living cell is attached to the atomic force microscopy cantilever to quantify the forces that drive cell-cell and cell-substrate interactions. Although various single-cell force spectroscopy protocols are well established for animal cells, application of the method to individual bacterial cells remains challenging, mainly owing to the lack of appropriate methods for the controlled attachment of single live cells on cantilevers. We present a nondestructive protocol for single-bacterial cell force spectroscopy, which combines the use of colloidal probe cantilevers and of a bioinspired polydopamine wet adhesive. Living cells from the probiotic species Lactobacillus plantarum are picked up with a polydopamine-coated colloidal probe, enabling us to quantify the adhesion forces between single bacteria and biotic (lectin monolayer) or abiotic (hydrophobic monolayer) surfaces. These minimally invasive single-cell experiments provide novel, to our knowledge, insight into the specific and nonspecific forces driving the adhesion of L. plantarum, and represent a generic platform for studying the molecular mechanisms of cell adhesion in probiotic and pathogenic bacteria. PMID:23663831
Pezeshki-Modaress, Mohamad; Mirzadeh, Hamid; Zandi, Mojgan; Rajabi-Zeleti, Sareh; Sodeifi, Niloofar; Aghdami, Nasser; Mofrad, Mohammad R K
2017-07-01
In this research, fabrication of gelatin/chondroitin sulfate (GAG) nanofibrous scaffolds using electrospinning technique for skin tissue engineering was studied. The influence of GAG content on chemical, physical, mechanical and biological properties of the scaffolds were investigated. Human dermal fibroblast (HDF) cells were cultured and bioactivity of electrospun gelatin/GAG scaffolds for skin tissue engineering was assayed. Biological results illustrated that HDF cells attached and spread well on gelatin/GAG nanofibrous scaffolds displaying spindle-like shapes and stretching. MTS assay was performed to evaluate the cell proliferation on electrospun gelatin/GAG scaffolds. The results confirmed the influence of GAG content as well as the nanofibrous structure on cell proliferation and attachment of substrates. The gelatin/GAG nanofibrous scaffolds with the desired thickness for in-vivo evaluations were used on the full-thickness wounds. Pathobiological results showed that cell loaded gelatin/GAG scaffolds significantly accelerated wounds healing. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2020-2034, 2017. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Dias, Maria Fernanda R. G.; Filgueira, Absalom L.; de Souza, Wanderley
2004-04-01
Paracoccidioidomycosis is a systemic granulomatous disease caused by the dimorphic fungus Paracoccidioides brasiliensis. It is the most prevalent systemic mycosis of Latin America and 80% of the reported cases are from Brazil. Because of the great number of neutrophils found in the P. brasiliensis granuloma, studies have been done to evaluate the role of these cells during the development of the infection. Scanning and transmission electron microscopy of thin sections showed that the neutrophils ingest yeast cells through a typical phagocytic process with the formation of pseudopodes. The pseudopodes even disrupt the connection established between the mother and the bud cells. Neutrophils also associate to each other, forming a kind of extracellular vacuole where large yeast cells are encapsulated. Cytochemical studies showed that once P. brasiliensis attaches to the neutrophil surface, it triggers a respiratory burst with release of oxygen-derived products. Attachment also triggers neutrophils' degranulation, with release of endogenous peroxidase localized in cytoplasmic granules. Together, these processes lead to killing of both ingested and extracellular P. brasiliensis.
Controlling Cell Function with Geometry
NASA Astrophysics Data System (ADS)
Mrksich, Milan
2012-02-01
This presentation will describe the use of patterned substrates to control cell shape with examples that illustrate the ways in which cell shape can regulate cell function. Most cells are adherent and must attach to and spread on a surface in order to survive, proliferate and function. In tissue, this surface is the extracellular matrix (ECM), an insoluble scaffold formed by the assembly of several large proteins---including fibronectin, the laminins and collagens and others---but in the laboratory, the surface is prepared by adsorbing protein to glass slides. To pattern cells, gold-coated slides are patterned with microcontact printing to create geometric features that promote cell attachment and that are surrounded by inert regions. Cells attach to these substrates and spread to adopt the shape defined by the underlying pattern and remain stable in culture for several days. Examples will be described that used a series of shapes to reveal the relationship between the shape of the cell and the structure of its cytoskeleton. These geometric cues were used to control cell polarity and the tension, or contractility, present in the cytoskeleton. These rules were further used to control the shapes of mesenchymal stem cells and in turn to control the differentiation of these cells into specialized cell types. For example, stem cells that were patterned into a ``star'' shape preferentially differentiated into bone cells whereas those that were patterned into a ``flower'' shape preferred a fat cell fate. These influences of shape on differentiation depend on the mechanical properties of the cytoskeleton. These examples, and others, reveal that shape is an important cue that informs cell function and that can be combined with the more common soluble cues to direct and study cell function.
1983-01-01
root surfaces is unpredict- human gingival fibroblasts (Aleo. De Renzis able (World Workshop in PeriodonticN & Farber 1975). Clearly, if new attachment...1966). of periodontal tissues to a tooth is to be A preliminary characterization of the made possible, therapeutic measures must FIBRONECTIN ENHANCES...CELL ATTACHMENT 155 list he developed it remove. alter. or other- population of bacteria wsithin the gingival wise inactivate the toxic principle of
NASA Technical Reports Server (NTRS)
Yu, F. P.; Pyle, B. H.; McFeters, G. A.
1993-01-01
This report describes the adaptation of an in situ direct viable count (in situ DVC) method in biofilm disinfection studies. The results obtained with this technique were compared to two other enumeration methods, the plate count (PC) and conventional direct viable count (c-DVC). An environmental isolate (Klebsiella pneumoniae Kp1) was used to form biofilms on stainless steel coupons in a stirred batch reactor. The in situ DVC method was applied to directly assess the viability of bacteria in biofilms without disturbing the integrity of the interfacial community. As additional advantages, the results were observed after 4 h instead of the 24 h incubation time required for colony formation and total cell numbers that remained on the substratum were enumerated. Chlorine and monochloramine were used to determine the susceptibilities of attached and planktonic bacteria to disinfection treatment using this novel analytical approach. The planktonic cells in the reactor showed no significant change in susceptibility to disinfectants during the period of biofilm formation. In addition, the attached cells did not reveal any more resistance to disinfection than planktonic cells. The disinfection studies of young biofilms indicated that 0.25 mg/l free chlorine (at pH 7.2) and 1 mg/l monochloramine (at pH 9.0) have comparable disinfection efficiencies at 25 degrees C. Although being a weaker disinfectant, monochloramine was more effective in removing attached bacteria from the substratum than free chlorine. The in situ DVC method always showed at least one log higher viable cell densities than the PC method, suggesting that the in situ DVC method is more efficient in the enumeration of biofilm bacteria. The results also indicated that the in situ DVC method can provide more accurate information regarding the cell numbers and viability of bacteria within biofilms following disinfection.
INTEGRIN-MEDIATED CELL ATTACHMENT SHOWS TIME-DEPENDENT UPREGULATION OF GAP JUNCTION COMMUNICATION.
Integrin-mediated Cell Attachment Shows Time-Dependent Upregulation of Gap Junction
Communication
Rachel Grindstaff and Carl Blackman, National Health & Environmental Effects Research
Laboratory, Office of Research and Development, US EPA, Research Triang...
MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells
2013-01-01
Background A subset of breast cancer cells displays increased ability to self-renew and reproduce breast cancer heterogeneity. The characterization of these so-called putative breast tumor-initiating cells (BT-ICs) may open the road for novel therapeutic strategies. As microRNAs (miRNAs) control developmental programs in stem cells, BT-ICs may also rely on specific miRNA profiles for their sustained activity. To explore the notion that miRNAs may have a role in sustaining BT-ICs, we performed a comprehensive profiling of miRNA expression in a model of putative BT-ICs enriched by non-attachment growth conditions. Results We found breast cancer cells grown under non-attachment conditions display a unique pattern of miRNA expression, highlighted by a marked low expression of miR-30 family members relative to parental cells. We further show that miR-30a regulates non-attachment growth. A target screening revealed that miR-30 family redundantly modulates the expression of apoptosis and proliferation-related genes. At least one of these targets, the anti-apoptotic protein AVEN, was able to partially revert the effect of miR-30a overexpression. Finally, overexpression of miR-30a in vivo was associated with reduced breast tumor progression. Conclusions miR30-family regulates the growth of breast cancer cells in non-attachment conditions. This is the first analysis of target prediction in a whole family of microRNAs potentially involved in survival of putative BT-ICs. PMID:23445407
Mesenchymal stem cells cultured on magnetic nanowire substrates
NASA Astrophysics Data System (ADS)
Perez, Jose E.; Ravasi, Timothy; Kosel, Jürgen
2017-02-01
Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing hMSCs differentiation.
[Effect of colcemid on the radial spreading of fibroblasts in culture].
Ivanova, O Iu; Komm, S G; Vasil'ev, Iu M; Gel'fand, I M
1977-02-01
Effect of colcemide upon the spreading of mouse embryo fibroblast-like cells on the substrate was studied with the aid of time-lapse microcinematography and scanning electron microscopy. On the glass, colcemide did not prevent the transition of cells into a well-attached state, however, the time needed for this transition was seen considerably increased as compared with the control cultures. Intermediate stages of spreading on flat glass had the following abnormal features in colcemide-containing medium: a) shapes of cytoplasmic outgrowths formed by the cell were altered and their distribution along the cell border appeared less regular; b) partial detachments of the attached parts of cells occurred very frequently; c) the spreading of various parts of the cells was not correlated. Possible mechanisms of colcemide action on the cell spreading are discussed, and it is suggested that intracellular structures sensitive to colcemide are essential for coordination of reactions that occur in various parts of the cell in the course of spreading.
Induction of virulence factors in Giardia duodenalis independent of host attachment
Emery, Samantha J.; Mirzaei, Mehdi; Vuong, Daniel; Pascovici, Dana; Chick, Joel M.; Lacey, Ernest; Haynes, Paul A.
2016-01-01
Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response. PMID:26867958
Smith, D S; Del Castillo, J; Morales, M; Luke, B
1990-01-01
The similar proximal and distal attachments to the stereom of primary spine ligament in the echinoid Eucidaris tribuloides are described, from thin sections and SEM studies on frozen and fractured spine articulations and ligaments from decalcified material. The orthogonal structure of the general stereom is modified on the attachment zones where bundles of collagen cylinders enter approximately hexagonally arranged channels. Straps of collagen extend in parallel series between adjacent bundles via regularly placed ports and collagen loops rather than non-striated 'tendons' pass over skeletal trabeculae. The regular pattern of collagen straps is most evident on the proximal and distal attachment zones. Mechanical features of the non-adhesive mode of attachment are considered, together with similarities and differences between insertion of muscle cells and mutable collagenous tissue (ligament) in echinoderms.
Cytotoxic Tumor-Targeting Peptides From In Vivo Phage Display.
Northup, Jessica R Newton; Deutscher, Susan L
2016-01-01
We previously utilized an in vivo peptide phage display selection technique, which included the use of detergent elution of phage from excised tumor, to obtain tumor-targeting phage with the ability to extravasate the vasculature and bind directly to prostate tumor tissue. It is hypothesized that this same in vivo phage selection technique can be used to functionally select for molecules that not only bind to cancer cells but also kill them. Here we analyzed two different in vivo phage display selected phage clones, G1 and H5, retrieved from PC-3 human prostate carcinoma xenografted tumors. First, cell de-attachment as an endpoint criterion for apoptosis and cell cycle was examined. After 2.5 hours incubation with G1 phage, PC-3 cell attachment was reduced by 23.8% and the percent of cell population in M phase reduced by 32.1%. In comparison, PC-3 cells incubated with H5 phage had a reduction of 25.0% cell attachment and 33.6% of cell population in M phase. These changes in combination with elevated caspase activation within cells in M phase, and no significant changes to G1/G0 or S phase cell populations suggest that the cytotoxic phages are targeting actively dividing PC-3 cells. Microscopic studies were also performed to further analyze the nature of cytotoxicity of these two phage clones. It was found that G1 phage induced and co- localized with tubulin based projections within apoptotic cells, while H5 phage did not. These phage may form the foundation for a new class of targeted prostate cancer therapeutic agents.
Peacock, Lori; Kay, Christopher; Bailey, Mick; Gibson, Wendy
2018-05-01
Trypanosomatids such as Leishmania and Trypanosoma are digenetic, single-celled, parasitic flagellates that undergo complex life cycles involving morphological and metabolic changes to fit them for survival in different environments within their mammalian and insect hosts. According to current consensus, asymmetric division enables trypanosomatids to achieve the major morphological rearrangements associated with transition between developmental stages. Contrary to this view, here we show that the African trypanosome Trypanosoma congolense, an important livestock pathogen, undergoes extensive cell remodelling, involving shortening of the cell body and flagellum, during its transition from free-swimming proventricular forms to attached epimastigotes in vitro. Shortening of the flagellum was associated with accumulation of PFR1, a major constituent of the paraflagellar rod, in the mid-region of the flagellum where it was attached to the substrate. However, the PFR1 depot was not essential for attachment, as it accumulated several hours after initial attachment of proventricular trypanosomes. Detergent and CaCl2 treatment failed to dislodge attached parasites, demonstrating the robust nature of flagellar attachment to the substrate; the PFR1 depot was also unaffected by these treatments. Division of the remodelled proventricular trypanosome was asymmetric, producing a small daughter cell. Each mother cell went on to produce at least one more daughter cell, while the daughter trypanosomes also proliferated, eventually resulting in a dense culture of epimastigotes. Here, by observing the synchronous development of the homogeneous population of trypanosomes in the tsetse proventriculus, we have been able to examine the transition from proventricular forms to attached epimastigotes in detail in T. congolense. This transition is difficult to observe in vivo as it happens inside the mouthparts of the tsetse fly. In T. brucei, this transition is achieved by asymmetric division of long trypomastigotes in the proventriculus, yielding short epimastigotes, which go on to colonise the salivary glands. Thus, despite their close evolutionary relationship and shared developmental route within the vector, T. brucei and T. congolense have evolved different ways of accomplishing the same developmental transition from proventricular form to attached epimastigote.
Kikkawa, Yamato; Ogawa, Takaho; Sudo, Ryo; Yamada, Yuji; Katagiri, Fumihiko; Hozumi, Kentaro; Nomizu, Motoyoshi; Miner, Jeffrey H
2013-10-25
Cell-matrix interactions are critical for tumor cell migration. Lutheran (Lu), also known as basal cell adhesion molecule (B-CAM), competes with integrins for binding to laminin α5, a subunit of LM-511, a major component of basement membranes. Here we show that the preferential binding of Lu/B-CAM to laminin α5 promotes tumor cell migration. The attachment of Lu/B-CAM transfectants to LM-511 was slightly weaker than that of control cells, and this was because Lu/B-CAM disturbed integrin binding to laminin α5. Lu/B-CAM induced a spindle cell shape with pseudopods and promoted cell migration on LM-511. In addition, blocking with an anti-Lu/B-CAM antibody led to a flat cell shape and inhibited migration on LM-511, similar to the effects of an activating integrin β1 antibody. We conclude that tumor cell migration on LM-511 requires that Lu/B-CAM competitively modulates cell attachment through integrins. We suggest that this competitive interaction is involved in a balance between static and migratory cell behaviors.
Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation.
Mehdikhani-Nahrkhalaji, M; Fathi, M H; Mortazavi, V; Mousavi, S B; Hashemi-Beni, B; Razavi, S M
2012-02-01
This study aimed at preparation and in vitro and in vivo evaluation of novel bioactive, biodegradable, and antibacterial nanocomposite coating for the improvement of stem cells attachment and antibacterial activity as a candidate for dental implant applications. Poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) nanocomposite coating was prepared via solvent casting process. The nanoparticle amounts of 10, 15, and 20 weight percent (wt%) were chosen in order to determine the optimum amount of nanoparticles suitable for preparing an uniform coating. Bioactivity and degradation of the coating with an optimum amount of nanoparticles were evaluated by immersing the prepared samples in simulated body fluid and phosphate buffer saline (PBS), respectively. The effect of nanocomposite coating on the attachment and viability of human adipose-derived stem cells (hASCs) was investigated. Kirschner wires (K-wires) of stainless steel were coated with the PBGHA nanocomposite coating, and mechanical stability of the coating was studied during intramedullary implantation into rabbit tibiae. The results showed that using 10 wt% nanoparticles (5 wt% HA and 5 wt% BG) in the nanocomposite could provide the desired uniform coating. The study of in vitro bioactivity showed rapid formation of bone-like apatite on the PBGHA coating. It was degraded considerably after about 60 days of immersion in PBS. The hASCs showed excellent attachment and viability on the coating. PBGHA coating remained stable on the K-wires with a minimum of 96% of the original coating mass. It was concluded that PBGHA nanocomposite coating provides an ideal surface for the stem cells attachment and viability. In addition, it could induce antibacterial activity, simultaneously.
Dawson, R A; Goberdhan, N J; Freedlander, E; MacNeil, S
1996-03-01
The aim of this study was to investigate whether prior culture of cells on ECM proteins might positively influence the performance of keratinocytes when cells are transferred to a dermal in vitro wound bed model. Keratinocytes were cultured using a method for producing cultured epithelial autografts for severely burned patients (essentially using Green's medium, a mitogen-rich medium containing fetal calf serum, cholera toxin, EGF, insulin, transferrin and triiodothyronine). Cells were cultured either on irradiated 3T3 fibroblasts (as in the standard Rheinwald and Green technique) or, alternatively, on collagen I, collagen IV, matrigel, RGD, vitronectin or fibronectin. Under these conditions matrigel, collagen I and IV enhanced initial attachment, RGD, vitronectin, fibronectin and irradiated 3T3 fibroblasts did not. Proliferation of cells was positively influenced by matrigel, collagen I and IV and irradiated 3T3 fibroblasts; of these, however, only matrigel and 3T3 fibroblasts had sustained significant effects on keratinocyte proliferation over 4 days. Cells on fibronectin showed significantly reduced proliferation. An acellular non-viable dermis was then used to mimic the homograft allodermis onto which cultured epithelial autograft sheets are grafted clinically and cells cultured on the various ECM proteins for 96 h were transferred to this in vitro wound model. None of the substrates enhanced keratinocyte performance on this model. It was concluded that under these conditions some ECM proteins can significantly affect keratinocyte attachment and, to a lesser extent, proliferation but that the culture of keratinocytes on these ECM proteins does not appear to confer any lasting benefit to the attachment of these keratinocytes to an in vitro wound-bed model.
Calcium Increases Xylella fastidiosa Surface Attachment, Biofilm Formation, and Twitching Motility
Cruz, Luisa F.; Cobine, Paul A.
2012-01-01
Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl2. The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures. PMID:22194297
Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility.
Cruz, Luisa F; Cobine, Paul A; De La Fuente, Leonardo
2012-03-01
Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl(2). The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures.
Pseudomonas aeruginosa attachment on QCM-D sensors: the role of cell and surface hydrophobicities.
Marcus, Ian M; Herzberg, Moshe; Walker, Sharon L; Freger, Viatcheslav
2012-04-17
While biofilms are ubiquitous in nature, the mechanism by which they form is still poorly understood. This study investigated the process by which bacteria deposit and, shortly after, attach irreversibly to surfaces by reorienting to create a stronger interaction, which leads to biofilm formation. A model for attachment of Pseudomonas aeruginosa was developed using a quartz crystal microbalance with dissipation monitoring (QCM-D) technology, along with a fluorescent microscope and camera to monitor kinetics of adherence of the cells over time. In this model, the interaction differs depending on the force that dominates between the viscous, inertial, and elastic loads. P. aeruginosa, grown to the midexponential growth phase (hydrophilic) and stationary phase (hydrophobic) and two different surfaces, silica (SiO(2)) and polyvinylidene fluoride (PVDF), which are hydrophilic and hydrophobic, respectively, were used to test the model. The bacteria deposited on both of the sensor surfaces, though on the silica surface the cells reached a steady state where there was no net increase in deposition of bacteria, while the quantity of cells depositing on the PVDF surface continued to increase until the end of the experiments. The change in frequency and dissipation per cell were both positive for each overtone (n), except when the cells and surface are both hydrophilic. In the model three factors, specifically, viscous, inertial, and elastic loads, contribute to the change in frequency and dissipation at each overtone when a cell deposits on a sensor. On the basis of the model, hydrophobic cells were shown to form an elastic connection to either surface, with an increase of elasticity at higher overtones. At lower overtones, hydrophilic cells depositing on the hydrophobic surface were shown to also be elastic, but as the overtone increases the connection between the cells and sensor becomes more viscoelastic. In the case of hydrophilic cells interacting with the hydrophilic surface, the connection is viscous at each overtone measured. It could be inferred that the transformation of the viscoelasticity of the cell-surface connection is due to changes in the orientation of the cells to the surface, which allow the bacteria to attach irreversibly and begin biofilm formation. © 2012 American Chemical Society
Vickerman, M M; Jones, G W
1992-10-01
Growing Streptococcus gordonii Spp+ phase variants, which have normal levels of glucosyltransferase (GTF) activity, use sucrose to promote their accumulation on surfaces by forming a cohesive bacterium-insoluble glucan polymer mass (BPM). Spp- phase variants, which have lower levels of GTF activity, do not form BPMs and do not remain in BPMs formed by Spp+ cells when grown in mixed cultures. To test the hypothesis that segregation of attached Spp+ and unattached Spp- cells was due to differences in adhesiveness, adhesion between washed, [3H]thymidine-labeled cells and preformed BPM substrata was measured. Unexpectedly, the results showed that cells of both phenotypes, as well as GTF-negative cells, attached equally well to preformed BPMs, indicating that attachment to BPMs was independent of cell surface GTF activity. Initial characterization of this binding interaction suggested that a protease-sensitive component on the washed cells may be binding to lipoteichoic acids sequestered in the BPM, since exogenous lipoteichoic acid inhibited adhesion. Surprisingly, the adhesion of both Spp+ and Spp- cells was markedly inhibited in the presence of sucrose, which also released lipoteichoic acid from the BPM. These in vitro findings suggest that, in vivo, sucrose and lipoteichoic acid may modify dental plaque development by enhancing or inhibiting the attachment of additional bacteria.
Vickerman, M M; Jones, G W
1992-01-01
Growing Streptococcus gordonii Spp+ phase variants, which have normal levels of glucosyltransferase (GTF) activity, use sucrose to promote their accumulation on surfaces by forming a cohesive bacterium-insoluble glucan polymer mass (BPM). Spp- phase variants, which have lower levels of GTF activity, do not form BPMs and do not remain in BPMs formed by Spp+ cells when grown in mixed cultures. To test the hypothesis that segregation of attached Spp+ and unattached Spp- cells was due to differences in adhesiveness, adhesion between washed, [3H]thymidine-labeled cells and preformed BPM substrata was measured. Unexpectedly, the results showed that cells of both phenotypes, as well as GTF-negative cells, attached equally well to preformed BPMs, indicating that attachment to BPMs was independent of cell surface GTF activity. Initial characterization of this binding interaction suggested that a protease-sensitive component on the washed cells may be binding to lipoteichoic acids sequestered in the BPM, since exogenous lipoteichoic acid inhibited adhesion. Surprisingly, the adhesion of both Spp+ and Spp- cells was markedly inhibited in the presence of sucrose, which also released lipoteichoic acid from the BPM. These in vitro findings suggest that, in vivo, sucrose and lipoteichoic acid may modify dental plaque development by enhancing or inhibiting the attachment of additional bacteria. PMID:1398940
Soares, Rodrigo Pedro; Altoé, Ellen Cristina Félix; Ennes-Vidal, Vítor; da Costa, Simone M; Rangel, Elizabeth Ferreira; de Souza, Nataly Araújo; da Silva, Vanderlei Campos; Volf, Petr; d'Avila-Levy, Claudia Masini
2017-07-01
Leishmania braziliensis and Leishmania infantum are the causative agents of cutaneous and visceral leishmaniasis, respectively. Several aspects of the vector-parasite interaction involving gp63 and phosphoglycans have been individually assayed in different studies. However, their role under the same experimental conditions was not studied yet. Here, the roles of divalent metal chelators, anti-gp63 antibodies and purified type I phosphoglycans (PGs) were evaluated during in vitro parasite attachment to the midgut of the vector. Parasites were treated with divalent metal chelators or anti-gp63 antibodies prior to the interaction with Lutzomyia longipalpis/Lutzomyia intermedia midguts or sand fly LL-5 cells. In vitro binding system was used to examine the role of PG and gp63 in parallel. Treatment with divalent metal chelators reduced Le. infantum adhesion to the Lu. longipalpis midguts. The most effective compound (Phen) inhibited the binding in both vectors. Similar results were observed in the interaction between both Leishmania species and the cell line LL-5. Finally, parallel experiments using anti-gp63-treated parasites and PG-incubated midguts demonstrated that both approaches substantially inhibited attachment in the natural parasite-vector pairs Le. infantum/Lu. longipalpis and Le. braziliensis/Lu. intermedia. Our results suggest that gp63 and/or PG are involved in parasite attachment to the midgut of these important vectors. Copyright © 2017 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Yaşayan, Gökçen; Xue, Xuan; Collier, Pamela; Clarke, Philip; Alexander, Morgan R.; Marlow, Maria
2016-06-01
In this study, we have produced nanotextured poly(lactic-co-glycolic acid) (PLGA) films by using polystyrene (PS) particles as a template to make a polydimethylsiloxane mould against which PLGA is solvent cast. Biocompatible, biodegradable and nanotextured PLGA films were prepared with PS particles of diameter of 57, 99, 210, and 280 nm that produced domes of the same dimension in the PLGA surface. The effect of the particulate monolayer templating method was investigated to enable preparation of the films with uniformly ordered surface nanodomes. Cell attachment of a human ovarian cancer cell line (OVCAR3) alone and co-cultured with mesenchymal stem cells (MSCs) was evaluated on flat and topographically nano-patterned surfaces. Cell numbers were observed to increase on the nanotextured surfaces compared to non-textured surfaces both with OVCAR3 cultures and OVCAR3-MSC co-cultures at 24 and 48 h time points.
Cable attachment for a radioactive brachytherapy source capsule
Gross, Ian G; Pierce, Larry A
2006-07-18
In cancer brachytherapy treatment, a small californium-252 neutron source capsule is attached to a guide cable using a modified crimping technique. The guide cable has a solid cylindrical end, and the attachment employs circumferential grooves micromachined in the solid cable end. The attachment was designed and tested, and hardware fabricated for use inside a radioactive hot cell. A welding step typically required in other cable attachments is avoided.
Lee, Chia Min; Weight, Alisha K.; Haldar, Jayanta; Wang, Ling; Klibanov, Alexander M.; Chen, Jianzhu
2012-01-01
Covalently conjugating multiple copies of the drug zanamivir (ZA; the active ingredient in Relenza) via a flexible linker to poly-l-glutamine (PGN) enhances the anti-influenza virus activity by orders of magnitude. In this study, we investigated the mechanisms of this phenomenon. Like ZA itself, the PGN-attached drug (PGN-ZA) binds specifically to viral neuraminidase and inhibits both its enzymatic activity and the release of newly synthesized virions from infected cells. Unlike monomeric ZA, however, PGN-ZA also synergistically inhibits early stages of influenza virus infection, thus contributing to the markedly increased antiviral potency. This inhibition is not caused by a direct virucidal effect, aggregation of viruses, or inhibition of viral attachment to target cells and the subsequent endocytosis; rather, it is a result of interference with intracellular trafficking of the endocytosed viruses and the subsequent virus-endosome fusion. These findings both rationalize the great anti-influenza potency of PGN-ZA and reveal that attaching ZA to a polymeric chain confers a unique mechanism of antiviral action potentially useful for minimizing drug resistance. PMID:23185023
[Establishment and application of mechanical strain loading system of multi-channel cells].
Li, Yongming; Wang, Hua; Zhang, Xiaodong; Tang, Lin
2012-02-01
Based on single-chip microcomputer, we have established a mechanical strain loading system with multi-channel to study the biological behavior of cultured cells in vitro under mechanical strain. We developed a multi-channel cell strain loading device controlled by single-chip microcomputer. We controlled the vacuum pump with vacuum chamber to make negative pressure changing periodically in the vacuum chamber. The tested cells were seeded on the surface of an elastic membrane mounted on the vacuum chamber, and could be strained or relaxed by cyclic pressure. Since the cells are attached to the surface of the membrane, they presumably experience the same deformation as that was applied to the membrane. The system was easy to carry and to operate, with deformation rate (1%-21%) and frequency (0-0. 5Hz) which could be adjusted correctly according to experimental requirement, and could compare different deformation rate of three channels at the same time. The system ran stably and completely achieved design aims, and provided a method to study the biological behavior of cultured cells attached to the surface of the elastic membrane under mechanical strain in vitro.
Chk1 and Mps1 jointly regulate correction of merotelic kinetochore attachments.
Petsalaki, Eleni; Zachos, George
2013-03-01
If uncorrected, merotelic kinetochore attachments can induce mis-segregated chromosomes in anaphase. We show that checkpoint kinase 1 (Chk1) protects vertebrate cells against merotelic attachments and lagging chromosomes and is required for correction of merotelic attachments during a prolonged metaphase. Decreased Chk1 activity leads to hyper-stable kinetochore microtubules, unstable binding of MCAK, Kif2b and Mps1 to centromeres or kinetochores and reduced phosphorylation of Hec1 by Aurora-B. Phosphorylation of Aurora-B at serine 331 (Ser331) by Chk1 is high in prometaphase and decreases significantly in metaphase cells. We propose that Ser331 phosphorylation is required for optimal localization of MCAK, Kif2b and Mps1 to centromeres or kinetochores and for Hec1 phosphorylation. Furthermore, inhibition of Mps1 activity diminishes initial recruitment of MCAK and Kif2b to centromeres or kinetochores, impairs Hec1 phosphorylation and exacerbates merotelic attachments in Chk1-deficient cells. We propose that Chk1 and Mps1 jointly regulate Aurora-B, MCAK, Kif2b and Hec1 to correct merotelic attachments. These results suggest a role for Chk1 and Mps1 in error correction.
Lehman, R. Michael; Roberto, Francisco F.; Earley, Drummond; Bruhn, Debby F.; Brink, Susan E.; O'Connell, Sean P.; Delwiche, Mark E.; Colwell, Frederick S.
2001-01-01
The bacteria colonizing geologic core sections (attached) were contrasted with those found suspended in the groundwater (unattached) by examining the microbiology of 16 depth-paired core and groundwater samples using a suite of culture-independent and culture-dependent analyses. One hundred twenty-two meters was continuously cored from a buried chalcopyrite ore hosted in a biotite-quartz-monzonite porphyry at the Mineral Park Mine near Kingman, Ariz. Every fourth 1.5-m core was acquired using microbiologically defensible methods, and these core sections were aseptically processed for characterization of the attached bacteria. Groundwater samples containing unattached bacteria were collected from the uncased corehole at depth intervals corresponding to the individual cores using an inflatable straddle packer sampler. The groundwater was acidic (pH 2.8 to 5.0), with low levels of dissolved oxygen and high concentrations of sulfate and metals, including ferrous iron. Total numbers of attached cells were less than 105 cells g of core material−1 while unattached cells numbered about 105 cells ml of groundwater−1. Attached and unattached acidophilic heterotrophs were observed throughout the depth profile. In contrast, acidophilic chemolithotrophs were not found attached to the rock but were commonly observed in the groundwater. Attached communities were composed of low numbers (<40 CFU g−1) of neutrophilic heterotrophs that exhibited a high degree of morphologic diversity, while unattached communities contained higher numbers (ca. 103 CFU ml−1) of neutrophilic heterotrophs of limited diversity. Sulfate-reducing bacteria were restricted to the deepest samples of both core and groundwater. 16S ribosomal DNA sequence analysis of attached, acidophilic isolates indicated that organisms closely related to heterotrophic, acidophilic mesophiles such as Acidiphilium organovorum and, surprisingly, to the moderately thermophilic Alicyclobacillus acidocaldarius were present. The results indicate that viable (but possibly inactive) microorganisms were present in the buried ore and that there was substantial distinction in biomass and physiological capabilities between attached and unattached populations. PMID:11319087
PEG attachment to osteoblasts enhances mechanosensitivity.
Hamamura, Kazunori; Weng, Yiming; Zhao, Jun; Yokota, Hiroki; Xie, Dong
2008-06-01
Fluid flow induces proliferation and differentiation of osteoblasts, and fibrous structure like a primary cilium on a cell surface contributes to flow sensing and flow-driven gene regulation. We address a question: Does attachment of synthetic polymers on a cell surface enhance mechanosensitivity of osteoblasts? Using MC3T3 osteoblast cells (C4 clone) and a PEG polymer, one of whose termini was covalently linked to a succinimidyl succinate group (functionalized PEG-PEGSS), we examined attachment of PEGSS to osteoblasts and evaluated its effects on the mRNA expression of stress-responsive genes. AFM images exhibited globular PEGSS conformation of approximately 100 nm in size, and SEM images confirmed the attachment of a cluster of pancake-like PEGSS molecules on the osteoblast surface. Compared to control cells incubated with unfunctionalized PEG, real-time PCR revealed that RNA upregulation of c-fos, egr1, ATF3 and Cox2 genes was magnified in the cells incubated with PEGSS. These results support a PEG-induced increase in mechanosensitivity of osteoblasts and indicate that the described approach would be useful to accelerate growth and development of osteoblasts for bone repair and tissue engineering.
Becker, Silke; Eastlake, Karen; Jayaram, Hari; Jones, Megan F.; Brown, Robert A.; McLellan, Gillian J.; Charteris, David G.; Khaw, Peng T.
2016-01-01
Human Müller glia with stem cell characteristics (hMGSCs) have been shown to improve retinal function upon transplantation into rat models of retinal ganglion cell (RGC) depletion. However, their translational potential may depend upon successful engraftment and improvement of retinal function in experimental models with anatomical and functional features resembling those of the human eye. We investigated the effect of allogeneic transplantation of feline Müller glia with the ability to differentiate into cells expressing RGC markers, following ablation of RGCs by N-methyl-d-aspartate (NMDA). Unlike previous observations in the rat, transplantation of hMGSC-derived RGCs into the feline vitreous formed aggregates and elicited a severe inflammatory response without improving visual function. In contrast, allogeneic transplantation of feline MGSC (fMGSC)-derived RGCs into the vitrectomized eye improved the scotopic threshold response (STR) of the electroretinogram (ERG). Despite causing functional improvement, the cells did not attach onto the retina and formed aggregates on peripheral vitreous remnants, suggesting that vitreous may constitute a barrier for cell attachment onto the retina. This was confirmed by observations that cellular scaffolds of compressed collagen and enriched preparations of fMGSC-derived RGCs facilitated cell attachment. Although cells did not migrate into the RGC layer or the optic nerve, they significantly improved the STR and the photopic negative response of the ERG, indicative of increased RGC function. These results suggest that MGSCs have a neuroprotective ability that promotes partial recovery of impaired RGC function and indicate that cell attachment onto the retina may be necessary for transplanted cells to confer neuroprotection to the retina. Significance Müller glia with stem cell characteristics are present in the adult human retina, but they do not have regenerative ability. These cells, however, have potential for development of cell therapies to treat retinal disease. Using a feline model of retinal ganglion cell (RGC) depletion, cell grafting methods to improve RGC function have been developed. Using cellular scaffolds, allogeneic transplantation of Müller glia-derived RGC promoted cell attachment onto the retina and enhanced retinal function, as judged by improvement of the photopic negative and scotopic threshold responses of the electroretinogram. The results suggest that the improvement of RGC function observed may be ascribed to the neuroprotective ability of these cells and indicate that attachment of the transplanted cells onto the retina is required to promote effective neuroprotection. PMID:26718648
Response of a mouse hybridoma cell line to heat shock, agitation, and sparging
NASA Technical Reports Server (NTRS)
Passini, Cheryl A.; Goochee, Charles F.
1989-01-01
A mouse hybridoma cell line is used as a model system for studying the effect of environmental stress on attachment-independent mammalian cells. The full time course of recovery for a mouse hybridoma cell line from both a mild and intermediate heat shock is examined. The pattern of intracellular synthesis is compared for actively growing, log phase cells and nondividing, stationary phase cells.
Wang, Yun; Chang, Thomas M. S.
2012-01-01
We have reported previously that daily intravenous infusions of a soluble nanobiotechnological complex, polyhemoglobin-tyrosinase [polyHb-Tyr], can suppress the growth of murine B16F10 melanoma in a mouse model. In order to avoid the need for daily intravenous injections, we have now extended this further as follows. We have prepared two types of biodegradable nanocapsules containing [polyHb-Tyr]. One type is to increase the circulation time and decrease the frequency of injection and is based on polyethyleneglycol-polylactic acid (PEG-PLA) nanocapsules containing [polyHb-Tyr]. The other type is to allow for intratumoural or local injection and is based on polylactic acid (PLA) nanocapsules containing [polyHb-Tyr]. Cell culture studies show that it can inhibit the proliferation of murine B16F10 melanoma cells in the “proliferation model”. It can also inhibit the attachment of murine B16F10 melanoma cells in the “attachment model.” This could be due to the action of tyrosinase on the depletion of tyrosine or the toxic effect of tyrosine metabolites. The other component, polyhemoglobin (polyHb), plays a smaller role in nanocapsules containing [polyHb-Tyr], and this is most likely by its depletion of nitric oxide needed for melanoma cell growth. PMID:23209910
Brugerolle, G
2004-10-01
This work reports on the flagellate systematics and phylogeny, cytoskeleton, prokaryote-eukaryote cell junction organisation, and epibiotic bacteria identification. It confirms the pioneer 1964 study on Mixotricha paradoxa and supplies new information. Mixotricha paradoxa has a cresta structure specific to devescovinid parabasalid flagellates, a slightly modified recurrent flagellum, and an axostylar tube containing two lamina-shaped parabasal fibres. However, many parabasal profiles are distributed throughout the cell body. There is a conspicuous cortical microfibrillar network whose strands are related to cell junction structures subjacent to epibiotic bacteria. The supposed actin composition of this network could not be demonstrated with anti-actin antibodies or phalloidin labelling. Four types of epibiotic bacteria were described. Bacillus-shaped bacteria with a Gram-negative organisation are nested in alternate rows on most of the surface of the protozoon. They induce a striated calyxlike junction structure beneath the adhesion zone linked to the cortical microfibrillar network. Slender spirochetes are attached by one differentiated end to the plasma membrane of the protozoon, forming knobs on the cell surface. Two very similar long rod-shaped bacteria are also attached on the knobs of the plasma membrane. A large spirochete attributed to the genus Canaleparolina is also attached to the protozoon. Observations on epibiotic bacteria and of their attachments are compared with several described epibiotic bacteria of symbiotic protozoa and with the results of the molecular identification of the epibiotic bacteria of M. paradoxa.
β1 Integrins Mediate Attachment of Mesenchymal Stem Cells to Cartilage Lesions
Zwolanek, Daniela; Flicker, Magdalena; Kirstätter, Elisabeth; Zaucke, Frank; van Osch, Gerjo J.V.M.; Erben, Reinhold G.
2015-01-01
Abstract Mesenchymal stem cells (MSC) may have great potential for cell-based therapies of osteoarthritis. However, after injection in the joint, only few cells adhere to defective articular cartilage and contribute to cartilage regeneration. Little is known about the molecular mechanisms of MSC attachment to defective articular cartilage. Here, we developed an ex vivo attachment system, using rat osteochondral explants with artificially created full-thickness cartilage defects in combination with genetically labeled MSC isolated from bone marrow of human placental alkaline phosphatase transgenic rats. Binding of MSC to full-thickness cartilage lesions was improved by serum, but not hyaluronic acid, and was dependent on the presence of divalent cations. Additional in vitro tests showed that rat MSC attach, in a divalent cation-dependent manner, to collagen I, collagen II, and fibronectin, but not to collagen XXII or cartilage oligomeric matrix protein (COMP). RGD peptides partially blocked the adhesion of MSC to fibronectin in vitro and to cartilage lesions ex vivo. Furthermore, the attachment of MSC to collagen I and II in vitro and to cartilage lesions ex vivo was almost completely abolished in the presence of a β1 integrin blocking antibody. In conclusion, our data suggest that attachment of MSC to ex vivo full-thickness cartilage lesions is almost entirely β1 integrin-mediated, whereby both RGD- and collagen-binding integrins are involved. These findings suggest a key role of integrins during MSC attachment to defective cartilage and may pave the way for improved MSC-based therapies in the future. PMID:26309781
Park, Jina; Jin, Sung Il; Kim, Hyung Min; Ahn, Junhyoung; Kim, Yeon-Gu; Lee, Eun Gyo; Kim, Min-Gon; Shin, Yong-Beom
2015-02-15
We demonstrated that a metal-clad waveguide (MCW)-based biosensor can be applied to label-free measurements of viability of adherent animal cells with osmotic stimulation in real time. After Chinese hamster ovary (CHO) and human embryonic kidney cell 293 (HEK293) cells were attached to a Concanavalin A (Con A)-modified sensor surface, the magnitudes of cell responses to non-isotonic stimulation were compared between live and dead cells. The live cells exhibited a change in the refractive index (RI) of the cytosol caused by a redistribution of water through the cell membrane, which was induced by the osmotic stimulus, but the dead cells did not. Moreover, the normalized change in the RI measured via the MCW sensor was linearly proportional to the viability of attached cells and the resolution in monitoring cell viability was about 0.079%. Therefore, the viability of attached animal cells can be measured without labels by observing the relative differences in the RI of cytosol in isotonic and non-isotonic buffers. Copyright © 2014 Elsevier B.V. All rights reserved.
Embryonic stem cell trials for macular degeneration: a preliminary report.
Schwartz, Steven D; Hubschman, Jean-Pierre; Heilwell, Gad; Franco-Cardenas, Valentina; Pan, Carolyn K; Ostrick, Rosaleen M; Mickunas, Edmund; Gay, Roger; Klimanskaya, Irina; Lanza, Robert
2012-02-25
It has been 13 years since the discovery of human embryonic stem cells (hESCs). Our report provides the first description of hESC-derived cells transplanted into human patients. We started two prospective clinical studies to establish the safety and tolerability of subretinal transplantation of hESC-derived retinal pigment epithelium (RPE) in patients with Stargardt's macular dystrophy and dry age-related macular degeneration--the leading cause of blindness in the developed world. Preoperative and postoperative ophthalmic examinations included visual acuity, fluorescein angiography, optical coherence tomography, and visual field testing. These studies are registered with ClinicalTrials.gov, numbers NCT01345006 and NCT01344993. Controlled hESC differentiation resulted in greater than 99% pure RPE. The cells displayed typical RPE behaviour and integrated into the host RPE layer forming mature quiescent monolayers after transplantation in animals. The stage of differentiation substantially affected attachment and survival of the cells in vitro after clinical formulation. Lightly pigmented cells attached and spread in a substantially greater proportion (>90%) than more darkly pigmented cells after culture. After surgery, structural evidence confirmed cells had attached and continued to persist during our study. We did not identify signs of hyperproliferation, abnormal growth, or immune mediated transplant rejection in either patient during the first 4 months. Although there is little agreement between investigators on visual endpoints in patients with low vision, it is encouraging that during the observation period neither patient lost vision. Best corrected visual acuity improved from hand motions to 20/800 (and improved from 0 to 5 letters on the Early Treatment Diabetic Retinopathy Study [ETDRS] visual acuity chart) in the study eye of the patient with Stargardt's macular dystrophy, and vision also seemed to improve in the patient with dry age-related macular degeneration (from 21 ETDRS letters to 28). The hESC-derived RPE cells showed no signs of hyperproliferation, tumorigenicity, ectopic tissue formation, or apparent rejection after 4 months. The future therapeutic goal will be to treat patients earlier in the disease processes, potentially increasing the likelihood of photoreceptor and central visual rescue. Advanced Cell Technology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Persson, Maria; Lorite, Gabriela S; Kokkonen, Hanna E; Cho, Sung-Woo; Lehenkari, Petri P; Skrifvars, Mikael; Tuukkanen, Juha
2014-09-01
The quality of the initial cell attachment to a biomaterial will influence any further cell function, including spreading, proliferation, differentiation and viability. Cell attachment is influenced by the material's ability to adsorb proteins, which is related to the surface chemistry and topography of the material. In this study, we incorporated hydroxyapatite (HA) particles into a poly(lactic acid) (PLA) composite and evaluated the surface structure and the effects of HA density on the initial cell attachment in vitro of murine calvarial preosteoblasts (MC3T3-EI). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and infrared spectroscopy (FTIR) showed that the HA particles were successfully incorporated into the PLA matrix and located at the surface which is of importance in order to maintain the bioactive effect of the HA particles. SEM and AFM investigation revealed that the HA density (particles/area) as well as surface roughness increased with HA loading concentration (i.e. 5, 10, 15 and 20wt%), which promoted protein adsorption. Furthermore, the presence of HA on the surface enhanced cell spreading, increased the formation of actin stress fibers and significantly improved the expression of vinculin in MC3T3-E1 cells which is a key player in the regulation of cell adhesion. These results suggest the potential utility of PLA/HA composites as biomaterials for use as a bone substitute material and in tissue engineering applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Possession attachment predicts cell phone use while driving.
Weller, Joshua A; Shackleford, Crystal; Dieckmann, Nathan; Slovic, Paul
2013-04-01
Distracted driving has become an important public health concern. However, little is known about the predictors of this health-risking behavior. One overlooked risk factor for distracted driving is the perceived attachment that one feels toward his or her phone. Prior research has suggested that individuals develop bonds toward objects, and qualitative research suggests that the bond between young drivers and their phones can be strong. It follows that individuals who perceive a strong attachment to their phone would be more likely to use it, even when driving. In a nationally representative sample of young drivers (17-28 years), participants (n = 1,006) completed a survey about driving behaviors and phone use. Risk perception surrounding cell phone use while driving and perceived attachment to one's phone were assessed by administering factor-analytically derived scales that were created as part of a larger project. Attachment toward one's phone predicted the proportion of trips in which a participant reported using their cell phone while driving, beyond that accounted for by risk perception and overall phone use. Further, attachment predicted self-reported distracted driving behaviors, such as the use of social media while driving. Attachment to one's phone may be an important but overlooked risk factor for the engagement of potentially health-risking driving behaviors. Understanding that phone attachment may adversely affect driving behaviors has the potential to inform prevention and intervention efforts designed to reduce distracted driving behaviors, especially in young drivers. 2013 APA, all rights reserved
Jabbarzadeh, Ehsan; Jiang, Tao; Deng, Meng; Nair, Lakshmi S; Khan, Yusuf M; Laurencin, Cato T
2007-12-01
Bone tissue engineering offers promising alternatives to repair and restore tissues. Our laboratory has employed poly(lactide-co-glycolide) PLAGA microspheres to develop a three dimensional (3-D) porous bioresorbable scaffold with a biomimetic pore structure. Osseous healing and integration with the surrounding tissue depends in part on new blood vessel formation within the porous structure. Since endothelial cells play a key role in angiogenesis (formation of new blood vessels from pre-existing vasculature), the purpose of this study was to better understand human endothelial cell attachment, viability, growth, and phenotypic expression on sintered PLAGA microsphere scaffold. Scanning electron microscopy (SEM) examination showed cells attaching to the surface of microspheres and bridging the pores between the microspheres. Cell proliferation studies indicated that cell number increased during early stages and reached a plateau between days 10 and 14. Immunofluorescent staining for actin showed that cells were proliferating three dimensionally through the scaffolds while staining for PECAM-1 (platelet endothelial cell adhesion molecule) displayed typical localization at cell-cell contacts. Gene expression analysis showed that endothelial cells grown on PLAGA scaffolds maintained their normal characteristic phenotype. The cell proliferation and phenotypic expression were independent of scaffold pore architecture. These results demonstrate that PLAGA sintered microsphere scaffolds can support the growth and biological functions of human endothelial cells. The insights from this study should aid future studies aimed at enhancing angiogenesis in three dimensional tissue engineered scaffolds.
Lee, Jung-Seok; Kim, Hyun-Suk; Park, So-Yon; Kim, Tae-Wan; Jung, Jae-Suk; Lee, Jong-Bin; Kim, Chang-Sung
2015-01-01
This study aimed to enhance the attachment of periodontal ligament stem cells (PDLSCs) onto the decellularized dental root surface using surface coating with fibronectin and/or calcium phosphate (CaP) and to evaluate the activity of PDLSCs attached to a coated dental root surface following tooth replantation. PDLSCs were isolated from five dogs, and the other dental roots were used as a scaffold for carrying PDLSCs and then assigned to one of four groups according to whether their surface was coated with CaP, fibronectin, CaP/fibronectin, or left uncoated (control). Fibronectin increased the adhesion of PDLSCs onto dental root surfaces compared to both the control and CaP-coated groups, and simultaneous surface coating with CaP and fibronectin significantly accelerated and increased PDLSC adhesion compared to the fibronectin-only group. On in vivo tooth replantation, functionally oriented periodontal new attachment was observed on the CaP/fibronectin-coated dental roots to which autologous PDLSCs had adhered, while in the control condition, dental root replantation was associated only with root resorption and ankylosis along the entire root length. CaP and fibronectin synergistically enhanced the attachment of PDLSCs onto dental root surfaces, and autologous PDLSCs could produce de novo periodontal new attachment in an experimental in vivo model.
Monitoring biofilm attachment on medical devices surfaces using hyperspectral imaging
NASA Astrophysics Data System (ADS)
Le, Hanh N. D.; Hitchins, Victoria M.; Ilev, Ilko K.; Kim, Do-Hyun
2014-02-01
Microbial biofilm is a colony of single bacteria cells (planktonic) that attached to surfaces, attract other microorganisms to attach and grow, and together they build an extracellular matrix composed of polysaccharides, protein, and DNA. Eventually, some cells will detach and spread to other surface. Biofilm on medical devices can cause severe infection to all age ranges from infant to adult. Therefore, it is important to detect biofilm in a fast and efficient manner. Hyperspectral imaging was utilized for distinguishing wide area of biofilm coverage on various materials and on different textures of stainless steeltest coupons. Not only is the coverage of biofilm important, but also the shear stress of biofilm on the attached surfaces is significant. This study investigates the effects of shear stress on the adhesion of biofilms on common medical device surfaces such as glass, polycarbonate, polytetrafluoroethylene, and stainless steel with different textures. Biofilm was grown using Ps. aeruginosa and growth was monitored after 24 and 48 hours at 37° C. The coupons covered with biofilm were tilted at 45 degrees and 90 degrees for 30 seconds to induce shear stress and Hyperspectral images were taken. We hypothesize that stronger attachment on rough surface would be able to withstand greater shear stress compared to smooth surface.
Lactoferrin for prevention of common viral infections.
Wakabayashi, Hiroyuki; Oda, Hirotsugu; Yamauchi, Koji; Abe, Fumiaki
2014-11-01
Although lactoferrin has many biological functions, the host-protective effects against pathogenic microorganisms including bacteria, fungi, and viruses are regarded as one of the most important. Here, we review research on the protective role of lactoferrin administration against common viral infections. Many studies have shown the in vitro antiviral activity of lactoferrin against viral pathogens that cause common infections such as the common cold, influenza, gastroenteritis, summer cold, and herpes, where lactoferrin inhibits mainly viral attachment to the target cells. Recently, studies indicating the in vivo protective effects of lactoferrin by oral administration against common viral infections have been increasing. For instance, norovirus is an extremely important emerging human pathogen that causes a majority of gastroenteritis outbreaks worldwide that may be a target candidate for lactoferrin. Lactoferrin consumption reduced the incidence of noroviral gastroenteritis in children and a similar effect was observed in a wide range of ages in a preliminary survey. A recent in vitro study reported that lactoferrin inhibits both cellular attachment of the murine norovirus, a virus closely-related to the human norovirus, and viral replication in the cells by inducing antiviral cytokines interferon (IFN)-α/β. Lactoferrin administration also enhances NK cell activity and Th1 cytokine responses, which lead to protection against viral infections. In conclusion, lactoferrin consumption may protect the host from viral infections through inhibiting the attachment of a virus to the cells, replication of the virus in the cells, and enhancement of systemic immune functions. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Pouliot, Roxane; Azhari, Rosa; Qanadilo, Hala F; Mahmood, Tahir A; Triantafyllou, Michael S; Langer, Robert
2004-01-01
This study presents the development of a biosynthetic fish skin to be used on aquatic robots that can emulate fish. Smoothness of the external surface is desired in improving high propulsive efficiency and maneuvering agility of autonomous underwater vehicles such as the RoboTuna (Triantafyllou, M., and Triantafyllou, G. Sci. Am. 272, 64, 1995). An initial step was to determine the seeding density and select a polymer for the scaffolds. The attachment and proliferation of chinook salmon embryo (CHSE-214) and brown bullhead (BB) cells were studied on different compositions of a poly(ethylene glycol terephthalate) (PEGT) and poly(butylene terephthalate) (PBT) copolymer (Polyactive). Polymer films were used, cast of three different compositions of PEGT/PBT (weight ratios of 55/45, 60/40, and 70/30) and two different molecular masses of PEGT (300 and 1000 Da). When a 55 wt% and a 300-Da molecular mass form of PEGT was used, maximum attachment and proliferation of CHSE-214 and BB cells were achieved. Histological studies and immunostaining indicate the presence of collagen and cytokeratins in the extracellular matrix formed after 14 days of culture. Porous scaffolds of PEGT/PBT copolymers were also used for three-dimensional tissue engineering of fish skin, using BB cells. Overall, our results indicate that fish cells can attach, proliferate, and express fish skin components on dense and porous Polyactive scaffolds.
Substrate Curvature Restricts Spreading and Induces Differentiation of Human Mesenchymal Stem Cells.
Lee, Sang Joo; Yang, Shengyuan
2017-09-01
While cells attach, spread, migrate, proliferate, and differentiate in three-dimensional (3D) micromechanical environments, the mechanical factors of these environments influence the shapes, sizes, and adhesion forces of the cells. Here, the authors culture human mesenchymal stem cells (hMSCs) on a unique class of curvature-defined substrates, micro glass ball embedded polyacrylamide gels, prepared with an improved protocol, and investigate the spreading responses of the hMSCs on the glass balls to study the effects of substrate curvature on the spreading of hMSCs. The authors find that, among the used diameters of glass balls, the minimum diameter of a glass ball on which an hMSC can attach and spread is 500 μm. In contrast to the well-spread morphologies with randomly-multiple lamellipodia for the hMSCs growing on the flat glass plates, the morphologies of the hMSCs growing on the glass balls are almost uniformly spindle-shaped with two lamellipodia. The sensitivities of the attachment and spreading morphology of an hMSC to substrate curvature are very different from those of a fibroblast. The RT-PCR analysis reveals that the substrate curvature alone can induce adipogenesis of the hMSCs. These findings imply that substrate curvature has profound effects on stem cell behaviors, and detailed and in-depth studies on these effects and their underlying biophysical mechanisms are necessary. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A role for PVRL4-driven cell–cell interactions in tumorigenesis
Pavlova, Natalya N; Pallasch, Christian; Elia, Andrew EH; Braun, Christian J; Westbrook, Thomas F; Hemann, Michael; Elledge, Stephen J
2013-01-01
During all stages of tumor progression, cancer cells are subjected to inappropriate extracellular matrix environments and must undergo adaptive changes in order to evade growth constraints associated with the loss of matrix attachment. A gain of function screen for genes that enable proliferation independently of matrix anchorage identified a cell adhesion molecule PVRL4 (poliovirus-receptor-like 4), also known as Nectin-4. PVRL4 promotes anchorage-independence by driving cell-to-cell attachment and matrix-independent integrin β4/SHP-2/c-Src activation. Solid tumors frequently have copy number gains of the PVRL4 locus and some have focal amplifications. We demonstrate that the transformation of breast cancer cells is dependent on PVRL4. Furthermore, growth of orthotopically implanted tumors in vivo is inhibited by blocking PVRL4-driven cell-to-cell attachment with monoclonal antibodies, demonstrating a novel strategy for targeted therapy of cancer. DOI: http://dx.doi.org/10.7554/eLife.00358.001 PMID:23682311
Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches
Bellin, Robert M.; Kubicek, James D.; Frigault, Matthew J.; Kamien, Andrew J.; Steward, Robert L.; Barnes, Hillary M.; DiGiacomo, Michael B.; Duncan, Luke J.; Edgerly, Christina K.; Morse, Elizabeth M.; Park, Chan Young; Fredberg, Jeffrey J.; Cheng, Chao-Min; LeDuc, Philip R.
2009-01-01
The ability of cells to respond to external mechanical stimulation is a complex and robust process involving a diversity of molecular interactions. Although mechanotransduction has been heavily studied, many questions remain regarding the link between physical stimulation and biochemical response. Of significant interest has been the contribution of the transmembrane proteins involved, and integrins in particular, because of their connectivity to both the extracellular matrix and the cytoskeleton. Here, we demonstrate the existence of a mechanically based initiation molecule, syndecan-4. We first demonstrate the ability of syndecan-4 molecules to support cell attachment and spreading without the direct extracellular binding of integrins. We also examine the distribution of focal adhesion-associated proteins through controlling surface interactions of beads with molecular specificity in binding to living cells. Furthermore, after adhering cells to elastomeric membranes via syndecan-4-specific attachments we mechanically strained the cells via our mechanical stimulation and polymer surface chemical modification approach. We found ERK phosphorylation similar to that shown for mechanotransductive response for integrin-based cell attachments through our elastomeric membrane-based approach and optical magnetic twisting cytometry for syndecan-4. Finally, through the use of cytoskeletal disruption agents, this mechanical signaling was shown to be actin cytoskeleton dependent. We believe that these results will be of interest to a wide range of fields, including mechanotransduction, syndecan biology, and cell–material interactions. PMID:20080785
Tyler, K L; Squier, M K; Rodgers, S E; Schneider, B E; Oberhaus, S M; Grdina, T A; Cohen, J J; Dermody, T S
1995-01-01
Reoviruses are important models for studies of viral pathogenesis; however, the mechanisms by which these viruses produce cytopathic effects in infected cells have not been defined. In this report, we show that murine L929 (L) cells infected with prototype reovirus strains type 1 Lang (TIL) and type 3 Dearing (T3D) undergo apoptosis and that T3D induces apoptosis to a substantially greater extent than T1L. Using T1L x T3D reassortant viruses, we found that differences in the capacity of T1L and T3D to induce apoptosis are determined by the viral S1 gene segment, which encodes the viral attachment protein sigma 1 and the non-virion-associated protein sigma 1s. Apoptosis was induced by UV-inactivated, replication-incompetent reovirus virions, which do not contain sigma 1s and do not mediate its synthesis in infected cells. Additionally, T3D-induced apoptosis was inhibited by anti-reovirus monoclonal antibodies that inhibit T3D cell attachment and disassembly. These results indicate that sigma 1, rather than sigma 1s, is required for induction of apoptosis by the reovirus and suggest that interaction of virions with cell surface receptors is an essential step in this mechanism of cell killing. PMID:7474116
Small molecules targeting LapB protein prevent Listeria attachment to catfish muscle
Das, Bhaskar; Lawrence, Mark
2017-01-01
Listeria monocytogenes is a Gram-positive foodborne pathogen and the causative agent of listeriosis. L. monocytogenes lapB gene encodes a cell wall surface anchor protein, and mutation of this gene causes Listeria attenuation in mice. In this work, the potential role of Listeria LapB protein in catfish fillet attachment was investigated. To achieve this, boron-based small molecules designed to interfere with the active site of the L. monocytogenes LapB protein were developed, and their ability to prevent L. monocytogenes attachment to fish fillet was tested. Results indicated that seven out of nine different small molecules were effective in reducing the Listeria attachment to catfish fillets. Of these, three small molecules (SM3, SM5, and SM7) were highly effective in blocking Listeria attachment to catfish fillets. This study suggests an alternative strategy for reduction of L. monocytogenes contamination in fresh and frozen fish products. PMID:29253892
Javed, M A; Neil, W C; Stoddart, P R; Wade, S A
2016-01-01
The influence of the composition and microstructure of different carbon steel grades on the initial attachment (≤ 60 min) of Escherichia coli and subsequent longer term (28 days) corrosion was investigated. The initial bacterial attachment increased with time on all grades of carbon steel. However, the rate and magnitude of bacterial attachment varied on the different steel grades and was significantly less on the steels with a higher pearlite phase content. The observed variations in the number of bacterial cells attached across different steel grades were significantly reduced by applying a fixed potential to the steel samples. Longer term immersion studies showed similar levels of biofilm formation on the surface of the different grades of carbon steel. The measured corrosion rates were significantly higher in biotic conditions compared to abiotic conditions and were found to be positively correlated with the pearlite phase content of the different grades of carbon steel coupons.
Adnan, Mohd; Sousa, Ana Margarida; Machado, Idalina; Pereira, Maria Olivia; Khan, Saif; Morton, Glyn; Hadi, Sibte
2017-06-01
Escherichia coli has developed sophisticated means to sense, respond, and adapt in stressed environment. It has served as a model organism for studies in molecular genetics and physiology since the 1960s. Stress response genes are induced whenever a cell needs to adapt and survive under unfavorable growth conditions. Two of the possible important genes are rpoS and bolA. The rpoS gene has been known as the alternative sigma (σ) factor, which controls the expression of a large number of genes, which are involved in responses to various stress factors as well as transition to stationary phase from exponential form of growth. Morphogene bolA response to stressed environment leads to round morphology of E. coli cells, but little is known about its involvement in biofilms and its development or maintenance. This study has been undertaken to address the adherence pattern and formation of biofilms by E. coli on stainless steel, polypropylene, and silicone surfaces after 24 h of growth at 37 °C. Scanning electron microscopy was used for direct examination of the cell attachment and biofilm formation on various surfaces and it was found that, in the presence of bolA, E. coli cells were able to attach to the stainless steel and silicone very well. By contrast, polypropylene surface was not found to be attractive for E. coli cells. This indicates that bolA responded and can play a major role in the presence and absence of rpoS in cell attachment.
Adhesion of Biodegradative Anaerobic Bacteria to Solid Surfaces
van Schie, Paula M.; Fletcher, Madilyn
1999-01-01
In order to exploit the ability of anaerobic bacteria to degrade certain contaminants for bioremediation of polluted subsurface environments, we need to understand the mechanisms by which such bacteria partition between aqueous and solid phases, as well as the environmental conditions that influence partitioning. We studied four strictly anaerobic bacteria, Desulfomonile tiedjei, Syntrophomonas wolfei, Syntrophobacter wolinii, and Desulfovibrio sp. strain G11, which theoretically together can constitute a tetrachloroethylene- and trichloroethylene-dechlorinating consortium. Adhesion of these organisms was evaluated by microscopic determination of the numbers of cells that attached to glass coverslips exposed to cell suspensions under anaerobic conditions. We studied the effects of the growth phase of the organisms on adhesion, as well as the influence of electrostatic and hydrophobic properties of the substratum. Results indicate that S. wolfei adheres in considerably higher numbers to glass surfaces than the other three organisms. Starvation greatly decreases adhesion of S. wolfei and Desulfovibrio sp. strain G11 but seems to have less of an effect on the adhesion of the other bacteria. The presence of Fe3+ on the substratum, which would be electropositive, significantly increased the adhesion of S. wolfei, whereas the presence of silicon hydrophobic groups decreased the numbers of attached cells of all species. Measurements of transport of cells through hydrophobic-interaction and electrostatic-interaction columns indicated that all four species had negatively charged cell surfaces and that D. tiedjei and Desulfovibrio sp. strain G11 possessed some hydrophobic cell surface properties. These findings are an early step toward understanding the dynamic attachment of anaerobic bacteria in anoxic environments. PMID:10543826
Bacteria-surface interactions.
Tuson, Hannah H; Weibel, Douglas B
2013-05-14
The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.
Rissanen, Ilona; Ahmed, Asim A; Azarm, Kristopher; Beaty, Shannon; Hong, Patrick; Nambulli, Sham; Duprex, W Paul; Lee, Benhur; Bowden, Thomas A
2017-07-12
In 2012, cases of lethal pneumonia among Chinese miners prompted the isolation of a rat-borne henipavirus (HNV), Mòjiāng virus (MojV). Although MojV is genetically related to highly pathogenic bat-borne henipaviruses, the absence of a conserved ephrin receptor-binding motif in the MojV attachment glycoprotein (MojV-G) indicates a differing host-cell recognition mechanism. Here we find that MojV-G displays a six-bladed β-propeller fold bearing limited similarity to known paramyxoviral attachment glycoproteins, in particular at host receptor-binding surfaces. We confirm the inability of MojV-G to interact with known paramyxoviral receptors in vitro, indicating an independence from well-characterized ephrinB2/B3, sialic acid and CD150-mediated entry pathways. Furthermore, we find that MojV-G is antigenically distinct, indicating that MojV would less likely be detected in existing large-scale serological screening studies focused on well-established HNVs. Altogether, these data indicate a unique host-cell entry pathway for this emerging and potentially pathogenic HNV.
Bonduelle, Colin V; Lau, Woon M; Gillies, Elizabeth R
2011-05-01
The functionalization of surfaces with poly(ethylene oxide) (PEO) is an effective means of imparting resistance to the adsorption of proteins and the attachment and growth of cells, properties that are critical for many biomedical applications. In this work, a new hyperthermal hydrogen induced cross-linking (HHIC) method was explored as a simple one-step approach for attaching PEO to surfaces through the selective cleavage of C-H bonds and subsequent cross-linking of the resulting carbon radicals. In order to study the effects of the process on the polymer, PEO-coated silicon wafers were prepared and the effects of different treatment times were investigated. Subsequently, using an optimized treatment time and a modified butyl polymer with increased affinity for PEO, the technique was applied to butyl rubber surfaces. All of the treated surfaces exhibited significantly reduced protein adsorption and cell growth relative to control surfaces and compared favorably with surfaces that were functionalized with PEO using conventional chemical methods. Thus HHIC is a simple and effective means of attaching PEO to non-functional polymer surfaces.
Biological effects of functionalizing copolymer scaffolds with nanodiamond particles.
Xing, Zhe; Pedersen, Torbjorn O; Wu, Xujun; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Kloss, Frank R; Waag, Thilo; Krueger, Anke; Steinmüller-Nethl, Doris; Mustafa, Kamal
2013-08-01
Significant evidence has indicated that poly(L-lactide)-co-(ɛ-caprolactone) [(poly(LLA-co-CL)] scaffolds could be one of the suitable candidates for bone tissue engineering. Oxygen-terminated nanodiamond particles (n-DP) were combined with poly(LLA-co-CL) and revealed to be positive for cell growth. In this study, we evaluated the influence of poly(LLA-co-CL) scaffolds modified by n-DP on attachment, proliferation, differentiation of bone marrow stromal cells (BMSCs) in vitro, and on bone formation using a sheep calvarial defect model. BMSCs were seeded on either poly(LLA-co-CL)- or n-DP-coated scaffolds and incubated for 1 h. Scanning electron microscopy (SEM) and fluorescence microscopy were used in addition to protein and DNA measurements to evaluate cellular attachment on the scaffolds. To determine the effect of n-DP on proliferation of BMSCs, cell/scaffold constructs were harvested after 3 days and evaluated by Bicinchoninic Acid (BCA) protein assay and SEM. In addition, the osteogenic differentiation of cells grown for 2 weeks on the various scaffolds and in a dynamic culture condition was evaluated by real-time RT-PCR. Unmodified and modified scaffolds were implanted into the calvaria of six-year-old sheep. The expression of collagen type I (COL I) and bone morphogenetic protein-2 (BMP-2) after 4 weeks as well as the formation of new bone after 12 and 24 weeks were analyzed by immunohistochemistry and histology. Scaffolds modified with n-DP supported increased cell attachment and the mRNA expression of osteopontin (OPN), bone sialoprotein (BSP), and BMP-2 were significantly increased after 2 weeks of culture. The BMSCs had spread well on the various scaffolds investigated after 3 days in the study with no significant difference in cell proliferation. Furthermore, the in vivo data revealed more positive staining of COL I and BMP-2 in relation to the n-DP-coated scaffolds after 4 weeks and presented more bone formation after 12 and 24 weeks. n-DP modification significantly increased cell attachment and differentiation of BMSCs on poly(LLA-co-CL) scaffolds in vitro and enhanced bone formation in vivo.
Sanchez, Sophie; Dupret, Vincent; Tafforeau, Paul; Trinajstic, Katherine M; Ryll, Bettina; Gouttenoire, Pierre-Jean; Wretman, Lovisa; Zylberberg, Louise; Peyrin, Françoise; Ahlberg, Per E
2013-01-01
Firm attachments binding muscles to skeleton are crucial mechanical components of the vertebrate body. These attachments (entheses) are complex three-dimensional structures, containing distinctive arrangements of cells and fibre systems embedded in the bone, which can be modified during ontogeny. Until recently it has only been possible to obtain 2D surface and thin section images of entheses, leaving their 3D histology largely unstudied except by extrapolation from 2D data. Entheses are frequently preserved in fossil bones, but sectioning is inappropriate for rare or unique fossil material. Here we present the first non-destructive 3D investigation, by propagation phase contrast synchrotron microtomography (PPC-SRµCT), of enthesis histology in extant and fossil vertebrates. We are able to identify entheses in the humerus of the salamander Desmognathus from the organization of bone-cell lacunae and extrinsic fibres. Statistical analysis of the lacunae differentiates types of attachments, and the orientation of the fibres, reflect the approximate alignment of the muscle. Similar histological structures, including ontogenetically related pattern changes, are perfectly preserved in two 380 million year old fossil vertebrates, the placoderm Compagopiscis croucheri and the sarcopterygian fish Eusthenopteron foordi. We are able to determine the position of entheses in fossil vertebrates, the approximate orientation of the attached muscles, and aspects of their ontogenetic histories, from PPC-SRµCT data. Sub-micron microtomography thus provides a powerful tool for studying the structure, development, evolution and palaeobiology of muscle attachments.
Gnasekaran, Pavallekoodi; Subramaniam, Sreeramanan
2015-09-01
Physical contact between A. tumefaciens and the target plant cell walls is essential to transfer and integrate the transgene to introduce a novel trait. Chemotaxis response and attachment of Agrobacterium towards Vanda Kasem's Delight (VKD) protocorm-like bodies (PLBs) were studied to analyse the interaction between Agrobacterium and PLB during the transformation event. The study shows that initially A. tumefaciens reversibly attached to PLB surface via polar and lateral mode of adherence followed by the irreversible attachment which involved the production of cellulosic fibril by A. tumefaciens. Cellulosic fibril allows formation of biofilm at the tip of trichome. Contrarily, attachment mutant Escherichia coli strain DH5α was significantly deficient in the attachment process. Spectrophotometric GUS assay showed the mean value of attachment by A. tumefaciens was 8.72 % compared to the negative control E. coli strain DH5α that produced 0.16 %. A. tumefaciens swarmed with sharper and brighter edge when severe wounding was applied to the PLBs producing the highest swarming ratio of 1.46 demonstrating the positive effect of the plant exudates on bacterial movement. The study shows that VKD's PLBs are the suitable explants for Agrobacterium-mediated transformation since the bacteria expressed higher competency rate.
Arandia-Gorostidi, Nestor; Weber, Peter K.; Alonso-Sáez, Laura; ...
2016-12-06
Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs bymore » 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Lastly, our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arandia-Gorostidi, Nestor; Weber, Peter K.; Alonso-Sáez, Laura
Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs bymore » 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Lastly, our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.« less
Tran, Clara T. H.; Kondyurin, Alexey; Hirsh, Stacey L.; McKenzie, David R.; Bilek, Marcela M. M.
2012-01-01
The surface of polytetrafluoroethylene (PTFE) was modified using plasma immersion ion implantation (PIII) with the aim of improving its ability to immobilize yeast. The density of immobilized cells on PIII-treated and -untreated PTFE was compared as a function of incubation time over 24 h. Rehydrated yeast cells attached to the PIII-treated PTFE surface more rapidly, with higher density, and greater attachment strength than on the untreated surface. The immobilized yeast cells were removed mechanically or chemically with sodium hydroxide and the residues left on the surfaces were analysed with Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). The results revealed that the mechanism of cell attachment on both surfaces differs and a model is presented for each. Rapid attachment on the PIII-treated surface occurs through covalent bonds of cell wall proteins and the radicals on the treated surface. In contrast, on the untreated surface, only physisorbed molecules were found in the residue and lipids were more highly concentrated than proteins. The presence of lipids in the residue was found to be a consequence of damage to the plasma membrane during the rehydration process and the increased cell stress was also apparent by the amount of Hsp12 in the protein residue. The immobilized yeast cells on PIII-treated PTFE were found to be as active as yeast cells in suspension. PMID:22696486
Ajami, S; Coathup, M J; Khoury, J; Blunn, G W
2017-08-01
Polyetheretherketone (PEEK) is an alternative to metallic implants in orthopedic applications; however, PEEK is bioinert and does not osteointegrate. In this study, an accelerated neutral atom beam technique (ANAB) was employed to improve the bioactivity of PEEK. The aim was to investigate the growth of human mesenchymal stem cells (hMSCs), human osteoblasts (hOB), and skin fibroblasts (BR3G) on PEEK and ANAB PEEK. The surface roughness and contact angle of PEEK and ANAB PEEK was measured. Cell metabolic activity, proliferation and alkaline phosphatase (ALP) was measured and cell attachment was determined by quantifying adhesion plaques with cells. ANAB treatment increased the surface hydrophilicity [91.74 ± 4.80° (PEEK) vs. 74.82 ± 2.70° (ANAB PEEK), p < 0.001] but did not alter the surface roughness. Metabolic activity and proliferation for all cell types significantly increased on ANAB PEEK compared to PEEK (p < 0.05). Significantly increased cell attachment was measured on ANAB PEEK surfaces. MSCs seeded on ANAB PEEK in the presence of osteogenic media, expressed increased levels of ALP compared to untreated PEEK (p < 0.05) CONCLUSION: Our results demonstrated that ANAB treatment increased the cell attachment, metabolic activity, and proliferation on PEEK. ANAB treatment may improve the osteointegration of PEEK implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1438-1446, 2017. © 2016 Wiley Periodicals, Inc.
An in vitro 3D model using collagen coated gelatin nanofibers for studying breast cancer metastasis.
Janani, G; Pillai, Mamatha M; Selvakumar, R; Bhattacharyya, Amitava; Sabarinath, C
2017-02-07
The study of breast cancer metastasis is limited due to poor knowledge of molecular progression of breast tumor and varied heterogeneity. For a better understanding of tumor metastasis, a reliable 3D in vitro model bridging the gap between 2D cultures and in vivo animal model studies is essential. Our study is focused on two key points: (i) designing a 3D microenvironment for studying metastasis and (ii) simulating the metastasis milieu by inducing epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET). An electrospun gelatin nanofiber matrix (EGNF) was fabricated using electrospinning and further dip coated with different concentrations of collagen to obtain surface complexity and mechanical properties, similar to connective tissues. Nanofiber matrices were physically characterized by Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and field-emission scanning electron microscopy (FESEM). The FTIR, AFM, and FESEM results indicated the crosslinking and confirmed the presence of pores in the nanofiber matrices. Comparative studies on biocompatibility, cell attachment, and the proliferation of MCF-7 cells on EGNF and collagen coated gelatin nanofibrous matrix (CCGM) revealed higher cellular attachment and proliferation in CCGM. CCGM with human metastatic breast cancer cell line (MCF-7) was taken to study breast cancer metastasis using estrogen (induces EMT) and progesterone (induces MET) hormones for 24 h. Quantitative real-time PCR was used for quantifying the expression of metastasis related genes, and fluorescence microscopy for verifying the invasion of cells to the matrices. The expression of E-cadherin and matrix metalloproteinase 2 (MMP 2) confirmed the occurrence of EMT and MET. Live cell imaging and cellular attachment showed significant increase of cellular invasion in crosslinked 0.15% CCGM that serves as a suitable non-toxic, biocompatible, and affordable scaffold for studying breast cancer metastasis. Our findings suggested that CCGM can be used as a tissue-like 3D model for studying breast cancer metastatic events in vitro.
Rumen Bacterial Degradation of Forage Cell Walls Investigated by Electron Microscopy
Akin, Danny E.; Amos, Henry E.
1975-01-01
The association of rumen bacteria with specific leaf tissues of the forage grass Kentucky-31 tall fescue (Festuca arundinacea Schreb.) during in vitro degradation was investigated by transmission and scanning electron microscopy. Examination of degraded leaf cross-sections revealed differential rates of tissue degradation in that the cell walls of the mesophyll and pholem were degraded prior to those of the outer bundle sheath and epidermis. Rumen bacteria appeared to degrade the mesophyll, in some cases, and phloem without prior attachment to the plant cell walls. The degradation of bundle sheath and epidermal cell walls appeared to be preceded by attachment of bacteria to the plant cell wall. Ultrastructural features apparently involved in the adhesion of large cocci to plant cells were observed by transmission and scanning electron microscopy. The physical association between plant and rumen bacterial cells during degradation apparently varies with tissue types. Bacterial attachment, by extracellular features in some microorganisms, is required prior to degradation of the more resistant tissues. Images PMID:16350017
Farley, J R; Magnusson, P
2005-01-01
Skeletal alkaline phosphatase (sALP) is a glycoprotein- approximately 20% carbohydrate by weight, with five presumptive sites for N-linked glycosylation, as well as a carboxy-terminal site for attachment of the glycolipid structure (glycosylphosphatidylinositol, GPI), which anchors sALP to the outer surface of osteoblasts. The current studies were intended to characterize the effects of inhibiting glycosylation and glycosyl-processing on the synthesis, plasma membrane attachment, cellular-extracellular distribution, and reaction kinetics of sALP in human osteosarcoma (SaOS-2) cells. sALP synthesis, glycosylation, and GPI-anchor attachment were assessed as total protein synthesis/immunospecific sALP synthesis, sialic acid content (i.e., wheat germ agglutinin precipitation), and insolubility (i.e., temperature-dependent phase-separation), respectively. sALP reaction kinetics were characterized by analysis of dose-dependent initial velocity data, with a phosphoryl substrate. The results of these studies revealed that the inhibition of either N-linked glycosylation or oligosaccharide synthesis for GPI-anchor addition could affect the synthesis and the distribution of sALP, but not the kinetics of the phosphatase reaction. Tunicamycin-which blocks N-linked glycosylation by inhibiting core oligosaccharide synthesis-decreased cell layer protein and the total amount of sALP in the cells, while increasing the relative level of sALP in the cell-conditioned culture medium (CM, i.e., the amount of sALP released). These effects were attributed to dose- and time-dependent decreases in sALP synthesis and N-linked glycosylation, and an increase in apoptotic cell death (P <0.001 for each). In contrast to the effects of tunicamycin on N-linked glycosylation, the effects of mannosamine, which inhibits GPI-anchor glycosylation/formation, included (1) an increase in cell layer protein; (2) decreases in sALP specific activity, in the cells and in the CM; and (3) increases in the percentages of both anchorless and wheat germ agglutinin (WGA)-soluble sALP in the medium, but not in the cells (P <0.005 for each). These effects of mannosamine were, presumably, a consequence of inhibiting the insertion/attachment of sALP to the outside of the plasma membrane surface. Neither mannosammine nor tunicamycin had any effect on the reaction kinetics of sALP or on the apparent affinity (the value of KM) for the phosphoryl substrate.
Early events of polyoma infection: adsorption, penetration and nuclear transport
NASA Technical Reports Server (NTRS)
Consigli, R. A.; Haynes, J. I. Jr; Chang, D.; Grenz, L.; Richter, D.; Spooner, B. S. (Principal Investigator)
1992-01-01
Polyoma virions have different attachment proteins which are responsible for hemagglutination of erythrocytes and attachment to cultured mouse kidney cells (MKC). Virion binding studies demonstrated that MKC possess specific (productive infection) and nonspecific (nonproductive) receptors. Empty polyoma capsids have hemagglutination activity and bind to non-specific MKC receptors, but they are not capable of competing for specific virion cell receptors or preventing productive infection. Isoelectric focusing of the virion major capsid protein, VP1, separated this protein into six species (A through F). These species had identical amino acid sequences, but differed in degree of modification (phosphorylation, acetylation, sulfation and hydroxylation). Evidence based upon precipitation with specific antisera supports the view that VP1 species E is required for specific adsorption and that D and F are required for hemagglutination. The virion attachment domain has been localized to an 18 kilodalton fragment of the C-terminal region of VP1. Monopinocytotic vesicles containing 125I-labeled polyoma virions were isolated from infected MKC. A crosslinker was used to bind the MKC cell receptor(s) covalently to VP1 attachment protein, and a new 120 kilodalton band was identified by SDS-PAGE. An anti-idiotype antibody prepared against a neutralizing polyoma monoclonal antiody was used to identify a putative 50 kilodalton receptor protein from a detergent extract of MKC, as well as from MKC membrane preparation.
STAG2 promotes error correction in mitosis by regulating kinetochore-microtubule attachments.
Kleyman, Marianna; Kabeche, Lilian; Compton, Duane A
2014-10-01
Mutations in the STAG2 gene are present in ∼20% of tumors from different tissues of origin. STAG2 encodes a subunit of the cohesin complex, and tumors with loss-of-function mutations are usually aneuploid and display elevated frequencies of lagging chromosomes during anaphase. Lagging chromosomes are a hallmark of chromosomal instability (CIN) arising from persistent errors in kinetochore-microtubule (kMT) attachment. To determine whether the loss of STAG2 increases the rate of formation of kMT attachment errors or decreases the rate of their correction, we examined mitosis in STAG2-deficient cells. STAG2 depletion does not impair bipolar spindle formation or delay mitotic progression. Instead, loss of STAG2 permits excessive centromere stretch along with hyperstabilization of kMT attachments. STAG2-deficient cells display mislocalization of Bub1 kinase, Bub3 and the chromosome passenger complex. Importantly, strategically destabilizing kMT attachments in tumor cells harboring STAG2 mutations by overexpression of the microtubule-destabilizing enzymes MCAK (also known as KIF2C) and Kif2B decreased the rate of lagging chromosomes and reduced the rate of chromosome missegregation. These data demonstrate that STAG2 promotes the correction of kMT attachment errors to ensure faithful chromosome segregation during mitosis. © 2014. Published by The Company of Biologists Ltd.
Wei, Yan; Mo, Xiaoju; Zhang, Pengchao; Li, Yingying; Liao, Jingwen; Li, Yongjun; Zhang, Jinxing; Ning, Chengyun; Wang, Shutao; Deng, Xuliang; Jiang, Lei
2017-06-27
Control of stem cell behaviors at solid biointerfaces is critical for stem-cell-based regeneration and generally achieved by engineering chemical composition, topography, and stiffness. However, the influence of dynamic stimuli at the nanoscale from solid biointerfaces on stem cell fate remains unclear. Herein, we show that electrochemical switching of a polypyrrole (Ppy) array between nanotubes and nanotips can alter surface adhesion, which can strongly influence mechanotransduction activation and guide differentiation of mesenchymal stem cells (MSCs). The Ppy array, prepared via template-free electrochemical polymerization, can be reversibly switched between highly adhesive hydrophobic nanotubes and poorly adhesive hydrophilic nanotips through an electrochemical oxidation/reduction process, resulting in dynamic attachment and detachment to MSCs at the nanoscale. Multicyclic attachment/detachment of the Ppy array to MSCs can activate intracellular mechanotransduction and osteogenic differentiation independent of surface stiffness and chemical induction. This smart surface, permitting transduction of nanoscaled dynamic physical inputs into biological outputs, provides an alternative to classical cell culture substrates for regulating stem cell fate commitment. This study represents a general strategy to explore nanoscaled interactions between stem cells and stimuli-responsive surfaces.
Cellular compatibility of highly degradable bioactive ceramics for coating of metal implants.
Radetzki, F; Wohlrab, D; Zeh, A; Delank, K S; Mendel, T; Berger, G; Syrowatka, F; Mayr, O; Bernstein, A
2011-01-01
Resorbable ceramics can promote the bony integration of implants. Their rate of degradation should ideally be synchronized with bone regeneration. This study examined the effect of rapidly resorbable calcium phosphate ceramics 602020, GB14, 305020 on adherence, proliferation and morphology of human bone-derived cells (HBDC) in comparison to β-TCP. The in vitro cytotoxicity was determined by the microculture tetrazolium (MTT) assay. HBDC were grown on the materials for 3, 7, 11, 15 and 19 days and counted. Cell morphology, cell attachment, cell spreading and the cytoskeletal organization of HBDC cultivated on the substrates were investigated using laser scanning microscopy and environmental scanning electron microscopy. All substrates supported sufficient cellular growth for 19 days and showed no cytotoxicity. On each material an identical cell colonisation of well communicating, polygonal, vital cells with strong focal contacts was verified. HBDC showed numerous well defined stress fibres which give proof of well spread and strongly anchored cells. Porous surfaces encouraged the attachment and spreading of HBDC. Further investigations regarding long term biomaterial/cell interactions in vitro and in vivo are required to confirm the utility of the new biomaterials.
Miniature spectrally selective dosimeter
NASA Technical Reports Server (NTRS)
Adams, R. R.; Macconochie, I. O.; Poole, B. D., Jr. (Inventor)
1980-01-01
A miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas is described. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (E-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two E-cells, and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one E-cell, three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame.
Cihil, Kristine M; Swiatecka-Urban, Agnieszka
2013-12-13
Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. The cell based L-glutathione protection assays can be used to study endocytosis and recycling of protein receptors, channels, transporters, and adhesion molecules localized at the cell surface. The endocytic assay requires labeling of cell surface proteins with a cell membrane impermeable biotin containing a disulfide bond and the N-hydroxysuccinimide (NHS) ester at 4 ºC - a temperature at which membrane trafficking does not occur. Endocytosis of biotinylated plasma membrane proteins is induced by incubation at 37 ºC. Next, the temperature is decreased again to 4 ºC to stop endocytic trafficking and the disulfide bond in biotin covalently attached to proteins that have remained at the plasma membrane is reduced with L-glutathione. At this point, only proteins that were endocytosed remain protected from L-glutathione and thus remain biotinylated. After cell lysis, biotinylated proteins are isolated with streptavidin agarose, eluted from agarose, and the biotinylated protein of interest is detected by western blotting. During the recycling assay, after biotinylation cells are incubated at 37 °C to load endocytic vesicles with biotinylated proteins and the disulfide bond in biotin covalently attached to proteins remaining at the plasma membrane is reduced with L-glutathione at 4 ºC as in the endocytic assay. Next, cells are incubated again at 37 °C to allow biotinylated proteins from endocytic vesicles to recycle to the plasma membrane. Cells are then incubated at 4 ºC, and the disulfide bond in biotin attached to proteins that recycled to the plasma membranes is reduced with L-glutathione. The biotinylated proteins protected from L-glutathione are those that did not recycle to the plasma membrane.
Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsvitov, Marianna; Frampton, Arthur R.; Shah, Waris A.
2007-04-10
Herpes simplex virus type 1 (HSV-1) entry into permissive cells involves attachment to cell-surface glycosaminoglycans (GAGs) and fusion of the virus envelope with the cell membrane triggered by the binding of glycoprotein D (gD) to cognate receptors. In this study, we characterized the observation that soluble forms of the gD ectodomain (sgD) can mediate entry of gD-deficient HSV-1. We examined the efficiency and receptor specificity of this activity and used sequential incubation protocols to determine the order and stability of the initial interactions required for entry. Surprisingly, virus binding to GAGs did not increase the efficiency of sgD-mediated entry andmore » gD-deficient virus was capable of attaching to GAG-deficient cells in the absence of sgD. These observations suggested a novel binding interaction that may play a role in normal HSV infection.« less
A naturally occurring nanomaterial from the Sundew (Drosera) for tissue engineering.
Lenaghan, S C; Serpersu, K; Xia, L; He, W; Zhang, M
2011-12-01
In recent years advances have been made in the design of novel materials for tissue engineering through the use of polysaccharides. This study evaluated the ability of a naturally secreted polysaccharide adhesive from the Sundew (Drosera capensis) as a support for cell growth. The Sundew adhesive has several advantages including its high elasticity and antibiotic nature. By coating glass cover slips with the Sundew adhesive, a network of nanofibers was generated that was capable of promoting attachment and differentiation of a model neuronal cell line, PC-12. We also demonstrated the potential of this material for repairing bone and soft tissue injuries, by testing attachment of osteoblasts and endothelial cells. Finally, it was determined that the Sundew biomaterial was stable through testing by atomic force microscopy and prolonged cell growth. This work has proven the capabilities of using a nanomaterial derived from the Sundew adhesive for the purpose of tissue engineering.
Bioluminescence Truth Data Measurement and Signature Detection
2006-01-01
bioluminescence activity and related forcing factors. Kilroy sensors are shown attached to pilings with the senor system below water and the cell phone based...communications module attached to the top of the piling. A cell phone tower represents communication of data to shore. Also shown are distributed...installation are located based on GPS coordinates telemetered by the cell phone module. Icons point in direction of most recently measured flow and
2014-07-01
attached but most leucocytes did not. The attached cells were washed and used for FACS analysis as described previously (Slomiany et al., 2009b...SKOV3 cells, Hey-A8-MDR cells and ascites-derived cells were subject to FACS analysis in the same manner, as follows. We first separated live cells...Cancer 11, 254-267. Zucker, S., Hymowitz, M., Rollo, E. E., Mann, R., Conner, C. E., Cao, J., Foda , H. D., Tompkins, D. C. and Toole, B. P. (2001
Zheng, Yuanyuan; Panhwar, Fazil
2016-01-01
Cryopreservation of human umbilical vein endothelial cells (HUVECs) is important to tissue engineering applications and the study of the role of endothelial cells in cardiovascular and cerebrovascular diseases. The traditional methods for cryopreservation by vitrification (cooling samples to a cryogenic temperature without apparent freezing) using high concentration of cryoprotective agents (CPAs) and slow freezing are suboptimal due to the severe toxicity of high concentration of CPAs and ice formation-induced cryoinjuries, respectively. In this study, we developed a method to cryopreserve HUVECs by vitrification with low concentration of CPAs. This is achieved by optimizing the CPAs and using highly thermally conductive quartz capillary (QC) to contain samples for vitrification. The latter minimizes the thermal mass to create ultra-fast cooling/warming rates. Our data demonstrate that HUVECs can be vitrified in the QC using 1.4 mol/L ethylene glycol and 1.1 mol/L dimethyl sulfoxide with more than 90% viability. Moreover, this method significantly improves the attachment efficiency of the cryopreserved HUVECs. The attached cells post-cryopreservation proliferate similarly to fresh cells. Therefore, this study may provide an effective vitrification technique to bank HUVECs for vascular tissue engineering and other applications. PMID:27673413
Enhanced periodontal regeneration using collagen, stem cells or growth factors.
Basan, Tanja; Welly, Daniel; Kriebel, Katja; Scholz, Malte; Brosemann, Anne; Liese, Jan; Vollmar, Brigitte; Frerich, Bernhard; Lang, Hermann
2017-01-01
The regeneration of periodontal tissues still remains a challenge in periodontology. The aim of the present study was to examine the regenerative potential of a) different collagen support versus blank, b) different collagen support +/- a growth factor cocktail (GF) and c) a collagen powder versus collagen powder + periodontal ligament stem cells (PDLSCs) comparatively in a large animal model. The stem cells (SC) were isolated from extracted teeth of 15 adult miniature pigs. A total of 60 class II furcation defects were treated with the materials named above. Concluding, a histological evaluation followed. A significant increase in regeneration was observed in all treatment groups. The new attachment formation reached a maximum of 77 percent. In the control group a new attachment formation of 13 percent was observed. The study shows that all implanted materials improved periodontal regeneration, though there were no significant differences between the experimental groups. Within the limitations of this study, it can be assumed that the lack of significant differences is due to the complexity of the clinical setting.
Orgad, Oded; Oren, Yoram; Walker, Sharon L; Herzberg, Moshe
2011-08-01
Among various functions, extracellular polymeric substances (EPS) provide microbial biofilms with mechanical stability and affect initial cell attachment, the first stage in the biofilm formation process. The role of alginate, an abundant polysaccharide in Pseudomonas aeruginosa biofilms, in the viscoelastic properties and adhesion kinetics of EPS was analyzed using a quartz crystal microbalance with dissipation (QCM-D) monitoring technology. EPS was extracted from two P. aeruginosa biofilms, a wild type strain, PAO1, and a mucoid strain, PAOmucA22 that over-expresses alginate production. The higher alginate content in the EPS originating from the mucoid biofilms was clearly shown to increase both the rate and the extent of attachment of the EPS, as well as the layer's thickness. Also, the presence of calcium and elevated ionic strength increased the thickness of the EPS layer. Dynamic light scattering (DLS) showed that the presence of calcium and elevated ionic strength induced intermolecular attractive interactions in the mucoid EPS molecules. For the wild type EPS, in the presence of calcium, an elevated shift in the distribution of the diffusion coefficients was observed with DLS due to a more compacted conformation of the EPS molecules. Moreover, the alginate over-expression effect on EPS adherence was compared to the effect of alginate over-expression on P. aeruginosa cell attachment. In a parallel plate flow cell, under similar hydraulic and aquatic conditions as those applied for the EPS adsorption tests in the QCM-D flow cell, reduced adherence of the mucoid strain was clearly observed compared to the wild type isogenic bacteria. The results suggest that alginate contributes to steric hindrance and shielding of cell surface features and adhesins that are known to promote cell attachment. © 2011 Taylor & Francis
Costa, Pedro F; Vaquette, Cédryck; Zhang, Qiyi; Reis, Rui L; Ivanovski, Saso; Hutmacher, Dietmar W
2014-03-01
This study investigated the ability of an osteoconductive biphasic scaffold to simultaneously regenerate alveolar bone, periodontal ligament and cementum. A biphasic scaffold was built by attaching a fused deposition modelled bone compartment to a melt electrospun periodontal compartment. The bone compartment was coated with a calcium phosphate (CaP) layer for increasing osteoconductivity, seeded with osteoblasts and cultured in vitro for 6 weeks. The resulting constructs were then complemented with the placement of PDL cell sheets on the periodontal compartment, attached to a dentin block and subcutaneously implanted into athymic rats for 8 weeks. Scanning electron microscopy, X-ray diffraction, alkaline phosphatase and DNA content quantification, confocal laser microscopy, micro computerized tomography and histological analysis were employed to evaluate the scaffold's performance. The in vitro study showed that alkaline phosphatase activity was significantly increased in the CaP-coated samples and they also displayed enhanced mineralization. In the in vivo study, significantly more bone formation was observed in the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted vascularization of the cell sheets, and periodontal attachment was achieved at the dentin interface. This work demonstrates that the combination of cell sheet technology together with an osteoconductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Assaying effector function in planta using double-barreled particle bombardment.
Kale, Shiv D; Tyler, Brett M
2011-01-01
The biolistic transient gene expression assay is a beneficial tool for studying gene function in vivo. However, biolistic transient assay systems have inherent pitfalls that often cause experimental inaccuracies such as poor transformation efficiency, which can be confused with biological phenomena. The double-barreled gene gun device is an inexpensive and highly effective attachment that enables statistically significant data to be obtained with one-tenth the number of experimental replicates compared to conventional biolistic assays. The principle behind the attachment is to perform two simultaneous bombardments with control and test DNA preparations onto the same leaf. The control bombardment measures the efficiency of the transformation while the ratio of the test bombardment to the control bombardment measures the activity of the gene of interest. With care, the ratio between the pair of bombardments can be highly reproducible from bombardment to bombardment. The double-barreled attachment has been used to study plant resistance (R) gene-mediated responses to effectors, induction and suppression of cell death by a wide variety of pathogen and host molecules, and the role of oömycete effector RXLR motifs in cell reentry.
2001-10-16
attachment, the viral attachment proteins on the surface of the virion bind to receptors on the microvillar membrane of the mosquito s midgut ...Penetration refers to the process through which the virions enter the midgut cells; arboviruses enter cell through receptor -mediated endocytosis. During...inactivation of the virus by digestive enzymes in the lumen of the midgut , and the absence or reduced number of cellular receptor sites for virus attachment
An innovative approach to attached cultivation of Chlorella vulgaris using different materials.
Jafari, Negar; Shafiee Alavijeh, Razieh; Abdolahnejad, Ali; Farrokhzadeh, Hossein; Amin, Mohammad Mehdi; Ebrahimi, Afshin
2018-05-10
This article investigates the innovative attached cultivation of Chlorella vulgaris (C. vulgaris) using different materials as an alternative to high capital techniques of harvesting such as centrifugation, flocculation, and filtration. A simple attached algal cultivation system was proposed that was equipped by 10 submerged supporting materials which can harvest algal cells, efficiently. The effect of operational parameters such as light intensity, the rate of aeration, and auto-harvesting time was investigated. A chip, durable, and abundant cellulosic material (Kaldnes carriers covered by kenafs, KCCKs) was proposed for auto-harvesting C. vulgaris cells. The results revealed that optimum aeration rate, light intensity, and auto-harvesting of microalgal cells were 3.6 vvm, 10,548 W/m 2 , and 12 days, respectively. Six of these KCCKs had the highest biofilm formation percent up to 33%. In this condition, the rate of cell growth increased to 0.6 mg/cm 2 . Therefore, this system can be used for appropriate auto-harvesting of microalgae in the attached growth systems. C. vulgaris biomass composition is valuable for biodiesel, bioethanol, and animal protein production.
Ganji, Yasaman; Kasra, Mehran; Salahshour Kordestani, Soheila; Bagheri Hariri, Mohiedin
2014-09-01
Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane-GNT/NW composites was observed resulting from the improved surface properties of composites. Copyright © 2014 Elsevier B.V. All rights reserved.
Lactobacillus acidophilus contributes to a healthy environment for vaginal epithelial cells.
Pi, Woojin; Ryu, Jae-Sook; Roh, Jaesook
2011-09-01
Lactobacillus species in the female genital tract are thought to act as a barrier to infection. Several studies have demonstrated that lactobacilli can adhere to vaginal epithelial cells. However, little is known about how the adherence of lactobacilli to vaginal epithelial cells affects the acidity, cell viability, or proliferation of the lactobacilli themselves or those of vaginal epithelial cells. Lactobacillus acidophilus was co-cultured with immortalized human vaginal epithelial cells (MS74 cell line), and the growth of L. acidophilus and the acidity of the culture medium were measured. MS74 cell density and viability were also assessed by counting cell numbers and observing the cell attachment state. L. acidophilus showed exponential growth for the first 6 hr until 9 hr, and the pH was maintained close to 4.0-5.0 at 24 hr after culture, consistent with previous studies. The growth curve of L. acidophilus or the pH values were relatively unaffected by co-culture with MS74 cells, confirming that L. acidophilus maintains a low pH in the presence of MS74 cells. This co-culture model could therefore potentially be used to mimic vaginal conditions for future in vitro studies. On the other hand, MS74 cells co-cultured with L. acidophilus more firmly attached to the culture plate, and a higher number of cells were present compared to cells cultured in the absence of L. acidophilus. These results indicate that L. acidophilus increases MS74 cell proliferation and viability, suggesting that lactobacilli may contribute to the healthy environment for vaginal epithelial cells.
Transferrin Receptor 1 Facilitates Poliovirus Permeation of Mouse Brain Capillary Endothelial Cells.
Mizutani, Taketoshi; Ishizaka, Aya; Nihei, Coh-Ichi
2016-02-05
As a possible route for invasion of the CNS, circulating poliovirus (PV) in the blood is believed to traverse the blood-brain barrier (BBB), resulting in paralytic poliomyelitis. However, the underlying mechanism is poorly understood. In this study, we demonstrated that mouse transferrin receptor 1 (mTfR1) is responsible for PV attachment to the cell surface, allowing invasion into the CNS via the BBB. PV interacts with the apical domain of mTfR1 on mouse brain capillary endothelial cells (MBEC4) in a dose-dependent manner via its capsid protein (VP1). We found that F-G, G-H, and H-I loops in VP1 are important for this binding. However, C-D, D-E, and E-F loops in VP1-fused Venus proteins efficiently penetrate MBEC4 cells. These results imply that the VP1 functional domain responsible for cell attachment is different from that involved in viral permeation of the brain capillary endothelium. We observed that co-treatment of MBEC4 cells with excess PV particles but not dextran resulted in blockage of transferrin transport into cells. Using the Transwell in vitro BBB model, transferrin co-treatment inhibited permeation of PV into MBEC4 cells and delayed further viral permeation via mTfR1 knockdown. With mTfR1 as a positive mediator of PV-host cell attachment and PV permeation of MBEC4 cells, our results indicate a novel role of TfR1 as a cellular receptor for human PV receptor/CD155-independent PV invasion of the CNS. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Fuller, Barry; Seldon, Clare; Davidson, Brian; Seifalian, Alexander
2013-01-01
Background: Although hepatocytes have a remarkable regenerative power, the rapidity of acute liver failure makes liver transplantation the only definitive treatment. Attempts to incorporate engineered three-dimensional liver tissue in bioartificial liver devices or in implantable tissue constructs, to treat or bridge patients to self-recovery, were met with many challenges, amongst which is to find suitable polymeric matrices. We studied the feasibility of utilising nanocomposite polymers in three-dimensional scaffolds for hepatocytes. Materials and methods: Hepatocytes (HepG2) were seeded on a flat sheet and in three-dimensional scaffolds made of a nanocomposite polymer (Polyhedral Oligomeric Silsesquioxane [POSS]-modified polycaprolactone urea urethane) alone as well as with porogen particles, i.e. glucose, sodium bicarbonate and sodium chloride. The scaffold architecture, cell attachment and morphology were studied with scanning electron microscopy, and we assessed cell viability and functionality. Results: Cell attachment to the scaffolds was demonstrated. The scaffold made with glucose particles as porogen showed a narrower range of pore size with higher porosity and better inter-pore communications and seemed to encourage near normal cell morphology. There was a steady increase of albumin secretion throughout the experiment while the control (monolayer cell culture) showed a steep decrease after day 7. At the end of the experiment, there was no significant difference in viability and functionality between the scaffolds and the control. Conclusion: In this initial study, porogen particles were used to modify the scaffolds produced from the novel polymer. Although there was no significance against the control in functionality and viability, the demonstrable attachment on scanning electron microscopy suggest potential roles for this polymer and in particular for scaffolds made with glucose particles in liver tissue engineering. PMID:22532408
Attachment defect in mouse fibroblasts (L cells) persistently infected with Chlamydia psittaci.
Moulder, J W; Levy, N J; Zeichner, S L; Lee, C K
1981-01-01
Almost all the cells in populations of mouse fibroblasts (L cells) persistently infected with the 6BC strain of Chlamydia psittaci were immune to superinfection with high multiplicities of C. psittaci, whether or not the L cells contained visible chlamydial inclusions. As ascertained by experiments with 14C-labeled C. psittaci, immunity to superinfection resulted from the failure of added chlamydiae to attach to persistently infected host cells. However, when exogenous C. psittaci was introduced into persistently infected L cells by centrifuging the inoculum onto host cell monolayers or by pretreating the monolayers with diethylaminoethyl-dextran, these chlamydiae produced expected numbers of infectious progeny. Persistently infected L cells were associated in an unknown way with a C. psittaci population that entered the host cells only with the aid of centrifugation or pretreatment with diethylaminoethyl-dextran. Inclusion-free, persistently infected L cells appeared to present at least two separate hindrances to chlamydial activity: blockage of the attachment of exogenous elementary bodies to persistently infected host cells and prevention of the initiation of chlamydial multiplication by means of a normal developmental cycle in the absence of added C. psittaci. Images PMID:7298188
A Model of Extracellular Enzymes in Free-Living Microbes: Which Strategy Pays Off?
Thygesen, Uffe H.; Riemann, Lasse; Stedmon, Colin A.
2015-01-01
An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration. PMID:26253668
In vitro degradation and cell attachment studies of a new electrospun polymeric tubular graft.
Patel, Harsh N; Thai, Kevin N; Chowdhury, Sami; Singh, Raj; Vohra, Yogesh K; Thomas, Vinoy
Electrospinning technique was utilized to engineer a small-diameter (id = 4 mm) tubular graft. The tubular graft was made from biocompatible and biodegradable polymers polycaprolactone (PCL) and poliglecaprone with 3:1 (PCL:PGC) ratio. Enzymatic degradation effect on the mechanical properties and fiber morphology in the presence of lipase enzyme were observed. Significant changes in tensile strength (1.86-1.49 MPa) and strain (245-205 %) were noticed after 1 month in vitro degradation. The fiber breakage was clearly evident through scanning electron microscopy (SEM) after 4 weeks in vitro degradation. Then, the graft was coated with a collagenous protein matrix to impart bioactivity. Human umbilical vein endothelial cells (HUVECs) and aortic artery smooth muscle cells (AoSMCs) attachment on the coated graft were observed in static condition. Further, HUVECs were seeded on the lumen surface of the grafts and exposed to laminar shear stress for 12 h to understand the cell attachment. The coated graft was aged in PBS solution (pH 7.3) at 37 °C for 1 month to understand the coating stability. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) suggested the erosion of the protein matrix from the coated graft under in vitro condition.
Polydimethyl siloxane based nanocomposites with antibiofilm properties for biomedical applications.
Sankar, G Gomathi; Murthy, P Sriyutha; Das, Arindam; Sathya, S; Nankar, Rakesh; Venugopalan, V P; Doble, Mukesh
2017-07-01
Polydimethyl siloxane (PDMS) is an excellent implant material for biomedical applications, but often fails as it is prone to microbial colonization which forms biofilms. In the present study CuO, CTAB capped CuO, and ZnO nanoparticles were tested as nanofillers to enhance the antibiofilm property of PDMS against Staphylococcus aureus and Escherichia coli. In general S. aurues (Gram positive and more hydrophobic) favor PDMS surface than glass while E. coli (Gram negative and more hydrophilic) behaves in a reverse way. Incorporation of nanofillers renders the PDMS surface antibacterial and reduces the attachment of both bacteria. These surfaces are also not cytotoxic nor show any cell damage. Contact angle of the material and the cell surface hydrophobicity influenced the extent of bacterial attachment. Cell viability in biofilms was dependent on the antimicrobial property of the nanoparticles incorporated in the PDMS matrix. Simple regression relationships were able to predict the bacterial attachment and number of dead cells on these nanocomposites. Among the nanocomposites tested, PDMS incorporated with CTAB (cetyl trimethylammonium bromide)-capped CuO appears to be the best antibacterial material with good cyto-compatibility. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1075-1082, 2017. © 2016 Wiley Periodicals, Inc.
Reducing background noise in near-infrared medical imaging: Routes to activated fluorescing
NASA Astrophysics Data System (ADS)
Burdette, Mary K.; Bandera, Yuriy; Powell, Rhonda R.; Bruce, Terri F.; Foulger, Stephen H.
2016-03-01
Activated fluorescence was achieved for nanoparticle based systems. One particulate system consisting of a poly(propargyl acrylate) (PA) core with covalently attached derivatized fluorescein and modified bovine serum albumin covalently conjugated to a cyanine 3 derivative was initially nonfluorescent. Upon trypsin addition and subsequent proteolytic digestion, Förster resonance energy transfer (FRET) was induced. The other particulate system consisted of a PA core with covalently attached azide modified BSA, which was covalently attached to a silicon phthalocyanine derivative (PA/BSA/akSiPc600). Both systems were biocompatible. To investigate activated fluorescence with the PA/BSA/akSiPc600 system in cancer cells, human non-small cell lung cancer cells (A549 cell line) were used as a model system. The PA/BSA/akSiPc600 system was incubated with the cells at varying time points in an effort to see a fluorescence increase over time as the cells uptake the particles and as they digest the BSA, most probably, via endocytosis. It was seen, through live cell scanning confocal microscopy, that the fluorescence was activated in the cell.
Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging
NASA Astrophysics Data System (ADS)
Bartelmess, Juergen; de Luca, Elisa; Signorelli, Angelo; Baldrighi, Michele; Becce, Michele; Brescia, Rosaria; Nardone, Valentina; Parisini, Emilio; Echegoyen, Luis; Pompa, Pier Paolo; Giordani, Silvia
2014-10-01
Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes.Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes. Electronic supplementary information (ESI) available: Additional experimental and crystallographic data, additional confocal microscopy and HR-TEM images and illustrations, EELS, TGA, DLS and Z-potential results. Movie M1. See DOI: 10.1039/c4nr04533e
Antibacterial Au nanostructured surfaces
NASA Astrophysics Data System (ADS)
Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun
2016-01-01
We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06157a
Brun, Paola; Scorzeto, Michele; Vassanelli, Stefano; Castagliuolo, Ignazio; Palù, Giorgio; Ghezzo, Francesca; Messina, Grazia M L; Iucci, Giovanna; Battaglia, Valentina; Sivolella, Stefano; Bagno, Andrea; Polzonetti, Giovanni; Marletta, Giovanni; Dettin, Monica
2013-04-01
The features of implant devices and the reactions of bone-derived cells to foreign surfaces determine implant success during osseointegration. In an attempt to better understand the mechanisms underlying osteoblasts attachment and spreading, in this study adhesive peptides containing the fibronectin sequence motif for integrin binding (Arg-Gly-Asp, RGD) or mapping the human vitronectin protein (HVP) were grafted on glass and titanium surfaces with or without chemically induced controlled immobilization. As shown by total internal reflection fluorescence microscopy, human osteoblasts develop adhesion patches only on specifically immobilized peptides. Indeed, cells quickly develop focal adhesions on RGD-grafted surfaces, while HVP peptide promotes filopodia, structures involved in cellular spreading. As indicated by immunocytochemistry and quantitative polymerase chain reaction, focal adhesions kinase activation is delayed on HVP peptides with respect to RGD while an osteogenic phenotypic response appears within 24h on osteoblasts cultured on both peptides. Cellular pathways underlying osteoblasts attachment are, however, different. As demonstrated by adhesion blocking assays, integrins are mainly involved in osteoblast adhesion to RGD peptide, while HVP selects osteoblasts for attachment through proteoglycan-mediated interactions. Thus an interfacial layer of an endosseous device grafted with specifically immobilized HVP peptide not only selects the attachment and supports differentiation of osteoblasts but also promotes cellular migration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Keke; Zhang, Xiazhi; Yang, Wufeng; Liu, Xiaoyan; Jiao, Yanpeng; Zhou, Changren
2016-12-01
Electrospun poly(L-lactic acid) (PLLA) nanofiber mats were successfully modified by deposition of multilayers with chitosan (CS), heparin (Hep) and graphene oxide (GO) through electrostatic layer-by-layer (LBL) self-assembly method. In this study, the surface properties of PLLA nanofiber mats before and after modification were investigated via scanning electron microscope (SEM), atomic force microscopy (AFM), attenuated total reflectance fourier transformation infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. In addition, the cytocompatibility of the modified PLLA nanofiber mats were investigated by testing endothelial cells compatibility, including cell attachment, cell proliferation and cell cycle. The results revealed that the surfaces of modified PLLA nanofiber mats become much rougher, stifiness and the hydrophilicity of the LBL modified PLLA nanofiber mats were improved compared to original PLLA one. Moreover, the modified PLLA nanofiber mats had promoted the endothelial cells viability attachment significantly. Besides, we studied the PLLA nanofiber mats on the expression of necrosis factor (TNF-α), interleukine-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells. The results showed that modified PLLA nanofiber mats had inhibited the inflammatory response to some extent.
In vitro fibroblast and pre-osteoblastic cellular responses on laser surface modified Ti-6Al-4V.
Chikarakara, Evans; Fitzpatrick, Patricia; Moore, Eric; Levingstone, Tanya; Grehan, Laura; Higginbotham, Clement; Vázquez, Mercedes; Bagga, Komal; Naher, Sumsun; Brabazon, Dermot
2014-12-29
The success of any implant, dental or orthopaedic, is driven by the interaction of implant material with the surrounding tissue. In this context, the nature of the implant surface plays a direct role in determining the long term stability as physico-chemical properties of the surface affect cellular attachment, expression of proteins, and finally osseointegration. Thus to enhance the degree of integration of the implant into the host tissue, various surface modification techniques are employed. In this work, laser surface melting of titanium alloy Ti-6Al-4V was carried out using a CO2 laser with an argon gas atmosphere. Investigations were carried out to study the influence of laser surface modification on the biocompatibility of Ti-6Al-4V alloy implant material. Surface roughness, microhardness, and phase development were recorded. Initial knowledge of these effects on biocompatibility was gained from examination of the response of fibroblast cell lines, which was followed by examination of the response of osteoblast cell lines which is relevant to the applications of this material in bone repair. Biocompatibility with these cell lines was analysed via Resazurin cell viability assay, DNA cell attachment assay, and alamarBlue metabolic activity assay. Laser treated surfaces were found to preferentially promote cell attachment, higher levels of proliferation, and enhanced bioactivity when compared to untreated control samples. These results demonstrate the tremendous potential of this laser surface melting treatment to significantly improve the biocompatibility of titanium implants in vivo.
Gaihre, Bipin; Jayasuriya, Ambalangodage C
2016-12-01
In this study we developed carboxymethyl cellulose (CMC) microparticles through ionic crosslinking with the aqueous ion complex of zirconium (Zr) and further complexing with chitosan (CS) and determined the physio-chemical and biological properties of these novel microparticles. In order to assess the role of Zr, microparticles were prepared in 5% and 10% (w/v) zirconium tetrachloride solution. Scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS) results showed that Zr was uniformly distributed on the surface of the microparticles as a result of which uniform groovy surface was obtained. We found that Zr enhances the surface roughness of the microparticles and stability studies showed that it also increases the stability of microparticles in phosphate buffered saline. The crosslinking of anionic CMC with cationic Zr and CS was confirmed by Fourier transform infrared spectroscopy (FTIR) results. The response of murine pre-osteoblasts (OB-6) when cultured with microparticles was investigated. Live/dead cell assay showed that microparticles did not induce any cytotoxic effects as cells were attaching and proliferating on the well plate as well as along the surface of microparticles. In addition, SEM images showed that microparticles support the attachment of cells and they appeared to be directly interacting with the surface of microparticle. Within 10days of culture most of the top surface of microparticles was covered with a layer of cells indicating that they were proliferating well throughout the surface of microparticles. We observed that Zr enhances the cell attachment and proliferation as more cells were present on microparticles with 10% Zr. These promising results show the potential applications of CMC-Zr microparticles in bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.
Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions.
Saitakis, Michael; Gizeli, Electra
2012-02-01
Acoustic biosensors offer the possibility to analyse cell attachment and spreading. This is due to the offered speed of detection, the real-time non-invasive approach and their high sensitivity not only to mass coupling, but also to viscoelastic changes occurring close to the sensor surface. Quartz crystal microbalance (QCM) and surface acoustic wave (Love-wave) systems have been used to monitor the adhesion of animal cells to various surfaces and record the behaviour of cell layers under various conditions. The sensors detect cells mostly via their sensitivity in viscoelasticity and mechanical properties. Particularly, the QCM sensor detects cytoskeletal rearrangements caused by specific drugs affecting either actin microfilaments or microtubules. The Love-wave sensor directly measures cell/substrate bonds via acoustic damping and provides 2D kinetic and affinity parameters. Other studies have applied the QCM sensor as a diagnostic tool for leukaemia and, potentially, for chemotherapeutic agents. Acoustic sensors have also been used in the evaluation of the cytocompatibility of artificial surfaces and, in general, they have the potential to become powerful tools for even more diverse cellular analysis.
Liu, Er; Treiser, Matthew D; Patel, Hiral; Sung, Hak-Joon; Roskov, Kristen E; Kohn, Joachim; Becker, Matthew L; Moghe, Prabhas V
2009-08-01
We have developed a novel approach combining high information and high throughput analysis to characterize cell adhesive responses to biomaterial substrates possessing gradients in surface topography. These gradients were fabricated by subjecting thin film blends of tyrosine-derived polycarbonates, i.e. poly(DTE carbonate) and poly(DTO carbonate) to a gradient temperature annealing protocol. Saos-2 cells engineered with a green fluorescent protein (GFP) reporter for farnesylation (GFP-f) were cultured on the gradient substrates to assess the effects of nanoscale surface topology and roughness that arise during the phase separation process on cell attachment and adhesion strength. The high throughput imaging approach allowed us to rapidly identify the "global" and "high content" structure-property relationships between cell adhesion and biomaterial properties such as polymer chemistry and topography. This study found that cell attachment and spreading increased monotonically with DTE content and were significantly elevated at the position with intermediate regions corresponding to the highest "gradient" of surface roughness, while GFP-f farnesylation intensity descriptors were sensitively altered by surface roughness, even in cells with comparable levels of spreading.
Kim, Sung Han
2016-01-01
Ultrastructural studies on oocyte development and vitellogenesis in oocytes, and the functions of follicle cells during oogenesis and oocyte degeneration were investigated to clarifyb the reproductive mechanism on vitellogenesis of Scapharca subcrenata using electron microscope observations. In this study, vitellogenesis during oogenesis in the oocytes occured by way of autosynthesis and heterosynthesis. Of two processes of vitellogenesis during oogenesis, the process of endogenous autosynthesis involved the combined activity of the Golgi complex, mitochondria and rough endoplasmic reticulum. However, the process of exogenous heterosynthesis involved endocytotic incorporation of extraovarian precursors at the basal region of the oolema of the early vitellogenic oocytes before the formation of the vitelline coat. In this study, follicle cells, which attached to the previtellogenic and vitellogenic oocytes, were easily found. In particular, the follicle cells were involved in the development of previtellogenic oocytes by the supply of nutrients, and vitellogenesis in the early and late vitellogenic oocytes by endocytosis of yolk precursors. Based on observations of follicle cells attached to degenerating oocytes after spawning, follicles of this species are involved in lysosomal induction of oocyte degeneration for the resorption phagosomes (phagolysosomes) in the cytoplasm for nutrient storage, as seen in other bivalves. In this study, the functions of follicle cells can accumulate reserves of lipid granules and glycogen particles for vitellogenesis from degenerating oocytes after spawning. PMID:27796004
Soluble ephrin a1 is necessary for the growth of HeLa and SK-BR3 cells
2010-01-01
Background Ephrin A1 (EFNA1) is a member of the A-type ephrin family of cell surface proteins that function as ligands for the A-type Eph receptor tyrosine kinase family. In malignancy, the precise role of EFNA1 and its preferred receptor, EPHA2, is controversial. Several studies have found that EFNA1 may suppress EPHA2-mediated oncogenesis, or enhance it, depending on cell type and context. However, little is known about the conditions that influence whether EFNA1 promotes or suppresses tumorigenicity. EFNA1 exists in a soluble form as well as a glycophosphatidylinositol (GPI) membrane attached form. We investigated whether the contradictory roles of EFNA1 in malignancy might in part be related to the existence of both soluble and membrane attached forms of EFNA1 and potential differences in the manner in which they interact with EPHA2. Results Using a RNAi strategy to reduce the expression of endogenous EFNA1 and EPHA2, we found that both EFNA1 and EPHA2 are required for growth of HeLa and SK-BR3 cells. The growth defects could be rescued by conditioned media from cells overexpressing soluble EFNA1. Interestingly, we found that overexpression of the membrane attached form of EFNA1 suppresses growth of HeLa cells in 3D but not 2D. Knockdown of endogenous EFNA1, or overexpression of full-length EFNA1, resulted in relocalization of EPHA2 from the cell surface to sites of cell-cell contact. Overexpression of soluble EFNA1 however resulted in more EPHA2 distributed on the cell surface, away from cell-cell contacts, and promoted the growth of HeLa cells. Conclusions We conclude that soluble EFNA1 is necessary for the transformation of HeLa and SK-BR3 cells and participates in the relocalization of EPHA2 away from sites of cell-cell contact during transformation. PMID:20979646
2015-12-21
SECURITY CLASSIFICATION OF: The overall goal of this project is to determine how electrode surface chemistry can be rationally designed to decrease...2015 Approved for Public Release; Distribution Unlimited Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for...ABSTRACT Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for Improved Exoelectrogen Attachment and Electron Transfer
Murdock, Kyle W; Seiler, Annina; Chirinos, Diana A; Garcini, Luz M; Acebo, Sally L; Cohen, Sheldon; Fagundes, Christopher P
2018-04-01
Low subjective social status (SSS) in childhood places one at greater risk of a number of health problems in adulthood. Theoretical and empirical evidence indicates that exposure to supportive parenting may buffer the negative effects of low childhood SSS on adult health. Given the importance of supportive caregivers and close others for the development of attachment orientations throughout the lifespan, attachment theory may be important for understanding why some individuals are resilient to the negative effects of low childhood SSS on adult health while others are not. We examined if attachment anxiety and attachment avoidance altered the association between childhood subjective social status (SSS) and length of telomeres in white blood cells in adulthood. Shorter telomere length is associated with increased risk of age-related diseases including cancer, type 2 diabetes, and cardiovascular disease. Participants (N = 128) completed self-report measures of childhood SSS and attachment orientations, as well as a blood draw. We found that among those with low childhood SSS, low attachment anxiety was associated with longer telomere length in white blood cells in comparison to high attachment anxiety controlling for participant age, sex, race, body mass index, and adult SSS. Among those with high childhood SSS, low attachment anxiety was associated with a slight decrease in telomere length. Attachment avoidance was unrelated to length of telomeres. Such findings provide further evidence for the role that close relationships may have on buffering SSS related health disparities. © 2018 Wiley Periodicals, Inc.
Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells
Akopian, Veronika; Beil, Stephen; Benvenisty, Nissim; Brehm, Jennifer; Christie, Megan; Ford, Angela; Fox, Victoria; Gokhale, Paul J.; Healy, Lyn; Holm, Frida; Hovatta, Outi; Knowles, Barbara B.; Ludwig, Tenneille E.; McKay, Ronald D. G.; Miyazaki, Takamichi; Nakatsuji, Norio; Oh, Steve K. W.; Pera, Martin F.; Rossant, Janet; Stacey, Glyn N.; Suemori, Hirofumi
2010-01-01
There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with propagation in the presence of Knockout Serum Replacer, FGF-2, and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment, death, and differentiated morphology by phase contrast microscopy, for growth by serial cell counts, and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems, only the control and those based on two commercial media, mTeSR1 and STEMPRO, supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment, cell death, or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study, and the lack of success with other formulations from academic groups compared to previously published results, include: the complex combination of growth factors present in the commercial preparations; improved development, manufacture, and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories. PMID:20186512
Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra
2011-01-01
Breast cancer presents greatest challenge in health care in today’s world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube’s D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 minutes of photothermal therapy treatment by 1.5 W/cm2 power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly. PMID:21842867
Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra
2011-09-01
Breast cancer presents greatest challenge in health care in today's world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube's D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 min of photothermal therapy treatment by 1.5 W/cm(2) power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly.
An adaptor role for cytoplasmic Sam68 in modulating Src activity during cell polarization.
Huot, Marc-Etienne; Brown, Claire M; Lamarche-Vane, Nathalie; Richard, Stéphane
2009-04-01
The Src-associated substrate during mitosis with a molecular mass of 68 kDa (Sam68) is predominantly nuclear and is known to associate with proteins containing the Src homology 3 (SH3) and SH2 domains. Although Sam68 is a Src substrate, little is known about the signaling pathway that link them. Src is known to be activated transiently after cell spreading, where it modulates the activity of small Rho GTPases. Herein we report that Sam68-deficient cells exhibit loss of cell polarity and cell migration. Interestingly, Sam68-deficient cells exhibited sustained Src activity after cell attachment, resulting in the constitutive tyrosine phosphorylation and activation of p190RhoGAP and its association with p120rasGAP. Consistently, we observed that Sam68-deficient cells exhibited deregulated RhoA and Rac1 activity. By using total internal reflection fluorescence microscopy, we observed Sam68 near the plasma membrane after cell attachment coinciding with phosphorylation of its C-terminal tyrosines and association with Csk. These findings show that Sam68 localizes near the plasma membrane during cell attachment and serves as an adaptor protein to modulate Src activity for proper signaling to small Rho GTPases.
Garner, Omai B.; Yun, Tatyana; Pernet, Olivier; Aguilar, Hector C.; Park, Arnold; Bowden, Thomas A.; Freiberg, Alexander N.
2014-01-01
ABSTRACT Nipah virus (NiV) is a deadly emerging enveloped paramyxovirus that primarily targets human endothelial cells. Endothelial cells express the innate immune effector galectin-1 that we have previously shown can bind to specific N-glycans on the NiV envelope fusion glycoprotein (F). NiV-F mediates fusion of infected endothelial cells into syncytia, resulting in endothelial disruption and hemorrhage. Galectin-1 is an endogenous carbohydrate-binding protein that binds to specific glycans on NiV-F to reduce endothelial cell fusion, an effect that may reduce pathophysiologic sequelae of NiV infection. However, galectins play multiple roles in regulating host-pathogen interactions; for example, galectins can promote attachment of HIV to T cells and macrophages and attachment of HSV-1 to keratinocytes but can also inhibit influenza entry into airway epithelial cells. Using live Nipah virus, in the present study, we demonstrate that galectin-1 can enhance NiV attachment to and infection of primary human endothelial cells by bridging glycans on the viral envelope to host cell glycoproteins. In order to exhibit an enhancing effect, galectin-1 must be present during the initial phase of virus attachment; in contrast, addition of galectin-1 postinfection results in reduced production of progeny virus and syncytium formation. Thus, galectin-1 can have dual and opposing effects on NiV infection of human endothelial cells. While various roles for galectin family members in microbial-host interactions have been described, we report opposing effects of the same galectin family member on a specific virus, with the timing of exposure during the viral life cycle determining the outcome. IMPORTANCE Nipah virus is an emerging pathogen that targets endothelial cells lining blood vessels; the high mortality rate (up to 70%) in Nipah virus infections results from destruction of these cells and resulting catastrophic hemorrhage. Host factors that promote or prevent Nipah virus infection are not well understood. Endogenous human lectins, such as galectin-1, can function as pattern recognition receptors to reduce infection and initiate immune responses; however, lectins can also be exploited by microbes to enhance infection of host cells. We found that galectin-1, which is made by inflamed endothelial cells, can both promote Nipah virus infection of endothelial cells by “bridging” the virus to the cell, as well as reduce production of progeny virus and reduce endothelial cell fusion and damage, depending on timing of galectin-1 exposure. This is the first report of spatiotemporal opposing effects of a host lectin for a virus in one type of host cell. PMID:25505064
Stachelek, S J; Song, C; Alferiev, I; Defelice, S; Cui, X; Connolly, J M; Bianco, R W; Levy, R J
2004-01-01
The present study investigated a novel approach for gene therapy of heart valve disease and vascular disorders. We formulated and characterized implantable polyurethane films that could also function as gene delivery systems through the surface attachment of replication defective adenoviruses using an anti-adenovirus antibody tethering mechanism. Our hypothesis was that we could achieve site-specific gene delivery to cells interacting with these polyurethane implants, and thereby demonstrate the potential for intravascular devices that could also function as gene delivery platforms for therapeutic vectors. Previous research by our group has demonstrated that polyurethane elastomers can be derivatized post-polymerization through a series of chemical reactions activating the hard segment amide groups with alkyl bromine residues, which can enable a wide variety of subsequent chemical modifications. Furthermore, prior research by our group investigating gene delivery intravascular stents has shown that collagen-coated balloon expandable stents can be configured with anti-adenovirus antibodies via thiol-based chemistry, and can then tether adenoviral vectors at doses that lead to high levels of localized arterial neointima expression, but with virtually no distal spread of vector. Thus, we sought to create two-device configurations for our investigations building on this previous research. (1) Polyurethane films coated with Type I collagen were thiol activated to permit covalent attachment of anti-adenovirus antibodies to enable gene delivery via vector tethering. (2) We also formulated polyurethane films with direct covalent attachment of anti-adenovirus antibodies to polyurethane hard segments derivatized with alkyl-thiol groups, thereby also enabling tethering of replication-defective adenoviruses. Both formulations demonstrated highly localized and efficient transduction in cell culture studies with rat arterial smooth muscle cells. In vivo experiments with collagen-coated polyurethane films investigated an abdominal aorta implant model in pigs using a button configuration that simulated the blood contacting environment of a vascular graft. One week explants of the collagen-coated polyurethane films demonstrated 14.3+/-2.5% of neointimal cells on the surface of the implant transduced with green fluorescent protein - adenovirus (AdGFP) vector loadings of 1 x 10(8) PFU. PCR studies demonstrated no detectable vector DNA in blood or distal organs. Similarly, polyurethane films with direct attachment of antivector antibodies to the surface were used in sheep pulmonary valve leaflet replacement studies, simulating the blood contacting environment of a prosthetic heart valve cusp. Polyurethane films with antibody tethered AdGFP vector (10(8) PFU) demonstrated 25.1+/-5.7% of attached cells transduced in these 1 week studies, with no detectable vector DNA in blood or distal organs. In vivo GFP expression was confirmed with immunohistochemistry. It is concluded that site-specific intravascular delivery of adenoviral vectors for gene therapy can be achieved with polyurethane implants utilizing the antivector antibody tethering mechanism.
[Microtubules suppress blebbing and stimulate lamellae extension in spreading fibroblasts].
Tvorogova, A V; Vorob'ev, I A
2012-01-01
We compared spreading of Vero fibroblasts when microtubules were depolymerized or stabilized. After initial attachment cells start blebbing that continues for different time and abruptly transfers into spreading. After spreading initiation, most cells spread in an anisotropic manner through stochastic formation of lamellipodia. A second mode was rapid, isotropic spreading via formation of circular lamellum that occurs in 15% of cells. The rate of spreading was maximal at the beginning and decreased during the first hour according to logarithmic law. After 60 min many cells formed stable efges and started migrating on the substrate. However, cell area slowly continued to increase. Actin bundles are formed 20 min after cell attachment and they first run along cell boundary. This system disassembles within 20-40 min and is substituted with stress fibers crossing the cell. In the isotropically spread cells no actin bunbles are seen. Microtubules in the spreading cells enter into large blebs and all nascent lamella and later form radial array. When MTs has been depolymerized or stabilized blebbing started before cells attached to the substrate and continue much longer than in control cells. In both cases the initial rate of spreading decrease several fold, and remains constant for many hours. After 24 h the mean area occupied by cells with altered MT system was the same as in control. Alteration of MT system had moderate effect on actin system--formation of actin cables started at the same time as in control (within 20 min upon cell attachment), however, they grew even in cells undergoing prolonged blebbing. Actin cables running along cell margin were similar to tat in control cells, but they did not disappear up to 1 h. When stabilized, microtubules form chaotic array: they do not enter blebs and in spread cells run parallel to the cell margin at a distance of 3-5 microm. We conclude that dynamic microtubules speed up completion of blebbing and promote early stages of fibroblasts spreading.
Pérez, Astrid; Gómez, Manuel J.; Gayoso, Carmen; Vallejo, Juan A.; Ohneck, Emily J.; Valle, Jaione; Actis, Luis A.; Beceiro, Alejandro; Bou, Germán
2017-01-01
Many strains of Acinetobacter baumannii have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of A. baumannii ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in A. baumannii ATCC 17978. PMID:28763494
Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments.
Evans, E; Berk, D; Leung, A
1991-01-01
A simple micromechanical method has been developed to measure the rupture strength of a molecular-point attachment (focal bond) between two macroscopically smooth membrane capsules. In the procedure, one capsule is prepared with a low density coverage of adhesion molecules, formed as a stiff sphere, and held at fixed position by a micropipette. The second capsule without adhesion molecules is pressurized into a spherical shape with low suction by another pipette. This capsule is maneuvered to initiate point contact at the pole opposite the stiff capsule which leads to formation of a few (or even one) molecular attachments. Then, the deformable capsule is slowly withdrawn by displacement of the pipette. Analysis shows that the end-to-end extension of the capsule provides a direct measure of the force at the point contact and, therefore, the rupture strength when detachment occurs. The range for point forces accessible to this technique depends on the elastic moduli of the membrane, membrane tension, and the size of the capsule. For biological and synthetic vesicle membranes, the range of force lies between 10(-7)-10(-5) dyn (10(-12)-10(-10) N) which is 100-fold less than presently measurable by Atomic Force Microscopy! Here, the approach was used to study the forces required to rupture microscopic attachments between red blood cells formed by a monoclonal antibody to red cell membrane glycophorin, anti-A serum, and a lectin from the snail-helix pomatia. Failure of the attachments appeared to be a stochastic function of the magnitude and duration of the detachment force. We have correlated the statistical behavior observed for rupture with a random process model for failure of small numbers of molecular attachments. The surprising outcome of the measurements and analysis was that the forces deduced for short-time failure of 1-2 molecular attachments were nearly the same for all of the agglutinin, i.e., 1-2 x 10(-6) dyn. Hence, microfluorometric tests were carried out to determine if labeled agglutinins and/or labeled surface molecules were transferred between surfaces after separation of large areas of adhesive contact. The results showed that the attachments failed because receptors were extracted from the membrane. Images FIGURE 1 FIGURE 4 PMID:2065188
Goto, Takaharu; Nagao, Kan; Ishida, Yuichi; Tomotake, Yoritoki; Ichikawa, Tetsuo
2015-02-01
This in vitro study investigated the effect of attachment installation conditions on the load transfer and denture movements of implant overdentures, and aims to clarify the differences among the three types of attachments, namely ball, Locator, and magnet attachments. Three types of attachments, namely ball, Locator, and magnetic attachments were used. An acrylic resin mandibular edentulous model with two implants placed in the bilateral canine regions and removable overdenture were prepared. The two implants and bilateral molar ridges were connected to three-axis load-cell transducers, and a universal testing machine was used to apply a 50 N vertical force to each site of the occlusal table in the first molar region. The denture movement was measured using a G(2) motion sensor. Three installation conditions, namely, the application of 0, 50, and 100 N loads were used to install each attachment on the denture base. The load transfer and denture movement were then evaluated. The resultant force decreased with increasing installation load for all attachments. In particular, the resultant force on implants on the loading side of the Locator attachment significantly decreased when the installation load was increased from 0 to 50 N, and that for magnetic attachment significantly decreased when the installation load was increased from 50 to 100 N. For the residual ridges on the loading side, the direction of the forces for all attachments changed to downward with increasing installation load. Furthermore, the yaw Euler angle increased with increasing installation load for the magnetic attachment. Subject to the limitations of this study, the use of any installation load greater than 0 N is recommended for the installation of ball and Locator attachments on a denture base. Regarding magnetic attachments, our results also recommend installation on a denture base using any installation load greater than 0 N, and suggest that the resultant force acting on the implant can be decreased by increasing the installation load; however, a large installation load of 100 N should be avoided when installing the attachment on the denture base to avoid increasing the denture movement. © 2014 by the American College of Prosthodontists.
A transmission and scanning electron microscopic study of the saccule in five species of catfishes.
Jenkins, D B
1979-01-01
The sacculi of five species of catfishes were studied by transmission and scanning electron microscopy. In four species, the sagitta exhibited a multifluted anterior part and a tapered posterior part; in Corydoras aeneus, however, the fluted part was absent, and a vertical component extended dorsally to terminate near the opening of the transverse canal. In all species, the otoliths had a laminar structure. An otolithic membrane was present, and hair cell bundles projected into cavities on the macular surface of the membrane. Attachments of the otolithic membrane to the neuroepithelium included short extensions of the membrane to the tallest components of the hair cell bundles of the peripheral cells and more delicate connections to the kinocilium and taller stereocilia of central cells; in addition, attachments to the microvilli of supporting cells were present. In both hair cells and supporting cells single microtubules and bundles of microtubules were present; the bundles had an orderly arrangement and were associated with cytoplasmic densities surrounding the desmosomes. The hair cells were innervated by both afferent and efferent nerve endings. Studies of the polarization of the hair cells in all species (except C. aeneus) showed that there was a single longitudinal axis that divided dorsally polarized cells from those oriented ventrally. In Doras spinosissimus and Bunocephalus bicolor, an additional line of polarization was evident in a small area in the anterior part of the macula; therefore, in these forms there was a double bipolar orientation.
NASA Astrophysics Data System (ADS)
Utada, Andrew S.; Bennett, Rachel R.; Fong, Jiunn C. N.; Gibiansky, Maxsim L.; Yildiz, Fitnat H.; Golestanian, Ramin; Wong, Gerard C. L.
2014-09-01
We show that Vibrio cholerae, the causative agent of cholera, use their flagella and mannose-sensitive hemagglutinin (MSHA) type IV pili synergistically to switch between two complementary motility states that together facilitate surface selection and attachment. Flagellar rotation counter-rotates the cell body, causing MSHA pili to have periodic mechanical contact with the surface for surface-skimming cells. Using tracking algorithms at 5 ms resolution we observe two motility behaviours: ‘roaming', characterized by meandering trajectories, and ‘orbiting’, characterized by repetitive high-curvature orbits. We develop a hydrodynamic model showing that these phenotypes result from a nonlinear relationship between trajectory shape and frictional forces between pili and the surface: strong pili-surface interactions generate orbiting motion, increasing the local bacterial loiter time. Time-lapse imaging reveals how only orbiting mode cells can attach irreversibly and form microcolonies. These observations suggest that MSHA pili are crucial for surface selection, irreversible attachment, and ultimately microcolony formation.
van Beekhuizen, H J; Joosten, I; de Groot, A N J A; Lotgering, F K; van der Laak, J; Bulten, J
2009-09-01
Retained placenta (RP) is a major cause of obstetric haemorrhage. The aim of the study was to obtain a better understanding of the mechanisms that cause some placentas to become retained, while most are not. 23 RPs clinically diagnosed as placenta adhesiva and 10 control placentas (CPs) were examined for differences in trophoblast fusion into multinucleated trophoblastic giant cells (MTGCs), defects in the basal decidua, and decidual attachment of myometrial fibres. The number of MTGCs in the basal decidua was significantly smaller in RPs (0.23 MTGC/standard length) than in CPs (1.11 MTGC/standard length) (p<0.001). Defects in the decidua were observed in 4% of the RPs and in 0% of the CPs. Myometrial fibres were attached to the decidua in 78% of the RPs and in 0% of the CPs (p<0.001). In placenta adhesiva compared with CPs, significantly less MTGCs were present in the basal decidua, the basal decidua was intact, and myometrial fibres were more frequently attached to the basal decidua. It is speculated that these findings may indicate that defective fusion of trophoblastic cells into MTGCs plays a causative role in placenta adhesiva.
Structural and mechanistic studies of measles virus illuminate paramyxovirus entry.
Plemper, Richard K; Brindley, Melinda A; Iorio, Ronald M
2011-06-01
Measles virus (MeV), a member of the paramyxovirus family of enveloped RNA viruses and one of the most infectious viral pathogens identified, accounts for major pediatric morbidity and mortality worldwide although coordinated efforts to achieve global measles control are in place. Target cell entry is mediated by two viral envelope glycoproteins, the attachment (H) and fusion (F) proteins, which form a complex that achieves merger of the envelope with target cell membranes. Despite continually expanding knowledge of the entry strategies employed by enveloped viruses, our molecular insight into the organization of functional paramyxovirus fusion complexes and the mechanisms by which the receptor binding by the attachment protein triggers the required conformational rearrangements of the fusion protein remain incomplete. Recently reported crystal structures of the MeV attachment protein in complex with its cellular receptors CD46 or SLAM and newly developed functional assays have now illuminated some of the fundamental principles that govern cell entry by this archetype member of the paramyxovirus family. Here, we review these advances in our molecular understanding of MeV entry in the context of diverse entry strategies employed by other members of the paramyxovirus family.
Cagno, Valeria; Donalisio, Manuela; Bugatti, Antonella; Civra, Andrea; Cavalli, Roberta; Ranucci, Elisabetta; Ferruti, Paolo; Rusnati, Marco; Lembo, David
2015-09-01
The agmatine-containing poly(amidoamine) polymer AGMA1 was recently shown to inhibit the infectivity of several viruses, including human papillomavirus 16 (HPV-16), that exploit cell surface heparan sulfate proteoglycans (HSPGs) as attachment receptors. The aim of this work was to assess the antiviral activity of AGMA1 and its spectrum of activity against a panel of low-risk and high-risk HPVs and to elucidate its mechanism of action. AGMA1 was found to be a potent inhibitor of mucosal HPV types (i.e., types 16, 31, 45, and 6) in pseudovirus-based neutralization assays. The 50% inhibitory concentration was between 0.34 μg/ml and 0.73 μg/ml, and no evidence of cytotoxicity was observed. AGMA1 interacted with immobilized heparin and with cellular heparan sulfates, exerting its antiviral action by preventing virus attachment to the cell surface. The findings from this study indicate that AGMA1 is a leading candidate compound for further development as an active ingredient of a topical microbicide against HPV and other sexually transmitted viral infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Developing a Continuous Bioprocessing Approach to Stromal Cell Manufacture.
Miotto, Martina; Gouveia, Ricardo; Abidin, Fadhilah Zainal; Figueiredo, Francisco; Connon, Che J
2017-11-29
To this day, the concept of continuous bioprocessing has been applied mostly to the manufacture of molecular biologics such as proteins, growth factors, and secondary metabolites with biopharmaceutical uses. The present work now sets to explore the potential application of continuous bioprocess methods to source large numbers of human adherent cells with potential therapeutic value. To this purpose, we developed a smart multifunctional surface coating capable of controlling the attachment, proliferation, and subsequent self-detachment of human corneal stromal cells. This system allowed the maintenance of cell cultures under steady-state growth conditions, where self-detaching cells were continuously replenished by the proliferation of those remaining attached. This facilitated a closed, continuous bioprocessing platform with recovery of approximately 1% of the total adherent cells per hour, a yield rate that was maintained for 1 month. Moreover, both attached and self-detached cells were shown to retain their original phenotype. Together, these results represent the proof-of-concept for a new high-throughput, high-standard, and low-cost biomanufacturing strategy with multiple potentials and important downstream applications.
Carbon nanotube-coating accelerated cell adhesion and proliferation on poly (L-lactide)
NASA Astrophysics Data System (ADS)
Hirata, Eri; Akasaka, Tsukasa; Uo, Motohiro; Takita, Hiroko; Watari, Fumio; Yokoyama, Atsuro
2012-12-01
The surface of a polylactic acid (PLLA) was coated multiwalled carbon nanotubes (MWCNTs) in order to improve the surface properties. In addition, its surface characteristics and cell culturing properties were examined. Whole surface of PLLA was homogeneously covered by MWCNTs maintained a unique tubular structure. MWCNT-coated PLLA showed remarkable higher wettability than uncoated PLLA. Human osteosarcoma cell line (Saos2) adhered well on the CNT-coated PLLA whereas there are few cells attached on the uncoated PLLA at 2 h after seeding. The number of the cells on uncoated PLLA was still smaller than on the MWCNT-coated PLLA at 1 and 3 days. Moreover, The DNA content in the cells attached to the MWCNT-coated PLLA was significantly higher than that on the uncoated PLLA (p < 0.05) at 1 and 3 days. There was no significant difference between the scaffolds for ALP activity normalized by DNA content at both term (p > 0.1). Therefore MWCNT-coating on PLLA improved the surface wettability and initial cell attachment at early stage.
NASA Astrophysics Data System (ADS)
Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Monteiro, Moniellen P.; César, Carlos L.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.
2016-04-01
Biofilms can be defined as a community of microorganisms attached to a surface, living embedded in a self- produced matrix of hydrated extracellular polymeric substances (EPS) which comprises most of the biofilm mass. We have recently used an extensive pool of microscopy techniques (confocal fluorescence, electron and scanning probe microscopies) at the micro and nanoscales in order to create a detailed temporal observation of Xylella fastidiosa biofilm formation, using both wild type strain and Green Fluorescent Protein (GFP)-modified cells of this citrus phytopathogen. We have identified three different EPS compositions, as well as their spatial and temporal distribution from single cell to mature biofilm formation stages. In the initial adhesion stage, soluble-EPS (S-EPS) accumulates at cell polar regions and forms a surface layer which facilitates irreversible cell attachment and cell cluster formation. These small clusters are subsequently connected by filamentous cells; further S-EPS surface coverage facilitates cell attachment and form filaments, leading to a floating framework of mature biofilms. The important role of EPS in X.fastidiosa biology was further investigated by imunolabelling experiments to detect the distribution of XadA1 adhesin, which is expressed in early stages of biofilm formation and released in outer membrane vesicles. This protein is located mainly in S-EPS covered areas, as well as on the filaments, indicating a molecular pathway to the enhanced cell attachment previously observed. These results suggest that S-EPS may thus represent an important target for disease control, slow plant colonization by the bacteria, keeping the plant more productive in the field.
Van den Bergh, F.; Eliason, S.L.; Giudice, G.J.
2010-01-01
Collagen XVII (COL17) is a transmembrane glycoprotein that is expressed on the basal surface of basal epidermal keratinocytes. Previous observations have led to the hypothesis that an interaction between COL17 and laminin 332, an extracellular matrix protein, contributes to the attachment of the basal keratinocyte to the basement membrane. In order to isolate and manipulate COL17 interactions with ECM components, we induced COL17 expression in two cells lines, SK-MEL1 and K562, that exhibit little or no capacity to attach to our test substrates, including laminin 332, types I and IV collagen, and fibronectin. Cells expressing high levels of COL17 preferentially adhered to a laminin 332 matrix, and, to a lesser extent, type IV collagen, while showing little or no binding to type I collagen or fibronectin. A quantitative analysis of cell adhesive forces revealed that, compared with COL17-negative cells, COL17-positive cells required over 7-fold greater force to achieve 50% detachment from a laminin 332 substrate. When a cell preparation (either K562 or SK-MEL1) with heterogeneous COL17 expression levels was allowed to attach to a laminin 332 matrix, the COL17-positive and COL17-negative cells differentially sorted to the bound and unbound cell fractions, respectively. COL17-dependent attachment to laminin 332 could be reduced or abolished by siRNA-mediated knockdown of COL17 expression or by adding to the assay wells specific antibodies against COL17 or laminin 332. These findings provide strong support for the hypothesis that cell surface COL17 can interact with laminin 332 and, together, participate in the adherence of a cell to the extracellular matrix. PMID:21034821
21 CFR 884.1185 - Endometrial washer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... with negative pressure. This device is used to study endometrial cytology (cells). (b) Classification... a recent cesarean section, and (iii) Warning: Do not attach to a wall or any external suction, and...
2012-01-01
Background Electrospun nanofibers have been widely used as substrata for mammalian cell culture owing to their structural similarity to natural extracellular matrices. Structurally consistent electrospun nanofibers can be produced with synthetic polymers but require chemical modification to graft cell-adhesive molecules to make the nanofibers functional. Development of a facile method of grafting functional molecules on the nanofibers will contribute to the production of diverse cell type-specific nanofiber substrata. Results Small molecules, peptides, and functionalized gold nanoparticles were successfully incorporated with polymethylglutarimide (PMGI) nanofibers through electrospinning. The PMGI nanofibers functionalized by the grafted AuNPs, which were labeled with cell-adhesive peptides, enhanced HeLa cell attachment and potentiated cardiomyocyte differentiation of human pluripotent stem cells. Conclusions PMGI nanofibers can be functionalized simply by co-electrospinning with the grafting materials. In addition, grafting functionalized AuNPs enable high-density localization of the cell-adhesive peptides on the nanofiber. The results of the present study suggest that more cell type-specific synthetic substrata can be fabricated with molecule-doped nanofibers, in which diverse functional molecules are grafted alone or in combination with other molecules at different concentrations. PMID:22686683
Platelets are a possible regulator of human endometrial re-epithelialization during menstruation.
Suginami, Koh; Sato, Yukiyasu; Horie, Akihito; Matsumoto, Hisanori; Kyo, Satoru; Araki, Yoshihiko; Konishi, Ikuo; Fujiwara, Hiroshi
2017-01-01
The human endometrium periodically breaks down and regenerates. As platelets have been reported to contribute to the tissue remodeling process, we examined the possible involvement of platelets in endometrial regeneration. The distribution of extravasating platelets throughout the menstrual cycle was immunohistochemically examined using human endometrial tissues. EM-E6/E7/hTERT cells, a human endometrial epithelial cell-derived immortalized cell line, were co-cultured with platelets, and the effects of platelets on the epithelialization response of EM-E6/E7/hTERT cells were investigated by attachment and permeability assays, immunohistochemical staining, and Western blot analysis. Immunohistochemical study showed numerous extravasated platelets in the subluminar stroma during the menstrual phase. The platelets promoted the cell-to-matrigel attachment of EM-E6/E7/hTERT cells concomitantly with the phosphorylation of focal adhesion kinase. They also promoted cell-to-cell contact among EM-E6/E7/hTERT cells in parallel with E-cadherin expression. These results indicate the possible involvement of platelets in the endometrial epithelial re-epithelialization process. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Staat, R H; Peyton, J C
1984-01-01
It is proposed that binding of oral streptococci to saliva-coated hydroxylapatite (SHA) surfaces is a multifactorial process involving both specific and nonspecific receptors. In this context, specific binding is described as a high-affinity, saturable interaction between the cell and binding surface. Conversely, nonspecific binding is considered to be a nonsaturable, generalized, low-affinity reaction. Experimental differentiation of specific binding from nonspecific binding was achieved with a competition assay which utilized a large excess of nonradiolabeled bacteria to compete with the 3H-labeled cells for attachment to receptors on 1.5 mg of SHA crystals. Competition assays of Streptococcus sanguis and Streptococcus mitis adhesion clearly demonstrated that the total binding isotherm was composed of a saturable specific binding reaction and a minor nonspecific binding component. This was further substantiated by analysis of nonlinear Scatchard plots of the total binding data. The competition data for Streptococcus mutans binding indicated that ca. 50% of the S. mutans binding appeared to be specific, although saturation of the SHA surfaces with bacterial cells could not be demonstrated. Experiments measuring desorption of radiolabeled cells from SHA crystals into buffer showed that ca. 50% of the bound S. mutans cells were removed after 4 h, whereas less than 5% of the S. sanguis cells were eluted from the SHA surfaces. The kinetics of attachment were studied by using an extract of Persea americana as a noncompetitive inhibitor of adherence. The total cell binding data for these experiments suggested a very rapid binding reaction followed by a slower rate of attachment. It was concluded from these three different experimental approaches that adherence of selected oral streptococci to SHA surfaces involves specific, high-affinity and nonspecific, low-affinity binding reactions. The concept is developed that in vitro streptococcal attachment to SHA can be described as a two-reaction process in which the low-affinity interaction of the cell with the SHA surface precedes the establishment of the stronger, specific bonds needed for the maintenance of streptococci in the oral cavity. PMID:6327530
2001-10-16
in the midgut epithelial cells. Step 3 is release 17 of virus from the midgut epithelial cell into the hemolymph. Step 4 is infection of the...proteins, maturation, and budding. During attachment, the viral attachment proteins on the surface of the virion bind to receptors on the microvillar...membrane of the mosquito s midgut . Penetration refers to the process through which the virions enter the midgut cells; arboviruses enter cell
NASA Astrophysics Data System (ADS)
Trivedi, Pramanshu
Magnesium alloys are considered to be the next generation of biomaterials because of their ability to degrade in the physiological environment. We elucidate here the impact of multiaxial forging of Mg-2Zn-2Gd alloy on grain refinement to sub-micron regime and relate the structure to mechanical properties and biological functionality. As-cast and annealed samples were multiaxial forged (MAF) for a total number of two passes with a true strain of 2/pass. Considering that the microstructure governs the biological response of materials, we studied the constituents of the microstructure in conjunction with the mechanical behavior. The antimicrobial behavior in a Mg-2Zn-2Gd alloy with different grain size in the range of 44 microm to 710 nm was studied by seeding. Surface energy and contact angle measurements using goniometer and wettability were assessed with water, SBF, n-Hexane, and DMEM. The structure-property relationship in Mg-2Zn-2Gd alloy to maintaining mechanical integrity during degradation was studied by seeding Escherichia coli ( E. coli). Furthermore, we studied the effect of degradation behavior in the presence and absence of cells. This was followed by the study of bioactivity in terms of phases present on the surface and degradation products in simulated body fluid (SBF). Magnesium coated with apatite using a biomimetic approach were placed in a 24-well culture plate with alpha-MEM media and the degradation behavior was studied in the absence and presence of cells (seeding density: 10,000 cells/cm2). The change in pH was monitored at regular intervals. Cell attachment was studied by seeding the cells for 4h and cell viability was studied by seeding the cells for up to 1, 3, and 7 days. The study underscores that the fine-grained alloys exhibited superior mechanical properties, antimicrobial resistance, and cell attachment. The degradation rate was also least for fine-grained alloy. The higher surface energy of ultrafine-grained Mg-2Zn-2Gd alloy led to the release of more Mg+2 ions at an early stage, which consequently increased the pH of the fluid in the vicinity of the implant, therefore producing an unfavorable environment for the survival of bacteria. This led to damage of bacterial cell walls and reducing their adhesion. Furthermore, a significant degree of apatite formation was an indication of high bioactivity and cell attachment along with controlled degradation in the ultrafine-grained alloy. Thus, the reduction in grain size significantly improved load bearing capacity and biological functionality of Mg-2Zn-2Gd alloy.
Lonberg-Holm, K; Whiteley, N M
1976-01-01
Attachment, ""tight binding'' and eclipse of radioactive poliovirus 2 (P2) and human rhinovirus 2 (HRV 2) were investigated. The activation energy for attachment of both HRV2 and P2 was about 13 kcal/mol. HRV2 differed from P2 in two respects: the Arrhenius plot for attachment of HRV2 showed a break at 15 to 19 degrees C when the cells were first treated several hours at 0 degrees C, and attachment of HRV2 was inhibited by treatment of cells with metabolic poisons able to reduce cellular ATP by more than 90%. Tight binding was determined by isolation of a specific P2-membrane complex or by loss of EDTA dissociability of HRV2. Tight binding of both viruses was slowed by 0.01 M iodoacetamide but not by 0.02 M F-; F- plus 0.002 M CN- slowed tight binding of HRV2 but not of P2. Eclipse, the irreversible alteration of parental virions, was detected by isolation of cell-associated subviral particles or by loss of cell-associated infectious virus. Eclipse of both viruses is slowed by iodoacetamide or F-. It seems likely that the early steps of infection with picornaviruses may be sensitive to alterations in the cell membrane produced by metabolic inhibitors or by treatment at low temperature. PMID:184301
Ditto, Andrew J.; Shah, Kush N.; Robishaw, Nikki K.; Panzner, Matthew J.; Youngs, Wiley J.; Yun, Yang H.
2012-01-01
Many anticancer drugs have been established clinically, but their efficacy can be compromised by nonspecific toxicity and an inability to reach the desired cancerous intracellular spaces. In order to address these issues, researchers have explored the use of folic acid as a targeted moiety to increase specificity of chemotherapeutic drugs. To expand upon such research, we have conjugated folic acid to functionalized poly(ethylene glycol) and subsequently decorated the surface of L-tyrosine polyphosphate (LTP) nanoparticles. These nanoparticles possess the appropriate size (100–500 nm) for internalization as shown by scanning electron microscopy and dynamic light scattering. Under simulated physiological flow, LTP nanoparticles decorated with folic acid (targeted nanoparticles) show a 10-fold greater attachment to HeLa, a cervical cancer cell line, compared to control nanoparticles and to human dermal fibroblasts. The attachment of these targeted nanoparticles progresses at a linear rate, and the strength of this nanoparticle attachment is shown to withstand shear stresses of 3.0 dynes/cm2. These interactions of the targeted nanoparticles to HeLa are likely a result of a receptor-ligand binding, as a competition study with free folic acid inhibits the nanoparticle attachment. Finally, the targeted nanoparticles encapsulated with a silver based drug show increased efficacy in comparison to non-decorated (plain) nanoparticles and drug alone against HeLa cells. Thus, targeted nanoparticles are a promising delivery platform for developing anticancer therapies that over-express the folate receptors (FRs). PMID:22957928
Adhikary, Gautam; Grun, Dan; Kerr, Candace; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan; Boucher, Shayne; Bickenbach, Jackie R.; Hornyak, Thomas; Xu, Wen; Fisher, Matthew L.; Eckert, Richard L.
2013-01-01
Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation. PMID:24376802
González-Sarrías, Antonio; Yuan, Tao; Seeram, Navindra P
2012-05-01
Maplexins A-I are a series of structurally related gallotannins recently isolated from the red maple (Acer rubrum) species. They differ in number and location of galloyl derivatives attached to 1,5-anhydro-glucitol. Here, maplexins A-I were evaluated for anticancer effects against human tumorigenic (colon, HCT-116; breast, MCF-7) and non-tumorigenic (colon, CCD-18Co) cell lines. The maplexins which contained two (maplexins C-D) or three (maplexins E-I) galloyl derivatives each, inhibited cancer cell growth while those with only one galloyl group (maplexins A-B) did not. Moreover, maplexins C-D showed greater antiproliferative effects than maplexins E-I (IC(50)=59.8-67.9 and 95.5-108.5 μM vs. 73.7-165.2 and 115.5-182.5 μM against HCT-116 and MCF-7 cells, respectively). Notably, the cancer cells were up to 2.5-fold more sensitive to the maplexins than the normal cells. In further mechanistic studies, maplexins C-D (at 75 μM concentrations) induced apoptosis and arrested cell cycle (in the S-phase) of the cancer cells. These results suggest that the number of galloyl groups attached to the 1,5-anhydro-glucitol moiety in these gallotannins are important for antiproliferative activity. Also, this is the first in vitro anticancer study of maplexins. Copyright © 2012 Elsevier Ltd. All rights reserved.
Osaka, Ichie; Hefty, P Scott
2014-06-01
Vaginally delivered microbicides are being developed to offer women self-initiated protection against transmission of sexually transmitted infections such as Chlamydia trachomatis. A small molecule, DS-96, rationally designed for high affinity to Escherichia coli lipid A, was previously demonstrated to bind and neutralize lipopolysaccharide (LPS) from a wide variety of Gram-negative bacteria (D. Sil et al., Antimicrob. Agents Chemother. 51: 2811-2819, 2007, doi:10.1128/AAC.00200-07). Aside from the lack of the repeating O antigen, chlamydial lipooligosaccharide (LOS) shares general molecular architecture features with E. coli LPS. Importantly, the portion of lipid A where the interaction with DS-96 is expected to take place is well conserved between the two organisms, leading to the hypothesis that DS-96 inhibits Chlamydia infection by binding to LOS and compromising the function. In this study, antichlamydial activity of DS-96 was examined in cell culture. DS-96 inhibited the intercellular growth of Chlamydia in a dose-dependent manner and offered a high level of inhibition at a relatively low concentration (8 μM). The data also revealed that infectious elementary bodies (EBs) were predominantly blocked at the attachment step, as indicated by the reduced number of EBs associated with the host cell surface following pretreatment. Of those EBs that were capable of attachment, the vast majority was unable to gain entry into the host cell. Inhibition of EB attachment and entry by DS-96 suggests that Chlamydia LOS is critical to these processes during the developmental cycle. Importantly, given the low association of host toxicity previously reported by Sil et al., DS-96 is expected to perform well in animal studies as an active antichlamydial compound in a vaginal microbicide. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Nardi, James B; Pilas, Barbara; Bee, Charles Mark; Zhuang, Shufei; Garsha, Karl; Kanost, Michael R
2006-01-01
Observations of hemocyte aggregation on abiotic surfaces suggested that certain plasmatocytes from larvae of Manduca sexta act as foci for hemocyte aggregation. To establish how these particular plasmatocytes form initial attachments to foreign surfaces, they were cultured separately from other selected populations of hemocytes. While all circulating plasmatocytes immunolabel with anti-beta-integrin monoclonal antibody (MAb), only these larger plasmatocytes immunolabel with a MAb to the adhesion protein neuroglian. Neuroglian-negative plasmatocytes and granular cells that have been magnetically segregated from the majority of granular cells adhere to each other but fail to adhere to foreign substrata; by contrast, neuroglian-positive plasmatocytes that segregate with most granular cells adhere firmly to a substratum. Hemocytes form stable aggregates around the large, neuroglian-positive plasmatocytes. However, if neuroglian-positive plasmatocytes are separated from most granular cells, attachment of these plasmatocytes to foreign surfaces is suppressed.
Dynamic metabolic exchange governs a marine algal-bacterial interaction.
Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto
2016-11-18
Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens , a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.
Enterovirus 71 Uses Cell Surface Heparan Sulfate Glycosaminoglycan as an Attachment Receptor
Tan, Chee Wah; Poh, Chit Laa; Sam, I-Ching
2013-01-01
Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor. PMID:23097443
Rollefson, Janet B.; Stephen, Camille S.; Tien, Ming; Bond, Daniel R.
2011-01-01
Transposon insertions in Geobacter sulfurreducens GSU1501, part of an ATP-dependent exporter within an operon of polysaccharide biosynthesis genes, were previously shown to eliminate insoluble Fe(III) reduction and use of an electrode as an electron acceptor. Replacement of GSU1501 with a kanamycin resistance cassette produced a similarly defective mutant, which could be partially complemented by expression of GSU1500 to GSU1505 in trans. The Δ1501 mutant demonstrated limited cell-cell agglutination, enhanced attachment to negatively charged surfaces, and poor attachment to positively charged poly-d-lysine- or Fe(III)-coated surfaces. Wild-type and mutant cells attached to graphite electrodes, but when electrodes were poised at an oxidizing potential inducing a positive surface charge (+0.24 V versus the standard hydrogen electrode [SHE]), Δ1501 mutant cells detached. Scanning electron microscopy revealed fibrils surrounding wild-type G. sulfurreducens which were absent from the Δ1501 mutant. Similar amounts of type IV pili and pilus-associated cytochromes were detected on both cell types, but shearing released a stable matrix of c-type cytochromes and other proteins bound to polysaccharides. The matrix from the mutant contained 60% less sugar and was nearly devoid of c-type cytochromes such as OmcZ. The addition of wild-type extracellular matrix to Δ1501 cultures restored agglutination and Fe(III) reduction. The polysaccharide binding dye Congo red preferentially bound wild-type cells and extracellular matrix material over mutant cells, and Congo red inhibited agglutination and Fe(III) reduction by wild-type cells. These results demonstrate a crucial role for the xap (extracellular anchoring polysaccharide) locus in metal oxide attachment, cell-cell agglutination, and localization of essential cytochromes beyond the Geobacter outer membrane. PMID:21169487
Villa, Max M; Wang, Liping; Rowe, David W; Wei, Mei
2014-01-01
Cell-based tissue engineering can be used to replace missing or damaged bone, but the optimal methods for delivering therapeutic cells to a bony defect have not yet been established. Using transgenic reporter cells as a donor source, two different collagen-hydroxyapatite (HA) scaffolds, and a critical-size calvarial defect model, we investigated the effect of a cell-attachment period prior to implantation, with or without an extracellular matrix-based seeding suspension, on cell engraftment and osteogenesis. When quantitatively compared, the in-house scaffold implanted immediately had a higher mean radiopacity than in-house scaffolds incubated overnight. Both scaffold types implanted immediately had significantly higher area fractions of donor cells, while the in-house collagen-HA scaffolds implanted immediately had higher area fractions of the mineralization label compared with groups incubated overnight. When the cell loading was compared in vitro for each delivery method using the in-house scaffold, immediate loading led to higher numbers of delivered cells. Immediate loading may be preferable in order to ensure robust bone formation in vivo. The use of a secondary ECM carrier improved the distribution of donor cells only when a pre-attachment period was applied. These results have improved our understanding of cell delivery to bony defects in the context of in vivo outcomes.
Forecastable and Guidable Bubble-Propelled Microplate Motors for Cell Transport.
Hu, Narisu; Zhang, Bin; Gai, Meiyu; Zheng, Ce; Frueh, Johannes; He, Qiang
2017-06-01
Cell transport is important to renew body functions and organs with stem cells, or to attack cancer cells with immune cells. The main hindrances of this method are the lack of understanding of cell motion as well as proper transport systems. In this publication, bubble-propelled polyelectrolyte microplates are used for controlled transport and guidance of HeLa cells. Cells survive attachment on the microplates and up to 22 min in 5% hydrogen peroxide solution. They can be guided by a magnetic field whereby increased friction of cells attached to microplates decreases the speed by 90% compared to pristine microplates. The motion direction of the cell-motor system is easier to predict due to the cell being opposite to the bubbles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cellular response of preosteoblasts to nanograined/ultrafine-grained structures.
Misra, R D K; Thein-Han, W W; Pesacreta, T C; Hasenstein, K H; Somani, M C; Karjalainen, L P
2009-06-01
Metallic materials with submicron- to nanometer-sized grains provide surfaces that are different from conventional polycrystalline materials because of the large proportion of grain boundaries with high free energy. In the study described here, the combination of cellular and molecular biology, materials science and engineering advances our understanding of cell-substrate interactions, especially the cellular activity between preosteoblasts and nanostructured metallic surfaces. Experiments on the effect of nano-/ultrafine grains have shown that cell attachment, proliferation, viability, morphology and spread are favorably modulated and significantly different from conventional coarse-grained structures. Additionally, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on nanograined/ultrafine-grained substrate. These observations suggest enhanced cell-substrate interaction and activity. The differences in the cellular response on nanograined/ultrafine-grained and coarse-grained substrates are attributed to grain size and degree of hydrophilicity. The outcomes of the study are expected to reduce challenges to engineer bulk nanostructured materials with specific physical and surface properties for medical devices with improved cellular attachment and response. The data lay the foundation for a new branch of nanostructured materials for biomedical applications.
Okeyo, Kennedy Omondi; Kurosawa, Osamu; Yamazaki, Satoshi; Oana, Hidehiro; Kotera, Hidetoshi; Nakauchi, Hiromitsu; Washizu, Masao
2015-10-01
Mechanical methods for inducing differentiation and directing lineage specification will be instrumental in the application of pluripotent stem cells. Here, we demonstrate that minimization of cell-substrate adhesion can initiate and direct the differentiation of human pluripotent stem cells (hiPSCs) into cyst-forming trophoblast lineage cells (TLCs) without stimulation with cytokines or small molecules. To precisely control cell-substrate adhesion area, we developed a novel culture method where cells are cultured on microstructured mesh sheets suspended in a culture medium such that cells on mesh are completely out of contact with the culture dish. We used microfabricated mesh sheets that consisted of open meshes (100∼200 μm in pitch) with narrow mesh strands (3-5 μm in width) to provide support for initial cell attachment and growth. We demonstrate that minimization of cell adhesion area achieved by this culture method can trigger a sequence of morphogenetic transformations that begin with individual hiPSCs attached on the mesh strands proliferating to form cell sheets by self-assembly organization and ultimately differentiating after 10-15 days of mesh culture to generate spherical cysts that secreted human chorionic gonadotropin (hCG) hormone and expressed caudal-related homeobox 2 factor (CDX2), a specific marker of trophoblast lineage. Thus, this study demonstrates a simple and direct mechanical approach to induce trophoblast differentiation and generate cysts for application in the study of early human embryogenesis and drug development and screening.
Altuntaş, Emine Elif; Sümer, Zeynep
2013-01-01
The purposes of this study were to investigate the biocompatibility of two different paper patches (carbon and cigarette papers) and compare the adhesion and proliferation features of L929 fibroblast cells by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT Test) test and scanning electron microscopy (SEM). In this study, time-dependent cytotoxic effects of cigarette and carbon papers used in repairing small traumatic TM perforations were investigated in vitro by using MTT test. And also adhesion and spreading of cells over disk surface were observed by SEM. Cytotoxicity test carried out by MTT analysis on leakage products collected from two types of paper patches at the end of 24 and 48 h revealed no cytotoxicity (P > 0.05). In SEM studies, it was observed that cells started to proliferate over disk surface as a result of 48-h incubation, and SEM revealed that the cell proliferation over cigarette paper was more compared to the one over carbon paper. We believe that this is the first study where biocompatibility and adhesion features of carbon and cigarette paper have been studied by using L929 fibroblast cell culture. As a result, biocompatibility of cigarette paper and also whether cigarette paper was superior to carbon paper in cell attachment and biocompatibility were studied. It was found, by MTT test and SEM test, that cigarette paper had a higher biocompatibility and cell attachment, and thus cigarette paper should be the patch to be preferred in cases where TM perforations are repaired by paper-patch method.
Nateghian, Navid; Goodarzi, Navid; Amini, Mohsen; Atyabi, Fatemeh; Khorramizadeh, Mohammad Reza; Dinarvand, Rassoul
2016-01-01
Docetaxel (DTX) is a widely used chemotherapeutic agent with very low water solubility. Conjugation of DTX to human serum albumin (HSA) is an effective way to increase its water solubility. Attachment of folic acid (FA) or biotin as targeting moieties to DTX-HSA conjugates may lead to active targeting and specific uptake by cancer cells with overexpressed FA or biotin receptors. In this study, FA or biotin molecules were attached to DTX-HSA conjugates by two different methods. In one method, FA or biotin molecules were attached to remaining NH2 residues of HSA in DTX-HSA conjugate by covalent bonds. In the second method, HSA-FA or HSA-biotin conjugates were synthesized separately and then combined by DTX-HSA conjugate in proper ratio to prepare nanoparticles containing DTX-HSA plus HSA-FA or HSA-biotin. Cell viability of different nanoparticle was evaluated on MDA-MB-231 (folate receptor positive), A549 (folate receptor negative), and 4T1 (biotin receptor positive) and showed superior cytotoxicity compared with free docetaxel (Taxotere). In vivo studies of DTX-HSA-FA and DTX-HSA-biotin conjugates in BULB/c mice, tumorized by 4T1 cell line, showed the conjugates prepared in this study were more powerful in the reduction in tumor size and increasing the survival rate when compared to free docetaxel. © 2015 John Wiley & Sons A/S.
Marnocha, C. L.; Levy, A. T.; Powell, D. H.; Hanson, T. E.
2016-01-01
The Chlorobiales are anoxygenic phototrophs that produce solid, extracellular elemental sulfur globules as an intermediate step in the oxidation of sulfide to sulfate. These organisms must export sulfur while preventing cell encrustation during S0 globule formation; during globule degradation they must find and mobilize the sulfur for intracellular oxidation to sulfate. To understand how the Chlorobiales address these challenges, we characterized the spatial relationships and physical dynamics of Chlorobaculum tepidum cells and S0 globules by light and electron microscopy. Cba. tepidum commonly formed globules at a distance from cells. Soluble polysulfides detected during globule production may allow for remote nucleation of globules. Polysulfides were also detected during globule degradation, probably produced as an intermediate of sulfur oxidation by attached cells. Polysulfides could feed unattached cells, which made up over 80% of the population and had comparable growth rates to attached cells. Given that S0 is formed remotely from cells, there is a question as to how cells are able to move toward S0 in order to attach. Time-lapse microscopy shows that Cba. tepidum is in fact capable of twitching motility, a finding supported by the presence of genes encoding type IV pili. Our results show how Cba. tepidum is able to avoid mineral encrustation and benefit from globule degradation even when not attached. In the environment, Cba. tepidum may also benefit from soluble sulfur species produced by other sulfur-oxidizing or sulfur-reducing bacteria as these organisms interact with its biogenic S0 globules. PMID:27121868
Induction of Electrode-Cellular Interfaces with ˜ 0.05 μm^2 Contact Areas
NASA Astrophysics Data System (ADS)
Flanders, Bret; Thapa, Prem
2009-10-01
Individual cells of the slime mold Dictyostelium discoideum attach themselves to negatively biased nanoelectrodes that are separated by 30 μm from grounded electrodes. There is a -43 mV voltage-threshold for cell-to-electrode attachment, with negligible probability across the 0 to -38 mV range but probability that approaches 0.7 across the -46 to -100 mV range. A cell initiates contact by extending a pseudopod to the electrode and maintains contact until the voltage is turned off. Scanning electron micrographs of these interfaces show the contact areas to be of the order of 0.05 μm^2. Insight into this straight-forward, reproducible process may lead to new electrode-cellular attachment strategies that complement established approaches, such as blind sampling and patch clamp.
Control of Attachment of Pseudomonas aeruginosa and Burkholderia cepacia to Surfaces by Shear Force.
Hui, Yew Woh; Narayanan, Kumaran; Dykes, Gary A
2016-11-01
The effect of physical shearing on the attachment of six Pseudomonas aeruginosa strains and six Burkholderia cepacia strains to glass, stainless steel, polystyrene and Teflon® was determined. A significant (p < 0.05) decrease in hydrophobicity was apparent for all P. aeruginosa strains (17-36%) and B. cepacia, MS 5 (20%) after shearing. A significant (p < 0.05) decrease in attachment of some P. aeruginosa (0.2-0.5 log CFU/cm2) and B. cepacia (0.2-0.4 log CFU/cm2) strains to some surface types was apparent after shearing. Significant (p < 0.05) correlation was observed for both numbers of flagellated cells and hydrophobicity against attachment to glass, stainless steel and polystyrene for P. aeruginosa while only hydrophobicity showed significant correlation against the same surfaces for B. cepacia. Scanning electron microscopy and protein analysis showed that shearing removed surface proteins from the cells and may have led to the observed changes in hydrophobicity and attachment to abiotic surfaces.
Seidelmann, Katrin; Melzer, Björn; Speck, Thomas
2012-11-01
Monkey's comb (Amphilophium crucigerum) is a widely spread neotropical leaf climber that develops attachment pads for anchorage. A single complex leaf of the species comprises a basal pair of foliate, assimilating leaflets and apical, attaching leaflet tendrils. This study aims to analyze these leaves and their ontogenetic development for a better understanding of the attachment process, the form-structure-function relationships involved, and the overall maturation of the leaves. Thorough morphometrical, morphological, and anatomical analyses incorporated high-resolution microscopy, various staining techniques, SEM, and photographic recordings over the entire ontogenetic course of leaf development. The foliate, assimilating leaflets and the anchorage of the more apical leaflet tendrils acted independently of each other. Attachment was achieved by coiling of the leaflet tendrils and/or development of attachment pads at the tendril apices that grow opportunistically into gaps and fissures of the substrate. In contact zones with the substrate, the cells of the pads differentiate into a vessel element-like tissue. During the entire attachment process of the plant, no glue was excreted. The complex leaves of monkey's comb are highly differentiated organs with specialized leaf parts whose functions-photosynthesis or attachment-work independently of each other. The function of attachment includes coiling and maturation process of the leaflet tendrils and the formation of attachment pads, resulting in a biomechanically sound and persistent anchorage of the plant without the need of glue excretion. This kind of glue-less attachment is not only of interest in the framework of analyzing the functional variety of attachment structures evolved in climbing plants, but also for the development of innovative biomimetic attachment structures for manifold technical applications.
Magnetically modified bioсells in constant magnetic field
NASA Astrophysics Data System (ADS)
Abramov, E. G.; Panina, L. K.; Kolikov, V. A.; Bogomolova, E. V.; Snetov, V. N.; Cherepkova, I. A.; Kiselev, A. A.
2017-02-01
Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell' size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae.
Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro
NASA Astrophysics Data System (ADS)
Miclăuş, Teodora; Beer, Christiane; Chevallier, Jacques; Scavenius, Carsten; Bochenkov, Vladimir E.; Enghild, Jan J.; Sutherland, Duncan S.
2016-06-01
Proteins adsorbing at nanoparticles have been proposed as critical toxicity mediators and are included in ongoing efforts to develop predictive tools for safety assessment. Strongly attached proteins can be isolated, identified and correlated to changes in nanoparticle state, cellular association or toxicity. Weakly attached, rapidly exchanging proteins are also present at nanoparticles, but are difficult to isolate and have hardly been examined. Here we study rapidly exchanging proteins and show for the first time that they have a strong modulatory effect on the biotransformation of silver nanoparticles. Released silver ions, known for their role in particle toxicity, are found to be trapped as silver sulphide nanocrystals within the protein corona at silver nanoparticles in serum-containing cell culture media. The strongly attached corona acts as a site for sulphidation, while the weakly attached proteins reduce nanocrystal formation in a serum-concentration-dependent manner. Sulphidation results in decreased toxicity of Ag NPs.
Feijão, Tália; Afonso, Olga; Maia, André F; Sunkel, Claudio E
2013-10-01
Kinetochores bind spindle microtubules and also act as signaling centers that monitor this interaction. Defects in kinetochore assembly lead to chromosome missegregation and aneuploidy. The interaction between microtubules and chromosomes involves a conserved super-complex of proteins, known as the KNL1Mis12Ndc80 (KMN) network, composed by the KNL1 (Spc105), Mis12, and Ndc80 complexes. Previous studies indicate that all components of the network are required for kinetochore-microtubule attachment and all play relevant functions in chromosome congression, biorientation, and segregation. Here, we report a comparative study addressing the role of the different KMN components using dsRNA and in vivo fluorescence microscopy in Drosophila S2 cells allowing us to suggest that different KMN network components might perform different roles in chromosome segregation and the mitotic checkpoint signaling. Depletion of different components results in mostly lateral kinetochore-microtubule attachments that are relatively stable on depletion of Mis12 or Ndc80 but very unstable after Spc105 depletion. In vivo analysis on depletion of Mis12, Ndc80, and to some extent Spc105, shows that lateral kinetochore-microtubule interactions are still functional allowing poleward kinetochore movement. We also find that different KMN network components affect differently the localization of spindle assembly checkpoint (SAC) proteins at kinetochores. Depletion of Ndc80 and Spc105 abolishes the mitotic checkpoint, whereas depletion of Mis12 causes a delay in mitotic progression. Taken together, our results suggest that Mis12 and Ndc80 complexes help to properly orient microtubule attachment, whereas Spc105 plays a predominant role in the kinetochore-microtubule attachment as well as in the poleward movement of chromosomes, SAC response, and cell viability. Copyright © 2013 Wiley Periodicals, Inc.
Investigation of Polyurea-Crosslinked Silica Aerogels as a Neuronal Scaffold: A Pilot Study
Sabri, Firouzeh; Cole, Judith A.; Scarbrough, Michael C.; Leventis, Nicholas
2012-01-01
Background Polymer crosslinked aerogels are an attractive class of materials for future implant applications particularly as a biomaterial for the support of nerve growth. The low density and nano-porous structure of this material combined with large surface area, high mechanical strength, and tunable surface properties, make aerogels materials with a high potential in aiding repair of injuries of the peripheral nervous system. However, the interaction of neurons with aerogels remains to be investigated. Methodology In this work the attachment and growth of neurons on clear polyurea crosslinked silica aerogels (PCSA) coated with: poly-L-lysine, basement membrane extract (BME), and laminin1 was investigated by means of optical and scanning electron microscopy. After comparing the attachment and growth capability of neurons on these different coatings, laminin1 and BME were chosen for nerve cell attachment and growth on PCSA surfaces. The behavior of neurons on treated petri dish surfaces was used as the control and behavior of neurons on treated PCSA discs was compared against it. Conclusions/Significance This study demonstrates that: 1) untreated PCSA surfaces do not support attachment and growth of nerve cells, 2) a thin application of laminin1 layer onto the PCSA discs adhered well to the PCSA surface while also supporting growth and differentiation of neurons as evidenced by the number of processes extended and b3-tubulin expression, 3) three dimensional porous structure of PCSA remains intact after fixing protocols necessary for preservation of biological samples and 4) laminin1 coating proved to be the most effective method for attaching neurons to the desired regions on PCSA discs. This work provides the basis for potential use of PCSA as a biomaterial scaffold for neural regeneration. PMID:22448239
Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D
NASA Astrophysics Data System (ADS)
Zonca, Michael R., Jr.
Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a new avenue for stem cell culture and maintenance using an optimal organic-based chemistry.
Nishikawa, A; Yoshizato, K
1986-02-01
Epidermal cells were dissociated from tails of the bullfrog tadpole, Rana catesbeiana, and cultured to investigate their response to steroid and thyroid hormones. Charcoal-treated serum (CTS) was used in the growth medium when cells were to be grown in the absence of steroid and thyroid hormones. The cells could be maintained for 2 weeks with a small increase in cell number in medium that contained CTS (CTS medium). Addition of cortisol to CTS medium increased both cellular attachment to the culture dishes and the proliferation of the attached cells with an optimum concentration of 5 X 10(-7) M. The cells remained viable and attached for at least a week. Cortisol stimulated the rate of protein synthesis 1.8-fold but did not alter the rate of DNA synthesis. The cells did not proliferate in the medium containing triiodothyronine (T3) and detached themselves from the dish within 5 days, which occurred in a dose-dependent manner with a maximum effect at 10(-8) M. It drastically decreased the rate of DNA synthesis but did not influence the rate of protein synthesis. These responses of cells to cortisol and T3 may reflect growth and death of tail epidermal cells in vivo at metamorphosis.
An, Jeung Hee; Kim, Seung U; Park, Mi-Kyung; Choi, Jeong Woo
2015-10-01
Human mesenchymal stem cells (MSCs) have the capacity for self-renewal and maintain pluripotency, which is defined by their ability to differentiate into cells such as osteoblasts, neurons, and glial cells. In this study, we report a method for defining the status of human MSCs based on electrochemical detection systems. Gold nano-dot structures were fabricated using a nanoporous alumina mask, and the structural formations were confirmed by scanning electron microscopy (SEM). Human MSCs were allowed to attach to RGD (Arg-Gly-Asp) peptide nanopatterned surfaces, and electrochemical tools were applied to the MSCs attached on the chip surface. The cultured MSCs were shown to differentiate into neural cell types, as indicated by immunocytochemical staining for tyrosine hydroxylase and beta tubulin III. Following treatment with basic fibroblast growth factor (bFGF) for 14 days, most of the B10 cells exhibited bipolar or multipolar morphology with branched processes, and the proportion of B10 cells expressing neuronal cell markers considerably increased. Electrophysiological recordings from MSCs treated with bFGF for 5-14 days were examined with cyclic voltammetry, and the electrochemical signals were shown to increase during differentiation from MSCs to neuronal cells. This human MSC cell line is a useful tool for studying organogenesis, specifically neurogenesis, and in addition, the cell line provides a valuable source of cells for cell therapy. The electrochemical measurement system proposed here could be utilized in electrical cell chips for numerous applications, including cell differentiation, disease diagnosis, drug detection, and on-site monitoring.
NASA Astrophysics Data System (ADS)
Park, Jin-Woo; Kim, Youn-Jeong; Jang, Je-Hee; An, Chang-Hyeon
2010-11-01
This study investigated the surface characteristics and in vitro biocompatibility of titanium (Ti) oxide surface incorporating magnesium ions (Mg), produced by hydrothermal treatment using an alkaline Mg-containing solution, for future biomedical applications. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and optical profilometry. Mouse calvaria-derived osteoblastic cell (MC3T3-E1) attachment, spreading, proliferation, alkaline phosphatase (ALP) activity, and osteoblastic gene expression on Mg-containing surfaces were compared with untreated Ti surfaces. Hydrothermal treatment resulted in Mg-incorporated Ti oxide layer with submicro-porous surface structures approximately 2 μm in thickness. ICP-AES analysis revealed Mg ions release from treated surfaces into the solution. The Mg-incorporated surface displayed significantly increased cellular attachment and ALP activity compared with untreated surface ( p < 0.05), and supported better cell spreading. Real-time polymerase chain reaction analysis showed notably higher mRNA expression of the osteoblast transcription factor genes (Dlx5, Runx2) and the osteoblast phenotype genes (ALP, bone sialoprotein and osteocalcin) in cells grown on the Mg-incorporated surfaces than untreated surfaces. These results demonstrate that the Mg-incorporated submicro-porous Ti oxide surface produced by hydrothermal treatment may improve implant osseointegration by enhancing the attachment, spreading and differentiation of osteoblastic cells.
Wine, Eytan; Shen-Tu, Grace; Gareau, Mélanie G.; Goldberg, Harvey A.; Licht, Christoph; Ngan, Bo-Yee; Sorensen, Esben S.; Greenaway, James; Sodek, Jaro; Zohar, Ron; Sherman, Philip M.
2010-01-01
Although osteopontin (OPN) is up-regulated in inflammatory bowel diseases, its role in disease pathogenesis remains controversial. The objective of this study was to determine the role of OPN in host responses to a non-invasive bacterial pathogen, Citrobacter rodentium, which serves as a murine infectious model of colitis. OPN gene knockout and wild-type mice were infected orogastrically with either C. rodentium or Luria-Bertani (LB) broth. Mouse-derived OPN+/+ and OPN−/− fibroblasts were incubated with C. rodentium and attaching-effacing lesions were demonstrated using transmission electron microscopy and immunofluorescence. Colonic expression of OPN was increased by C. rodentium infection of wild-type mice. Furthermore, colonic epithelial cell hyperplasia, the hallmark of C. rodentium infection, was reduced in OPN−/− mice, and spleen enlargement by infection was absent in OPN−/− mice. Rectal administration of OPN to OPN−/− mice restored these effects. There was an 8- to 17-fold reduction in bacterial colonization in OPN−/− mice, compared with wild-type mice, which was accompanied by reduced attaching–effacing lesions, both in infected OPN−/− mice and OPN−/− mouse fibroblasts. Moreover, adhesion pedestals were restored in OPN−/− cells complemented with human OPN. Therefore, lack of OPN results in decreased pedestal formation, colonization, and colonic epithelial cell hyperplasia responses to C. rodentium infection, indicating that OPN impacts disease pathogenesis through bacterial attachment and altered host immune responses. PMID:20651246
A model of extracellular enzymes in free-living microbes: which strategy pays off?
Traving, Sachia J; Thygesen, Uffe H; Riemann, Lasse; Stedmon, Colin A
2015-11-01
An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Ye, P; Yu, H; Simonian, M; Hunter, N
2014-04-01
Previously we demonstrated uniformly strong expression of CD24 in the epithelial attachment to the tooth and in the migrating epithelium of the periodontitis lesion. Titers of serum antibodies autoreactive with CD24 peptide correlated with reduced severity of periodontal disease. Ligation of CD24 expressed by oral epithelial cells induced formation of tight junctions that limited paracellular diffusion. In this study, we aimed to reveal that the lack of uniform expression of tight junction components in the pocket epithelium of periodontitis lesions is likely to contribute to increased paracellular permeability to bacterial products. This is proposed as a potential driver of the immunopathology of periodontitis. An epithelial culture model with close correspondence for expression patterns for tight junction components in periodontal epithelia was used. Immunohistochemical staining and confocal laser scanning microscopy were used to analyse patterns of expression of gingival epithelial tight junction components. The minimally inflamed gingival attachment was characterized by uniformly strong staining at cell contacts for the tight junction components zona occludens-1, zona occludens-2, occludin, junction adhesion molecule-A, claudin-4 and claudin-15. In contrast, the pocket epithelium of the periodontal lesion showed scattered, uneven staining for these components. This pattern correlated closely with that of unstimulated oral epithelial cells in culture. Following ligation of CD24 expressed by these cells, the pattern of tight junction component expression of the minimally inflamed gingival attachment developed rapidly. There was evidence for non-uniform and focal expression only of tight junction components in the pocket epithelium. In the cell-culture model, ligation of CD24 induced a tight junction expression profile equivalent to that observed for the minimally inflamed gingival attachment. Ligation of CD24 expressed by gingival epithelial cells by lectin-like receptors of commensal oral streptococci could mediate the phenotype of health, whereas pathogenic organisms associated with periodontal disease might not signal effectively through CD24. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Detection of fibrils associated with Rickettsia rickettsii.
Todd, W J; Burgdorfer, W; Wray, G P
1983-09-01
The ultrastructural appearance of the "halozone" formed at the interface between the spotted fever agent Rickettsia rickettsii and the cytoplasm of persistently infected cultured vole cells (Microtus pennsylvanicus) was studied by transmission electron microscopy. In sections of epoxy-embedded specimens stained with uranyl acetate and lead citrate, the halozone appeared clear and devoid of ultrastructural features. However, when unembedded preparations of whole infected cells were examined at 1,000 kV, fine structural features were observed within the halozone. These features, associated with the rickettsial outer membrane, were more clearly detectable when the infected cells were extracted with the detergent Triton X-100 before fixation. Under such conditions, long extensions of the rickettsial outer membrane, microfilament-like structures attached to that membrane, and extensive attachments between adjacent rickettsiae were seen. The fine structural features within the rickettsial halozone were also seen at 75 kV when unembedded sections were prepared from polyethylene glycol-embedded specimens. Thus, epoxy-embedding medium obscures the fine structural features within the halozone surrounding the rickettsiae in infected cells.
Detection of fibrils associated with Rickettsia rickettsii.
Todd, W J; Burgdorfer, W; Wray, G P
1983-01-01
The ultrastructural appearance of the "halozone" formed at the interface between the spotted fever agent Rickettsia rickettsii and the cytoplasm of persistently infected cultured vole cells (Microtus pennsylvanicus) was studied by transmission electron microscopy. In sections of epoxy-embedded specimens stained with uranyl acetate and lead citrate, the halozone appeared clear and devoid of ultrastructural features. However, when unembedded preparations of whole infected cells were examined at 1,000 kV, fine structural features were observed within the halozone. These features, associated with the rickettsial outer membrane, were more clearly detectable when the infected cells were extracted with the detergent Triton X-100 before fixation. Under such conditions, long extensions of the rickettsial outer membrane, microfilament-like structures attached to that membrane, and extensive attachments between adjacent rickettsiae were seen. The fine structural features within the rickettsial halozone were also seen at 75 kV when unembedded sections were prepared from polyethylene glycol-embedded specimens. Thus, epoxy-embedding medium obscures the fine structural features within the halozone surrounding the rickettsiae in infected cells. Images PMID:6411620
Mechanics of kinetochore microtubules and their interactions with chromosomes during cell division
NASA Astrophysics Data System (ADS)
Nazockdast, Ehssan; Fürthauer, Sebastian; Redemann, Stephanie; Baumgart, Johannes; Lindow, Norbert; Kratz, Andrea; Prohaska, Steffen; Müller-Reichert, Thomas; Shelley, Michael
2016-11-01
The accurate segregation of chromosomes, and subsequent cell division, in Eukaryotic cells is achieved by the interactions of an assembly of microtubules (MTs) and motor-proteins, known as the mitotic spindle. We use a combination of our computational platform for simulating cytoskeletal assemblies and our structural data from high-resolution electron tomography of the mitotic spindle, to study the kinetics and mechanics of MTs in the spindle, and their interactions with chromosomes during chromosome segregation in the first cell division in C.elegans embryo. We focus on kinetochore MTs, or KMTs, which have one end attached to a chromosome. KMTs are thought to be a key mechanical component in chromosome segregation. Using exploratory simulations of MT growth, bending, hydrodynamic interactions, and attachment to chromosomes, we propose a mechanical model for KMT-chromosome interactions that reproduces observed KMT length and shape distributions from electron tomography. We find that including detailed hydrodynamic interactions between KMTs is essential for agreement with the experimental observations.
Microbial colonization and growth on metal sulfides and other mineral surfaces
NASA Technical Reports Server (NTRS)
Caldwell, D.; Sundquist, A. R.; Lawrence, J.; Doyle, A. P.
1985-01-01
To determine whether a bacterial film forms on sulfur minerals in situ, various sulfur containing and other minerals were incubated in Penitencia Creek. The rate of cell growth and attachment within the surface microenvironment of mineral surfaces was also determined. To determine whether surfaces enriched with soluble sulfur substrates (cysteine, glutathione, thioglycolate, sulfite, and thiosulfate) increased the rate of growth or attachment of natural communities, membrane enrichments were incubated. These rates were determined as described by Caldwell et al. (1981, 1983). The growth of Pseudomonas fluorescens, a heterotrophic sulfur oxidizer, was studied in batch cell suspensions and in continuous culture. In batch culture the cells were oxygen limited (growth rate 0.33 per hour under oxygen limitations and 0.52 per hour when vigorously aerated). Growth within the film was glucose limited. Several behavioral phenomena were observed for cells growing within the hydrodynamic boundary layer. Despite a flow of 10 cm per second in the environment, the bacteria were able to move freely in both directions within the hydrodynamic boundary layer.
The physical boundaries of public goods cooperation between surface-attached bacterial cells
Weigert, Michael; Kümmerli, Rolf
2017-01-01
Bacteria secrete a variety of compounds important for nutrient scavenging, competition mediation and infection establishment. While there is a general consensus that secreted compounds can be shared and therefore have social consequences for the bacterial collective, we know little about the physical limits of such bacterial social interactions. Here, we address this issue by studying the sharing of iron-scavenging siderophores between surface-attached microcolonies of the bacterium Pseudomonas aeruginosa. Using single-cell fluorescent microscopy, we show that siderophores, secreted by producers, quickly reach non-producers within a range of 100 µm, and significantly boost their fitness. Producers in turn respond to variation in sharing efficiency by adjusting their pyoverdine investment levels. These social effects wane with larger cell-to-cell distances and on hard surfaces. Thus, our findings reveal the boundaries of compound sharing, and show that sharing is particularly relevant between nearby yet physically separated bacteria on soft surfaces, matching realistic natural conditions such as those encountered in soft tissue infections. PMID:28701557
The effect of protein-coated contact lenses on the adhesion and viability of gram negative bacteria.
Williams, Timothy J; Schneider, Rene P; Willcox, Mark D P
2003-10-01
Gram negative bacterial adhesion to contact lenses can cause adverse responses. During contact lens wear, components of the tear film adsorb to the contact lens. This study aimed to investigate the effect of this conditioning film on the viability of bacteria. Bacteria adhered to contact lenses which were either unworn, worn for daily-, extended- or overnight-wear or coated with lactoferrin or lysozyme. Numbers of viable and total cells were estimated. The number of viable attached cells was found to be significantly lower than the total number of cells on worn (50% for strain Paer1 on daily-wear lenses) or lactoferrin-coated lenses (56% for strain Paer1). Lysozyme-coated lenses no statistically significant effect on adhesion. The conditioning film gained through wear may not inhibit bacterial adhesion, but may act adversely upon those bacteria that succeed in attaching.
Derivation of Cinnamon Blocks Leukocyte Attachment by Interacting with Sialosides
Lin, Wei-Ling; Guu, Shih-Yun; Tsai, Chan-Chuan; Prakash, Ekambaranellore; Viswaraman, Mohan; Chen, Hsing-Bao; Chang, Chuan-Fa
2015-01-01
Molecules derived from cinnamon have demonstrated diverse pharmacological activities against infectious pathogens, diabetes and inflammatory diseases. This study aims to evaluate the effect of the cinnamon-derived molecule IND02 on the adhesion of leukocytes to host cells. The anti-inflammatory ability of IND02, a pentameric procyanidin type A polyphenol polymer isolated from cinnamon alcohol extract, was examined. Pretreatment with IND02 significantly reduced the attachment of THP-1 cells or neutrophils to TNF-α-activated HUVECs or E-selectin/ICAM-1, respectively. IND02 also reduced the binding of E-, L- and P-selectins with sialosides. Furthermore, IND02 could agglutinate human red blood cells (RBC), and the agglutination could be disrupted by sialylated glycoprotein. Our findings demonstrate that IND02, a cinnamon-derived compound, can interact with sialosides and block the binding of selectins and leukocytes with sialic acids. PMID:26076445
Son, JoonGon; Kim, GeunHyung
2009-01-01
Various mechanical techniques have been used to fabricate biomedical scaffolds, including rapid prototyping (RP) devices that operate from CAD files of the target feature information. The three-dimensional (3-D) bio-plotter is one RP system that can produce design-based scaffolds with good mechanical properties for mimicking cartilage and bones. However, the scaffolds fabricated by RP have very smooth surfaces, which tend to discourage initial cell attachment. Initial cell attachment, migration, differentiation and proliferation are strongly dependent on the chemical and physical characteristics of the scaffold surface. In this study, we propose a new 3-D plotting method supplemented with a piezoelectric system for fabricating surface-modified scaffolds. The effects of the physically-modified surface on the mechanical and hydrophilic properties were investigated, and the results of cell culturing of chondrocytes indicate that this technique is a feasible new method for fabricating high-quality 3-D polymeric scaffolds.
Vibration measurements of automobile catalyst
NASA Astrophysics Data System (ADS)
Aatola, Seppo
1994-09-01
Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.
Towards an ideal polymer scaffold for tendon/ligament tissue engineering
NASA Astrophysics Data System (ADS)
Sahoo, Sambit; Ouyang, Hong Wei; Goh, James Cho-Hong; Tay, Tong-Earn; Toh, Siew Lok
2005-04-01
Tissue engineering holds promise in treating injured tendons and ligaments by replacing the injured tissues with "engineered tissues" with identical mechanical and functional characteristics. A biocompatible, biodegradable, porous scaffold with optimized architecture, sufficient surface area for cell attachment, growth and proliferation, faborable mechanical properties, and suitable degradation rate is a pre-requisite to achieve success with this aproach. Knitted poly(lactide-co-glycolide) (PLGA) scaffolds comprising of microfibers of 25 micron diameter were coated with PLGA nanofibers on their surfaces by electrospinning technique. A cell suspension of pig bone marrow stromal cells (BMSC) was seeded on the scaffolds by pipetting, and the cell-scaffold constructs were cultured in a CO2 incubator, at 37°C for 1-2 weeks. The "engineered tissues" were then assessed for cell attachment and proliferation, tissue formation, and mechanical properties. Nanofibers, of diameter 300-900 nm, were spread randomly over the knitted scaffold. The reduction in pore-size from about 1 mm (in the knitted scaffold) to a few micrometers (in the nano-microscaffold) allowed cell seeding by direct pipetting, and eliminated the need of a cell-delivery system like fibrin gel. BMSCs were seen to attach and proliferate well on the nano-microscaffold, producing abundant extracellular matrix. Mechanical testing revealed that the cell-seeded nano-microscaffolds possessed slightly higher values of failure load, elastic-region stiffness and toe-region stiffness, than the unseeded scaffolds. The combination of superior mechanical strength and integrity of knitted microfibers, with the large surface area and improved hydrophilicity of the electrospun nanofibers facilitated cell attachment and new tissue formation. This holds promise in tissue engineering of tendon/ligament.
Rajangam, Thanavel; An, Seong Soo A
2013-01-01
The aim of this study was to fabricate fibrinogen (Fbg) microfibers with different structural characteristics for the development of 3-D tissue-engineering scaffolds. Fabricated Fbg microfibers were investigated for their biomolecule encapsulation, cell adhesion, and proliferations. Microfibers with three different concentrations of Fbg (5, 10, and 15 wt%) were prepared by a gel solvent-extraction method using a silicone rubber tube. Fbg microfibers were covalently modified with fibronectin (FN) by using water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as the cross-linking agent. Fbg microfibers were characterized by their FN cross-linking properties, structural morphology, and in vitro degradation. Furthermore, FN/Fbg microfibers were evaluated for cell attachment and proliferation. The bio-compatibility and cell proliferation of the microfibers were assessed by measuring adenosine triphosphate activity in C2C12 fibroblast cells. Cell attachment and proliferation on microfibers were further examined using fluorescence and scanning electron microscopic images. FN loading on the microfibers was confirmed by fluorescence and infrared spectroscopy. Surface morphology was characterized by scanning electron microscopy, and showed highly aligned nanostructures for fibers made with 15 wt% Fbg, a more porous structure for fibers made with 10 wt% Fbg, and a less porous structure for those made with 5 wt% Fbg. Controlled biodegradation of the fiber was observed for 8 weeks by using an in vitro proteolytic degradation assay. Fbg microfibers with highly aligned nanostructures (15 wt%) showed enhanced biomolecule encapsulation, as well as higher cell adhesion and proliferation than another two types of FN/Fbg fibers (5 and 10 wt%) and unmodified Fbg fibers. The promising results obtained from the present study reveal that optimal structure of Fbg microfibers could be used as a potential substratum for growth factors or drug release, especially in wound healing and vascular tissue engineering, in which fibers could be applied to promote and orient cell adhesion and proliferation. PMID:23515334
Hajiali, Hadi; Hosseinalipour, Mohammad; Karbasi, Saeed; Shokrgozar, Mohammad Ali
2012-11-01
Nanocomposite scaffolds have been developed in order to achieve better mechanical and physiological properties in bone tissue engineering applications. In this study, reinforced poly (3-hydroxybutyrate) (PHB) composite scaffolds made with different weight ratios of nanobioglass (0, 2.5, 5, 7.5, and 10 wt%) and various porosities (70, 80 and 90 wt% of NaCl) were prepared by the salt leaching process. The scaffolds were placed in a PBS solution and their weight loss was measured. The biocompatibility of samples was examined in vitro using the MG63 cell line by indirect test, cell proliferation, and alkaline phosphatase (ALP) assays. Cell attachment on the surface of the scaffolds was observed by scanning electron microscopy (SEM). The biodegradation results showed that increasing the volume fraction of porosity and concentration of bioglass nanoparticles enhanced the weight loss of the scaffolds. The cell study demonstrated that a certain concentration of nanobioglass (7.5 wt%) in the scaffolds can significantly improve cell proliferation, inducing better osteoconductivity, compared to that of the pure PHB scaffolds and controls. In addition, the SEM results showed high cell attachment on these samples. All these factors indicate that samples with 7.5 wt% nanobioglass are a promising scaffold for bone tissue engineering.
Peh, Gary S L; Adnan, Khadijah; George, Benjamin L; Ang, Heng-Pei; Seah, Xin-Yi; Tan, Donald T; Mehta, Jodhbir S
2015-03-16
The global shortage of donor corneas has garnered extensive interest in the development of graft alternatives suitable for endothelial keratoplasty using cultivated primary human corneal endothelial cells (CECs). We have recently described a dual media approach for the propagation of human CECs. In this work, we characterize the effects of a Rho-kinase inhibitor Y-27632 on the cultivation of CECs propagated using the dual media culture system. Seventy donor corneas deemed unsuitable for transplantation were procured for this study. We assessed the use of Y-27632 for its effect at each stage of the cell culture process, specifically for cell attachment, cell proliferation, and during both regular passaging and cryopreservation. Lastly, comparison of donor-matched CEC-cultures expanded with or without Y-27632 was also performed. Our results showed that Y-27632 significantly improved the attachment and proliferation of primary CECs. A non-significant pro-survival effect was detected during regular cellular passage when CECs were pre-treated with Y-27632, an effect that became more evident during cryopreservation. Our study showed that the inclusion of Y-27632 was beneficial for the propagation of primary CECs expanded via the dual media approach, and was able to increase overall cell yield by between 1.96 to 3.36 fold.
Lutterodt, G; Basnet, M; Foppen, J W A; Uhlenbrook, S
2009-02-01
Bacteria properties play an important role in the transport of bacteria in groundwater, but their role, especially for longer transport distances (>0.5 m) has not been studied. Thereto, we studied the effects of cell surface hydrophobicity, outer surface potential (OSP), cell sphericity, motility, and Ag43 protein expression on the outer cell surface for a number of E. coli strains, obtained from the environment on their transport behavior in columns of saturated quartz sand of 5 m height in two solutions: demineralized (DI) water and artificial groundwater (AGW). In DI water, sticking efficiencies ranged between 0.1 and 0.4 at the column inlet, and then decreased with transport distance to 0.02-0.2. In AGW, sticking efficiencies were on average 1log-unit higher than those in DI (water). Bacteria motility and Ag43 expression affected attachment with a (high) statistical significance. In contrast, hydrophobicity, OSP and cell sphericity did not significantly correlate with sticking efficiency. However, for transport distances more than 0.33 m, the correlation between sticking efficiency, Ag43 expression, and motility became insignificant. We concluded that Ag43 and motility played an important role in E. coli attachment to quartz grain surfaces, and that the transport distance dependent sticking efficiency reductions were caused by motility and Ag43 expression variations within a population. The implication of our findings is that less motile bacteria with little or no Ag43 expression may travel longer distances once they enter groundwater environments. In future studies, the possible effect of bacteria surface structures, like fimbriae, pili and surface proteins on bacteria attachment need to be considered more systematically in order to arrive at more meaningful inter-population comparisons of the transport behavior of E. coli strains in aquifers.
Multi-cellular, three-dimensional living mammalian tissue
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor)
1994-01-01
The present invention relates to a multicellular, three-dimensional, living mammalian tissue. The tissue is produced by a co-culture process wherein two distinct types of mammalian cells are co-cultured in a rotating bioreactor which is completely filled with culture media and cell attachment substrates. As the size of the tissue assemblies formed on the attachment substrates changes, the rotation of the bioreactor is adjusted accordingly.
Cutting edge science: Laser surgery illuminates viscoelasticity of merotelic kinetochores
Cabello, Simon
2016-01-01
Increasing evidence in eukaryotic cells suggests that mechanical forces are essential for building a robust mitotic apparatus and correcting inappropriate chromosome attachments. In this issue, Cojoc et al. (2016. J. Cell Biol., http://dx.doi.org/10.1083/jcb.201506011) use laser microsurgery in vivo to measure and study the viscoelastic properties of kinetochores. PMID:27002164
Cutting edge science: Laser surgery illuminates viscoelasticity of merotelic kinetochores.
Cabello, Simon; Gachet, Yannick; Tournier, Sylvie
2016-03-28
Increasing evidence in eukaryotic cells suggests that mechanical forces are essential for building a robust mitotic apparatus and correcting inappropriate chromosome attachments. In this issue, Cojoc et al. (2016. J. Cell Biol., http://dx.doi.org/10.1083/jcb.201506011) use laser microsurgery in vivo to measure and study the viscoelastic properties of kinetochores. © 2016 Cabello.
Bullard, Stephen A; Womble, Matthew R; Maynard, Margaret K; Orélis-Ribeiro, Raphael; Arias, Cova R
2015-12-01
We characterize lesion-associated capsaline infections on yellowfin tuna, Thunnus albacares, in the Gulf of Mexico by comparing our specimens with published descriptions and museum specimens ascribed to Capsala biparasiticum and its synonyms: vouchers of C. biparasiticum from parasitic copepods; the holotype of Capsala neothunni; and vouchers of Capsala abidjani. Those from parasitic copepods differed by having a small, rounded body, large anterior attachment organs, closely spaced dorsomarginal body sclerites, small testes, and a short and wide testicular field. No morphometric feature in the holotype of C. neothunni ranged outside of that reported for the newly-collected specimens, indicating conspecificity of our specimens. The specimens of C. abidjani differed by having a large anterior attachment organ, few and dendritic testes, and a short, wide testicular field. Large subunit ribosomal DNA (28S) sequences grouped our specimens and Capsala sp. as sister taxa and indicated a phylogenetic affinity of Nasicola klawei. The haptoral attachment site comprised a crater-like depression surrounded by a blackish-colored halo of extensively rugose skin, with abundant pockmarked-like, irregularly-shaped oblong or semi-circular epidermal pits surrounding these attachment sites. Histology confirmed extensive folding of epidermis and underlying stratum laxum, likely epidermal hyperplasia, foci of weak cell-to-cell adhesions among apical malpighian cells as well as that between stratum germinativum and stratum laxum, myriad goblet cells in epidermis, rodlet cells in apical layer of epidermis, and lymphocytic infiltrates and melanin in dermis. The present study comprises (i) the first published report of this parasite from yellowfin tuna captured in the Gulf of Mexico-NW Atlantic Ocean Basin, (ii) confirmation of its infection on the skin (rather than on a parasitic copepod), (iii) the first molecular data for this capsaline, and (iv) the first observations of histopathological changes associated with a capsalid infection on a wild-caught epipelagic fish. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Flores-Villaseñor, Héctor; Canizalez-Román, Adrian; de la Garza, Mireya; Nazmi, Kamran; Bolscher, Jan G M; Leon-Sicairos, Nidia
2012-09-01
Enteropathogenic Escherichia coli (EPEC) is an important cause of infant diarrhea in developing countries. It produces a characteristic intestinal histopathological lesion on enterocytes known as 'attaching and effacing' (A/E), and these two steps are mediated by a type-III secretory system. In the present study, we evaluated the effect on the initial host cell attachment step produced by bovine lactoferrin (bLF) and three synthetic peptides: lactoferricin (LFcin), lactoferrampin (LFampin) and LFchimera. A special focus was given to the hemolytic activity and EPEC-induced actin polymerization in HEp-2 cells, as well as to the espA gene expression, which produces the protein responsible for primary contact with the host cells. Results show that EPEC attachment to HEp-2 cells was significantly suppressed by bLF and LFchimera at 125 and 40 μM, respectively. EPEC-mediated actin polymerization was blocked by bLF and LFchimera at 88 and 99%, respectively. LFchimera inhibited the attachment and A/E lesion caused by EPEC in a dose-dependent manner. In the presence of 125 μM bLF, the expression level of the espA gene was decreased by 50% compared to the untreated control. LFchimera at concentrations of 20 μM and 40 μM diminished the level of espA gene expression 100 and 1000 fold, respectively (P < 0.001). Although bLF, LFchimera, LFcin, and LFampin all significantly blocked the hemolysis produced by EPEC (P < 0.001), the two former compounds produced this effect at lower concentrations. These two compounds, bLF and LFchimera, were able to inhibit the first steps of the mechanism of the damage used by EPEC. This data suggests that LFchimera could provide protection against enteropathogens that share this mechanism. Crown Copyright © 2012. Published by Elsevier Masson SAS. All rights reserved.
Maximising the use of freshly isolated human hepatocytes.
Evans, Peter J
2016-01-01
Freshly isolated human hepatocytes are the best model for predicting adverse drug reactions. However, their preparation and use present the investigator with many variables that are beyond their control. These include operation continuity and timing, size and number of cut surfaces on liver tissue and the prior history of the patient. To exploit the potential of freshly isolated human hepatocytes a method is required to preserve the cells in their initial in vivo like state. This experimental pausing allows experiments to be prioritised at convenient times of the day. A novel approach for selecting viable human hepatocytes by functional attachment to a gelatin gel is described rather than relying on their physical characteristics. The cells are preserved as a monolayer on the semi-solid support at 10°C as single spherical entities. The hepatocytes can be released into suspension, when required, by a temperature transition to 37°C for 20min. The cells can be used in suspension or as a monolayer. The length of preservation depends upon the source tissue. Hepatocytes from normal liver can be maintained for at least 4days and demonstrated to have the same level of CYP3A4 and the enzymes involved in glucuronidation and sulphation as freshly isolated cells. Cells from fatty liver, attached to gelatin, vary in their preservation time but it is at least 24h and so confluent monolayers, that survive at 37°C can be generated the following day. The technique enables freshly isolated human hepatocytes to be used more effectively. They can be preserved in times of plenty so more experimentation is possible. Alternatively, with poorer fatty cells the initial attachment on gelatin enables confluent monolayers of lipid rich cells to be studied. Copyright © 2015 Elsevier Inc. All rights reserved.
Altgärde, Noomi; Eriksson, Charlotta; Peerboom, Nadia; Phan-Xuan, Tuan; Moeller, Stephanie; Schnabelrauch, Matthias; Svedhem, Sofia; Trybala, Edward; Bergström, Tomas; Bally, Marta
2015-01-01
Glycoprotein C (gC) mediates the attachment of HSV-1 to susceptible host cells by interacting with glycosaminoglycans (GAGs) on the cell surface. gC contains a mucin-like region located near the GAG-binding site, which may affect the binding activity. Here, we address this issue by studying a HSV-1 mutant lacking the mucin-like domain in gC and the corresponding purified mutant protein (gCΔmuc) in cell culture and GAG-binding assays, respectively. The mutant virus exhibited two functional alterations as compared with native HSV-1 (i.e. decreased sensitivity to GAG-based inhibitors of virus attachment to cells and reduced release of viral particles from the surface of infected cells). Kinetic and equilibrium binding characteristics of purified gC were assessed using surface plasmon resonance-based sensing together with a surface platform consisting of end-on immobilized GAGs. Both native gC and gCΔmuc bound via the expected binding region to chondroitin sulfate and sulfated hyaluronan but not to the non-sulfated hyaluronan, confirming binding specificity. In contrast to native gC, gCΔmuc exhibited a decreased affinity for GAGs and a slower dissociation, indicating that once formed, the gCΔmuc-GAG complex is more stable. It was also found that a larger number of gCΔmuc bound to a single GAG chain, compared with native gC. Taken together, our data suggest that the mucin-like region of HSV-1 gC is involved in the modulation of the GAG-binding activity, a feature of importance both for unrestricted virus entry into the cells and release of newly produced viral particles from infected cells. PMID:26160171
Mack, D R; Michail, S; Wei, S; McDougall, L; Hollingsworth, M A
1999-04-01
Probiotic agents, live microorganisms with beneficial effects for the host, may offer an alternative to conventional antimicrobials in the treatment and prevention of enteric infections. The probiotic agents Lactobacillus plantarum 299v and Lactobacillus rhamnosus GG quantitatively inhibited the adherence of an attaching and effacing pathogenic Escherichia coli to HT-29 intestinal epithelial cells but did not inhibit adherence to nonintestinal HEp-2 cells. HT-29 cells were grown under conditions that induced high levels of either MUC2 or MUC3 mRNA, but HEp-2 cells expressed only minimal levels of MUC2 and no MUC3 mRNA. Media enriched for MUC2 and MUC3 mucin were added exogenously to binding assays and were shown to be capable of inhibiting enteropathogen adherence to HEp-2 cells. Incubation of L. plantarum 299v with HT-29 cells increased MUC2 and MUC3 mRNA expression levels. From these in vitro studies, we propose the hypothesis that the ability of probiotic agents to inhibit adherence of attaching and effacing organisms to intestinal epithelial cells is mediated through their ability to increase expression of MUC2 and MUC3 intestinal mucins.
Producing Newborn Synchronous Mammalian Cells
NASA Technical Reports Server (NTRS)
Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen
2008-01-01
A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.
Yoon, Junghyo; Yoon, Hee-Sook; Shin, Yoojin; Kim, Sanghyun; Ju, Youngjun; Kim, Jungbae; Chung, Seok
2017-07-01
Electrospun and ethanol-dispersed polystyrene-poly(styrene-co-maleic anhydride) (PS-PSMA) nanofibers (NFs) were used as a platform for the selective capture and three-dimensional culture of EpCAM-positive cells in cell culture medium and whole blood. The NFs were treated with streptavidin to facilitate bond formation between the amino groups of streptavidin and the maleic anhydride groups of the NFs. A biotinylated anti-EpCAM monoclonal antibody (mAb) was attached to the streptavidin-conjugated NFs via the selective binding of streptavidin and biotin. Upon simple mixing and shaking with EpCAM-positive cancer cells in a wide concentration range from 10 to 1000,000 cells per 10mL, the mAb-attached NFs (mAb-NFs) captured the Ep-CAM positive cells in an efficiency of 59%-67% depending on initial cell concentrations, with minor mechanical capture of 14%-36%. Captured cells were directly cultured, forming cell aggregates, in the NF matrix, which ensures the cell proliferation and follow-up analysis. Furthermore, the capture capacity of mAb-NFs was assessed in the presence of whole blood and blood lysates, indicating cluster formation that captured target cells. It is anticipated that the antibody-attached NFs can be employed for the capture and analysis of very rare EpCAM positive circulating cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Experiments with osteoblasts cultured under hypergravity conditions
NASA Technical Reports Server (NTRS)
Kacena, Melissa A.; Todd, Paul; Gerstenfeld, Louis C.; Landis, William J.
2004-01-01
To understand further the role of gravity in osteoblast attachment, osteoblasts were subjected to hypergravity conditions in vitro. Scanning electron microscopy of all confluent coverslips from FPA units show that the number of attached osteoblasts was similar among gravitational levels and growth durations (90 cells/microscopic field). Specifically, confluent 1.0 G control cultures contained an average of 91 +/- 8 cells/field, 3.3 G samples had 88 +/- 8 cells/field, and 4.0 G cultures averaged 90 +/- 7 cells/field. The sparsely plated cultures assessed by immunohistochemistry also had similar numbers of cells at each time point (l.0 G was similar to 3.3 and 4.0 G), but cell number changed from one time point to the next as those cells proliferated. Immunohistochemistry of centrifuged samples showed an increase in number (up to 160% increase) and thickness (up to 49% increase) of actin fibers, a decrease in intensity of fibronectin fluorescence (18-23% decrease) and an increase in number of vinculin bulbs (202-374% increase in number of vinculin bulbs/area). While hypergravity exposure did not alter the number of attached osteoblasts, it did result in altered actin, fibronectin, and vinculin elements, changing some aspects of osteoblast- substrate adhesion.
The Fluid Dynamics of Nascent Biofilms
NASA Astrophysics Data System (ADS)
Farthing, Nicola; Snow, Ben; Wilson, Laurence; Bees, Martin
2017-11-01
Many anti-biofilm approaches target mature biofilms with biochemical or physio-chemical interventions. We investigate the mechanics of interventions at an early stage that aim to inhibit biofilm maturation, focusing on hydrodynamics as cells transition from planktonic to surface-attached. Surface-attached cells generate flow fields that are relatively long-range compared with cells that are freely-swimming. We look at the effect of these flows on the biofilm formation. In particular, we use digital inline holographic microscopy to determine the three-dimensional flow due to a surface-attached cell and the effect this flow has on both tracers and other cells in the fluid. We compare experimental data with two models of cells on boundaries. The first approach utilizes slender body theory and captures many of the features of the experimental field. The second model develops a simple description in terms of singularity solutions of Stokes' flow, which produces qualitatively similar dynamics to both the experiments and more complex model but with significant computational savings. The range of validity of multiple cell arrangements is investigated. These two descriptions can be used to investigate the efficacy of actives developed by Unilever on nascent biofilms.
Nakatsuji, N; Johnson, K E
1984-06-01
Using time-lapse cinemicrography and scanning electron microscopy, we have shown that normal Rana embryos and gastrulating hybrid embryos have extracellular fibrils on the inner surface of the ectodermal layer. These fibrils are absent prior to gastrulation and appear in increasing numbers during gastrulation. They can also be deposited in vitro where they condition substrata in such a way that normal presumptive mesodermal cells placed on them show extensive attachment and unoriented cell movement. These fibrils are also present in some arrested hybrid embryos, but in reduced numbers, or are lacking in other arrested hybrid embryos. Explanted ectodermal fragments from arrested hybrid embryos fail both to condition culture substrata by the deposition of fibrils and to promote cell attachment and translocation. In contrast, ectodermal fragments from normal embryos can condition culture substrata so as to promote moderate cell attachment and, for one particular gamete combination, even cell translocation of presumptive mesodermal cells taken from arrested hybrid embryos. These results provide new evidence to support the hypothesis that extracellular fibrils represent a system that promotes mesodermal cell migration in amphibian embryos. Differences in the fibrillar system in urodele and anuran embryos are discussed in relation to fundamental differences in the mode of mesodermal cell migration in these two classes of Amphibia.
Jeong, Jiyun; Lee, Yeolin; Yoo, Yeongeun; Lee, Myung Kyu
2018-02-01
Agarose gel can be used for three dimensional (3D) cell culture because it prevents cell attachment. The dried agarose film coated on a culture plate also protected cell attachment and allowed 3D growth of cancer cells. We developed an efficient method for agarose film coating on an oxygen-plasma treated micropost polystyrene chip prepared by an injection molding process. The agarose film was modified to maleimide or Ni-NTA groups for covalent or cleavable attachment of photoactivatable Fc-specific antibody binding proteins (PFcBPs) via their N-terminal cysteine residues or 6xHis tag, respectively. The antibodies photocrosslinked onto the PFcBP-modified chips specifically captured the target cells without nonspecific binding, and the captured cells grew 3D modes on the chips. The captured cells on the cleavable antibody-modified chips were easily recovered by treatment of commercial trypsin-EDTA solution. Under fluidic conditions using an antibody-modified micropost chip, the cells were mainly captured on the micropost walls of the chip rather than on the bottom of it. The presented method will also be applicable for immobilization of oriented antibodies on various microfluidic chips with different structures. Copyright © 2017 Elsevier B.V. All rights reserved.
Ali, Saniya; Saik, Jennifer E.; Gould, Dan J.; Dickinson, Mary E.
2013-01-01
Abstract Attachment, spreading, and organization of endothelial cells into tubule networks are mediated by interactions between cells in the extracellular microenvironment. Laminins are key extracellular matrix components and regulators of cell adhesion, migration, and proliferation. In this study, laminin-derived peptides were conjugated to poly(ethylene glycol) (PEG) monoacrylate and covalently incorporated into degradable PEG diacrylate (PEGDA) hydrogels to investigate the influence of these peptides on endothelial cellular adhesion and function in organizing into tubule networks. Degradable PEGDA hydrogels were synthesized by incorporating a matrix metalloproteinase (MMP)–sensitive peptide, GGGPQGIWGQGK (abbreviated PQ), into the polymer backbone. The secretion of MMP-2 and MMP-9 by endothelial cells promotes polymer degradation and consequently cell migration. We demonstrate the formation of extensive networks of tubule-like structures by encapsulated human umbilical vein endothelial cells in hydrogels with immobilized synthetic peptides. The resulting structures were stabilized by pericyte precursor cells (10T1/2s) in vitro. During tubule formation and stabilization, extracellular matrix proteins such as collagen IV and laminin were deposited. Tubules formed in the matrix of metalloproteinase sensitive hydrogels were visualized from 7 days to 4 weeks in response to different combination of peptides. Moreover, hydrogels functionalized with laminin peptides and transplanted in a mouse cornea supported the ingrowth and attachment of endothelial cells to the hydrogel during angiogenesis. Results of this study illustrate the use of laminin-derived peptides as potential candidates for modification of biomaterials to support angiogenesis. PMID:23914330
Myosin II Activity Softens Cells in Suspension.
Chan, Chii J; Ekpenyong, Andrew E; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska
2015-04-21
The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Garner, Omai B; Yun, Tatyana; Pernet, Olivier; Aguilar, Hector C; Park, Arnold; Bowden, Thomas A; Freiberg, Alexander N; Lee, Benhur; Baum, Linda G
2015-03-01
Nipah virus (NiV) is a deadly emerging enveloped paramyxovirus that primarily targets human endothelial cells. Endothelial cells express the innate immune effector galectin-1 that we have previously shown can bind to specific N-glycans on the NiV envelope fusion glycoprotein (F). NiV-F mediates fusion of infected endothelial cells into syncytia, resulting in endothelial disruption and hemorrhage. Galectin-1 is an endogenous carbohydrate-binding protein that binds to specific glycans on NiV-F to reduce endothelial cell fusion, an effect that may reduce pathophysiologic sequelae of NiV infection. However, galectins play multiple roles in regulating host-pathogen interactions; for example, galectins can promote attachment of HIV to T cells and macrophages and attachment of HSV-1 to keratinocytes but can also inhibit influenza entry into airway epithelial cells. Using live Nipah virus, in the present study, we demonstrate that galectin-1 can enhance NiV attachment to and infection of primary human endothelial cells by bridging glycans on the viral envelope to host cell glycoproteins. In order to exhibit an enhancing effect, galectin-1 must be present during the initial phase of virus attachment; in contrast, addition of galectin-1 postinfection results in reduced production of progeny virus and syncytium formation. Thus, galectin-1 can have dual and opposing effects on NiV infection of human endothelial cells. While various roles for galectin family members in microbial-host interactions have been described, we report opposing effects of the same galectin family member on a specific virus, with the timing of exposure during the viral life cycle determining the outcome. Nipah virus is an emerging pathogen that targets endothelial cells lining blood vessels; the high mortality rate (up to 70%) in Nipah virus infections results from destruction of these cells and resulting catastrophic hemorrhage. Host factors that promote or prevent Nipah virus infection are not well understood. Endogenous human lectins, such as galectin-1, can function as pattern recognition receptors to reduce infection and initiate immune responses; however, lectins can also be exploited by microbes to enhance infection of host cells. We found that galectin-1, which is made by inflamed endothelial cells, can both promote Nipah virus infection of endothelial cells by "bridging" the virus to the cell, as well as reduce production of progeny virus and reduce endothelial cell fusion and damage, depending on timing of galectin-1 exposure. This is the first report of spatiotemporal opposing effects of a host lectin for a virus in one type of host cell. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
A preclinical study by Center for Cancer Research investigators and colleagues shows that a drug guided by an attached target-seeking antibody can recognize cells infiltrating tumors, the tumor stroma, and cause various types of tumors to shrink, and in many cases, disappear. Their findings suggest that when stromal cells take up the ADC, they cleave the drug from the antibody
Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton.
Satcher, R L; Dewey, C F
1996-01-01
Current modeling of endothelial cell mechanics does not account for the network of F-actin that permeates the cytoplasm. This network, the distributed cytoplasmic structural actin (DCSA), extends from apical to basal membranes, with frequent attachments. Stress fibers are intercalated within the network, with similar frequent attachments. The microscopic structure of the DCSA resembles a foam, so that the mechanical properties can be estimated with analogy to these well-studied systems. The moduli of shear and elastic deformations are estimated to be on the order of 10(5) dynes/cm2. This prediction agrees with experimental measurements of the properties of cytoplasm and endothelial cells reported elsewhere. Stress fibers can potentially increase the modulus by a factor of 2-10, depending on whether they act in series or parallel to the network in transmitting surface forces. The deformations produced by physiological flow fields are of insufficient magnitude to disrupt cell-to-cell or DCSA cross-linkages. The questions raised by this paradox, and the ramifications of implicating the previously unreported DCSA as the primary force transmission element are discussed. Images FIGURE 2 PMID:8804594
Heo, Jin-Chul; Son, Minsik; Woo, Sang-Uk; Kweon, Mi-Ae; Yoon, Eun Kyung; Lee, Hee Kyung; Choi, Won-Sik; Cho, Kang-Jin; Lee, Sang-Han
2008-06-01
The plant Geum japonicum Thunberg (GjT) has been used as a diuretic in traditional medicine. Herein, we report that the GjT extract blocks both the spread of human umbilical vein endothelial cells (HUVECs) on matrigel and the migration of B16 cells. We used various assays to test for cell attachment, spreading, wound healing and angiogenesis. A reverse transcription-polymerase chain reaction (RT-PCR) and a mitogen-activated protein kinase (MAPK) assay were also carried out for the mechanistic study of GjT. Our results showed that a fraction of methylene chloride fraction from GjT inhibited B16 cells during cell attachment and migration and suppressed tube formation in a dose-dependent manner. An RT-PCR analysis showed that the methylene chloride extract decreased the mRNA expression of CD44 and TIMP-2. A Western blot analysis of the phosphorylation of MAPK kinases (ERK, JNK and p38) showed that the GjT fraction increased the expression of phospho-JNK, suggesting that GjT has the potential to alleviate metastatic and angiogenic activity, via a phospho-JNK signaling pathway.
High-Density Spot Seeding for Tissue Model Formation
NASA Technical Reports Server (NTRS)
Marquette, Michele L. (Inventor); Sognier, Marguerite A. (Inventor)
2016-01-01
A model of tissue is produced by steps comprising seeding cells at a selected concentration on a support to form a cell spot, incubating the cells to allow the cells to partially attach, rinsing the cells to remove any cells that have not partially attached, adding culture medium to enable the cells to proliferate at a periphery of the cell spot and to differentiate toward a center of the cell spot, and further incubating the cells to form the tissue. The cells may be C2C12 cells or other subclones of the C2 cell line, H9c2(2-1) cells, L6 cells, L8 cells, QM7 cells, Sol8 cells, G-7 cells, G-8 cells, other myoblast cells, cells from other tissues, or stem cells. The selected concentration is in a range from about 1 x 10(exp 5) cells/ml to about 1 x 10(exp 6) cells/ml. The tissue formed may be a muscle tissue or other tissue depending on the cells seeded.
Zhang, Xinhua; Teixeira da Silva, Jaime A; Duan, Jun; Deng, Rufang; Xu, Xinlan; Ma, Guohua
2012-06-15
The physiological and anatomical attributes of haustoria tissues in hemi-parasitic Santalum album L. seedlings, growing on the potential host, Kuhnia rosmarnifolia Vent., were investigated before and after attachment to the host. Quantization of endogenous levels of indole-3-acetic acid (IAA), zeatin (Z), zeatin riboside (ZR), GA-like substances (GAs) and abscisic acid (ABA) was performed by HPLC. Histological preparations were used to characterize structural differences between pre- and post-attachment haustoria. The contents of GAs and ABA were higher in attached haustoria, with 3.61 and 3.50μgg(-1) fresh weight, respectively, and three times higher than in non-attached haustoria. Cytokinins, Z, ZR and IAA levels were also high, and their contents in attached haustoria increased 2.04-, 2.17-, and 2.82-fold more, respectively, than in non-attached haustoria. A high auxin-to-cytokinin ratio contributed to haustorial development of S. album. A numerous amount of starch in parenchyma cells around the meristematic region above the haustorial gland and the endophyte tissue of the post-attachment haustoria were reported in a Santalaceae member for the first time. Many lysosomes were present and large-scale digestion of host cells occurred at the interface between the parasite and host. The haustorial penetration in S. album into the host stele was suggested to be a function of mechanical force and enzymatic activity. Analysis of the endogenous hormone levels and the structural characters in S. album haustoria indicated that the haustoria were able to synthesize phytohormones, which appeared to be necessary for cell division and differentiation during haustorial development. These results suggest that endogenous hormones are involved in the haustorial development of S. album and in water and nutrient transport in the host-parasite association. Copyright © 2012 Elsevier GmbH. All rights reserved.
Photovoltaic solar concentrator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat
A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting themore » photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.« less
Cha, Kyoung Je; Kong, Sun-Young; Lee, Ji Soo; Kim, Hyung Woo; Shin, Jae-Yeon; La, Moonwoo; Han, Byung Woo; Kim, Dong Sung; Kim, Hyun-Jung
2017-10-12
Recently, the importance of surface nanotopography in the determination of stem cell fate and behavior has been revealed. In the current study, we generated polystyrene cell-culture dishes with an omnidirectional nanopore arrayed surface (ONAS) (diameter: 200 nm, depth: 500 nm, center-to-center distance: 500 nm) and investigated the effects of nanotopography on rat neural stem cells (NSCs). NSCs cultured on ONAS proliferated better than those on the flat surface when cell density was low and showed less spontaneous differentiation during proliferation in the presence of mitogens. Interestingly, NSCs cultured on ONAS at clonal density demonstrated a propensity to generate neurospheres, whereas those on the flat surface migrated out, proliferated as individuals, and spread out to attach to the surface. However, the differential patterns of proliferation were cell density-dependent since the distinct phenomena were lost when cell density was increased. ONAS modulated cytoskeletal reorganization and inhibited formation of focal adhesion, which is generally observed in NSCs grown on flat surfaces. ONAS appeared to reinforce NSC-NSC interaction, restricted individual cell migration and prohibited NSC attachment to the nanopore surface. These data demonstrate that ONAS maintains NSCs as undifferentiated while retaining multipotency and is a better topography for culturing low density NSCs.
Interaction between endothelial cells and albumin encapsulated droplets in Poiseuille flow
NASA Astrophysics Data System (ADS)
Seda, Robinson; Fowlkes, J. Brian; Bull, Joseph
2012-11-01
Acoustic droplet vaporization (ADV) of DDFP encapsulated microdroplets has the ability to transform these emulsions into larger gas emboli capable of occluding blood vessels for therapy. An albumin shell is able to stabilize the droplet's superheated core, but can also interact with endothelial cells (EC) at the vessel wall if in close proximity. Radial migration of these microdroplets could bring them close enough to make this interaction possible leading to bioeffects that include cell detachment and death if an ADV event occurs. The purpose of this study is to investigate the hydrodynamic conditions (i.e. shear stresses) that make possible this EC-droplet interaction. A flow chamber coated with a monolayer of EC and connected to a syringe pump is used to flow a DDFP droplet solution at physiological shear stresses (1-50 dyne/cm2) and inspected for droplet attachment. Droplets have been observed to interact and reversibly attach to EC in a static environment, thus it is expected that at low shear stress values interaction and further attachment will be possible. Knowing the flow conditions at which this interaction is likely to occur will aid in preventative measures to avoid significant bioeffects associated with ADV near the vessel wall. This work is supported by NIH grant R01EB006476.
Bellenberg, Sören; Díaz, Mauricio; Noël, Nanni; Sand, Wolfgang; Poetsch, Ansgar; Guiliani, Nicolas; Vera, Mario
2014-11-01
Bioleaching of metal sulfides is an interfacial process where biofilm formation is considered to be important in the initial steps of this process. Among the factors regulating biofilm formation, molecular cell-to-cell communication such as quorum sensing is involved. A functional LuxIR-type I quorum sensing system is present in Acidithiobacillus ferrooxidans. However, cell-to-cell communication among different species of acidophilic mineral-oxidizing bacteria has not been studied in detail. These aspects were the scope of this study with emphasis on the effects exerted by the external addition of mixtures of synthetic N-acyl-homoserine-lactones on pure and binary cultures. Results revealed that some mixtures had inhibitory effects on pyrite leaching. Some of them correlated with changes in biofilm formation patterns on pyrite coupons. We also provide evidence that A. thiooxidans and Acidiferrobacter spp. produce N-acyl-homoserine-lactones. In addition, the observation that A. thiooxidans cells attached more readily to pyrite pre-colonized by living iron-oxidizing acidophiles than to heat-inactivated or biofilm-free pyrite grains suggests that other interactions also occur. Our experiments show that pre-cultivation conditions influence A. ferrooxidans attachment to pre-colonized pyrite surfaces. The understanding of cell-to-cell communication may consequently be used to develop attempts to influence biomining/bioremediation processes. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiting; Shu, Rong, E-mail: shurong123@hotmail.com; Liu, Dali
Previous studies have assumed that amelogenin is responsible for the therapeutic effect of the enamel matrix derivative (EMD) in periodontal tissue healing and regeneration. However, it is difficult to confirm this hypothesis because both the EMD and the amelogenins are complex mixtures of multiple proteins. Further adding to the difficulties is the fact that periodontal tissue regeneration involves various types of cells and a sequence of associated cellular events including the attachment, migration and proliferation of various cells. In this study, we investigated the potential effect of a 25-kDa recombinant porcine amelogenin (rPAm) on primarily cultured periodontal ligament fibroblasts (PDLF),more » gingival fibroblasts (GF) and gingival epithelial cells (GEC). The cells were treated with 25-kDa recombinant porcine amelogenin at a concentration of 10 {mu}g/mL. We found that rPAm significantly promoted the proliferation and migration of PDLF, but not their adhesion. Similarly, the proliferation and adhesion of GF were significantly enhanced by treatment with rPAm, while migration was greatly inhibited. Interestingly, this recombinant protein inhibited the growth rate, cell adhesion and migration of GEC. These data suggest that rPAm may play an essential role in periodontal regeneration through the activation of periodontal fibroblasts and inhibition of the cellular behaviors of gingival epithelial cells.« less
Kulikouskaya, Viktoryia I; Pinchuk, Sergei V; Hileuskaya, Kseniya S; Kraskouski, Aliaksandr N; Vasilevich, Irina B; Matievski, Kirill A; Agabekov, Vladimir E; Volotovski, Igor D
2018-03-22
Layer-by-Layer assembled polyelectrolyte films offer the opportunity to control cell attachment and behavior on solid surfaces. In the present study, multilayer films based on negatively charged biopolymers (pectin, dextran sulfate, carboxymethylcellulose) and positively charged polysaccharide chitosan or synthetic polyelectrolyte polyethyleneimine has been prepared and evaluated. Physico-chemical properties of the formed multilayer films, including their growth, morphology, wettability, stability, and mechanical properties, have been studied. We demonstrated that chitosan-containing films are characterized by the linear growth, the defect-free surface, and predominantly viscoelastic properties. When chitosan is substituted for the polyethyleneimine in the multilayer system, the properties of the formed films are significantly altered: the rigidity and surface roughness increases, the film growth acquires the exponential character. The multilayer films were subsequently used for culturing mesenchymal stem cells. It has been determined that stem cells effectively adhered to chitosan-containing films and formed on them the monolayer culture of fibroblast-like cells with high viability. Our results show that cell attachment is a complex process which is not only governed by the surface functionality because one of the key parameter effects on cell adhesion is the stiffness of polyelectrolyte multilayer films. We therefore propose our Layer-by-Layer films for applications in tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.
Integrins β1 and β3 are biomarkers of uterine condition for embryo transfer.
Chen, Guowu; Xin, Aijie; Liu, Yulin; Shi, Changgen; Chen, Junling; Tang, Xiaofeng; Chen, Ying; Yu, Min; Peng, Xiandong; Li, Lu; Sun, Xiaoxi
2016-10-26
Clinical ovulation induction induces blood estrogen (E 2 ) in excess of physiological levels, which can hinder uterine receptivity. In contrast, progesterone produces the opposite clinical effect, suggesting that it might be capable of recovering the lost receptivity resulting from exposure to high estrogen levels. Integrins are the most widely used biological markers for monitoring uterine conditions. We studied progesterone-induced changes in integrin β expression patterns as biomarkers for changes in uterine receptivity in response to increased estrogen levels. Endometrial biopsy samples from patients were screened for their estrogen (E 2 ) and progesterone (P4) content and expressing levels of integrin β1 and β3. Uterine receptivity was evaluated using human endometrial adenocarcinoma cells in an embryo attachment model. The respective and concatenated effects of embryo attachment and changes in the integrin β1 and β3 expression patterns on the adenocarcinoma cell plasma membranes in response to 100 nM concentrations of E 2 and P4 were evaluated. Increased blood E 2 concentrations were associated with significantly decreased the levels of integrin β3 expression in uterine biopsy samples. In vitro experiments revealed that a 100 nM E 2 concentration inhibited the distribution of integrin β3 on the plasma membranes of human endometrial adenocarcinoma cells used in the embryo attachment model, and resulted in decreased rates of embryo attachment. In contrast, P4 enhanced the expression of integrin β1 and promoted its distribution on the plasma membranes. Furthermore, P4 recovered the embryo attachment efficiency that was lost by exposure to 100 nM E 2 . Blood E2 and P4 levels and integrin β3 and β1 expression levels in uterine biopsy samples should be considered as biomarkers for evaluating uterine receptivity and determining the optimal time for embryo transfer. Trial registration Trial number: ChiCTR-TRC-13003777; Name of registry: Chinese Clinical Trial Registry; Date of registration: 4 September 2013; Date of enrollment of the first study participant: 15 October 2013.
Miron, Richard J; Bosshardt, Dieter D; Laugisch, Oliver; Dard, Michel; Gemperli, Anja C; Buser, Daniel; Gruber, Reinhard; Sculean, Anton
2013-11-01
Preclinical and clinical studies suggest that a combination of enamel matrix derivative (EMD) with demineralized freeze-dried bone allograft (DFDBA) may improve periodontal wound healing and regeneration. To date, no single study has characterized the effects of this combination on in vitro cell behavior. The aim of this study is to test the ability of EMD to adsorb to the surface of DFDBA particles and determine the effect of EMD coating on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. DFDBA particles were precoated with EMD or human blood and analyzed for protein adsorption patterns via scanning electron microscopy. Cell attachment and proliferation were quantified using a commercial assay. Cell differentiation was analyzed using real-time polymerase chain reaction for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen 1α1, and mineralization was assessed using alizarinred staining. Analysis of cell attachment revealed no significant differences among control, blood-coated, and EMD-coated DFDBA particles. EMD significantly increased cell proliferation at 3 and 5 days after seeding for both osteoblasts and PDL cells compared to control and blood-coated samples. Moreover, there were significantly higher messenger ribonucleic acid levels of osteogenic differentiation markers, including collagen 1α1, alkaline phosphatase, and osteocalcin, in osteoblasts and PDL cells cultured on EMD-coated DFDBA particles at 3, 7, and 14 days. The results suggest that the addition of EMD to DFDBA particles may influence periodontal regeneration by stimulating PDL cell and osteoblast proliferation and differentiation.
Abrigo, Martina; Kingshott, Peter; McArthur, Sally L
2015-12-06
Control over bacterial attachment and proliferation onto nanofibrous materials constitutes a major challenge for a variety of applications, including filtration membranes, protective clothing, wound dressings, and tissue engineering scaffolds. To develop effective devices, the interactions that occur between bacteria and nanofibers with different morphological and physicochemical properties need to be investigated. This paper explores the influence of fiber surface chemistry on bacterial behavior. Different chemical functionalities were generated on the surface of electrospun polystyrene nanofibers through plasma polymerization of four monomers (acrylic acid, allylamine, 1,7-octadiene, and 1,8-cineole). The interactions of Escherichia coli with the surface modified fibers were investigated through a combination of scanning electron microscopy and confocal laser scanning microscopy. Fiber wettability, surface charge, and chemistry were found to affect the ability of bacterial cells to attach and proliferate throughout the nanofiber meshes. The highest proportion of viable cells attachment occurred on the hydrophilic amine rich coating, followed by the hydrophobic octadiene. The acrylic acid coating rich in carboxyl groups showed a significantly lower attraction of bacterial cells. The 1,8-cineole retained the antibacterial activity of the monomer, resulting with a high proportion of dead isolated cells attached onto the fibers. Results showed that the surface chemistry properties of nanofibrous membranes can be strategically tuned to control bacterial behavior.
Burkholder, JoAnn M.; Wetzel, Robert G.; Klomparens, Karen L.
1990-01-01
We report a direct comparison of phosphate uptake by adnate and loosely attached microalgae in an intact biofilm matrix, with resolution at the level of individual cells. Track scanning electron microscope autoradiography enabled assay of [33P]phosphate uptake from the overlying water by adnate algae left undisturbed on mature leaves of the macrophyte Potamogeton illinoensis or on artificial plant mimics. The epiphyte communities developed in either phosphate-poor or moderately phosphate-enriched water, and they were assayed on both natural and artificial plants. All adnate taxa examined from both natural and artificial plants in both habitats took up significantly less radiolabel when assayed beneath the overlying matrix than when they were exposed to the water upon removal of the overstory material. Track scanning electron microscope autoradiography and track light microscope autoradiography were intercalibrated to enable comparison of [33P]phosphate uptake by adnate and loosely attached components of the epiphyte matrix. Loosely attached cells on substrata from both habitats took up significantly more radiolabel than did underlying adnate cells, indicating that access to phosphate supplies from the water depended on the position of microbial cells in the matrix. In this short-term assay, the adnate microalgae were relatively isolated from the water column nutrient source. Images PMID:16348296
Hiob, Matti A.; Wise, Steven G.; Kondyurin, Alexey; Waterhouse, Anna; Bilek, Marcela M.; Ng, Martin K. C.; Weiss, Anthony S.
2013-01-01
All current metallic vascular prostheses, including stents, exhibit suboptimal biocompatibility. Improving the re-endothelialization and reducing the thrombogenicity of these devices would substantially improve their clinical efficacy. Tropoelastin (TE), the soluble precursor of elastin, mediates favorable endothelial cell interactions while having low thrombogenicity. Here we show that constructs of TE corresponding to the first 10 (“N10”) and first 18 (“N18”) N-terminal domains of the molecule facilitate endothelial cell attachment and proliferation equivalent to the performance of full-length TE. This N-terminal ability contrasts with the known role of the C-terminus of TE in facilitating cell attachment, particularly of fibroblasts. When immobilized on a plasma-activated coating (“PAC”), N10 and N18 retained their bioactivity and endothelial cell interactive properties, demonstrating attachment and proliferation equivalent to full-length TE. In whole blood assays, both N10 and N18 maintained the low thrombogenicity of PAC. Furthermore, these N-terminal constructs displayed far greater resistance to protease degradation by blood serine proteases kallikrein and thrombin than did full-length TE. When immobilized onto a PAC surface, these shorter constructs form a modified metal interface to establish a platform technology for biologically compatible, implantable cardiovascular devices. PMID:23863453
Moore, Simon W.; Roca-Cusachs, Pere; Sheetz, Michael P.
2013-01-01
Matrix and tissue rigidity guides many cellular processes, including the differentiation of stem cells and the migration of cells in health and disease. Cells actively and transiently test rigidity using mechanisms limited by inherent physical parameters that include the strength of extracellular attachments, the pulling capacity on these attachments, and the sensitivity of the mechanotransduction system. Here we focus on rigidity sensing mediated through the integrin family of extracellular matrix receptors and linked proteins, and discuss the evidence supporting these proteins as mechanosensors. PMID:20708583
Goat serum as an alternative to establish cell culture from Indian major carp, Cirrhinus mrigala.
Nanda, P K; Swain, P; Nayak, S K; Dash, S; Routray, P; Swain, S K; Patra, B C
2009-01-01
Serum from goat, calf, and chicken sources were evaluated in terms of attachment, growth, and proliferation of explants of Indian major carp, Cirrhinus mrigala. The attachment of explants viz. heart, liver, and kidney was directly proportional to the concentration of the serum. Among these sera, the highest percentage of attachment, growth, and proliferation was recorded for 10% goat serum and 15% newborn calf serum without affecting their cell morphology. On contrary to these sera, chicken serum at 15% concentration was found to be mildly toxic for all the explants. The cell count was significantly high for the kidney, liver, and heart at 10% goat serum among all the tested sera as well as concentration. Similarly, the liver, heart, and kidney explants were found to survive up to the tenth, seventh, and ninth passage, respectively. Therefore, the goat serum at 10% concentration can be used as effectively as newborn calf serum for routine culture of fish cells.
A sweet new role for LCP enzymes in protein glycosylation
Amer, Brendan R.; Clubb, Robert T.
2014-11-21
The peptidoglycan that surrounds Gram-positive bacteria is affixed with a range of macromolecules that enable the microbe to effectively interact with its environment. Distinct enzymes decorate the cell wall with proteins and glycopolymers. Sortase enzymes covalently attach proteins to the peptidoglycan, while LytRCpsA-Psr (LCP) proteins are thought to attach teichoic acid polymers and capsular polysaccharides. Ton-That and colleagues have discovered a new glycosylation pathway in the oral bacterium Actinomyces oris in which sortase and LCP enzymes operate on the same protein substrate. The A. oris LCP protein has a novel function, acting on the cell surface to transfer glycan macromoleculesmore » to a protein, which is then attached to the cell wall by a sortase. The reactions are tightly coupled, as elimination of the sortase causes the lethal accumulation of glycosylated protein in the membrane. Furthermore, since sortase enzymes are attractive drug targets, this novel finding may provide a convenient cell-based tool to discover inhibitors of this important enzyme family.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amer, Brendan R.; Clubb, Robert T.
The peptidoglycan that surrounds Gram-positive bacteria is affixed with a range of macromolecules that enable the microbe to effectively interact with its environment. Distinct enzymes decorate the cell wall with proteins and glycopolymers. Sortase enzymes covalently attach proteins to the peptidoglycan, while LytRCpsA-Psr (LCP) proteins are thought to attach teichoic acid polymers and capsular polysaccharides. Ton-That and colleagues have discovered a new glycosylation pathway in the oral bacterium Actinomyces oris in which sortase and LCP enzymes operate on the same protein substrate. The A. oris LCP protein has a novel function, acting on the cell surface to transfer glycan macromoleculesmore » to a protein, which is then attached to the cell wall by a sortase. The reactions are tightly coupled, as elimination of the sortase causes the lethal accumulation of glycosylated protein in the membrane. Furthermore, since sortase enzymes are attractive drug targets, this novel finding may provide a convenient cell-based tool to discover inhibitors of this important enzyme family.« less
Xu, Xiaopeng; Yan, Muting; Wang, Rui; Lin, Ting; Tang, Junliang; Li, Chaozheng; Weng, Shaoping
2014-01-01
ABSTRACT Infectious spleen and kidney necrosis virus (ISKNV), the type species of the genus Megalocytivirus, family Iridoviridae, brings great harm to fish farming. In infected tissues, ISKNV infection is characterized by a unique phenomenon, in that the infected cells are attached by lymphatic endothelial cells (LECs), which are speculated to wall off the infected cells from host immune attack. A viral membrane protein, VP23R, binds and recruits the host nidogen-1 protein to construct a basement membrane (BM)-like structure, termed virus-mock basement membrane (VMBM), on the surface of infected cells to provide attaching sites for LECs. VMBMs do not contain collagen IV protein, which is essential for maintenance of BM integrity and functions. In this study, we identified the VP08R protein encoded by ISKNV. VP08R was predicted to be a secreted protein with a signal peptide but without a transmembrane domain. However, immunofluorescence assays demonstrated that VP08R is located on the plasma membrane of infected cells and shows an expression profile similar to that of VP23R. Coimmunoprecipitation showed that VP08R interacts with both VP23R and nidogen-1, indicating that VP08R is a component of VMBM and is present on the cell membrane by binding to VP23R. Through formation of intermolecular disulfide bonds, VP08R molecules self-organized into a multimer, which may play a role in the maintenance of VMBM integrity and stability. Moreover, the VP08R multimer was easily degraded when the ISKNV-infected cells were lysed, which may be a mechanism for VMBM disassembly when necessary to free LECs and release the mature virions. IMPORTANCE Infectious spleen and kidney necrosis virus (ISKNV; genus Megalocytivirus, family Iridovirus) is most harmful to cultured fishes. In tissues, the ISKNV-infected cells are attached by lymphatic endothelial cells (LECs), which are speculated to segregate the host immune system. A viral membrane protein, VP23R, binds and recruits the host nidogen-1 protein to construct virus-mock basement membranes (VMBMs) on the surface of infected cells to provide attaching sites for LECs. Although VMBMs lack the collagen IV network, which is an essential structural part of true BMs, VMBMs still show an intact structure. An ISKNV-encoded VP08R protein can self-assemble into a multimer and bind both VP23R and nidogen-1 to maintain the integrity and stability of VMBMs. On the basis of these facts, we redrew the putative schematic illustration of the VMBM structure. Our study suggests that the virus adopts a strategy to remodel the cellular matrix and may provide an important reference to elucidate BM functions and the mechanisms of lymphangiogenesis. PMID:24599992
Fibroblastic interactions with high-porosity Ti-6Al-4V metal foam.
Cheung, Serene; Gauthier, Maxime; Lefebvre, Louis-Philippe; Dunbar, Michael; Filiaggi, Mark
2007-08-01
A novel metallic Ti-6Al-4V foam in development at the National Research Council of Canada was investigated for its ability to foster cell attachment and growth using a fibroblast cell culture model. The foam was manufactured via a powder metallurgical process that could produce interconnected porosity greater than 70%. Cell attachment was assessed after 6 and 24 h, while proliferation was examined after 3 and 7 days. Ingrown fibroblasts displayed a number of different morphologies; some fibroblasts were spread thinly in close apposition with the irregular surface, or more often had several anchorage points and extended in three dimensions as they spanned pore space. It was also demonstrated that fibroblasts were actively migrating through the porous scaffold over a 14-day period. In a 60-day extended culture, fibroblasts were bridging and filling macropores and had extensively infiltrated the foams. Overall, it was established that this foam was supportive of cell attachment and proliferation, migration through the porous network, and that it was capable of sustaining a large cell population.
Assays for the spindle assembly checkpoint in cell culture.
Marcozzi, Chiara; Pines, Jonathon
2018-01-01
The spindle assembly checkpoint (SAC) is crucial to maintain genomic stability since it prevents premature separation of sister chromatids in mitosis and ensures the fidelity of chromosome segregation. The SAC arrests cells in mitosis and is not satisfied until all kinetochores are stably attached to the mitotic spindle. Improperly attached kinetochores activate the SAC and catalyze the formation of the mitotic checkpoint complex (MCC), containing Mad2, Cdc20, BubR1, and Bub3 proteins. The MCC binds and thereby inhibits the APC/C E3 ubiquitin ligase until the last kinetochore has attached to microtubules. Once the SAC is satisfied, the APC/C promptly activates and targets cyclin B1 and securin for degradation, thus allowing sister chromatids to separate and the cell to exit mitosis. Our understanding of SAC signaling has increased thanks to the development of new genetic, biochemical, molecular, and structural biology techniques. Here, we describe how live-cell imaging microscopy in combination with gene-targeting strategies and biochemical assays can be exploited to investigate the intrinsic properties of the SAC in mammalian cultured cells. © 2018 Elsevier Inc. All rights reserved.
Tissue response to peritoneal implants
NASA Technical Reports Server (NTRS)
Picha, G. J.
1980-01-01
Peritoneal implants were fabricated from poly 2-OH, ethyl methacrylate (HEMA), polyetherurethane (polytetramethylene glycol 1000 MW, 1,4 methylene disocynate, and ethyl diamine), and untreated and sputter treated polytetrafluoroethylene (PTFE). The sputter treated PTFE implants were produced by an 8 cm diameter argon ion source. The treated samples consisted of ion beam sputter polished samples, sputter etched samples (to produce a microscopic surface cone texture) and surface pitted samples (produced by ion beam sputtering to result in 50 microns wide by 100 microns deep square pits). These materials were implanted in rats for periods ranging from 30 minutes to 14 days. The results were evaluated with regard to cell type and attachment kinetics onto the different materials. Scanning electron microscopy and histological sections were also evaluated. In general the smooth hydrophobic surfaces attracted less cells than the ion etched PTFE or the HEMA samples. The ion etching was observed to enhance cell attachment, multinucleated giant cell (MNGC) formation, cell to cell contact, and fibrous capsule formation. The cell responsed in the case of ion etched PTFE to an altered surface morphology. However, equally interesting was the similar attachment kinetics of HEMA verses the ion etched PTFE. However, HEMA resulted in a markedly different response with no MNGC's formation, minimal to no capsule formation, and sample coverage by a uniform cell layer.
NASA Astrophysics Data System (ADS)
Hoentsch, Maxi; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Nebe, J. Barbara
2012-01-01
The application of physical plasma to living tissues is expected to promote wound healing by plasma disinfection and stimulation of tissue regeneration. However, the effects of plasma on healthy cells must be studied and understood. In our experiments we used an argon plasma jet (kINPen®09) to gain insights into time-dependent plasma effects on cell attachment, viability and tight junction formation in vitro. Murine epithelial cells mHepR1 were suspended in complete cell culture medium and were irradiated with argon plasma (direct approach) for 30, 60 and 120 s. Suspecting that physical plasma may exert its effect via the medium, cell culture medium alone was first treated with argon plasma (indirect approach) and immediately afterwards, cells were added and also cultured for 24 h. Cell morphology and vitality were verified using light microscopy and an enzyme-linked immunosorbent assay. Already after 30 s of treatment the mHepR1 cells lost their capability to adhere and the cell vitality decreased with increasing treatment time. Interestingly, the same inhibitory effect was observed in the indirect approach. Furthermore, the argon plasma-treated culture medium-induced large openings of the cell's tight junctions, were verified by the zonula occludens protein ZO-1, which we observed for the first time in confluently grown epithelial cells.
Venkataraman, Chandrasekar; Gao, Lian-Yong; Bondada, Subbarao; Kwaik, Yousef Abu
1998-01-01
The Legionnaires' disease bacterium, Legionella pneumophila, is a facultative intracellular pathogen that invades and replicates within two evolutionarily distant hosts, free living protozoa and mammalian cells. Invasion and intracellular replication within protozoa are thought to be major factors in the transmission of Legionnaires' disease. We have recently reported the identification of a galactose/N-acetyl-d-galactosamine (Gal/GalNAc) lectin in the protozoan host Hartmannella vermiformis as a receptor for attachment and invasion by L. pneumophila (Venkataraman, C., B.J. Haack, S. Bondada, and Y.A. Kwaik. 1997. J. Exp. Med. 186:537–547). In this report, we extended our studies to the effects of bacterial attachment and invasion on the cytoskeletal proteins of H. vermiformis. We first identified the presence of many protozoan cytoskeletal proteins that were putative homologues to their mammalian counterparts, including actin, pp125FAK, paxillin, and vinculin, all of which were basally tyrosine phosphorylated in resting H. vermiformis. In addition to L. pneumophila–induced tyrosine dephosphorylation of the lectin, bacterial attachment and invasion was associated with tyrosine dephosphorylation of paxillin, pp125FAK, and vinculin, whereas actin was minimally affected. Inhibition of bacterial attachment to H. vermiformis by Gal or GalNAc monomers blocked bacteria-induced tyrosine dephosphorylation of detergent-insoluble proteins. In contrast, inhibition of bacterial invasion but not attachment failed to block bacteria-induced tyrosine dephosphorylation of H. vermiformis proteins. This was further supported by the observation that 10 mutants of L. pneumophila that were defective in invasion of H. vermiformis were capable of inducing tyrosine dephosphorylation of H. vermiformis proteins. Entry of L. pneumophila into H. vermiformis was predominantly mediated by noncoated receptor-mediated endocytosis (93%) but coiling phagocytosis was infrequently observed (7%). We conclude that attachment but not invasion by L. pneumophila into H. vermiformis was sufficient and essential to induce protein tyrosine dephosphorylation in H. vermiformis. These manipulations of host cell processes were associated with, or followed by, entry of the bacteria by a noncoated receptor-mediated endocytosis. A model for attachment and entry of L. pneumophila into H. vermiformis is proposed. PMID:9687528
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Hannon, M. H.; Mcneely, J. B.; Barnett, A. M.
1991-01-01
The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell.
Characterization of vibrissa germinative cells: transition of cell types.
Osada, A; Kobayashi, K
2001-12-01
Germinative cells, small cell masses attached to the stalks of dermal papillae that are able to differentiate into the hair shaft and inner root sheath, form follicular bulb-like structures when co-cultured with dermal papilla cells. We studied the growth characteristics of germinative cells to determine the cell types in the vibrissa germinative tissue. Germinative tissues, attaching to dermal papillae, were cultured on 3T3 feeder layers. The cultured keratinocytes were harvested and transferred, equally and for two passages, onto lined dermal papilla cells (LDPC) and/or 3T3 feeder layers. The resulting germinative cells were classified into three types in the present experimental condition. Type 1 cells grow very well on either feeder layer, whereas Type 3 cells scarcely grow on either feeder layer. Type 2 cells are very conspicuous and are reversible. They grow well on 3T3 but growth is suppressed on LDPC feeder layers. The Type 2 cells that grow well on 3T3 feeder layers, however, are suppressed when transferred onto LDPC and the Type 2 cells that are suppressed on LDPC begin to grow again on 3T3. The transition of one cell type to another in vitro and the cell types that these germinative cell types correspond to in vivo is discussed. It was concluded that stem cells or their close progenitors reside in the germinative tissues of the vibrissa bulb except at late anagen-early catagen.
Grösbacher, Michael; Eckert, Dominik; Cirpka, Olaf A; Griebler, Christian
2018-06-01
Aromatic hydrocarbons belong to the most abundant contaminants in groundwater systems. They can serve as carbon and energy source for a multitude of indigenous microorganisms. Predictions of contaminant biodegradation and microbial growth in contaminated aquifers are often vague because the parameters of microbial activity in the mathematical models used for predictions are typically derived from batch experiments, which don't represent conditions in the field. In order to improve our understanding of key drivers of natural attenuation and the accuracy of predictive models, we conducted comparative experiments in batch and sediment flow-through systems with varying concentrations of contaminant in the inflow and flow velocities applying the aerobic Pseudomonas putida strain F1 and the denitrifying Aromatoleum aromaticum strain EbN1. We followed toluene degradation and bacterial growth by measuring toluene and oxygen concentrations and by direct cell counts. In the sediment columns, the total amount of toluene degraded by P. putida F1 increased with increasing source concentration and flow velocity, while toluene removal efficiency gradually decreased. Results point at mass transfer limitation being an important process controlling toluene biodegradation that cannot be assessed with batch experiments. We also observed a decrease in the maximum specific growth rate with increasing source concentration and flow velocity. At low toluene concentrations, the efficiencies in carbon assimilation within the flow-through systems exceeded those in the batch systems. In all column experiments the number of attached cells plateaued after an initial growth phase indicating a specific "carrying capacity" depending on contaminant concentration and flow velocity. Moreover, in all cases, cells attached to the sediment dominated over those in suspension, and toluene degradation was performed practically by attached cells only. The observed effects of varying contaminant inflow concentration and flow velocity on biodegradation could be captured by a reactive-transport model. By monitoring both attached and suspended cells we could quantify the release of new-grown cells from the sediments to the mobile aqueous phase. Studying flow velocity and contaminant concentrations as key drivers of contaminant transformation in sediment flow-through microcosms improves our system understanding and eventually the prediction of microbial biodegradation at contaminated sites.
Durand, Caroline; Vicré-Gibouin, Maïté; Follet-Gueye, Marie Laure; Duponchel, Ludovic; Moreau, Myriam; Lerouge, Patrice; Driouich, Azeddine
2009-07-01
Border-like cells are released by Arabidopsis (Arabidopsis thaliana) root tips as organized layers of several cells that remain attached to each other rather than completely detached from each other, as is usually observed in border cells of many species. Unlike border cells, cell attachment between border-like cells is maintained after their release into the external environment. To investigate the role of cell wall polysaccharides in the attachment and organization of border-like cells, we have examined their release in several well-characterized mutants defective in the biosynthesis of xyloglucan, cellulose, or pectin. Our data show that among all mutants examined, only quasimodo mutants (qua1-1 and qua2-1), which have been characterized as producing less homogalacturonan, had an altered border-like cell phenotype as compared with the wild type. Border-like cells in both lines were released as isolated cells separated from each other, with the phenotype being much more pronounced in qua1-1 than in qua2-1. Further analysis of border-like cells in the qua1-1 mutant using immunocytochemistry and a set of anti-cell wall polysaccharide antibodies showed that the loss of the wild-type phenotype was accompanied by (1) a reduction in homogalacturonan-JIM5 epitope in the cell wall of border-like cells, confirmed by Fourier transform infrared microspectrometry, and (2) the secretion of an abundant mucilage that is enriched in xylogalacturonan and arabinogalactan-protein epitopes, in which the cells are trapped in the vicinity of the root tip.
Durand, Caroline; Vicré-Gibouin, Maïté; Follet-Gueye, Marie Laure; Duponchel, Ludovic; Moreau, Myriam; Lerouge, Patrice; Driouich, Azeddine
2009-01-01
Border-like cells are released by Arabidopsis (Arabidopsis thaliana) root tips as organized layers of several cells that remain attached to each other rather than completely detached from each other, as is usually observed in border cells of many species. Unlike border cells, cell attachment between border-like cells is maintained after their release into the external environment. To investigate the role of cell wall polysaccharides in the attachment and organization of border-like cells, we have examined their release in several well-characterized mutants defective in the biosynthesis of xyloglucan, cellulose, or pectin. Our data show that among all mutants examined, only quasimodo mutants (qua1-1 and qua2-1), which have been characterized as producing less homogalacturonan, had an altered border-like cell phenotype as compared with the wild type. Border-like cells in both lines were released as isolated cells separated from each other, with the phenotype being much more pronounced in qua1-1 than in qua2-1. Further analysis of border-like cells in the qua1-1 mutant using immunocytochemistry and a set of anti-cell wall polysaccharide antibodies showed that the loss of the wild-type phenotype was accompanied by (1) a reduction in homogalacturonan-JIM5 epitope in the cell wall of border-like cells, confirmed by Fourier transform infrared microspectrometry, and (2) the secretion of an abundant mucilage that is enriched in xylogalacturonan and arabinogalactan-protein epitopes, in which the cells are trapped in the vicinity of the root tip. PMID:19448034
A carbon nanotube-polymer composite for T-cell therapy
NASA Astrophysics Data System (ADS)
Fadel, Tarek R.; Sharp, Fiona A.; Vudattu, Nalini; Ragheb, Ragy; Garyu, Justin; Kim, Dongin; Hong, Enping; Li, Nan; Haller, Gary L.; Pfefferle, Lisa D.; Justesen, Sune; Harold, Kevin C.; Fahmy, Tarek M.
2014-08-01
Clinical translation of cell therapies requires strategies that can manufacture cells efficiently and economically. One promising way to reproducibly expand T cells for cancer therapy is by attaching the stimuli for T cells onto artificial substrates with high surface area. Here, we show that a carbon nanotube-polymer composite can act as an artificial antigen-presenting cell to efficiently expand the number of T cells isolated from mice. We attach antigens onto bundled carbon nanotubes and combined this complex with polymer nanoparticles containing magnetite and the T-cell growth factor interleukin-2 (IL-2). The number of T cells obtained was comparable to clinical standards using a thousand-fold less soluble IL-2. T cells obtained from this expansion were able to delay tumour growth in a murine model for melanoma. Our results show that this composite is a useful platform for generating large numbers of cytotoxic T cells for cancer immunotherapy.
Prasertsung, I; Kanokpanont, S; Mongkolnavin, R; Wong, C S; Panpranot, J; Damrongsakkul, S
2012-01-01
In this work, nitrogen, oxygen and air glow discharges powered by 50 Hz AC power supply are used for the treatment of type-A gelatin film cross-linked by a dehydrothermal (DHT) process. The properties of cross-linked gelatin were characterized by contact angle measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) analysis. The results showed that the water contact angle of gelatin films decrease with increasing plasma treatment time. The treatment of nitrogen, oxygen and air plasma up to 30 s had no effects on the surface roughness of the gelatin film as revealed by AFM results. The XPS analysis showed that the N-containing functional groups generated by nitrogen and air plasma, and O-containing functional groups generated by oxygen and air plasmas were incorporated onto the film surface, the functional groups were found to increase with increasing treatment time. An in vitro test using rat bone-marrow-mesenchym-derived stem cells (MSCs) revealed that the number of cells attached on plasma-treated gelatin films was significantly increased compared to untreated samples. The best enhancement of cell attachment was noticed when the film was treated with nitrogen plasma for 15-30 s, oxygen plasma for 3 s, and air plasma for 9 s. In addition, among the three types of plasmas used, nitrogen plasma treatment gave the best MSCs attachment on the gelatin surface. The results suggest that a type-A gelatin film with water contact angle of 27-28° and an O/N ratio of 1.4 is most suitable for MSCs attachment.
TAO1 kinase maintains chromosomal stability by facilitating proper congression of chromosomes
Shrestha, Roshan L.; Tamura, Naoka; Fries, Anna; Levin, Nicolas; Clark, Joanna; Draviam, Viji M.
2014-01-01
Chromosomal instability can arise from defects in chromosome–microtubule attachment. Using a variety of drug treatments, we show that TAO1 kinase is required for ensuring the normal congression of chromosomes. Depletion of TAO1 reduces the density of growing interphase and mitotic microtubules in human cells, showing TAO1's role in controlling microtubule dynamics. We demonstrate the aneugenic nature of chromosome–microtubule attachment defects in TAO1-depleted cells using an error-correction assay. Our model further strengthens the emerging paradigm that microtubule regulatory pathways are important for resolving erroneous kinetochore–microtubule attachments and maintaining the integrity of the genome, regardless of the spindle checkpoint status. PMID:24898139
Simple and efficient production of embryonic stem cell-embryo chimeras by coculture.
Wood, S A; Pascoe, W S; Schmidt, C; Kemler, R; Evans, M J; Allen, N D
1993-01-01
A method for the production of embryonic stem (ES) cell-embryo chimeras was developed that involves the simple coculture of eight-cell embryos on a lawn of ES cells. After coculture, the embryos with ES cells attached are transferred to normal embryo culture medium and allowed to develop to the blastocyst stage before reimplantation into foster mothers. Although the ES cells initially attach to the outside of the embryos, they primarily colonize the inner cell mass and its derivatives. This method results in the efficient production of chimeras with high levels of chimerism including the germ line. As embryos are handled en masse and manipulative steps are minimal, this method should greatly reduce the time and effort required to produce chimeric mice. Images Fig. 1 Fig. 2 PMID:8506303
The α5β1 Integrin Mediates Elimination of Amyloid-β Peptide and Protects Against Apoptosis
Matter, Michelle L.; Zhang, Zhuohua; Nordstedt, Christer; Ruoslahti, Erkki
1998-01-01
The amyloid-β peptide (Aβ) can mediate cell attachment by binding to β1 integrins through an arg-his-asp sequence. We show here that the α5β1 integrin, a fibronectin receptor, is an efficient binder of Aβ, and mediates cell attachment to nonfibrillar Aβ. Cells engineered to express α5β1 internalized and degraded more added Aβ1-40 than did α5β1-negative control cells. Deposition of an insoluble Aβ1-40 matrix around the α5β1-expressing cells was reduced, and the cells showed less apoptosis than the control cells. Thus, the α5β1 integrin may protect against Aβ deposition and toxicity, which is a course of Alzheimer's disease lesions. PMID:9585419
Attachment and growth of human keratinocytes in a serum-free environment.
Gilchrest, B A; Calhoun, J K; Maciag, T
1982-08-01
Using a serum-free system, we have investigated the influence of human fibronectin (HFN) and selected growth factors (GF) on the attachment and growth of normal human keratinocytes in vitro. Single-cell suspensions of keratinocytes from near-confluent primary plates, plated on 5-10 microgram/cm2 HFN, showed approximately 30-40% attachment after 2-24 hours of incubation at 37 degrees C, compared with 4-6% attachment on uncoated platic plates. Percentage of attached cells was independent of seed density, tissue donor age, in vitro culture age, or medium composition, while subsequent cellular proliferation was strongly dependent on these factors. Keratinocytes grown on an adequate HFN matrix in a previously described hormone-supplemented medium (Maciag et al., 1981a) achieved four to eight population doubling over 7-12 days at densities greater than or equal to 104 cell/cm2. Removal of most GF individually from the medium had little or no effect on growth, while removal of epidermal growth factor (EGF) alone reduced growth by 30-35% and removal of bovine brain extract (BE) alone reduced growth by approximately 90%. Conversely, EGF alone in basal medium supported approximately 10% control growth, BE alone supported 30-40% control growth, and the combination of EGF and BE approximately 70%. In addition to its major effect on proliferation in this system, BE was necessary to preserve normal keratinocyte morphology and protein production. These findings expand earlier observations that HFN facilitates keratinocyte attachment in vitro and that a brain-derived extract can exert a major positive influence on cultured keratinocytes.
Transportation of drug-gold nanocomposites by actinomyosin motor system
NASA Astrophysics Data System (ADS)
Kaur, Harsimran; Chaudhary, Archana; Kaur, Inderpreet; Singh, Kashmir; Bharadwaj, Lalit M.
2011-06-01
Nanotechnology is playing an important role in drug delivery to overcome limitations of conventional drug delivery systems in terms of solubility, in vivo stability, pharmacokinetics, and bio-distribution. The controlled transportation of drug into the cell and within the cell is a major challenge to be addressed. Cellular molecular motors have been exploited for their cargo carrying capacity for various applications including engineering and health care. Combination of nanotechnology and biomolecular motors can address some of the challenges in drug delivery. In the present study, transportation of drug nanocomposites has been demonstrated. Nanocomposites of 6-mercaptopurine and levodopa drugs (cancer and Parkinson's disease, respectively) were prepared with gold nanoparticles (GNPs) by covalent attachment and these nanocomposites were attached to actin filaments. These nanocomposites were in-turn transported by actin filaments on myosin tracks. Characterization of drug nanocomposites formation was done by UV-Vis spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy. GNP composites of 6-mercaptopurine and levodopa were formed by sulfide and amide bond formation, respectively. Average velocity of actin filament attached to nanocomposites was found to be 3.17 and 3.89 μm/s for levodopa and 6-mercaptopurine, respectively, as compared to actin filaments with velocity of 4.0-6.0 μm/s. Three concepts have been proposed for the study of drug transportation into the cell based on polycationic complex formation, interaction of actin with cellular myosin and Biomolecular Adaptor for Retrograde Transport (BART) technology. The aspects of this study heads toward the development of an approach to utilize molecular motors for nanoscale transportation endogenously.
Liu, Qihai; Cen, Lian; Yin, Shuo; Chen, Lei; Liu, Guangpeng; Chang, Jiang; Cui, Lei
2008-12-01
This study investigated the in vitro effects of akermanite, a new kind of Ca-, Mg-, Si-containing bioceramic, on the attachment, proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs). Parallel comparison of the cellular behaviors of hASCs on the akermanite was made with those on beta-tricalcium phosphate (beta-TCP). Scanning electron microscope (SEM) observation and fluorescent DiO labeling were carried out to reveal the attachment and growth of hASCs on the two ceramic surfaces, while the quantitative assay of cell proliferation with time was detected by DNA assay. Osteogenic differentiation of hASCs cultured on the akermanite and beta-TCP was assayed by ALP expression and osteocalcin (OCN) deposition, which was further confirmed by Real-time PCR analysis for markers of osteogenic differentiation. It was shown that hASCs attached and spread well on the akermanite as those on beta-TCP, and similar proliferation behaviors of hASCs were observed on the two ceramics. Both of them exhibited good compatibility to hASCs with only minor cytotoxicity as compared with the tissue culture plates. Interestingly, the osteogenic differentiation of hASCs could be enhanced on the akermanite compared with that on the beta-TCP when the culture time was extended to approximately 10 days. Thus, it can be ascertained that akermanite ceramics may serve as a potential scaffold for bone tissue engineering.
Sunter, Jack D.; Benz, Corinna; Andre, Jane; Whipple, Sarah; McKean, Paul G.; Gull, Keith; Ginger, Michael L.; Lukeš, Julius
2015-01-01
ABSTRACT The cell shape of Trypanosoma brucei is influenced by flagellum-to-cell-body attachment through a specialised structure – the flagellum attachment zone (FAZ). T. brucei exhibits numerous morphological forms during its life cycle and, at each stage, the FAZ length varies. We have analysed FLAM3, a large protein that localises to the FAZ region within the old and new flagellum. Ablation of FLAM3 expression causes a reduction in FAZ length; however, this has remarkably different consequences in the tsetse procyclic form versus the mammalian bloodstream form. In procyclic form cells FLAM3 RNAi results in the transition to an epimastigote-like shape, whereas in bloodstream form cells a severe cytokinesis defect associated with flagellum detachment is observed. Moreover, we demonstrate that the amount of FLAM3 and its localisation is dependent on ClpGM6 expression and vice versa. This evidence demonstrates that FAZ is a key regulator of trypanosome shape, with experimental perturbations being life cycle form dependent. An evolutionary cell biology explanation suggests that these differences are a reflection of the division process, the cytoskeleton and intrinsic structural plasticity of particular life cycle forms. PMID:26148511
Primary human osteoblasts grow into porous tantalum and maintain an osteoblastic phenotype.
Welldon, Katie J; Atkins, Gerald J; Howie, Donald W; Findlay, David M
2008-03-01
Porous tantalum (Ta) has found application in orthopedics, although the interaction of human osteoblasts (HOB) with this material has not been reported. The aim of this study was to investigate the interaction of primary HOB with porous tantalum, using 5-mm thick discs of porous tantalum. Comparison was made with discs of solid tantalum and tissue culture plastic. Confocal microscopy was used to investigate the attachment and growth of cells on porous Ta, and showed that HOB attached successfully to the metal "trabeculae," underwent extensive cell division, and penetrated into the Ta pores. The maturation of HOB on porous Ta was determined in terms of cell expression of the osteoblast phenotypic markers, STRO-1, and alkaline phosphatase. Despite some donor-dependent variation in STRO-1/AlkPhos expression, growth of cells grown on porous Ta either promoted, or did not impede, the maturation of HOB. In addition, the expression of key osteoblastic genes was investigated after 14 days of culture. The relative levels of mRNA encoding osteocalcin, osteopontin and receptor activator of NFkappaB ligand (RANKL) was not different between porous or solid Ta or plastic, although these genes were expressed differently by cells of different donors. However, bone sialoprotein and type I collagen mRNA species showed a decreased expression on porous Ta compared with expression on plastic. No substrate-dependent differences were seen in the extent of in vitro mineralization by HOB. These results indicate that porous Ta is a good substrate for the attachment, growth, and differentiated function of HOB. (c) 2007 Wiley Periodicals, Inc.
Optical trapping inside living organisms
NASA Astrophysics Data System (ADS)
Hansen, Poul M.; Oddershede, Lene B.
2005-08-01
We use optical tweezers to investigate processes happening inside ving cells. In a previous study, we trapped naturally occurring lipid granules inside living yeast cells, and used them to probe the viscoelastic properties of the cytoplasm. However, we prefer to use probes which can be specifically attached to various organelles within the living cells in order to optically quantify the forces acting on these organelles. Therefore, we have chosen to use nanometer sized gold beads as probes. These gold beads can be conjugated and attached chemically to the organelles of interest. Only Rayleigh metallic particles can be optically trapped and for these it is the case that the larger the beads, the larger the forces which can be exerted and thus measured using optical tweezers. The gold nanoparticles are injected into the cytoplasm using micropipettes. The very rigid cell wall of the S. pombe yeast cells poses a serious obstacle to this injection. In order to be able to punch a hole in the cell, first, the cells have to be turned into protoplasts, where only a lipid bilayer separates the cytoplasm from the surrounding media. We show how to perform micropipette delivery into the protoplasts and also how the protoplasts can be ablated using the trapping laserlight. Finally, we demonstrate that we can transform the protoplasts back to normal yeast cells.
Biofilm formation by pathogenic Prototheca algae.
Kwiecinski, J
2015-12-01
Prototheca microalgae are the only plants known to cause infections in humans and animals. The mechanisms of Prototheca infections are poorly understood, and no good treatments are available. Biofilms-surface-attached, three-dimensional microbial communities contributing to chronic infections-are formed by many pathogenic bacteria and fungi, but it is not known if Prototheca algae also have this ability. This study shows that various Prototheca species form biofilms composed of surface-attached cells in all growth phases, linked together by matrix containing DNA and polysaccharides. Biofilm formation was modulated by the presence of host plasma or milk. Compared to planktonic cells, Prototheca biofilms caused decreased release of IL-6 by mononuclear immune cells and responded differently to treatment with antimicrobials. Prototheca biofilms possibly contribute to chronic and hard-to-treat character of those algal infections. Prototheca algae are the only existing pathogenic plants. Almost nothing is known about mechanisms of Prototheca infections. This study identifies that, similar to pathogenic bacteria and fungi, Prototheca algae can form biofilms. These biofilms induce reduced immune cell activation relative to planktonic cells, and are also less susceptible to antimicrobials. Biofilm formation by Prototheca could be the first in vitro correlate of pathogenicity, opening a new research field for this pathogen. © 2015 The Society for Applied Microbiology.
Chicken Juice Enhances Surface Attachment and Biofilm Formation of Campylobacter jejuni
Brown, Helen L.; Reuter, Mark; Salt, Louise J.; Cross, Kathryn L.; Betts, Roy P.
2014-01-01
The bacterial pathogen Campylobacter jejuni is primarily transmitted via the consumption of contaminated foodstuffs, especially poultry meat. In food processing environments, C. jejuni is required to survive a multitude of stresses and requires the use of specific survival mechanisms, such as biofilms. An initial step in biofilm formation is bacterial attachment to a surface. Here, we investigated the effects of a chicken meat exudate (chicken juice) on C. jejuni surface attachment and biofilm formation. Supplementation of brucella broth with ≥5% chicken juice resulted in increased biofilm formation on glass, polystyrene, and stainless steel surfaces with four C. jejuni isolates and one C. coli isolate in both microaerobic and aerobic conditions. When incubated with chicken juice, C. jejuni was both able to grow and form biofilms in static cultures in aerobic conditions. Electron microscopy showed that C. jejuni cells were associated with chicken juice particulates attached to the abiotic surface rather than the surface itself. This suggests that chicken juice contributes to C. jejuni biofilm formation by covering and conditioning the abiotic surface and is a source of nutrients. Chicken juice was able to complement the reduction in biofilm formation of an aflagellated mutant of C. jejuni, indicating that chicken juice may support food chain transmission of isolates with lowered motility. We provide here a useful model for studying the interaction of C. jejuni biofilms in food chain-relevant conditions and also show a possible mechanism for C. jejuni cell attachment and biofilm initiation on abiotic surfaces within the food chain. PMID:25192991
NASA Astrophysics Data System (ADS)
Fontes, Adriana; Fernandes, Heloise P.; de Thomaz, André A.; Barbosa, Luiz C.; Barjas-Castro, Maria L.; Cesar, Carlos L.
2007-07-01
The red blood cell (RBC) viscoelastic membrane contains proteins and glycolproteins embedded in, or attached, to a fluid lipid bilayer and are negatively charged, which creates a repulsive electric (zeta) potential between the cells and prevents their aggregation in the blood stream. The basis of the immunohematologic tests is the interaction between antigens and antibodies that causes hemagglutination. The identification of antibodies and antigens is of fundamental importance for the transfusional routine. This agglutination is induced by decreasing the zeta-potential through the introduction of artificial potential substances. This report proposes the use of the optical tweezers to measure the membrane viscosity, the cell adhesion, the zeta-potential and the size of the double layer of charges (CLC) formed around the cell in an electrolytic solution. The adhesion was quantified by slowly displacing two RBCs apart until the disagglutination. The CLC was measured using the force on the bead attached to a single RBC in response to an applied voltage. The zeta-potential was obtained by measuring the terminal velocity after releasing the RBC from the optical trap at the last applied voltage. For the membrane viscosity experiment, we trapped a bead attached to RBCs and measured the force to slide one RBC over the other as a function of the relative velocity. After we tested the methodology, we performed measurements using antibody and potential substances. We observed that this experiment can provide information about cell agglutination that helps to improve the tests usually performed in blood banks. We also believe that this methodology can be applied for measurements of zeta-potentials in other kind of samples.
Mozumder, Mohammad Sayem; Zhu, Jesse; Perinpanayagam, Hiran
2011-06-01
Novel polymeric powder coatings (PPC) were prepared by ultrafine powder coating technology and shown to support human mesenchymal cell attachment and growth. PPC surfaces enriched with nano-TiO(2) (nTiO(2)) showed enhanced cellular responses, and were compared to commercially pure titanium (cpTi). After cell attachment and growth, osteogenic differentiation and bone matrix formation ensures osseointegration for implantable biomaterials. Therefore, the objective of this study was to determine if mesenchymal cells grown on PPC could undergo osteogenic differentiation by inducing Runx2 and bone matrix proteins, and then initiate mineralization. Atomic force microscopy revealed intricate three-dimensional micro-topographies, and the measures of nano-roughness and porosity were similar for all PPC surfaces. Scanning electron microscopy showed that the cells attached and spread out over all of the surfaces. After 1 week in osteogenic media, RT-PCR analysis showed the induction of Runx2, the up-regulation of type I collagen, and the initial detection of alkaline phosphatase and bone sialoprotein. After 4 weeks, Alizarin Red staining showed mineral deposition. However, cell spreading and osteogenic differentiation were significantly (P < 0.05) higher on the cpTi controls than on the PPC surfaces. Furthermore, spreading and differentiation were consistently higher on the titanium-enriched PPC-2, -3 and -4 than on the titanium-free PPC-1. Therefore, despite the presence of complex micro-topographies and nano-features, titanium-enrichment enhanced the cellular response, and pure titanium still provided the best substrate. These findings confirm the cytocompatibility of these novel polymeric coatings and suggest that titanium-enrichment and nTiO(2) additives may enhance their performance.
Shi, Wen; Mozumder, Mohammad Sayem; Zhang, Hui; Zhu, Jesse; Perinpanayagam, Hiran
2012-10-01
The objective of the study described in this paper was the development of novel polymer/ceramic nanocomposite coatings for implants through the application of ultrafine powder coating technology. Polyester resins were combined with µm-sized TiO(2) (25%) as the biocompatibility agent, nTiO(2) (0.5%) as the flow additive and mineral trioxide aggregates (ProRoot® MTA, 5%) as bioactive ceramics. Ultrafine powders were prepared and applied to titanium to create continuous polymeric powder coatings (PPCs) through the application of electrostatic ultrafine powder coating technology. Energy dispersive x-ray analysis confirmed that MTA had been incorporated into the PPCs, and elemental mapping showed that it had formed small clusters that were evenly distributed across the surface. Scanning electron microscopy (SEM) revealed continuous and smooth, but highly textured surface coatings that contrasted with the scalloped appearance of commercially pure titanium (cpTi) controls. Atomic force microscopy revealed intricate nano-topographies with an abundance of submicron-sized pits and nano-projections, evenly dispersed across their surfaces. Inverted fluorescence microscopy, SEM and cell counts showed that human embryonic palatal mesenchymal cells attached and spread out onto PPC and MTA-enriched PPCs within 24 h. Mitochondrial enzyme activity measured viable and metabolically active cells on all of the surfaces. After 72 h of growth, cell counts and metabolic activity were significantly higher (P < 0.05) on the grey-MTA enriched PPC surfaces, than on unmodified PPC and cpTi. The novel polymer/ceramic nanocomposites that were created with ultrafine powder coating technology were continuous, homogenous and nano-rough coatings that enhanced human mesenchymal cell attachment and growth.
Autologous Fibrin Glue as an Encapsulating Scaffold for Delivery of Retinal Progenitor Cells
Ahmed, Tamer A. E.; Ringuette, Randy; Wallace, Valerie A.; Griffith, May
2015-01-01
The retina is a highly sophisticated piece of the neural machinery that begins the translation of incoming light signals into meaningful visual information. Several degenerative diseases of the retina are characterized by photoreceptor loss and eventually lead to irreversible blindness. Regenerative medicine, using tissue engineering-based constructs to deliver progenitor cells or photoreceptors along with supporting carrier matrix is a promising approach for restoration of structure and function. Fresh fibrin glue (FG) produced by the CryoSeal®FS system in combination with mouse retinal progenitor cells (RPCs) were evaluated in this study. In vitro expanded RPCs isolated from postnatal mouse retina were encapsulated into FG and cultured in the presence of the protease inhibitor, tranexamic acid. Encapsulation of RPCs into FG did not show adverse effects on cell proliferation or cell survival. RPCs exhibited fibroblast-like morphology concomitantly with attachment to the encapsulating FG surface. They expressed α7 and β3 integrin subunits that could mediate attachment to fibrin matrix via an RGD-independent mechanism. The three-dimensional environment and the attachment surface provided by FG was associated with a rapid down-regulation of the progenitor marker SOX2 and enhanced the expression of the differentiation markers cone-rod homeobox and recoverin. However, the in vitro culture conditions did not promote full differentiation into mature photoreceptors. Nevertheless, we have shown that autologous fibrin, when fabricated into a scaffold for RPCs for delivery to the retina, provides the cells with external cues that could potentially improve the differentiation events. Hence, transient encapsulation of RPCs into FG could be a valid and potential treatment strategy to promote retinal regeneration following degenerative diseases. However, further optimization is necessary to maximize the outcomes in terms of mature photoreceptors. PMID:25692127
Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles
Hu, Chenxia; Niestroj, Martin; Yuan, Daniel; Chang, Steven; Chen, Jie
2015-01-01
Cancer ranks among the leading causes of human mortality. Cancer becomes intractable when it spreads from the primary tumor site to various organs (such as bone, lung, liver, and then brain). Unlike solid tumor cells, cancer stem cells and metastatic cancer cells grow in a non-attached (suspension) form when moving from their source to other locations in the body. Due to the non-attached growth nature, metastasis is often first detected in the circulatory systems, for instance in a lymph node near the primary tumor. Cancer research over the past several decades has primarily focused on treating solid tumors, but targeted therapy to treat cancer stem cells and cancer metastasis has yet to be developed. Because cancers undergo faster metabolism and consume more glucose than normal cells, glucose was chosen in this study as a reagent to target cancer cells. In particular, by covalently binding gold nanoparticles (GNPs) with thio-PEG (polyethylene glycol) and thio-glucose, the resulting functionalized GNPs (Glu-GNPs) were created for targeted treatment of cancer metastasis and cancer stem cells. Suspension cancer cell THP-1 (human monocytic cell line derived from acute monocytic leukemia patients) was selected because it has properties similar to cancer stem cells and has been used as a metastatic cancer cell model for in vitro studies. To take advantage of cancer cells’ elevated glucose consumption over normal cells, different starvation periods were screened in order to achieve optimal treatment effects. Cancer cells were then fed using Glu-GNPs followed by X-ray irradiation treatment. For comparison, solid tumor MCF-7 cells (breast cancer cell line) were studied as well. Our irradiation experimental results show that Glu-GNPs are better irradiation sensitizers to treat THP-1 cells than MCF-7 cells, or Glu-GNPs enhance the cancer killing of THP-1 cells 20% more than X-ray irradiation alone and GNP treatment alone. This finding can help oncologists to design therapeutic strategies to target cancer stem cells and cancer metastasis. PMID:25844037
Hui, Yew Woh; Dykes, Gary A
2012-08-01
The use of simple crude water extracts of common herbs to reduce bacterial attachment may be a cost-effective way to control bacterial foodborne pathogens, particularly in developing countries. The ability of water extracts of three common Malaysian herbs (Andrographis paniculata, Eurycoma longifolia, and Garcinia atroviridis) to modulate hydrophobicity and attachment to surfaces of five food-related bacterial strains (Bacillus cereus ATCC 14576, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 10145, Salmonella Enteritidis ATCC 13076, Staphylococcus aureus ATCC 25923) were determined. The bacterial attachment to hydrocarbon assay was used to determine bacterial hydrophobicity. Staining and direct microscopic counts were used to determine attachment of bacteria to glass and stainless steel. Plating on selective media was used to determine attachment of bacteria to shrimp. All extracts were capable of either significantly ( P < 0.05) increasing or decreasing bacterial surface hydrophobicity, depending on the herb extract and bacteria combination. Bacterial attachment to all surfaces was either significantly (P < 0.05) increased or decreased, depending on the herb extract and bacteria combination. Overall, hydrophobicity did not show a significant correlation (P > 0.05) to bacterial attachment. For specific combinations of bacteria, surface material, and plant extract, significant correlations (R > 0.80) between hydrophobicity and attachment were observed. The highest of these was observed for S. aureus attachment to stainless steel and glass after treatment with the E. longifolia extract (R = 0.99, P < 0.01). The crude water herb extracts in this study were shown to have the potential to modulate specific bacterial and surface interactions and may, with further work, be useful for the simple and practical control of foodborne pathogens.
Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro.
de Souza, Alessandra A; Takita, Marco A; Coletta-Filho, Helvécio D; Caldana, Camila; Yanai, Giane M; Muto, Nair H; de Oliveira, Regina C; Nunes, Luiz R; Machado, Marcos A
2004-08-15
A biofilm is a community of microorganisms attached to a solid surface. Cells within biofilms differ from planktonic cells, showing higher resistance to biocides, detergent, antibiotic treatments and host defense responses. Even though there are a number of gene expression studies in bacterial biofilm formation, limited information is available concerning plant pathogen. It was previously demonstrated that the plant pathogen Xylella fastidiosa could grow as a biofilm, a possibly important factor for its pathogenicity. In this study we utilized analysis of microarrays to specifically identify genes expressed in X. fastidiosa cells growing in a biofilm, when compared to planktonic cells. About half of the differentially expressed genes encode hypothetical proteins, reflecting the large number of ORFs with unknown functions in bacterial genomes. However, under the biofilm condition we observed an increase in the expression of some housekeeping genes responsible for metabolic functions. We also found a large number of genes from the pXF51 plasmid being differentially expressed. Some of the overexpressed genes in the biofilm condition encode proteins involved in attachment to surfaces. Other genes possibly confer advantages to the bacterium in the environment that it colonizes. This study demonstrates that the gene expression in the biofilm growth condition of the plant pathogen X. fastidiosa is quite similar to other characterized systems.
Establishment of Epithelial Attachment on Titanium Surface Coated with Platelet Activating Peptide
Sugawara, Shiho; Maeno, Masahiko; Lee, Cliff; Nagai, Shigemi; Kim, David M.; Da Silva, John; Kondo, Hisatomo
2016-01-01
The aim of this study was to produce epithelial attachment on a typical implant abutment surface of smooth titanium. A challenging complication that hinders the success of dental implants is peri-implantitis. A common cause of peri-implantitis may results from the lack of epithelial sealing at the peri-implant collar. Histologically, epithelial sealing is recognized as the attachment of the basement membrane (BM). BM-attachment is promoted by activated platelet aggregates at surgical wound sites. On the other hand, platelets did not aggregate on smooth titanium, the surface typical of the implant abutment. We then hypothesized that epithelial BM-attachment was produced when titanium surface was modified to allow platelet aggregation. Titanium surfaces were coated with a protease activated receptor 4-activating peptide (PAR4-AP). PAR4-AP coating yielded rapid aggregation of platelets on the titanium surface. Platelet aggregates released robust amount of epithelial chemoattractants (IGF-I, TGF-β) and growth factors (EGF, VEGF) on the titanium surface. Human gingival epithelial cells, when they were co-cultured on the platelet aggregates, successfully attached to the PAR4-AP coated titanium surface with spread laminin5 positive BM and consecutive staining of the epithelial tight junction component ZO1, indicating the formation of complete epithelial sheet. These in-vitro results indicate the establishment of epithelial BM-attachment to the titanium surface. PMID:27741287
Are endothelial cell bioeffects from acoustic droplet vaporization proximity dependent?
NASA Astrophysics Data System (ADS)
Seda, Robinson; Li, David; Fowlkes, J. Brian; Bull, Joseph
2013-11-01
Acoustic droplet vaporization (ADV) produces gas microbubbles that provide a means of selective occlusion in gas embolotherapy. Vaporization and subsequent occlusion occur inside blood vessels supplying the targeted tissue, such as tumors. Theoretical and computational studies showed that ADV within a vessel can impart high fluid mechanical stresses on the vessel wall. Previous in vitro studies have demonstrated that vaporization at an endothelial layer may affect cell attachment and viability. The current study is aimed at investigating the role of vaporization distance away from the endothelial layer. HUVECs were cultured in OptiCell™ chambers until reaching confluence. Dodecafluoropentane microdroplets were added, attaining a 10:1 droplet to cell ratio. A single ultrasound pulse (7.5 MHz) consisting of 16 cycles (~ 2 μs) and a 5 MPa peak rarefactional pressure was used to produce ADV while varying the vaporization distance from the endothelial layer (0 μm, 500 μm, 1000 μm). Results indicated that cell attachment and viability was significantly different if the distance was 0 μm (at the endothelial layer). Other distances were not significantly different from the control. ADV will significantly affect the endothelium if droplets are in direct contact with the cells. Droplet concentration and flow conditions inside blood vessels may play an important role. This work was supported by NIH grant R01EB006476.
Sakiyan, Iffet; Anar, Mustafa; Oğütcü, Hatice; Agar, Guleray; Sarı, Nurşen
2014-06-01
This study was conducted to evaluate the antimutagenic and antimicrobial activities of Schiff bases attached L-glutamine and L-asparagine. Antibacterial activities of the compounds against S. aureus, Sh. dys. typ 7, L. monocytogenes 4b, E. coli, S. typhi H, S. epidermis, Br. abortus, M. luteus, B. cereus, P. putida, and antifungal activity against Candida albicans were studied. These compounds were investigated for antimutagenic properties against Aflatoxin Bı (AFBı) using micronuclei (MN) assay in human lymphocyte cell culture in vitro. The protective role of these compounds against AFBı-induced MN is probably related to its doses.
NASA Technical Reports Server (NTRS)
Buehler, Martin (Inventor)
2009-01-01
An electro-active sensor includes a nonconductive platform with a first electrode set attached with a first side of a nonconductive platform. The first electrode set serves as an electrochemical cell that may be utilized to detect electro-active species in solution. A plurality of electrode sets and a variety of additional electrochemical cells and sensors may be attached with the nonconductive platform. The present invention also includes a method for constructing the aforementioned electro-active sensor. Additionally, an apparatus for detection and observation is disclosed, where the apparatus includes a sealable chamber for insertion of a portion of an electro-active sensor. The apparatus allows for monitoring and detection activities. Allowing for control of attached cells and sensors, a dual-mode circuitry is also disclosed. The dual-mode circuitry includes a switch, allowing the circuitry to be switched from a potentiostat to a galvanostat mode.
Dynamic metabolic exchange governs a marine algal-bacterial interaction
Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto
2016-01-01
Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale. DOI: http://dx.doi.org/10.7554/eLife.17473.001 PMID:27855786
Banderas, Alvaro; Guiliani, Nicolas
2013-08-16
The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process.
Banderas, Alvaro; Guiliani, Nicolas
2013-01-01
The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process. PMID:23959118
Andrade, N J; Bridgeman, T A; Zottola, E A
1998-07-01
Enterococcus faecium attached to stainless steel chips (100 mm2) was treated with the following sanitizers: sodium hypochlorite, peracetic acid (PA), peracetic acid plus an organic acid (PAS), quaternary ammonium, organic acid, and anionic acid. The effectiveness of sanitizer solutions on planktonic cells (not attached) was evaluated by the Association of Official Analytical Chemists (AOAC) suspension test. The number of attached cells was determined by impedance measurement and plate count method after vortexing. The decimal reduction (DR) in numbers of the E. faecium population was determined for the three methods and was analyzed by analysis of variance (P < 0.05) using Statview software. The adhered cells were more resistant (P < 0.05) than nonadherent cells. The DR averages for all of the sanitizers for 30 s of exposure were 6.4, 2.2, and 2.5 for the AOAC suspension test, plate count method after vortexing, and impedance measurement, respectively. Plate count and impedance methods showed a difference (P < 0.05) after 30 s of sanitizer exposure but not after 2 min. The impedance measurement was the best method to measure adherent cells. Impedance measurement required the development of a quadratic regression. The equation developed from 82 samples is as follows: log CFU/chip = 0.2385T2-0.96T + 9.35, r2 = 0.92, P < 0.05, T = impedance detection time in hours. This method showed that the sanitizers PAS and PA were more effective against E. faecium than the other sanitizers. At 30 s, the impedance method recovered about 25 times more cells than the plate count method after vortexing. These data suggest that impedance measurement is the method of choice when evaluating the number of bacterial cells adhered to a surface.
Magnesium and Calcium in Isolated Cell Nuclei
Naora, H.; Naora, H.; Mirsky, A. E.; Allfrey, V. G.
1961-01-01
The calcium and magnesium contents of thymus nuclei have been determined and the nuclear sites of attachment of these two elements have been studied. The nuclei used for these purposes were isolated in non-aqueous media and in sucrose solutions. Non-aqueous nuclei contain 0.024 per cent calcium and 0.115 per cent magnesium. Calcium and magnesium are held at different sites. The greater part of the magnesium is bound to DNA, probably to its phosphate groups. Evidence is presented that the magnesium atoms combined with the phosphate groups of DNA are also attached to mononucleotides. There is reason to believe that those DNA-phosphate groups to which magnesium is bound, less than 1/10th of the total, are metabolically active, while those to which histones are attached seem to be inactive. PMID:13727745
NASA Astrophysics Data System (ADS)
Mailhot, Jason M.; Garnick, Jerry J.
1996-04-01
The purpose of our research is to determine the effects of KTP laser on root cementum and fibroblast attachment. Initial work has been completed in testing the effect of different energy levels on root surfaces. From these studies optimal energy levels were determined. In subsequent studies the working distance and exposure time required to obtain significant fibroblast attachment to healthy cementum surfaces were investigated. Results showed that lased cemental surfaces exhibited changes in surface topography which ranged from a melted surface to an apparent slight fusion of the surface of the covering smear layer. When the optimal energy level was used, fibroblasts demonstrate attachment on the specimens, resulting in the presence of a monolayer of cells on the control surfaces as well as on the surfaces lased with this energy level. The present study investigates the treatment of pathological root surfaces and calculus with a KTP laser utilizing these optimal parameters determine previously. Thirty single rooted teeth with advanced periodontal disease and ten healthy teeth were obtained, crowns were sectioned and roots split longitudinally. Forty test specimens were assigned into 1 of 4 groups; pathologic root--not lased, pathologic root--lased, root planed root and health root planed root. Human gingival fibroblasts were seeded on specimens and cultured for 24 hours. Specimens were processed for SEM. The findings suggest that with the KTP laser using a predetermined energy level applied to pathological root surfaces, the lased surfaces provided an unacceptable surface for fibroblast attachment. However, the procedural control using healthy root planed surfaces did demonstrate fibroblast attachment.
Arpornmaeklong, Premjit; Pripatnanont, Prisana; Chookiatsiri, Chonticha; Tangtrakulwanich, Boonsin
This study aimed to investigate the effects of titanium surface topography and simvastatin on growth and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) in estrogen-deprived (ED) cell culture. Human BMSCs were seeded on cell culture plates, smooth-surface titanium (Ti) disks, and sandblasted with large grits and acid etched (SLA)-surface Ti disks; and subsequently cultured in regular (fetal bovine serum [FBS]), ED, and ED-with 100 nM simvastatin (ED-SIM) culture media for 14 to 21 days. Live/dead cell staining, scanning electron microscope examination, and cell viability assay were performed to determine cell attachment, morphology, and growth. Expression levels of osteoblast-associated genes, Runx2 and bone sialoprotein and levels of alkaline phosphatase (ALP) activity, calcium content, and osteocalcin in culture media were measured to determine osteoblastic differentiation. Expression levels of bone morphogenetic protein-2 (BMP-2) were investigated to examine stimulating effects of simvastatin (n = 4 to 5, mean ± SD). In vitro mineralization was verified by calcein staining. Human BMSCs exhibited different attachment and shapes on smooth and SLA titanium surfaces. Estrogen-deprived cell culture decreased cell attachment and growth, particularly on the SLA titanium surface, but cells were able to grow to reach confluence on day 21 in the ED-osteogenic (OS) culture medium. Promoting effects of the SLA titanium surface in ED-OS were significantly decreased. Simvastatin significantly increased osteogenic differentiation of human BMSCs on the SLA titanium surface in the ED-OS medium, and the promoting effects of simvastatin corresponded with the increasing of BMP-2 gene expression on the SLA titanium surface in ED-OS-SIM culture medium. The ED cell culture model provided a well-defined platform for investigating the effects of hormones and growth factors on cells and titanium surface interaction. Titanium, the SLA surface, and simvastatin synergistically promoted osteoblastic differentiation of hBMSCs in ED condition and might be useful to promote osteointegration in osteoporotic bone.
Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching
Gehrke, Tilman; Telegdi, Judit; Thierry, Dominique; Sand, Wolfgang
1998-01-01
Leaching bacteria such as Thiobacillus ferrooxidans attach to pyrite or sulfur by means of extracellular polymeric substances (EPS) (lipopolysaccharides). The primary attachment to pyrite at pH 2 is mediated by exopolymer-complexed iron(III) ions in an electrochemical interaction with the negatively charged pyrite surface. EPS from sulfur cells possess increased hydrophobic properties and do not attach to pyrite, indicating adaptability to the substrate or substratum. PMID:9647862
Shin, Soojeong; Shin, Jeong Eun; Yoo, Young Je
2013-01-01
Although transplantation of microencapsulated islets has been proposed as a therapy for the treatment of diabetes mellitus, limited retrievability of the cells has impeded its medical usage. To achieve retrieval of microencapsulated islets, capsules were attached to polydimethylsiloxane (PDMS) with a biocompatible adhesive. Because the hydrophobic nature of the PDMS surface prevents attachment, surface modification is essential. Alginate microcapsules were attached to modified PDMS sheets, and the mechanical stability of the resulting constructs was determined. Acrylic acid (AA) and acrylamide (AM) mixtures were grafted on the surfaces of PDMS sheets using a two-step oxygen plasma treatment (TSPT). TSPT-PDMS was characterized according to water contact angle and zeta-potential measurements. The contact angle was altered by changing the ratio of AM to AA to generate hydrophilic surface. Evaluation of the surface charge at pH 2, 7, and 12 confirmed the presence of polar groups on the modified surface. Microcapsules were attached to TSPT-PDMS using Histoacryl® and shown to be in a monolayered and half-exposed state. The shear stress resistance of alginate capsules attached to the PDMS sheet indicates the possibility of transplantation of encapsulated cells without scattering in vivo. This method is applicable to retrieve microencapsulated porcine islets when required. © 2013 International Union of Biochemistry and Molecular Biology, Inc.