Science.gov

Sample records for cell autonomous purkinje

  1. Inverse Stochastic Resonance in Cerebellar Purkinje Cells.

    PubMed

    Buchin, Anatoly; Rieubland, Sarah; Häusser, Michael; Gutkin, Boris S; Roth, Arnd

    2016-08-01

    Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR). While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing. PMID:27541958

  2. Inverse Stochastic Resonance in Cerebellar Purkinje Cells

    PubMed Central

    Häusser, Michael; Gutkin, Boris S.; Roth, Arnd

    2016-01-01

    Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR). While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing. PMID:27541958

  3. Mapping the development of cerebellar Purkinje cells in zebrafish.

    PubMed

    Hamling, Kyla R; Tobias, Zachary J C; Weissman, Tamily A

    2015-11-01

    The cells that comprise the cerebellum perform a complex integration of neural inputs to influence motor control and coordination. The functioning of this circuit depends upon Purkinje cells and other cerebellar neurons forming in the precise place and time during development. Zebrafish provide a useful platform for modeling disease and studying gene function, thus a quantitative metric of normal zebrafish cerebellar development is key for understanding how gene mutations affect the cerebellum. To begin to quantitatively measure cerebellar development in zebrafish, we have characterized the spatial and temporal patterning of Purkinje cells during the first 2 weeks of development. Differentiated Purkinje cells first emerged by 2.8 days post fertilization and were spatially patterned into separate dorsomedial and ventrolateral clusters that merged at around 4 days. Quantification of the Purkinje cell layer revealed that there was a logarithmic increase in both Purkinje cell number as well as overall volume during the first 2 weeks, while the entire region curved forward in an anterior, then ventral direction. Purkinje cell dendrites were positioned next to parallel fibers as early as 3.3 days, and Purkinje cell diameter decreased significantly from 3.3 to 14 days, possibly due to cytoplasmic reappropriation into maturing dendritic arbors. A nearest neighbor analysis showed that Purkinje cells moved slightly apart from each other from 3 to 14 days, perhaps spreading as the organized monolayer forms. This study establishes a quantitative spatiotemporal map of Purkinje cell development in zebrafish that provides an important metric for studies of cerebellar development and disease.

  4. Purkinje cell stripes and long-term depression at the parallel fiber-Purkinje cell synapse

    PubMed Central

    Hawkes, Richard

    2014-01-01

    The cerebellar cortex comprises a stereotyped array of transverse zones and parasagittal stripes, built around multiple Purkinje cell subtypes, which is highly conserved across birds and mammals. This architecture is revealed in the restricted expression patterns of numerous molecules, in the terminal fields of the afferent projections, in the distribution of interneurons, and in the functional organization. This review provides an overview of cerebellar architecture with an emphasis on attempts to relate molecular architecture to the expression of long-term depression (LTD) at the parallel fiber-Purkinje cell (pf-PC) synapse. PMID:24734006

  5. Encoding of action by the Purkinje cells of the cerebellum.

    PubMed

    Herzfeld, David J; Kojima, Yoshiko; Soetedjo, Robijanto; Shadmehr, Reza

    2015-10-15

    Execution of accurate eye movements depends critically on the cerebellum, suggesting that the major output neurons of the cerebellum, Purkinje cells, may predict motion of the eye. However, this encoding of action for rapid eye movements (saccades) has remained unclear: Purkinje cells show little consistent modulation with respect to saccade amplitude or direction, and critically, their discharge lasts longer than the duration of a saccade. Here we analysed Purkinje-cell discharge in the oculomotor vermis of behaving rhesus monkeys (Macaca mulatta) and found neurons that increased or decreased their activity during saccades. We estimated the combined effect of these two populations via their projections to the caudal fastigial nucleus, and uncovered a simple-spike population response that precisely predicted the real-time motion of the eye. When we organized the Purkinje cells according to each cell's complex-spike directional tuning, the simple-spike population response predicted both the real-time speed and direction of saccade multiplicatively via a gain field. This suggests that the cerebellum predicts the real-time motion of the eye during saccades via the combined inputs of Purkinje cells onto individual nucleus neurons. A gain-field encoding of simple spikes emerges if the Purkinje cells that project onto a nucleus neuron are not selected at random but share a common complex-spike property. PMID:26469054

  6. Bidirectional Plasticity of Purkinje Cells Matches Temporal Features of Learning

    PubMed Central

    Wetmore, Daniel Z.; Jirenhed, Dan-Anders; Rasmussen, Anders; Johansson, Fredrik; Schnitzer, Mark J.

    2014-01-01

    Many forms of learning require temporally ordered stimuli. In Pavlovian eyeblink conditioning, a conditioned stimulus (CS) must precede the unconditioned stimulus (US) by at least about 100 ms for learning to occur. Conditioned responses are learned and generated by the cerebellum. Recordings from the cerebellar cortex during conditioning have revealed CS-triggered pauses in the firing of Purkinje cells that likely drive the conditioned blinks. The predominant view of the learning mechanism in conditioning is that long-term depression (LTD) at parallel fiber (PF)–Purkinje cell synapses underlies the Purkinje cell pauses. This raises a serious conceptual challenge because LTD is most effectively induced at short CS–US intervals, which do not support acquisition of eyeblinks. To resolve this discrepancy, we recorded Purkinje cells during conditioning with short or long CS–US intervals. Decerebrated ferrets trained with CS–US intervals ≥150 ms reliably developed Purkinje cell pauses, but training with an interval of 50 ms unexpectedly induced increases in CS-evoked spiking. This bidirectional modulation of Purkinje cell activity offers a basis for the requirement of a minimum CS–US interval for conditioning, but we argue that it cannot be fully explained by LTD, even when previous in vitro studies of stimulus-timing-dependent LTD are taken into account. PMID:24478355

  7. Cerebellar endocannabinoids: retrograde signaling from purkinje cells.

    PubMed

    Marcaggi, Païkan

    2015-06-01

    The cerebellar cortex exhibits a strikingly high expression of type 1 cannabinoid receptor (CB1), the cannabinoid binding protein responsible for the psychoactive effects of marijuana. CB1 is primarily found in presynaptic elements in the molecular layer. While the functional importance of cerebellar CB1 is supported by the effect of gene deletion or exogenous cannabinoids on animal behavior, evidence for a role of endocannabinoids in synaptic signaling is provided by in vitro experiments on superfused acute rodent cerebellar slices. These studies have demonstrated that endocannabinoids can be transiently released by Purkinje cells and signal at synapses in a direction opposite to information transfer (retrograde). Here, following a description of the reported expression pattern of the endocannabinoid system in the cerebellum, I review the accumulated in vitro data, which have addressed the mechanism of retrograde endocannabinoid signaling and identified 2-arachidonoylglycerol as the mediator of this signaling. The mechanisms leading to endocannabinoid release, the effects of CB1 activation, and the associated synaptic plasticity mechanisms are discussed and the remaining unknowns are pointed. Notably, it is argued that the spatial specificity of this signaling and the physiological conditions required for its induction need to be determined in order to understand endocannabinoid function in the cerebellar cortex. PMID:25520276

  8. A Signal Processing Analysis of Purkinje Cells in vitro

    PubMed Central

    Abrams, Ze'ev R.; Warrier, Ajithkumar; Trauner, Dirk; Zhang, Xiang

    2010-01-01

    Cerebellar Purkinje cells in vitro fire recurrent sequences of Sodium and Calcium spikes. Here, we analyze the Purkinje cell using harmonic analysis, and our experiments reveal that its output signal is comprised of three distinct frequency bands, which are combined using Amplitude and Frequency Modulation (AM/FM). We find that the three characteristic frequencies – Sodium, Calcium and Switching – occur in various combinations in all waveforms observed using whole-cell current clamp recordings. We found that the Calcium frequency can display a frequency doubling of its frequency mode, and the Switching frequency can act as a possible generator of pauses that are typically seen in Purkinje output recordings. Using a reversibly photo-switchable kainate receptor agonist, we demonstrate the external modulation of the Calcium and Switching frequencies. These experiments and Fourier analysis suggest that the Purkinje cell can be understood as a harmonic signal oscillator, enabling a higher level of interpretation of Purkinje signaling based on modern signal processing techniques. PMID:20508748

  9. Structured variability in Purkinje cell activity during locomotion

    PubMed Central

    Sauerbrei, Britton A.; Lubenov, Evgueniy V.; Siapas, Athanassios G.

    2015-01-01

    Summary The cerebellum is a prominent vertebrate brain structure that is critically involved in sensorimotor function. During locomotion, cerebellar Purkinje cells are rhythmically active, shaping descending signals and coordinating commands from higher brain areas with the step cycle. However, the variation in this activity across steps has not been studied, and its statistical structure, afferent mechanisms, and relationship to behavior remain unknown. Here, using multi-electrode recordings in freely moving rats, we show that behavioral variables systematically influence the shape of the step-locked firing rate. This effect depends strongly on the phase of the step cycle and reveals a functional clustering of Purkinje cells. Furthermore, we find a pronounced disassociation between patterns of variability driven by the parallel and climbing fibers. These results suggest that Purkinje cell activity not only represents step phase within each cycle, but is also shaped by behavior across steps, facilitating control of movement under dynamic conditions. PMID:26291165

  10. Abnormal climbing fibre-Purkinje cell synaptic connections in the essential tremor cerebellum

    PubMed Central

    Lin, Chi-Ying; Louis, Elan D.; Faust, Phyllis L.; Koeppen, Arnulf H.; Vonsattel, Jean-Paul G.

    2014-01-01

    Structural changes in Purkinje cells have been identified in the essential tremor cerebellum, although the mechanisms that underlie these changes remain poorly understood. Climbing fibres provide one of the major excitatory inputs to Purkinje cells, and climbing fibre-Purkinje cell connections are essential for normal cerebellar-mediated motor control. The distribution of climbing fibre-Purkinje cell synapses on Purkinje cell dendrites is dynamically regulated and may be altered in disease states. The aim of the present study was to examine the density and distribution of climbing fibre-Purkinje cell synapses using post-mortem cerebellar tissue of essential tremor cases and controls. Using vesicular glutamate transporter type 2 immunohistochemistry, we labelled climbing fibre-Purkinje cell synapses of 12 essential tremor cases and 13 age-matched controls from the New York Brain Bank. Normally, climbing fibres form synapses mainly on the thick, proximal Purkinje cell dendrites in the inner portion of the molecular layer, whereas parallel fibres form synapses on the thin, distal Purkinje cell spiny branchlets. We observed that, compared with controls, essential tremor cases had decreased climbing fibre-Purkinje cell synaptic density, more climbing fibres extending to the outer portion of the molecular layer, and more climbing fibre-Purkinje cell synapses on the thin Purkinje cell spiny branchlets. Interestingly, in essential tremor, the increased distribution of climbing fibre-Purkinje cell synapses on the thin Purkinje cell branchlets was inversely associated with clinical tremor severity, indicating a close relationship between the altered distribution of climbing fibre-Purkinje cell connections and tremor. These findings suggest that abnormal climbing fibre-Purkinje cell connections could be of importance in the pathogenesis of essential tremor. PMID:25273997

  11. Purkinje cell synapses target physiologically unique brainstem neurons.

    PubMed

    Sekirnjak, Chris; Vissel, Bryce; Bollinger, Jacob; Faulstich, Michael; du Lac, Sascha

    2003-07-16

    The cerebellum controls motor learning via Purkinje cell synapses onto discrete populations of neurons in the deep cerebellar nuclei and brainstem vestibular nuclei. In the circuitry that subserves the vestibulo-ocular reflex, the postsynaptic targets of Purkinje cells, termed flocculus target neurons (FTNs), are thought to be a critical site of learning. Little is known, however, about the intrinsic cellular properties of FTNs, which are sparsely distributed in the medial vestibular nucleus. To identify these neurons, we used the L7 promoter to express a tau-green fluorescent protein fusion protein selectively in Purkinje cells. Fluorescent Purkinje cell axons and terminal boutons surrounded the somata and proximal dendrites of a small subset of neurons, presumed FTNs, in the medial vestibular nucleus. Targeted intracellular recordings revealed that FTNs fired spontaneously at high rates in brain slices (mean, 47 spikes/sec) and exhibited dramatic postinhibitory rebound firing after the offset of membrane hyperpolarization. These intrinsic firing properties were exceptional among brainstem vestibular nucleus neurons but strikingly similar to neurons in the deep cerebellar nuclei, indicating a common role for intrinsic firing mechanisms in cerebellar control of diverse behaviors.

  12. Moderate alcohol consumption and loss of cerebellar Purkinje cells.

    PubMed Central

    Karhunen, P. J.; Erkinjuntti, T.; Laippala, P.

    1994-01-01

    OBJECTIVE--To examine the dose-response effect of alcohol consumption on the number of cerebellar Purkinje cells. DESIGN--A prospective necropsy study combined with detailed reports on use of alcohol from a relative or friend. The number of Purkinje cells was counted in the anterior midsagittal section of the cerebellar vermis, the area of which was measured by computer assisted morphometry. SETTING--Department of forensic medicine, University of Helsinki. SUBJECTS--66 men, aged 35 to 69 years, subjected to medicolegal necropsy because of sudden or violent death. The average all year daily alcohol consumption over the year was 0 to 10 g in 17 men, 11 to 80 g in 24 men, and more than 80 g in 25 men. MAIN OUTCOME MEASURES--Number of Purkinje cells, alcohol consumption. RESULTS--The numbers and density of Purkinje cells in the cross section of vermis showed a consistent but weak decrease with increasing daily alcohol intake but not with age. A wide variation in the cell counts was observed, especially in men drinking more than 80 g, suggesting differences in the susceptibility to effects of alcohol. Compared with men drinking 40 g or less, a long term moderate consumption of an average of 41 to 80 g daily was associated with a significant average loss of 242 (95% confidence interval 45 to 439) Purkinje cells (15.2%) from a mean of 1583 to 1341 cells. In those drinking 81 to 180 g the average loss was 535 (259 to 811) cells (33.4%) to a mean of 1048 cells. The density of cells in the cross section of vermis also fell significantly by 0.9 cell/mm (0.1 to 1.7) when the daily consumption exceeded 40 g and by 1.4 cell/mm (0.3 to 2.5) when the intake was 81 to 180 g. Only three cases (4.5%) in the series showed macroscopical cerebellar atrophy. CONCLUSION--Long term intake of moderate doses of alcohol daily for 20-30 years may damage the cerebellum before the onset of macroscopical atrophy. Despite distinct individual differences an all year average daily alcohol intake of

  13. Optogenetic Manipulation of Cerebellar Purkinje Cell Activity In Vivo

    PubMed Central

    Tsubota, Tadashi; Ohashi, Yohei; Tamura, Keita; Sato, Ayana; Miyashita, Yasushi

    2011-01-01

    Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex. Although their anatomical connections and physiological response properties have been extensively studied, the causal role of their activity in behavioral, cognitive and autonomic functions is still unclear because PC activity cannot be selectively controlled. Here we developed a novel technique using optogenetics for selective and rapidly reversible manipulation of PC activity in vivo. We injected into rat cerebellar cortex lentiviruses expressing either the light-activated cationic channel channelrhodopsin-2 (ChR2) or light-driven chloride pump halorhodopsin (eNpHR) under the control of the PC-specific L7 promoter. Transgene expression was observed in most PCs (ChR2, 92.6%; eNpHR, 95.3%), as determined by immunohistochemical analysis. In vivo electrophysiological recordings showed that all light-responsive PCs in ChR2-transduced rats increased frequency of simple spike in response to blue laser illumination. Similarly, most light-responsive PCs (93.8%) in eNpHR-transduced rats decreased frequency of simple spike in response to orange laser illumination. We then applied these techniques to characterize the roles of rat cerebellar uvula, one of the cardiovascular regulatory regions in the cerebellum, in resting blood pressure (BP) regulation in anesthetized rats. ChR2-mediated photostimulation and eNpHR-mediated photoinhibition of the uvula had opposite effects on resting BP, inducing depressor and pressor responses, respectively. In contrast, manipulation of PC activity within the neighboring lobule VIII had no effect on BP. Blue and orange laser illumination onto PBS-injected lobule IX didn't affect BP, indicating the observed effects on BP were actually due to PC activation and inhibition. These results clearly demonstrate that the optogenetic method we developed here will provide a powerful way to elucidate a causal relationship between local PC activity and functions of the cerebellum

  14. Motor learning of mice lacking cerebellar Purkinje cells.

    PubMed

    Porras-García, M Elena; Ruiz, Rocío; Pérez-Villegas, Eva M; Armengol, José Á

    2013-01-01

    The cerebellum plays a key role in the acquisition and execution of motor tasks whose physiological foundations were postulated on Purkinje cells' long-term depression (LTD). Numerous research efforts have been focused on understanding the cerebellum as a site of learning and/or memory storage. However, the controversy on which part of the cerebellum participates in motor learning, and how the process takes place, remains unsolved. In fact, it has been suggested that cerebellar cortex, deep cerebellar nuclei, and/or their combination with some brain structures other than the cerebellum are responsible for motor learning. Different experimental approaches have been used to tackle this question (cerebellar lesions, pharmacological agonist and/or antagonist of cerebellar neurotransmitters, virus tract tracings, etc.). One of these approaches is the study of spontaneous mutations affecting the cerebellar cortex and depriving it of its main input-output organizer (i.e., the Purkinje cell). In this review, we discuss the results obtained in our laboratory in motor learning of both Lurcher (Lc/+) and tambaleante (tbl/tbl) mice as models of Purkinje-cell-devoid cerebellum. PMID:23630472

  15. Motor learning of mice lacking cerebellar Purkinje cells

    PubMed Central

    Porras-García, M. Elena; Ruiz, Rocío; Pérez-Villegas, Eva M.; Armengol, José Á.

    2013-01-01

    The cerebellum plays a key role in the acquisition and execution of motor tasks whose physiological foundations were postulated on Purkinje cells' long-term depression (LTD). Numerous research efforts have been focused on understanding the cerebellum as a site of learning and/or memory storage. However, the controversy on which part of the cerebellum participates in motor learning, and how the process takes place, remains unsolved. In fact, it has been suggested that cerebellar cortex, deep cerebellar nuclei, and/or their combination with some brain structures other than the cerebellum are responsible for motor learning. Different experimental approaches have been used to tackle this question (cerebellar lesions, pharmacological agonist and/or antagonist of cerebellar neurotransmitters, virus tract tracings, etc.). One of these approaches is the study of spontaneous mutations affecting the cerebellar cortex and depriving it of its main input–output organizer (i.e., the Purkinje cell). In this review, we discuss the results obtained in our laboratory in motor learning of both Lurcher (Lc/+) and tambaleante (tbl/tbl) mice as models of Purkinje-cell-devoid cerebellum. PMID:23630472

  16. Motor learning of mice lacking cerebellar Purkinje cells.

    PubMed

    Porras-García, M Elena; Ruiz, Rocío; Pérez-Villegas, Eva M; Armengol, José Á

    2013-01-01

    The cerebellum plays a key role in the acquisition and execution of motor tasks whose physiological foundations were postulated on Purkinje cells' long-term depression (LTD). Numerous research efforts have been focused on understanding the cerebellum as a site of learning and/or memory storage. However, the controversy on which part of the cerebellum participates in motor learning, and how the process takes place, remains unsolved. In fact, it has been suggested that cerebellar cortex, deep cerebellar nuclei, and/or their combination with some brain structures other than the cerebellum are responsible for motor learning. Different experimental approaches have been used to tackle this question (cerebellar lesions, pharmacological agonist and/or antagonist of cerebellar neurotransmitters, virus tract tracings, etc.). One of these approaches is the study of spontaneous mutations affecting the cerebellar cortex and depriving it of its main input-output organizer (i.e., the Purkinje cell). In this review, we discuss the results obtained in our laboratory in motor learning of both Lurcher (Lc/+) and tambaleante (tbl/tbl) mice as models of Purkinje-cell-devoid cerebellum.

  17. Purkinje Cell Activity in the Cerebellar Anterior Lobe after Rabbit Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Green, John T.; Steinmetz, Joseph E.

    2005-01-01

    The cerebellar anterior lobe may play a critical role in the execution and proper timing of learned responses. The current study was designed to monitor Purkinje cell activity in the rabbit cerebellar anterior lobe after eyeblink conditioning, and to assess whether Purkinje cells in recording locations may project to the interpositus nucleus.…

  18. Differentiation of human induced pluripotent stem cells to mature functional Purkinje neurons.

    PubMed

    Wang, Shuyan; Wang, Bin; Pan, Na; Fu, Linlin; Wang, Chaodong; Song, Gongru; An, Jing; Liu, Zhongfeng; Zhu, Wanwan; Guan, Yunqian; Xu, Zhi-Qing David; Chan, Piu; Chen, Zhiguo; Zhang, Y Alex

    2015-01-01

    It remains a challenge to differentiate human induced pluripotent stem cells (iPSCs) or embryonic stem (ES) cells to Purkinje cells. In this study, we derived iPSCs from human fibroblasts and directed the specification of iPSCs first to Purkinje progenitors, by adding Fgf2 and insulin to the embryoid bodies (EBs) in a time-sensitive manner, which activates the endogenous production of Wnt1 and Fgf8 from EBs that further patterned the cells towards a midbrain-hindbrain-boundary tissue identity. Neph3-positive human Purkinje progenitors were sorted out by using flow cytometry and cultured either alone or with granule cell precursors, in a 2-dimensional or 3-dimensional environment. However, Purkinje progenitors failed to mature further under above conditions. By co-culturing human Purkinje progenitors with rat cerebellar slices, we observed mature Purkinje-like cells with right morphology and marker expression patterns, which yet showed no appropriate membrane properties. Co-culture with human fetal cerebellar slices drove the progenitors to not only morphologically correct but also electrophysiologically functional Purkinje neurons. Neph3-posotive human cells could also survive transplantation into the cerebellum of newborn immunodeficient mice and differentiate to L7- and Calbindin-positive neurons. Obtaining mature human Purkinje cells in vitro has significant implications in studying the mechanisms of spinocerebellar ataxias and other cerebellar diseases. PMID:25782665

  19. Differentiation of human induced pluripotent stem cells to mature functional Purkinje neurons

    PubMed Central

    Wang, Shuyan; Wang, Bin; Pan, Na; Fu, Linlin; Wang, Chaodong; Song, Gongru; An, Jing; Liu, Zhongfeng; Zhu, Wanwan; Guan, Yunqian; Xu, Zhi-Qing David; Chan, Piu; Chen, Zhiguo; Zhang, Y. Alex

    2015-01-01

    It remains a challenge to differentiate human induced pluripotent stem cells (iPSCs) or embryonic stem (ES) cells to Purkinje cells. In this study, we derived iPSCs from human fibroblasts and directed the specification of iPSCs first to Purkinje progenitors, by adding Fgf2 and insulin to the embryoid bodies (EBs) in a time-sensitive manner, which activates the endogenous production of Wnt1 and Fgf8 from EBs that further patterned the cells towards a midbrain-hindbrain-boundary tissue identity. Neph3-positive human Purkinje progenitors were sorted out by using flow cytometry and cultured either alone or with granule cell precursors, in a 2-dimensional or 3-dimensional environment. However, Purkinje progenitors failed to mature further under above conditions. By co-culturing human Purkinje progenitors with rat cerebellar slices, we observed mature Purkinje-like cells with right morphology and marker expression patterns, which yet showed no appropriate membrane properties. Co-culture with human fetal cerebellar slices drove the progenitors to not only morphologically correct but also electrophysiologically functional Purkinje neurons. Neph3-posotive human cells could also survive transplantation into the cerebellum of newborn immunodeficient mice and differentiate to L7- and Calbindin-positive neurons. Obtaining mature human Purkinje cells in vitro has significant implications in studying the mechanisms of spinocerebellar ataxias and other cerebellar diseases. PMID:25782665

  20. The Cerebellum and SIDS: Disordered Breathing in a Mouse Model of Developmental Cerebellar Purkinje Cell Loss during Recovery from Hypercarbia

    PubMed Central

    Calton, Michele A.; Howard, Jeremy R.; Harper, Ronald M.; Goldowitz, Dan; Mittleman, Guy

    2016-01-01

    The cerebellum assists coordination of somatomotor, respiratory, and autonomic actions. Purkinje cell alterations or loss appear in sudden infant death and sudden death in epilepsy victims, possibly contributing to the fatal event. We evaluated breathing patterns in 12 wild-type (WT) and Lurcher mutant mice with 100% developmental cerebellar Purkinje cell loss under baseline (room air), and recovery from hypercapnia, a concern in sudden death events. Six mutant and six WT mice were exposed to 4-min blocks of increasing CO2 (2, 4, 6, and 8%), separated by 4-min recovery intervals in room air. Breath-by-breath patterns, including depth of breathing and end-expiratory pause (EEP) durations during recovery, were recorded. No baseline genotypic differences emerged. However, during recovery, EEP durations significantly lengthened in mutants, compared to WT mice, following the relatively low levels of CO2 exposure. Additionally, mutant mice exhibited signs of post-sigh disordered breathing during recovery following each exposure. Developmental cerebellar Purkinje cell loss significantly affects compensatory breathing patterns following mild CO2 exposure, possibly by inhibiting recovery from elevated CO2. These data implicate cerebellar Purkinje cells in the ability to recover from hypercarbia, suggesting that neuropathologic changes or loss of these cells contribute to inadequate ventilatory recovery to increased environmental CO2. Multiple disorders, including sudden infant death syndrome (SIDS) and sudden unexpected death in epilepsy (SUDEP), appear to involve both cardiorespiratory failure and loss or injury to cerebellar Purkinje cells; the findings support the concept that such neuropathology may precede and exert a prominent role in these fatal events. PMID:27242661

  1. Fear conditioning-related changes in cerebellar Purkinje cell activities in goldfish

    PubMed Central

    2012-01-01

    Background Fear conditioning-induced changes in cerebellar Purkinje cell responses to a conditioned stimulus have been reported in rabbits. It has been suggested that synaptic long-term potentiation and the resulting increases in firing rates of Purkinje cells are related to the acquisition of conditioned fear in mammals. However, Purkinje cell activities during acquisition of conditioned fear have not been analysed, and changes in Purkinje cell activities throughout the development of conditioned fear have not yet been investigated. In the present study, we tracked Purkinje cell activities throughout a fear conditioning procedure and aimed to elucidate further how cerebellar circuits function during the acquisition and expression of conditioned fear. Methods Activities of single Purkinje cells in the corpus cerebelli were tracked throughout a classical fear conditioning procedure in goldfish. A delayed conditioning paradigm was used with cardiac deceleration as the conditioned response. Conditioning-related changes of Purkinje cell responses to a conditioned stimulus and unconditioned stimulus were examined. Results The majority of Purkinje cells sampled responded to the conditioned stimulus by either increasing or decreasing their firing rates before training. Although there were various types of conditioning-related changes in Purkinje cells, more than half of the cells showed suppressed activities in response to the conditioned stimulus after acquisition of conditioned fear. Purkinje cells that showed unconditioned stimulus-coupled complex-spike firings also exhibited conditioning-related suppression of simple-spike responses to the conditioned stimulus. A small number of Purkinje cells showed increased excitatory responses in the acquisition sessions. We found that the magnitudes of changes in the firing frequencies of some Purkinje cells in response to the conditioned stimulus correlated with the magnitudes of the conditioned responses on a trial

  2. The multiple roles of Purkinje cells in sensori-motor calibration: to predict, teach and command

    PubMed Central

    Medina, Javier F

    2014-01-01

    Neurophysiological recordings in the cerebellar cortex of awake-behaving animals are revolutionizing the way we think about the role of Purkinje cells in sensori-motor calibration. Early theorists suggested that if a movement became miscalibrated, Purkinje cell output would be changed to adjust the motor command and restore good performance. The finding that Purkinje cell activity changed in many sensori-motor calibration tasks was taken as strong support for this hypothesis. Based on more recent data, however, it has been suggested that changes in Purkinje cell activity do not contribute to the motor command directly; instead, they are used either as a teaching signal, or to predict the altered kinematics of the movement after calibration has taken place. I will argue that these roles are not mutually exclusive, and that Purkinje cells may contribute to command generation, teaching, and prediction at different times during sensori-motor calibration. PMID:21684147

  3. Identification of feline panleukopenia virus proteins expressed in Purkinje cell nuclei of cats with cerebellar hypoplasia.

    PubMed

    Poncelet, Luc; Héraud, Céline; Springinsfeld, Marie; Ando, Kunie; Kabova, Anna; Beineke, Andreas; Peeters, Dominique; Op De Beeck, Anne; Brion, Jean-Pierre

    2013-06-01

    Parvoviruses depend on initiation of host cell division for their replication. Undefined parvoviral proteins have been detected in Purkinje cells of the cerebellum after experimental feline panleukopenia virus (FPV) infection of neonatal kittens and in naturally occurring cases of feline cerebellar hypoplasia. In this study, a parvoviral protein in the nucleus of Purkinje cells of kittens with cerebellar hypoplasia was shown by immunoprecipitation to be the FPV viral capsid protein VP2. In PCR-confirmed, FPV-associated feline cerebellar hypoplasia, expression of the FPV VP2 protein was demonstrated by immunohistochemistry in Purkinje cell nuclei in 4/10 cases and expression of the FPV non-structural protein NS1 was demonstrated in Purkinje cell nuclei in 5/10 cases. Increased nuclear ERK1 expression was observed in several Purkinje cells in 1/10 kittens. No expression of the G1 and S mitotic phase marker proliferating cell nuclear antigen (PCNA) was evident in Purkinje cell nuclei. These results support the hypothesis that FPV is able to proceed far into its replication cycle in post-mitotic Purkinje cells.

  4. Climbing Fiber Regulation of Spontaneous Purkinje Cell Activity and Cerebellum-Dependent Blink Responses123

    PubMed Central

    Bengtsson, Fredrik

    2016-01-01

    Abstract It has been known for a long time that GABAergic Purkinje cells in the cerebellar cortex, as well as their target neurons in the cerebellar nuclei, are spontaneously active. The cerebellar output will, therefore, depend on how input is integrated into this spontaneous activity. It has been shown that input from climbing fibers originating in the inferior olive controls the spontaneous activity in Purkinje cells. While blocking climbing fiber input to the Purkinje cells causes a dramatic increase in the firing rate, increased climbing fiber activity results in reduced Purkinje cell activity. However, the exact calibration of this regulation has not been examined systematically. Here we examine the relation between climbing fiber stimulation frequency and Purkinje cell activity in unanesthetized decerebrated ferrets. The results revealed a gradual suppression of Purkinje cell activity, starting at climbing fiber stimulation frequencies as low as 0.5 Hz. At 4 Hz, Purkinje cells were completely silenced. This effect lasted an average of 2 min after the stimulation rate was reduced to a lower level. We also examined the effect of sustained climbing fiber stimulation on overt behavior. Specifically, we analyzed conditioned blink responses, which are known to be dependent on the cerebellum, while stimulating the climbing fibers at different frequencies. In accordance with the neurophysiological data, the conditioned blink responses were suppressed at stimulation frequencies of ≥4 Hz. PMID:26839917

  5. Apoptosis Inducing Factor Deficiency Causes Reduced Mitofusion 1 Expression and Patterned Purkinje Cell Degeneration

    PubMed Central

    Chung, Seung-Hyuk; Calafiore, Marco; Plane, Jennifer M.; Pleasure, David E.; Deng, Wenbin

    2010-01-01

    Alteration in mitochondrial dynamics has been implicated in many neurodegenerative diseases. Mitochondrial apoptosis inducing factor (AIF) plays a key role in multiple cellular and disease processes. Using immunoblotting and flow cytometry analysis with Harlequin mutant mice that have a proviral insertion in the AIF gene, we first revealed that mitofusion 1 (Mfn1), a key mitochondrial fusion protein, is significantly diminished in Purkinje cells of the Harlequin cerebellum. Next, we investigated the cerebellar pathology of Harlequin mice in an age-dependent fashion, and identified a striking process of progressive and patterned Purkinje cell degeneration. Using immunohistochemistry with zebrin II, the most studied compartmentalization marker in the cerebellum, we found that zebrin II-negative Purkinje cells first started to degenerate at 7 months of age. By 11 months of age, almost half of the Purkinje cells were degenerated. Subsequently, most of the Purkinje cells disappeared in the Harlequin cerebellum. The surviving Purkinje cells were concentrated in cerebellar lobules IX and X, where these cells were positive for heat shock protein 25 and resistant to degeneration. We further showed that the patterned Purkinje cell degeneration was dependent on caspase but not poly(ADP-ribose) polymerase-1 (PARP-1) activation, and confirmed the marked decrease of Mfn1 in the Harlequin cerebellum. Our results identified a previously unrecognized role of AIF in Purkinje cell degeneration, and revealed that AIF deficiency leads to altered mitochondrial fusion and caspase-dependent cerebellar Purkinje cell loss in Harlequin mice. This study is the first to link AIF and mitochondrial fusion, both of which might play important roles in neurodegeneration. PMID:20974255

  6. Purkinje cell heterotopy with cerebellar hypoplasia in two free-living American kestrels (Falco sparverius).

    PubMed

    Armién, A G; McRuer, D L; Ruder, M G; Wünschmann, A

    2013-01-01

    Two wild fledgling kestrels exhibited lack of motor coordination, postural reaction deficits, and abnormal propioception. At necropsy, the cerebellum and brainstem were markedly underdeveloped. Microscopically, there was Purkinje cells heterotopy, abnormal circuitry, and hypoplasia with defective foliation. Heterotopic neurons were identified as immature Purkinje cells by their size, location, immunoreactivity for calbindin D-28 K, and ultrastructural features. The authors suggest that this cerebellar abnormality was likely due to a disruption of molecular mechanisms that dictate Purkinje cell migration, placement, and maturation in early embryonic development. The etiology of this condition remains undetermined. Congenital central nervous system disorders have rarely been reported in birds.

  7. Integration of Purkinje cell inhibition by cerebellar nucleo-olivary neurons.

    PubMed

    Najac, Marion; Raman, Indira M

    2015-01-14

    Neurons in the cerebellar cortex, cerebellar nuclei, and inferior olive (IO) form a trisynaptic loop critical for motor learning. IO neurons excite Purkinje cells via climbing fibers and depress their parallel fiber inputs. Purkinje cells inhibit diverse cells in the cerebellar nuclei, including small GABAergic nucleo-olivary neurons that project to the IO. To investigate how these neurons integrate synaptic signals from Purkinje cells, we retrogradely labeled nucleo-olivary cells in the contralateral interpositus and lateral nuclei with cholera toxin subunit B-Alexa Fluor 488 and recorded their electrophysiological properties in cerebellar slices from weanling mice. Nucleo-olivary cells fired action potentials over a relatively narrow dynamic range (maximal rate, ∼ 70 spikes/s), unlike large cells that project to premotor areas (maximal rate, ∼ 400 spikes/s). GABA(A) receptor-mediated IPSCs evoked by electrical or optogenetic stimulation of Purkinje cells were more than 10-fold slower in nucleo-olivary cells (decay time, ∼ 25 ms) than in large cells (∼ 2 ms), and repetitive stimulation at 20-150 Hz evoked greatly summating IPSCs. Nucleo-olivary firing rates varied inversely with IPSP frequency, and the timing of Purkinje IPSPs and nucleo-olivary spikes was uncorrelated. These attributes contrast with large cells, whose brief IPSCs and rapid firing rates can permit well timed postinhibitory spiking. Thus, the intrinsic and synaptic properties of these two projection neurons from the cerebellar nuclei tailor them for differential integration and transmission of their Purkinje cell input.

  8. Integration of Purkinje cell inhibition by cerebellar nucleo-olivary neurons.

    PubMed

    Najac, Marion; Raman, Indira M

    2015-01-14

    Neurons in the cerebellar cortex, cerebellar nuclei, and inferior olive (IO) form a trisynaptic loop critical for motor learning. IO neurons excite Purkinje cells via climbing fibers and depress their parallel fiber inputs. Purkinje cells inhibit diverse cells in the cerebellar nuclei, including small GABAergic nucleo-olivary neurons that project to the IO. To investigate how these neurons integrate synaptic signals from Purkinje cells, we retrogradely labeled nucleo-olivary cells in the contralateral interpositus and lateral nuclei with cholera toxin subunit B-Alexa Fluor 488 and recorded their electrophysiological properties in cerebellar slices from weanling mice. Nucleo-olivary cells fired action potentials over a relatively narrow dynamic range (maximal rate, ∼ 70 spikes/s), unlike large cells that project to premotor areas (maximal rate, ∼ 400 spikes/s). GABA(A) receptor-mediated IPSCs evoked by electrical or optogenetic stimulation of Purkinje cells were more than 10-fold slower in nucleo-olivary cells (decay time, ∼ 25 ms) than in large cells (∼ 2 ms), and repetitive stimulation at 20-150 Hz evoked greatly summating IPSCs. Nucleo-olivary firing rates varied inversely with IPSP frequency, and the timing of Purkinje IPSPs and nucleo-olivary spikes was uncorrelated. These attributes contrast with large cells, whose brief IPSCs and rapid firing rates can permit well timed postinhibitory spiking. Thus, the intrinsic and synaptic properties of these two projection neurons from the cerebellar nuclei tailor them for differential integration and transmission of their Purkinje cell input. PMID:25589749

  9. Purkinje cell death after uptake of anti-Yo antibodies in cerebellar slice cultures.

    PubMed

    Greenlee, John E; Clawson, Susan A; Hill, Kenneth E; Wood, Blair L; Tsunoda, Ikuo; Carlson, Noel G

    2010-10-01

    Paraneoplastic cerebellar degeneration accompanying gynecological and breast cancers is characteristically accompanied by a serum and cerebrospinal fluid (CSF) antibody response, termed "anti-Yo," which reacts with cytoplasmic proteins of cerebellar Purkinje cells. Because these antibodies interact with cytoplasmic rather than cell surface membrane proteins, their role in causing Purkinje cell death has been questioned. To address this issue, we studied the interaction of anti-Yo antibodies with Purkinje cells in slice (organotypic) cultures of rat cerebellum. We incubated cultures with immunoglobulin G (IgG)-containing anti-Yo antibodies using titers of anti-Yo antibody equivalent to those found in CSF of affected patients. Cultures were then studied in real time and after fixation for potential uptake of antibody and induction of cell death. Anti-Yo antibodies delivered in serum, CSF, or purified IgG were taken up by viable Purkinje cells, accumulated intracellularly, and were associated with cell death. Normal IgG was also taken up by Purkinje cells but did not accumulate and did not affect cell viability. These findings indicate that autoantibodies directed against intracellular Purkinje cell proteins can be taken up to cause cell death and suggest that anti-Yo antibody may be directly involved in the pathogenesis of paraneoplastic cerebellar degeneration.

  10. Encoding of action by the Purkinje cells of the cerebellum

    PubMed Central

    Herzfeld, David J.; Kojima, Yoshiko; Soetedjo, Robijanto; Shadmehr, Reza

    2016-01-01

    Summary Execution of accurate eye movements depends critically on the cerebellum1,2,3, suggesting that Purkinje cells (P-cells) may predict motion of the eye. Yet, this encoding has remained a long-standing puzzle: P-cells show little consistent modulation with respect to saccade amplitude4,5 or direction4, and critically, their discharge lasts longer than duration of a saccade6,7. Here, we analyzed P-cell discharge in the oculomotor vermis of behaving monkeys8,9 and found neurons that increased or decreased their activity during saccades. We estimated the combined effect of these two populations via their projections on the caudal fastigial nucleus (cFN) and uncovered a simple-spike population response that precisely predicted the real-time motion of the eye. When we organized the P-cells according to each cell's complex-spike directional tuning, the simple-spike population response predicted both the real-time speed and direction of saccade multiplicatively via a gain-field. This suggests that the cerebellum predicts the real-time motion of the eye during saccades via the combined inputs of P-cells onto individual nucleus neurons. A gain-field encoding of simple spikes emerges if the P-cells that project onto a nucleus neuron are not selected at random, but share a common complex-spike property. PMID:26469054

  11. Purkinje cell heterotopy with cerebellar hypoplasia in two free-living American kestrels (Falco sparverius).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two wild fledgling kestrels exhibited lack of motor coordination, postural reaction deficits, and abnormal propioception. At necropsy, the cerebellum and brainstem were markedly underdeveloped. Microscopically, there was Purkinje cells heterotopy, abnormal circuitry, and hypoplasia with defective fo...

  12. New structural aspects of the synaptic contacts on Purkinje cells in an elasmobranch cerebellum.

    PubMed Central

    Alvarez-Otero, R; Regueira, S D; Anadon, R

    1993-01-01

    Nerve fibre contacts on Purkinje cell perikarya in the cerebellum of the small-spotted dogfish (Scyliorhinus canicula) were studied using the Cajal reduced silver technique, Golgi methods and electron microscopy. Silver staining revealed axons with thick swellings close to the base of Purkinje cells. Golgi methods demonstrated the presence of 'pincushions' of somatic spines on Purkinje cells. Electron microscopy revealed flattened fibres that formed extensive synaptic contacts with the Purkinje cell 'pincushions'. It is proposed, on the basis of the ultrastructural features, that these fibres are climbing fibres. Their possible significance in terms of the evolution of cerebellar circuitry is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8509296

  13. Cytochrome oxidase activity is increased in +/Lc Purkinje cells destined to die.

    PubMed

    Vogel, M W; Fan, H; Sydnor, J; Guidetti, P

    2001-10-01

    +/Lc Purkinje cells degenerate postnatally because of a gain-of-function mutation in the delta2 glutamate receptor (Grid2) that causes a constitutive Na+ current leak. The effect of the resulting chronic depolarization on Purkinje cell metabolism was investigated by measuring levels of cytochrome oxidase (COX) activity in Purkinje cell dendrites using quantitative densitometry. Analysis of wild type controls and +/Lc mutants at P10, P15 and P25 showed that levels of COX activity were significantly increased above control levels by P15 and continued to increase through P25. The increase in COX activity is likely to reflect an increase in oxidative phosphorylation to accommodate the energy demands of removing excess Na+ and Ca2+ entering the Purkinje cells in response to the Grid2 leak current.

  14. Purkinje cell responses during visually and vestibularly driven smooth eye movements in mice

    PubMed Central

    Katoh, Akira; Shin, Soon-Lim; Kimpo, Rhea R; Rinaldi, Jacob M; Raymond, Jennifer L

    2015-01-01

    Introduction An essential complement to molecular-genetic approaches for analyzing the function of the oculomotor circuitry in mice is an understanding of sensory and motor signal processing in the circuit. Although there has been extensive analysis of the signals carried by neurons in the oculomotor circuits of species, such as monkeys, rabbits and goldfish, relatively little in vivo physiology has been done in the oculomotor circuitry of mice. We analyzed the contribution of vestibular and nonvestibular signals to the responses of individual Purkinje cells in the cerebellar flocculus of mice. Methods We recorded Purkinje cells in the cerebellar flocculus of C57BL/6 mice during eye movement responses to vestibular and visual stimulation. Results As in other species, most individual Purkinje cells in mice carried both vestibular and nonvestibular signals, and the most common response across cells was an increase in firing in response to ipsiversive eye movement or ipsiversive head movement. When both the head and eyes were moving, the Purkinje cell responses were approximated as a linear summation of head and eye velocity inputs. Unlike other species, floccular Purkinje cells in mice were considerably more sensitive to eye velocity than head velocity. Conclusions The signal content of Purkinje cells in the cerebellar flocculus of mice was qualitatively similar to that in other species. However, the eye velocity sensitivity was higher than in other species, which may reflect a tuning to the smaller range of eye velocities in mice. PMID:25642393

  15. Palisade pattern of mormyrid Purkinje cells: a correlated light and electron microscopic study.

    PubMed

    Meek, J; Nieuwenhuys, R

    1991-04-01

    The present study is devoted to a detailed analysis of the structural and synaptic organization of mormyrid Purkinje cells in order to evaluate the possible functional significance of their dendritic palisade pattern. For this purpose, the properties of Golgi-impregnated as well as unimpregnated Purkinje cells in lobe C1 and C3 of the cerebellum of Gnathonemus petersii were light and electron microscopically analyzed, quantified, reconstructed, and mutually compared. Special attention was paid to the degree of regularity of their dendritic trees, their relations with Bergmann glia, and the distribution and numerical properties of their synaptic connections with parallel fibers, stellate cells, "climbing" fibers, and Purkinje axonal boutons. The highest degree of palisade specialization was encountered in lobe C1, where Purkinje cells have on average 50 palisade dendrites with a very regular distribution in a sagittal plane. Their spine density decreases from superficial to deep (from 14 to 6 per micron dendritic length), a gradient correlated with a decreasing parallel fiber density but an increasing parallel fiber diameter. Each Purkinje cell makes on average 75,000 synaptic contacts with parallel fibers, some of which are rather coarse (0.45 microns), and provided with numerous short collaterals. Climbing fibers do not climb, since their synaptic contacts are restricted to the ganglionic layer (i.e., the layer of Purkinje and eurydendroid projection cells), where they make about 130 synaptic contacts per cell with 2 or 3 clusters of thorns on the proximal dendrites. These clusters contain also a type of "shunting" elements that make desmosome-like junctions with both the climbing fiber boutons and the necks of the thorns. The axons of Purkinje cells in lobe C1 make small terminal arborizations, with about 20 boutons, that may be substantially (up to 500 microns) displaced rostrally or caudally with respect to the soma. Purkinje axonal boutons were observed to

  16. Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs

    PubMed Central

    Holtzman, Tahl; Rajapaksa, Thimali; Mostofi, Abteen; Edgley, Steve A

    2006-01-01

    While the synaptic properties of Golgi cell-mediated inhibition of granule cells are well studied, less is known of the afferent inputs to Golgi cells so their role in information processing remains unclear. We investigated the responses of cerebellar cortical Golgi cells and Purkinje cells in Crus I and II of the posterior lobe cerebellar hemisphere to activation of peripheral afferents in vivo, using anaesthetized rats. Recordings were made from 70 Golgi cells and 76 Purkinje cells. Purkinje cells were identified by the presence of climbing fibre responses. Golgi cells were identified by both spontaneous firing pattern and response properties, and identification was confirmed using juxtacellular labelling of single neurones (n = 16). Purkinje cells in Crus II showed continuous firing at relatively high rates (25–60 Hz) and stimulation of peripheral afferents rarely evoked substantial responses. The most common response was a modest, long-latency, long-lasting increase in simple spike output. By comparison, the most common response evoked in Golgi cells by the same stimuli was a long-latency, long-lasting depression of firing, found in ∼70% of the Golgi cells tested. The onsets of Golgi cell depressions had shorter latencies than the Purkinje cell excitations. Brief, short-latency excitations and reductions in firing were also evoked in some Golgi cells, and rarely in Purkinje cells, but in most cases long-lasting depressions were the only significant change in spike firing. Golgi cell responses could be evoked using air puff or tactile stimuli and under four different anaesthetic regimens. Long-lasting responses in both neurone types could be evoked from wide receptive fields, in many cases including distal afferents from all four limbs, as well as from trigeminal afferents. These Golgi cell responses are not consistent with the conventional feedback inhibition or ‘gain control’ models of Golgi cell function. They suggest instead that cerebellar cortical

  17. Current source density correlates of cerebellar Golgi and Purkinje cell responses to tactile input

    PubMed Central

    Tahon, Koen; Wijnants, Mike; De Schutter, Erik

    2011-01-01

    The overall circuitry of the cerebellar cortex has been known for over a century, but the function of many synaptic connections remains poorly characterized in vivo. We used a one-dimensional multielectrode probe to estimate the current source density (CSD) of Crus IIa in response to perioral tactile stimuli in anesthetized rats and to correlate current sinks and sources to changes in the spike rate of corecorded Golgi and Purkinje cells. The punctate stimuli evoked two distinct early waves of excitation (at <10 and ∼20 ms) associated with current sinks in the granular layer. The second wave was putatively of corticopontine origin, and its associated sink was located higher in the granular layer than the first trigeminal sink. The distinctive patterns of granular-layer sinks correlated with the spike responses of corecorded Golgi cells. In general, Golgi cell spike responses could be linearly reconstructed from the CSD profile. A dip in simple-spike activity of coregistered Purkinje cells correlated with a current source deep in the molecular layer, probably generated by basket cell synapses, interspersed between sparse early sinks presumably generated by synapses from granule cells. The late (>30 ms) enhancement of simple-spike activity in Purkinje cells was characterized by the absence of simultaneous sinks in the granular layer and by the suppression of corecorded Golgi cell activity, pointing at inhibition of Golgi cells by Purkinje axon collaterals as a likely mechanism of late Purkinje cell excitation. PMID:21228303

  18. Role of Cytosolic Calcium Diffusion in Murine Cardiac Purkinje Cells

    PubMed Central

    Limbu, Bijay; Shah, Kushal; Weinberg, Seth H.; Deo, Makarand

    2016-01-01

    Cardiac Purkinje cells (PCs) are morphologically and electrophysiologically different from ventricular myocytes and, importantly, exhibit distinct calcium (Ca2+) homeostasis. Recent studies suggest that PCs are more susceptible to action potential (AP) abnormalities than ventricular myocytes; however, the exact mechanisms are poorly understood. In this study, we utilized a detailed biophysical mathematical model of a murine PC to systematically examine the role of cytosolic Ca2+ diffusion in shaping the AP in PCs. A biphasic spatiotemporal Ca2+ diffusion process, as recorded experimentally, was implemented in the model. In this study, we investigated the role of cytosolic Ca2+ dynamics on AP and ionic current properties by varying the effective Ca2+ diffusion rate. It was observed that AP morphology, specifically the plateau, was affected due to changes in the intracellular Ca2+ dynamics. Elevated Ca2+ concentration in the sarcolemmal region activated inward sodium–Ca2+ exchanger (NCX) current, resulting in a prolongation of the AP plateau at faster diffusion rates. Artificially clamping the NCX current to control values completely reversed the alterations in the AP plateau, thus confirming the role of NCX in modifying the AP morphology. Our results demonstrate that cytosolic Ca2+ diffusion waves play a significant role in shaping APs of PCs and could provide mechanistic insights in the increased arrhythmogeneity of PCs. PMID:27478391

  19. Purkinje cell dysfunction and alteration of long-term synaptic plasticity in fetal alcohol syndrome.

    PubMed

    Servais, Laurent; Hourez, Raphaël; Bearzatto, Bertrand; Gall, David; Schiffmann, Serge N; Cheron, Guy

    2007-06-01

    In cerebellum and other brain regions, neuronal cell death because of ethanol consumption by the mother is thought to be the leading cause of neurological deficits in the offspring. However, little is known about how surviving cells function. We studied cerebellar Purkinje cells in vivo and in vitro to determine whether function of these cells was altered after prenatal ethanol exposure. We observed that Purkinje cells that were prenatally exposed to ethanol presented decreased voltage-gated calcium currents because of a decreased expression of the gamma-isoform of protein kinase C. Long-term depression at the parallel fiber-Purkinje cell synapse in the cerebellum was converted into long-term potentiation. This likely explains the dramatic increase in Purkinje cell firing and the rapid oscillations of local field potential observed in alert fetal alcohol syndrome mice. Our data strongly suggest that reversal of long-term synaptic plasticity and increased firing rates of Purkinje cells in vivo are major contributors to the ataxia and motor learning deficits observed in fetal alcohol syndrome. Our results show that calcium-related neuronal dysfunction is central to the pathogenesis of the neurological manifestations of fetal alcohol syndrome and suggest new methods for treatment of this disorder.

  20. Early-onset Purkinje cell dysfunction underlies cerebellar ataxia in peroxisomal multifunctional protein-2 deficiency.

    PubMed

    De Munter, Stephanie; Verheijden, Simon; Vanderstuyft, Esther; Malheiro, Ana Rita; Brites, Pedro; Gall, David; Schiffmann, Serge N; Baes, Myriam

    2016-10-01

    The cerebellar pathologies in peroxisomal diseases underscore that these organelles are required for the normal development and maintenance of the cerebellum, but the mechanisms have not been resolved. Here we investigated the origins of the early-onset coordination impairment in a mouse model with neural selective deficiency of multifunctional protein-2, the central enzyme of peroxisomal β-oxidation. At the age of 4weeks, Nestin-Mfp2(-/-) mice showed impaired motor learning on the accelerating rotarod and underperformed on the balance beam test. The gross morphology of the cerebellum and Purkinje cell arborization were normal. However, electrophysiology revealed a reduced Purkinje cell firing rate, a decreased excitability and an increased membrane capacitance. The distribution of climbing and parallel fiber synapses on Purkinje cells was immature and was accompanied by an increased spine length. Despite normal myelination, Purkinje cell axon degeneration was evident from the occurrence of axonal swellings containing accumulated organelles. In conclusion, the electrical activity, axonal integrity and wiring of Purkinje cells are exquisitely dependent on intact peroxisomal β-oxidation in neural cells. PMID:27353294

  1. Early-onset Purkinje cell dysfunction underlies cerebellar ataxia in peroxisomal multifunctional protein-2 deficiency.

    PubMed

    De Munter, Stephanie; Verheijden, Simon; Vanderstuyft, Esther; Malheiro, Ana Rita; Brites, Pedro; Gall, David; Schiffmann, Serge N; Baes, Myriam

    2016-10-01

    The cerebellar pathologies in peroxisomal diseases underscore that these organelles are required for the normal development and maintenance of the cerebellum, but the mechanisms have not been resolved. Here we investigated the origins of the early-onset coordination impairment in a mouse model with neural selective deficiency of multifunctional protein-2, the central enzyme of peroxisomal β-oxidation. At the age of 4weeks, Nestin-Mfp2(-/-) mice showed impaired motor learning on the accelerating rotarod and underperformed on the balance beam test. The gross morphology of the cerebellum and Purkinje cell arborization were normal. However, electrophysiology revealed a reduced Purkinje cell firing rate, a decreased excitability and an increased membrane capacitance. The distribution of climbing and parallel fiber synapses on Purkinje cells was immature and was accompanied by an increased spine length. Despite normal myelination, Purkinje cell axon degeneration was evident from the occurrence of axonal swellings containing accumulated organelles. In conclusion, the electrical activity, axonal integrity and wiring of Purkinje cells are exquisitely dependent on intact peroxisomal β-oxidation in neural cells.

  2. Early postweaning social isolation but not environmental enrichment modifies vermal Purkinje cell dendritic outgrowth in rats.

    PubMed

    Pascual, Rodrigo; Bustamante, Carlos

    2013-01-01

    In the present study, we analyzed the effects of enriched, social and isolated experiences on vermal Purkinje cell of the rat, together with anxiety-like behavior in the elevated-plus maze. Sprague-Dawley male rats were randomly submitted to either enriched, social, or isolated environments during the early postweaning period (postnatal days 22-32) and were then behaviorally evaluated in the elevated-plus maze and euthanized for histological analysis. Vermal Purkinje cells (sub-lobules VIa and VIb) were sampled, drawn under camera lucida and morphometrically assessed using the Sholl's concentric ring method. Data obtained indicate that environmental enrichment did not significantly modify the Purkinje cell dendritic branching. On the contrary, Purkinje cell of animals reared in social isolation exhibited a significant reduction in dendritic arborization, which was closely associated with anxiety-like behaviors. The data obtained indicate that, although environmental stimulation in normal animals does not produce significant changes in vermal Purkinje cell dendritic arborization, these cells are vulnerable to early stressful experiences, which is in close association with anxiety-like behaviors.

  3. Regional Alterations in Purkinje Cell Density in Patients with Autism

    PubMed Central

    Skefos, Jerry; Cummings, Christopher; Enzer, Katelyn; Holiday, Jarrod; Weed, Katrina; Levy, Ezra; Yuce, Tarik; Kemper, Thomas; Bauman, Margaret

    2014-01-01

    Neuropathological studies, using a variety of techniques, have reported a decrease in Purkinje cell (PC) density in the cerebellum in autism. We have used a systematic sampling technique that significantly reduces experimenter bias and variance to estimate PC densities in the postmortem brains of eight clinically well-documented individuals with autism, and eight age- and gender-matched controls. Four cerebellar regions were analyzed: a sensorimotor area comprised of hemispheric lobules IV–VI, crus I & II of the posterior lobe, and lobule X of the flocculonodular lobe. Overall PC density was thus estimated using data from all three cerebellar lobes and was found to be lower in the cases with autism as compared to controls, an effect that was most prominent in crus I and II (p<0.05). Lobule X demonstrated a trend towards lower PC density in only the males with autism (p = 0.05). Brain weight, a correlate of tissue volume, was found to significantly contribute to the lower lobule X PC density observed in males with autism, but not to the finding of lower PC density in crus I & II. Therefore, lower crus I & II PC density in autism is more likely due to a lower number of PCs. The PC density in lobule X was found to correlate with the ADI-R measure of the patient's use of social eye contact (R2 = −0.75, p = 0.012). These findings support the hypothesis that abnormal PC density may contribute to selected clinical features of the autism phenotype. PMID:24586223

  4. HCN1 channels in cerebellar Purkinje cells promote late stages of learning and constrain synaptic inhibition

    PubMed Central

    Rinaldi, Arianna; Defterali, Cagla; Mialot, Antoine; Garden, Derek L F; Beraneck, Mathieu; Nolan, Matthew F

    2013-01-01

    Neural computations rely on ion channels that modify neuronal responses to synaptic inputs. While single cell recordings suggest diverse and neurone type-specific computational functions for HCN1 channels, their behavioural roles in any single neurone type are not clear. Using a battery of behavioural assays, including analysis of motor learning in vestibulo-ocular reflex and rotarod tests, we find that deletion of HCN1 channels from cerebellar Purkinje cells selectively impairs late stages of motor learning. Because deletion of HCN1 modifies only a subset of behaviours involving Purkinje cells, we asked whether the channel also has functional specificity at a cellular level. We find that HCN1 channels in cerebellar Purkinje cells reduce the duration of inhibitory synaptic responses but, in the absence of membrane hyperpolarization, do not affect responses to excitatory inputs. Our results indicate that manipulation of subthreshold computation in a single neurone type causes specific modifications to behaviour. PMID:24000178

  5. Requirement of TrkB for synapse elimination in developing cerebellar Purkinje cells

    PubMed Central

    Bosman, Laurens W. J.; Hartmann, Jana; Barski, Jaroslaw J.; Lepier, Alexandra; Noll-Hussong, Michael; Reichardt, Louis F.; Konnerth, Arthur

    2009-01-01

    The receptor tyrosine kinase TrkB and its ligands, brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5), are critically important for growth, survival and activity-dependent synaptic strengthening in the central nervous system. These TrkB-mediated actions occur in a highly cell-type specific manner. Here we report that cerebellar Purkinje cells, which are richly endowed with TrkB receptors, develop a normal morphology in trkB-deficient mice. Thus, in contrast to other types of neurons, Purkinje cells do not need TrkB for dendritic growth and spine formation. Instead, we find a moderate delay in the maturation of GABAergic synapses and, more importantly, an abnormal multiple climbing fiber innervation in Purkinje cells in trkB-deficient mice. Thus, our results demonstrate an involvement of TrkB receptors in synapse elimination and reveal a new role for receptor tyrosine kinases in the brain. PMID:17940915

  6. Cell death in the Purkinje cells of the cerebellum of senescence accelerated mouse (SAMP(8)).

    PubMed

    Zhu, Yonghong; Lee, Cleo C L; Lam, W P; Wai, Maria S M; Rudd, John A; Yew, David T

    2007-10-01

    The cerebella of SAMP(8) (accelerated aging mouse) and SAMR(1) controls were analyzed by Western Blotting of tyrosine hydroxylase and choline acetyltransferase, as well as by TUNEL and histological silver staining. Both tyrosine hydroxylase and choline acetyltransferase levels were higher in SAMR(1) than in SAMP(8). There was also an age-related decrease in enzyme levels in SAMP(8), with the reduction of tyrosine hydroxylase being more apparent. Concomitantly, there was an age-related increase of apoptosis in the medial neocerebellum and the vermis as revealed by TUNEL, with changes being significant in the SAMP(8) strain. Histologically, some Purkinje cells appeared to disappear during aging. Taken together, the data suggests that the aging SAMP(8) strain displays differential Purkinje cell death in the medial cerebellum and that some of the dying cells are likely to be catecholaminergic. PMID:17415677

  7. Simple and complex spike firing patterns in Purkinje cells during classical conditioning.

    PubMed

    Rasmussen, Anders; Jirenhed, Dan-Anders; Hesslow, Germund

    2008-01-01

    Classical blink conditioning is known to depend critically on the cerebellum and the relevant circuitry is gradually being unravelled. Several lines of evidence support the theory that the conditioned stimulus is transmitted by mossy fibers to the cerebellar cortex whereas the unconditioned stimulus is transmitted by climbing fibers. This view has been dramatically confirmed by recent Purkinje cell recordings during training with a classical conditioning paradigm. We have tracked the activity of single Purkinje cells with microelectrodes for several hours in decerebrate ferrets during learning, extinction, and relearning. Paired peripheral forelimb and periocular stimulation, as well as paired direct stimulation of cerebellar afferent pathways (mossy and climbing fibers) causes acquisition of a pause response in Purkinje cell simple spike firing. This conditioned Purkinje cell response has temporal properties that match those of the behavioral response. Its latency varies with the interstimulus interval and it responds to manipulations of the conditioned stimulus in the same way that the blink does. Complex spike firing largely mirrors the simple spike behavior. We have previously suggested that cerebellar learning is subject to a negative feedback control via the inhibitory nucleo-olivary pathway. As the Purkinje cell learns to respond to the conditioned stimulus with a suppression of simple spikes, disinhibition of anterior interpositus neurons would be expected to cause inhibition of the inferior olive. Observations of complex spike firing in the Purkinje cells during conditioning and extinction confirm this prediction. Before training, complex spikes are unaffected or facilitated by the conditioned stimulus, but as the simple spike pause response develops, spontaneous and stimulus-evoked complex spikes are also strongly suppressed by the conditioned stimulus. After extinction of the simple spike pause response, the complex spikes reappear.

  8. Simple and complex spike firing patterns in Purkinje cells during classical conditioning.

    PubMed

    Rasmussen, Anders; Jirenhed, Dan-Anders; Hesslow, Germund

    2008-01-01

    Classical blink conditioning is known to depend critically on the cerebellum and the relevant circuitry is gradually being unravelled. Several lines of evidence support the theory that the conditioned stimulus is transmitted by mossy fibers to the cerebellar cortex whereas the unconditioned stimulus is transmitted by climbing fibers. This view has been dramatically confirmed by recent Purkinje cell recordings during training with a classical conditioning paradigm. We have tracked the activity of single Purkinje cells with microelectrodes for several hours in decerebrate ferrets during learning, extinction, and relearning. Paired peripheral forelimb and periocular stimulation, as well as paired direct stimulation of cerebellar afferent pathways (mossy and climbing fibers) causes acquisition of a pause response in Purkinje cell simple spike firing. This conditioned Purkinje cell response has temporal properties that match those of the behavioral response. Its latency varies with the interstimulus interval and it responds to manipulations of the conditioned stimulus in the same way that the blink does. Complex spike firing largely mirrors the simple spike behavior. We have previously suggested that cerebellar learning is subject to a negative feedback control via the inhibitory nucleo-olivary pathway. As the Purkinje cell learns to respond to the conditioned stimulus with a suppression of simple spikes, disinhibition of anterior interpositus neurons would be expected to cause inhibition of the inferior olive. Observations of complex spike firing in the Purkinje cells during conditioning and extinction confirm this prediction. Before training, complex spikes are unaffected or facilitated by the conditioned stimulus, but as the simple spike pause response develops, spontaneous and stimulus-evoked complex spikes are also strongly suppressed by the conditioned stimulus. After extinction of the simple spike pause response, the complex spikes reappear. PMID:18931885

  9. Transient expression of choline acetyltransferase-like immunoreactivity in Purkinje cells of the developing rat cerebellum.

    PubMed

    Gould, E; Butcher, L L

    1987-08-01

    The expression of choline acetyltransferase (ChAT)-like immunoreactivity was studied immunohistochemically in the cerebelli of developing rats. Brains were examined from the day of birth (postnatal day 1: P1) until adulthood. From P4 through P21, several Purkinje cells in the uvula, nodule, and flocculus of the cerebellum demonstrated ChAT-like immunoreactivity. After P23, no ChAT-positive neurons were observed in any region of the cerebellum. This finding paralleled the transient expression of acetylcholinesterase in Purkinje cells of these same cerebellar areas during development.

  10. Purkinje cell axon collaterals terminate on Cat-301+ neurons in Macaca monkey cerebellum.

    PubMed

    Crook, J D; Hendrickson, A; Erickson, A; Possin, D; Robinson, F R

    2007-11-23

    The monoclonal antibody Cat-301 identifies perineuronal nets around specific neuronal types, including those in the cerebellum. This report finds in adult Macaca monkey that basket cells in the deep molecular layer; granule cell layer (GCL) interneurons including Lugaro cells; large neurons in the foliar white matter (WM); and deep cerebellar nuclei (DCN) neurons contain subsets of Cat-301 positive (+) cells. Most Cat-301+ GCL interneurons are glycine+ and all are densely innervated by a meshwork of calbindin+/glutamic acid decarboxylase+ Purkinje cell collaterals and their synapses. DCN and WM Cat-301+ neurons also receive a similar but less dense innervation. Due to the heavy labeling of adjacent Purkinje cell dendrites, the innervation of Cat-301+ basket cells was less certain. These findings suggest that several complex feedback circuits from Purkinje cell to cerebellar interneurons exist in primate cerebellum whose function needs to be investigated. Cat-301 labeling begins postnatally in WM and DCN, but remains sparse until at least 3 months of age. Because the appearance of perineuronal nets is associated with maturation of synaptic circuits, this suggests that the Purkinje cell feedback circuits develop for some time after birth.

  11. Calcium-dependent chloride current in rat cerebellar Purkinje cell membranes.

    PubMed

    Vykhareva, E A; Zamoyski, V L; Grigoriev, V V; Bachurin, S O

    2015-01-01

    The presence of calcium-dependent potential-activated chloride currents in the membranes of freshly isolated rat cerebellar Purkinje cells (12-15 days) was shown by the whole-cell patch clamp technique. Chloride currents appeared in a sodium-free external solution and reversibly disappeared in the absence of external chloride and calcium ions.

  12. Climbing fibers mediate vestibular modulation of both "complex" and "simple spikes" in Purkinje cells.

    PubMed

    Barmack, N H; Yakhnitsa, V

    2015-10-01

    Climbing and mossy fibers comprise two distinct afferent paths to the cerebellum. Climbing fibers directly evoke a large multispiked action potential in Purkinje cells termed a "complex spike" (CS). By logical exclusion, the other class of Purkinje cell action potential, termed "simple spike" (SS), has often been attributed to activity conveyed by mossy fibers and relayed to Purkinje cells through granule cells. Here, we investigate the relative importance of climbing and mossy fiber pathways in modulating neuronal activity by recording extracellularly from Purkinje cells, as well as from mossy fiber terminals and interneurons in folia 8-10. Sinusoidal roll-tilt vestibular stimulation vigorously modulates the discharge of climbing and mossy fiber afferents, Purkinje cells, and interneurons in folia 9-10 in anesthetized mice. Roll-tilt onto the side ipsilateral to the recording site increases the discharge of both climbing fibers (CSs) and mossy fibers. However, the discharges of SSs decrease during ipsilateral roll-tilt. Unilateral microlesions of the beta nucleus (β-nucleus) of the inferior olive blocks vestibular modulation of both CSs and SSs in contralateral Purkinje cells. The blockage of SSs occurs even though primary and secondary vestibular mossy fibers remain intact. When mossy fiber afferents are damaged by a unilateral labyrinthectomy (UL), vestibular modulation of SSs in Purkinje cells ipsilateral to the UL remains intact. Two inhibitory interneurons, Golgi and stellate cells, could potentially contribute to climbing fiber-induced modulation of SSs. However, during sinusoidal roll-tilt, only stellate cells discharge appropriately out of phase with the discharge of SSs. Golgi cells discharge in phase with SSs. When the vestibularly modulated discharge is blocked by a microlesion of the inferior olive, the modulated discharge of CSs and SSs is also blocked. When the vestibular mossy fiber pathway is destroyed, vestibular modulation of ipsilateral CSs and

  13. Expression of Nav1.8 sodium channels perturbs the firing patterns of cerebellar Purkinje cells.

    PubMed

    Renganathan, M; Gelderblom, M; Black, J A; Waxman, S G

    2003-01-10

    The sensory neuron specific sodium channel Na(v)1.8/SNS exhibits depolarized voltage-dependence of inactivation, slow inactivation and rapid repriming, which differentiate it from other voltage-gated sodium channels. Na(v)1.8 is normally selectively expressed at high levels in sensory ganglion neurons, but not within the CNS. However, expression of Na(v)1.8 mRNA and protein are upregulated within cerebellar Purkinje cells in animal models of multiple sclerosis (MS), and in human MS. To examine the effect of expression of Na(v)1.8 on the activity pattern of Purkinje cells, we biolistically introduced Na(v)1.8 cDNA into these cells in vitro. We report here that Na(v)1.8 can be functionally expressed at physiological levels (similar to the levels in DRG neurons where Na(v)1.8 is normally expressed) within Purkinje cells, and that its expression alters the activity of these neurons in three ways: first, by increasing the amplitude and duration of action potentials; second, by decreasing the proportion of action potentials that are conglomerate and the number of spikes per conglomerate action potential; and third, by contributing to the production of sustained, pacemaker-like impulse trains in response to depolarization. These results provide support for the hypothesis that the expression of Na(v)1.8 channels within Purkinje cells, which occurs in MS, may perturb their function. PMID:12493611

  14. Pre and Post Synaptic NMDA Effects Targeting Purkinje Cells in the Mouse Cerebellar Cortex

    PubMed Central

    Lonchamp, Etienne; Gambino, Frédéric; Dupont, Jean Luc; Doussau, Frédéric; Valera, Antoine; Poulain, Bernard; Bossu, Jean-Louis

    2012-01-01

    N-methyl-D-aspartate (NMDA) receptors are associated with many forms of synaptic plasticity. Their expression level and subunit composition undergo developmental changes in several brain regions. In the mouse cerebellum, beside a developmental switch between NR2B and NR2A/C subunits in granule cells, functional postsynaptic NMDA receptors are seen in Purkinje cells of neonate and adult but not juvenile rat and mice. A presynaptic effect of NMDA on GABA release by cerebellar interneurons was identified recently. Nevertheless whereas NMDA receptor subunits are detected on parallel fiber terminals, a presynaptic effect of NMDA on spontaneous release of glutamate has not been demonstrated. Using mouse cerebellar cultures and patch-clamp recordings we show that NMDA facilitates glutamate release onto Purkinje cells in young cultures via a presynaptic mechanism, whereas NMDA activates extrasynaptic receptors in Purkinje cells recorded in old cultures. The presynaptic effect of NMDA on glutamate release is also observed in Purkinje cells recorded in acute slices prepared from juvenile but not from adult mice and requires a specific protocol of NMDA application. PMID:22276158

  15. Investigating complex I deficiency in Purkinje cells and synapses in patients with mitochondrial disease

    PubMed Central

    Chrysostomou, Alexia; Grady, John P.; Laude, Alex; Taylor, Robert W.; Turnbull, Doug M.

    2015-01-01

    Aims Cerebellar ataxia is common in patients with mitochondrial disease, and despite previous neuropathological investigations demonstrating vulnerability of the olivocerebellar pathway in patients with mitochondrial disease, the exact neurodegenerative mechanisms are still not clear. We use quantitative quadruple immunofluorescence to enable precise quantification of mitochondrial respiratory chain protein expression in Purkinje cell bodies and their synaptic terminals in the dentate nucleus. Methods We investigated NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 protein expression in 12 clinically and genetically defined patients with mitochondrial disease and ataxia and 10 age‐matched controls. Molecular genetic analysis was performed to determine heteroplasmy levels of mutated mitochondrial DNA in Purkinje cell bodies and inhibitory synapses. Results Our data reveal that complex I deficiency is present in both Purkinje cell bodies and their inhibitory synapses which surround dentate nucleus neurons. Inhibitory synapses are fewer and enlarged in patients which could represent a compensatory mechanism. Mitochondrial DNA heteroplasmy demonstrated similarly high levels of mutated mitochondrial DNA in cell bodies and synapses. Conclusions This is the first study to use a validated quantitative immunofluorescence technique to determine complex I expression in neurons and presynaptic terminals, evaluating the distribution of respiratory chain deficiencies and assessing the degree of morphological abnormalities affecting synapses. Respiratory chain deficiencies detected in Purkinje cell bodies and their synapses and structural synaptic changes are likely to contribute to altered cerebellar circuitry and progression of ataxia. PMID:26337858

  16. Optogenetics in the cerebellum: Purkinje cell-specific approaches for understanding local cerebellar functions.

    PubMed

    Tsubota, Tadashi; Ohashi, Yohei; Tamura, Keita

    2013-10-15

    The cerebellum consists of the cerebellar cortex and the cerebellar nuclei. Although the basic neuronal circuitry of the cerebellar cortex is uniform everywhere, anatomical data demonstrate that the input and output relationships of the cortex are spatially segregated between different cortical areas, which suggests that there are functional distinctions between these different areas. Perturbation of cerebellar cortical functions in a spatially restricted fashion is thus essential for investigating the distinctions among different cortical areas. In the cerebellar cortex, Purkinje cells are the sole output neurons that send information to downstream cerebellar and vestibular nuclei. Therefore, selective manipulation of Purkinje cell activities, without disturbing other neuronal types and passing fibers within the cortex, is a direct approach to spatially restrict the effects of perturbations. Although this type of approach has for many years been technically difficult, recent advances in optogenetics now enable selective activation or inhibition of Purkinje cell activities, with high temporal resolution. Here we discuss the effectiveness of using Purkinje cell-specific optogenetic approaches to elucidate the functions of local cerebellar cortex regions. We also discuss what improvements to current methods are necessary for future investigations of cerebellar functions to provide further advances.

  17. Maternal stress induces long-lasting Purkinje cell developmental impairments in mouse offspring.

    PubMed

    Pascual, Rodrigo; Ebner, Daniela; Araneda, Rodrigo; Urqueta, María José; Bustamante, Carlos

    2010-12-01

    A number of clinical studies suggest that prenatal stress can be a risk factor in the development of various psychopathologies, including schizophrenia, depression, anxiety, and autism. The cerebellar vermis has been shown to be involved in most of these disorders. In the present study, therefore, we evaluate the effect of maternal stress on long-term alterations in vermal Purkinje cell morphology. Furthermore, to discern whether these structural changes are associated with anxious behavior, the exploratory drive in the elevated plus maze was evaluated. Pregnant CF-1 mice were randomly assigned to control (n = 14) or stressed (n = 16) groups. Dams of the stressed group were subjected to restraint stress between gestational days 14 and 20, while control pregnant dams remained undisturbed in their home cages. Anxious behavior and Purkinje cell morphology were evaluated in three ontogenetic stages: postweaning, adolescence, and adulthood. Although exploratory behavior in the elevated plus maze was unaffected by prenatal stress, the Purkinje cell morphology showed a transient period of abnormal growth (at postweaning and juvenile stages) followed by dramatic dendritic atrophy in adulthood. In conclusion, prenatal stress induced significant long-lasting bimodal changes in the morphology of vermal Purkinje cells. These structural alterations, however, were not accompanied by anxious behaviors in the elevated plus maze.

  18. Synaptic plasticity and calcium signaling in Purkinje cells of the central cerebellar lobes of mormyrid fish.

    PubMed

    Han, Victor Z; Zhang, Yueping; Bell, Curtis C; Hansel, Christian

    2007-12-01

    Climbing fiber (CF)-evoked calcium transients play a key role in plasticity at parallel fiber (PF) to Purkinje cell synapses in the mammalian cerebellum. Whereas PF activation alone causes long-term potentiation (LTP), coactivation of the heterosynaptic CF input, which evokes large dendritic calcium transients, induces long-term depression (LTD). This unique type of heterosynaptic interaction is a hallmark feature of synaptic plasticity in mammalian Purkinje cells. Purkinje cells in the cerebellum of mormyrid electric fish are characterized by a different architecture of their dendritic trees and by a more pronounced separation of CF and PF synaptic contact sites. We therefore examined the conditions for bidirectional plasticity at PF synapses onto Purkinje cells in the mormyrid cerebellum in vitro. PF stimulation at elevated frequencies induces LTP, whereas LTD results from PF stimulation at enhanced intensities and depends on dendritic calcium influx and metabotropic glutamate receptor type 1 activation. LTD can also be observed after pairing of low intensity PF stimulation with CF stimulation. Using a combination of whole-cell patch-clamp recordings and fluorometric calcium imaging, we characterized calcium transients in Purkinje cell dendrites. CF activation elicits calcium transients not only within the CF input territory (smooth proximal dendrites) but also within the PF input territory (spiny palisade dendrites). Paired PF and CF activation elicits larger calcium transients than stimulation of either input alone. A major source for dendritic calcium signaling is provided by P/Q-type calcium channels. Our data show that despite the spatial separation between the two inputs CF activity facilitates LTD induction at PF synapses.

  19. Survival of interneurons and parallel fiber synapses in a cerebellar cortex deprived of Purkinje cells: studies in the double mutant mouse Grid2Lc/+;Bax(-/-).

    PubMed

    Zanjani, S Hadi; Selimi, Fekrije; Vogel, Michael W; Haeberlé, Anne-Marie; Boeuf, Julien; Mariani, Jean; Bailly, Yannick J

    2006-08-01

    The Lurcher mutation in the Grid2 gene causes the cell autonomous death of virtually all cerebellar Purkinje cells and the target-related death of 90% of the granule cells and 60-75% of the olivary neurons. Inactivation of Bax, a pro-apoptotic gene of the Bcl-2 family, in heterozygous Lurcher mutants (Grid2Lc/+) rescues approximately 60% of the granule cells, but does not rescue Purkinje or olivary neurons. Given the larger size of the cerebellar molecular layer in Grid2Lc/+;Bax(-/-) double mutants compared to Grid2Lc/+ mutants, we analyzed the survival of the stellate and basket interneurons as well as the synaptic connectivity of parallel fibers originating from the surviving granule cells in the absence of their Purkinje cell targets in the Grid2Lc/+;Bax(-/-) cerebellum. Quantification showed a significantly higher density of interneurons ( approximately 60%) in the molecular layer of the Grid2Lc/+;Bax(-/-) mice compared to Grid2Lc/+, suggesting that interneurons are subject to a BAX-dependent target-related death in the Lurcher mutants. Furthermore, electron microscopy showed the normal ultrastructural aspect of a number of parallel fibers in the molecular layer of the Grid2Lc/+; Bax(-/-) double mutant mice and preserved their numerous synaptic contacts on interneurons, suggesting that interneurons could play a trophic role for axon terminals of surviving granule cells. Finally, parallel fibers varicosities in the double mutant established "pseudo-synapses" on glia as well as displayed autophagic profiles, suggesting that the connections established by the parallel fibers in the absence of their Purkinje cell targets were subject to a high turnover involving autophagy.

  20. Isolation and characterization of embryonic stem cell-derived cardiac Purkinje cells.

    PubMed

    Maass, Karen; Shekhar, Akshay; Lu, Jia; Kang, Guoxin; See, Fiona; Kim, Eugene E; Delgado, Camila; Shen, Steven; Cohen, Lisa; Fishman, Glenn I

    2015-04-01

    The cardiac Purkinje fiber network is composed of highly specialized cardiomyocytes responsible for the synchronous excitation and contraction of the ventricles. Computational modeling, experimental animal studies, and intracardiac electrical recordings from patients with heritable and acquired forms of heart disease suggest that Purkinje cells (PCs) may also serve as critical triggers of life-threatening arrhythmias. Nonetheless, owing to the difficulty in isolating and studying this rare population of cells, the precise role of PC in arrhythmogenesis and the underlying molecular mechanisms responsible for their proarrhythmic behavior are not fully characterized. Conceptually, a stem cell-based model system might facilitate studies of PC-dependent arrhythmia mechanisms and serve as a platform to test novel therapeutics. Here, we describe the generation of murine embryonic stem cells (ESC) harboring pan-cardiomyocyte and PC-specific reporter genes. We demonstrate that the dual reporter gene strategy may be used to identify and isolate the rare ESC-derived PC (ESC-PC) from a mixed population of cardiogenic cells. ESC-PC display transcriptional signatures and functional properties, including action potentials, intracellular calcium cycling, and chronotropic behavior comparable to endogenous PC. Our results suggest that stem-cell derived PC are a feasible new platform for studies of developmental biology, disease pathogenesis, and screening for novel antiarrhythmic therapies.

  1. Selective loss of Purkinje cells in a patient with anti‐glutamic acid decarboxylase antibody‐associated cerebellar ataxia

    PubMed Central

    Ishida, Kazuyuki; Mitoma, Hiroshi; Wada, Yoshiaki; Oka, Teruaki; Shibahara, Junji; Saito, Yuko; Murayama, Shigeo; Mizusawa, Hidehiro

    2007-01-01

    Anti‐glutamic acid decarboxylase antibody is associated with the development of progressive cerebellar ataxia and slowly progressive insulin‐dependent diabetes mellitus. Previously, the neurophysiological characteristics of IgG in the cerebrospinal fluid of a patient with anti‐glutamic acid decarboxylase antibody‐associated progressive cerebellar ataxia and slowly progressive insulin‐dependent diabetes mellitus were reported. Using a voltage‐gated whole‐cell recording technique, it was observed that the IgG in the cerebrospinal fluid of the patient selectively suppressed the inhibitory postsynaptic currents in the Purkinje cells. The patient died from aspiration pneumonia. Postmortem examination showed almost complete depletion of the Purkinje cells with Bergmann gliosis. Therefore, the main cause of cerebellar ataxia observed in this case may be attributed to the near‐complete depletion of the Purkinje cells. In this paper, the pathomechanisms underlying Purkinje cell damage are discussed. PMID:17119008

  2. The spontaneous ataxic mouse mutant tippy is characterized by a novel Purkinje cell morphogenesis and degeneration phenotype

    PubMed Central

    Shih, Evelyn K.; Sekerková, Gabriella; Ohtsuki, Gen; Aldinger, Kimberly A.; Chizhikov, Victor V.; Hansel, Christian; Mugnaini, Enrico; Millen, Kathleen J.

    2015-01-01

    This study represents the first detailed analysis of the spontaneous neurological mouse mutant, tippy, uncovering its unique cerebellar phenotype. Homozygous tippy mutant mice are small, ataxic and die around weaning. Although the cerebellum shows grossly normal foliation, tippy mutants display a complex cerebellar Purkinje cell phenotype consisting of abnormal dendritic branching with immature spine features and patchy, non-apoptotic cell death that is associated with widespread dystrophy and degeneration of the Purkinje cell axons throughout the white matter, the cerebellar nuclei and the vestibular nuclei. Moderate anatomical abnormalities of climbing fiber innervation of tippy mutant Purkinje cells were not associated with changes in climbing fiber-EPSC amplitudes. However, decreased ESPC amplitudes were observed in response to parallel fiber stimulation and correlated well with anatomical evidence for patchy dark cell degeneration of Purkinje cell dendrites in the molecular layer. The data suggest that the Purkinje neurons are a primary target of the tippy mutation. Furthermore, we hypothesize that the Purkinje cell axonal pathology together with disruptions in the balance of climbing fiber and parallel fiber Purkinje cell input in the cerebellar cortex underlie the ataxic phenotype in these mice. The constellation of Purkinje cell dendritic malformation and degeneration phenotypes in tippy mutants is unique and has not been reported in any other neurologic mutant. Fine mapping of the tippy mutation to a 2.1MB region of distal chromosome 9, which does not encompass any gene previously implicated in cerebellar development or neuronal degeneration, confirms that the tippy mutation identifies novel biology and gene function. PMID:25626522

  3. Ischemia deteriorates the spike encoding of rat cerebellar Purkinje cells by raising intracellular Ca{sup 2+}

    SciTech Connect

    Zhao Shidi; Chen Na; Yang Zhilai; Huang Li; Zhu Yan; Guan Sudong; Chen Qianfen; Wang Jinhui

    2008-02-08

    Ischemia-induced excitotoxicity at cerebellar Purkinje cells is presumably due to a persistent glutamate action. To the fact that they are more vulnerable to ischemia than other glutamate-innervated neurons, we studied whether additional mechanisms are present and whether cytoplasm Ca{sup 2+} plays a key role in their ischemic excitotoxicity. Ischemic changes in the excitability of Purkinje cells were measured by whole-cell recording in cerebellar slices of rats with less glutamate action. The role of cytoplasm Ca{sup 2+} was examined by two-photon cellular imaging and BAPTA infusion in Purkinje cells. Lowering perfusion rate to cerebellar slices deteriorated spike timing and raised spike capacity of Purkinje cells. These changes were associated with the reduction of spike refractory periods and threshold potentials, as well as the loss of their control to spike encoding. Ischemia-induced functional deterioration at Purkinje neurons was accompanied by cytoplasm Ca{sup 2+} rise and prevented by BAPTA infusion. Therefore, the ischemia destabilizes the spike encoding of Purkinje cells via raising cytoplasm Ca{sup 2+} without a need for glutamate, which subsequently causes their excitotoxic death.

  4. Purkinje cell and cerebellar effects following developmental exposure to PCBs and/or MeHg.

    PubMed

    Roegge, Cindy S; Morris, John R; Villareal, Sherilyn; Wang, Victor C; Powers, Brian E; Klintsova, Anna Y; Greenough, William T; Pessah, Isaac N; Schantz, Susan L

    2006-01-01

    We recently reported that rats exposed to PCBs and MeHg during development were impaired on the rotating rod, a test of balance and coordination that is often indicative of cerebellar damage. In addition, developmental PCB exposure is known to dramatically reduce circulating thyroid hormone concentrations, which may have a negative impact on cerebellar development. Therefore, we investigated the effects of combined PCB and MeHg exposure on Purkinje cells and the cerebellum. The serum and brains from littermates of the animals tested on the rotating rod were collected at weaning, and we also collected brains from the adult animals at the end of motor testing. Four groups were studied: 1) vehicle controls, 2) PCBs only (Aroclor 1254, 6 mg/kg/d, oral), 3) MeHg only (0.5 ppm, in dams' drinking water), and 4) PCB+MeHg (at the same doses as in individual toxicant exposures). Female Long-Evans rats were exposed beginning 4 weeks prior to breeding with an unexposed male and continuing until postnatal day (PND) 16. There was a significant reduction in serum T4 and T3 concentrations in the PCB and PCB+MeHg pups on PND21. Golgi-impregnated Purkinje cells were examined in PND21 brains, but there were no significant exposure-related effects on primary dendrite length, branching area, or structural abnormalities. However, all three male exposure groups had a marginally significant increase in Purkinje cell height, which may suggest a subtle thyromimetic effect in the cerebellum. Cresyl-violet stained sections from the adult brains showed no exposure-related effects within paramedian lobule in Purkinje cell number, total lobule volume or layer volumes (molecular, granule cell and white matter layers). Evidence is provided for the dysregulation of expression of cerebellar ryanodine receptor (RyR) isoforms in PCB-exposed brains, and this could contribute to the rotating rod deficit by changing critical aspects of intracellular calcium signaling within the cerebellum.

  5. Activity-dependent plasticity of spike pauses in cerebellar Purkinje cells

    PubMed Central

    Grasselli, Giorgio; He, Qionger; Wan, Vivian; Adelman, John P.; Ohtsuki, Gen; Hansel, Christian

    2016-01-01

    Summary Plasticity of intrinsic excitability has been described in several types of neurons, but the significance of non-synaptic mechanisms in brain plasticity and learning remains elusive. Cerebellar Purkinje cells are inhibitory neurons that spontaneously fire action potentials at high frequencies and regulate activity in their target cells in the cerebellar nuclei by generating a characteristic spike burst–pause sequence upon synaptic activation. Using patch-clamp recordings from mouse Purkinje cells, we find that depolarization-triggered intrinsic plasticity enhances spike firing and shortens the duration of spike pauses. Pause plasticity is absent from mice lacking SK2-type potassium channels (SK2−/− mice) and in occlusion experiments using the SK channel blocker apamin, while apamin wash-in mimics pause reduction. Our findings demonstrate that spike pauses can be regulated through an activity-dependent, exclusively non-synaptic, SK2 channel-dependent mechanism and suggest that pause plasticity—by altering the Purkinje cell output—may be crucial to cerebellar information storage and learning. PMID:26972012

  6. Temporal expression and mitochondrial localization of a Foxp2 isoform lacking the forkhead domain in developing Purkinje cells.

    PubMed

    Tanabe, Yuko; Fujiwara, Yuji; Matsuzaki, Ayumi; Fujita, Eriko; Kasahara, Tadashi; Yuasa, Shigeki; Momoi, Takashi

    2012-07-01

    FOXP2, a forkhead box-containing transcription factor, forms homo- or hetero-dimers with FOXP family members and localizes to the nucleus, while FOXP2(R553H), which contains a mutation related to speech/language disorders, features reduced DNA binding activity and both cytoplasmic and nuclear localization. In addition to being a loss-of-function mutation, it is possible that FOXP2(R553H) also may act as a gain-of-function mutation to inhibit the functions of FOXP2 isoforms including FOXP2Ex10+ lacking forkhead domain. Foxp2(R552H) knock-in mouse pups exhibit impaired ultrasonic vocalization and poor dendritic development in Purkinje cells. However, expressions of Foxp2 isoforms in the developing Purkinje are unclear. The appearance of 'apical cytoplasmic swelling' (mitochondria-rich regions that are the source of budding processes) correlates with dendritic development of Purkinje cells. In the present study, we focused on Foxp2 isoforms localizing to the apical cytoplasmic swelling and identified two isoforms lacking forkhead domain: Foxp2Ex12+ and Foxp2Ex15. They partly localized to the membrane fraction that includes mitochondria. Foxp2Ex12+ mainly localized to the apical cytoplasmic swelling in early developing Purkinje cells at the stellate stage (P2-P4). Mitochondrial localization of Foxp2Ex12+ in Purkinje cells was confirmed by immune-electron microscopic analysis. Foxp2Ex12+ may play a role in dendritic development in Purkinje cells.

  7. Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins.

    PubMed

    Heintz, Tristan G; Eva, Richard; Fawcett, James W

    2016-01-01

    Climbing fibres and parallel fibres compete for dendritic space on Purkinje cells in the cerebellum. Normally, climbing fibres populate the proximal dendrites, where they suppress the multiple small spines typical of parallel fibres, leading to their replacement by the few large spines that contact climbing fibres. Previous work has shown that ephrins acting via EphA4 are a signal for this change in spine type and density. We have used an in vitro culture model in which to investigate the ephrin effect on Purkinje cell dendritic spines and the role of integrins in these changes. We found that integrins α3, α5 and β4 are present in many of the dendritic spines of cultured Purkinje cells. pFAK, the main downstream signalling molecule from integrins, has a similar distribution, although the intenstity of pFAK staining and the percentage of pFAK+ spines was consistently higher in the proximal dendrites. Activating integrins with Mg2+ led to an increase in the intensity of pFAK staining and an increase in the proportion of pFAK+ spines in both the proximal and distal dendrites, but no change in spine length, density or morphology. Blocking integrin binding with an RGD-containing peptide led to a reduction in spine length, with more stubby spines on both proximal and distal dendrites. Treatment of the cultures with ephrinA3-Fc chimera suppressed dendritic spines specifically on the proximal dendrites and there was also a decrease of pFAK in spines on this domain. This effect was blocked by simultaneous activation of integrins with Mn2+. We conclude that Eph/ephrin signaling regulates proximal dendritic spines in Purkinje cells by inactivating integrin downstream signalling. PMID:27518800

  8. Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins

    PubMed Central

    Heintz, Tristan G.; Eva, Richard; Fawcett, James W.

    2016-01-01

    Climbing fibres and parallel fibres compete for dendritic space on Purkinje cells in the cerebellum. Normally, climbing fibres populate the proximal dendrites, where they suppress the multiple small spines typical of parallel fibres, leading to their replacement by the few large spines that contact climbing fibres. Previous work has shown that ephrins acting via EphA4 are a signal for this change in spine type and density. We have used an in vitro culture model in which to investigate the ephrin effect on Purkinje cell dendritic spines and the role of integrins in these changes. We found that integrins α3, α5 and β4 are present in many of the dendritic spines of cultured Purkinje cells. pFAK, the main downstream signalling molecule from integrins, has a similar distribution, although the intenstity of pFAK staining and the percentage of pFAK+ spines was consistently higher in the proximal dendrites. Activating integrins with Mg2+ led to an increase in the intensity of pFAK staining and an increase in the proportion of pFAK+ spines in both the proximal and distal dendrites, but no change in spine length, density or morphology. Blocking integrin binding with an RGD-containing peptide led to a reduction in spine length, with more stubby spines on both proximal and distal dendrites. Treatment of the cultures with ephrinA3-Fc chimera suppressed dendritic spines specifically on the proximal dendrites and there was also a decrease of pFAK in spines on this domain. This effect was blocked by simultaneous activation of integrins with Mn2+. We conclude that Eph/ephrin signaling regulates proximal dendritic spines in Purkinje cells by inactivating integrin downstream signalling. PMID:27518800

  9. A novel approach to non-biased systematic random sampling: a stereologic estimate of Purkinje cells in the human cerebellum.

    PubMed

    Agashiwala, Rajiv M; Louis, Elan D; Hof, Patrick R; Perl, Daniel P

    2008-10-21

    Non-biased systematic sampling using the principles of stereology provides accurate quantitative estimates of objects within neuroanatomic structures. However, the basic principles of stereology are not optimally suited for counting objects that selectively exist within a limited but complex and convoluted portion of the sample, such as occurs when counting cerebellar Purkinje cells. In an effort to quantify Purkinje cells in association with certain neurodegenerative disorders, we developed a new method for stereologic sampling of the cerebellar cortex, involving calculating the volume of the cerebellar tissues, identifying and isolating the Purkinje cell layer and using this information to extrapolate non-biased systematic sampling data to estimate the total number of Purkinje cells in the tissues. Using this approach, we counted Purkinje cells in the right cerebella of four human male control specimens, aged 41, 67, 70 and 84 years, and estimated the total Purkinje cell number for the four entire cerebella to be 27.03, 19.74, 20.44 and 22.03 million cells, respectively. The precision of the method is seen when comparing the density of the cells within the tissue: 266,274, 173,166, 167,603 and 183,575 cells/cm3, respectively. Prior literature documents Purkinje cell counts ranging from 14.8 to 30.5 million cells. These data demonstrate the accuracy of our approach. Our novel approach, which offers an improvement over previous methodologies, is of value for quantitative work of this nature. This approach could be applied to morphometric studies of other similarly complex tissues as well. PMID:18725208

  10. Bax inactivation in lurcher mutants rescues cerebellar granule cells but not purkinje cells or inferior olivary neurons.

    PubMed

    Selimi, F; Vogel, M W; Mariani, J

    2000-07-15

    Lurcher is a gain-of-function mutation in the delta2 glutamate receptor gene (Grid2) that turns the receptor into a leaky ion channel. The expression of the Lurcher gene in heterozygous (Grid2(Lc/+)) mutants induces the death of almost all Purkinje cells starting from the second postnatal week. Ninety percent of the granule cells and 60-75% of the inferior olivary neurons die because of the loss of their target neurons, the Purkinje cells. The apoptotic nature of the neurodegeneration has been demonstrated previously by the presence of activated caspase-3 and DNA fragmentation. Bax, a pro-apoptotic gene of the Bcl-2 family, has been shown to be involved in developmental neuronal death. To study the role of Bax in Grid2(Lc/+) neurodegeneration, double mutants with Grid2(Lc/)+ mice and Bax knock-out mice (Bax-/-) were generated. Bax deletion had no effect on the death of Purkinje cells and inferior olivary neurons, although a temporary rescue of some Purkinje cells could be detected in P15 Grid2(Lc/)+;Bax-/- animals. From postnatal day 15 (P15) to P60, the number of granule cells in Grid2(Lc/)+;Bax-/-mice did not significantly change and was significantly increased compared with the number found in Grid2(Lc/)+;Bax+/+ mice. Granule cell number in P60 Grid2(Lc/)+;Bax-/- mice corresponded to 70% of the number found in wild-type mice. Our results show that Bax inactivation in Grid2(Lc/+) mice does not rescue intrinsic Purkinje cell death or the target-related cell death of olivary neurons, but Bax inactivation does inhibit persistently target-related cell death in cerebellar granule cells.

  11. Increased protein kinase C gamma activity induces Purkinje cell pathology in a mouse model of spinocerebellar ataxia 14.

    PubMed

    Ji, Jingmin; Hassler, Melanie L; Shimobayashi, Etsuko; Paka, Nagendher; Streit, Raphael; Kapfhammer, Josef P

    2014-10-01

    Spinocerebellar ataxias (SCAs) are hereditary diseases leading to Purkinje cell degeneration and cerebellar dysfunction. Most forms of SCA are caused by expansion of CAG repeats similar to other polyglutamine disorders such as Huntington's disease. In contrast, in the autosomal dominant SCA-14 the disease is caused by mutations in the protein kinase C gamma (PKCγ) gene which is a well characterized signaling molecule in cerebellar Purkinje cells. The study of SCA-14, therefore, offers the unique opportunity to reveal the molecular and pathological mechanism eventually leading to Purkinje cell dysfunction and degeneration. We have created a mouse model of SCA-14 in which PKCγ protein with a mutation found in SCA-14 is specifically expressed in cerebellar Purkinje cells. We find that in mice expressing the mutated PKCγ protein the morphology of Purkinje cells in cerebellar slice cultures is drastically altered and mimics closely the morphology seen after pharmacological PKC activation. Similar morphological abnormalities were seen in localized areas of the cerebellum of juvenile transgenic mice in vivo. In adult transgenic mice there is evidence for some localized loss of Purkinje cells but there is no overall cerebellar atrophy. Transgenic mice show a mild cerebellar ataxia revealed by testing on the rotarod and on the walking beam. Our findings provide evidence for both an increased PKCγ activity in Purkinje cells in vivo and for pathological changes typical for cerebellar disease thus linking the increased and dysregulated activity of PKCγ tightly to the development of cerebellar disease in SCA-14 and possibly also in other forms of SCA.

  12. Spatiotemporal response properties of cerebellar Purkinje cells to animal displacement: a population analysis.

    PubMed

    Pompeiano, O; Andre, P; Manzoni, D

    1997-12-01

    The hypothesis that corticocerebellar units projecting to vestibulospinal neurons contribute to the spatiotemporal response characteristics of forelimb extensors to animal displacement was tested in decerebrate cats in which the activity of Purkinje cells and unidentified cells located in the cerebellar anterior vermis was recorded during wobble of the whole animal. This stimulus imposed to the animal a tilt of fixed amplitude (5 degrees) with a direction moving at a constant angular velocity (56.2 degrees/s), both in the clockwise and counterclockwise directions over the horizontal plane. Eighty-three percent (143/173) of Purkinje cells and 81% (42/52) of unidentified cells responded to clockwise and/or counterclockwise rotations. In particular, 116/143 Purkinje cells (81%) and 32/42 unidentified cells (76%) responded to both clockwise and counterclockwise rotations (bidirectional units), while 27/143 Purkinje cells (19%) and 10/42 unidentified cells (24%) responded to wobble in one direction only (unidirectional units). For the bidirectional units, the direction of maximum sensitivity to tilt (Smax) was identified. Among these units, 24% of the Purkinje cells and 26% of the unidentified cells displayed an equal amplitude of modulation during clockwise and counterclockwise rotations, indicating a cosine-tuned behavior. For this unit type, the temporal phase of the response to a given direction of tilt should remain constant, while the sensitivity would be maximal along the Smax direction, declining with the cosine of the angle between Smax and the tilt direction. The remaining bidirectional units, i.e. 57% of the Purkinje cells and 50% of the unidentified cells displayed unequal amplitudes of modulation during clockwise and counterclockwise rotations. For these neurons, a non-zero sensitivity along the null direction is expected, with a response phase varying as a function of stimulus direction. As to the unidirectional units, their responses to wobble in one

  13. Axotomy does not up-regulate expression of sodium channel Na(v)1.8 in Purkinje cells.

    PubMed

    Black, J A; Dusart, I; Sotelo, C; Waxman, S G

    2002-05-30

    Aberrant expression of the sensory neuron specific (SNS) sodium channel Na(v)1.8 has been demonstrated in cerebellar Purkinje cells in experimental models of multiple sclerosis (MS) and in human MS. The aberrant expression of Na(v)1.8, which is normally present in primary sensory neurons but not in the CNS, may perturb cerebellar function, but the mechanisms that trigger it are not understood. Because axotomy can provoke changes in Na(v)1.8 expression in dorsal root ganglion (DRG) neurons, we tested the hypothesis that axotomy can provoke an up-regulation of Na(v)1.8 expression in Purkinje cells, using a surgical model that transects axons of Purkinje cells in lobules IIIb-VII in the rat. In situ hybridization and immunocytochemistry did not reveal an up-regulation of Na(v)1.8 mRNA or protein in axotomized Purkinje cells. Hybridization and immunostaining signals for the sodium channel Na(v)1.6 were clearly present, demonstrating that sodium channel transcripts and protein were present in experimental cerebella. These results demonstrate that axotomy does not trigger the expression of Na(v)1.8 in Purkinje cells. PMID:12007840

  14. Case Study: Somatic Sprouts and Halo-Like Amorphous Materials of the Purkinje Cells in Huntington's Disease.

    PubMed

    Sakai, Kenji; Ishida, Chiho; Morinaga, Akiyoshi; Takahashi, Kazuya; Yamada, Masahito

    2015-12-01

    We described a 63-year-old Japanese female with genetically confirmed Huntington's disease who showed unusual pathological findings in the cerebellum. This case exhibited typical neuropathological features as Huntington's disease, including severe degeneration of the neostriatum and widespread occurrence of ubiquitin and expanded polyglutamine-positive neuronal intranuclear and intracytoplasmic inclusions. The cerebellum was macroscopically unremarkable; however, somatic sprouts and halo-like amorphous materials of Purkinje cell with a large amount of torpedoes were noteworthy. Furthermore, the Purkinje cells were found to have granular cytoplasmic inclusions. Somatic sprouting is a form of degenerated Purkinje cell exhibited in several specific conditions. Although this finding usually appeared in developmental brains, several neurodegenerative disorders, including Menkes kinky hair disease, familial spinocerebellar ataxia, acute encephalopathy linked to familial hemiplegic migraine, and several other conditions, have been reported showing sprouting from the soma of Purkinje cell. We propose that Huntington's disease is another degenerative condition associated with these distinct neuropathological findings of Purkinje cell. Abnormally accumulated huntingtin protein in the cytoplasm could be related to the development of these structures. PMID:25962893

  15. Purkinje Cell-Specific Knockout of the Protein Phosphatase PP2B Impairs Potentiation and Cerebellar Motor Learning

    PubMed Central

    Schonewille, M.; Belmeguenai, A.; Koekkoek, S.K.; Houtman, S.H.; Boele, H.J.; van Beugen, B.J.; Gao, Z.; Badura, A.; Ohtsuki, G.; Amerika, W.E.; Hosy, E.; Hoebeek, F.E.; Elgersma, Y.; Hansel, C.; De Zeeuw, C.I.

    2010-01-01

    SUMMARY Cerebellar motor learning is required to obtain procedural skills. Studies have provided supportive evidence for a potential role of kinase-mediated long-term depression (LTD) at the parallel fiber to Purkinje cell synapse in cerebellar learning. Recently, phosphatases have been implicated in the induction of potentiation of Purkinje cell activities in vitro, but it remains to be shown whether and how phosphatase-mediated potentiation contributes to motor learning. Here, we investigated its possible role by creating and testing a Purkinje cell-specific knockout of calcium/calmodulin-activated protein-phosphatase-2B (L7-PP2B). The selective deletion of PP2B indeed abolished postsynaptic long-term potentiation in Purkinje cells and their ability to increase their excitability, whereas LTD was unaffected. The mutants showed impaired “gain-decrease” and “gain-increase” adaptation of their vestibulo-ocular reflex (VOR) as well as impaired acquisition of classical delay conditioning of their eyeblink response. Thus, our data indicate that PP2B may indeed mediate potentiation in Purkinje cells and contribute prominently to cerebellar motor learning. PMID:20797538

  16. Cerebellar transcriptional alterations with Purkinje cell dysfunction and loss in mice lacking PGC-1α

    PubMed Central

    Lucas, Elizabeth K.; Reid, Courtney S.; McMeekin, Laura J.; Dougherty, Sarah E.; Floyd, Candace L.; Cowell, Rita M.

    2014-01-01

    Alterations in the expression and activity of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (ppargc1a or PGC-1α) have been reported in multiple movement disorders, yet it is unclear how a lack of PGC-1α impacts transcription and function of the cerebellum, a region with high PGC-1α expression. We show here that mice lacking PGC-1α exhibit ataxia in addition to the previously described deficits in motor coordination. Using q-RT-PCR in cerebellar homogenates from PGC-1α−/− mice, we measured expression of 37 microarray-identified transcripts upregulated by PGC-1α in SH-SY5Y neuroblastoma cells with neuroanatomical overlap with PGC-1α or parvalbumin (PV), a calcium buffer highly expressed by Purkinje cells. We found significant reductions in transcripts with synaptic (complexin1, Cplx1; Pacsin2), structural (neurofilament heavy chain, Nefh), and metabolic (isocitrate dehydrogenase 3a, Idh3a; neutral cholesterol ester hydrolase 1, Nceh1; pyruvate dehydrogenase alpha 1, Pdha1; phytanoyl-CoA hydroxylase, Phyh; ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1, Uqcrfs1) functions. Using conditional deletion of PGC-1α in PV-positive neurons, we determined that 50% of PGC-1α expression and a reduction in a subset of these transcripts could be explained by its concentration in PV-positive neuronal populations in the cerbellum. To determine whether there were functional consequences associated with these changes, we conducted stereological counts and spike rate analysis in Purkinje cells, a cell type rich in PV, from PGC-1α−/− mice. We observed a significant loss of Purkinje cells by 6 weeks of age, and the remaining Purkinje cells exhibited a 50% reduction in spike rate. Together, these data highlight the complexity of PGC-1α's actions in the central nervous system and suggest that dysfunction in multiple cell types contribute to motor deficits in the context of PGC-1α deficiency. PMID

  17. Mutations in the Microtubule-Associated Protein 1A (Map1a) Gene Cause Purkinje Cell Degeneration

    PubMed Central

    Liu, Ye; Lee, Jeong Woong

    2015-01-01

    The structural microtubule-associated proteins (MAPs) are critical for the organization of neuronal microtubules (MTs). Microtubule-associated protein 1A (MAP1A) is one of the most abundantly expressed MAPs in the mammalian brain. However, its in vivo function remains largely unknown. Here we describe a spontaneous mouse mutation, nm2719, which causes tremors, ataxia, and loss of cerebellar Purkinje neurons in aged homozygous mice. The nm2719 mutation disrupts the Map1a gene. We show that targeted deletion of mouse Map1a gene leads to similar neurodegenerative defects. Before neuron death, Map1a mutant Purkinje cells exhibited abnormal focal swellings of dendritic shafts and disruptions in axon initial segment (AIS) morphology. Furthermore, the MT network was reduced in the somatodendritic and AIS compartments, and both the heavy and light chains of MAP1B, another brain-enriched MAP, was aberrantly distributed in the soma and dendrites of mutant Purkinje cells. MAP1A has been reported to bind to the membrane-associated guanylate kinase (MAGUK) scaffolding proteins, as well as to MTs. Indeed, PSD-93, the MAGUK specifically enriched in Purkinje cells, was reduced in Map1a−/− Purkinje cells. These results demonstrate that MAP1A functions to maintain both the neuronal MT network and the level of PSD-93 in neurons of the mammalian brain. PMID:25788676

  18. A structural and functional analysis of Nna1 in Purkinje cell degeneration (pcd) mice

    PubMed Central

    Wu, Hui-Yuan; Wang, Taiyu; Li, Leyi; Correia, Kristen; Morgan, James I.

    2012-01-01

    The axotomy-inducible enzyme Nna1 defines a subfamily of M14 metallocarboxypeptidases, and its mutation underlies the Purkinje cell degeneration (pcd) mouse. However, the relationship among its catalytic activity, substrate specificities, and the critical processes of neurodegeneration/axon regeneration is incompletely understood. Here we used a transgenic rescue strategy targeting expression of modified forms of Nna1 to Purkinje cells in pcd mice to determine structure-activity relationships for neuronal survival and in parallel characterized the enzymatic properties of purified recombinant Nna1. The Nna1 subfamily uniquely shares conserved substrate-determining residues with aspartoacylase that, when mutated, cause Canavan disease. Homologous mutations (D1007E and R1078E) inactivate Nna1 in vivo, as does mutation of its catalytic glutamate (E1094A), which implies that metabolism of acidic substrates is essential for neuronal survival. Consistent with reports that Nna1 is a tubulin glutamylase, recombinant Nna1—but not the catalytic mutants—removes glutamate from tubulin. Recombinant Nna1 metabolizes synthetic substrates with 2 or more C-terminal glutamate (but not aspartate) residues (Vmax for 3 glutamates is ∼7-fold higher than 2 glutamates although KM is similar). Catalysis is not ATP/GTP dependent, and mutating the ATP/GTP binding site of Nna1 has no effect in vivo. Nna1 is a monomeric enzyme essential for neuronal survival through hydrolysis of polyglutamate-containing substrates.—Wu, H.-Y., Wang, T., Li, L., Correia, K., Morgan, J. I. A structural and functional analysis of Nna1 in Purkinje cell degeneration (pcd) mice. PMID:22835831

  19. Clec16a is Critical for Autolysosome Function and Purkinje Cell Survival

    PubMed Central

    Redmann, Veronika; Lamb, Christopher A.; Hwang, Seungmin; Orchard, Robert C.; Kim, Sungsu; Razi, Minoo; Milam, Ashley; Park, Sunmin; Yokoyama, Christine C.; Kambal, Amal; Kreamalmeyer, Darren; Bosch, Marie K.; Xiao, Maolei; Green, Karen; Kim, Jungsu; Pruett-Miller, Shondra M.; Ornitz, David M.; Allen, Paul M.; Beatty, Wandy L.; Schmidt, Robert E.; DiAntonio, Aaron; Tooze, Sharon A.; Virgin, Herbert W.

    2016-01-01

    CLEC16A is in a locus genetically linked to autoimmune diseases including multiple sclerosis, but the function of this gene in the nervous system is unknown. Here we show that two mouse strains carrying independent Clec16a mutations developed neurodegenerative disease characterized by motor impairments and loss of Purkinje cells. Neurons from Clec16a-mutant mice exhibited increased expression of the autophagy substrate p62, accumulation of abnormal intra-axonal membranous structures bearing the autophagy protein LC3, and abnormal Golgi morphology. Multiple aspects of endocytosis, lysosome and Golgi function were normal in Clec16a-deficient murine embryonic fibroblasts and HeLa cells. However, these cells displayed abnormal bulk autophagy despite unimpaired autophagosome formation. Cultured Clec16a-deficient cells exhibited a striking accumulation of LC3 and LAMP-1 positive autolysosomes containing undigested cytoplasmic contents. Therefore Clec16a, an autophagy protein that is critical for autolysosome function and clearance, is required for Purkinje cell survival. PMID:26987296

  20. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices.

    PubMed Central

    Llinás, R; Sugimori, M

    1980-01-01

    1. The electrical activity of Purkinje cells was studied in guinea-pig cerebellar slices in vitro. Intracellular recordings from Purkinje cell somata were obtained under direct vision, and antidromic, synaptic and direct electroresponsiveness was demonstrated. Synaptic potentials produced by the activation of the climbing fibre afferent could be reversed by direct membrane depolarization. 2. Input resistance of impaled neurones ranged from 10 to 19 M omega and demonstrated non-linearities in both hyperpolarizing and depolarizing directions. 3. Direct activation of a Purkinje cell indicated that repetitive firing of fast somatic spikes (s.s.) occurs, after a threshold, with a minimum spike frequency of about 30 spikes/sec, resembling the '2-class' response of crab nerve (Hodgkin, 1948). 4. As the amplitude of the stimulus was increased, a second form of electroresponsiveness characterized by depolarizing spike bursts (d.s.b.) was observed and was often accomppanied by momentary inactivation of the s.s. potentials. Upon application of tetrodotoxin (TTX) or removal of Na+ ions from the superfusion fluid, the s.s. potentials were abolished while the burst responses remained intact. However, Ca conductance blockers such as Co, Cd, Mn and D600, or the replacement of Ca by Mg, completely abolish d.s.b.s. 5. If Ca conductance was blocked, or Ca removed from the superfusion fluid without blockage of Na conductance, two types of Na-dependent electroresponsiveness were seen: (a) the s.s. potentials and (b) slow rising all-or-none responses which reached plateau at approximately -15 mV and could last for several seconds. These all-or-none Na-dependent plateau depolarizations outlasted the stimulus and were accompanied by a large increase in membrane conductance. Within certain limits the rate of rise and amplitude of the plateau were independent of stimulus strength. The latency, however, was shortened as stimulus amplitude was increased. These potentials were blocked by TTX

  1. Rapid development of Purkinje cell excitability, functional cerebellar circuit, and afferent sensory input to cerebellum in zebrafish.

    PubMed

    Hsieh, Jui-Yi; Ulrich, Brittany; Issa, Fadi A; Wan, Jijun; Papazian, Diane M

    2014-01-01

    The zebrafish has significant advantages for studying the morphological development of the brain. However, little is known about the functional development of the zebrafish brain. We used patch clamp electrophysiology in live animals to investigate the emergence of excitability in cerebellar Purkinje cells, functional maturation of the cerebellar circuit, and establishment of sensory input to the cerebellum. Purkinje cells are born at 3 days post-fertilization (dpf). By 4 dpf, Purkinje cells spontaneously fired action potentials in an irregular pattern. By 5 dpf, the frequency and regularity of tonic firing had increased significantly and most cells fired complex spikes in response to climbing fiber activation. Our data suggest that, as in mammals, Purkinje cells are initially innervated by multiple climbing fibers that are winnowed to a single input. To probe the development of functional sensory input to the cerebellum, we investigated the response of Purkinje cells to a visual stimulus consisting of a rapid change in light intensity. At 4 dpf, sudden darkness increased the rate of tonic firing, suggesting that afferent pathways carrying visual information are already active by this stage. By 5 dpf, visual stimuli also activated climbing fibers, increasing the frequency of complex spiking. Our results indicate that the electrical properties of zebrafish and mammalian Purkinje cells are highly conserved and suggest that the same ion channels, Nav1.6 and Kv3.3, underlie spontaneous pacemaking activity. Interestingly, functional development of the cerebellum is temporally correlated with the emergence of complex, visually-guided behaviors such as prey capture. Because of the rapid formation of an electrically-active cerebellum, optical transparency, and ease of genetic manipulation, the zebrafish has great potential for functionally mapping cerebellar afferent and efferent pathways and for investigating cerebellar control of motor behavior.

  2. Antiapoptotic protein Lifeguard is required for survival and maintenance of Purkinje and granular cells.

    PubMed

    Hurtado de Mendoza, Tatiana; Perez-Garcia, Carlos G; Kroll, Todd T; Hoong, Nien H; O'Leary, Dennis D M; Verma, Inder M

    2011-10-11

    Lifeguard (LFG) is an inhibitor of Fas-mediated cell death and is highly expressed in the cerebellum. We investigated the biological role of LFG in the cerebellum in vivo, using mice with reduced LFG expression generated by shRNA lentiviral transgenesis (shLFG mice) as well as LFG null mice. We found that LFG plays a role in cerebellar development by affecting cerebellar size, internal granular layer (IGL) thickness, and Purkinje cell (PC) development. All these features are more severe in early developmental stages and show substantial recovery overtime, providing a remarkable example of cerebellar plasticity. In adult mice, LFG plays a role in PC maintenance shown by reduced cellular density and abnormal morphology with increased active caspase 8 and caspase 3 immunostaining in shLFG and knockout (KO) PCs. We studied the mechanism of action of LFG as an inhibitor of the Fas pathway and provided evidence of the neuroprotective role of LFG in cerebellar granule neurons (CGNs) and PCs in an organotypic cerebellar culture system. Biochemical analysis of the Fas pathway revealed that LFG inhibits Fas-mediated cell death by interfering with caspase 8 activation. This result is supported by the increased number of active caspase 8-positive PCs in adult mice lacking LFG. These data demonstrate that LFG is required for proper development and survival of granular and Purkinje cells and suggest LFG may play a role in cerebellar disorders.

  3. Deranged calcium signaling in Purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and other ataxias.

    PubMed

    Kasumu, Adebimpe; Bezprozvanny, Ilya

    2012-09-01

    Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of more than 30 autosomal-dominant genetic and neurodegenerative disorders. SCAs are generally characterized by progressive ataxia and cerebellar atrophy. Although all SCA patients present with the phenotypic overlap of cerebellar atrophy and ataxia, 17 different gene loci have so far been implicated as culprits in these SCAs. It is not currently understood how mutations in these 17 proteins lead to the cerebellar atrophy and ataxia. Several pathogenic mechanisms have been studied in SCAs but there is yet to be a promising target for successful treatment of SCAs. Emerging research suggests that a fundamental cellular signaling pathway is disrupted by a majority of these mutated genes, which could explain the characteristic death of Purkinje cells, cerebellar atrophy, and ataxia that occur in many SCAs. We propose that mutations in SCA genes cause disruptions in multiple cellular pathways but the characteristic SCA pathogenesis does not begin until calcium signaling pathways are disrupted in cerebellar Purkinje cells either as a result of an excitotoxic increase or a compensatory suppression of calcium signaling. We argue that disruptions in Purkinje cell calcium signaling lead to initial cerebellar dysfunction and ataxic sympoms and eventually proceed to Purkinje cell death. Here, we discuss a calcium hypothesis of Purkinje cell neurodegeneration in SCAs by primarily focusing on an example of spinocerebellar ataxia 2 (SCA2). We will also present evidence linking deranged calcium signaling to the pathogenesis of other SCAs (SCA1, 3, 5, 6, 14, 15/16) that lead to significant Purkinje cell dysfunction and loss in patients.

  4. Administration of a non-NMDA antagonist, GYKI 52466, increases excitotoxic Purkinje cell degeneration caused by ibogaine.

    PubMed

    O'Hearn, E; Molliver, M E

    2004-01-01

    Ibogaine is a tremorigenic hallucinogen that has been proposed for clinical use in treating addiction. We previously reported that ibogaine, administered systemically, produces degeneration of a subset of Purkinje cells in the cerebellum, primarily within the vermis. Ablation of the inferior olive affords protection against ibogaine-induced neurotoxicity leading to the interpretation that ibogaine itself is not directly toxic to Purkinje cells. We postulated that ibogaine produces sustained excitation of inferior olivary neurons that leads to excessive glutamate release at climbing fiber terminals, causing subsequent excitotoxic injury to Purkinje cells. The neuronal degeneration induced by ibogaine provides an animal model for studying excitotoxic injury in order to analyze the contribution of glutamate receptors to this injury and to evaluate neuroprotective strategies. Since non-N-methyl-D-aspartate (NMDA) receptors mediate Purkinje cell excitation by climbing fibers, we hypothesized that 1-4-aminophenyl-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI-52466), which antagonizes non-NMDA receptors, may have a neuroprotective effect by blocking glutamatergic excitation at climbing fiber synapses. To test this hypothesis, rats were administered systemic ibogaine plus GYKI-52466 and the degree of neuronal injury was analyzed in cerebellar sections. The results indicate that the AMPA antagonist GYKI-52466 (10 mg/kg i.p. x 3) does not protect against Purkinje cell injury at the doses used. Rather, co-administration of GYKI-52466 with ibogaine produces increased toxicity evidenced by more extensive Purkinje cell degeneration. Several hypotheses that may underlie this result are discussed. Although the reason for the increased toxicity found in this study is not fully explained, the present results show that a non-NMDA antagonist can produce increased excitotoxic injury under some conditions. Therefore, caution should be exercised before employing glutamate

  5. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    NASA Astrophysics Data System (ADS)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-07-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  6. Purkinje Cells as Sources of Arrhythmias in Long QT Syndrome Type 3

    PubMed Central

    Iyer, Vivek; Roman-Campos, Danilo; Sampson, Kevin J.; Kang, Guoxin; Fishman, Glenn I.; Kass, Robert S.

    2015-01-01

    Long QT syndrome (LQTS) is characterized by ventricular arrhythmias and sudden cardiac death. Purkinje cells (PC) within the specialized cardiac conduction system have unique electrophysiological properties that we hypothesize may produce the primary sources of arrhythmia in heritable LQTS. LQTS type 3 (LQT3) transgenic mice harboring the ΔKPQ+/− mutation were crossed with Contactin2-EGFP BAC transgenic mice, which express a fluorescent reporter gene within the Purkinje fiber network. Isolated ventricular myocytes (VMs) (EGFP−) and PCs (EGFP+) from wild type and ΔKPQ mutant hearts were compared using the whole-cell patch clamp technique and microfluorimetry of calcium transients. Increased late sodium current was seen in ΔKPQ-PCs and ΔKPQ-VMs, with larger density in ΔKPQ-PCs. Marked prolongation of action potential duration of ΔKPQ-PCs was seen compared to ΔKPQ-VMs. ΔKPQ-PCs, but not ΔKPQ-VMs, exhibited frequent early afterdepolarizations, which corresponded to repetitive oscillations of intracellular calcium. Abnormalities in cell repolarization were reversed with exposure to mexiletine. We present the first direct experimental evidence that PCs are uniquely sensitive to LQT3 mutations, displaying electrophysiological behavior that is highly pro-arrhythmic. PMID:26289036

  7. Purkinje Cells as Sources of Arrhythmias in Long QT Syndrome Type 3.

    PubMed

    Iyer, Vivek; Roman-Campos, Danilo; Sampson, Kevin J; Kang, Guoxin; Fishman, Glenn I; Kass, Robert S

    2015-01-01

    Long QT syndrome (LQTS) is characterized by ventricular arrhythmias and sudden cardiac death. Purkinje cells (PC) within the specialized cardiac conduction system have unique electrophysiological properties that we hypothesize may produce the primary sources of arrhythmia in heritable LQTS. LQTS type 3 (LQT3) transgenic mice harboring the ΔKPQ(+/-) mutation were crossed with Contactin2-EGFP BAC transgenic mice, which express a fluorescent reporter gene within the Purkinje fiber network. Isolated ventricular myocytes (VMs) (EGFP(-)) and PCs (EGFP(+)) from wild type and ΔKPQ mutant hearts were compared using the whole-cell patch clamp technique and microfluorimetry of calcium transients. Increased late sodium current was seen in ΔKPQ-PCs and ΔKPQ-VMs, with larger density in ΔKPQ-PCs. Marked prolongation of action potential duration of ΔKPQ-PCs was seen compared to ΔKPQ-VMs. ΔKPQ-PCs, but not ΔKPQ-VMs, exhibited frequent early afterdepolarizations, which corresponded to repetitive oscillations of intracellular calcium. Abnormalities in cell repolarization were reversed with exposure to mexiletine. We present the first direct experimental evidence that PCs are uniquely sensitive to LQT3 mutations, displaying electrophysiological behavior that is highly pro-arrhythmic. PMID:26289036

  8. Cytochemical interaction of nucleolus and cytoplasm in the Purkinje cells of senile white rats under the influence of centrophenoxine.

    PubMed

    Patro, I K; Sharma, S P

    1984-01-01

    Senile white rats were treated with centrophenoxine at a dosage of 100 mg/Kg body weight/day for 60 days intraperitoneally. Sections of variously fixed and embedded cerebella were studied cytochemically to note the effect of the drug on the senile Purkinje neurons. The nucleolus was found to be hyper-active, as evidenced by the processes of budding and extrusion. A frank regeneration of the Nissl patches along with an increase in alpha-esterase and decrease in the activity of acid phosphatase and simple esterase was noted in the Purkinje cells after 60 days' treatment. It is suggested that the drug exerts its positive effects by regenerating the general cytoplasm and by revitalizing the nucleocytoplasmic interactions in the senile Purkinje cells.

  9. Fluoro-jade identification of cerebellar granule cell and purkinje cell death in the alpha1A calcium ion channel mutant mouse, leaner.

    PubMed

    Frank, T C; Nunley, M C; Sons, H D; Ramon, R; Abbott, L C

    2003-01-01

    Cell death is a critical component of normal nervous system development; too little or too much results in abnormal development and function of the nervous system. The leaner mouse exhibits excessive, abnormal cerebellar granule cell and Purkinje cell death during postnatal development, which is a consequence of a mutated calcium ion channel subunit, alpha(1A). Previous studies have shown that leaner cerebellar Purkinje cells die in a specific pattern that appears to be influenced by functional and anatomical boundaries of the cerebellum. However, the mechanism of Purkinje cell death and the specific timing of the spatial pattern of cell death remain unclear. By double labeling both leaner and wild-type cerebella with Fluoro-Jade and terminal deoxynucleotide transferase-mediated, deoxyuridine triphosphate nick-end labeling or Fluoro-Jade and tyrosine hydroxylase immunohistochemistry we demonstrated that the relatively new stain, Fluoro-Jade, will label neurons that are dying secondary to a genetic mutation. Then, by staining leaner and wild-type cerebella between postnatal days 20 and 80 with Fluoro-Jade, we were able to show that Purkinje cell death begins at approximately postnatal day 25, peaks in the vermis about postnatal day 40 and in the hemispheres at postnatal day 50 and persists at a low level at postnatal day 80. In addition, we showed that there is a significant difference in the amount of cerebellar Purkinje cell death between rostral and caudal divisions of the leaner cerebellum, and that there is little to no Purkinje cell death in the wild type cerebellum at the ages we examined. This is the first report of the use of Fluoro-Jade to identify dying neurons in a genetic model for neuronal cell death. By using Fluoro-Jade, we have specifically defined the temporospatial pattern of postnatal Purkinje cell death in the leaner mouse. This information can be used to gain insight into the dynamic mechanisms controlling Purkinje cell death in the leaner

  10. Efficient Generation of Cardiac Purkinje Cells from ESCs by Activating cAMP Signaling

    PubMed Central

    Tsai, Su-Yi; Maass, Karen; Lu, Jia; Fishman, Glenn I.; Chen, Shuibing; Evans, Todd

    2015-01-01

    Summary Dysfunction of the specialized cardiac conduction system (CCS) is associated with life-threatening arrhythmias. Strategies to derive CCS cells, including rare Purkinje cells (PCs), would facilitate models for mechanistic studies and drug discovery and also provide new cellular materials for regenerative therapies. A high-throughput chemical screen using CCS:lacz and Contactin2:egfp (Cntn2:egfp) reporter embryonic stem cell (ESC) lines was used to discover a small molecule, sodium nitroprusside (SN), that efficiently promotes the generation of cardiac cells that express gene profiles and generate action potentials of PC-like cells. Imaging and mechanistic studies suggest that SN promotes the generation of PCs from cardiac progenitors initially expressing cardiac myosin heavy chain and that it does so by activating cyclic AMP signaling. These findings provide a strategy to derive scalable PCs, along with insight into the ontogeny of CCS development. PMID:26028533

  11. Activity-dependent accumulation of calcium in Purkinje cell dendritic spines

    SciTech Connect

    Andrews, S.B.; Leapman, R.D.; Landis, D.M.; Reese, T.S.

    1988-03-01

    The calcium content of synapses of parallel fibers on Purkinje cell dendritic spines was determined by electron probe x-ray microanalysis of freeze-dried cryosections from directly frozen slices of mouse cerebellar cortex. In fresh slices frozen within 20-30 sec of excision, calcium concentrations ranging from 0.8 to 18.6 mmol/kg of dry weight were measured in cisterns of smooth endoplasmic reticulum within Purkinje cell dendritic spines. The average calcium content of spine cisterns in rapidly excised slices (6.7 +/- 0.6 mmol/kg of dry weight +/- SEM) was higher than the average calcium content of spine cisterns in brain slices incubated without stimulation for 1-2 hr before direct freezing (2.5 +/- 0.4 mmol/kg of dry weight). Depolarization of incubated cerebellar slices by isotonic 55 mM KCl resulted in the accumulation within spine cisterns of very high amounts of calcium or isotonically substituted strontium, both derived from the extracellular fluid. These results suggest that one function of spine cisterns is to sequester free calcium that enters the spine through ligand-gated or voltage-gated channels during synaptic transmission.

  12. Ataxia with loss of Purkinje cells in a mouse model for Refsum disease.

    PubMed

    Ferdinandusse, Sacha; Zomer, Anna W M; Komen, Jasper C; van den Brink, Christina E; Thanos, Melissa; Hamers, Frank P T; Wanders, Ronald J A; van der Saag, Paul T; Poll-The, Bwee Tien; Brites, Pedro

    2008-11-18

    Refsum disease is caused by a deficiency of phytanoyl-CoA hydroxylase (PHYH), the first enzyme of the peroxisomal alpha-oxidation system, resulting in the accumulation of the branched-chain fatty acid phytanic acid. The main clinical symptoms are polyneuropathy, cerebellar ataxia, and retinitis pigmentosa. To study the pathogenesis of Refsum disease, we generated and characterized a Phyh knockout mouse. We studied the pathological effects of phytanic acid accumulation in Phyh(-/-) mice fed a diet supplemented with phytol, the precursor of phytanic acid. Phytanic acid accumulation caused a reduction in body weight, hepatic steatosis, and testicular atrophy with loss of spermatogonia. Phenotype assessment using the SHIRPA protocol and subsequent automated gait analysis using the CatWalk system revealed unsteady gait with strongly reduced paw print area for both fore- and hindpaws and reduced base of support for the hindpaws. Histochemical analyses in the CNS showed astrocytosis and up-regulation of calcium-binding proteins. In addition, a loss of Purkinje cells in the cerebellum was observed. No demyelination was present in the CNS. Motor nerve conduction velocity measurements revealed a peripheral neuropathy. Our results show that, in the mouse, high phytanic acid levels cause a peripheral neuropathy and ataxia with loss of Purkinje cells. These findings provide important insights in the pathophysiology of Refsum disease.

  13. Lurcher GRID2-induced death and depolarization can be dissociated in cerebellar Purkinje cells.

    PubMed

    Selimi, Fekrije; Lohof, Ann M; Heitz, Stéphane; Lalouette, Alexis; Jarvis, Christopher I; Bailly, Yannick; Mariani, Jean

    2003-03-01

    The Lurcher mutation transforms the GRID2 receptor into a constitutively opened channel. In Lurcher heterozygous mice, cerebellar Purkinje cells are permanently depolarized, a characteristic that has been thought to be the primary cause of their death, which occurs from the second postnatal week onward. The more dramatic phenotype of Lurcher homozygotes is thought to be due to a simple gene dosage effect of the mutant allele. We have analyzed the phenotype of Lurcher/hotfoot heteroallelic mutants bearing only one copy of the Lurcher allele and no wild-type Grid2. Our results show that the absence of wild-type GRID2 receptors in these heteroallelic mutants induces an early and massive Purkinje cell death that is correlated with early signs of autophagy. This neuronal death is independent of depolarization and can be explained by the direct activation of autophagy by Lurcher GRID2 receptors through the recently discovered signaling pathway formed by GRID2, n-PIST, and Beclin1.

  14. Beyond “all-or-nothing” climbing fibers: graded representation of teaching signals in Purkinje cells

    PubMed Central

    Najafi, Farzaneh; Medina, Javier F.

    2013-01-01

    Arguments about the function of the climbing fiber (CF) input to the cerebellar cortex have fueled a rabid debate that started over 40 years ago, and continues to polarize the field to this day. The origin of the controversy can be traced back to 1969, the year David Marr published part of his dissertation work in a paper entitled “A theory of cerebellar cortex.” In Marr’s theory, CFs play a key role during the process of motor learning, providing an instructive signal that serves as a “teacher” for the post-synaptic Purkinje cells. Although this influential idea has found its way into the mainstream, a number of objections have been raised. For example, several investigators have pointed out that the seemingly “all-or-nothing” activation of the CF input provides little information and is too ambiguous to serve as an effective instructive signal. Here, we take a fresh look at these arguments in light of new evidence about the peculiar physiology of CFs. Based on recent findings we propose that at the level of an individual Purkinje cell, a graded instructive signal can be effectively encoded via pre- or post-synaptic modulation of its one and only CF input. PMID:23847473

  15. A cell model study of calcium influx mechanism regulated by calcium-dependent potassium channels in Purkinje cell dendrites.

    PubMed

    Chono, Koji; Takagi, Hiroshi; Koyama, Shozo; Suzuki, Hideo; Ito, Etsuro

    2003-10-30

    The present study was designed to elucidate the roles of dendritic voltage-gated K+ channels in Ca2+ influx mechanism of a rat Purkinje cell using a computer simulation program. First, we improved the channel descriptions and the maximum conductance in the Purkinje cell model to mimic both the kinetics of ion channels and the Ca2+ spikes, which had failed in previous studies. Our cell model is, therefore, much more authentic than those in previous studies. Second, synaptic inputs that mimic stimulation of parallel fibers and induce sub-threshold excitability were simultaneously applied to the spiny dendrites. As a result, transient Ca2+ responses were observed in the stimulation points and they decreased with the faster decay rate in the cell model including high-threshold Ca2+-dependent K+ channels than in those excluding these channels. Third, when a single synaptic input was applied into a spiny dendrite, Ca2+-dependent K+ channels suppressed Ca2+ increases at stimulation and recording points. Finally, Ca2+-dependent K+ channels were also found to suppress the time to peak Ca2+ values in the recording points. These results suggest that the opening of Ca2+-dependent K+ channels by Ca2+ influx through voltage-gated Ca2+ channels hyperpolarizes the membrane potentials and deactivates these Ca2+ channels in a negative feedback manner, resulting in local, weak Ca2+ responses in spiny dendrites of Purkinje cells.

  16. Topography of Purkinje cells and other calbindin-immunoreactive cells within adult and hatchling turtle cerebellum.

    PubMed

    Ariel, Michael; Ward, Kyle C; Tolbert, Daniel L

    2009-12-01

    The turtle's cerebellum (Cb) is an unfoliated sheet, so the topography of its entire cortex can be easily studied physiologically by optical recordings. However, unlike the mammalian Cb, little is known about the topography of turtle Purkinje cells (PCs). Here, topography was examined using calbindin-D(28K) immunohistochemistry of adult and hatchling turtles (Trachemys scripta elegans, 2.5-15 cm carapace length). Each Cb was flattened between two Sylgard sheets and fixed in paraformaldehyde. Sections (52 microm thick) were cut parallel to the flattened cortex (tangential), resulting in calbindin-immunolabeled PCs being localized to three to six sections for each turtle. PC position and size were quantified using Neurolucida Image Analysis system. Although hatchling Cb were medial-laterally narrower (3.0 vs. 6.5 mm) and rostral-caudally shorter (2.5 vs. 5.5 mm) than adult Cb, both averaged near 15,000 PCs distributed uniformly. Hatchling PCs were smaller than adult PCs (178 vs. 551 microm(2)) and more densely packed (2,180 vs. 625 cells/mm(2)). Calbindin immunoreactivity also labeled non-PCs along the Cb's marginal rim and its caudal pole. Many of these were very small (22.9 microm(2)) ovoid-shaped cells clustered together, possibly proliferating external granule layer cells. Other labeled cells were larger and fusiform-shaped (12.6 x 33.4 microm) adjacent to inner granule cells along the marginal rim, suggestive of migrating cells. It is not known whether these are new neurons being generated within the adult and hatchling Cb and if they connect to efferent and afferent paths. Based on these anatomical findings, we suggest that unique physiological features may exist along the rim of the turtle Cb.

  17. Purkinje cell-specific ablation of Cav2.1 channels is sufficient to cause cerebellar ataxia in mice.

    PubMed

    Todorov, Boyan; Kros, Lieke; Shyti, Reinald; Plak, Petra; Haasdijk, Elize D; Raike, Robert S; Frants, Rune R; Hess, Ellen J; Hoebeek, Freek E; De Zeeuw, Chris I; van den Maagdenberg, Arn M J M

    2012-03-01

    The Cacna1a gene encodes the α(1A) subunit of voltage-gated Ca(V)2.1 Ca(2+) channels that are involved in neurotransmission at central synapses. Ca(V)2.1-α(1)-knockout (α1KO) mice, which lack Ca(V)2.1 channels in all neurons, have a very severe phenotype of cerebellar ataxia and dystonia, and usually die around postnatal day 20. This early lethality, combined with the wide expression of Ca(V)2.1 channels throughout the cerebellar cortex and nuclei, prohibited determination of the contribution of particular cerebellar cell types to the development of the severe neurobiological phenotype in Cacna1a mutant mice. Here, we crossed conditional Cacna1a mice with transgenic mice expressing Cre recombinase, driven by the Purkinje cell-specific Pcp2 promoter, to specifically ablate the Ca(V)2.1-α(1A) subunit and thereby Ca(V)2.1 channels in Purkinje cells. Purkinje cell Ca(V)2.1-α(1A)-knockout (PCα1KO) mice aged without difficulties, rescuing the lethal phenotype seen in α1KO mice. PCα1KO mice exhibited cerebellar ataxia starting around P12, much earlier than the first signs of progressive Purkinje cell loss, which appears in these mice between P30 and P45. Secondary cell loss was observed in the granular and molecular layers of the cerebellum and the volume of all individual cerebellar nuclei was reduced. In this mouse model with a cell type-specific ablation of Ca(V)2.1 channels, we show that ablation of Ca(V)2.1 channels restricted to Purkinje cells is sufficient to cause cerebellar ataxia. We demonstrate that spatial ablation of Ca(V)2.1 channels may help in unraveling mechanisms of human disease.

  18. High dosage of monosodium glutamate causes deficits of the motor coordination and the number of cerebellar Purkinje cells of rats.

    PubMed

    Prastiwi, D; Djunaidi, A; Partadiredja, G

    2015-11-01

    Monosodium glutamate (MSG) has been widely used throughout the world as a flavoring agent of food. However, MSG at certain dosages is also thought to cause damage to many organs, including cerebellum. This study aimed at investigating the effects of different doses of MSG on the motor coordination and the number of Purkinje cells of the cerebellum of Wistar rats. A total of 24 male rats aged 4 to 5 weeks were divided into four groups, namely, control (C), T2.5, T3, and T3.5 groups, which received intraperitoneal injection of 0.9% sodium chloride solution, 2.5 mg/g body weight (bw) of MSG, 3.0 mg/g bw of MSG, and 3.5 mg/g bw of MSG, respectively, for 10 consecutive days. The motor coordination of the rats was examined prior and subsequent to the treatment. The number of cerebellar Purkinje cells was estimated using physical fractionator method. It has been found that the administration of MSG at a dosage of 3.5 mg/g bw, but not at lower dosages, caused a significant decrease of motor coordination and the estimated total number of Purkinje cells of rats. There was also a significant correlation between motor coordination and the total number of Purkinje cells.

  19. Long-term climbing fibre activity induces transcription of microRNAs in cerebellar Purkinje cells.

    PubMed

    Barmack, Neal H; Qian, Zuyuan; Yakhnitsa, Vadim

    2014-09-26

    Synaptic activation of central neurons is often evoked by electrical stimulation leading to post-tetanic potentiation, long-term potentiation or long-term depression. Even a brief electrical tetanus can induce changes in as many as 100 proteins. Since climbing fibre activity is often associated with cerebellar behavioural plasticity, we used horizontal optokinetic stimulation (HOKS) to naturally increase synaptic input to floccular Purkinje cells in mice for hours, not minutes, and investigated how this activity influenced the transcription of microRNAs, small non-coding nucleotides that reduce transcripts of multiple, complementary mRNAs. A single microRNA can reduce the translation of as many as 30 proteins. HOKS evoked increases in 12 microRNA transcripts in floccular Purkinje cells. One of these microRNAs, miR335, increased 18-fold after 24 h of HOKS. After HOKS stopped, miR335 transcripts decayed with a time constant of approximately 2.5 h. HOKS evoked a 28-fold increase in pri-miR335 transcripts compared with an 18-fold increase in mature miR335 transcripts, confirming that climbing fibre-evoked increases in miR335 could be attributed to increases in transcription. We used three screens to identify potential mRNA targets for miR335 transcripts: (i) nucleotide complementarity, (ii) detection of increased mRNAs following microinjection of miR335 inhibitors into the cerebellum, and (iii) detection of decreased mRNAs following HOKS. Two genes, calbindin and 14-3-3-θ, passed these screens. Transfection of N2a cells with miR335 inhibitors or precursors inversely regulated 14-3-3-θ transcripts. Immunoprecipitation of 14-3-3-θ co-immunoprecipitated PKC-γ and GABAAγ2. Knockdown of either 14-3-3-θ or PKC-γ decreased the serine phosphorylation of GABAAγ2, suggesting that 14-3-3-θ and PKC-γ under the control of miR335 homeostatically regulate the phosphorylation and insertion of GABAAγ2 into the Purkinje cell post-synaptic membrane. PMID:25135969

  20. BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells

    PubMed Central

    Hirono, Moritoshi; Ogawa, Yasuhiro; Misono, Kaori; Zollinger, Daniel R.; Trimmer, James S.

    2015-01-01

    In myelinated axons, K+ channels are clustered in distinct membrane domains to regulate action potentials (APs). At nodes of Ranvier, Kv7 channels are expressed with Na+ channels, whereas Kv1 channels flank nodes at juxtaparanodes. Regulation of axonal APs by K+ channels would be particularly important in fast-spiking projection neurons such as cerebellar Purkinje cells. Here, we show that BK/Slo1 channels are clustered at the paranodal junctions of myelinated Purkinje cell axons of rat and mouse. The paranodal junction is formed by a set of cell-adhesion molecules, including Caspr, between the node and juxtaparanodes in which it separates nodal from internodal membrane domains. Remarkably, only Purkinje cell axons have detectable paranodal BK channels, whose clustering requires the formation of the paranodal junction via Caspr. Thus, BK channels occupy this unique domain in Purkinje cell axons along with the other K+ channel complexes at nodes and juxtaparanodes. To investigate the physiological role of novel paranodal BK channels, we examined the effect of BK channel blockers on antidromic AP conduction. We found that local application of blockers to the axon resulted in a significant increase in antidromic AP failure at frequencies above 100 Hz. We also found that Ni2+ elicited a similar effect on APs, indicating the involvement of Ni2+-sensitive Ca2+ channels. Furthermore, axonal application of BK channel blockers decreased the inhibitory synaptic response in the deep cerebellar nuclei. Thus, paranodal BK channels uniquely support high-fidelity firing of APs in myelinated Purkinje cell axons, thereby underpinning the output of the cerebellar cortex. PMID:25948259

  1. Projections of individual Purkinje cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit.

    PubMed

    Wylie, D R; De Zeeuw, C I; DiGiorgi, P L; Simpson, J I

    1994-11-15

    The projections of Purkinje cells from zones in the ventral nodulus of pigmented rabbits were studied with the use of extracellularly injected biocytin as an anterograde tracer. The zones were physiologically identified according to the complex spike modulation of Purkinje cells in response to optokinetic stimulation. Purkinje cells in the most medial zone do not respond to optokinetic stimulation; they project to the fastigial nucleus, the perifastigial white matter, the periinterposed white matter, and the medial vestibular nucleus. In the adjacent zone, Purkinje cells respond best to optokinetic stimulation about the vertical axis; they project to the periinterposed white matter and the medial vestibular nucleus. Purkinje cells in the next zone respond best to optokinetic stimulation about an axis approximately perpendicular to the ipsilateral anterior canal; they project to the periinterposed white matter, dorsal group y, the superior vestibular nucleus, and the medial vestibular nucleus. In the most lateral zone, Purkinje cells respond best to optokinetic stimulation about the vertical axis; they project to the periinterposed white matter, dorsal group y, and the medial vestibular nucleus. The majority of axons gave off collaterals and innervated more than one nucleus. Often, three or four different areas received terminals from a single Purkinje cell axon. The zonal projection pattern of the ventral nodulus is compared to that of the flocculus, which, with respect to the visual climbing fiber afferents, has similar zones.

  2. Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields.

    PubMed

    Yamamoto, Kenji; Kawato, Mitsuo; Kotosaka, Shinya; Kitazawa, Shigeru

    2007-02-01

    It is controversial whether simple-spike activity of cerebellar Purkinje cells during arm movements encodes movement kinematics like velocity or dynamics like muscle activities. To examine this issue, we trained monkeys to flex or extend the elbow by 45 degrees in 400 ms under resistive and assistive force fields but without altering kinematics. During the task movements after training, simple-spike discharges were recorded in the intermediate part of the cerebellum in lobules V-VI, and electromyographic activity was recorded from arm muscles. Velocity profiles (kinematics) in the two force fields were almost identical to each other, whereas not only the electromyographic activities (dynamics) but also simple-spike activities in many Purkinje cells differed distinctly depending on the type of force field. Simple-spike activities encoded much larger mutual information with the type of force field than that with the residual small difference in the height of peak velocity. The difference in simple-spike activities averaged over the recorded Purkinje-cells increased approximately 40 ms before the appearance of the difference in electromyographic activities between the two force fields, suggesting that the difference of simple-spike activities could be the origin of the difference of muscle activities. Simple-spike activity of many Purkinje cells correlated with electromyographic activity with a lead of approximately 80 ms, and these neurons had little overlap with another group of neurons the simple-spike activity of which correlated with velocity profiles. These results show that simple-spike activity of at least a group of Purkinje cells in the intermediate part of cerebellar lobules V-VI encodes movement dynamics.

  3. Effect of diphenylhydantoin on gamma aminobutyric acid (GABA) and succinate activity in rat Purkinje cells.

    PubMed Central

    Hitchcock, E; Gabra-Sanders, T

    1977-01-01

    A study has been made of the effect of diphenylhydantoin (DPH) upon the levels of gamma aminobutyric acid (GABA) and succinic dehydrogenase in rat Purkinje cells. DPH was administered over 26 days in chronic experiments using controls receiving the same injection vehicle without DPH. Animals in this group received daily 1.25 mg/kg body weight, 12.5 mg/kg body weight, and 50 mg/kg body weight DPH. Acute experiments were carried out over the course of not more than four days, three groups of animals receiving 75 mg/kg body weight, 87.5 mg/kg body weight, and 100 mg/kg body weight DPH. No effect upon succinic dehydrogenase could be demonstrated at any dose level. There was a significant progressive loss of GABA with increasing dosage of DPH. Images PMID:903771

  4. Precise Control of Movement Kinematics by Optogenetic Inhibition of Purkinje Cell Activity

    PubMed Central

    Heiney, Shane A.; Kim, Jinsook; Augustine, George J.

    2014-01-01

    Purkinje cells (PCs) of the cerebellar cortex are necessary for controlling movement with precision, but a mechanistic explanation of how the activity of these inhibitory neurons regulates motor output is still lacking. We used an optogenetic approach in awake mice to show for the first time that transiently suppressing spontaneous activity in a population of PCs is sufficient to cause discrete movements that can be systematically modulated in size, speed, and timing depending on how much and how long PC firing is suppressed. We further demonstrate that this fine control of movement kinematics is mediated by a graded disinhibition of target neurons in the deep cerebellar nuclei. Our results prove a long-standing model of cerebellar function and provide the first demonstration that suppression of inhibitory signals can act as a powerful mechanism for the precise control of behavior. PMID:24501371

  5. Short-term modulation of cerebellar Purkinje cell activity after spontaneous climbing fiber input.

    PubMed

    Sato, Y; Miura, A; Fushiki, H; Kawasaki, T

    1992-12-01

    1. There are two opposite points of view concerning the way climbing fiber input in a Purkinje cell modifies simple spike (SS) activity transiently: depression versus enhancement of SS activity. The different groups of investigators favored one effect predominating over the other. In the decerebrate unanesthetized cat, we recorded spontaneous activity of single Purkinje cells and investigated time course of SS activity after the complex spike (CS). 2. In the peri-CS time histogram, there was a SS pause lasting, on average, 10.8 ms after onset of the CS in all of the 316 cells recorded. The pause was followed by a rapid increase in SS activity to a maximum, which was on average 175.6% of a pre-CS control level, and a gradual return to around the control level in the majority of the cells recorded (pause-facilitation type, 71.2%). The increase in SS activity was significant (P < 0.01, t test) during 20-100 ms. The SS activity during the 20-100 ms was, on average, 163.7% of the control level. In some cells (pure-pause type, 25.3%), no significant changes were found (P > 0.01) in the post-pause SS firing. In contrast, only 3.5% of the cells (pause-reduction type) showed a significant (P < 0.01) firing decrease (average 54.0% of the control level) lasting 20-60 ms after the pause period. 3. Analysis of the pre-CS time histogram revealed no significant differences (P > 0.01) in the SS activity between pre-CS periods in all of the cells recorded, suggesting that the SS activity enhancement is not due to a coactivated mossy fiber input just preceding the activation of the climbing fiber input. 4. Analysis of the raster diagram revealed variability of individual SS responses after the CS. The probability of occurrence of the increase in SS number during a post-CS period of 0-100 ms with respect to that during a pre-CS period of -100-0 ms in individual raster traces was high (on average 78.2%), medium (57.3%), and low (36.3%) in the pause-facilitation, pure-pause, and pause

  6. Multiple subclasses of Purkinje cells in the primate floccular complex provide similar signals to guide learning in the vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Raymond, J. L.; Lisberger, S. G.

    1997-01-01

    The neural "learning rules" governing the induction of plasticity in the cerebellum were analyzed by recording the patterns of neural activity in awake, behaving animals during stimuli that induce a form of cerebellum-dependent learning. We recorded the simple- and complex-spike responses of a broad sample of Purkinje cells in the floccular complex during a number of stimulus conditions that induce motor learning in the vestibulo-ocular reflex (VOR). Each subclass of Purkinje cells carried essentially the same information about required changes in the gain of the VOR. The correlation of simple-spike activity in Purkinje cells with activity in vestibular pathways could guide learning during low-frequency but not high-frequency stimuli. Climbing fiber activity could guide learning during all stimuli tested but only if compared with the activity present approximately 100 msec earlier in either vestibular pathways or Purkinje cells.

  7. Ectopic Cerebellar Cell Migration Causes Maldevelopment of Purkinje Cells and Abnormal Motor Behaviour in Cxcr4 Null Mice

    PubMed Central

    Huang, Guo-Jen; Edwards, Andrew; Tsai, Cheng-Yu; Lee, Yi-Shin; Peng, Lei; Era, Takumi; Hirabayashi, Yoshio; Tsai, Ching-Yen; Nishikawa, Shin-Ichi; Iwakura, Yoichiro; Chen, Shu-Jen; Flint, Jonathan

    2014-01-01

    SDF-1/CXCR4 signalling plays an important role in neuronal cell migration and brain development. However, the impact of CXCR4 deficiency in the postnatal mouse brain is still poorly understood. Here, we demonstrate the importance of CXCR4 on cerebellar development and motor behaviour by conditional inactivation of Cxcr4 in the central nervous system. We found CXCR4 plays a key role in cerebellar development. Its loss leads to defects in Purkinje cell dentritogenesis and axonal projection in vivo but not in cell culture. Transcriptome analysis revealed the most significantly affected pathways in the Cxcr4 deficient developing cerebellum are involved in extra cellular matrix receptor interactions and focal adhesion. Consistent with functional impairment of the cerebellum, Cxcr4 knockout mice have poor coordination and balance performance in skilled motor tests. Together, these results suggest ectopic the migration of granule cells impairs development of Purkinje cells, causes gross cerebellar anatomical disruption and leads to behavioural motor defects in Cxcr4 null mice. PMID:24516532

  8. Micropatterning of neural stem cells and Purkinje neurons using a polydimethylsiloxane (PDMS) stencil.

    PubMed

    Choi, Jin Ho; Lee, Hyun; Jin, Hee Kyung; Bae, Jae-sung; Kim, Gyu Man

    2012-12-01

    A new fabrication method of a polydimethylsiloxane (PDMS) stencil embedded microwell plate is proposed and applied to a localized culture of Purkinje neurons (PNs) and neural stem cells (NSCs). A microwell plate combines a PDMS stencil and well plate. The PDMS stencil was fabricated by spin casting from an SU-8 master mold. Gas blowing using nitrogen was adopted to perforate the stencil membrane. An acrylic well plate compartment mold was fabricated using computer numerical control (CNC) machining. By PDMS casting using a stencil placed on an acrylic mold, microwell plates were fabricated without punching or the use of a plasma bonding process. By using the stencil as a physical mask for the cell culture, PNs and NSCs were successfully cultured into micropatterns. The microwell plate could be applied to the localizing and culturing of a cell. The micropatterned NSCs were differentiated into neurons, astrocytes, and oligodendrocytes. The results showed that cells could be cultured and differentiated into micropatterns in a precisely controlled manner in any shape and in specific sizes for bioscience study and bioengineering applications. PMID:23042549

  9. Micropatterning of neural stem cells and Purkinje neurons using a polydimethylsiloxane (PDMS) stencil.

    PubMed

    Choi, Jin Ho; Lee, Hyun; Jin, Hee Kyung; Bae, Jae-sung; Kim, Gyu Man

    2012-12-01

    A new fabrication method of a polydimethylsiloxane (PDMS) stencil embedded microwell plate is proposed and applied to a localized culture of Purkinje neurons (PNs) and neural stem cells (NSCs). A microwell plate combines a PDMS stencil and well plate. The PDMS stencil was fabricated by spin casting from an SU-8 master mold. Gas blowing using nitrogen was adopted to perforate the stencil membrane. An acrylic well plate compartment mold was fabricated using computer numerical control (CNC) machining. By PDMS casting using a stencil placed on an acrylic mold, microwell plates were fabricated without punching or the use of a plasma bonding process. By using the stencil as a physical mask for the cell culture, PNs and NSCs were successfully cultured into micropatterns. The microwell plate could be applied to the localizing and culturing of a cell. The micropatterned NSCs were differentiated into neurons, astrocytes, and oligodendrocytes. The results showed that cells could be cultured and differentiated into micropatterns in a precisely controlled manner in any shape and in specific sizes for bioscience study and bioengineering applications.

  10. Purkinje cell activity during classical conditioning with different conditional stimuli explains central tenet of Rescorla–Wagner model [corrected].

    PubMed

    Rasmussen, Anders; Zucca, Riccardo; Johansson, Fredrik; Jirenhed, Dan-Anders; Hesslow, Germund

    2015-11-10

    A central tenet of Rescorla and Wagner's model of associative learning is that the reinforcement value of a paired trial diminishes as the associative strength between the presented stimuli increases. Despite its fundamental importance to behavioral sciences, the neural mechanisms underlying the model have not been fully explored. Here, we present findings that, taken together, can explain why a stronger association leads to a reduced reinforcement value, within the context of eyeblink conditioning. Specifically, we show that learned pause responses in Purkinje cells, which trigger adaptively timed conditioned eyeblinks, suppress the unconditional stimulus (US) signal in a graded manner. Furthermore, by examining how Purkinje cells respond to two distinct conditional stimuli and to a compound stimulus, we provide evidence that could potentially help explain the somewhat counterintuitive overexpectation phenomenon, which was derived from the Rescorla-Wagner model. PMID:26504227

  11. Purkinje cell activity during classical conditioning with different conditional stimuli explains central tenet of Rescorla–Wagner model

    PubMed Central

    Rasmussen, Anders; Zucca, Riccardo; Johansson, Fredrik; Jirenhed, Dan-Anders; Hesslow, Germund

    2015-01-01

    A central tenet of Rescorla and Wagner’s model of associative learning is that the reinforcement value of a paired trial diminishes as the associative strength between the presented stimuli increases. Despite its fundamental importance to behavioral sciences, the neural mechanisms underlying the model have not been fully explored. Here, we present findings that, taken together, can explain why a stronger association leads to a reduced reinforcement value, within the context of eyeblink conditioning. Specifically, we show that learned pause responses in Purkinje cells, which trigger adaptively timed conditioned eyeblinks, suppress the unconditional stimulus (US) signal in a graded manner. Furthermore, by examining how Purkinje cells respond to two distinct conditional stimuli and to a compound stimulus, we provide evidence that could potentially help explain the somewhat counterintuitive overexpectation phenomenon, which was derived from the Rescorla–Wagner model. PMID:26504227

  12. Purkinje cell activity during classical conditioning with different conditional stimuli explains central tenet of Rescorla–Wagner model [corrected].

    PubMed

    Rasmussen, Anders; Zucca, Riccardo; Johansson, Fredrik; Jirenhed, Dan-Anders; Hesslow, Germund

    2015-11-10

    A central tenet of Rescorla and Wagner's model of associative learning is that the reinforcement value of a paired trial diminishes as the associative strength between the presented stimuli increases. Despite its fundamental importance to behavioral sciences, the neural mechanisms underlying the model have not been fully explored. Here, we present findings that, taken together, can explain why a stronger association leads to a reduced reinforcement value, within the context of eyeblink conditioning. Specifically, we show that learned pause responses in Purkinje cells, which trigger adaptively timed conditioned eyeblinks, suppress the unconditional stimulus (US) signal in a graded manner. Furthermore, by examining how Purkinje cells respond to two distinct conditional stimuli and to a compound stimulus, we provide evidence that could potentially help explain the somewhat counterintuitive overexpectation phenomenon, which was derived from the Rescorla-Wagner model.

  13. Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum.

    PubMed Central

    Chan, C Y; Nicholson, C

    1986-01-01

    Quasi steady-state electric fields were applied across the isolated turtle cerebellum to study the relationship between applied field, neuronal morphology and the modulation of the neuronal spike firing pattern. Spiking elements were identified electrophysiologically using extracellular recording methods and by subsequent horseradish peroxidase injection, which revealed their dendritic morphology and orientation. The electric field was precisely defined by measuring the voltage gradients induced in the cerebellum by 40 s constant-current pulses. The field was constant in the vertical (dorso-ventral) axis and zero in the horizontal plane, in agreement with theory. Neurones were modulated by applying a sinusoidal field at frequencies between 0.05 and 1.0 Hz. Modulated cells exhibited an increase in firing frequency and fell into one of four classes, depending on the direction of the field that produced the modulation. Thus neurones were excited by: ventricle-directed fields (V modulation), pia-directed fields (P modulation), both of the above (V/P modulation) or showed no consistent modulation (non-modulation). Most Purkinje somata and primary dendrites (nineteen out of twenty-eight) and most Purkinje dendrites (eighteen out of thirty), were V modulated with maximum rate proportional to the peak field intensity. The dendrites of these cells were consistently oriented toward the pia. Among the stellate cells, the lower molecular layer stellates, with dendrites extending predominantly towards the pia, were mostly (nineteen out of thirty-two) V modulated. The mid-molecular layer stellates, which showed much variability in dendritic orientation, were distributed among all four of the modulation classes. The upper molecular layer stellates, with a mostly horizontal dendritic alignment, were mainly (nine out of sixteen) non-modulated. All groups of spiking elements showed a correlation between patterns of modulation by applied fields and dendritic orientation, which

  14. Olig2 regulates Purkinje cell generation in the early developing mouse cerebellum

    PubMed Central

    Ju, Jun; Liu, Qian; Zhang, Yang; Liu, Yuanxiu; Jiang, Mei; Zhang, Liguo; He, Xuelian; Peng, Chenchen; Zheng, Tao; Lu, Q. Richard; Li, Hedong

    2016-01-01

    The oligodendrocyte transcription factor Olig2 plays a crucial role in the neurogenesis of both spinal cord and brain. In the cerebellum, deletion of both Olig2 and Olig1 results in impaired genesis of Purkinje cells (PCs) and Pax2+ interneurons. Here, we perform an independent study to show that Olig2 protein is transiently expressed in the cerebellar ventricular zone (VZ) during a period when PCs are specified. Further analyses demonstrate that Olig2 is expressed in both cerebellar VZ progenitors and early-born neurons. In addition, unlike in the ganglionic eminence of the embryonic forebrain where Olig2 is mostly expressed in proliferating progenitors, Olig2+ cells in the cerebellar VZ are in the process of leaving the cell cycle and differentiating into postmitotic neurons. Functionally, deletion of Olig2 alone results in a preferential reduction of PCs in the cerebellum, which is likely mediated by decreased neuronal generation from their cerebellar VZ progenitors. Furthermore, our long-term lineage tracing experiments show that cerebellar Olig gene-expressing progenitors produce PCs but rarely Pax2+ interneurons in the developing cerebellum, which opposes the “temporal identity transition” model of the cerebellar VZ progenitors stating that majority of Pax2+ interneuron progenitors are transitioned from Olig2+ PC progenitors. PMID:27469598

  15. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers.

    PubMed

    Greenlee, John E; Clawson, Susan A; Hill, Kenneth E; Wood, Blair; Clardy, Stacey L; Tsunoda, Ikuo; Carlson, Noel G

    2015-01-01

    Anti-Yo antibodies are immunoglobulin G (IgG) autoantibodies reactive with a 62 kDa Purkinje cell cytoplasmic protein. These antibodies are closely associated with paraneoplastic cerebellar degeneration in the setting of gynecological and breast malignancies. We have previously demonstrated that incubation of rat cerebellar slice cultures with patient sera and cerebrospinal fluid containing anti-Yo antibodies resulted in Purkinje cell death. The present study addressed three fundamental questions regarding the role of anti-Yo antibodies in disease pathogenesis: 1) Whether the Purkinje cell cytotoxicity required binding of anti-Yo antibody to its intraneuronal 62 kDa target antigen; 2) whether Purkinje cell death might be initiated by antibody-dependent cellular cytotoxicity rather than intracellular antibody binding; and 3) whether Purkinje cell death might simply be a more general result of intracellular antibody accumulation, rather than of specific antibody-antigen interaction. In our study, incubation of rat cerebellar slice cultures with anti-Yo IgG resulted in intracellular antibody binding, and cell death. Infiltration of the Purkinje cell layer by cells of macrophage/microglia lineage was not observed until extensive cell death was already present. Adsorption of anti-Yo IgG with its 62 kDa target antigen abolished both antibody accumulation and cytotoxicity. Antibodies to other intracellular Purkinje cell proteins were also taken up by Purkinje cells and accumulated intracellularly; these included calbindin, calmodulin, PCP-2, and patient anti-Purkinje cell antibodies not reactive with the 62 kDa Yo antigen. However, intracellular accumulation of these antibodies did not affect Purkinje cell viability. The present study is the first to demonstrate that anti-Yo antibodies cause Purkinje cell death by binding to the intracellular 62 kDa Yo antigen. Anti-Yo antibody cytotoxicity did not involve other antibodies or factors present in patient serum and was not

  16. Lesion-induced and activity-dependent structural plasticity of Purkinje cell dendritic spines in cerebellar vermis and hemisphere.

    PubMed

    Gelfo, Francesca; Florenzano, Fulvio; Foti, Francesca; Burello, Lorena; Petrosini, Laura; De Bartolo, Paola

    2016-09-01

    Neuroplasticity allows the brain to encode experience and learn behaviors, and also to re-acquire lost functions after damage. The cerebellum is a suitable structure to address this topic because of its strong involvement in learning processes and compensation of lesion-induced deficits. This study was aimed to characterize the effects of a hemicerebellectomy (HCb) combined or not with the exposition to environmental enrichment (EE) on dendritic spine density and size in Purkinje cell proximal and distal compartments of cerebellar vermian and hemispherical regions. Male Wistar rats were housed in enriched or standard environments from the 21st post-natal day (pnd) onwards. At the 75th pnd, rats were submitted to HCb or sham lesion. Neurological symptoms and spatial performance in the Morris water maze were evaluated. At the end of testing, morphological analyses assessed dendritic spine density, area, length, and head diameter on vermian and hemispherical Purkinje cells. All hemicerebellectomized (HCbed) rats showed motor compensation, but standard-reared HCbed animals exhibited cognitive impairment that was almost completely compensated in enriched HCbed rats. The standard-reared HCbed rats showed decreased density with augmented size of Purkinje cell spines in the vermis, and augmented both density and size in the hemisphere. Enriched HCbed rats almost completely maintained the spine density and size induced by EE. Both lesion-induced and activity-dependent cerebellar plastic changes may be interpreted as "beneficial" brain reactions, aimed to support behavioral performance rescuing. PMID:26420278

  17. Subcellular compartment-specific molecular diversity of pre- and postsynaptic GABAB-activated GIRK channels in Purkinje cells

    PubMed Central

    Fernández-Alacid, Laura; Aguado, Carolina; Ciruela, Francisco; Martín, Ricardo; Colón, José; Cabañero, María José; Gassmann, Martin; Watanabe, Masahiko; Shigemoto, Ryuichi; Wickman, Kevin; Bettler, Bernhard; Sánchez-Prieto, José; Luján, Rafael

    2009-01-01

    Activation of G protein-gated inwardly-rectifying K+ (GIRK or Kir3) channels by metabotropic gamma-aminobutyric acid (B) (GABAB) receptors is an essential signalling pathway controlling neuronal excitability and synaptic transmission in the brain. To investigate the relationship between GIRK channel subunits and GABAB receptors in cerebellar Purkinje cells at post- and pre-synaptic sites, we used biochemical, functional and immunohistochemical techniques. Co-immunoprecipitation analysis demonstrated that GIRK subunits are co-assembled with GABAB receptors in the cerebellum. Immunoelectron microscopy showed that the subunit composition of GIRK channels in Purkinje cell spines is compartment-dependent. Thus, at extrasynaptic sites GIRK channels are formed by GIRK1/GIRK2/GIRK3, postsynaptic densities contain GIRK2/GIRK3 and dendritic shafts contain GIRK1/GIRK3. The postsynaptic association of GIRK subunits with GABAB receptors in Purkinje cells is supported by the subcellular regulation of the ion channel and the receptor in mutant mice. At presynaptic sites, GIRK channels localized to parallel fibre terminals are formed by GIRK1/GIRK2/GIRK3 and co-localize with GABAB receptors. Consistent with this morphological evidence we demonstrate their functional interaction at axon terminals in the cerebellum by showing that GIRK channels play a role in the inhibition of glutamate release by GABAB receptors. The association of GIRK channels and GABAB receptors with excitatory synapses at both post- and presynaptic sites indicates their intimate involvement in the modulation of glutamatergic neurotransmission in the cerebellum. PMID:19558451

  18. Discharge patterns of Purkinje cells in cats anaesthetized with alpha-chloralose.

    PubMed Central

    Armstrong, D M; Cogdell, B; Harvey, R J

    1979-01-01

    1. Micro-electrodes have been used to record from 119 Purkinje (P) cells in the paramedian lobule of the cerebellum in cats anaesthetized with alpha-chloralose. 2. The spontaneous discharge rate and degree of irregularity of the discharge varied very much from one cell to another; the over-all mean rate (about 25/sec) was a little lower than has been reported either for barbiturate anaesthetized or for decerebrate unanaesthetized preparations. 3. Following electrical stimulation of a peripheral nerve, most P cells responded with both simple spikes and a climbing fibre response. This initial response was usually succeeded by a prolonged period of silence (over-all mean duration 350 msec) before resumption of the tonic simple spike discharge. Similar response-silence sequences could also be evoked by mechanical stimulation such as a tap applied to the pads of the forepaw. 4. Electrical stimulation of the inferior olive evoked climbing fibre responses followed by a prolonged pause in the simple spike discharge of the cell. 5. In six individual preparations, recordings were made both from P cells of the paramedian lobule and from neurones of nucleus interpositus (to which the former project). Comparison of the responses of the two types of neurone to peripheral nerve and inferior olivary stimulation showed that the end of the pauses in P cell firing correlated well with the end of a prolonged period of facilitation of the interpositus neurones. 6. These results support the hypothesis advanced in an earlier report (Armstrong, Cogdell & Harvey, 1975) that the prolonged facilitatory responses of interpositus neurones are essentially disinhibitory responses resulting from reduction in the activity of overlying cells, and that responses of P cells and of interpositus neurones consist, in general, of modulations of activity which are mutually out of phase. PMID:480225

  19. Prenatal infection decreases calbindin, decreases Purkinje cell volume and density and produces long-term motor deficits in Sprague-Dawley rats.

    PubMed

    Wallace, K; Veerisetty, S; Paul, I; May, W; Miguel-Hidalgo, J J; Bennett, W

    2010-01-01

    The cerebellum is involved in the control of motor functions with Purkinje cells serving as the only output from the cerebellum. Purkinje cells are important targets for toxic substances and are vulnerable to prenatal insults. Intrauterine infection (IUI) has been shown to selectively target the developing cerebral white matter through lesioning, necrosis and inflammatory cytokine activation. Developmental and cognitive delays have been associated with animal models of IUI. The aim of this study was to determine if IUI leads to damage to Purkinje cells in the developing cerebellum and if any damage is associated with decreases in calbindin and motor behaviors in surviving pups. Pregnant rats were injected with Escherichia coli (1 × 10⁵ colony-forming units) or sterile saline at gestational day 17. Beginning at postnatal day (PND) 2, the pups were subjected to a series of developmental tests to examine developmental milestones. At PND 16, some pups were sacrificed and their brains extracted and processed for histology or protein studies. Hematoxylin and eosin (HE) staining was done to examine the general morphology of the Purkinje cells and to examine Purkinje cell density, area and volume. Calbindin expression was examined in the cerebellum via immunohistochemistry and Western blot techniques. The remaining rat pups were used to examine motor coordination and balance on a rotating rotarod at the prepubertal and adult ages. Prenatal E. coli injection did not significantly change birth weight or delivery time, but did delay surface righting and negative geotaxis in pups. Pups in the E. coli group also had a decrease in the number of Purkinje cells, as well as a decrease in Purkinje cell density and volume. HE staining demonstrated a change in Purkinje cell morphology. Calbindin expression was decreased in rats from the E. coli group as well. Locomotor tests indicated that while there were no significant changes in gross motor activity, motor coordination and

  20. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats

    PubMed Central

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-01-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients. PMID:27656625

  1. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats.

    PubMed

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-08-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients. PMID:27656625

  2. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats

    PubMed Central

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-01-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients.

  3. Contribution of the neural cell recognition molecule NB-3 to synapse formation between parallel fibers and Purkinje cells in mouse.

    PubMed

    Sakurai, Kunie; Toyoshima, Manabu; Ueda, Hidehiro; Matsubara, Kota; Takeda, Yasuo; Karagogeos, Domna; Shimoda, Yasushi; Watanabe, Kazutada

    2009-10-01

    The neural cell recognition molecule NB-3, also referred to as contactin-6, is expressed prominently in the developing nervous system after birth and its deficiency has been shown to cause impairment in motor coordination. Here, we investigated the contribution of NB-3 to cerebellar development, focusing on lobule 3 where NB-3 was expressed in granule cells but not in Purkinje cells. In the developing molecular layer, the neural cell recognition molecules TAG-1, L1, and NB-3 formed distinct expression zones from the external granule cell layer to the internal granule cell layer (IGL), respectively. The NB-3-immunoreactive zone did not overlap with TAG-1-immunoreactive zone. By contrast, the L1-immunoreactive zone overlapped with both the TAG-1- and NB-3-immunoreactive zones. NB-3-positive puncta overlapped with vesicular glutamate transporter 1, a presynaptic marker and were apposed close to metabotropic glutamate receptor 1A, a postsynaptic marker, indicating that NB-3 is localized presynaptically at glutamatergic synapses between parallel fibers and Purkinje cells. In NB-3 knockout mice, L1 immunoreactive signals were increased in the IGL at postnatal day (P) 5, suggesting the increase in the number of immature granule cells of the IGL. In addition, the density of parallel fiber synaptic terminals was reduced in NB-3 knockout mice relative to wild-type mice at P5 to P10. In parallel with these findings, caspase-dependent cell death was significantly increased in the NB- 3-deficient cerebellum at P15. Collectively, our results indicate that NB-3 deficiency affects synapse formation during postnatal cerebellar development.

  4. PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination

    PubMed Central

    Kim, Jun-Dal; Park, Kyung-Eui; Ishida, Junji; Kako, Koichiro; Hamada, Juri; Kani, Shuichi; Takeuchi, Miki; Namiki, Kana; Fukui, Hajime; Fukuhara, Shigetomo; Hibi, Masahiko; Kobayashi, Makoto; Kanaho, Yasunori; Kasuya, Yoshitoshi; Mochizuki, Naoki; Fukamizu, Akiyoshi

    2015-01-01

    The development of vertebrate neurons requires a change in membrane phosphatidylcholine (PC) metabolism. Although PC hydrolysis is essential for enhanced axonal outgrowth mediated by phospholipase D (PLD), less is known about the determinants of PC metabolism on dendritic arborization. We show that protein arginine methyltransferase 8 (PRMT8) acts as a phospholipase that directly hydrolyzes PC, generating choline and phosphatidic acid. We found that PRMT8 knockout mice (prmt8−/−) displayed abnormal motor behaviors, including hindlimb clasping and hyperactivity. Moreover, prmt8−/− mice and TALEN-induced zebrafish prmt8 mutants and morphants showed abnormal phenotypes, including the development of dendritic trees in Purkinje cells and altered cerebellar structure. Choline and acetylcholine levels were significantly decreased, whereas PC levels were increased, in the cerebellum of prmt8−/− mice. Our findings suggest that PRMT8 acts both as an arginine methyltransferase and as a PC-hydrolyzing PLD that is essential for proper neurological functions. PMID:26665171

  5. Tactile Stimulation Evokes Long-Lasting Potentiation of Purkinje Cell Discharge In Vivo

    PubMed Central

    Ramakrishnan, K. B.; Voges, Kai; De Propris, Licia; De Zeeuw, Chris I.; D’Angelo, Egidio

    2016-01-01

    In the cerebellar network, a precise relationship between plasticity and neuronal discharge has been predicted. However, the potential generation of persistent changes in Purkinje cell (PC) spike discharge as a consequence of plasticity following natural stimulation patterns has not been clearly determined. Here, we show that facial tactile stimuli organized in theta-patterns can induce stereotyped N-methyl-D-aspartate (NMDA) and gamma-aminobutyric acid (GABA-A) receptor-dependent changes in PCs and molecular layer interneurons (MLIs) firing: invariably, all PCs showed a long-lasting increase (Spike-Related Potentiation or SR-P) and MLIs a long-lasting decrease (Spike-Related Suppression or SR-S) in baseline activity and spike response probability. These observations suggests that tactile sensory stimulation engages multiple long-term plastic changes that are distributed along the mossy fiber-parallel fiber (MF-PF) pathway and operate synergistically to potentiate spike generation in PCs. In contrast, theta-pattern electrical stimulation (ES) of PFs indistinctly induced SR-P and SR-S both in PCs and MLIs, suggesting that tactile sensory stimulation preordinates plasticity upstream of the PF-PC synapse. All these effects occurred in the absence of complex spike changes, supporting the theoretical prediction that PC activity is potentiated when the MF-PF system is activated in the absence of conjunctive climbing fiber (CF) activity. PMID:26924961

  6. Comparative morphology of dendritic arbors in populations of Purkinje cells in mouse sulcus and apex.

    PubMed

    Nedelescu, Hermina; Abdelhack, Mohamed

    2013-01-01

    Foliation divides the mammalian cerebellum into structurally distinct subdivisions, including the concave sulcus and the convex apex. Purkinje cell (PC) dendritic morphology varies between subdivisions and changes significantly ontogenetically. Since dendritic morphology both enables and limits sensory-motor circuit function, it is important to understand how neuronal architectures differ between brain regions. This study employed quantitative confocal microcopy to reconstruct dendritic arbors of cerebellar PCs expressing green fluorescent protein and compared arbor morphology between PCs of sulcus and apex in young and old mice. Arbors were digitized from high z-resolution (0.25 µm) image stacks using an adaptation of Neurolucida's (MBF Bioscience) continuous contour tracing tool, designed for drawing neuronal somata. Reconstructed morphologies reveal that dendritic arbors of sulcus and apex exhibit profound differences. In sulcus, 72% of the young PC population possesses two primary dendrites, whereas in apex, only 28% do. Spatial constraints in the young sulcus cause significantly more dendritic arbor overlap than in young apex, a distinction that disappears in adulthood. However, adult sulcus PC arbors develop a greater number of branch crossings. These results suggest developmental neuronal plasticity that enables cerebellar PCs to attain correct functional adult architecture under different spatial constraints.

  7. Soman poisoning alters p38 MAPK pathway in rat cerebellar Purkinje cells.

    PubMed

    Pejchal, Jaroslav; Osterreicher, Jan; Kassa, Jiri; Tichy, Ales; Micuda, Stanislav; Sinkorova, Zuzana; Zarybnicka, Lenka

    2009-05-01

    The aim of the study was to evaluate the expression of phosphorylated p38 mitogen-activated protein kinase (p38 MAPK) and MAPK-activated transcription factors elk-1, c-jun and c-myc in rat cerebellar Purkinje cells after soman poisoning to investigate the pathogenetic mechanism of non-specific long-term adverse effects of nerve agents. Male Wistar rats were poisoned by intramuscular administration of soman at a dose 60 microg kg(-1) (80% LD(50)), while control animals were administered physiological saline. Samples were taken 1, 7 and 14 days after poisoning, immunohistochemically stained and p-p38MAPK, p-c-jun, p-c-myc, and p-elk-1 expressions were measured using computer image analysis. An increased expression of phosphorylated p38 MAPK and c-myc 14 days after soman poisoning was found, while both activated elk-1 and c-jun expression remained unchanged 1, 7 and 14 days after intoxication. Late activation of p38 MAPK and their targets might be the underlying mechanism of chronic neurophysiological adverse effects.

  8. Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice.

    PubMed

    Peter, Saša; Ten Brinke, Michiel M; Stedehouder, Jeffrey; Reinelt, Claudia M; Wu, Bin; Zhou, Haibo; Zhou, Kuikui; Boele, Henk-Jan; Kushner, Steven A; Lee, Min Goo; Schmeisser, Michael J; Boeckers, Tobias M; Schonewille, Martijn; Hoebeek, Freek E; De Zeeuw, Chris I

    2016-01-01

    Loss-of-function mutations in the gene encoding the postsynaptic scaffolding protein SHANK2 are a highly penetrant cause of autism spectrum disorders (ASD) involving cerebellum-related motor problems. Recent studies have implicated cerebellar pathology in the aetiology of ASD. Here we evaluate the possibility that cerebellar Purkinje cells (PCs) represent a critical locus of ASD-like pathophysiology in mice lacking Shank2. Absence of Shank2 impairs both PC intrinsic plasticity and induction of long-term potentiation at the parallel fibre to PC synapse. Moreover, inhibitory input onto PCs is significantly enhanced, most prominently in the posterior lobe where simple spike (SS) regularity is most affected. Using PC-specific Shank2 knockouts, we replicate alterations of SS regularity in vivo and establish cerebellar dependence of ASD-like behavioural phenotypes in motor learning and social interaction. These data highlight the importance of Shank2 for PC function, and support a model by which cerebellar pathology is prominent in certain forms of ASD. PMID:27581745

  9. Ethanol modulates facial stimulation-evoked outward currents in cerebellar Purkinje cells in vivo in mice

    PubMed Central

    Wu, Mao-Cheng; Bing, Yan-Hua; Chu, Chun-Ping; Qiu, De-Lai

    2016-01-01

    Acute ethanol overdose can induce dysfunction of cerebellar motor regulation and cerebellar ataxia. In this study, we investigated the effect of ethanol on facial stimulation-evoked inhibitory synaptic responses in cerebellar Purkinje cells (PCs) in urethane-anesthetized mice, using in vivo patch-clamp recordings. Under voltage-clamp conditions, ethanol (300 mM) decreased the amplitude, half-width, rise time and decay time of facial stimulation-evoked outward currents in PCs. The ethanol-induced inhibition of facial stimulation-evoked outward currents was dose-dependent, with an IC50 of 148.5 mM. Notably, the ethanol-induced inhibition of facial stimulation-evoked outward currents were significantly abrogated by cannabinoid receptor 1 (CB1) antagonists, AM251 and O-2050, as well as by the CB1 agonist WIN55212-2. Moreover, the ethanol-induced inhibition of facial stimulation-evoked outward currents was prevented by cerebellar surface perfusion of the PKA inhibitors H-89 and Rp-cAMP, but not by intracellular administration of the PKA inhibitor PKI. Our present results indicate that ethanol inhibits the facial stimulation-evoked outward currents by activating presynaptic CB1 receptors via the PKA signaling pathway. These findings suggest that ethanol overdose impairs sensory information processing, at least in part, by inhibiting GABA release from molecular layer interneurons onto PCs. PMID:27489024

  10. Duration of Purkinje cell complex spikes increases with their firing frequency

    PubMed Central

    Warnaar, Pascal; Couto, Joao; Negrello, Mario; Junker, Marc; Smilgin, Aleksandra; Ignashchenkova, Alla; Giugliano, Michele; Thier, Peter; De Schutter, Erik

    2015-01-01

    Climbing fiber (CF) triggered complex spikes (CS) are massive depolarization bursts in the cerebellar Purkinje cell (PC), showing several high frequency spikelet components (±600 Hz). Since its early observations, the CS is known to vary in shape. In this study we describe CS waveforms, extracellularly recorded in awake primates (Macaca mulatta) performing saccades. Every PC analyzed showed a range of CS shapes with profoundly different duration and number of spikelets. The initial part of the CS was rather constant but the later part differed greatly, with a pronounced jitter of the last spikelets causing a large variation in total CS duration. Waveforms did not effect the following pause duration in the simple spike (SS) train, nor were SS firing rates predictive of the waveform shapes or vice versa. The waveforms did not differ between experimental conditions nor was there a preferred sequential order of CS shapes throughout the recordings. Instead, part of their variability, the timing jitter of the CS’s last spikelets, strongly correlated with interval length to the preceding CS: shorter CS intervals resulted in later appearance of the last spikelets in the CS burst, and vice versa. A similar phenomenon was observed in rat PCs recorded in vitro upon repeated extracellular stimulation of CFs at different frequencies in slice experiments. All together these results strongly suggest that the variability in the timing of the last spikelet is due to CS frequency dependent changes in PC excitability. PMID:25918500

  11. Ethanol modulates facial stimulation-evoked outward currents in cerebellar Purkinje cells in vivo in mice.

    PubMed

    Wu, Mao-Cheng; Bing, Yan-Hua; Chu, Chun-Ping; Qiu, De-Lai

    2016-01-01

    Acute ethanol overdose can induce dysfunction of cerebellar motor regulation and cerebellar ataxia. In this study, we investigated the effect of ethanol on facial stimulation-evoked inhibitory synaptic responses in cerebellar Purkinje cells (PCs) in urethane-anesthetized mice, using in vivo patch-clamp recordings. Under voltage-clamp conditions, ethanol (300 mM) decreased the amplitude, half-width, rise time and decay time of facial stimulation-evoked outward currents in PCs. The ethanol-induced inhibition of facial stimulation-evoked outward currents was dose-dependent, with an IC50 of 148.5 mM. Notably, the ethanol-induced inhibition of facial stimulation-evoked outward currents were significantly abrogated by cannabinoid receptor 1 (CB1) antagonists, AM251 and O-2050, as well as by the CB1 agonist WIN55212-2. Moreover, the ethanol-induced inhibition of facial stimulation-evoked outward currents was prevented by cerebellar surface perfusion of the PKA inhibitors H-89 and Rp-cAMP, but not by intracellular administration of the PKA inhibitor PKI. Our present results indicate that ethanol inhibits the facial stimulation-evoked outward currents by activating presynaptic CB1 receptors via the PKA signaling pathway. These findings suggest that ethanol overdose impairs sensory information processing, at least in part, by inhibiting GABA release from molecular layer interneurons onto PCs. PMID:27489024

  12. Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice

    PubMed Central

    Peter, Saša; ten Brinke, Michiel M.; Stedehouder, Jeffrey; Reinelt, Claudia M.; Wu, Bin; Zhou, Haibo; Zhou, Kuikui; Boele, Henk-Jan; Kushner, Steven A.; Lee, Min Goo; Schmeisser, Michael J.; Boeckers, Tobias M.; Schonewille, Martijn; Hoebeek, Freek E.; De Zeeuw, Chris I.

    2016-01-01

    Loss-of-function mutations in the gene encoding the postsynaptic scaffolding protein SHANK2 are a highly penetrant cause of autism spectrum disorders (ASD) involving cerebellum-related motor problems. Recent studies have implicated cerebellar pathology in the aetiology of ASD. Here we evaluate the possibility that cerebellar Purkinje cells (PCs) represent a critical locus of ASD-like pathophysiology in mice lacking Shank2. Absence of Shank2 impairs both PC intrinsic plasticity and induction of long-term potentiation at the parallel fibre to PC synapse. Moreover, inhibitory input onto PCs is significantly enhanced, most prominently in the posterior lobe where simple spike (SS) regularity is most affected. Using PC-specific Shank2 knockouts, we replicate alterations of SS regularity in vivo and establish cerebellar dependence of ASD-like behavioural phenotypes in motor learning and social interaction. These data highlight the importance of Shank2 for PC function, and support a model by which cerebellar pathology is prominent in certain forms of ASD. PMID:27581745

  13. Repetitive behavior and increased activity in mice with Purkinje cell loss: a model for understanding the role of cerebellar pathology in autism.

    PubMed

    Martin, Loren A; Goldowitz, Dan; Mittleman, Guy

    2010-02-01

    Repetitive behaviors and hyperactivity are common features of developmental disorders, including autism. Neuropathology of the cerebellum is also a frequent occurrence in autism and other developmental disorders. Recent studies have indicated that cerebellar pathology may play a causal role in the generation of repetitive and hyperactive behaviors. In this study, we examined the relationship between cerebellar pathology and these behaviors in a mouse model of Purkinje cell loss. Specifically, we made aggregation chimeras between Lc/+ mutant embryos and +/+ embryos. Lc/+ mice lose 100% of their Purkinje cells postnatally due to a cell-intrinsic gain-of-function mutation. Through our histological examination, we demonstrated that Lc/+<-->+/+ chimeric mice have Purkinje cells ranging from zero to normal numbers. Our analysis of these chimeric cerebella confirmed previous studies on Purkinje cell lineage. The results of both open-field activity and hole-board exploration testing indicated negative relationships between Purkinje cell number and measures of activity and investigatory nose-poking. Additionally, in a progressive-ratio operant paradigm, we found that Lc/+ mice lever-pressed significantly less than +/+ controls, which led to significantly lower breakpoints in this group. In contrast, chimeric mice lever-pressed significantly more than controls and this repetitive lever-pressing behavior was significantly and negatively correlated with total Purkinje cell numbers. Although the performance of Lc/+ mice is probably related to their motor deficits, the significant relationships between Purkinje cell number and repetitive lever-pressing behavior as well as open-field activity measures provide support for a role of cerebellar pathology in generating repetitive behavior and increased activity in chimeric mice. PMID:20105240

  14. Repetitive behavior and increased activity in mice with Purkinje cell loss: a model for understanding the role of cerebellar pathology in autism.

    PubMed

    Martin, Loren A; Goldowitz, Dan; Mittleman, Guy

    2010-02-01

    Repetitive behaviors and hyperactivity are common features of developmental disorders, including autism. Neuropathology of the cerebellum is also a frequent occurrence in autism and other developmental disorders. Recent studies have indicated that cerebellar pathology may play a causal role in the generation of repetitive and hyperactive behaviors. In this study, we examined the relationship between cerebellar pathology and these behaviors in a mouse model of Purkinje cell loss. Specifically, we made aggregation chimeras between Lc/+ mutant embryos and +/+ embryos. Lc/+ mice lose 100% of their Purkinje cells postnatally due to a cell-intrinsic gain-of-function mutation. Through our histological examination, we demonstrated that Lc/+<-->+/+ chimeric mice have Purkinje cells ranging from zero to normal numbers. Our analysis of these chimeric cerebella confirmed previous studies on Purkinje cell lineage. The results of both open-field activity and hole-board exploration testing indicated negative relationships between Purkinje cell number and measures of activity and investigatory nose-poking. Additionally, in a progressive-ratio operant paradigm, we found that Lc/+ mice lever-pressed significantly less than +/+ controls, which led to significantly lower breakpoints in this group. In contrast, chimeric mice lever-pressed significantly more than controls and this repetitive lever-pressing behavior was significantly and negatively correlated with total Purkinje cell numbers. Although the performance of Lc/+ mice is probably related to their motor deficits, the significant relationships between Purkinje cell number and repetitive lever-pressing behavior as well as open-field activity measures provide support for a role of cerebellar pathology in generating repetitive behavior and increased activity in chimeric mice.

  15. The effect of the timing of ethanol exposure during early postnatal life on total number of Purkinje cells in rat cerebellum

    PubMed Central

    MIKI, TAKANORI; HARRIS, SIMON; WILCE, PETER; TAKEUCHI, YOSHIKI; BEDI, KULDIP S.

    1999-01-01

    We have previously shown that exposing rats to a high dose of ethanol on postnatal d 5 can affect Purkinje cell numbers in the cerebellum whilst similar exposure on d 10 had no such effect. The question arose whether a longer period of ethanol exposure after d 10 could produce loss of Purkinje cells. We have examined this question by exposing young rats to a relatively high dose (∼420–430 mg/dl) of ethanol for 6 d periods between the ages of either 4 and 9 d or 10 and 15 d of age. Exposure was carried out by placing the rats in an ethanol vapour chamber for 3 h per day during the exposure period. Groups of ethanol-treated (ET), separation controls (SC) and mother-reared controls (MRC) were anaesthetised and killed when aged 30 d by perfusion with buffered 2.5% glutaraldehyde. Stereological methods were used to determine the numbers of Purkinje cells in the cerebellum of each rat. MRC, SC and rats treated with ethanol between 10–15 d of age each had, on average, about 254–258 thousand cerebellar Purkinje cells; the differences between these various groups were not statistically significant. However, the rats treated with ethanol vapour between 4–9 d of age had an average of only about 128000±20000 Purkinje cells per cerebellum. This value was significantly different from both the MRC and group-matched SC animals. It is concluded that the period between 4 and 9 d of age is an extremely vulnerable period during which the rat cerebellar Purkinje cells are particularly susceptible to the effects of a high dose of ethanol. However, a similar level and duration of ethanol exposure commencing after 10 d of age has no significant effect on Purkinje cell numbers. PMID:10386779

  16. Natural apoptosis in developing mice dopamine midbrain neurons and vermal Purkinje cells.

    PubMed

    Martí-Clúa, J

    2016-01-01

    Natural cell death by apoptosis was studied in two neuronal populations of BALB/c, C57BL/6 and B6CBA-Aw-j/A hybrid stock mice: (I) dopaminergic (DA) neurons in choosing coronal levels throughout the anteroposterior extent of the substantia nigra pars compacta (SNc), and (II) Purkinje cells (PCs) in each vermal lobe of the cerebellar cortex. Mice were collected at postnatal day (P) 2 and P14 for the midbrain study, and at P4 and P7 for the analysis of the cerebellum. No DA cells with morphologic criteria for apoptosis were found. Moreover, when the combination of tyrosine hydroxylase and TUNEL or tyrosine hydroxylase and active caspase-3 immunohistochemistry were performed in the same tissue section, no DA cells TUNEL positives or active caspase-3-stained DA neurons were seen. On the other hand, when PCs were considered, data analysis revealed that more dying PCs were observed at P4 than at P7. Values of neuron death were highest in the central lobe; this was followed by the posterior and anterior lobes and then by the inferior lobe. To determine if apoptotic death of PCs is linked to their time-of-origin profiles, pregnant dams were administered with [3H]TdR on embryonic days 11-12, 12-13, 13-14 and 14-15. When TUNEL and [3H]TdR autoradiography or active caspase-3 immunohistochemistry and [3H]TdR autoradiography were combined in the same tissue section, results reveal that the naturally occurring PC death is not related to its time of origin but, rather, is random across age.

  17. Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis

    PubMed Central

    Silvestri, Ludovico; Paciscopi, Marco; Soda, Paolo; Biamonte, Filippo; Iannello, Giulio; Frasconi, Paolo; Pavone, Francesco S.

    2015-01-01

    Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells (PCs) across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all PCs are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent PCs. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of PCs, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of PCs with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments. PMID:26074783

  18. Natural apoptosis in developing mice dopamine midbrain neurons and vermal Purkinje cells.

    PubMed

    Martí-Clúa, J

    2016-01-01

    Natural cell death by apoptosis was studied in two neuronal populations of BALB/c, C57BL/6 and B6CBA-Aw-j/A hybrid stock mice: (I) dopaminergic (DA) neurons in choosing coronal levels throughout the anteroposterior extent of the substantia nigra pars compacta (SNc), and (II) Purkinje cells (PCs) in each vermal lobe of the cerebellar cortex. Mice were collected at postnatal day (P) 2 and P14 for the midbrain study, and at P4 and P7 for the analysis of the cerebellum. No DA cells with morphologic criteria for apoptosis were found. Moreover, when the combination of tyrosine hydroxylase and TUNEL or tyrosine hydroxylase and active caspase-3 immunohistochemistry were performed in the same tissue section, no DA cells TUNEL positives or active caspase-3-stained DA neurons were seen. On the other hand, when PCs were considered, data analysis revealed that more dying PCs were observed at P4 than at P7. Values of neuron death were highest in the central lobe; this was followed by the posterior and anterior lobes and then by the inferior lobe. To determine if apoptotic death of PCs is linked to their time-of-origin profiles, pregnant dams were administered with [3H]TdR on embryonic days 11-12, 12-13, 13-14 and 14-15. When TUNEL and [3H]TdR autoradiography or active caspase-3 immunohistochemistry and [3H]TdR autoradiography were combined in the same tissue section, results reveal that the naturally occurring PC death is not related to its time of origin but, rather, is random across age. PMID:27543775

  19. Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis.

    PubMed

    Silvestri, Ludovico; Paciscopi, Marco; Soda, Paolo; Biamonte, Filippo; Iannello, Giulio; Frasconi, Paolo; Pavone, Francesco S

    2015-01-01

    Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells (PCs) across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all PCs are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent PCs. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of PCs, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of PCs with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments.

  20. Modulation of Purkinje cell complex spike waveform by synchrony levels in the olivocerebellar system

    PubMed Central

    Lang, Eric J.; Tang, Tianyu; Suh, Colleen Y.; Xiao, Jianqiang; Kotsurovskyy, Yuriy; Blenkinsop, Timothy A.; Marshall, Sarah P.; Sugihara, Izumi

    2014-01-01

    Purkinje cells (PCs) generate complex spikes (CSs) when activated by the olivocerebellar system. Unlike most spikes, the CS waveform is highly variable, with the number, amplitude, and timing of the spikelets that comprise it varying with each occurrence. This variability suggests that CS waveform could be an important control parameter of olivocerebellar activity. The origin of this variation is not well known. Thus, we obtained extracellular recordings of CSs to investigate the possibility that the electrical coupling state of the inferior olive (IO) affects the CS waveform. Using multielectrode recordings from arrays of PCs we showed that the variance in the recording signal during the period when the spikelets occur is correlated with CS synchrony levels in local groups of PCs. The correlation was demonstrated under both ketamine and urethane, indicating that it is robust. Moreover, climbing fiber reflex evoked CSs showed an analogous positive correlation between spikelet-related variance and the number of cells that responded to a stimulus. Intra-IO injections of GABA-A receptor antagonists or the gap junction blocker carbenoxolone produced correlated changes in the variance and synchrony levels, indicating the presence of a causal relationship. Control experiments showed that changes in variance with synchrony were primarily due to changes in the CS waveform, as opposed to changes in the strength of field potentials from surrounding cells. Direct counts of spikelets showed that their number increased with synchronization of CS activity. In sum, these results provide evidence of a causal link between two of the distinguishing characteristics of the olivocerebellar system, its ability to generate synchronous activity and the waveform of the CS. PMID:25400556

  1. Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI.

    PubMed

    Schreurs, B G; Gusev, P A; Tomsic, D; Alkon, D L; Shi, T

    1998-07-15

    Intradendritic recordings in Purkinje cells from a defined area in parasaggital slices of cerebellar lobule HVI, obtained after rabbits were given either paired (classical conditioning) or explicitly unpaired (control) presentations of tone and periorbital electrical stimulation, were used to assess the nature and duration of conditioning-specific changes in Purkinje cell dendritic membrane excitability. We found a strong relationship between the level of conditioning and Purkinje cell dendritic membrane excitability after initial acquisition of the conditioned response. Moreover, conditioning-specific increases in Purkinje cell excitability were still present 1 month after classical conditioning. Although dendritically recorded membrane potential, input resistance, and amplitude of somatic and dendritic spikes were not different in cells from paired or control animals, the size of a potassium channel-mediated transient hyperpolarization was significantly smaller in cells from animals that received classical conditioning. In slices of lobule HVI obtained from naive rabbits, the conditioning-related increases in membrane excitability could be mimicked by application of potassium channel antagonist tetraethylammonium chloride, iberiotoxin, or 4-aminopyridine. However, only 4-aminopyridine was able to reduce the transient hyperpolarization. The pharmacological data suggest a role for potassium channels and, possibly, channels mediating an IA-like current, in learning-specific changes in membrane excitability. The conditioning-specific increase in Purkinje cell dendritic excitability produces an afterhyperpolarization, which is hypothesized to release the cerebellar deep nuclei from inhibition, allowing conditioned responses to be elicited via the red nucleus and accessory abducens motorneurons.

  2. Differential GABAergic and glycinergic inputs of inhibitory interneurons and Purkinje cells to principal cells of the cerebellar nuclei.

    PubMed

    Husson, Zoé; Rousseau, Charly V; Broll, Ilja; Zeilhofer, Hanns Ulrich; Dieudonné, Stéphane

    2014-07-01

    The principal neurons of the cerebellar nuclei (CN), the sole output of the olivo-cerebellar system, receive a massive inhibitory input from Purkinje cells (PCs) of the cerebellar cortex. Morphological evidence suggests that CN principal cells are also contacted by inhibitory interneurons, but the properties of this connection are unknown. Using transgenic, tracing, and immunohistochemical approaches in mice, we show that CN interneurons form a large heterogeneous population with GABA/glycinergic phenotypes, distinct from GABAergic olive-projecting neurons. CN interneurons are found to contact principal output neurons, via glycine receptor (GlyR)-enriched synapses, virtually devoid of the main GABA receptor (GABAR) subunits α1 and γ2. Those clusters account for 5% of the total number of inhibitory receptor clusters on principal neurons. Brief optogenetic stimulations of CN interneurons, through selective expression of channelrhodopsin 2 after viral-mediated transfection of the flexed gene in GlyT2-Cre transgenic mice, evoked fast IPSCs in principal cells. GlyR activation accounted for 15% of interneuron IPSC amplitude, while the remaining current was mediated by activation of GABAR. Surprisingly, small GlyR clusters were also found at PC synapses onto principal CN neurons in addition to α1 and γ2 GABAR subunits. However, GlyR activation was found to account for <3% of the PC inhibitory synaptic currents evoked by electrical stimulation. This work establishes CN glycinergic neurons as a significant source of inhibition to CN principal cells, forming contacts molecularly distinct from, but functionally similar to, Purkinje cell synapses. Their impact on CN output, motor learning, and motor execution deserves further investigation.

  3. Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells.

    PubMed

    Kay, A R; Sugimori, M; Llinás, R

    1998-09-01

    Whole cell voltage-clamp techniques were employed to characterize the sodium (Na) conductances in acutely dissociated, mature guinea-pig cerebellar Purkinje cells. Three phenomenological components were noted: two inactivating and a persistent component (I(P)(Na). All exhibited similar sensitivities to tetrodotoxin (TTX; IC50 approximately 3 nM). The inactivating Na current demonstrates two components with different rates of inactivation. The persistent component activates at a more negative membrane potential than the inactivating components and shows little inactivation during a 5-s pulse. The amplitude of the persistent Na conductance had a higher Q10 than the inactivating Na conductance (2.7 vs. 1.3). (I(P)(Na) rapidly activates (approximately 1 ms) and deactivates (< 0.2 ms) and like the fast component appears to be exclusively Na permeable. (I(P)(Na) is not a "window" current because its range of activation exceeds the small overlap between the steady-state activation and inactivation characteristics of the inactivating current. Anomalous tail currents were observed during voltage pulses above -40 mV after a prepulse above -30 mV. The tails rose to a maximum inward current with a time constant of 1.5 ms and decayed to a persistent inward current with a time constant of 20 ms. The tails probably arose as a result of recovery from inactivation through the open state. The noise characteristics of (I(P)(Na) were anomalous in that the measured variance was lower at threshold voltages than would be predicted by a binomial model. The form of the variance could be partially accounted for by postulating that the maximum probability of activation of the persistent current was less than unity. The noise characteristics of (I(P)(Na) are such as to minimize noise near spike activation threshold and sharpen the threshold.

  4. Different patterns of regional Purkinje cell loss in the cerebellar vermis as a function of the timing of prenatal ethanol exposure in an ovine model.

    PubMed

    Sawant, Onkar B; Lunde, Emilie R; Washburn, Shannon E; Chen, Wei-Jung A; Goodlett, Charles R; Cudd, Timothy A

    2013-01-01

    Studies in rat models of fetal alcohol spectrum disorders have indicated that the cerebellum is particularly vulnerable to ethanol-induced Purkinje cell loss during the third trimester-equivalent, with striking regional differences in vulnerability in which early-maturing regions in the vermis show significantly more loss than the late-maturing regions. The current study tested the hypothesis that the sheep model will show similar regional differences in fetal cerebellar Purkinje cell loss when prenatal binge ethanol exposure is restricted to the prenatal period of brain development equivalent to the third trimester and also compared the pattern of loss to that produced by exposure during the first trimester-equivalent. Pregnant Suffolk sheep were assigned to four groups: first trimester-equivalent saline control group, first trimester-equivalent ethanol group (1.75 g/kg/day), third trimester-equivalent saline control group, and third trimester-equivalent ethanol group (1.75 g/kg/day). Ethanol was administered as an intravenous infusion on 3 consecutive days followed by a 4-day ethanol-free interval, to mimic a weekend binge drinking pattern. Animals from all four groups were sacrificed and fetal brains were harvested on gestation day 133. Fetal cerebellar Purkinje cell counts were performed in an early-maturing region (lobules I-X) and a late-maturing region (lobules VIc-VII) from mid-sagittal sections of the cerebellar vermis. As predicted, the third trimester-equivalent ethanol exposure caused a significant reduction in the fetal cerebellar Purkinje cell volume density and Purkinje cell number in the early-maturing region, but not in the late-maturing region. In contrast, the first trimester-equivalent ethanol exposure resulted in significant reductions in both the early and late-maturing regions. These data confirmed that the previous findings in rat models that third trimester-equivalent prenatal ethanol exposure resulted in regionally-specific Purkinje cell

  5. Relating Cerebellar Purkinje Cell Activity to the Timing and Amplitude of Conditioned Eyelid Responses

    PubMed Central

    Khilkevich, Andrei; Mauk, Michael D.

    2015-01-01

    How Purkinje cell (PC) activity may be altered by learning is central to theories of the cerebellum. Pavlovian eyelid conditioning, because of how directly it engages the cerebellum, has helped reveal many aspects of cerebellar learning and the underlying mechanisms. Theories of cerebellar learning assert that climbing fiber inputs control plasticity at synapses onto PCs, and thus PCs control the expression of learned responses. We tested this assertion by recording 184 eyelid PCs and 240 non-eyelid PCs during the expression of conditioned eyelid responses (CRs) in well trained rabbits. By contrasting the responses of eyelid and non-eyelid PCs and by contrasting the responses of eyelid PCs under conditions that produce differently timed CRs, we test the hypothesis that learning-related changes in eyelid PCs contribute to the learning and adaptive timing of the CRs. We used a variety of analyses to test the quantitative relationships between eyelid PC responses and the kinematic properties of the eyelid CRs. We find that the timing of eyelid PC responses varies systematically with the timing of the behavioral CRs and that there are differences in the magnitude of eyelid PC responses between larger-CR, smaller-CR, and non-CR trials. However, eyelid PC activity does not encode any single kinematic property of the behavioral CRs at a fixed time lag, nor does it linearly encode CR amplitude. Even so, the results are consistent with the hypothesis that learning-dependent changes in PC activity contribute to the adaptively timed expression of conditioned eyelid responses. PMID:25995469

  6. Elevated mutant dynorphin A causes Purkinje cell loss and motor dysfunction in spinocerebellar ataxia type 23.

    PubMed

    Smeets, Cleo J L M; Jezierska, Justyna; Watanabe, Hiroyuki; Duarri, Anna; Fokkens, Michiel R; Meijer, Michel; Zhou, Qin; Yakovleva, Tania; Boddeke, Erik; den Dunnen, Wilfred; van Deursen, Jan; Bakalkin, Georgy; Kampinga, Harm H; van de Sluis, Bart; Verbeek, Dineke S

    2015-09-01

    Spinocerebellar ataxia type 23 is caused by mutations in PDYN, which encodes the opioid neuropeptide precursor protein, prodynorphin. Prodynorphin is processed into the opioid peptides, α-neoendorphin, and dynorphins A and B, that normally exhibit opioid-receptor mediated actions in pain signalling and addiction. Dynorphin A is likely a mutational hotspot for spinocerebellar ataxia type 23 mutations, and in vitro data suggested that dynorphin A mutations lead to persistently elevated mutant peptide levels that are cytotoxic and may thus play a crucial role in the pathogenesis of spinocerebellar ataxia type 23. To further test this and study spinocerebellar ataxia type 23 in more detail, we generated a mouse carrying the spinocerebellar ataxia type 23 mutation R212W in PDYN. Analysis of peptide levels using a radioimmunoassay shows that these PDYN(R212W) mice display markedly elevated levels of mutant dynorphin A, which are associated with climber fibre retraction and Purkinje cell loss, visualized with immunohistochemical stainings. The PDYN(R212W) mice reproduced many of the clinical features of spinocerebellar ataxia type 23, with gait deficits starting at 3 months of age revealed by footprint pattern analysis, and progressive loss of motor coordination and balance at the age of 12 months demonstrated by declining performances on the accelerating Rotarod. The pathologically elevated mutant dynorphin A levels in the cerebellum coincided with transcriptionally dysregulated ionotropic and metabotropic glutamate receptors and glutamate transporters, and altered neuronal excitability. In conclusion, the PDYN(R212W) mouse is the first animal model of spinocerebellar ataxia type 23 and our work indicates that the elevated mutant dynorphin A peptide levels are likely responsible for the initiation and progression of the disease, affecting glutamatergic signalling, neuronal excitability, and motor performance. Our novel mouse model defines a critical role for opioid

  7. Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization

    PubMed Central

    Masoli, Stefano; Solinas, Sergio; D'Angelo, Egidio

    2015-01-01

    The Purkinje cell (PC) is among the most complex neurons in the brain and plays a critical role for cerebellar functioning. PCs operate as fast pacemakers modulated by synaptic inputs but can switch from simple spikes to complex bursts and, in some conditions, show bistability. In contrast to original works emphasizing dendritic Ca-dependent mechanisms, recent experiments have supported a primary role for axonal Na-dependent processing, which could effectively regulate spike generation and transmission to deep cerebellar nuclei (DCN). In order to account for the numerous ionic mechanisms involved (at present including Nav1.6, Cav2.1, Cav3.1, Cav3.2, Cav3.3, Kv1.1, Kv1.5, Kv3.3, Kv3.4, Kv4.3, KCa1.1, KCa2.2, KCa3.1, Kir2.x, HCN1), we have elaborated a multicompartmental model incorporating available knowledge on localization and gating of PC ionic channels. The axon, including initial segment (AIS) and Ranvier nodes (RNs), proved critical to obtain appropriate pacemaking and firing frequency modulation. Simple spikes initiated in the AIS and protracted discharges were stabilized in the soma through Na-dependent mechanisms, while somato-dendritic Ca channels contributed to sustain pacemaking and to generate complex bursting at high discharge regimes. Bistability occurred only following Na and Ca channel down-regulation. In addition, specific properties in RNs K currents were required to limit spike transmission frequency along the axon. The model showed how organized electroresponsive functions could emerge from the molecular complexity of PCs and showed that the axon is fundamental to complement ionic channel compartmentalization enabling action potential processing and transmission of specific spike patterns to DCN. PMID:25759640

  8. Cannabinoids decrease excitatory synaptic transmission and impair long-term depression in rat cerebellar Purkinje cells.

    PubMed

    Lévénés, C; Daniel, H; Soubrié, P; Crépel, F

    1998-08-01

    1. CB-1 cannabinoid receptors are strongly expressed in the molecular layer of the cerebellar cortex. We have analysed, in patch-clamped Purkinje cells (PCs) in rat cerebellar slices, the effect of the selective CB-1 agonists WIN55,212-2 and CP55,940 and of the selective CB-1 antagonist SR141716-A on excitatory synaptic transmission and synaptic plasticity. 2. Bath application of both agonists markedly depressed parallel fibre (PF) EPSCs. This effect was reversed by SR141716-A. In contrast, responses of PCs to ionophoretic application of glutamate were not affected by WIN55, 212-2. 3. The coefficient of variation and the paired-pulse facilitation of these PF-mediated EPSCs increased in the presence of WIN55,212-2. 4. WIN55,212-2 decreased the frequency of miniature EPSCs and of asynchronous synaptic events evoked in the presence of strontium in the bath, but did not affect their amplitude. 5. WIN55, 212-2 did not change the excitability of PFs. 6. WIN55,212-2 impaired long-term depression induced by pairing protocols in PCs. This effect was antagonized by SR141716-A. The same impairment of LTD was produced by 2-chloroadenosine, a compound that decreases the probability of release of glutamate at PF-PC synapses. 7. The present study demonstrates that cannabinoids inhibit synaptic transmission at PF-PC synapses by decreasing the probability of release of glutamate, and thereby impair LTD. These two effects might represent a plausible cellular mechanism underlying cerebellar dysfunction caused by cannabinoids.

  9. Plasticity of cerebellar Purkinje cells in behavioral training of body balance control

    PubMed Central

    Lee, Ray X.; Huang, Jian-Jia; Huang, Chiming; Tsai, Meng-Li; Yen, Chen-Tung

    2015-01-01

    Neural responses to sensory inputs caused by self-generated movements (reafference) and external passive stimulation (exafference) differ in various brain regions. The ability to differentiate such sensory information can lead to movement execution with better accuracy. However, how sensory responses are adjusted in regard to this distinguishability during motor learning is still poorly understood. The cerebellum has been hypothesized to analyze the functional significance of sensory information during motor learning, and is thought to be a key region of reafference computation in the vestibular system. In this study, we investigated Purkinje cell (PC) spike trains as cerebellar cortical output when rats learned to balance on a suspended dowel. Rats progressively reduced the amplitude of body swing and made fewer foot slips during a 5-min balancing task. Both PC simple (SSs; 17 of 26) and complex spikes (CSs; 7 of 12) were found to code initially on the angle of the heads with respect to a fixed reference. Using periods with comparable degrees of movement, we found that such SS coding of information in most PCs (10 of 17) decreased rapidly during balance learning. In response to unexpected perturbations and under anesthesia, SS coding capability of these PCs recovered. By plotting SS and CS firing frequencies over 15-s time windows in double-logarithmic plots, a negative correlation between SS and CS was found in awake, but not anesthetized, rats. PCs with prominent SS coding attenuation during motor learning showed weaker SS-CS correlation. Hence, we demonstrate that neural plasticity for filtering out sensory reafference from active motion occurs in the cerebellar cortex in rats during balance learning. SS-CS interaction may contribute to this rapid plasticity as a form of receptive field plasticity in the cerebellar cortex between two receptive maps of sensory inputs from the external world and of efference copies from the will center for volitional movements

  10. Role of Synchronous Activation of Cerebellar Purkinje Cell Ensembles in Multi-joint Movement Control

    PubMed Central

    Hoogland, Tycho M.; De Gruijl, Jornt R.; Witter, Laurens; Canto, Cathrin B.; De Zeeuw, Chris I.

    2015-01-01

    Summary It is a longstanding question in neuroscience how elaborate multi-joint movements are coordinated coherently. Microzones of cerebellar Purkinje cells (PCs) are thought to mediate this coordination by controlling the timing of particular motor domains. However, it remains to be elucidated to what extent motor coordination deficits can be correlated with abnormalities in coherent activity within these microzones and to what extent artificially evoked synchronous activity within PC ensembles can elicit multi-joint motor behavior. To study PC ensemble correlates of limb, trunk, and tail movements, we developed a transparent disk treadmill that allows quantitative readout of locomotion and posture parameters in head-fixed mice and simultaneous cellular-resolution imaging and/or optogenetic manipulation. We show that PC ensembles in the ataxic and dystonic mouse mutant tottering have a reduced level of complex spike co-activation, which is delayed relative to movement onset and co-occurs with prolonged swing duration and reduced phase coupling of limb movements as well as with enlarged deflections of body-axis and tail movements. Using optogenetics to increase simple spike rate in PC ensembles, we find that preferred locomotion and posture patterns can be elicited or perturbed depending on the behavioral state. At rest, preferred sequences of limb movements can be elicited, whereas during locomotion, preferred gait-inhibition patterns are evoked. Our findings indicate that synchronous activation of PC ensembles can facilitate initiation and coordination of limb and trunk movements, presumably by tuning downstream systems involved in the execution of behavioral patterns. PMID:25843032

  11. Elevated mutant dynorphin A causes Purkinje cell loss and motor dysfunction in spinocerebellar ataxia type 23.

    PubMed

    Smeets, Cleo J L M; Jezierska, Justyna; Watanabe, Hiroyuki; Duarri, Anna; Fokkens, Michiel R; Meijer, Michel; Zhou, Qin; Yakovleva, Tania; Boddeke, Erik; den Dunnen, Wilfred; van Deursen, Jan; Bakalkin, Georgy; Kampinga, Harm H; van de Sluis, Bart; Verbeek, Dineke S

    2015-09-01

    Spinocerebellar ataxia type 23 is caused by mutations in PDYN, which encodes the opioid neuropeptide precursor protein, prodynorphin. Prodynorphin is processed into the opioid peptides, α-neoendorphin, and dynorphins A and B, that normally exhibit opioid-receptor mediated actions in pain signalling and addiction. Dynorphin A is likely a mutational hotspot for spinocerebellar ataxia type 23 mutations, and in vitro data suggested that dynorphin A mutations lead to persistently elevated mutant peptide levels that are cytotoxic and may thus play a crucial role in the pathogenesis of spinocerebellar ataxia type 23. To further test this and study spinocerebellar ataxia type 23 in more detail, we generated a mouse carrying the spinocerebellar ataxia type 23 mutation R212W in PDYN. Analysis of peptide levels using a radioimmunoassay shows that these PDYN(R212W) mice display markedly elevated levels of mutant dynorphin A, which are associated with climber fibre retraction and Purkinje cell loss, visualized with immunohistochemical stainings. The PDYN(R212W) mice reproduced many of the clinical features of spinocerebellar ataxia type 23, with gait deficits starting at 3 months of age revealed by footprint pattern analysis, and progressive loss of motor coordination and balance at the age of 12 months demonstrated by declining performances on the accelerating Rotarod. The pathologically elevated mutant dynorphin A levels in the cerebellum coincided with transcriptionally dysregulated ionotropic and metabotropic glutamate receptors and glutamate transporters, and altered neuronal excitability. In conclusion, the PDYN(R212W) mouse is the first animal model of spinocerebellar ataxia type 23 and our work indicates that the elevated mutant dynorphin A peptide levels are likely responsible for the initiation and progression of the disease, affecting glutamatergic signalling, neuronal excitability, and motor performance. Our novel mouse model defines a critical role for opioid

  12. Microtubule-associated protein 2 (MAP2) in Purkinje cell dendrites: Evidence that factors other than binding to microtubules are involved in determining its cytoplasmic distribution

    SciTech Connect

    Matus, A.; Delhaye-Bouchaud, N.; Mariani, J. )

    1990-07-15

    We have studied the distribution of microtubule-associated protein 2 (MAP2) in the Purkinje cell dendrites of rats whose cerebella were exposed to X-irradiation during the second postnatal week. The Purkinje cells of such animals have abnormally elongated apical primary processes that branch in the other molecular layer rather than close to the cell body as in normal tissue. The results show that in these distorted dendrites the MAP2 distribution is shifted distally relative to the normal pattern, in which MAP2 is distributed evenly throughout the dendritic tree. Tubulin and other microtubule-associated proteins, such as MAP1, are not affected and remain evenly distributed throughout the dendritic tree despite the anatomical distortion. We conclude that the distribution of MAP2 in Purkinje cells is not determined solely by its binding to tubulin. Other factors must be involved and these appear to be related to dendritic morphology and possibly to branching.

  13. Synaptic activation of metabotropic glutamate receptors in the parallel fibre-Purkinje cell pathway in rat cerebellar slices.

    PubMed

    Batchelor, A M; Madge, D J; Garthwaite, J

    1994-12-01

    Glutamate, the major excitatory neurotransmitter in the central nervous system, acts through two broad classes of receptors: ion channel-linked (ionotropic) receptors, which include N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and metabotropic receptors which couple via G-proteins to intracellular messenger cascades. Seven subtypes of mGluR are known to exist but their roles in synaptic physiology are poorly understood. In cerebellar Purkinje cells, application of the mGluR agonist, trans-1-aminocyclopentane-1,3-dicarboxylic acid, or the active enantiomer, 1S,3R-ACPD, results in a depolarization associated with an inward current and an elevation of intracellular Ca2+ (for review see Ref. 29). Moreover, using an extracellular (grease-gap) technique that monitors population responses, we have previously discovered that, in Purkinje cells of adult rat cerebellum, brief tetanic stimulation of the glutamatergic parallel fibre input gives rise to a slow depolarising synaptic potential that is resistant to ionotropic glutamate receptor blockers and to antagonists acting at GABA receptors. It was suggested that this novel potential is mediated by metabotropic receptors. The advent of antagonists for metabotropic receptors has allowed us to test this hypothesis. We find that the S-enantiomer of alpha-methyl-4-carboxyphenylglycine stereoselectively antagonizes the slow synaptic potential recorded using the grease-gap method. The results were confirmed by intracellular recording from Purkinje cells. To our knowledge this is the first direct evidence of an mGluR-mediated EPSP in intact brain tissue. PMID:7535396

  14. Loss of the calcium channel β4 subunit impairs parallel fibre volley and Purkinje cell firing in cerebellum of adult ataxic mice.

    PubMed

    Benedetti, Bruno; Benedetti, Ariane; Flucher, Bernhard E

    2016-06-01

    The auxiliary voltage-gated calcium channel subunit β4 supports targeting of calcium channels to the cell membrane, modulates ionic currents and promotes synaptic release in the central nervous system. β4 is abundant in cerebellum and its loss causes ataxia. However, the type of calcium channels and cerebellar functions affected by the loss of β4 are currently unknown. We therefore studied the structure and function of Purkinje cells in acute cerebellar slices of the β4 (-/-) ataxic (lethargic) mouse, finding that loss of β4 affected Purkinje cell input, morphology and pacemaker activity. In adult lethargic cerebellum evoked postsynaptic currents from parallel fibres were depressed, while paired-pulse facilitation and spontaneous synaptic currents were unaffected. Because climbing fibre input was spared, the parallel fibre/climbing fibre input ratio was reduced. The dendritic arbor of adult lethargic Purkinje cells displayed fewer and shorter dendrites, but a normal spine density. Accordingly, the width of the molecular and granular layers was reduced. These defects recapitulate the impaired cerebellar maturation observed upon Cav 2.1 ataxic mutations. However, unlike Cav 2.1 mutations, lethargic Purkinje cells also displayed a striking decrease in pacemaker firing frequency, without loss of firing regularity. All these deficiencies appear in late development, indicating the importance of β4 for the normal differentiation and function of mature Purkinje cells networks. The observed reduction of the parallel fibre input, the altered parallel fibre/climbing fibre ratio and the reduced Purkinje cell output can contribute to the severe motor impairment caused by the loss of the calcium channel β4 subunit in lethargic mice. PMID:27003325

  15. Subsurface cistern (SSC) proliferation in Purkinje cells of the rat cerebellum in response to acute and chronic exposure to paint thinner: A light and electron microscopy study.

    PubMed

    Martínez-Alfaro, Minerva; Cárabez-Trejo, Alfonso; Sandoval-Zapata, Francisca; Morales-Tlalpan, Verónica; Palma-Tirado, Lourdes

    2014-09-01

    Intentional inhalation and occupational exposure are two ways humans are exposed to thinner, a widely employed solvent in industry. Inhalation of thinner induces toxic effects in various organs, with the cerebellum being one of the most affected structures of the CNS. The aim of this work was to describe specific structural alterations of cerebellum Purkinje cells in rats following exposure to thinner for 16 weeks. A histological analysis of the cerebellum of solvent-exposed rats revealed swollen Purkinje cell dendrites surrounded by empty space, and electronic microscopy showed an increase in the number of subsurface cisterns (SSCs) within their dendritic processes. After a period of non-exposure, the number of SSCs decreased without reaching normal levels, suggesting a degree of plasticity. Purkinje cell SSCs, which are derived from smooth endoplasmic reticulum, contain inositol trisphosphate receptors (IP3Rs), ryanodine receptors (RR), and a recently identified characteristic cluster of large conductance calcium-activated potassium (BKCa) channels. We found that SSCs in Purkinje cell dendrites were closely associated with mitochondria, and immunofluorescence microscopy showed higher levels of RR and calbindin receptors (CB), in Purkinje cells of exposed than normal rats. These changes are probably related to behavioral manifestations of cerebellar alterations, such as imbalance and ataxia, consistent with the suggested involvement of increases in SSCs in ataxia in rats and humans. This increase in SSCs, taken together with the localization of RR, IP3R and BKCa proteins in this structure, suggests altered intracellular calcium-buffering processes in the Purkinje cells of thinner-exposed rats.

  16. Subsurface cistern (SSC) proliferation in Purkinje cells of the rat cerebellum in response to acute and chronic exposure to paint thinner: A light and electron microscopy study.

    PubMed

    Martínez-Alfaro, Minerva; Cárabez-Trejo, Alfonso; Sandoval-Zapata, Francisca; Morales-Tlalpan, Verónica; Palma-Tirado, Lourdes

    2014-09-01

    Intentional inhalation and occupational exposure are two ways humans are exposed to thinner, a widely employed solvent in industry. Inhalation of thinner induces toxic effects in various organs, with the cerebellum being one of the most affected structures of the CNS. The aim of this work was to describe specific structural alterations of cerebellum Purkinje cells in rats following exposure to thinner for 16 weeks. A histological analysis of the cerebellum of solvent-exposed rats revealed swollen Purkinje cell dendrites surrounded by empty space, and electronic microscopy showed an increase in the number of subsurface cisterns (SSCs) within their dendritic processes. After a period of non-exposure, the number of SSCs decreased without reaching normal levels, suggesting a degree of plasticity. Purkinje cell SSCs, which are derived from smooth endoplasmic reticulum, contain inositol trisphosphate receptors (IP3Rs), ryanodine receptors (RR), and a recently identified characteristic cluster of large conductance calcium-activated potassium (BKCa) channels. We found that SSCs in Purkinje cell dendrites were closely associated with mitochondria, and immunofluorescence microscopy showed higher levels of RR and calbindin receptors (CB), in Purkinje cells of exposed than normal rats. These changes are probably related to behavioral manifestations of cerebellar alterations, such as imbalance and ataxia, consistent with the suggested involvement of increases in SSCs in ataxia in rats and humans. This increase in SSCs, taken together with the localization of RR, IP3R and BKCa proteins in this structure, suggests altered intracellular calcium-buffering processes in the Purkinje cells of thinner-exposed rats. PMID:24820124

  17. Ischemia-Induced Autophagy Contributes to Neurodegeneration in Cerebellar Purkinje Cells in the Developing Rat Brain and in Primary Cortical Neurons In Vitro

    PubMed Central

    Au, Alicia K.; Chen, Yaming; Du, Lina; Smith, Craig M.; Manole, Mioara D.; Baltagi, Sirine A.; Chu, Charleen T.; Aneja, Rajesh K.; Bayır, Hülya; Kochanek, Patrick M.; Clark, Robert S. B.

    2015-01-01

    Increased autophagy/mitophagy is thought to contribute to cerebellar dysfunction in Purkinje cell degeneration mice. Intriguingly, cerebellar Purkinje cells are highly vulnerable to hypoxia-ischemia (HI), related at least in part to their high metabolic activity. Whether or not excessive or supraphysiologic autophagy plays a role in Purkinje cell susceptibility to HI is unknown. Accordingly, we evaluated the role of autophagy in the cerebellum after global ischemia produced by asphyxial cardiac arrest in postnatal day (PND) 16–18 rats, using siRNA-targeted inhibition of Atg7, necessary for microtubule-associated protein light chain 3-II (LC3-II) and Atg12-Atg5 complex formation. Two days before a 9 min asphyxial cardiac arrest or sham surgery, Atg7 or control siRNA was injected intracisternally to target the cerebellum. Treatment with Atg7 siRNA: 1) reduced Atg7 protein expression in the cerebellum by 56%; 2) prevented the typical ischemia-induced formation of LC3-II in the cerebellum 24 h after asphyxial cardiac arrest; 3) improved performance on the beam-balance apparatus on days 1–5; and 4) increased calbindin-labeled Purkinje cell survival assessed on day 14. Improved Purkinje cell survival was more consistent in female vs. male rats, and improved beam-balance performance was only seen in female rats. Similar responses to Atg7 siRNA i.e. reduced autophagy and neurodegeneration vs. control siRNA were seen when exposing sex-segregated green fluorescent protein-LC3 tagged mouse primary cortical neurons to oxygen glucose deprivation in vitro. Thus, inhibition of autophagy after global ischemia in PND 16–18 rats leads to increased survival of Purkinje cells and improved motor performance in a sex-dependent manner. PMID:26071643

  18. Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells.

    PubMed Central

    Rapp, M; Segev, I; Yarom, Y

    1994-01-01

    1. Purkinje cells (PCs) from guinea-pig cerebellar slices were physiologically characterized using intracellular techniques. Extracellular caesium ions were used to linearize the membrane properties of PCs near the resting potential. Under these conditions the average input resistance, RN, was 29 M omega, the average system time constant, tau 0, was 82 ms and the average cable length, LN, was 0.59. 2. Three PCs were fully reconstructed following physiological measurements and staining with horseradish peroxidase. Assuming that each spine has an area of 1 micron 2 and that the spine density over the spiny dendrites is ten spines per micrometre length, the total membrane area of each PC is approximately 150,000 microns 2, of which approximately 100,000 microns 2 is in the spines. 3. Detailed passive cable and compartmental models were built for each of the three reconstructed PCs. Computational methods were devised to incorporate globally the huge number of spines into these models. In all three cells the models predict that the specific membrane resistivity, Rm, of the soma is much lower than the dendritic Rm (approximately 500 and approximately 100,000 omega cm2 respectively). The specific membrane capacitance, Cm, is estimated to be 1.5-2 muF cm-2 and the specific cytoplasm resistivity, Ri, is 250 omega cm. 4. The average cable length of the dendrites according to the model is 0.13 lambda, suggesting that under caesium conditions PCs are electrically very compact. Brief somatic spikes, however, are expected to attenuate 30-fold when spreading passively into the dendritic terminals. A simulated 200 Hz train of fast, 90 mV somatic spikes produced a smooth 12 mV steady depolarization at the dendritic terminals. 5. A transient synaptic conductance increase, with a 1 nS peak at 0.5 ms and a driving force of 60 mV, is expected to produce approximately 20 mV peak depolarization at the spine head membrane. This EPSP then attenuates between 200- and 900-fold into the soma

  19. Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells.

    PubMed

    Rapp, M; Segev, I; Yarom, Y

    1994-01-01

    1. Purkinje cells (PCs) from guinea-pig cerebellar slices were physiologically characterized using intracellular techniques. Extracellular caesium ions were used to linearize the membrane properties of PCs near the resting potential. Under these conditions the average input resistance, RN, was 29 M omega, the average system time constant, tau 0, was 82 ms and the average cable length, LN, was 0.59. 2. Three PCs were fully reconstructed following physiological measurements and staining with horseradish peroxidase. Assuming that each spine has an area of 1 micron 2 and that the spine density over the spiny dendrites is ten spines per micrometre length, the total membrane area of each PC is approximately 150,000 microns 2, of which approximately 100,000 microns 2 is in the spines. 3. Detailed passive cable and compartmental models were built for each of the three reconstructed PCs. Computational methods were devised to incorporate globally the huge number of spines into these models. In all three cells the models predict that the specific membrane resistivity, Rm, of the soma is much lower than the dendritic Rm (approximately 500 and approximately 100,000 omega cm2 respectively). The specific membrane capacitance, Cm, is estimated to be 1.5-2 muF cm-2 and the specific cytoplasm resistivity, Ri, is 250 omega cm. 4. The average cable length of the dendrites according to the model is 0.13 lambda, suggesting that under caesium conditions PCs are electrically very compact. Brief somatic spikes, however, are expected to attenuate 30-fold when spreading passively into the dendritic terminals. A simulated 200 Hz train of fast, 90 mV somatic spikes produced a smooth 12 mV steady depolarization at the dendritic terminals. 5. A transient synaptic conductance increase, with a 1 nS peak at 0.5 ms and a driving force of 60 mV, is expected to produce approximately 20 mV peak depolarization at the spine head membrane. This EPSP then attenuates between 200- and 900-fold into the soma

  20. Changes in nuclear volume of Purkinje cells in the cerebellum of the water frog (Rana Esculenta L.) in the annual cycle.

    PubMed

    Dziubek, K; Lach, H; Krawczyk, S

    1980-01-01

    In sexually mature female and male Rana esculenta L. frogs directly from natural habitat, in six characteristic periods of their life cycle, nuclear volume in Purkinje cells of the cerebellum was determined. Nuclear volume in Purkinje cells changed distinctly in the course of the year. Nuclear volume was greatest in females in the breeding period (3rd decade of May), and in males in the middle of the period of active life (2nd decade of July). Nuclear volume was the smallest at the beginning of hibernation (3rd decade of October).

  1. The Phospholipase D2 Knock Out Mouse Has Ectopic Purkinje Cells and Suffers from Early Adult-Onset Anosmia

    PubMed Central

    Zhang, Qifeng; Smethurst, Elizabeth; Segonds-Pichon, Anne; Schrewe, Heinrich; Wakelam, Michael J. O.

    2016-01-01

    Phospholipase D2 (PLD2) is an enzyme that produces phosphatidic acid (PA), a lipid messenger molecule involved in a number of cellular events including, through its membrane curvature properties, endocytosis. The PLD2 knock out (PLD2KO) mouse has been previously reported to be protected from insult in a model of Alzheimer's disease. We have further analysed a PLD2KO mouse using mass spectrophotometry of its lipids and found significant differences in PA species throughout its brain. We have examined the expression pattern of PLD2 which allowed us to define which region of the brain to analyse for defect, notably PLD2 was not detected in glial-rich regions. The expression pattern lead us to specifically examine the mitral cells of olfactory bulbs, the Cornus Amonis (CA) regions of the hippocampus and the Purkinje cells of the cerebellum. We find that the change to longer PA species correlates with subtle architectural defect in the cerebellum, exemplified by ectopic Purkinje cells and an adult-onset deficit of olfaction. These observations draw parallels to defects in the reelin heterozygote as well as the effect of high fat diet on olfaction. PMID:27658289

  2. β-III spectrin underpins ankyrin R function in Purkinje cell dendritic trees: protein complex critical for sodium channel activity is impaired by SCA5-associated mutations.

    PubMed

    Clarkson, Yvonne L; Perkins, Emma M; Cairncross, Callum J; Lyndon, Alastair R; Skehel, Paul A; Jackson, Mandy

    2014-07-15

    Beta III spectrin is present throughout the elaborate dendritic tree of cerebellar Purkinje cells and is required for normal neuronal morphology and cell survival. Spinocerebellar ataxia type 5 (SCA5) and spectrin associated autosomal recessive cerebellar ataxia type 1 are human neurodegenerative diseases involving progressive gait ataxia and cerebellar atrophy. Both disorders appear to result from loss of β-III spectrin function. Further elucidation of β-III spectrin function is therefore needed to understand disease mechanisms and identify potential therapeutic options. Here, we report that β-III spectrin is essential for the recruitment and maintenance of ankyrin R at the plasma membrane of Purkinje cell dendrites. Two SCA5-associated mutations of β-III spectrin both reduce ankyrin R levels at the cell membrane. Moreover, a wild-type β-III spectrin/ankyrin-R complex increases sodium channel levels and activity in cell culture, whereas mutant β-III spectrin complexes fail to enhance sodium currents. This suggests impaired ability to form stable complexes between the adaptor protein ankyrin R and its interacting partners in the Purkinje cell dendritic tree is a key mechanism by which mutant forms of β-III spectrin cause ataxia, initially by Purkinje cell dysfunction and exacerbated by subsequent cell death. PMID:24603075

  3. Alkaline Ceramidase 3 Deficiency Results in Purkinje Cell Degeneration and Cerebellar Ataxia Due to Dyshomeostasis of Sphingolipids in the Brain.

    PubMed

    Wang, Kai; Xu, Ruijuan; Schrandt, Jennifer; Shah, Prithvi; Gong, Yong Z; Preston, Chet; Wang, Louis; Yi, Jae Kyo; Lin, Chih-Li; Sun, Wei; Spyropoulos, Demetri D; Rhee, Soyoung; Li, Mingsong; Zhou, Jie; Ge, Shaoyu; Zhang, Guofeng; Snider, Ashley J; Hannun, Yusuf A; Obeid, Lina M; Mao, Cungui

    2015-10-01

    Dyshomeostasis of both ceramides and sphingosine-1-phosphate (S1P) in the brain has been implicated in aging-associated neurodegenerative disorders in humans. However, mechanisms that maintain the homeostasis of these bioactive sphingolipids in the brain remain unclear. Mouse alkaline ceramidase 3 (Acer3), which preferentially catalyzes the hydrolysis of C18:1-ceramide, a major unsaturated long-chain ceramide species in the brain, is upregulated with age in the mouse brain. Acer3 knockout causes an age-dependent accumulation of various ceramides and C18:1-monohexosylceramide and abolishes the age-related increase in the levels of sphingosine and S1P in the brain; thereby resulting in Purkinje cell degeneration in the cerebellum and deficits in motor coordination and balance. Our results indicate that Acer3 plays critically protective roles in controlling the homeostasis of various sphingolipids, including ceramides, sphingosine, S1P, and certain complex sphingolipids in the brain and protects Purkinje cells from premature degeneration. PMID:26474409

  4. Sensorimotor enhancement in mouse mutants lacking the Purkinje cell-specific Gi/o modulator, Pcp2(L7)

    PubMed Central

    Iscru, Emilia; Serinagaoglu, Yelda; Schilling, Karl; Tian, Jinbin; Bowers-Kidder, Stephanie L.; Zhang, Rui; Morgan, James I.; DeVries, A. Courtney; Nelson, Randy J.; Zhu, Michael X.; Oberdick, John

    2009-01-01

    Pcp2(L7) is a GoLoco domain protein specifically and abundantly expressed in cerebellar Purkinje cells. It has been hypothesized to “tune” Gi/o-coupled receptor modulation of physiological effectors, including the P-type Ca2+ channel. We have analyzed a mouse mutant in which the Pcp2(L7) gene was inactivated and find significant anatomical, behavioral and electrophysiological changes. Anatomically, we observed mild cerebellar hypoplasia. Behaviorally, the mutants were altered in modalities atypical for a traditional cerebellar mutant, and oddly, all of these changes could be considered functional enhancements. This includes increased asymptotic performance in gross motor learning, increased rate of acquisition in tone-conditioned fear, and enhanced pre-pulse inhibition of the acoustic startle response. Electrophysiological analysis of Purkinje cells in the mutants reveals depression of the complex spike waveform that may underlie the behavioral changes. Based on these observations we suggest that the Pcp2(L7) protein acts as a sensorimotor damper that modulates time- and sense-dependent changes in motor responses. PMID:18930827

  5. Alkaline Ceramidase 3 Deficiency Results in Purkinje Cell Degeneration and Cerebellar Ataxia Due to Dyshomeostasis of Sphingolipids in the Brain

    PubMed Central

    Preston, Chet; Wang, Louis; Yi, Jae Kyo; Lin, Chih-Li; Sun, Wei; Spyropoulos, Demetri D.; Rhee, Soyoung; Li, Mingsong; Zhou, Jie; Ge, Shaoyu; Zhang, Guofeng; Snider, Ashley J.; Hannun, Yusuf A.; Obeid, Lina M.; Mao, Cungui

    2015-01-01

    Dyshomeostasis of both ceramides and sphingosine-1-phosphate (S1P) in the brain has been implicated in aging-associated neurodegenerative disorders in humans. However, mechanisms that maintain the homeostasis of these bioactive sphingolipids in the brain remain unclear. Mouse alkaline ceramidase 3 (Acer3), which preferentially catalyzes the hydrolysis of C18:1-ceramide, a major unsaturated long-chain ceramide species in the brain, is upregulated with age in the mouse brain. Acer3 knockout causes an age-dependent accumulation of various ceramides and C18:1-monohexosylceramide and abolishes the age-related increase in the levels of sphingosine and S1P in the brain; thereby resulting in Purkinje cell degeneration in the cerebellum and deficits in motor coordination and balance. Our results indicate that Acer3 plays critically protective roles in controlling the homeostasis of various sphingolipids, including ceramides, sphingosine, S1P, and certain complex sphingolipids in the brain and protects Purkinje cells from premature degeneration. PMID:26474409

  6. Selective Loss of Presynaptic Potassium Channel Clusters at the Cerebellar Basket Cell Terminal Pinceau in Adam11 Mutants Reveals Their Role in Ephaptic Control of Purkinje Cell Firing

    PubMed Central

    Kole, Matthew J.; Qian, Jing; Waase, Marc P.; Klassen, Tara L.; Chen, Tim T.; Augustine, George J.

    2015-01-01

    A specialized axonal ending, the basket cell “pinceau,” encapsulates the Purkinje cell axon initial segment (AIS), exerting final inhibitory control over the integrated outflow of the cerebellar cortex. This nonconventional axo-axonic contact extends beyond the perisomatic chemical GABAergic synaptic boutons to the distal AIS, lacks both sodium channels and local exocytotic machinery, and yet contains a dense cluster of voltage-gated potassium channels whose functional contribution is unknown. Here, we show that ADAM11, a transmembrane noncatalytic disintegrin, is the first reported Kv1-interacting protein essential for localizing Kv1.1 and Kv1.2 subunit complexes to the distal terminal. Selective absence of these channels at the pinceau due to mutation of ADAM11 spares spontaneous GABA release from basket cells at the perisomatic synapse yet eliminates ultrarapid ephaptic inhibitory synchronization of Purkinje cell firing. Our findings identify a critical role for presynaptic K+ channels at the pinceau in ephaptic control over the speed and stability of spike rate coding at the Purkinje cell AIS in mice. SIGNIFICANCE STATEMENT This study identifies ADAM11 as the first essential molecule for the proper localization of potassium ion channels at presynaptic nerve terminals, where they modulate excitability and the release of neural transmitters. Genetic truncation of the transmembrane disintegrin and metalloproteinase protein ADAM11 resulted in the absence of Kv1 channels that are normally densely clustered at the terminals of basket cell axons in the cerebellar cortex. These specialized terminals are responsible for the release of the neurotransmitter GABA onto Purkinje cells and also display electrical signaling. In the ADAM11 mutant, GABAergic release was not altered, but the ultrarapid electrical signal was absent, demonstrating that the dense presynaptic cluster of Kv1 ion channels at these terminals mediate electrical transmission. Therefore, ADAM11 plays a

  7. The 40-year history of modeling active dendrites in cerebellar Purkinje cells: emergence of the first single cell “community model”

    PubMed Central

    Bower, James M.

    2015-01-01

    The subject of the effects of the active properties of the Purkinje cell dendrite on neuronal function has been an active subject of study for more than 40 years. Somewhat unusually, some of these investigations, from the outset have involved an interacting combination of experimental and model-based techniques. This article recounts that 40-year history, and the view of the functional significance of the active properties of the Purkinje cell dendrite that has emerged. It specifically considers the emergence from these efforts of what is arguably the first single cell “community” model in neuroscience. The article also considers the implications of the development of this model for future studies of the complex properties of neuronal dendrites. PMID:26539104

  8. Heat Shock Protein Beta-1 Modifies Anterior to Posterior Purkinje Cell Vulnerability in a Mouse Model of Niemann-Pick Type C Disease.

    PubMed

    Chung, Chan; Elrick, Matthew J; Dell'Orco, James M; Qin, Zhaohui S; Kalyana-Sundaram, Shanker; Chinnaiyan, Arul M; Shakkottai, Vikram G; Lieberman, Andrew P

    2016-05-01

    Selective neuronal vulnerability is characteristic of most degenerative disorders of the CNS, yet mechanisms underlying this phenomenon remain poorly characterized. Many forms of cerebellar degeneration exhibit an anterior-to-posterior gradient of Purkinje cell loss including Niemann-Pick type C1 (NPC) disease, a lysosomal storage disorder characterized by progressive neurological deficits that often begin in childhood. Here, we sought to identify candidate genes underlying vulnerability of Purkinje cells in anterior cerebellar lobules using data freely available in the Allen Brain Atlas. This approach led to the identification of 16 candidate neuroprotective or susceptibility genes. We demonstrate that one candidate gene, heat shock protein beta-1 (HSPB1), promoted neuronal survival in cellular models of NPC disease through a mechanism that involved inhibition of apoptosis. Additionally, we show that over-expression of wild type HSPB1 or a phosphomimetic mutant in NPC mice slowed the progression of motor impairment and diminished cerebellar Purkinje cell loss. We confirmed the modulatory effect of Hspb1 on Purkinje cell degeneration in vivo, as knockdown by Hspb1 shRNA significantly enhanced neuron loss. These results suggest that strategies to promote HSPB1 activity may slow the rate of cerebellar degeneration in NPC disease and highlight the use of bioinformatics tools to uncover pathways leading to neuronal protection in neurodegenerative disorders. PMID:27152617

  9. Heat Shock Protein Beta-1 Modifies Anterior to Posterior Purkinje Cell Vulnerability in a Mouse Model of Niemann-Pick Type C Disease

    PubMed Central

    Dell’Orco, James M.; Qin, Zhaohui S.; Kalyana-Sundaram, Shanker; Chinnaiyan, Arul M.; Shakkottai, Vikram G.; Lieberman, Andrew P.

    2016-01-01

    Selective neuronal vulnerability is characteristic of most degenerative disorders of the CNS, yet mechanisms underlying this phenomenon remain poorly characterized. Many forms of cerebellar degeneration exhibit an anterior-to-posterior gradient of Purkinje cell loss including Niemann-Pick type C1 (NPC) disease, a lysosomal storage disorder characterized by progressive neurological deficits that often begin in childhood. Here, we sought to identify candidate genes underlying vulnerability of Purkinje cells in anterior cerebellar lobules using data freely available in the Allen Brain Atlas. This approach led to the identification of 16 candidate neuroprotective or susceptibility genes. We demonstrate that one candidate gene, heat shock protein beta-1 (HSPB1), promoted neuronal survival in cellular models of NPC disease through a mechanism that involved inhibition of apoptosis. Additionally, we show that over-expression of wild type HSPB1 or a phosphomimetic mutant in NPC mice slowed the progression of motor impairment and diminished cerebellar Purkinje cell loss. We confirmed the modulatory effect of Hspb1 on Purkinje cell degeneration in vivo, as knockdown by Hspb1 shRNA significantly enhanced neuron loss. These results suggest that strategies to promote HSPB1 activity may slow the rate of cerebellar degeneration in NPC disease and highlight the use of bioinformatics tools to uncover pathways leading to neuronal protection in neurodegenerative disorders. PMID:27152617

  10. Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation.

    PubMed

    Witter, Laurens; Canto, Cathrin B; Hoogland, Tycho M; de Gruijl, Jornt R; De Zeeuw, Chris I

    2013-01-01

    The cerebellum refines the accuracy and timing of motor performance. How it encodes information to perform these functions is a major topic of interest. We performed whole cell and extracellular recordings of Purkinje cells (PCs) and cerebellar nuclei neurons (CNs) in vivo, while activating PCs with light in transgenic mice. We show for the first time that graded activation of PCs translates into proportional CN inhibition and induces rebound activity in CNs, which is followed by graded motor contractions timed to the cessation of the stimulus. Moreover, activation of PC ensembles led to disinhibition of climbing fiber activity, which coincided with rebound activity in CNs. Our data indicate that cessation of concerted activity in ensembles of PCs can regulate both timing and strength of movements via control of rebound activity in CNs.

  11. Purkinje cell complements in mammalian cerebella and the biases incurred by counting nucleoli.

    PubMed Central

    Mwamengele, G L; Mayhew, T M; Dantzer, V

    1993-01-01

    An unbiased stereological counting device (the fractionator) was used to count Purkinje neurons in mammalian cerebella of known weights in order to define the relationship between weight and number. Nucleoli were chosen as the counting unit and numbers were estimated from uniform random samples of wax-embedded tissue sections. For the cerebella of rat, rabbit, cat, dog, goat, sheep, pig, ox, horse and human, there was a significant linear relationship between log number and log weight. The allometric relationship took the form N = 748,500 x W0.627. The relative bias associated with using nucleoli as counting units was assessed separately on disector pairs of sections and amounted to roughly -5% but varied between species. When the brains of females and males were analysed separately (cat, goat, pig, ox, horse, human), there were no significant differences between the regression lines. These results are consistent with earlier findings. They imply that Purkinje neuron packing densities decrease as brain size increases. Moreover, our preliminary findings appear to indicate that, for any given cerebellar weight, females and males have similar numbers of neurons. PMID:8270470

  12. Flocculus Purkinje cell signals in mouse Cacna1a calcium channel mutants of escalating severity: an investigation of the role of firing irregularity in ataxia

    PubMed Central

    Thumser, Zachary C.

    2014-01-01

    Mutation of the Cacna1a gene for the P/Q (CaV2.1) calcium channel invariably leads to cerebellar dysfunction. The dysfunction has been attributed to disrupted rhythmicity of cerebellar Purkinje cells, but the hypothesis remains unproven. If irregular firing rates cause cerebellar dysfunction, then the irregularity and behavioral deficits should covary in a series of mutant strains of escalating severity. We compared firing irregularity in floccular and anterior vermis Purkinje cells in the mildly affected rocker and moderately affected tottering Cacna1a mutants and normal C57BL/6 mice. We also measured the amplitude and timing of modulations of floccular Purkinje cell firing rate during the horizontal vestibuloocular reflex (VOR, 0.25–1 Hz) and the horizontal and vertical optokinetic reflex (OKR, 0.125–1 Hz). We recorded Purkinje cells selective for rotational stimulation about the vertical axis (VAPCs) and a horizontal axis (HAPCs). Irregularity scaled with behavioral deficit severity in the flocculus but failed to do so in the vermis, challenging the irregularity hypothesis. Mutant VAPCs exhibited unusually strong modulation during VOR and OKR, the response augmentation scaling with phenotypic severity. HAPCs exhibited increased OKR modulation but in tottering only. The data contradict prior claims that modulation amplitude is unaffected in tottering but support the idea that attenuated compensatory eye movements in Cacna1a mutants arise from defective transfer of Purkinje cell signals to downstream circuitry, rather than attenuated synaptic transmission within the cerebellar cortex. Shifts in the relative sizes of the VAPC and HAPC populations raise the possibility that Cacna1a mutations influence the development of floccular zone architecture. PMID:25143538

  13. Alternative splicing generates a smaller assortment of CaV2.1 transcripts in cerebellar Purkinje cells than in the cerebellum.

    PubMed

    Kanumilli, Srinivasan; Tringham, Elizabeth W; Payne, C Elizabeth; Dupere, Jonathan R B; Venkateswarlu, Kanamarlapudi; Usowicz, Maria M

    2006-01-12

    P/Q-type calcium channels control many calcium-driven functions in the brain. The CACNA1A gene encoding the pore-forming CaV2.1 (alpha1A) subunit of P/Q-type channels undergoes alternative splicing at multiple loci. This results in channel variants with different phenotypes. However, the combinatorial patterns of alternative splice events at two or more loci, and hence the diversity of CaV2.1 transcripts, are incompletely defined for specific brain regions and types of brain neurons. Using RT-PCR and splice variant-specific primers, we have identified multiple CaV2.1 transcript variants defined by different pairs of splice events in the cerebellum of adult rat. We have uncovered new splice variations between exons 28 and 34 (some of which predict a premature stop codon) and a new variation in exon 47 (which predicts a novel extended COOH-terminus). Single cell RT-PCR reveals that each individual cerebellar Purkinje neuron also expresses multiple alternative CaV2.1 transcripts, but the assortment is smaller than in the cerebellum. Two of these variants encode different extended COOH-termini which are not the same as those previously reported in Purkinje cells of the mouse. Our patch-clamp recordings show that calcium channel currents in the soma and dendrites of Purkinje cells are largely inhibited by a concentration of omega-agatoxin IVA selective for P-type over Q-type channels, suggesting that the different transcripts may form phenotypic variants of P-type calcium channels in Purkinje cells. These results expand the known diversity of CaV2.1 transcripts in cerebellar Purkinje cells, and propose the selective expression of distinct assortments of CaV2.1 transcripts in different brain neurons and species.

  14. Early Increase and Late Decrease of Purkinje Cell Dendritic Spine Density in Prion-Infected Organotypic Mouse Cerebellar Cultures

    PubMed Central

    Campeau, Jody L.; Wu, Gengshu; Bell, John R.; Rasmussen, Jay; Sim, Valerie L.

    2013-01-01

    Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4–5 weeks after the first detection of protease-resistant prion protein in the brain. While there are cell culture models of prion infection, most do not recapitulate the neuropathology seen in vivo. Only the recently developed prion organotypic slice culture assay has been reported to undergo neuronal loss and the development of some aspects of prion pathology, namely small vacuolar degeneration and tubulovesicular bodies. Given the rapid replication of prions in this system, with protease-resistant prion protein detectable by 21 days, we investigated whether the dendritic spine loss and altered dendritic morphology seen in prion disease might also develop within the lifetime of this culture system. Indeed, six weeks after first detection of protease-resistant prion protein in tga20 mouse cerebellar slice cultures infected with RML prion strain, we found a statistically significant loss of Purkinje cell dendritic spines and altered dendritic morphology in infected cultures, analogous to that seen in vivo. In addition, we found a transient but statistically significant increase in Purkinje cell dendritic spine density during infection, at the time when protease-resistant prion protein was first detectable in culture. Our findings support the use of this slice culture system as one which recapitulates prion disease pathology and one which may facilitate study of the earliest stages of prion disease pathogenesis. PMID:24312586

  15. Anti-Purkinje cell antibody as a biological marker in attention deficit/hyperactivity disorder: a pilot study.

    PubMed

    Passarelli, Francesca; Donfrancesco, Renato; Nativio, Paola; Pascale, Esterina; Di Trani, Michela; Patti, Anna Maria; Vulcano, Antonella; Gozzo, Paolo; Villa, Maria Pia

    2013-05-15

    An autoimmune hypothesis has been suggested for several disorders in childhood. The aim of the study was to clarify the role of the cerebellum in ADHD and to evaluate the possible association between anti-Yo antibodies and ADHD. The presence/absence of antibodies was tested by indirect immunofluorescence assay on 30 combined subtype ADHD children, on 19 children with other psychiatric disorders (Oppositional-defiant and Conduct Disorders, Dyslexia) and 27 healthy controls. Results showed a significant positive response to the anti-Yo antibody immunoreactivity in the Purkinje cells of the cerebellum of ADHD children, compared with the control group and the psychiatric non-ADHD children. This association points to an immune dysregulation and the involvement of the cerebellum in ADHD. PMID:23510584

  16. Miglustat Improves Purkinje Cell Survival and Alters Microglial Phenotype in Feline Niemann-Pick Disease Type C

    PubMed Central

    Stein, Veronika M.; Crooks, Alexandra; Ding, Wenge; Prociuk, Maria; O’Donnell, Patricia; Bryan, Caroline; Sikora, Tracey; Dingemanse, Jasper; Vanier, Marie T.; Walkley, Steven U.; Vite, Charles H.

    2012-01-01

    Niemann-Pick disease type C (NPC disease) is an incurable cellular lipid trafficking disorder characterized by neurodegeneration and intralysosomal accumulation of cholesterol and glycosphingolipids. Treatment with miglustat, a small imino sugar that reversibly inhibits glucosylceramide synthase, which is necessary for glycosphingolipid synthesis, has been shown to benefit patients with NPC disease. The mechanism(s) and extent of brain cellular changes underlying this benefit are not understood. To investigate the basis of the efficacy of miglustat, cats with disease homologous to the juvenile-onset form of human NPC disease received daily miglustat orally beginning at 3 weeks of age. The plasma half-life of miglustat was 6.6 ± 1.1 hours, with a tmax, Cmax, and area under the plasma concentration-time curve of 1.7 ± 0.6 hours, 20.3 ± 4.6 μg/ml, and 104.1 ± 16.6 μg hours/ml, respectively. Miglustat delayed the onset of neurological signs and increased the lifespan of treated cats, and was associated with decreased GM2 ganglioside accumulation in the cerebellum and improved Purkinje cell survival. Ex vivo examination of microglia from the brains of treated cats revealed normalization of CD1c and class II major histocompatibility complex expression, as well as generation of reactive oxygen species. Together, these results suggest that prolonged Purkinje cell survival, reduced glycosphingolipid accumulation, and/or the modulation of microglial immunophenotype and function contribute to miglustat-induced neurological improvement in treated cats. PMID:22487861

  17. Discharges of Purkinje cells in the paravermal part of the cerebellar anterior lobe during locomotion in the cat.

    PubMed Central

    Armstrong, D M; Edgley, S A

    1984-01-01

    Extracellular recordings were made from 124 Purkinje cells in the paravermal part of lobule V of the cerebellum in cats walking steadily at a speed of 0.5 m/s on a moving belt. All cells tested had a tactile receptive field from which simple spikes could be evoked and 96% of these were on the ipsilateral forelimb. Seventy-six of the cells were also studied whilst the animals sat or lay quietly without movement. Complex spikes were discharged at 1-2/s and these were accompanied by simple spikes in fifty-nine cells (78%); in the remaining cells there were no or few simple spikes. The over-all mean discharge rate (including both types of spike) was 37.8 +/- 27 impulses/s (+/- S.D.). During locomotion all cells discharged both types of spike and the over-all mean rate was 57.6 +/- 29 impulses/s (+/- S.D.). In all cells but one, the frequency of the simple spikes was modulated rhythmically in time with the stepping movements but the phasing relative to the step cycle varied widely between cells. Peak rates also varied widely, the average being 91.5 +/- 44 impulses/s (+/- S.D.). Most cells (63%) generated one period of accelerated discharge per step but others generated two (35%) or three (2%) such periods. Despite the individual variations in discharge timing the population as a whole was considerably more active during the swing than the stance phase of the step cycle in the ipsilateral forelimb (68 impulses/s as compared with 49 impulses/s on average). Thirty-four cells were electrophysiologically identified as lying in the c1 zone of the cortex and twenty-five as being in the c2 zone (nomenclature of Oscarsson, 1980). During locomotion, the population activity in the two zones differed slightly: activity in the c1 population was phase advanced by approximately one-tenth of the step cycle. The results are discussed, with particular emphasis on the finding that population activity in the Purkinje cells of the c1 zone fluctuated during the step cycle in parallel with

  18. Cell-Wide DNA De-Methylation and Re-Methylation of Purkinje Neurons in the Developing Cerebellum

    PubMed Central

    Zhou, Feng C.; Resendiz, Marisol; Lo, Chiao-Ling; Chen, Yuanyuan

    2016-01-01

    Global DNA de-methylation is thought to occur only during pre-implantation and gametogenesis in mammals. Scalable, cell-wide de-methylation has not been demonstrated beyond totipotent stages. Here, we observed a large scale de-methylation and subsequent re-methylation (CDR) (including 5-methylcytosine (5mC) and 5-hydroxylmethylcytosine (5hmC)) in post-mitotic cerebellar Purkinje cells (PC) through the course of normal development. Through single cell immuno-identification and cell-specific quantitative methylation assays, we demonstrate that the CDR event is an intrinsically scheduled program, occurring in nearly every PC. Meanwhile, cerebellar granule cells and basket interneurons adopt their own DNA methylation program, independent of PCs. DNA de-methylation was further demonstrated at the gene level, on genes pertinent to PC development. The PC, being one of the largest neurons in the brain, may showcase an amplified epigenetic cycle which may mediate stage transformation including cell cycle arrest, vast axonal-dendritic growth, and synaptogenesis at the onset of neuronal specificity. This discovery is a key step toward better understanding the breadth and role of DNA methylation and de-methylation during neural ontology. PMID:27583369

  19. Cell-Wide DNA De-Methylation and Re-Methylation of Purkinje Neurons in the Developing Cerebellum.

    PubMed

    Zhou, Feng C; Resendiz, Marisol; Lo, Chiao-Ling; Chen, Yuanyuan

    2016-01-01

    Global DNA de-methylation is thought to occur only during pre-implantation and gametogenesis in mammals. Scalable, cell-wide de-methylation has not been demonstrated beyond totipotent stages. Here, we observed a large scale de-methylation and subsequent re-methylation (CDR) (including 5-methylcytosine (5mC) and 5-hydroxylmethylcytosine (5hmC)) in post-mitotic cerebellar Purkinje cells (PC) through the course of normal development. Through single cell immuno-identification and cell-specific quantitative methylation assays, we demonstrate that the CDR event is an intrinsically scheduled program, occurring in nearly every PC. Meanwhile, cerebellar granule cells and basket interneurons adopt their own DNA methylation program, independent of PCs. DNA de-methylation was further demonstrated at the gene level, on genes pertinent to PC development. The PC, being one of the largest neurons in the brain, may showcase an amplified epigenetic cycle which may mediate stage transformation including cell cycle arrest, vast axonal-dendritic growth, and synaptogenesis at the onset of neuronal specificity. This discovery is a key step toward better understanding the breadth and role of DNA methylation and de-methylation during neural ontology. PMID:27583369

  20. Cell Autonomous and Non-Autonomous Effects of Senescent Cells in the Skin.

    PubMed

    Demaria, Marco; Desprez, Pierre Yves; Campisi, Judith; Velarde, Michael C

    2015-07-01

    Human and mouse skin accumulate senescent cells in both the epidermis and dermis during aging. When chronically present, senescent cells are thought to enhance the age-dependent deterioration of the skin during extrinsic and intrinsic aging. However, when transiently present, senescent cells promote optimal wound healing. Here, we review recent studies on how senescent cells and the senescence-associated secretory phenotype contribute to different physiological and pathophysiological conditions in the skin with a focus on some of the cell autonomous and non-autonomous functions of senescent cells in the context of skin aging and wound healing.

  1. Development of "Pinceaux" formations and dendritic translocation of climbing fibers during the acquisition of the balance between glutamatergic and gamma-aminobutyric acidergic inputs in developing Purkinje cells.

    PubMed

    Sotelo, Constantino

    2008-01-10

    The acquisition of the dynamic balance between excitation and inhibition in developing Purkinje cells, necessary for their proper function, is analyzed. Newborn (P0) mouse cerebellum contains glutamatergic (VGLUT2-IR) and gamma-aminobutyric acid (GABA)-ergic (VIAAT-IR) axons. The former prevail and belong to climbing fibers, whereas the latter neither colabel with calbindin-expressing fibers nor belong to axons of the cortical GABAergic interneurons. During the first postnatal week, VIAAT-IR axons in the Purkinje cell neighborhood remains very low, and the first synapses with basket fibers are formed at P7, when climbing fibers have already established dense pericellular nets. The descending basket fibers reach the Purkinje cell axon initial segment by P9, immediately establishing axoaxonic synapses. The pinceaux appear as primitive vortex-like arrangements by P12, and by P20 interbasket fiber septate-like junctions, typical of fully mature pinceaux, are still missing. The climbing fiber's somatodendritic translocation occurs later than expected, after the regression of the multiple innervation, and follows the ascending collaterals of the basket axons, which are apparently the optimal substrate for the proper subcellular targeting of the climbing fibers. These results emphasize that chemical transmission in the axon initial segment precedes the electrical inhibition generated by field effects. In addition, GABAergic Purkinje cells, as opposed to glutamatergic projection neurons in other cortical structures, do not begin to receive their excitation to inhibition balance until the end of the first postnatal week, despite the early presence of potentially functional GABAergic axons that possess the required vesicular transport system.

  2. SLC26A11 (KBAT) in Purkinje Cells Is Critical for Inhibitory Transmission and Contributes to Locomotor Coordination.

    PubMed

    Rahmati, Negah; Vinueza Veloz, Maria Fernanda; Xu, Jie; Barone, Sharon; Rodolfo Ben Hamida, Nahuel; Schonewille, Martijn; Hoebeek, Freek E; Soleimani, Manoocher; De Zeeuw, Chris I

    2016-01-01

    Chloride homeostasis determines the impact of inhibitory synaptic transmission and thereby mediates the excitability of neurons. Even though cerebellar Purkinje cells (PCs) receive a pronounced inhibitory GABAergic input from stellate and basket cells, the role of chloride homeostasis in these neurons is largely unknown. Here we studied at both the cellular and systems physiological level the function of a recently discovered chloride channel, SLC26A11 or kidney brain anion transporter (KBAT), which is prominently expressed in PCs. Using perforated patch clamp recordings of PCs, we found that a lack of KBAT channel in PC-specific KBAT KO mice (L7-KBAT KOs) induces a negative shift in the reversal potential of chloride as reflected in the GABAA-receptor-evoked currents, indicating a decrease in intracellular chloride concentration. Surprisingly, both in vitro and in vivo PCs in L7-KBAT KOs showed a significantly increased action potential firing frequency of simple spikes, which correlated with impaired motor performance on the Erasmus Ladder. Our findings support an important role for SLC26A11 in moderating chloride homeostasis and neuronal activity in the cerebellum. PMID:27390771

  3. A vermal Purkinje cell simple spike population response encodes the changes in eye movement kinematics due to smooth pursuit adaptation

    PubMed Central

    Dash, Suryadeep; Dicke, Peter W.; Thier, Peter

    2013-01-01

    Smooth pursuit adaptation (SPA) is an example of cerebellum-dependent motor learning that depends on the integrity of the oculomotor vermis (OMV). In an attempt to unveil the neuronal basis of the role of the OMV in SPA, we recorded Purkinje cell simple spikes (PC SS) of trained monkeys. Individual PC SS exhibited specific changes of their discharge patterns during the course of SPA. However, these individual changes did not provide a reliable explanation of the behavioral changes. On the other hand, the population response of PC SS perfectly reflected the changes resulting from adaptation. Population vector was calculated using all cells recorded independent of their location. A population code conveying the behavioral changes is in full accordance with the anatomical convergence of PC axons on target neurons in the cerebellar nuclei. Its computational advantage is the ease with which it can be adjusted to the needs of the behavior by changing the contribution of individual PC SS based on error feedback. PMID:23494070

  4. SLC26A11 (KBAT) in Purkinje Cells Is Critical for Inhibitory Transmission and Contributes to Locomotor Coordination123

    PubMed Central

    Xu, Jie; Hoebeek, Freek E.

    2016-01-01

    Abstract Chloride homeostasis determines the impact of inhibitory synaptic transmission and thereby mediates the excitability of neurons. Even though cerebellar Purkinje cells (PCs) receive a pronounced inhibitory GABAergic input from stellate and basket cells, the role of chloride homeostasis in these neurons is largely unknown. Here we studied at both the cellular and systems physiological level the function of a recently discovered chloride channel, SLC26A11 or kidney brain anion transporter (KBAT), which is prominently expressed in PCs. Using perforated patch clamp recordings of PCs, we found that a lack of KBAT channel in PC-specific KBAT KO mice (L7-KBAT KOs) induces a negative shift in the reversal potential of chloride as reflected in the GABAA-receptor-evoked currents, indicating a decrease in intracellular chloride concentration. Surprisingly, both in vitro and in vivo PCs in L7-KBAT KOs showed a significantly increased action potential firing frequency of simple spikes, which correlated with impaired motor performance on the Erasmus Ladder. Our findings support an important role for SLC26A11 in moderating chloride homeostasis and neuronal activity in the cerebellum. PMID:27390771

  5. Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology.

    PubMed

    Thomanetz, Venus; Angliker, Nico; Cloëtta, Dimitri; Lustenberger, Regula M; Schweighauser, Manuel; Oliveri, Filippo; Suzuki, Noboru; Rüegg, Markus A

    2013-04-15

    The mammalian target of rapamycin (mTOR) assembles into two distinct multi-protein complexes called mTORC1 and mTORC2. Whereas mTORC1 is known to regulate cell and organismal growth, the role of mTORC2 is less understood. We describe two mouse lines that are devoid of the mTORC2 component rictor in the entire central nervous system or in Purkinje cells. In both lines neurons were smaller and their morphology and function were strongly affected. The phenotypes were accompanied by loss of activation of Akt, PKC, and SGK1 without effects on mTORC1 activity. The striking decrease in the activation and expression of several PKC isoforms, the subsequent loss of activation of GAP-43 and MARCKS, and the established role of PKCs in spinocerebellar ataxia and in shaping the actin cytoskeleton strongly suggest that the morphological deficits observed in rictor-deficient neurons are mediated by PKCs. Together our experiments show that mTORC2 has a particularly important role in the brain and that it affects size, morphology, and function of neurons.

  6. Purkinje cell age-distribution in fissures and in foliar crowns: a comparative study in the weaver cerebellum.

    PubMed

    Martí, Joaquín; Santa-Cruz, M C; Bayer, Shirley A; Ghetti, Bernardino; Hervás, José P

    2007-12-01

    Generation and settling of Purkinje cells (PCs) are investigated in the weaver mouse cerebellum in order to determine possible relationships with the fissuration pattern. Tritiated thymidine was supplied to pregnant females at the time that these neurons were being produced. Autoradiography was then applied on brain sections obtained from control and weaver offspring at postnatal (P) day 90. This makes it possible to assess the differential survival of neurons born at distinct embryonic times on the basis of the proportion of labeled cells located at the two foliar compartments: fissures and foliar crowns. Our data show that throughout the surface contour of the vermal lobes, generative programs of PCs were close between wild type and homozygous weaver. Similar data were found in the lobules of the lateral hemisphere. On the other hand, the loss of PCs in weaver cerebella can be related to foliar concavities or convexities depending on the vermal lobe or the hemispheric lobule studied. Lastly, we have obtained evidence that late-generated PCs of both normal and mutant mice were preferentially located in fissures. These quantitative relationships lead us to propose a model in which the final distribution of PCs through the vermal contour would be coupled to two factors: the cortical fissuration patterning and a "time-sequential effect" of weaver mutation.

  7. Defects in myelination, paranode organization and Purkinje cell innervation in the ether lipid-deficient mouse cerebellum

    PubMed Central

    Teigler, Andre; Komljenovic, Dorde; Draguhn, Andreas; Gorgas, Karin; Just, Wilhelm W.

    2009-01-01

    Ether lipids (ELs), particularly plasmalogens, are essential constituents of the mammalian central nervous system. The physiological role of ELs, in vivo, however is still enigmatic. In the present study, we characterized a mouse model carrying a targeted deletion of the peroxisomal dihydroxyacetonephosphate acyltransferase gene that results in the complete lack of ELs. Investigating the cerebellum of these mice, we observed: (i) defects in foliation patterning and delay in precursor granule cell migration, (ii) defects in myelination and concomitant reduction in the level of myelin basic protein, (iii) disturbances in paranode organization by extending the Caspr distribution and disrupting axo-glial septate-like junctions, (iv) impaired innervation of Purkinje cells by both parallel fibers and climbing fibers and (v) formation of axon swellings by the accumulation of inositol-tris-phosphate receptor 1 containing smooth ER-like tubuli. Functionally, conduction velocity of myelinated axons in the corpus callosum was significantly reduced. Most of these phenotypes were already apparent at P20 but still persisted in 1-year-old animals. In summary, these data show that EL deficiency results in severe developmental and lasting structural alterations at the cellular and network level of the cerebellum, and reveal an important role of ELs for proper brain function. Common molecular mechanisms that may underlie these phenotypes are discussed. PMID:19270340

  8. Defects in myelination, paranode organization and Purkinje cell innervation in the ether lipid-deficient mouse cerebellum.

    PubMed

    Teigler, Andre; Komljenovic, Dorde; Draguhn, Andreas; Gorgas, Karin; Just, Wilhelm W

    2009-06-01

    Ether lipids (ELs), particularly plasmalogens, are essential constituents of the mammalian central nervous system. The physiological role of ELs, in vivo, however is still enigmatic. In the present study, we characterized a mouse model carrying a targeted deletion of the peroxisomal dihydroxyacetonephosphate acyltransferase gene that results in the complete lack of ELs. Investigating the cerebellum of these mice, we observed: (i) defects in foliation patterning and delay in precursor granule cell migration, (ii) defects in myelination and concomitant reduction in the level of myelin basic protein, (iii) disturbances in paranode organization by extending the Caspr distribution and disrupting axo-glial septate-like junctions, (iv) impaired innervation of Purkinje cells by both parallel fibers and climbing fibers and (v) formation of axon swellings by the accumulation of inositol-tris-phosphate receptor 1 containing smooth ER-like tubuli. Functionally, conduction velocity of myelinated axons in the corpus callosum was significantly reduced. Most of these phenotypes were already apparent at P20 but still persisted in 1-year-old animals. In summary, these data show that EL deficiency results in severe developmental and lasting structural alterations at the cellular and network level of the cerebellum, and reveal an important role of ELs for proper brain function. Common molecular mechanisms that may underlie these phenotypes are discussed. PMID:19270340

  9. Cardiac Purkinje fibers and arrhythmias; The GK Moe Award Lecture 2015.

    PubMed

    Boyden, Penelope A; Dun, Wen; Robinson, Richard B

    2016-05-01

    Purkinje fibers/cells continue to be a focus of arrhythmologists. Here we review several new ideas that have emerged in the literature and fold them into important new points. These points include the following: some proteins in Purkinje cells are specific to Purkinjes; pacemaker function in Purkinje may be similar to that of the sinus node cell; sink-source concerns about tracts/sheets of Purkinje fibers; role of Ito in arrhythmias; and genetic lesions in Purkinjes and their high impact on cardiac rhythm. Although new ideas about the remodeled Purkinje cell are not the focus of this review, one can easily imagine how Purkinjes and their function may be altered in diseased hearts. PMID:26775142

  10. Purkinje Cell Degeneration in pcd Mice Reveals Large Scale Chromatin Reorganization and Gene Silencing Linked to Defective DNA Repair*

    PubMed Central

    Baltanás, Fernando C.; Casafont, Iñigo; Lafarga, Vanesa; Weruaga, Eduardo; Alonso, José R.; Berciano, María T.; Lafarga, Miguel

    2011-01-01

    DNA repair protects neurons against spontaneous or disease-associated DNA damage. Dysfunctions of this mechanism underlie a growing list of neurodegenerative disorders. The Purkinje cell (PC) degeneration mutation causes the loss of nna1 expression and is associated with the postnatal degeneration of PCs. This PC degeneration dramatically affects nuclear architecture and provides an excellent model to elucidate the nuclear mechanisms involved in a whole array of neurodegenerative disorders. We used immunocytochemistry for histone variants and components of the DNA damage response, an in situ transcription assay, and in situ hybridization for telomeres to analyze changes in chromatin architecture and function. We demonstrate that the phosphorylation of H2AX, a DNA damage signal, and the trimethylation of the histone H4K20, a repressive mark, in extensive domains of genome are epigenetic hallmarks of chromatin in degenerating PCs. These histone modifications are associated with a large scale reorganization of chromatin, telomere clustering, and heterochromatin-induced gene silencing, all of them key factors in PC degeneration. Furthermore, ataxia telangiectasia mutated and 53BP1, two components of the DNA repair pathway, fail to be concentrated in the damaged chromatin compartments, even though the expression levels of their coding genes were slightly up-regulated. Although the mechanism by which Nna1 loss of function leads to PC neurodegeneration is undefined, the progressive accumulation of DNA damage in chromosome territories irreversibly compromises global gene transcription and seems to trigger PC degeneration and death. PMID:21700704

  11. Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice.

    PubMed

    Blosa, M; Bursch, C; Weigel, S; Holzer, M; Jäger, C; Janke, C; Matthews, R T; Arendt, T; Morawski, M

    2016-01-01

    The perineuronal net (PN) is a subtype of extracellular matrix appearing as a net-like structure around distinct neurons throughout the whole CNS. PNs surround the soma, proximal dendrites, and the axonal initial segment embedding synaptic terminals on the neuronal surface. Different functions of the PNs are suggested which include support of synaptic stabilization, inhibition of axonal sprouting, and control of neuronal plasticity. A number of studies provide evidence that removing PNs or PN-components results in renewed neurite growth and synaptogenesis. In a mouse model for Purkinje cell degeneration, we examined the effect of deafferentation on synaptic remodeling and modulation of PNs in the deep cerebellar nuclei. We found reduced GABAergic, enhanced glutamatergic innervations at PN-associated neurons, and altered expression of the PN-components brevican and hapln4. These data refer to a direct interaction between ECM and synapses. The altered brevican expression induced by activated astrocytes could be required for an adequate regeneration by promoting neurite growth and synaptogenesis.

  12. Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice

    PubMed Central

    Blosa, M.; Bursch, C.; Weigel, S.; Holzer, M.; Jäger, C.; Janke, C.; Matthews, R. T.; Arendt, T.; Morawski, M.

    2016-01-01

    The perineuronal net (PN) is a subtype of extracellular matrix appearing as a net-like structure around distinct neurons throughout the whole CNS. PNs surround the soma, proximal dendrites, and the axonal initial segment embedding synaptic terminals on the neuronal surface. Different functions of the PNs are suggested which include support of synaptic stabilization, inhibition of axonal sprouting, and control of neuronal plasticity. A number of studies provide evidence that removing PNs or PN-components results in renewed neurite growth and synaptogenesis. In a mouse model for Purkinje cell degeneration, we examined the effect of deafferentation on synaptic remodeling and modulation of PNs in the deep cerebellar nuclei. We found reduced GABAergic, enhanced glutamatergic innervations at PN-associated neurons, and altered expression of the PN-components brevican and hapln4. These data refer to a direct interaction between ECM and synapses. The altered brevican expression induced by activated astrocytes could be required for an adequate regeneration by promoting neurite growth and synaptogenesis. PMID:26819763

  13. Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice.

    PubMed

    Blosa, M; Bursch, C; Weigel, S; Holzer, M; Jäger, C; Janke, C; Matthews, R T; Arendt, T; Morawski, M

    2016-01-01

    The perineuronal net (PN) is a subtype of extracellular matrix appearing as a net-like structure around distinct neurons throughout the whole CNS. PNs surround the soma, proximal dendrites, and the axonal initial segment embedding synaptic terminals on the neuronal surface. Different functions of the PNs are suggested which include support of synaptic stabilization, inhibition of axonal sprouting, and control of neuronal plasticity. A number of studies provide evidence that removing PNs or PN-components results in renewed neurite growth and synaptogenesis. In a mouse model for Purkinje cell degeneration, we examined the effect of deafferentation on synaptic remodeling and modulation of PNs in the deep cerebellar nuclei. We found reduced GABAergic, enhanced glutamatergic innervations at PN-associated neurons, and altered expression of the PN-components brevican and hapln4. These data refer to a direct interaction between ECM and synapses. The altered brevican expression induced by activated astrocytes could be required for an adequate regeneration by promoting neurite growth and synaptogenesis. PMID:26819763

  14. Unravelling how βCaMKII controls the direction of plasticity at parallel fibre-Purkinje cell synapses

    NASA Astrophysics Data System (ADS)

    Pinto, Thiago M.; Schilstra, Maria J.; Steuber, Volker; Roque, Antonio C.

    2015-12-01

    Long-term plasticity at parallel fibre (PF)-Purkinje cell (PC) synapses is thought to mediate cerebellar motor learning. It is known that calcium-calmodulin dependent protein kinase II (CaMKII) is essential for plasticity in the cerebellum. Recently, Van Woerden et al. demonstrated that the β isoform of CaMKII regulates the bidirectional inversion of PF-PC plasticity. Because the cellular events that underlie these experimental findings are still poorly understood, our work aims at unravelling how β CaMKII controls the direction of plasticity at PF-PC synapses. We developed a bidirectional plasticity model that replicates the experimental observations by Van Woerden et al. Simulation results obtained from this model indicate the mechanisms that underlie the bidirectional inversion of cerebellar plasticity. As suggested by Van Woerden et al., the filamentous actin binding enables β CaMKII to regulate the bidirectional plasticity at PF-PC synapses. Our model suggests that the reversal of long-term plasticity in PCs is based on a combination of mechanisms that occur at different calcium concentrations.

  15. Cerebellar cortex development in the weaver condition presents regional and age-dependent abnormalities without differences in Purkinje cells neurogenesis.

    PubMed

    Martí, Joaquín; Santa-Cruz, María C; Hervás, José P; Bayer, Shirley A; Villegas, Sandra

    2016-01-01

    Ataxias are neurological disorders associated with the degeneration of Purkinje cells (PCs). Homozygous weaver mice (wv/wv) have been proposed as a model for hereditary cerebellar ataxia because they present motor abnormalities and PC loss. To ascertain the physiopathology of the weaver condition, the development of the cerebellar cortex lobes was examined at postnatal day (P): P8, P20 and P90. Three approaches were used: 1) quantitative determination of several cerebellar features; 2) qualitative evaluation of the developmental changes occurring in the cortical lobes; and 3) autoradiographic analyses of PC generation and placement. Our results revealed a reduction in the size of the wv/wv cerebellum as a whole, confirming previous results. However, as distinguished from these reports, we observed that quantified parameters contribute differently to the abnormal growth of the wv/wv cerebellar lobes. Qualitative analysis showed anomalies in wv/wv cerebellar cytoarchitecture, depending on the age and lobe analyzed. Such abnormalities included the presence of the external granular layer after P20 and, at P90, ectopic cells located in the molecular layer following several placement patterns. Finally, we obtained autoradiographic evidence that wild-type and wv/wv PCs presented similar neurogenetic timetables, as reported. However, the innovative character of this current work lies in the fact that the neurogenetic gradients of wv/wv PCs were not modified from P8 to P90. A tendency for the accumulation of late-formed PCs in the anterior and posterior lobes was found, whereas early-generated PCs were concentrated in the central and inferior lobes. These data suggested that wv/wv PCs may migrate properly to their final destinations. The extrapolation of our results to patients affected with cerebellar ataxias suggests that all cerebellar cortex lobes are affected with several age-dependent alterations in cytoarchitectonics. We also propose that PC loss may be regionally

  16. Cerebellar cortex development in the weaver condition presents regional and age-dependent abnormalities without differences in Purkinje cells neurogenesis.

    PubMed

    Martí, Joaquín; Santa-Cruz, María C; Hervás, José P; Bayer, Shirley A; Villegas, Sandra

    2016-01-01

    Ataxias are neurological disorders associated with the degeneration of Purkinje cells (PCs). Homozygous weaver mice (wv/wv) have been proposed as a model for hereditary cerebellar ataxia because they present motor abnormalities and PC loss. To ascertain the physiopathology of the weaver condition, the development of the cerebellar cortex lobes was examined at postnatal day (P): P8, P20 and P90. Three approaches were used: 1) quantitative determination of several cerebellar features; 2) qualitative evaluation of the developmental changes occurring in the cortical lobes; and 3) autoradiographic analyses of PC generation and placement. Our results revealed a reduction in the size of the wv/wv cerebellum as a whole, confirming previous results. However, as distinguished from these reports, we observed that quantified parameters contribute differently to the abnormal growth of the wv/wv cerebellar lobes. Qualitative analysis showed anomalies in wv/wv cerebellar cytoarchitecture, depending on the age and lobe analyzed. Such abnormalities included the presence of the external granular layer after P20 and, at P90, ectopic cells located in the molecular layer following several placement patterns. Finally, we obtained autoradiographic evidence that wild-type and wv/wv PCs presented similar neurogenetic timetables, as reported. However, the innovative character of this current work lies in the fact that the neurogenetic gradients of wv/wv PCs were not modified from P8 to P90. A tendency for the accumulation of late-formed PCs in the anterior and posterior lobes was found, whereas early-generated PCs were concentrated in the central and inferior lobes. These data suggested that wv/wv PCs may migrate properly to their final destinations. The extrapolation of our results to patients affected with cerebellar ataxias suggests that all cerebellar cortex lobes are affected with several age-dependent alterations in cytoarchitectonics. We also propose that PC loss may be regionally

  17. Propofol depresses cerebellar Purkinje cell activity via activation of GABA(A) and glycine receptors in vivo in mice.

    PubMed

    Jin, Ri; Liu, Heng; Jin, Wen-Zhe; Shi, Jin-Di; Jin, Qing-Hua; Chu, Chun-Ping; Qiu, De-Lai

    2015-10-01

    Propofol is an intravenous sedative-hypnotic agen, which causes rapid and reliable loss of consciousness. Under in vitro conditions, propofol activates GABAA and glycine receptors in spinal cord, hippocampus and hypothalamus neurons. However, the effects of propofol on the cerebellar neuronal activity under in vivo conditions are currently unclear. In the present study, we examined the effects of propofol on the spontaneous activity of Purkinje cells (PCs) in urethane-anesthetized mice by cell-attached recording and pharmacological methods. Our results showed that cerebellar surface perfusion of propofol (10-1000 μM) induced depression of the PC simple spike (SS) firing rate in a dose-dependent manner, but without significantly changing the properties of complex spikes (CS). The IC50 of propofol for inhibiting SS firing of PCs was 144.5 μM. Application of GABAA receptor antagonist, SR95531 (40 μM) or GABAB receptor antagonist, saclofen (20 μM), as well as glycine receptor antagonist, strychnine (10 μM) alone failed to prevent the propofol-induced inhibition of PCs spontaneous activity. However, application the mixture of SR95531 (40 μM) and strychnine (10 μM) completely blocked the propofol-induced inhibition of PC SS firing. These data indicated that cerebellar surface application of propofol depressed PC SS firing rate via facilitation of GABAA and functional glycine receptors activity in adult cerebellar PCs under in vivo conditions. Our present results provide a new insight of the anesthetic action of propofol in cerebellar cortex, suggesting that propofol depresses the SS outputs of cerebellar PCs which is involved in both GABAA and glycine receptors activity.

  18. Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro.

    PubMed

    Crepel, F; Jaillard, D

    1991-01-01

    1. An in vitro slice preparation of rat cerebellar cortex was used to analyse long-lasting modifications of synaptic transmission at parallel fibre (PF)-Purkinje cell (PC) synapses. These use-dependent changes were induced by pairing PF-mediated EPSPs evoked at low frequency (1 Hz) with different levels of membrane polarization (or bioelectrical activities) of PCs for 15 min. 2. Experiments were performed on forty-eight PCs recorded intracellularly in a conventional perfused chamber, and in fifty other cells maintained in a static chamber either in the presence (n = 21) or in the absence (n = 29) of 400 nM-phorbol 12,13-dibutyrate (PDBu). 3. In these three experimental conditions, PF-mediated EPSPs were always measured on PCs maintained at a holding potential of -75 mV, and further hyperpolarized by constant hyperpolarizing pulses. This allowed us both to test the input resistance of PCs and to avoid their firing during PF-mediated EPSPs. 4. In all cells retained for the present study, latencies of PF-mediated EPSPs evoked at 0.2 Hz were stable during the pre-pairing period, and the same was true for their amplitude and time course. 5. In the perfused chamber, pairing of PF-mediated EPSPs with the same hyperpolarization of PCs as that used for measurements of synaptic responses had no effect on these EPSPs in 30% of PCs. It induced long-term depression (LTD) and long-term potentiation (LTP) in 23 and 47% of the tested cells respectively (n = 17). 6. In the perfused chamber, pairing of PF-mediated EPSPs with moderate depolarization of PCs (n = 19) giving rise to a sustained firing of sodium spikes significantly favoured the appearance of LTP as compared to the previous pairing protocol. However, there were still 27 and 15% of cells which showed no modification and LTD respectively. 7. In contrast, pairing of PF-mediated EPSPs with calcium (Ca2+) spikes evoked by strong depolarization of PCs (n = 12) led to LTD of synaptic transmission in nearly half of the tested

  19. Mild in vitro trauma induces rapid Glur2 endocytosis, robustly augments calcium permeability and enhances susceptibility to secondary excitotoxic insult in cultured Purkinje cells.

    PubMed

    Bell, Joshua D; Ai, Jinglu; Chen, Yonghong; Baker, Andrew J

    2007-10-01

    Mild brain trauma results in a wide range of neurological symptoms that are not easily explained by the primary pathology. Purkinje neurons of the cerebellum are selectively vulnerable to brain trauma, including indirect remote trauma to the forebrain. This vulnerability manifests itself as a selective and delayed cell loss, for which the underlying mechanisms are poorly understood. Alterations to the surface expression of calcium impermeable AMPA receptors (GluR2-containing) may mediate post-traumatic calcium overload, and initiate biochemical cascades that ultimately cause progressive cell death. Our current study examined this hypothesis using an in vitro model of mild Purkinje trauma, delivered by an elastic stretch at 2.5-2.9 pounds per square inch (psi). This mild trauma alone did not increase cell loss as measured by propidium iodide (PI) uptake (at 20 h) compared to uninjured controls. However, there was a marked increase in cell loss, when cells following mild trauma, were exposed to 10 microM AMPA for 1 h compared to either mild trauma or AMPA exposure alone. Mild injury rendered Purkinje neurons significantly more permeable to AMPA-stimulated (4 microM) calcium influx at 15 min post-injury, including a sustained calcium plateau. This effect was eliminated by inhibiting protein kinase C-dependent GluR2 endocytosis with 2 microM Go6976 or blocking the calcium pore of GluR1/3 containing AMPARs with 500 nM 1-naphthylacetyl spermine (Naspm). Nifedipine (2 microM) eliminated the calcium plateau following mild injury but not the initial spike of Ca2+ increase. These results suggest that mild injuries resulted in a rapid AMPA receptor subtype switch (GluR2 was replaced by GluR1/3), which in turn resulted in an enhanced Ca2+ permeability. We further confirmed this by immunocytochemistry. Dendritic GluR2 co-localization with the pre-synaptic marker synaptophysin was markedly down-regulated at 15 min following mild stretch (P < 0.01), indicative of a rapid decrease

  20. Reassessment of long-term depression in cerebellar Purkinje cells in mice carrying mutated GluA2 C terminus.

    PubMed

    Yamaguchi, Kazuhiko; Itohara, Shigeyoshi; Ito, Masao

    2016-09-01

    Long-term depression (LTD) of synaptic transmission from parallel fibers (PFs) to a Purkinje cell (PC) in the cerebellum has been considered to be a core mechanism of motor learning. Recently, however, discrepancies between LTD and motor learning have been reported in mice with a mutation that targeted the expression of PF-PC LTD by blocking AMPA-subtype glutamate receptor internalization regulated via the phosphorylation of AMPA receptors. In these mice, motor learning behavior was normal, but no PF-PC LTD was observed. We reexamined slices obtained from these GluA2 K882A and GluA2 Δ7 knockin mutants at 3-6 mo of age. The conventional protocols of stimulation did not induce LTD in these mutant mice, as previously reported, but surprisingly, LTD was induced using certain modified protocols. Such modifications involved increases in the number of PF stimulation (from one to two or five), replacement of climbing fiber stimulation with somatic depolarization (50 ms), filling a patch pipette with a Cs(+)-based solution, or extension of the duration of conjunction. We also found that intracellular infusion of a selective PKCα inhibitor (Gö6976) blocked LTD induction in the mutants, as in WT, suggesting that functional compensation occurred downstream of PKCα. The possibility that LTD in the mutants was caused by changes in membrane resistance, access resistance, or presynaptic property was excluded. The present results demonstrate that LTD is inducible by intensified conjunctive stimulations even in K882A and Δ7 mutants, indicating no contradiction against the LTD hypothesis of motor learning. PMID:27551099

  1. Reassessment of long-term depression in cerebellar Purkinje cells in mice carrying mutated GluA2 C terminus

    PubMed Central

    Yamaguchi, Kazuhiko; Itohara, Shigeyoshi; Ito, Masao

    2016-01-01

    Long-term depression (LTD) of synaptic transmission from parallel fibers (PFs) to a Purkinje cell (PC) in the cerebellum has been considered to be a core mechanism of motor learning. Recently, however, discrepancies between LTD and motor learning have been reported in mice with a mutation that targeted the expression of PF–PC LTD by blocking AMPA-subtype glutamate receptor internalization regulated via the phosphorylation of AMPA receptors. In these mice, motor learning behavior was normal, but no PF–PC LTD was observed. We reexamined slices obtained from these GluA2 K882A and GluA2 Δ7 knockin mutants at 3–6 mo of age. The conventional protocols of stimulation did not induce LTD in these mutant mice, as previously reported, but surprisingly, LTD was induced using certain modified protocols. Such modifications involved increases in the number of PF stimulation (from one to two or five), replacement of climbing fiber stimulation with somatic depolarization (50 ms), filling a patch pipette with a Cs+-based solution, or extension of the duration of conjunction. We also found that intracellular infusion of a selective PKCα inhibitor (Gö6976) blocked LTD induction in the mutants, as in WT, suggesting that functional compensation occurred downstream of PKCα. The possibility that LTD in the mutants was caused by changes in membrane resistance, access resistance, or presynaptic property was excluded. The present results demonstrate that LTD is inducible by intensified conjunctive stimulations even in K882A and Δ7 mutants, indicating no contradiction against the LTD hypothesis of motor learning. PMID:27551099

  2. Do cell-autonomous and non-cell-autonomous effects drive the structure of tumor ecosystems?

    PubMed

    Tissot, Tazzio; Ujvari, Beata; Solary, Eric; Lassus, Patrice; Roche, Benjamin; Thomas, Frédéric

    2016-04-01

    By definition, a driver mutation confers a growth advantage to the cancer cell in which it occurs, while a passenger mutation does not: the former is usually considered as the engine of cancer progression, while the latter is not. Actually, the effects of a given mutation depend on the genetic background of the cell in which it appears, thus can differ in the subclones that form a tumor. In addition to cell-autonomous effects generated by the mutations, non-cell-autonomous effects shape the phenotype of a cancer cell. Here, we review the evidence that a network of biological interactions between subclones drives cancer cell adaptation and amplifies intra-tumor heterogeneity. Integrating the role of mutations in tumor ecosystems generates innovative strategies targeting the tumor ecosystem's weaknesses to improve cancer treatment. PMID:26845682

  3. Decreased expression of glutamate transporter GLAST in Bergmann glia is associated with the loss of Purkinje neurons in the spinocerebellar ataxia type 1.

    PubMed

    Cvetanovic, Marija

    2015-02-01

    Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease of the cerebellum caused by a polyglutamine-repeat expansion in the protein ATXN1. We have previously demonstrated that astrocytic activation occurs early in pathogenesis, correlates with disease progression, and can occur when mutant ATXN1 expression is limited to Purkinje neurons. We now show that expression of glutamate and aspartate transporter, GLAST, is decreased in cerebellar astrocytes in a mouse model of SCA1. This decrease occurs in non-cell autonomous manner late in disease and correlates well with the loss of Purkinje neurons. Astrogliosis or decreased neuronal activity does not correlate with diminished GLAST expression. In addition, Bergmann glia remain capable of transcriptional upregulation of GLAST in response to improvement in Purkinje neurons supporting the notion of active neuron-glia crosstalk in disease.

  4. β-Site APP-cleaving enzyme 1 (BACE1) cleaves cerebellar Na+ channel β4-subunit and promotes Purkinje cell firing by slowing the decay of resurgent Na+ current.

    PubMed

    Huth, Tobias; Rittger, Andrea; Saftig, Paul; Alzheimer, Christian

    2011-03-01

    In cerebellar Purkinje cells, the β4-subunit of voltage-dependent Na(+) channels has been proposed to serve as an open-channel blocker giving rise to a "resurgent" Na(+) current (I (NaR)) upon membrane repolarization. Notably, the β4-subunit was recently identified as a novel substrate of the β-secretase, BACE1, a key enzyme of the amyloidogenic pathway in Alzheimer's disease. Here, we asked whether BACE1-mediated cleavage of β4-subunit has an impact on I (NaR) and, consequently, on the firing properties of Purkinje cells. In cerebellar tissue of BACE1-/- mice, mRNA levels of Na(+) channel α-subunits 1.1, 1.2, and 1.6 and of β-subunits 1-4 remained unchanged, but processing of β4 peptide was profoundly altered. Patch-clamp recordings from acutely isolated Purkinje cells of BACE1-/- and WT mice did not reveal any differences in steady-state properties and in current densities of transient, persistent, and resurgent Na(+) currents. However, I (NaR) was found to decay significantly faster in BACE1-deficient Purkinje cells than in WT cells. In modeling studies, the altered time course of I (NaR) decay could be replicated when we decreased the efficiency of open-channel block. In current-clamp recordings, BACE1-/- Purkinje cells displayed lower spontaneous firing rate than normal cells. Computer simulations supported the hypothesis that the accelerated decay kinetics of I (NaR) are responsible for the slower firing rate. Our study elucidates a novel function of BACE1 in the regulation of neuronal excitability that serves to tune the firing pattern of Purkinje cells and presumably other neurons endowed with I (NaR).

  5. Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice.

    PubMed

    Schreurs, B G; Oh, M M; Alkon, D L

    1996-03-01

    1. Using a rabbit cerebellar slice preparation, we stimulated a classical conditioning procedure by stimulating parallel fiber inputs to Purkinje cells with the use of a brief, high-frequency train of eight constant-current pulses 80 ms before climbing fiber inputs to the same Purkinje cell were stimulated with the use of a brief, lower frequency train of three constant-current pulses. In all experiments, we assessed the effects of stimulation by measuring the peak amplitude of Purkinje cell excitatory postsynaptic potentials (EPSPs) to single parallel fiber test pulses. 2. Intradendritically recorded Purkinje cell EPSPs underwent a long-term (> 20 min) reduction in peak amplitude (30%) after paired stimulation of the parallel and climbing fibers but not after unpaired or parallel fiber alone stimulation. We call this phenomenon pairing-specific long-term depression (PSD). 3. Facilitation of the peak amplitude of a second EPSP elicited by a parallel fiber train occurred both before and after paired stimulation suggesting that the locus of depression was not presynaptic. Depression of the peak amplitude of a depolarizing response to focal application of glutamate following pairings of parallel and climbing fiber stimulation added support to a suggested postsynaptic locus of the PSD effect. 4. The application of aniracetam potentiated EPSP peak amplitude by 40%, but these values returned to baseline as a result of pairings. With the removal of aniracetam from the bath 20 min after pairings, normal levels of pairing-specific EPSP depression were observed, indicating that the effect did not result from direct desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid (AMPA) receptors. 5. Incubation of slices in the protein kinase inhibitor H-7 potentiated EPSP peak amplitudes slightly (9%), but peak amplitudes returned to baseline levels after pairings. The net reduction in EPSP peak amplitude of < 10% after pairings suggested that H-7 partially

  6. Change of Na+ pump current reversal potential in sheep cardiac Purkinje cells with varying free energy of ATP hydrolysis.

    PubMed Central

    Glitsch, H G; Tappe, A

    1995-01-01

    1. The Na(+)-K+ pump current, Ip, of cardioballs from isolated sheep cardiac Purkinje cells was measured at 30-34 degrees C by means of whole-cell recording. 2. Under physiological conditions Ip is an outward current. Experimental conditions which cause a less negative free energy of intracellular ATP hydrolysis (delta GATP) and steeper sarcolemmal gradients for the pumped Na+ and Cs+ ions evoked an Ip in the inward direction over a wide range of membrane potentials. The reversal of the Ip direction was reversible. 3. The inwardly directed Ip increased with increasingly negative membrane potentials and amounted to -0.13 +/- 0.03 microA cm-2 (mean +/- S.E.M.; n = 6) at -95 mV. 4. The reversal potential (Erev) of Ip was studied as a function of delta GATP at constant sarcolemmal gradients of the pumped cations. 5. In order to vary delta GATP the cell interior was dialysed with patch pipette solutions containing 10 mM ATP and different concentrations of ADP and inorganic phosphate. The media were composed to produce delta GATP levels of about -58, -49 and -39 kJ mol-1. 6. A less negative delta GATP shifted Erev to more positive membrane potentials. From measurements of Ip as a function of membrane potential Erev was estimated to be -195, -115 and -60 mV at delta GATP levels of approximately -58, -49 and -39 kJ mol-1, respectively. The calculated Erev amounted to -224 mV at delta GATP approximately -58 kJ mol-1, -126 mV at delta GATP approximately 49 kJ mol-1 and -24 mV at delta GATP approximately -39 kJ mol-1. 7. Possible reasons for the discrepancy between estimated and calculated Erev values are discussed. 8. Shifting delta GATP to less negative values not only altered Erev but also diminished Ip at each membrane potential tested. The maximal Ip (Ip,max), which can be activated by external Cs+ (Cs+o), decreased under these conditions, whereas [Cs+]o causing half-maximal Ip activation remained unchanged. Similarly, the voltage dependence of Ip activation by Cs+o was

  7. Modulation of inhibitory post-synaptic currents (IPSCs) in mouse cerebellar Purkinje and basket cells by snake and scorpion toxin K+ channel blockers

    PubMed Central

    Southan, Andrew P; Robertson, Brian

    1998-01-01

    Using an in vitro mouse cerebellar slice preparation and whole-cell electrophysiological recording techniques we have characterized Purkinje and basket cell inhibitory post-synaptic currents (IPSCs), and examined the effects of a number of selective peptidergic K+ channel blockers.Spontaneous IPSC amplitude ranged from ∼10 pA up to ∼3 nA for both cell types [mean values: Purkinje cells −122.8±20.0 pA (n=24 cells); basket cells −154.8±15.9 pA (n=26 cells)]. Frequency varied from ∼3 up to ∼40 Hz, [mean values: basket cells 14.9±1.7 Hz (n=26 cells); Purkinje cells 17.9±2.2 Hz (n=24 cells)]. 5 μM bicuculline eliminated virtually all spontaneous currents.IPSC rise times were fast (∼0.6 ms) and the decay phase was best fit with the sum of two exponential functions (τ1 and τ2: ∼4 ms and ∼20 ms, n=40; for both cell types).The snake toxins alpha-dendrotoxin (α-DTX) and toxin K greatly enhanced IPSC frequency and amplitude in both cell types; the closely related homologues toxin I and gamma-dendrotoxin (γ-DTX) produced only marginal enhancements (all at 200 nM).Two scorpion toxins, margatoxin (MgTX) and agitoxin-2 (AgTX-2) had only minor effects on IPSC frequency or amplitude (both at 10 nM).Low concentrations of tetraethylammonium (TEA; 200 μM) had no overall effect on cerebellar IPSCs, whilst higher concentrations (10 mM) increased both the frequency and amplitude.The results suggest that native K+ channels, containing Kv1.1 and Kv1.2 channel subunits, play an influential role in controlling GABAergic inhibitory transmission from cerebellar basket cells. PMID:9863670

  8. Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study.

    PubMed

    Crepel, F; Krupa, M

    1988-08-23

    In immature rat cerebellar slices in vitro, a long term depression (LTD) of the responses of Purkinje cells (PCs) to L-glutamate (Glu) was achieved in 30% of the recorded cells by simultaneous stimulation of the neurones by Glu and by climbing fibres (CFs). This effect was not observed for L-aspartate (Asp)-induced responses. Similarly, selective LTD of Glu-induced responses was obtained in 22% of the cells by pairing Glu applications with direct stimulation of the cells which elicited calcium spikes in these neurones. Finally, bath application of phorbol esters also induced a selective LTD of Glu-induced responses in all cells tested. These results suggest that protein kinase C is involved in cerebellar synaptic plasticity.

  9. Saccade-related Purkinje cell activity in the oculomotor vermis during spontaneous eye movements in light and darkness.

    PubMed

    Helmchen, C; Büttner, U

    1995-01-01

    Saccade-related Purkinje cells (PCs) were recorded in the oculomotor vermis (lobules VI, VII) during spontaneous eye movements and fast phases of optokinetic and vestibular nystagmus in the light and darkness, from two macaque monkeys. All neurons (n = 46) were spontaneously active and exhibited a saccade-related change of activity with all saccades and fast phases of nystagmus. Four types of neurons were found: most neurons (n = 31) exhibited a saccade-related burst of activity only (VBN); other units (n = 7) showed a burst of activity with a subsequent pause (VBPN); some of the units (n = 5) paused in relation to the saccadic eye movement (pause units, VPN); a few PCs (n = 3) showed a burst of activity in one direction and a pause of activity in the opposite direction. For all neurons, burst activity varied considerably for similar saccades. There were no activity differences between spontaneous saccades and vestibular or optokinetically elicited fast phases of nystagmus. The activity before, during, and after horizontal saccades was quantitatively analyzed. For 24 burst PCs (VBN, VBPN), the burst started before saccade onset in one horizontal direction (preferred direction), on average by 15.3 ms (range 27-5 ms). For all these neurons, burst activity started later in the opposite (non-preferred) direction, on average 4.9 ms (range 20 to -12 ms, P < 0.01) before saccade onset. The preferred direction could be either with ipsilateral (42% of neurons) or contralateral (58%) saccades. Nine burst PCs had similar latencies and burst patterns in both horizontal directions. The onset of burst activity of a minority of PCs (n = 5) lagged saccade onset in all directions. The pause for VBPN neurons started after the end of the saccade and reached a minimum of activity some 40-50 ms after saccade completion. For all saccades and quick phases of nystagmus, burst duration increased with saccade duration. Peak burst activity was not correlated with saccade amplitude or peak

  10. Dendro-somatic distribution of calcium-mediated electrogenesis in Purkinje cells from rat cerebellar slice cultures

    PubMed Central

    Pouille, F; Cavelier, P; Desplantez, T; Beekenkamp, H; Craig, P J; Beattie, R E; Volsen, S G; Bossu, J L

    2000-01-01

    The role of Ca2+ entry in determining the electrical properties of cerebellar Purkinje cell (PC) dendrites and somata was investigated in cerebellar slice cultures. Immunohistofluorescence demonstrated the presence of at least three distinct types of Ca2+ channel proteins in PCs: the α1A subunit (P/Q type Ca2+ channel), the α1G subunit (T type) and the α1E subunit (R type). In PC dendrites, the response started in 66 % of cases with a slow depolarization (50 ± 15 ms) triggering one or two fast (∼1 ms) action potentials (APs). The slow depolarization was identified as a low-threshold non-P/Q Ca2+ AP initiated, most probably, in the dendrites. In 16 % of cases, this response propagated to the soma to elicit an initial burst of fast APs. Somatic recordings revealed three modes of discharge. In mode 1, PCs display a single or a short burst of fast APs. In contrast, PCs fire repetitively in mode 2 and 3, with a sustained discharge of APs in mode 2, and bursts of APs in mode 3. Removal of external Ca2+ or bath applications of a membrane-permeable Ca2+ chelator abolished repetitive firing. Tetraethylammonium (TEA) prolonged dendritic and somatic fast APs by a depolarizing plateau sensitive to Cd2+ and to ω-conotoxin MVII C or ω-agatoxin TK. Therefore, the role of Ca2+ channels in determining somatic PC firing has been investigated. Cd2+ or P/Q type Ca2+ channel-specific toxins reduced the duration of the discharge and occasionallyinduced the appearance of oscillations in the membrane potential associated with bursts of APs. In summary, we demonstrate that Ca2+ entry through low-voltage gated Ca2+ channels, not yet identified, underlies a dendritic AP rarelyeliciting a somatic burst of APs whereas Ca2+ entry through P/Q type Ca2+ channels allowed a repetitive firing mainly by inducing a Ca2+-dependent hyperpolarization. PMID:10970428

  11. Presynaptic and postsynaptic effects of nitric oxide donors at synapses between parallel fibres and Purkinje cells: involvement in cerebellar long-term depression.

    PubMed

    Blond, O; Daniel, H; Otani, S; Jaillard, D; Crépel, F

    1997-04-01

    The involvement of nitric oxide in cerebellar long-term depression is widely accepted. Nevertheless, its site of action has remained unclear. Using the coefficient of variation method applied to the parallel fibre-mediated excitatory postsynaptic currents recorded in voltage-clamped Purkinje cells. this study shows that nitric oxide donors exert their effects at both presynaptic and postsynaptic sites. The presynaptic depression fades away with washout of nitric oxide donors and is mediated through the potentiation of A1 adenosine receptors. Part of this effect may be due to non-nitric oxide products. In contrast, long-term depression induced by nitric oxide donors is expressed at a postsynaptic site, and is independent of the ADP ribosylation. Long-term depression induced by pairing is also expressed mainly at a postsynaptic level. These results establish that long-term depression at the parallel fibre Purkinje cell synapse induced by pairing of nitric oxide donors is mostly expressed at a postsynaptic site.

  12. Oral administration of diphenylarsinic acid, a degradation product of chemical warfare agents, induces oxidative and nitrosative stress in cerebellar Purkinje cells.

    PubMed

    Kato, Koichi; Mizoi, Mutsumi; An, Yan; Nakano, Masayuki; Wanibuchi, Hideki; Endo, Ginji; Endo, Yoko; Hoshino, Mikio; Okada, Shoji; Yamanaka, Kenzo

    2007-11-10

    A new clinical syndrome with prominent cerebellar symptoms in patients living in Kamisu City, Ibaraki Prefecture, Japan, is described. Since the patients ingested drinking water containing diphenylarsinic acid (DPA), a stable degradation product of both diphenylcyanoarsine and diphenylchloroarsine, which were developed for use as chemical weapons and cause severe vomiting and sneezing, DPA was suspected of being responsible for the clinical syndrome. The purpose of the present study was to elucidate prominent cerebellar symptoms due to DPA. The aim of the study was to determine if single (15 mg/kg) or continuous (5 mg/kg/day for 5 weeks) oral administration of DPA to ICR-strain mice induced oxidative and/or nitrosative stress in their brain. Significantly positive staining with malondialdehyde (MDA) and 3-nitrotyrosine (3-NT) was observed in the cerebellar Purkinje cells by repeated administration (5 mg/kg/day) with DPA for 5 weeks that led to the cerebellar symptoms from a behavioral pharmacology standpoint and by single administration of DPA (15 mg/kg). Furthermore, it is possible that the production of 3-NT was not caused by peroxynitrite formation. The present results suggest the possibility that arsenic-associated novel active species may be a factor underlying the oxidative and nitrosative stress in Purkinje cells due to exposure to DPA, and that the damage may lead to the cerebellar symptoms.

  13. Single course of antenatal betamethasone produces delayed changes in morphology and calbindin-D28k expression in a rat's cerebellar Purkinje cells.

    PubMed

    Pascual, Rodrigo; Valencia, Martina; Larrea, Sebastián; Bustamante, Carlos

    2014-01-01

    In the current study, we analyzed the impact of antenatal betamethasone on macroscopic cerebellar development, Purkinje cell morphology and the expression of the neuroprotective protein calbindin-D28k. Pregnant rats (Sprague-Dawley) were randomly divided into two experimental groups: control (CONT) and betamethasone-treated (BET). At gestational day 20 (G20), BET dams were subcutaneously injected with a solution of 0.17 mg kg⁻¹ of betamethasone, while CONT animals received a similar volume of saline. At postnatal days 22 (P22) and P52, BET and CONT offspring were behaviorally evaluated, and the cerebella were histologically and immunohistochemically processed. Animals that were prenatally treated with a single course of betamethasone exhibited long-lasting behavioral changes consistent with anxiety-like behavior in the open-field test, together with (1) reduced cerebellar weight and volume, (2) Purkinje cell dendritic atrophy, and (3) an overexpression of calbindin-D28k. The current results indicate that an experimental single course of betamethasone in pregnant rats produces long-lasting anxiety-like behaviors, together with macroscopic and microscopic cerebellar alterations.

  14. Cell Autonomous Shape Changes in Germband Retraction

    NASA Astrophysics Data System (ADS)

    Lynch, Holley; Kim, Elliott; Gish, Robert; Hutson, M. Shane

    2012-02-01

    Germband retraction involves the cohesive movement and regulated cellular mechanics of two tissues on the surface of fruit fly embryos, the germband and the amnioserosa. The germband initially forms a `U' shape, curling from the ventral surface, around the posterior of the embryo, and onto the dorsal surface; the amnioserosa lies between the arms of this `U'. Retraction straightens the germband and leaves it only on the ventral side. During retraction, the germband becomes clearly segmented with deep furrows between segments, and its cells elongate towards the amnioserosa, along what becomes the dorsal-ventral axis. To determine the importance of these changes for the overall movement of the tissues, we observed embryos that did not complete germband retraction due to targeted laser ablation of half the amnioserosa. Without the chemical and mechanical influence of the amnioserosa, germband furrows still formed and germband cells still elongated; however, this elongation was misaligned compared to unablated embryos. Thus, furrow formation and cell elongation in the germband are autonomous, but insufficient to drive proper tissue motion. These results suggest that part of the necessary role of the amnioserosa is proper orientation of germband cell elongation.

  15. Krox-20 patterns the hindbrain through both cell-autonomous and non cell-autonomous mechanisms

    PubMed Central

    Giudicelli, François; Taillebourg, Emmanuel; Charnay, Patrick; Gilardi-Hebenstreit, Pascale

    2001-01-01

    The Krox-20 gene encodes a zinc finger transcription factor, which has been shown previously, by targeted inactivation in the mouse, to be required for the development of rhombomeres (r) 3 and 5 in the segmented embryonic hindbrain. In the present work, Krox-20 was expressed ectopically in the developing chick hindbrain by use of electroporation. We demonstrate that Krox-20 expression is sufficient to confer odd-numbered rhombomere characteristics to r2, r4, and r6 cells, presumably in a cell-autonomous manner. Therefore, Krox-20, appears as the major determinant of odd-numbered identity within the hindbrain. In addition, we provide evidence for the existence of a non cell-autonomous autoactivation mechanism allowing recruitment of Krox-20-positive cells from even-numbered territories by neighboring Krox-20-expressing cells. On the basis of these observations, we propose that Krox-20 regulates multiple, intertwined steps in segmental patterning: Initial activation of Krox-20 in a few cells leads to the segregation, homogenization, and possibly expansion of territories to which Krox-20 in addition confers an odd-numbered identity. PMID:11238377

  16. Regulation of cell-non-autonomous proteostasis in metazoans

    PubMed Central

    O'Brien, Daniel; van Oosten-Hawle, Patricija

    2016-01-01

    Cells have developed robust adaptation mechanisms to survive environmental conditions that challenge the integrity of their proteome and ensure cellular viability. These are stress signalling pathways that integrate extracellular signals with the ability to detect and efficiently respond to protein-folding perturbations within the cell. Within the context of an organism, the cell-autonomous effects of these signalling mechanisms are superimposed by cell-non-autonomous stress signalling pathways that allow co-ordination of stress responses across tissues. These transcellular stress signalling pathways orchestrate and maintain the cellular proteome at an organismal level. This article focuses on mechanisms in both invertebrate and vertebrate organisms that activate stress responses in a cell-non-autonomous manner. We discuss emerging insights and provide specific examples on how components of the cell-non-autonomous proteostasis network are used in cancer and protein-folding diseases to drive disease progression across tissues. PMID:27744329

  17. Treadmill exercise ameliorates symptoms of attention deficit/hyperactivity disorder through reducing Purkinje cell loss and astrocytic reaction in spontaneous hypertensive rats.

    PubMed

    Yun, Hyo-Soon; Park, Mi-Sook; Ji, Eun-Sang; Kim, Tae-Woon; Ko, Il-Gyu; Kim, Hyun-Bae; Kim, Hong

    2014-02-01

    Attention deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder of cognition. We investigated the effects of treadmill exercise on Purkinje cell and astrocytic reaction in the cerebellum of the ADHD rat. Adult male spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKYR) weighing 210± 10 g were used. The animals were randomly divided into four groups (n= 15): control group, ADHD group, ADHD and methylphenidate (MPH)-treated group, ADHD and treadmill exercise group. The rats in the MPH-treated group as a positive control received 1 mg/kg MPH orally once a day for 28 consecutive days. The rats in the treadmill exercise group were made to run on a treadmill for 30 min once a day for 28 days. Motor coordination and balance were determined by vertical pole test. Immunohistochemistry for the expression of calbindinD-28 and glial fibrillary acidic protein (GFAP) in the cerebellar vermis and Western blot for GFAP, Bax, and Bcl-2 were conducted. In the present results, ADHD significantly decreased balance and the number of calbindin-positive cells, while GFAP expression and Bax/Bcl-2 ratio in the cerebellum were significantly increased in the ADHD group compared to the control group (P< 0.05, respectively). In contrast, treadmill exercise and MPH alleviated the ADHD-induced the decrease of balance and the number of calbindine-positive cells, and the increase of GFAP expression and Bax/Bcl-2 ratio in the cerebellum (P< 0.05, respectively). Therefore, the present results suggested that treadmill exercise might exert ameliorating effect on ADHD through reduction of Purkinje cell loss and astrocytic reaction in the cerebellum. PMID:24678501

  18. Treadmill exercise ameliorates symptoms of attention deficit/hyperactivity disorder through reducing Purkinje cell loss and astrocytic reaction in spontaneous hypertensive rats.

    PubMed

    Yun, Hyo-Soon; Park, Mi-Sook; Ji, Eun-Sang; Kim, Tae-Woon; Ko, Il-Gyu; Kim, Hyun-Bae; Kim, Hong

    2014-02-01

    Attention deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder of cognition. We investigated the effects of treadmill exercise on Purkinje cell and astrocytic reaction in the cerebellum of the ADHD rat. Adult male spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKYR) weighing 210± 10 g were used. The animals were randomly divided into four groups (n= 15): control group, ADHD group, ADHD and methylphenidate (MPH)-treated group, ADHD and treadmill exercise group. The rats in the MPH-treated group as a positive control received 1 mg/kg MPH orally once a day for 28 consecutive days. The rats in the treadmill exercise group were made to run on a treadmill for 30 min once a day for 28 days. Motor coordination and balance were determined by vertical pole test. Immunohistochemistry for the expression of calbindinD-28 and glial fibrillary acidic protein (GFAP) in the cerebellar vermis and Western blot for GFAP, Bax, and Bcl-2 were conducted. In the present results, ADHD significantly decreased balance and the number of calbindin-positive cells, while GFAP expression and Bax/Bcl-2 ratio in the cerebellum were significantly increased in the ADHD group compared to the control group (P< 0.05, respectively). In contrast, treadmill exercise and MPH alleviated the ADHD-induced the decrease of balance and the number of calbindine-positive cells, and the increase of GFAP expression and Bax/Bcl-2 ratio in the cerebellum (P< 0.05, respectively). Therefore, the present results suggested that treadmill exercise might exert ameliorating effect on ADHD through reduction of Purkinje cell loss and astrocytic reaction in the cerebellum.

  19. High frequency burst firing of granule cells ensures transmission at the parallel fiber to purkinje cell synapse at the cost of temporal coding.

    PubMed

    van Beugen, Boeke J; Gao, Zhenyu; Boele, Henk-Jan; Hoebeek, Freek; De Zeeuw, Chris I

    2013-01-01

    Cerebellar granule cells (GrCs) convey information from mossy fibers (MFs) to Purkinje cells (PCs) via their parallel fibers (PFs). MF to GrC signaling allows transmission of frequencies up to 1 kHz and GrCs themselves can also fire bursts of action potentials with instantaneous frequencies up to 1 kHz. So far, in the scientific literature no evidence has been shown that these high-frequency bursts also exist in awake, behaving animals. More so, it remains to be shown whether such high-frequency bursts can transmit temporally coded information from MFs to PCs and/or whether these patterns of activity contribute to the spatiotemporal filtering properties of the GrC layer. Here, we show that, upon sensory stimulation in both un-anesthetized rabbits and mice, GrCs can show bursts that consist of tens of spikes at instantaneous frequencies over 800 Hz. In vitro recordings from individual GrC-PC pairs following high-frequency stimulation revealed an overall low initial release probability of ~0.17. Nevertheless, high-frequency burst activity induced a short-lived facilitation to ensure signaling within the first few spikes, which was rapidly followed by a reduction in transmitter release. The facilitation rate among individual GrC-PC pairs was heterogeneously distributed and could be classified as either "reluctant" or "responsive" according to their release characteristics. Despite the variety of efficacy at individual connections, grouped activity in GrCs resulted in a linear relationship between PC response and PF burst duration at frequencies up to 300 Hz allowing rate coding to persist at the network level. Together, these findings support the hypothesis that the cerebellar granular layer acts as a spatiotemporal filter between MF input and PC output (D'Angelo and De Zeeuw, 2009). PMID:23734102

  20. High frequency burst firing of granule cells ensures transmission at the parallel fiber to purkinje cell synapse at the cost of temporal coding.

    PubMed

    van Beugen, Boeke J; Gao, Zhenyu; Boele, Henk-Jan; Hoebeek, Freek; De Zeeuw, Chris I

    2013-01-01

    Cerebellar granule cells (GrCs) convey information from mossy fibers (MFs) to Purkinje cells (PCs) via their parallel fibers (PFs). MF to GrC signaling allows transmission of frequencies up to 1 kHz and GrCs themselves can also fire bursts of action potentials with instantaneous frequencies up to 1 kHz. So far, in the scientific literature no evidence has been shown that these high-frequency bursts also exist in awake, behaving animals. More so, it remains to be shown whether such high-frequency bursts can transmit temporally coded information from MFs to PCs and/or whether these patterns of activity contribute to the spatiotemporal filtering properties of the GrC layer. Here, we show that, upon sensory stimulation in both un-anesthetized rabbits and mice, GrCs can show bursts that consist of tens of spikes at instantaneous frequencies over 800 Hz. In vitro recordings from individual GrC-PC pairs following high-frequency stimulation revealed an overall low initial release probability of ~0.17. Nevertheless, high-frequency burst activity induced a short-lived facilitation to ensure signaling within the first few spikes, which was rapidly followed by a reduction in transmitter release. The facilitation rate among individual GrC-PC pairs was heterogeneously distributed and could be classified as either "reluctant" or "responsive" according to their release characteristics. Despite the variety of efficacy at individual connections, grouped activity in GrCs resulted in a linear relationship between PC response and PF burst duration at frequencies up to 300 Hz allowing rate coding to persist at the network level. Together, these findings support the hypothesis that the cerebellar granular layer acts as a spatiotemporal filter between MF input and PC output (D'Angelo and De Zeeuw, 2009).

  1. Effects of Gadolinium-Based Contrast Agents on Thyroid Hormone Receptor Action and Thyroid Hormone-Induced Cerebellar Purkinje Cell Morphogenesis

    PubMed Central

    Ariyani, Winda; Iwasaki, Toshiharu; Miyazaki, Wataru; Khongorzul, Erdene; Nakajima, Takahito; Kameo, Satomi; Koyama, Hiroshi; Tsushima, Yoshito; Koibuchi, Noriyuki

    2016-01-01

    Gadolinium (Gd)-based contrast agents (GBCAs) are used in diagnostic imaging to enhance the quality of magnetic resonance imaging or angiography. After intravenous injection, GBCAs can accumulate in the brain. Thyroid hormones (THs) are critical for the development and functional maintenance of the central nervous system. TH actions in brain are mainly exerted through nuclear TH receptors (TRs). We examined the effects of GBCAs on TR-mediated transcription in CV-1 cells using transient transfection-based reporter assay and TH-mediated cerebellar Purkinje cell morphogenesis in primary culture. We also measured the cellular accumulation and viability of Gd after representative GBCA treatments in cultured CV-1 cells. Both linear (Gd-diethylene triamine pentaacetic acid-bis methyl acid, Gd-DTPA-BMA) and macrocyclic (Gd-tetraazacyclododecane tetraacetic acid, Gd-DOTA) GBCAs were accumulated without inducing cell death in CV-1 cells. By contrast, Gd chloride (GdCl3) treatment induced approximately 100 times higher Gd accumulation and significantly reduced the number of cells. Low doses of Gd-DTPA-BMA (10−8 to 10−6M) augmented TR-mediated transcription, but the transcription was suppressed at higher dose (10−5 to 10−4M), with decreased β-galactosidase activity indicating cellular toxicity. TR-mediated transcription was not altered by Gd-DOTA or GdCl3, but the latter induced a significant reduction in β-galactosidase activity at high doses, indicating cellular toxicity. In cerebellar cultures, the dendrite arborization of Purkinje cells induced by 10−9M T4 was augmented by low-dose Gd-DTPA-BMA (10−7M) but was suppressed by higher dose (10−5M). Such augmentation by low-dose Gd-DTPA-BMA was not observed with 10−9M T3, probably because of the greater dendrite arborization by T3; however, the arborization by T3 was suppressed by a higher dose of Gd-DTPA-BMA (10−5M) as seen in T4 treatment. The effect of Gd-DOTA on dendrite arborization was much weaker

  2. Effects of Gadolinium-Based Contrast Agents on Thyroid Hormone Receptor Action and Thyroid Hormone-Induced Cerebellar Purkinje Cell Morphogenesis

    PubMed Central

    Ariyani, Winda; Iwasaki, Toshiharu; Miyazaki, Wataru; Khongorzul, Erdene; Nakajima, Takahito; Kameo, Satomi; Koyama, Hiroshi; Tsushima, Yoshito; Koibuchi, Noriyuki

    2016-01-01

    Gadolinium (Gd)-based contrast agents (GBCAs) are used in diagnostic imaging to enhance the quality of magnetic resonance imaging or angiography. After intravenous injection, GBCAs can accumulate in the brain. Thyroid hormones (THs) are critical for the development and functional maintenance of the central nervous system. TH actions in brain are mainly exerted through nuclear TH receptors (TRs). We examined the effects of GBCAs on TR-mediated transcription in CV-1 cells using transient transfection-based reporter assay and TH-mediated cerebellar Purkinje cell morphogenesis in primary culture. We also measured the cellular accumulation and viability of Gd after representative GBCA treatments in cultured CV-1 cells. Both linear (Gd-diethylene triamine pentaacetic acid-bis methyl acid, Gd-DTPA-BMA) and macrocyclic (Gd-tetraazacyclododecane tetraacetic acid, Gd-DOTA) GBCAs were accumulated without inducing cell death in CV-1 cells. By contrast, Gd chloride (GdCl3) treatment induced approximately 100 times higher Gd accumulation and significantly reduced the number of cells. Low doses of Gd-DTPA-BMA (10−8 to 10−6M) augmented TR-mediated transcription, but the transcription was suppressed at higher dose (10−5 to 10−4M), with decreased β-galactosidase activity indicating cellular toxicity. TR-mediated transcription was not altered by Gd-DOTA or GdCl3, but the latter induced a significant reduction in β-galactosidase activity at high doses, indicating cellular toxicity. In cerebellar cultures, the dendrite arborization of Purkinje cells induced by 10−9M T4 was augmented by low-dose Gd-DTPA-BMA (10−7M) but was suppressed by higher dose (10−5M). Such augmentation by low-dose Gd-DTPA-BMA was not observed with 10−9M T3, probably because of the greater dendrite arborization by T3; however, the arborization by T3 was suppressed by a higher dose of Gd-DTPA-BMA (10−5M) as seen in T4 treatment. The effect of Gd-DOTA on dendrite arborization was much weaker

  3. Effects of Gadolinium-Based Contrast Agents on Thyroid Hormone Receptor Action and Thyroid Hormone-Induced Cerebellar Purkinje Cell Morphogenesis.

    PubMed

    Ariyani, Winda; Iwasaki, Toshiharu; Miyazaki, Wataru; Khongorzul, Erdene; Nakajima, Takahito; Kameo, Satomi; Koyama, Hiroshi; Tsushima, Yoshito; Koibuchi, Noriyuki

    2016-01-01

    Gadolinium (Gd)-based contrast agents (GBCAs) are used in diagnostic imaging to enhance the quality of magnetic resonance imaging or angiography. After intravenous injection, GBCAs can accumulate in the brain. Thyroid hormones (THs) are critical for the development and functional maintenance of the central nervous system. TH actions in brain are mainly exerted through nuclear TH receptors (TRs). We examined the effects of GBCAs on TR-mediated transcription in CV-1 cells using transient transfection-based reporter assay and TH-mediated cerebellar Purkinje cell morphogenesis in primary culture. We also measured the cellular accumulation and viability of Gd after representative GBCA treatments in cultured CV-1 cells. Both linear (Gd-diethylene triamine pentaacetic acid-bis methyl acid, Gd-DTPA-BMA) and macrocyclic (Gd-tetraazacyclododecane tetraacetic acid, Gd-DOTA) GBCAs were accumulated without inducing cell death in CV-1 cells. By contrast, Gd chloride (GdCl3) treatment induced approximately 100 times higher Gd accumulation and significantly reduced the number of cells. Low doses of Gd-DTPA-BMA (10(-8) to 10(-6)M) augmented TR-mediated transcription, but the transcription was suppressed at higher dose (10(-5) to 10(-4)M), with decreased β-galactosidase activity indicating cellular toxicity. TR-mediated transcription was not altered by Gd-DOTA or GdCl3, but the latter induced a significant reduction in β-galactosidase activity at high doses, indicating cellular toxicity. In cerebellar cultures, the dendrite arborization of Purkinje cells induced by 10(-9)M T4 was augmented by low-dose Gd-DTPA-BMA (10(-7)M) but was suppressed by higher dose (10(-5)M). Such augmentation by low-dose Gd-DTPA-BMA was not observed with 10(-9)M T3, probably because of the greater dendrite arborization by T3; however, the arborization by T3 was suppressed by a higher dose of Gd-DTPA-BMA (10(-5)M) as seen in T4 treatment. The effect of Gd-DOTA on dendrite arborization was much weaker

  4. Effect of long-chain triglyceride lipid emulsion on bupivacaine-induced changes in electrophysiological parameters of rabbit Purkinje cells.

    PubMed

    Lemoine, Sandrine; Rouet, René; Manrique, Alain; Hanouz, Jean-Luc

    2014-10-01

    Lipid emulsions are used in the reversal of local anesthetic toxicity. The aim of this study was to investigate the cellular electrophysiological effects of long-chain triglyceride lipid emulsion (LCTE) on cardiac action potential characteristics and conduction disturbances induced by bupivacaine. Purkinje fibers were dissected from the left ventricle of New Zealand white rabbit hearts and superfused with either Tyrode's solution during 30 min (control group), with bupivacaine 10(-6) M, 10(-5) M, and 5.10(-5) M alone, or in the presence of LCTE 0.5%, in addition, LCTE at 0.1%, 0.5%, and 1% was perfused alone. Electrophysiological parameters were recorded using the conventional microelectrode technique (37 °C, 1 Hz frequency). Bupivacaine 5.10(-5) M-induced conduction blocks (8/8 preparations): LCTE 0.5% suppressed the bupivacaine 5.10(-5) M-induced conduction blocks (1/8 preparations). Exposure to bupivacaine 10(-6) M, 10(-5) M, and 5.10(-5) M resulted in a significant decrease in the maximal rate of depolarization (Vmax) (respectively, 25%, 55%, 75%; P < 0.002 vs. control group). In the presence of LCTE 0.5%, bupivacaine 10(-6) M did not significantly decreased Vmax (13%; P = 0.10 vs. control group). The decrease in Vmax resulting from bupivacaine 10(-5) M alone was significantly less in the presence of LCTE 0.5% (P < 0.01 vs. bupivacaine 10(-5) M alone). Exposure to bupivacaine 10(-6) M, 10(-5) M, and 5.10(-5) M alone or in the presence of LCTE 0.5% resulted in a significant decrease in action potential duration measured at 50% and 90% repolarization (APD50 and APD90; P < 0.01 vs. control group). LCTE inhibited the Purkinje fibers conduction blocks induced by bupivacaine. Moreover, LCTE 0.5% attenuates the decrease in Vmax induced by bupivacaine 10(-6) M and 10(-5) M.

  5. Deletion of astroglial Dicer causes non-cell autonomous neuronal dysfunction and degeneration

    PubMed Central

    Tao, Jifang; Wu, Hao; Lin, Quan; Wei, Weizheng; Lu, Xiaohong; Cantle, Jeffrey P.; Ao, Yan; Olsen, Richard W.; Yang, X. William; Mody, Istvan; Sofroniew, Michael V.; Sun, Yi E.

    2012-01-01

    The endoribonuclease, Dicer, is indispensible for generating the majority of mature microRNAs (miRNAs), which are posttranscriptional regulators of gene expression involved in a wide range of developmental and pathological processes in mammalian central nervous system. While functions of Dicer-dependent miRNA pathways in neurons and oligodendrocytes have been extensively investigated, little is known about the role of Dicer in astrocytes. Here we report the effect of Cre-loxP mediated conditional deletion of Dicer selectively from postnatal astroglia on brain development. Dicer-deficient mice exhibited normal motor development and neurological morphology prior to postnatal week 5. Thereafter mutant mice invariably developed a rapidly fulminant neurological decline characterized by ataxia, severe progressive cerebellar degeneration, seizures, uncontrollable movements and premature death by postnatal week 9–10. Integrated transcription profiling, histological and functional analyses of cerebella showed that deletion of Dicer in cerebellar astrocytes altered the transcriptome of astrocytes to be more similar to an immature or reactive-like state prior to the onset of neurological symptoms or morphological changes. As a result, critical and mature astrocytic functions including glutamate uptake and antioxidant pathways were substantially impaired, leading to massive apoptosis of cerebellar granule cells and degeneration of Purkinje cells. Collectively, our study demonstrates the critical involvement of Dicer in normal astrocyte maturation and maintenance. Our findings also reveal non-cell autonomous roles of astrocytic Dicer-dependent pathways in regulating proper neuronal functions and implicate that loss of or dysregulation of astrocytic Dicer-dependent pathways may be involved in neurodegeneration and other neurological disorders. PMID:21632951

  6. KV10.1 opposes activity-dependent increase in Ca2+ influx into the presynaptic terminal of the parallel fibre–Purkinje cell synapse

    PubMed Central

    Mortensen, Lena Sünke; Schmidt, Hartmut; Farsi, Zohreh; Barrantes-Freer, Alonso; Rubio, María E; Ufartes, Roser; Eilers, Jens; Sakaba, Takeshi; Stühmer, Walter; Pardo, Luis A

    2015-01-01

    The voltage-gated potassium channel KV10.1 (Eag1) is widely expressed in the mammalian brain, but its physiological function is not yet understood. Previous studies revealed highest expression levels in hippocampus and cerebellum and suggested a synaptic localization of the channel. The distinct activation kinetics of KV10.1 indicate a role during repetitive activity of the cell. Here, we confirm the synaptic localization of KV10.1 both biochemically and functionally and that the channel is sufficiently fast at physiological temperature to take part in repolarization of the action potential (AP). We studied the role of the channel in cerebellar physiology using patch clamp and two-photon Ca2+ imaging in KV10.1-deficient and wild-type mice. The excitability and action potential waveform recorded at granule cell somata was unchanged, while Ca2+ influx into axonal boutons was enhanced in mutants in response to stimulation with three APs, but not after a single AP. Furthermore, mutants exhibited a frequency-dependent increase in facilitation at the parallel fibre–Purkinje cell synapse at high firing rates. We propose that KV10.1 acts as a modulator of local AP shape specifically during high-frequency burst firing when other potassium channels suffer cumulative inactivation. PMID:25556795

  7. Motor learning in common marmosets: vestibulo-ocular reflex adaptation and its sensitivity to inhibitors of Purkinje cell long-term depression.

    PubMed

    Anzai, Mari; Nagao, Soich

    2014-06-01

    Adaptation of the horizontal vestibulo-ocular reflex (HVOR) provides an experimental model for cerebellum-dependent motor learning. We developed an eye movement measuring system and a paradigm for induction of HVOR adaptation for the common marmoset. The HVOR gain in dark measured by 10° (peak-to-peak amplitude) and 0.11-0.5Hz turntable oscillation was around unity. The gain-up and gain-down HVOR adaptation was induced by 1h of sustained out-of-phase and in-phase 10°-0.33Hz combined turntable-screen oscillation in the light, respectively. To examine the role of long-term depression (LTD) of parallel fiber-Purkinje cell synapses, we intraperitonially applied T-588 or nimesulide, which block the induction of LTD in vitro or in vivo preparations, 1h before the test of HVOR adaptation. T-588 (3 and 5mg/kg body weight) did not affect nonadapted HVOR gains, and impaired both gain-up and gain-down HVOR adaptation. Nimesulide (3 and 6mg/kg) did not affect nonadapted HVOR gains, and impaired gain-up HVOR adaptation dose-dependently; however, it very little affected gain-down HVOR adaptation. These findings are consistent with the results of our study of nimesulide on the adaptation of horizontal optokinetic response in mice (Le et al., 2010), and support the view that LTD underlies HVOR adaptation.

  8. Developmental Hypothyroxinemia and Hypothyroidism Reduce Parallel Fiber-Purkinje Cell Synapses in Rat Offspring by Downregulation of Neurexin1/Cbln1/GluD2 Tripartite Complex.

    PubMed

    Wang, Yuan; Dong, Jing; Wang, Yi; Wei, Wei; Song, Binbin; Shan, Zhongyan; Teng, Weiping; Chen, Jie

    2016-10-01

    Iodine is a significant micronutrient. Iodine deficiency (ID)-induced hypothyroxinemia and hypothyroidism during developmental period can cause cerebellar dysfunction. However, mechanisms are still unclear. Therefore, the present research aims to study effects of developmental hypothyroxinemia caused by mild ID and hypothyroidism caused by severe ID or methimazole (MMZ) on parallel fiber-Purkinje cell (PF-PC) synapses in filial cerebellum. Maternal hypothyroxinemia and hypothyroidism models were established in Wistar rats using ID diet and deionized water supplemented with different concentrations of potassium iodide or MMZ water. Birth weight and cerebellum weight were measured. We also examined PF-PC synapses using immunofluorescence, and western blot analysis was conducted to investigate the activity of Neurexin1/cerebellin1 (Cbln1)/glutamate receptor d2 (GluD2) tripartite complex. Our results showed that hypothyroxinemia and hypothyroidism decreased birth weight and cerebellum weight and reduced the PF-PC synapses on postnatal day (PN) 14 and PN21. Accordingly, the mean intensity of vesicular glutamate transporter (VGluT1) and Calbindin immunofluorescence was reduced in mild ID, severe ID, and MMZ groups. Moreover, maternal hypothyroxinemia and hypothyroidism reduced expression of Neurexin1/Cbln1/GluD2 tripartite complex. Our study supports the hypothesis that developmental hypothyroxinemia and hypothyroidism reduce PF-PC synapses, which may be attributed to the downregulation of Neurexin1/Cbln1/GluD2 tripartite complex. PMID:27033232

  9. The histone deacetylase HDAC3 is essential for Purkinje cell function, potentially complicating the use of HDAC inhibitors in SCA1.

    PubMed

    Venkatraman, Anand; Hu, Yuan-Shih; Didonna, Alessandro; Cvetanovic, Marija; Krbanjevic, Aleksandar; Bilesimo, Patrice; Opal, Puneet

    2014-07-15

    Spinocerebellar ataxia type 1 (SCA1) is an incurable neurodegenerative disease caused by a pathogenic glutamine repeat expansion in the protein ataxin-1 (ATXN1). One likely mechanism mediating pathogenesis is excessive transcriptional repression induced by the expanded ATXN-1. Because ATXN1 binds HDAC3, a Class I histone deacetylase (HDAC) that we have found to be required for ATXN1-induced transcriptional repression, we tested whether genetically depleting HDAC3 improves the phenotype of the SCA1 knock-in mouse (SCA1(154Q/2Q)), the most physiologically relevant model of SCA1. Given that HDAC3 null mice are embryonic lethal, we used for our analyses a combination of HDAC3 haploinsufficient and Purkinje cell (PC)-specific HDAC3 null mice. Although deleting a single allele of HDAC3 in the context of SCA1 was insufficient to improve cerebellar and cognitive deficits of the disease, a complete loss of PC HDAC3 was highly deleterious both behaviorally, with mice showing early onset ataxia, and pathologically, with progressive histologic evidence of degeneration. Inhibition of HDAC3 may yet have a role in SCA1 therapy, but our study provides cautionary evidence that this approach could produce untoward effects. Indeed, the neurotoxic consequences of HDAC3 depletion could prove relevant, wherever pharmacologic inhibition of HDAC3 is being contemplated, in disorders ranging from cancer to neurodegeneration.

  10. Developmental Hypothyroxinemia and Hypothyroidism Reduce Parallel Fiber-Purkinje Cell Synapses in Rat Offspring by Downregulation of Neurexin1/Cbln1/GluD2 Tripartite Complex.

    PubMed

    Wang, Yuan; Dong, Jing; Wang, Yi; Wei, Wei; Song, Binbin; Shan, Zhongyan; Teng, Weiping; Chen, Jie

    2016-10-01

    Iodine is a significant micronutrient. Iodine deficiency (ID)-induced hypothyroxinemia and hypothyroidism during developmental period can cause cerebellar dysfunction. However, mechanisms are still unclear. Therefore, the present research aims to study effects of developmental hypothyroxinemia caused by mild ID and hypothyroidism caused by severe ID or methimazole (MMZ) on parallel fiber-Purkinje cell (PF-PC) synapses in filial cerebellum. Maternal hypothyroxinemia and hypothyroidism models were established in Wistar rats using ID diet and deionized water supplemented with different concentrations of potassium iodide or MMZ water. Birth weight and cerebellum weight were measured. We also examined PF-PC synapses using immunofluorescence, and western blot analysis was conducted to investigate the activity of Neurexin1/cerebellin1 (Cbln1)/glutamate receptor d2 (GluD2) tripartite complex. Our results showed that hypothyroxinemia and hypothyroidism decreased birth weight and cerebellum weight and reduced the PF-PC synapses on postnatal day (PN) 14 and PN21. Accordingly, the mean intensity of vesicular glutamate transporter (VGluT1) and Calbindin immunofluorescence was reduced in mild ID, severe ID, and MMZ groups. Moreover, maternal hypothyroxinemia and hypothyroidism reduced expression of Neurexin1/Cbln1/GluD2 tripartite complex. Our study supports the hypothesis that developmental hypothyroxinemia and hypothyroidism reduce PF-PC synapses, which may be attributed to the downregulation of Neurexin1/Cbln1/GluD2 tripartite complex.

  11. Lgr4 protein deficiency induces ataxia-like phenotype in mice and impairs long term depression at cerebellar parallel fiber-Purkinje cell synapses.

    PubMed

    Guan, Xin; Duan, Yanhong; Zeng, Qingwen; Pan, Hongjie; Qian, Yu; Li, Dali; Cao, Xiaohua; Liu, Mingyao

    2014-09-19

    Cerebellar dysfunction causes ataxia characterized by loss of balance and coordination. Until now, the molecular and neuronal mechanisms of several types of inherited cerebellar ataxia have not been completely clarified. Here, we report that leucine-rich G protein-coupled receptor 4 (Lgr4/Gpr48) is highly expressed in Purkinje cells (PCs) in the cerebellum. Deficiency of Lgr4 leads to an ataxia-like phenotype in mice. Histologically, no obvious morphological changes were observed in the cerebellum of Lgr4 mutant mice. However, the number of PCs was slightly but significantly reduced in Lgr4(-/-) mice. In addition, in vitro electrophysiological analysis showed an impaired long term depression (LTD) at parallel fiber-PC (PF-PC) synapses in Lgr4(-/-) mice. Consistently, immunostaining experiments showed that the level of phosphorylated cAMP-responsive element-binding protein (Creb) was significantly decreased in Lgr4(-/-) PCs. Furthermore, treatment with forskolin, an adenylyl cyclase agonist, rescued phospho-Creb in PCs and reversed the impairment in PF-PC LTD in Lgr4(-/-) cerebellar slices, indicating that Lgr4 is an upstream regulator of Creb signaling, which is underlying PF-PC LTD. Together, our findings demonstrate for first time an important role for Lgr4 in motor coordination and cerebellar synaptic plasticity and provide a potential therapeutic target for certain types of inherited cerebellar ataxia. PMID:25063812

  12. vps25 mosaics display non-autonomous cell survival and overgrowth, and autonomous apoptosis

    PubMed Central

    Herz, Hans-Martin; Chen, Zhihong; Scherr, Heather; Lackey, Melinda; Bolduc, Clare; Bergmann, Andreas

    2008-01-01

    Appropriate cell-cell signaling is crucial for proper tissue homeostasis. Protein sorting of cell surface receptors at the early endosome is important for both the delivery of the signal and the inactivation of the receptor, and its alteration can cause malignancies including cancer. In a genetic screen for suppressors of the pro-apoptotic gene hid in Drosophila, we identified two alleles of vps25, a component of the ESCRT machinery required for protein sorting at the early endosome. Paradoxically, although vps25 mosaics were identified as suppressors of hid-induced apoptosis, vps25 mutant cells die. However, we provide evidence that a non-autonomous increase of Diap1 protein levels, an inhibitor of apoptosis, accounts for the suppression of hid. Furthermore, before they die, vps25 mutant clones trigger non-autonomous proliferation through a failure to downregulate Notch signaling, which activates the mitogenic JAK/STAT pathway. Hid and JNK contribute to apoptosis of vps25 mutant cells. Inhibition of cell death in vps25 clones causes dramatic overgrowth phenotypes. In addition, Hippo signaling is increased in vps25 clones, and hippo mutants block apoptosis in vps25 clones. In summary, the phenotypic analysis of vps25 mutants highlights the importance of receptor downregulation by endosomal protein sorting for appropriate tissue homeostasis, and may serve as a model for human cancer. PMID:16611691

  13. Lack of molecular-anatomical evidence for GABAergic influence on axon initial segment of cerebellar Purkinje cells by the pinceau formation.

    PubMed

    Iwakura, Atsushi; Uchigashima, Motokazu; Miyazaki, Taisuke; Yamasaki, Miwako; Watanabe, Masahiko

    2012-07-01

    The axon initial segment (AIS) of cerebellar Purkinje cells (PCs) is embraced by ramified axons of GABAergic basket cells (BCs) called the pinceau formation. This unique structure has been assumed to be a device for the modulation of PC outputs through electrical and/or GABAergic inhibition. Electrical inhibition is supported by enriched potassium channels, absence of sodium channels, and developed septate-like junctions between BC axons. The neurochemical basis for GABAergic inhibition, however, has not been well investigated. Here we addressed this issue using C56BL/6 mice. First, we confirmed previous observations that typical synaptic contacts were rare and confined to proximal axonal portions, with the remaining portions being mostly covered by astrocytic processes. Then we examined the expression of molecules involved in GABAergic signaling, including GABA synthetic enzyme glutamic acid decarboxylase (GAD), vesicular GABA transporter vesicular inhibitory amino acid transporter (VIAAT), cytomatrix active zone protein bassoon, GABA receptor GABA(A)Rα1, and cell adhesion molecule neuroligin-2. These molecules were recruited to form a functional assembly at perisomatic BC-PC synapses and along the AIS of hippocampal and neocortical pyramidal cells. GAD and VIAAT immunogold labeling was five times lower in the pinceau formation compared with perisomatic BC terminals and showed no accumulation toward the AIS. Moreover, bassoon, neuroligin-2, and GABA(A)Rα1 formed no detectable clusters along the ankyrin-G-positive AIS proper. These findings indicate that GABAergic signaling machinery is organized loosely and even incompletely in the pinceau formation. Together, BCs do not appear to exert GABAergic synaptic inhibition on the AIS, although the mode of action of the pinceau formation remains to be explored.

  14. Coactivation of metabotropic glutamate receptors and of voltage-gated calcium channels induces long-term depression in cerebellar Purkinje cells in vitro.

    PubMed

    Daniel, H; Hemart, N; Jaillard, D; Crepel, F

    1992-01-01

    Using an in vitro slice preparation, we studied the effects, on parallel fiber (PF)-mediated EPSPs, of coactivation of metabotropic-glutamate receptors and of voltage-gated calcium (Ca) channels of Purkinje cells (PCs) by bath application of 50 microM trans-1-amino-cyclopentyl-1,3-dicarboxylate (trans-ACPD) and by direct depolarization of the cells, respectively. These effects were compared with changes in synaptic efficacy obtained when alpha-amino-3hydroxy-5-methylisoxalone-4-propionate (AMPA) receptors of PCs were also activated through stimulation of PFs during the pairing protocol, as well as when similar experiments were performed without trans-ACPD in the bath. In a control medium, pairing for 1 min of PF-mediated EPSPs evoked at 1 Hz with Ca spikes evoked by steady depolarization of PCs (n = 13) led to LTD of synaptic transmission in 9 cases whereas for the others EPSPs were not affected. No LTD occurred in 9 out of 10 other cells tested when PF stimulation was omitted during the 1 min period of Ca spike firing of PCs. Bath application of 50 microM trans-ACPD, in conjunction with the same pairing protocol as before (n = 8), led to a significantly larger LTD of PF-mediated EPSPs after washing out of this drug. Moreover, a clear-cut LTD of PF-mediated EPSPs was also observed in 5 of the 8 other cells, when PF stimulation was omitted during Ca spike firing in the presence of trans-ACPD.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. [Jan Evangelista Purkinje (1787-1869)].

    PubMed

    Kristiansen, K

    1993-12-10

    The author reviews the life and work of the physiologist Jan Evangelista Purkinje. In addition to his remarkable achievements as a scientist, Purkinje played a distinctive role in the struggle to establish national and cultural independence for the Czech people.

  16. MAM-2201, a synthetic cannabinoid drug of abuse, suppresses the synaptic input to cerebellar Purkinje cells via activation of presynaptic CB1 receptors.

    PubMed

    Irie, Tomohiko; Kikura-Hanajiri, Ruri; Usami, Makoto; Uchiyama, Nahoko; Goda, Yukihiro; Sekino, Yuko

    2015-08-01

    Herbal products containing synthetic cannabinoids-initially sold as legal alternatives to marijuana-have become major drugs of abuse. Among the synthetic cannabinoids, [1-(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl)-methanone (MAM-2201) has been recently detected in herbal products and has psychoactive and intoxicating effects in humans, suggesting that MAM-2201 alters brain function. Nevertheless, the pharmacological actions of MAM-2201 on cannabinoid receptor type 1 (CB1R) and neuronal functions have not been elucidated. We found that MAM-2201 acted as an agonist of human CB1Rs expressed in AtT-20 cells. In whole-cell patch-clamp recordings made from Purkinje cells (PCs) in slice preparations of the mouse cerebellum, we also found that MAM-2201 inhibited glutamate release at parallel fiber-PC synapses via activation of presynaptic CB1Rs. MAM-2201 inhibited neurotransmitter release with an inhibitory concentration 50% of 0.36 μM. MAM-2201 caused greater inhibition of neurotransmitter release than Δ(9)-tetrahydrocannabinol within the range of 0.1-30 μM and JWH-018, one of the most popular and potent synthetic cannabinoids detected in the herbal products, within the range of 0.03-3 μM. MAM-2201 caused a concentration-dependent suppression of GABA release onto PCs. Furthermore, MAM-2201 induced suppression of glutamate release at climbing fiber-PC synapses, leading to reduced dendritic Ca(2+) transients in PCs. These results suggest that MAM-2201 is likely to suppress neurotransmitter release at CB1R-expressing synapses in humans. The reduction of neurotransmitter release from CB1R-containing synapses could contribute to some of the symptoms of synthetic cannabinoid intoxication including impairments in cerebellum-dependent motor coordination and motor learning. PMID:25747605

  17. MAM-2201, a synthetic cannabinoid drug of abuse, suppresses the synaptic input to cerebellar Purkinje cells via activation of presynaptic CB1 receptors.

    PubMed

    Irie, Tomohiko; Kikura-Hanajiri, Ruri; Usami, Makoto; Uchiyama, Nahoko; Goda, Yukihiro; Sekino, Yuko

    2015-08-01

    Herbal products containing synthetic cannabinoids-initially sold as legal alternatives to marijuana-have become major drugs of abuse. Among the synthetic cannabinoids, [1-(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl)-methanone (MAM-2201) has been recently detected in herbal products and has psychoactive and intoxicating effects in humans, suggesting that MAM-2201 alters brain function. Nevertheless, the pharmacological actions of MAM-2201 on cannabinoid receptor type 1 (CB1R) and neuronal functions have not been elucidated. We found that MAM-2201 acted as an agonist of human CB1Rs expressed in AtT-20 cells. In whole-cell patch-clamp recordings made from Purkinje cells (PCs) in slice preparations of the mouse cerebellum, we also found that MAM-2201 inhibited glutamate release at parallel fiber-PC synapses via activation of presynaptic CB1Rs. MAM-2201 inhibited neurotransmitter release with an inhibitory concentration 50% of 0.36 μM. MAM-2201 caused greater inhibition of neurotransmitter release than Δ(9)-tetrahydrocannabinol within the range of 0.1-30 μM and JWH-018, one of the most popular and potent synthetic cannabinoids detected in the herbal products, within the range of 0.03-3 μM. MAM-2201 caused a concentration-dependent suppression of GABA release onto PCs. Furthermore, MAM-2201 induced suppression of glutamate release at climbing fiber-PC synapses, leading to reduced dendritic Ca(2+) transients in PCs. These results suggest that MAM-2201 is likely to suppress neurotransmitter release at CB1R-expressing synapses in humans. The reduction of neurotransmitter release from CB1R-containing synapses could contribute to some of the symptoms of synthetic cannabinoid intoxication including impairments in cerebellum-dependent motor coordination and motor learning.

  18. B Cell Autonomous TLR Signaling and Autoimmunity

    PubMed Central

    Meyer-Bahlburg, Almut; Rawlings, David J

    2009-01-01

    B cells play a central role in the pathogenesis of multiple autoimmune diseases and the recognition of importance of B cells in these disorders has grown dramatically in association with the remarkable success of B-cell depletion as a treatment for autoimmunity. The precise mechanisms that promote alterations in B cell tolerance remain incompletely defined. There is increasing evidence, however, that TLRs play a major role in these events. Stimulation of B cells via the TLR pathway not only leads to an increase in antibody production but also promotes additional changes including cytokine production and upregulation of activation markers increasing the effectiveness of B cells as APCs. Understanding the role of TLRs in systemic autoimmunity will not only provide insight into the disease pathogenesis but may also lead to the development of novel therapies. This article gives an overview of TLR signaling in B cells and the possible involvement of such signals in autoimmune diseases. PMID:18295736

  19. Distribution and Structure of Synapses on Medial Vestibular Nuclear Neurons Targeted by Cerebellar Flocculus Purkinje Cells and Vestibular Nerve in Mice: Light and Electron Microscopy Studies

    PubMed Central

    Matsuno, Hitomi; Kudoh, Moeko; Watakabe, Akiya; Yamamori, Tetsuo; Shigemoto, Ryuichi; Nagao, Soichi

    2016-01-01

    Adaptations of vestibulo-ocular and optokinetic response eye movements have been studied as an experimental model of cerebellum-dependent motor learning. Several previous physiological and pharmacological studies have consistently suggested that the cerebellar flocculus (FL) Purkinje cells (P-cells) and the medial vestibular nucleus (MVN) neurons targeted by FL (FL-targeted MVN neurons) may respectively maintain the memory traces of short- and long-term adaptation. To study the basic structures of the FL-MVN synapses by light microscopy (LM) and electron microscopy (EM), we injected green florescence protein (GFP)-expressing lentivirus into FL to anterogradely label the FL P-cell axons in C57BL/6J mice. The FL P-cell axonal boutons were distributed in the magnocellular MVN and in the border region of parvocellular MVN and prepositus hypoglossi (PrH). In the magnocellular MVN, the FL-P cell axons mainly terminated on somata and proximal dendrites. On the other hand, in the parvocellular MVN/PrH, the FL P-cell axonal synaptic boutons mainly terminated on the relatively small-diameter (< 1 μm) distal dendrites of MVN neurons, forming symmetrical synapses. The majority of such parvocellular MVN/PrH neurons were determined to be glutamatergic by immunocytochemistry and in-situ hybridization of GFP expressing transgenic mice. To further examine the spatial relationship between the synapses of FL P-cells and those of vestibular nerve on the neurons of the parvocellular MVN/PrH, we added injections of biotinylated dextran amine into the semicircular canal and anterogradely labeled vestibular nerve axons in some mice. The MVN dendrites receiving the FL P-cell axonal synaptic boutons often closely apposed vestibular nerve synaptic boutons in both LM and EM studies. Such a partial overlap of synaptic boutons of FL P-cell axons with those of vestibular nerve axons in the distal dendrites of MVN neurons suggests that inhibitory synapses of FL P-cells may influence the function

  20. N-methyl-D-Aspartate Receptors Contribute to Complex Spike Signaling in Cerebellar Purkinje Cells: An In vivo Study in Mice.

    PubMed

    Liu, Heng; Lan, Yan; Bing, Yan-Hua; Chu, Chun-Ping; Qiu, De-Lai

    2016-01-01

    N-methyl-D-aspartate receptors (NMDARs) are post-synaptically expressed at climbing fiber-Purkinje cell (CF-PC) synapses in cerebellar cortex in adult mice and contributed to CF-PC synaptic transmission under in vitro conditions. In this study, we investigated the role of NMDARs at CF-PC synapses during the spontaneous complex spike (CS) activity in cerebellar cortex in urethane-anesthetized mice, by in vivo whole-cell recording technique and pharmacological methods. Under current-clamp conditions, cerebellar surface application of NMDA (50 μM) induced an increase in the CS-evoked pause of simple spike (SS) firing accompanied with a decrease in the SS firing rate. Under voltage-clamp conditions, application of NMDA enhanced the waveform of CS-evoked inward currents, which expressed increases in the area under curve (AUC) and spikelet number of spontaneous CS. NMDA increased the AUC of spontaneous CS in a concentration-dependent manner. The EC50 of NMDA for increasing AUC of spontaneous CS was 33.4 μM. Moreover, NMDA significantly increased the amplitude, half-width and decay time of CS-evoked after-hyperpolarization (AHP) currents. Blockade of NMDARs with D-(-)-2-amino-5-phosphonopentanoic acid (D-APV, 250 μM) decreased the AUC, spikelet number, and amplitude of AHP currents. In addition, the NMDA-induced enhancement of CS activity could not be observed after α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors were blocked. The results indicated that NMDARs of CF-PC synapses contributed to the spontaneous CS activity by enhancing CS-evoked inward currents and AHP currents. PMID:27445699

  1. N-methyl-D-Aspartate Receptors Contribute to Complex Spike Signaling in Cerebellar Purkinje Cells: An In vivo Study in Mice

    PubMed Central

    Liu, Heng; Lan, Yan; Bing, Yan-Hua; Chu, Chun-Ping; Qiu, De-Lai

    2016-01-01

    N-methyl-D-aspartate receptors (NMDARs) are post-synaptically expressed at climbing fiber-Purkinje cell (CF-PC) synapses in cerebellar cortex in adult mice and contributed to CF-PC synaptic transmission under in vitro conditions. In this study, we investigated the role of NMDARs at CF-PC synapses during the spontaneous complex spike (CS) activity in cerebellar cortex in urethane-anesthetized mice, by in vivo whole-cell recording technique and pharmacological methods. Under current-clamp conditions, cerebellar surface application of NMDA (50 μM) induced an increase in the CS-evoked pause of simple spike (SS) firing accompanied with a decrease in the SS firing rate. Under voltage-clamp conditions, application of NMDA enhanced the waveform of CS-evoked inward currents, which expressed increases in the area under curve (AUC) and spikelet number of spontaneous CS. NMDA increased the AUC of spontaneous CS in a concentration-dependent manner. The EC50 of NMDA for increasing AUC of spontaneous CS was 33.4 μM. Moreover, NMDA significantly increased the amplitude, half-width and decay time of CS-evoked after-hyperpolarization (AHP) currents. Blockade of NMDARs with D-(-)-2-amino-5-phosphonopentanoic acid (D-APV, 250 μM) decreased the AUC, spikelet number, and amplitude of AHP currents. In addition, the NMDA-induced enhancement of CS activity could not be observed after α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors were blocked. The results indicated that NMDARs of CF-PC synapses contributed to the spontaneous CS activity by enhancing CS-evoked inward currents and AHP currents. PMID:27445699

  2. Cell-autonomous and non-cell-autonomous roles for IRF6 during development of the tongue.

    PubMed

    Goudy, Steven; Angel, Peggi; Jacobs, Britni; Hill, Cynthia; Mainini, Veronica; Smith, Arianna L; Kousa, Youssef A; Caprioli, Richard; Prince, Lawrence S; Baldwin, Scott; Schutte, Brian C

    2013-01-01

    Interferon regulatory factor 6 (IRF6) encodes a highly conserved helix-turn-helix DNA binding protein and is a member of the interferon regulatory family of DNA transcription factors. Mutations in IRF6 lead to isolated and syndromic forms of cleft lip and palate, most notably Van der Woude syndrome (VWS) and Popliteal Ptyerigium Syndrome (PPS). Mice lacking both copies of Irf6 have severe limb, skin, palatal and esophageal abnormalities, due to significantly altered and delayed epithelial development. However, a recent report showed that MCS9.7, an enhancer near Irf6, is active in the tongue, suggesting that Irf6 may also be expressed in the tongue. Indeed, we detected Irf6 staining in the mesoderm-derived muscle during development of the tongue. Dual labeling experiments demonstrated that Irf6 was expressed only in the Myf5+ cell lineage, which originates from the segmental paraxial mesoderm and gives rise to the muscles of the tongue. Fate mapping of the segmental paraxial mesoderm cells revealed a cell-autonomous Irf6 function with reduced and poorly organized Myf5+ cell lineage in the tongue. Molecular analyses showed that the Irf6-/- embryos had aberrant cytoskeletal formation of the segmental paraxial mesoderm in the tongue. Fate mapping of the cranial neural crest cells revealed non-cell-autonomous Irf6 function with the loss of the inter-molar eminence. Loss of Irf6 function altered Bmp2, Bmp4, Shh, and Fgf10 signaling suggesting that these genes are involved in Irf6 signaling. Based on these data, Irf6 plays important cell-autonomous and non-cell-autonomous roles in muscular differentiation and cytoskeletal formation in the tongue. PMID:23451037

  3. Autonomous, Retrievable, Deep Sea Microbial Fuel Cell

    NASA Astrophysics Data System (ADS)

    Richter, K.

    2014-12-01

    Microbial fuel cells (MFCs) work by providing bacteria in anaerobic sediments with an electron acceptor (anode) that stimulates metabolism of organic matter. The buried anode is connected via control circuitry to a cathode exposed to oxygen in the overlying water. During metabolism, bacteria release hydrogen ions into the sediment and transfer electrons extra-cellularly to the anode, which eventually reduce dissolved oxygen at the cathode, forming water. The open circuit voltage is approximately 0.8 v. The voltage between electrodes is operationally kept at 0.4 v with a potentiastat. The current is chiefly limited by the rate of microbial metabolism at the anode. The Office of Naval Research has encouraged development of microbial fuel cells in the marine environment at a number of academic and naval institutions. Earlier work in shallow sediments of San Diego Bay showed that the most important environmental parameters that control fuel cell power output in San Diego Bay were total organic carbon in the sediment and seasonal water temperature. Current MFC work at SPAWAR includes extension of microbial fuel cell tests to the deep sea environment (>1000 m) and, in parallel, testing microbial fuel cells in the laboratory under deep sea conditions. One question we are asking is whether MFC power output from deep water sediments repressurized and chilled in the laboratory comparable to those measured in situ. If yes, mapping the power potential of deep sea sediments may be made much easier, requiring sediment grabs and lab tests rather than deployment and retrieval of fuel cells. Another question we are asking is whether in situ temperature and total organic carbon in the deep sea sediment can predict MFC power. If yes, then we can make use of the large collection of publicly available, deep sea oceanographic measurements to make these predictions, foregoing expensive work at sea. These regressions will be compared to those derived from shallow water measurements.

  4. Phospholipase Cbeta3 is distributed in both somatodendritic and axonal compartments and localized around perisynapse and smooth endoplasmic reticulum in mouse Purkinje cell subsets.

    PubMed

    Nomura, Sachi; Fukaya, Masahiro; Tsujioka, Takao; Wu, Dianqing; Watanabe, Masahiko

    2007-02-01

    Phospholipase Cbeta3 (PLCbeta3) and PLCbeta4 are the two major isoforms in cerebellar Purkinje cells (PCs), displaying reciprocal expression across the cerebellum. Here, we examined subcellular distribution of PLCbeta3 in the mouse cerebellum by producing specific antibody. PLCbeta3 was detected as a particulate pattern of immunostaining in various PC elements. Like PLCbeta4, PLCbeta3 was richly distributed in somatodendritic compartments, where it was colocalized with molecules constituting the metabotropic glutamate receptor (mGluR1) signalling pathway, i.e. mGluR1alpha, G alpha q/G alpha 11 subunits of G q protein, inositol 1,4,5-trisphosphate receptor IP3R1, Homer1, protein kinase C PKCgamma, and diacylglycerol lipase DAGLalpha. Unlike PLCbeta4, PLCbeta3 was also distributed at low to moderate levels in PC axons, which were intense for IP3R1 and PKCgamma, low for G alpha q/G alpha 11, and negative for mGluR1alpha, Homer1, and DAGLalpha. By immunoelectron microscopy, PLCbeta3 was preferentially localized around the smooth endoplasmic reticulum in spines, dendrites, and axons of PCs, and also accumulated at the perisynapse of parallel fibre-PC synapses. Consistent with the ultrastructural localization, PLCbeta3 was biochemically enriched in the microsomal and postsynaptic density fractions. These results suggest that PLCbeta3 plays a major role in mediating mGluR1-dependent synaptic transmission, plasticity, and integration in PLCbeta3-dominant PCs, through eliciting Ca2+ release, protein phosphorylation, and endocannabinoid production at local somatodendritic compartments. Because PLCbeta3 can be activated by G betagamma subunits liberated from Gi/o and Gs proteins as well, axonal PLCbeta3 seems to modulate the conduction of action potentials through mediating local Ca2+ release and protein phosphorylation upon activation of a variety of G protein-coupled receptors other than mGluR1.

  5. Territories of heterologous inputs onto Purkinje cell dendrites are segregated by mGluR1-dependent parallel fiber synapse elimination

    PubMed Central

    Ichikawa, Ryoichi; Hashimoto, Kouichi; Miyazaki, Taisuke; Uchigashima, Motokazu; Yamasaki, Miwako; Aiba, Atsu; Kano, Masanobu; Watanabe, Masahiko

    2016-01-01

    In Purkinje cells (PCs) of the cerebellum, a single “winner” climbing fiber (CF) monopolizes proximal dendrites, whereas hundreds of thousands of parallel fibers (PFs) innervate distal dendrites, and both CF and PF inputs innervate a narrow intermediate domain. It is unclear how this segregated CF and PF innervation is established on PC dendrites. Through reconstruction of dendritic innervation by serial electron microscopy, we show that from postnatal day 9–15 in mice, both CF and PF innervation territories vigorously expand because of an enlargement of the region of overlapping innervation. From postnatal day 15 onwards, segregation of these territories occurs with robust shortening of the overlapping proximal region. Thus, innervation territories by the heterologous inputs are refined during the early postnatal period. Intriguingly, this transition is arrested in mutant mice lacking the type 1 metabotropic glutamate receptor (mGluR1) or protein kinase Cγ (PKCγ), resulting in the persistence of an abnormally expanded overlapping region. This arrested territory refinement is rescued by lentivirus-mediated expression of mGluR1α into mGluR1-deficient PCs. At the proximal dendrite of rescued PCs, PF synapses are eliminated and free spines emerge instead, whereas the number and density of CF synapses are unchanged. Because the mGluR1-PKCγ signaling pathway is also essential for the late-phase of CF synapse elimination, this signaling pathway promotes the two key features of excitatory synaptic wiring in PCs, namely CF monoinnervation by eliminating redundant CF synapses from the soma, and segregated territories of CF and PF innervation by eliminating competing PF synapses from proximal dendrites. PMID:26858447

  6. Loss of MyD88 alters neuroinflammatory response and attenuates early Purkinje cell loss in a spinocerebellar ataxia type 6 mouse model

    PubMed Central

    Aikawa, Tomonori; Mogushi, Kaoru; Iijima-Tsutsui, Kumiko; Ishikawa, Kinya; Sakurai, Miyano; Tanaka, Hiroshi; Mizusawa, Hidehiro; Watase, Kei

    2015-01-01

    Spinocerebellar ataxia type 6 (SCA6) is dominantly inherited neurodegenerative disease, caused by an expansion of CAG repeat encoding a polyglutamine (PolyQ) tract in the Cav2.1 voltage-gated calcium channel. Its key pathological features include selective degeneration of the cerebellar Purkinje cells (PCs), a common target for PolyQ-induced toxicity in various SCAs. Mutant Cav2.1 confers toxicity primarily through a toxic gain-of-function mechanism; however, its molecular basis remains elusive. Here, we studied the cerebellar gene expression patterns of young Sca6-MPI118Q/118Q knockin (KI) mice, which expressed mutant Cav2.1 from an endogenous locus and recapitulated many phenotypic features of human SCA6. Transcriptional signatures in the MPI118Q/118Q mice were distinct from those in the Sca1154Q/2Q mice, a faithful SCA1 KI mouse model. Temporal expression profiles of the candidate genes revealed that the up-regulation of genes associated with microglial activation was initiated before PC degeneration and was augmented as the disease progressed. Histological analysis of the MPI118Q/118Q cerebellum showed the predominance of M1-like pro-inflammatory microglia and it was concomitant with elevated expression levels of tumor necrosis factor, interleukin-6, Toll-like receptor (TLR) 2 and 7. Genetic ablation of MyD88, a major adaptor protein conveying TLR signaling, altered expression patterns of M1/M2 microglial phenotypic markers in the MPI118Q/118Q cerebellum. More importantly, it ameliorated PC loss and partially rescued motor impairments in the early disease phase. These results suggest that early neuroinflammatory response may play an important role in the pathogenesis of SCA6 and its modulation could pave the way for slowing the disease progression during the early stage of the disease. PMID:26034136

  7. Chronic suppression of inositol 1,4,5-triphosphate receptor-mediated calcium signaling in cerebellar purkinje cells alleviates pathological phenotype in spinocerebellar ataxia 2 mice.

    PubMed

    Kasumu, Adebimpe W; Liang, Xia; Egorova, Polina; Vorontsova, Daria; Bezprozvanny, Ilya

    2012-09-12

    Spinocerebellar ataxia 2 (SCA2) is a neurodegenerative disorder characterized by progressive ataxia. SCA2 results from a poly(Q) (polyglutamine) expansion in the cytosolic protein ataxin-2 (Atx2). Cerebellar Purkinje cells (PCs) are primarily affected in SCA2, but the cause of PC dysfunction and death in SCA2 is poorly understood. In previous studies, we reported that mutant but not wild-type Atx2 specifically binds the inositol 1,4,5-trisphosphate receptor (InsP(3)R) and increases its sensitivity to activation by InsP3. We further proposed that the resulting supranormal calcium (Ca2+) release from the PC endoplasmic reticulum plays a key role in the development of SCA2 pathology. To test this hypothesis, we achieved a chronic suppression of InsP(3)R-mediated Ca2+ signaling by adenoassociated virus-mediated expression of the inositol 1,4,5-phosphatase (Inpp5a) enzyme (5PP) in PCs of a SCA2 transgenic mouse model. We determined that recombinant 5PP overexpression alleviated age-dependent dysfunction in the firing pattern of SCA2 PCs. We further discovered that chronic 5PP overexpression also rescued age-dependent motor incoordination and PC death in SCA2 mice. Our findings further support the important role of supranormal Ca2+ signaling in SCA2 pathogenesis and suggest that partial inhibition of InsP3-mediated Ca2+ signaling could provide therapeutic benefit for the patients afflicted with SCA2 and possibly other SCAs.

  8. Constitutive Intracellular Na+ Excess in Purkinje Cells Promotes Arrhythmogenesis at Lower Levels of Stress Than Ventricular Myocytes From Mice With Catecholaminergic Polymorphic Ventricular Tachycardia

    PubMed Central

    Willis, B. Cicero; Pandit, Sandeep V.; Ponce-Balbuena, Daniela; Zarzoso, Manuel; Guerrero-Serna, Guadalupe; Limbu, Bijay; Deo, Makarand; Camors, Emmanuel; Ramirez, Rafael J.; Mironov, Sergey; Herron, Todd J.; Valdivia, Héctor H.

    2016-01-01

    Background— In catecholaminergic polymorphic ventricular tachycardia (CPVT), cardiac Purkinje cells (PCs) appear more susceptible to Ca2+ dysfunction than ventricular myocytes (VMs). The underlying mechanisms remain unknown. Using a CPVT mouse (RyR2R4496C+/Cx40eGFP), we tested whether PC intracellular Ca2+ ([Ca2+]i) dysregulation results from a constitutive [Na+]i surplus relative to VMs. Methods and Results— Simultaneous optical mapping of voltage and [Ca2+]i in CPVT hearts showed that spontaneous Ca2+ release preceded pacing-induced triggered activity at subendocardial PCs. On simultaneous current-clamp and Ca2+ imaging, early and delayed afterdepolarizations trailed spontaneous Ca2+ release and were more frequent in CPVT PCs than CPVT VMs. As a result of increased activity of mutant ryanodine receptor type 2 channels, sarcoplasmic reticulum Ca2+ load, measured by caffeine-induced Ca2+ transients, was lower in CPVT VMs and PCs than respective controls, and sarcoplasmic reticulum fractional release was greater in both CPVT PCs and VMs than respective controls. [Na+]i was higher in both control and CPVT PCs than VMs, whereas the density of the Na+/Ca2+ exchanger current was not different between PCs and VMs. Computer simulations using a PC model predicted that the elevated [Na+]i of PCs promoted delayed afterdepolarizations, which were always preceded by spontaneous Ca2+ release events from hyperactive ryanodine receptor type 2 channels. Increasing [Na+]i monotonically increased delayed afterdepolarization frequency. Confocal imaging experiments showed that postpacing Ca2+ spark frequency was highest in intact CPVT PCs, but such differences were reversed on saponin-induced membrane permeabilization, indicating that differences in [Na+]i played a central role. Conclusions— In CPVT mice, the constitutive [Na+]i excess of PCs promotes triggered activity and arrhythmogenesis at lower levels of stress than VMs. PMID:27169737

  9. Loss of MyD88 alters neuroinflammatory response and attenuates early Purkinje cell loss in a spinocerebellar ataxia type 6 mouse model.

    PubMed

    Aikawa, Tomonori; Mogushi, Kaoru; Iijima-Tsutsui, Kumiko; Ishikawa, Kinya; Sakurai, Miyano; Tanaka, Hiroshi; Mizusawa, Hidehiro; Watase, Kei

    2015-09-01

    Spinocerebellar ataxia type 6 (SCA6) is dominantly inherited neurodegenerative disease, caused by an expansion of CAG repeat encoding a polyglutamine (PolyQ) tract in the Cav2.1 voltage-gated calcium channel. Its key pathological features include selective degeneration of the cerebellar Purkinje cells (PCs), a common target for PolyQ-induced toxicity in various SCAs. Mutant Cav2.1 confers toxicity primarily through a toxic gain-of-function mechanism; however, its molecular basis remains elusive. Here, we studied the cerebellar gene expression patterns of young Sca6-MPI(118Q/118Q) knockin (KI) mice, which expressed mutant Cav2.1 from an endogenous locus and recapitulated many phenotypic features of human SCA6. Transcriptional signatures in the MPI(118Q/118Q) mice were distinct from those in the Sca1(154Q/2Q) mice, a faithful SCA1 KI mouse model. Temporal expression profiles of the candidate genes revealed that the up-regulation of genes associated with microglial activation was initiated before PC degeneration and was augmented as the disease progressed. Histological analysis of the MPI(118Q/118Q) cerebellum showed the predominance of M1-like pro-inflammatory microglia and it was concomitant with elevated expression levels of tumor necrosis factor, interleukin-6, Toll-like receptor (TLR) 2 and 7. Genetic ablation of MyD88, a major adaptor protein conveying TLR signaling, altered expression patterns of M1/M2 microglial phenotypic markers in the MPI(118Q/118Q) cerebellum. More importantly, it ameliorated PC loss and partially rescued motor impairments in the early disease phase. These results suggest that early neuroinflammatory response may play an important role in the pathogenesis of SCA6 and its modulation could pave the way for slowing the disease progression during the early stage of the disease.

  10. Cell autonomous roles of Nedd4 in craniofacial bone formation.

    PubMed

    Wiszniak, Sophie; Harvey, Natasha; Schwarz, Quenten

    2016-02-01

    Nedd4 is an E3 ubiquitin ligase that has an essential role in craniofacial development. However, how and when Nedd4 controls skull formation is ill defined. Here we have used a collection of complementary genetic mouse models to dissect the cell-autonomous roles of Nedd4 in the formation of neural crest cell derived cranial bone. Removal of Nedd4 specifically from neural crest cells leads to profound craniofacial defects with marked reduction of cranial bone that was preceded by hypoplasia of bone forming osteoblasts. Removal of Nedd4 after differentiation of neural crest cells into progenitors of chondrocytes and osteoblasts also led to profound deficiency of craniofacial bone in the absence of cartilage defects. Notably, these skull malformations were conserved when Nedd4 was specifically removed from the osteoblast lineage after specification of osteoblast precursors from mesenchymal skeletal progenitors. We further show that absence of Nedd4 in pre-osteoblasts results in decreased cell proliferation and altered osteogenic differentiation. Taken together our data demonstrate a novel cell-autonomous role for Nedd4 in promoting expansion of the osteoblast progenitor pool to control craniofacial development. Nedd4 mutant mice therefore represent a unique mouse model of craniofacial anomalies that provide an ideal resource to explore the cell-intrinsic mechanisms of neural crest cells in craniofacial morphogenesis. PMID:26681395

  11. Autonomous and non-autonomous roles of DNase II during cell death in C. elegans embryos.

    PubMed

    Yu, Hsiang; Lai, Huey-Jen; Lin, Tai-Wei; Lo, Szecheng J

    2015-04-27

    Generation of DNA fragments is a hallmark of cell apoptosis and is executed within the dying cells (autonomous) or in the engulfing cells (non-autonomous). The TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labelling) method is used as an in situ assay of apoptosis by labelling DNA fragments generated by caspase-associated DNase (CAD), but not those by the downstream DNase II. In the present study, we report a method of ToLFP (topoisomerase ligation fluorescence probes) for directly visualizing DNA fragments generated by DNase II in Caenorhabditis elegans embryos. ToLFP analysis provided the first demonstration of a cell autonomous mode of DNase II activity in dying cells in ced-1 embryos, which are defective in engulfing apoptotic bodies. Compared with the number of ToLFP signals between ced-1 and wild-type (N2) embryos, a 30% increase in N2 embryos was found, suggesting that the ratio of non-autonomous and autonomous modes of DNase II was ~3-7. Among three DNase II mutant embryos (nuc-1, crn-6 and crn-7), nuc-1 embryos exhibited the least number of ToLFP. The ToLFP results confirmed the previous findings that NUC-1 is the major DNase II for degrading apoptotic DNA. To further elucidate NUC-1's mode of action, nuc-1-rescuing transgenic worms that ectopically express free or membrane-bound forms of NUC-1 fusion proteins were utilized. ToLFP analyses revealed that anteriorly expressed NUC-1 digests apoptotic DNA in posterior blastomeres in a non-autonomous and secretion-dependent manner. Collectively, we demonstrate that the ToLFP method can be used to differentiate the locations of blastomeres where DNase II acts autonomously or non-autonomously in degrading apoptotic DNA.

  12. Autonomous and non-autonomous roles of DNase II during cell death in C. elegans embryos

    PubMed Central

    Yu, Hsiang; Lai, Huey-Jen; Lin, Tai-Wei; Lo, Szecheng J.

    2015-01-01

    Generation of DNA fragments is a hallmark of cell apoptosis and is executed within the dying cells (autonomous) or in the engulfing cells (non-autonomous). The TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labelling) method is used as an in situ assay of apoptosis by labelling DNA fragments generated by caspase-associated DNase (CAD), but not those by the downstream DNase II. In the present study, we report a method of ToLFP (topoisomerase ligation fluorescence probes) for directly visualizing DNA fragments generated by DNase II in Caenorhabditis elegans embryos. ToLFP analysis provided the first demonstration of a cell autonomous mode of DNase II activity in dying cells in ced-1 embryos, which are defective in engulfing apoptotic bodies. Compared with the number of ToLFP signals between ced-1 and wild-type (N2) embryos, a 30% increase in N2 embryos was found, suggesting that the ratio of non-autonomous and autonomous modes of DNase II was ~3–7. Among three DNase II mutant embryos (nuc-1, crn-6 and crn-7), nuc-1 embryos exhibited the least number of ToLFP. The ToLFP results confirmed the previous findings that NUC-1 is the major DNase II for degrading apoptotic DNA. To further elucidate NUC-1′s mode of action, nuc-1-rescuing transgenic worms that ectopically express free or membrane-bound forms of NUC-1 fusion proteins were utilized. ToLFP analyses revealed that anteriorly expressed NUC-1 digests apoptotic DNA in posterior blastomeres in a non-autonomous and secretion-dependent manner. Collectively, we demonstrate that the ToLFP method can be used to differentiate the locations of blastomeres where DNase II acts autonomously or non-autonomously in degrading apoptotic DNA. PMID:26182365

  13. IgG from Amyotrophic Lateral Sclerosis Patients Increases Current Through P-Type Calcium Channels in Mammalian Cerebellar Purkinje Cells and in Isolated Channel Protein in Lipid Bilayer

    NASA Astrophysics Data System (ADS)

    Llinas, R.; Sugimori, M.; Cherksey, B. D.; Smith, R. Glenn; Delbono, O.; Stefani, E.; Appel, S.

    1993-12-01

    The effect of the IgG from amyotrophic lateral sclerosis (ALS) patients was tested on the voltage-dependent barium currents (IBa) in mammalian dissociated Purkinje cells and in isolated P-type calcium channels in lipid bilayers. Whole cell clamp of Purkinje cells demonstrates that ALS IgG increases the amplitude of IBa without modifying their voltage kinetics. This increased IBa could be blocked by a purified nonpeptide toxin from Agelenopsis aperta venom (purified funnel-web spider toxin) or by a synthetic polyamine analog (synthetic funnel-web spider toxin) and by a peptide toxin from the same spider venom, ω-Aga-IVA. Similar results were obtained on single-channel recordings from purified P channel protein. The addition of ALS IgG increased single-channel IBa open time without affecting slope conductance. The results described above were not seen with normal human IgG nor with boiled ALS IgG. It is concluded that ALS IgG enhances inward current through P-type calcium channels. Since P-type Ca2+ channels are present in motoneuron axon terminals, we propose that the enhanced calcium current triggered by ALS IgG may contribute to neuronal damage in ALS.

  14. IgG from amyotrophic lateral sclerosis patients increases current through P-type calcium channels in mammalian cerebellar Purkinje cells and in isolated channel protein in lipid bilayer.

    PubMed Central

    Llinás, R; Sugimori, M; Cherksey, B D; Smith, R G; Delbono, O; Stefani, E; Appel, S

    1993-01-01

    The effect of the IgG from amyotrophic lateral sclerosis (ALS) patients was tested on the voltage-dependent barium currents (IBa) in mammalian dissociated Purkinje cells and in isolated P-type calcium channels in lipid bilayers. Whole cell clamp of Purkinje cells demonstrates that ALS IgG increases the amplitude of IBa without modifying their voltage kinetics. This increased IBa could be blocked by a purified nonpeptide toxin from Agelenopsis aperta venom (purified funnel-web spider toxin) or by a synthetic polyamine analog (synthetic funnel-web spider toxin) and by a peptide toxin from the same spider venom, omega-Aga-IVA. Similar results were obtained on single-channel recordings from purified P channel protein. The addition of ALS IgG increased single-channel IBa open time without affecting slope conductance. The results described above were not seen with normal human IgG nor with boiled ALS IgG. It is concluded that ALS IgG enhances inward current through P-type calcium channels. Since P-type Ca2+ channels are present in motoneuron axon terminals, we propose that the enhanced calcium current triggered by ALS IgG may contribute to neuronal damage in ALS. PMID:8265620

  15. Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms.

    PubMed

    Tripathi, P; Wang, Y; Coussens, M; Manda, K R; Casey, A M; Lin, C; Poyo, E; Pfeifer, J D; Basappa, N; Bates, C M; Ma, L; Zhang, H; Pan, M; Ding, L; Chen, F

    2014-04-01

    NFAT (the nuclear factor of activated T cells) upregulation has been linked to cellular transformation intrinsically, but it is unclear whether and how tissue cells with NFAT activation change the local environment for tumor initiation and progression. Direct evidence showing NFAT activation initiates primary tumor formation in vivo is also lacking. Using inducible transgenic mouse systems, we show that tumors form in a subset of, but not all, tissues with NFATc1 activation, indicating that NFAT oncogenic effects depend on cell types and tissue contexts. In NFATc1-induced skin and ovarian tumors, both cells with NFATc1 activation and neighboring cells without NFATc1 activation have significant upregulation of c-Myc and activation of Stat3. Besides known and suspected NFATc1 targets, such as Spp1 and Osm, we have revealed the early upregulation of a number of cytokines and cytokine receptors, as key molecular components of an inflammatory microenvironment that promotes both NFATc1(+) and NFATc1(-) cells to participate in tumor formation. Cultured cells derived from NFATc1-induced tumors were able to establish a tumorigenic microenvironment, similar to that of the primary tumors, in an NFATc1-dependent manner in nude mice with T-cell deficiency, revealing an addiction of these tumors to NFATc1 activation and downplaying a role for T cells in the NFATc1-induced tumorigenic microenvironment. These findings collectively suggest that beyond the cell autonomous effects on the upregulation of oncogenic proteins, NFATc1 activation has non-cell autonomous effects through the establishment of a promitogenic microenvironment for tumor growth. This study provides direct evidence for the ability of NFATc1 in inducing primary tumor formation in vivo and supports targeting NFAT signaling in anti-tumor therapy.

  16. The effects of black garlic (Allium sativum L.) ethanol extract on the estimated total number of Purkinje cells and motor coordination of male adolescent Wistar rats treated with monosodium glutamate.

    PubMed

    Aminuddin, M; Partadiredja, G; Sari, D C R

    2015-03-01

    A number of studies have indicated that monosodium glutamate (MSG) might cause negative effects on the nervous system, including in the cerebellum. Garlic (Allium sativum) has long been known as a flavouring agent and a traditional remedy for various illnesses. The present study aimed at investigating the effects of garlic on the motor coordination and the number of Purkinje cells present in rats treated with MSG. A total of 25 male Wistar rats aged 4 to 5 weeks old were used in this study and were divided into five groups, namely a negative control (C-) group, which received 0.9 % NaCl solution, a positive control (C+) group, which received MSG, and three treated groups, which received 2 mg/g bw of MSG and 2.5 mg (T2.5), 5 mg (T5), or 10 mg (T10) of black garlic solution per oral administration (per 200 g bw), respectively. All treatments were carried out for 10 days. Upon the end of the treatment, the motor performance of all rats were tested using the rotarod apparatus. The rats were subsequently sacrificed, and the cerebella of the rats were processed for stereological analyses. It has been found that the number of Purkinje cells of the cerebella of all treated groups were significantly higher than that of the group treated with MSG only. No changes in motor coordination function were observed as a result of MSG treatment. PMID:24737450

  17. Autonomous patterning of cells on microstructured fine particles.

    PubMed

    Takeda, Iwori; Kawanabe, Masato; Kaneko, Arata

    2015-05-01

    Regularly patterned cells can clarify cellular function and are required in some biochip applications. This study examines cell patterning along microstructures and the effect of microstructural geometry on selective cellular adhesion. Particles can be autonomously assembled on a soda-lime glass substrate that is chemically patterned by immersion in a suspension of fine particles. By adopting various sizes of fine particles, we can control the geometry of the microstructure. Cells adhere more readily to microstructured fine particles than to flat glass substrate. Silica particles hexagonally packed in 5-40 μm line and space microstructures provide an effective cell scaffold on the glass substrate. Cultured cells tend to attach and proliferate along the microstructured region while avoiding the flat region. The difference in cell adhesion is attributed to their geometries, as both of the silica particles and soda-lime glass are hydrophilic related with cell adhesiveness. After cell seeding, cells adhered to the flat region migrated toward the microstructured region. For most of the cells to assemble on the scaffold, the scaffolding microstructures must be spaced by at most 65 μm.

  18. Autonomous patterning of cells on microstructured fine particles.

    PubMed

    Takeda, Iwori; Kawanabe, Masato; Kaneko, Arata

    2015-05-01

    Regularly patterned cells can clarify cellular function and are required in some biochip applications. This study examines cell patterning along microstructures and the effect of microstructural geometry on selective cellular adhesion. Particles can be autonomously assembled on a soda-lime glass substrate that is chemically patterned by immersion in a suspension of fine particles. By adopting various sizes of fine particles, we can control the geometry of the microstructure. Cells adhere more readily to microstructured fine particles than to flat glass substrate. Silica particles hexagonally packed in 5-40 μm line and space microstructures provide an effective cell scaffold on the glass substrate. Cultured cells tend to attach and proliferate along the microstructured region while avoiding the flat region. The difference in cell adhesion is attributed to their geometries, as both of the silica particles and soda-lime glass are hydrophilic related with cell adhesiveness. After cell seeding, cells adhered to the flat region migrated toward the microstructured region. For most of the cells to assemble on the scaffold, the scaffolding microstructures must be spaced by at most 65 μm. PMID:25746259

  19. Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells.

    PubMed

    Kizana, E; Cingolani, E; Marbán, E

    2009-09-01

    In mammalian cells, small regulatory RNA molecules are able to modulate gene expression in a cell-autonomous manner. In contrast, this mechanism of gene regulation can occur systemically in plants and nematodes. The existence of similar cell-to-cell transmission in mammalian cells has been explored, but generalizibilty and mechanistic insights have remained elusive. Here, we show that small regulatory RNA molecules are capable of a non-cell-autonomous effect between primary cardiac myocytes through a gap-junction-dependent mechanism. Co-culture experiments showed that both Dicer-processed small-interfering RNAs (siRNAs) and Drosha-processed microRNAs (miRNAs) were capable of target gene knockdown and physiological effects in a non-cell-autonomous manner. Target gene siRNA molecules were detected in recipient cells, indicating transfer of the primary effector molecule. All of these effects were abrogated by dominant-negative molecular suppression of gap junction function. Our results show that both siRNAs and miRNAs are capable of a non-cell-autonomous effect between mammalian cells through gap junctions. The recognition of this biological process raises the novel therapeutic prospect of a bystander effect after gene transfer to tissues bearing gap junctions and for cell engineering with a view to creating regulatory RNA donor cells that exert their influence throughout a syncytium. PMID:19516277

  20. Generating Purkinje networks in the human heart.

    PubMed

    Sahli Costabal, Francisco; Hurtado, Daniel E; Kuhl, Ellen

    2016-08-16

    The Purkinje network is an integral part of the excitation system in the human heart. Yet, to date, there is no in vivo imaging technique to accurately reconstruct its geometry and structure. Computational modeling of the Purkinje network is increasingly recognized as an alternative strategy to visualize, simulate, and understand the role of the Purkinje system. However, most computational models either have to be generated manually, or fail to smoothly cover the irregular surfaces inside the left and right ventricles. Here we present a new algorithm to reliably create robust Purkinje networks within the human heart. We made the source code of this algorithm freely available online. Using Monte Carlo simulations, we demonstrate that the fractal tree algorithm with our new projection method generates denser and more compact Purkinje networks than previous approaches on irregular surfaces. Under similar conditions, our algorithm generates a network with 1219±61 branches, three times more than a conventional algorithm with 419±107 branches. With a coverage of 11±3mm, the surface density of our new Purkije network is twice as dense as the conventional network with 22±7mm. To demonstrate the importance of a dense Purkinje network in cardiac electrophysiology, we simulated three cases of excitation: with our new Purkinje network, with left-sided Purkinje network, and without Purkinje network. Simulations with our new Purkinje network predicted more realistic activation sequences and activation times than simulations without. Six-lead electrocardiograms of the three case studies agreed with the clinical electrocardiograms under physiological conditions, under pathological conditions of right bundle branch block, and under pathological conditions of trifascicular block. Taken together, our results underpin the importance of the Purkinje network in realistic human heart simulations. Human heart modeling has the potential to support the design of personalized strategies

  1. Generating Purkinje networks in the human heart.

    PubMed

    Sahli Costabal, Francisco; Hurtado, Daniel E; Kuhl, Ellen

    2016-08-16

    The Purkinje network is an integral part of the excitation system in the human heart. Yet, to date, there is no in vivo imaging technique to accurately reconstruct its geometry and structure. Computational modeling of the Purkinje network is increasingly recognized as an alternative strategy to visualize, simulate, and understand the role of the Purkinje system. However, most computational models either have to be generated manually, or fail to smoothly cover the irregular surfaces inside the left and right ventricles. Here we present a new algorithm to reliably create robust Purkinje networks within the human heart. We made the source code of this algorithm freely available online. Using Monte Carlo simulations, we demonstrate that the fractal tree algorithm with our new projection method generates denser and more compact Purkinje networks than previous approaches on irregular surfaces. Under similar conditions, our algorithm generates a network with 1219±61 branches, three times more than a conventional algorithm with 419±107 branches. With a coverage of 11±3mm, the surface density of our new Purkije network is twice as dense as the conventional network with 22±7mm. To demonstrate the importance of a dense Purkinje network in cardiac electrophysiology, we simulated three cases of excitation: with our new Purkinje network, with left-sided Purkinje network, and without Purkinje network. Simulations with our new Purkinje network predicted more realistic activation sequences and activation times than simulations without. Six-lead electrocardiograms of the three case studies agreed with the clinical electrocardiograms under physiological conditions, under pathological conditions of right bundle branch block, and under pathological conditions of trifascicular block. Taken together, our results underpin the importance of the Purkinje network in realistic human heart simulations. Human heart modeling has the potential to support the design of personalized strategies

  2. Pten Cell Autonomously Modulates the Hematopoietic Stem Cell Response to Inflammatory Cytokines.

    PubMed

    Porter, Shaina N; Cluster, Andrew S; Signer, Robert A J; Voigtmann, Jenna; Monlish, Darlene A; Schuettpelz, Laura G; Magee, Jeffrey A

    2016-06-14

    Pten negatively regulates the phosphatidylinositol 3-kinase (PI3K) pathway and is required to maintain quiescent adult hematopoietic stem cells (HSCs). Pten has been proposed to regulate HSCs cell autonomously and non-cell autonomously, but the relative importance of each mechanism has not been directly tested. Furthermore, the cytokines that activate the PI3K pathway upstream of Pten are not well defined. We sought to clarify whether Pten cell autonomously or non-cell autonomously regulates HSC mobilization. We also tested whether Pten deficiency affects the HSC response to granulocyte colony-stimulating factor (G-CSF) and interferon-α (IFNα) since these cytokines induce HSC mobilization or proliferation, respectively. We show that Pten regulates HSC mobilization and expansion in the spleen primarily via cell-autonomous mechanisms. Pten-deficient HSCs do not require G-CSF to mobilize, although they are hyper-sensitized to even low doses of exogenous G-CSF. Pten-deficient HSCs are similarly sensitized to IFNα. Pten therefore modulates the HSC response to inflammatory cytokines.

  3. Pten Cell Autonomously Modulates the Hematopoietic Stem Cell Response to Inflammatory Cytokines.

    PubMed

    Porter, Shaina N; Cluster, Andrew S; Signer, Robert A J; Voigtmann, Jenna; Monlish, Darlene A; Schuettpelz, Laura G; Magee, Jeffrey A

    2016-06-14

    Pten negatively regulates the phosphatidylinositol 3-kinase (PI3K) pathway and is required to maintain quiescent adult hematopoietic stem cells (HSCs). Pten has been proposed to regulate HSCs cell autonomously and non-cell autonomously, but the relative importance of each mechanism has not been directly tested. Furthermore, the cytokines that activate the PI3K pathway upstream of Pten are not well defined. We sought to clarify whether Pten cell autonomously or non-cell autonomously regulates HSC mobilization. We also tested whether Pten deficiency affects the HSC response to granulocyte colony-stimulating factor (G-CSF) and interferon-α (IFNα) since these cytokines induce HSC mobilization or proliferation, respectively. We show that Pten regulates HSC mobilization and expansion in the spleen primarily via cell-autonomous mechanisms. Pten-deficient HSCs do not require G-CSF to mobilize, although they are hyper-sensitized to even low doses of exogenous G-CSF. Pten-deficient HSCs are similarly sensitized to IFNα. Pten therefore modulates the HSC response to inflammatory cytokines. PMID:27185281

  4. Autonomic nervous system dysfunction: implication in sickle cell disease.

    PubMed

    Connes, Philippe; Coates, Thomas D

    2013-03-01

    Sickle cell disease is an inherited hemoglobinopathy caused by a single amino acid substitution in the β chain of hemoglobin that causes the hemoglobin to polymerize in the deoxy state. The resulting rigid, sickle-shaped red cells obstruct blood flow causing hemolytic anemia, tissue damage, and premature death. Hemolysis is continual. However, acute exacerbations of sickling called vaso-occlusive crises (VOC) resulting in severe pain occur, often requiring hospitalization. Blood rheology, adhesion of cellular elements of blood to vascular endothelium, inflammation, and activation of coagulation decrease microvascular flow and increase likelihood of VOC. What triggers the transition from steady state to VOC is unknown. This review discusses the interaction of blood rheological factors and the role that autonomic nervous system (ANS) induced vasoconstriction may have in triggering crisis as well as the mechanism of ANS dysfunction in SCD. PMID:23643396

  5. [Jan Evangelista Purkinje (1787-1869)].

    PubMed

    Kristiansen, K

    1993-12-10

    The author reviews the life and work of the physiologist Jan Evangelista Purkinje. In addition to his remarkable achievements as a scientist, Purkinje played a distinctive role in the struggle to establish national and cultural independence for the Czech people. PMID:8278954

  6. Purkinje image eyetracking: A market survey

    NASA Technical Reports Server (NTRS)

    Christy, L. F.

    1979-01-01

    The Purkinje image eyetracking system was analyzed to determine the marketability of the system. The eyetracking system is a synthesis of two separate instruments, the optometer that measures the refractive power of the eye and the dual Purkinje image eyetracker that measures the direction of the visual axis.

  7. Wnt Signaling Inhibits Adrenal Steroidogenesis by Cell-Autonomous and Non–Cell-Autonomous Mechanisms

    PubMed Central

    Walczak, Elisabeth M.; Kuick, Rork; Finco, Isabella; Bohin, Natacha; Hrycaj, Steven M.; Wellik, Deneen M.

    2014-01-01

    Wnt/β-catenin (βcat) signaling is critical for adrenal homeostasis. To elucidate how Wnt/βcat signaling elicits homeostatic maintenance of the adrenal cortex, we characterized the identity of the adrenocortical Wnt-responsive population. We find that Wnt-responsive cells consist of sonic hedgehog (Shh)-producing adrenocortical progenitors and differentiated, steroidogenic cells of the zona glomerulosa, but not the zona fasciculata and rarely cells that are actively proliferating. To determine potential direct inhibitory effects of βcat signaling on zona fasciculata-associated steroidogenesis, we used the mouse ATCL7 adrenocortical cell line that serves as a model system of glucocorticoid-producing fasciculata cells. Stimulation of βcat signaling caused decreased corticosterone release consistent with the observed reduced transcription of steroidogenic genes Cyp11a1, Cyp11b1, Star, and Mc2r. Decreased steroidogenic gene expression was correlated with diminished steroidogenic factor 1 (Sf1; Nr5a1) expression and occupancy on steroidogenic promoters. Additionally, βcat signaling suppressed the ability of Sf1 to transactivate steroidogenic promoters independent of changes in Sf1 expression level. To investigate Sf1-independent effects of βcat on steroidogenesis, we used Affymetrix gene expression profiling of Wnt-responsive cells in vivo and in vitro. One candidate gene identified, Ccdc80, encodes a secreted protein with unknown signaling mechanisms. We report that Ccdc80 is a novel βcat-regulated gene in adrenocortical cells. Treatment of adrenocortical cells with media containing secreted Ccdc80 partially phenocopies βcat-induced suppression of steroidogenesis, albeit through an Sf1-independent mechanism. This study reveals multiple mechanisms of βcat-mediated suppression of steroidogenesis and suggests that Wnt/βcat signaling may regulate adrenal homeostasis by inhibiting fasciculata differentiation and promoting the undifferentiated state of progenitor

  8. SCA7 cerebellar disease requires the coordinated action of mutant ataxin-7 in neurons and glia, and displays non-cell autonomous Bergmann glia degeneration

    PubMed Central

    Furrer, Stephanie A.; Mohanachandran, Mathini S.; Waldherr, Sarah M.; Chang, Christopher; Damian, Vincent A.; Sopher, Bryce L.; Garden, Gwenn A.; La Spada, Albert R.

    2011-01-01

    Spinocerebellar ataxia type 7 (SCA7) is a dominantly inherited disorder characterized by cerebellum and brainstem neurodegeneration. SCA7 is caused by a CAG/polyglutamine (polyQ) repeat expansion in the ataxin-7 gene. We previously reported that directed expression of polyQ-ataxin-7 in Bergmann glia (BG) in transgenic mice leads to ataxia and non-cell autonomous Purkinje cell (PC) degeneration. To further define the cellular basis of SCA7, we derived a conditional inactivation mouse model by inserting a loxP-flanked ataxin-7 cDNA with 92 repeats into the translational start site of the murine prion protein (PrP) gene in a bacterial artificial chromosome (BAC). The PrP-floxed-SCA7-92Q BAC mice developed neurological disease, and exhibited cerebellar degeneration and BG process loss. To inactivate polyQ-ataxin-7 expression in specific cerebellar cell types, we crossed PrP-floxed-SCA7-92Q BAC mice with Gfa2-Cre transgenic mice (to direct Cre to BG) or Pcp2-Cre transgenic mice (which yields Cre in PCs and inferior olive). Excision of ataxin-7 from BG partially rescued the behavioral phenotype, but did not prevent BG process loss or molecular layer thinning, while excision of ataxin-7 from PCs and inferior olive provided significantly greater rescue and prevented both pathological changes, revealing a non-cell autonomous basis for BG pathology. When we prevented expression of mutant ataxin-7 in BG, PCs, and inferior olive by deriving Gfa2-Cre;Pcp2-Cre;PrP-floxed-SCA7-92Q BAC triple transgenic mice, we noted a dramatic improvement in SCA7 disease phenotypes. These findings indicate that SCA7 disease pathogenesis involves a convergence of alterations in a variety of different cell types to fully recapitulate the cerebellar degeneration. PMID:22072678

  9. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.

    PubMed

    Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2009-08-01

    Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs. PMID:19605307

  10. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.

    PubMed

    Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2009-08-01

    Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs.

  11. 'Medusa-head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 1: Anti-mGluR1, anti-Homer-3, anti-Sj/ITPR1 and anti-CARP VIII.

    PubMed

    Jarius, S; Wildemann, B

    2015-01-01

    Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa-head antibodies' due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook. PMID:26377085

  12. 'Medusa-head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 1: Anti-mGluR1, anti-Homer-3, anti-Sj/ITPR1 and anti-CARP VIII.

    PubMed

    Jarius, S; Wildemann, B

    2015-09-17

    Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa-head antibodies' due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.

  13. 'Medusa head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 2: Anti-PKC-gamma, anti-GluR-delta2, anti-Ca/ARHGAP26 and anti-VGCC.

    PubMed

    Jarius, S; Wildemann, B

    2015-09-17

    Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa head antibodies' due their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects, and provides a summary and outlook.

  14. Development of error-compensating UI for autonomous production cells.

    PubMed

    Luczak, Holger; Reuth, Ralph; Schmidt, Ludger

    2003-01-15

    This contribution deals with the impact of human error on the overall system reliability in flexible manufacturing systems (FMS). Autonomous production cells are used to illustrate an error-compensating system design on the basis of Sheridan's (1997) paradigm of supervisory control. In order to specify human errors and their effects in terms of system disturbances, a taxonomy of system disturbances is recommended. This taxonomic approach was derived by a value benefit analysis and is based on HEDOMS (Human Error and Disturbance Occurrence in Manufacturing Systems) with slight modifications and Reason's GEMS (Generic Error Modelling System). The taxonomy is used for data acquisition. Next, a risk priority equivalent to FMEA (Failure Mode and Effect Analysis) is introduced to structure the data according to their relevance. Then, Vicente's and Rasmussen's guidelines (1987) for an ecological interface design are related to the paradigm of supervisory control. On the basis of these guidelines four case studies are presented to show their successful applicability for interface design in FMS.

  15. Multiplexed coding by cerebellar Purkinje neurons

    PubMed Central

    Hong, Sungho; Negrello, Mario; Junker, Marc; Smilgin, Aleksandra; Thier, Peter; De Schutter, Erik

    2016-01-01

    Purkinje cells (PC), the sole output neurons of the cerebellar cortex, encode sensorimotor information, but how they do it remains a matter of debate. Here we show that PCs use a multiplexed spike code. Synchrony/spike time and firing rate encode different information in behaving monkeys during saccadic eye motion tasks. Using the local field potential (LFP) as a probe of local network activity, we found that infrequent pause spikes, which initiated or terminated intermittent pauses in simple spike trains, provide a temporally reliable signal for eye motion onset, with strong phase-coupling to the β/γ band LFP. Concurrently, regularly firing, non-pause spikes were weakly correlated with the LFP, but were crucial to linear encoding of eye movement kinematics by firing rate. Therefore, PC spike trains can simultaneously convey information necessary to achieve precision in both timing and continuous control of motion. DOI: http://dx.doi.org/10.7554/eLife.13810.001 PMID:27458803

  16. Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning

    NASA Astrophysics Data System (ADS)

    Seeds, Nicholas W.; Williams, Brian L.; Bickford, Paula C.

    1995-12-01

    The cerebellar cortex is implicated in the learning of complex motor skills. This learning may require synaptic remodeling of Purkinje cell inputs. An extracellular serine protease, tissue plasminogen activator (tPA), is involved in remodeling various nonneural tissues and is associated with developing and regenerating neurons. In situ hybridization showed that expression of tPA messenger RNA was increased in the Purkinje neurons of rats within an hour of their being trained for a complex motor task. Antibody to tPA also showed the induction of tPA protein associated with cerebellar Purkinje cells. Thus, the induction of tPA during motor learning may play a role in activity-dependent synaptic plasticity.

  17. Poly(ethylene glycol) hydrogels with cell cleavable groups for autonomous cell delivery.

    PubMed

    Kar, Mrityunjoy; Vernon Shih, Yu-Ru; Velez, Daniel Ortiz; Cabrales, Pedro; Varghese, Shyni

    2016-01-01

    Cell-responsive hydrogels hold tremendous potential as cell delivery devices in regenerative medicine. In this study, we developed a hydrogel-based cell delivery vehicle, in which the encapsulated cell cargo control its own release from the vehicle in a protease-independent manner. Specifically, we have synthesized a modified poly(ethylene glycol) (PEG) hydrogel that undergoes degradation responding to cell-secreted molecules by incorporating disulfide moieties onto the backbone of the hydrogel precursor. Our results show the disulfide-modified PEG hydrogels disintegrate seamlessly into solution in presence of cells without any external stimuli. The rate of hydrogel degradation, which ranges from hours to months, is found to be dependent upon the type of encapsulated cells, cell number, and fraction of disulfide moieties present in the hydrogel backbone. The differentiation potential of human mesenchymal stem cells released from the hydrogels is maintained in vitro. The in vivo analysis of these cell-laden hydrogels, through a dorsal window chamber and intramuscular implantation, demonstrated autonomous release of cells to the host environment. The hydrogel-mediated implantation of cells resulted in higher cell retention within the host tissue when compared to that without a biomaterial support. Biomaterials that function as a shield to protect cell cargos and assist their delivery in response to signals from the encapsulated cells could have a wide utility in cell transplantation and could improve the therapeutic outcomes of cell-based therapies. PMID:26606444

  18. Cell Boundary Elongation by Non-autonomous Contractility in Cell Oscillation.

    PubMed

    Hara, Yusuke; Shagirov, Murat; Toyama, Yusuke

    2016-09-12

    Throughout development, tissues exhibit dynamic cell deformation, which is characterized by the integration of cell boundary contraction and/or elongation. Such changes ultimately establish tissue morphology and function [1-5]. In comparison to cell boundary contraction, which is predominantly driven by non-muscle myosin II (MyoII)-dependent contraction [6-9], the mechanisms of cell boundary elongation remain elusive. We explored the dynamics of the amnioserosa, which is known to exhibit cell shape oscillation [10-15], as a model system to study the subcellular-level mechanics that spatiotemporally evolve during Drosophila dorsal closure. Here we show that cell boundary elongation occurs through a combination of a non-autonomous active process and an autonomous process. The former is driven by a transient change in the level of MyoII in the neighboring cells that pull the vertices, whereas the latter is governed by the relaxation of junctional tension. By monitoring cell boundary deformation during live imaging, junctional tension at the specific phase of cell boundary oscillation, e.g., contraction or elongation, was probed by laser ablation. Junctional tension during boundary elongation is lower than during the other phase of oscillation. We extended our tension measurements to non-invasively estimate a tension map across the tissue, and found a correlation between junctional tension and vinculin dynamics at the cell junction. We propose that the medial actomyosin network is used as an entity to both contract and elongate the cell boundary. Moreover, our findings raise a possibility that the level of vinculin at the cell boundary could be used to approximate junctional tension in vivo. PMID:27524484

  19. Neurodegeneration in Lurcher mice occurs via multiple cell death pathways.

    PubMed

    Doughty, M L; De Jager, P L; Korsmeyer, S J; Heintz, N

    2000-05-15

    Lurcher (Lc) is a gain-of-function mutation in the delta2 glutamate receptor (GRID2) that results in the cell-autonomous death of cerebellar Purkinje cells in heterozygous lurcher (+/Lc) mice. This in turn triggers the massive loss of afferent granule cells during the first few postnatal weeks. Evidence suggests that the death of Purkinje cells as a direct consequence of GRID2(Lc) activation and the secondary death of granule cells because of target deprivation occur by apoptosis. We have used mice carrying null mutations of both the Bax and p53 genes to examine the roles of these genes in cell loss in lurcher animals. The absence of Bax delayed Purkinje cell death in response to the GRID2(Lc) mutation and permanently rescued the secondary death of granule cells. In contrast, the p53 deletion had no effect on either cell death pathway. Our results demonstrate that target deprivation induces a Bax-dependent, p53-independent cell death response in cerebellar granule cells in vivo. In contrast, Bax plays a minor role in GRID2(Lc)-mediated Purkinje cell death.

  20. On the Firing Rate Dependency of the Phase Response Curve of Rat Purkinje Neurons In Vitro

    PubMed Central

    Couto, João; Linaro, Daniele; De Schutter, E; Giugliano, Michele

    2015-01-01

    Synchronous spiking during cerebellar tasks has been observed across Purkinje cells: however, little is known about the intrinsic cellular mechanisms responsible for its initiation, cessation and stability. The Phase Response Curve (PRC), a simple input-output characterization of single cells, can provide insights into individual and collective properties of neurons and networks, by quantifying the impact of an infinitesimal depolarizing current pulse on the time of occurrence of subsequent action potentials, while a neuron is firing tonically. Recently, the PRC theory applied to cerebellar Purkinje cells revealed that these behave as phase-independent integrators at low firing rates, and switch to a phase-dependent mode at high rates. Given the implications for computation and information processing in the cerebellum and the possible role of synchrony in the communication with its post-synaptic targets, we further explored the firing rate dependency of the PRC in Purkinje cells. We isolated key factors for the experimental estimation of the PRC and developed a closed-loop approach to reliably compute the PRC across diverse firing rates in the same cell. Our results show unambiguously that the PRC of individual Purkinje cells is firing rate dependent and that it smoothly transitions from phase independent integrator to a phase dependent mode. Using computational models we show that neither channel noise nor a realistic cell morphology are responsible for the rate dependent shift in the phase response curve. PMID:25775448

  1. Native structure and arrangement of inositol-1,4,5-trisphosphate receptor molecules in bovine cerebellar Purkinje cells as studied by quick-freeze deep-etch electron microscopy.

    PubMed Central

    Katayama, E; Funahashi, H; Michikawa, T; Shiraishi, T; Ikemoto, T; Iino, M; Mikoshiba, K

    1996-01-01

    We used quick-freeze deep-etch replica electron microscopy to visualize the native structure of inositol-1,4,5-trisphosphate receptor (IP3R) in the cell. In the dendrites of Purkinje neurons of bovine cerebellum there were many vesicular organelles whose surfaces were covered with a two-dimensional crystalline array of molecules. Detailed examination of the cytoplasmic true surface of such vesicles in replica revealed that the structural unit, identified as IP3R by immunocytochemistry and subsequent Fourier analysis, is a square-shaped assembly and is aligned so that the side of the square is inclined by approximately 20 degrees from the row-line of the lattice. Comparison with the ryanodine receptor (RyaR), another intracellular Ca2+ channel on the endoplasmic reticulum, suggested that IP3R, unlike RyaR, has a very compact structure, potentially reflecting the crucial difference in the function of the cytoplasmic portion of the molecule. Images PMID:8890158

  2. REST Regulates Non–Cell-Autonomous Neuronal Differentiation and Maturation of Neural Progenitor Cells via Secretogranin II

    PubMed Central

    Kim, Hyung Joon; Denli, Ahmet M.; Wright, Rebecca; Baul, Tithi D.; Clemenson, Gregory D.; Morcos, Ari S.; Zhao, Chunmei; Schafer, Simon T.

    2015-01-01

    RE-1 silencing transcription factor (REST), a master negative regulator of neuronal differentiation, controls neurogenesis by preventing the differentiation of neural stem cells. Here we focused on the role of REST in the early steps of differentiation and maturation of adult hippocampal progenitors (AHPs). REST knockdown promoted differentiation and affected the maturation of rat AHPs. Surprisingly, REST knockdown cells enhanced the differentiation of neighboring wild-type AHPs, suggesting that REST may play a non–cell-autonomous role. Gene expression analysis identified Secretogranin II (Scg2) as the major secreted REST target responsible for the non–cell-autonomous phenotype. Loss-of-function of Scg2 inhibited differentiation in vitro, and exogenous SCG2 partially rescued this phenotype. Knockdown of REST in neural progenitors in mice led to precocious maturation into neurons at the expense of mushroom spines in vivo. In summary, we found that, in addition to its cell-autonomous function, REST regulates differentiation and maturation of AHPs non–cell-autonomously via SCG2. SIGNIFICANCE STATEMENT Our results reveal that REST regulates differentiation and maturation of neural progenitor cells in vitro by orchestrating both cell-intrinsic and non–cell-autonomous factors and that Scg2 is a major secretory target of REST with a differentiation-enhancing activity in a paracrine manner. In vivo, REST depletion causes accelerated differentiation of newborn neurons at the expense of spine defects, suggesting a potential role for REST in the timing of the maturation of granule neurons. PMID:26538656

  3. Image-Based Structural Modeling of the Cardiac Purkinje Network

    PubMed Central

    Liu, Benjamin R.; Cherry, Elizabeth M.

    2015-01-01

    The Purkinje network is a specialized conduction system within the heart that ensures the proper activation of the ventricles to produce effective contraction. Its role during ventricular arrhythmias is less clear, but some experimental studies have suggested that the Purkinje network may significantly affect the genesis and maintenance of ventricular arrhythmias. Despite its importance, few structural models of the Purkinje network have been developed, primarily because current physical limitations prevent examination of the intact Purkinje network. In previous modeling efforts Purkinje-like structures have been developed through either automated or hand-drawn procedures, but these networks have been created according to general principles rather than based on real networks. To allow for greater realism in Purkinje structural models, we present a method for creating three-dimensional Purkinje networks based directly on imaging data. Our approach uses Purkinje network structures extracted from photographs of dissected ventricles and projects these flat networks onto realistic endocardial surfaces. Using this method, we create models for the combined ventricle-Purkinje system that can fully activate the ventricles through a stimulus delivered to the Purkinje network and can produce simulated activation sequences that match experimental observations. The combined models have the potential to help elucidate Purkinje network contributions during ventricular arrhythmias. PMID:26583120

  4. Both cell-autonomous mechanisms and hormones contribute to sexual development in vertebrates and insects.

    PubMed

    Bear, Ashley; Monteiro, Antónia

    2013-08-01

    The differentiation of male and female characteristics in vertebrates and insects has long been thought to proceed via different mechanisms. Traditionally, vertebrate sexual development was thought to occur in two phases: a primary and a secondary phase, the primary phase involving the differentiation of the gonads, and the secondary phase involving the differentiation of other sexual traits via the influence of sex hormones secreted by the gonads. In contrast, insect sexual development was thought to depend exclusively on cell-autonomous expression of sex-specific genes. Recently, however, new evidence indicates that both vertebrates and insects rely on sex hormones as well as cell-autonomous mechanisms to develop sexual traits. Collectively, these new data challenge the traditional vertebrate definitions of primary and secondary sexual development, call for a redefinition of these terms, and indicate the need for research aimed at explaining the relative dependence on cell-autonomous versus hormonally guided sexual development in animals.

  5. Deficiency in parvalbumin, but not in calbindin D-28k upregulates mitochondrial volume and decreases smooth endoplasmic reticulum surface selectively in a peripheral, subplasmalemmal region in the soma of Purkinje cells.

    PubMed

    Chen, G; Racay, P; Bichet, S; Celio, M R; Eggli, P; Schwaller, B

    2006-09-29

    The Ca(2+)-binding proteins parvalbumin (PV) and calbindin D-28k (CB) are key players in the intracellular Ca(2+)-buffering in specific cells including neurons and have profound effects on spatiotemporal aspects of Ca(2+) transients. The previously observed increase in mitochondrial volume density in fast-twitch muscle of PV-/- mice is viewed as a specific compensation mechanism to maintain Ca(2+) homeostasis. Since cerebellar Purkinje cells (PC) are characterized by high expression levels of the Ca(2+) buffers PV and CB, the question was raised, whether homeostatic mechanisms are induced in PC lacking these buffers. Mitochondrial volume density, i.e. relative mitochondrial mass was increased by 40% in the soma of PV-/- PC. Upregulation of mitochondrial volume density was not homogenous throughout the soma, but was selectively restricted to a peripheral region of 1.5 microm width underneath the plasma membrane. Accompanied was a decreased surface of subplasmalemmal smooth endoplasmic reticulum (sPL-sER) in a shell of 0.5 microm thickness underneath the plasma membrane. These alterations were specific for the absence of the "slow-onset" buffer PV, since in CB-/- mice neither changes in peripheral mitochondria nor in sPL-sER were observed. This implicates that the morphological alterations are aimed to specifically substitute the function of the slow buffer PV. We propose a novel concept that homeostatic mechanisms of components involved in Ca(2+) homeostasis do not always occur at the level of similar or closely related molecules. Rather the cell attempts to restore spatiotemporal aspects of Ca(2+) signals prevailing in the undisturbed (wildtype) situation by subtly fine tuning existing components involved in the regulation of Ca(2+) fluxes.

  6. Autonomous assembly of epithelial structures by subrenal implantation of dissociated embryonic inner-ear cells.

    PubMed

    Wang, Li; Zhang, Kaiqing; Zhu, Helen He; Gao, Wei-Qiang

    2015-05-27

    Microenvironment and cell-cell interactions play an important role during embryogenesis and are required for the stemness and differentiation of stem cells. The inner-ear sensory epithelium, containing hair cells and supporting cells, is derived from the stem cells within the otic vesicle at early embryonic stages. However, whether or not such microenvironment or cell-cell interactions within the embryonic otic tissue have the capacity to regulate the proliferation and differentiation of stem cells and to autonomously reassemble the cells into epithelial structures is unknown. Here, we report that on enzymatic digestion and dissociation to harvest all the single cells from 13.5-day-old rat embryonic (E13.5) inner-ear tissue as well as on implantation of these cells under renal capsules; the dissociated cells are able to reassemble themselves to form epithelial structures as early as 7 days after implantation. By 25 days after implantation, more mature epithelial structures are formed. Immunostaining with cell-type-specific markers reveals that hair cells and supporting cells are not only formed, but are also well aligned with the hair cells located in the apical layer surrounded by the supporting cells. These findings suggest that microenvironment and cell-cell interactions within the embryonic inner-ear tissue have the autonomous signals to induce the formation of sensory epithelial structures. This method may also provide a useful system to study the potential of stem cells to differentiate into hair cells in vivo.

  7. RoBlock: a prototype autonomous manufacturing cell

    NASA Astrophysics Data System (ADS)

    Baekdal, Lars K.; Balslev, Ivar; Eriksen, Rene D.; Jensen, Soren P.; Jorgensen, Bo N.; Kirstein, Brian; Kristensen, Bent B.; Olsen, Martin M.; Perram, John W.; Petersen, Henrik G.; Petersen, Morten L.; Ruhoff, Peter T.; Skjolstrup, Carl E.; Sorensen, Anders S.; Wagenaar, Jeroen M.

    2000-10-01

    RoBlock is the first phase of an internally financed project at the Institute aimed at building a system in which two industrial robots suspended from a gantry, as shown below, cooperate to perform a task specified by an external user, in this case, assembling an unstructured collection of colored wooden blocks into a specified 3D pattern. The blocks are identified and localized using computer vision and grasped with a suction cup mechanism. Future phases of the project will involve other processes such as grasping and lifting, as well as other types of robot such as autonomous vehicles or variable geometry trusses. Innovative features of the control software system include: The use of an advanced trajectory planning system which ensures collision avoidance based on a generalization of the method of artificial potential fields, the use of a generic model-based controller which learns the values of parameters, including static and kinetic friction, of a detailed mechanical model of itself by comparing actual with planned movements, the use of fast, flexible, and robust pattern recognition and 3D-interpretation strategies, integration of trajectory planning and control with the sensor systems in a distributed Java application running on a network of PC's attached to the individual physical components. In designing this first stage, the aim was to build in the minimum complexity necessary to make the system non-trivially autonomous and to minimize the technological risks. The aims of this project, which is planned to be operational during 2000, are as follows: To provide a platform for carrying out experimental research in multi-agent systems and autonomous manufacturing systems, to test the interdisciplinary cooperation architecture of the Maersk Institute, in which researchers in the fields of applied mathematics (modeling the physical world), software engineering (modeling the system) and sensor/actuator technology (relating the virtual and real worlds) could

  8. A non-cell-autonomous role for Ras signaling in C. elegans neuroblast delamination

    PubMed Central

    Parry, Jean M.; Sundaram, Meera V.

    2014-01-01

    Receptor tyrosine kinase (RTK) signaling through Ras influences many aspects of normal cell behavior, including epithelial-to-mesenchymal transition, and aberrant signaling promotes both tumorigenesis and metastasis. Although many such effects are cell-autonomous, here we show a non-cell-autonomous role for RTK-Ras signaling in the delamination of a neuroblast from an epithelial organ. The C. elegans renal-like excretory organ is initially composed of three unicellular epithelial tubes, namely the canal, duct and G1 pore cells; however, the G1 cell later delaminates from the excretory system to become a neuroblast and is replaced by the G2 cell. G1 delamination and G2 intercalation involve cytoskeletal remodeling, interconversion of autocellular and intercellular junctions and migration over a luminal extracellular matrix, followed by G1 junction loss. LET-23/EGFR and SOS-1, an exchange factor for Ras, are required for G1 junction loss but not for initial cytoskeletal or junction remodeling. Surprisingly, expression of activated LET-60/Ras in the neighboring duct cell, but not in the G1 or G2 cells, is sufficient to rescue sos-1 delamination defects, revealing that Ras acts non-cell-autonomously to permit G1 delamination. We suggest that, similarly, oncogenic mutations in cells within a tumor might help create a microenvironment that is permissive for other cells to detach and ultimately metastasize. PMID:25371363

  9. Differential sensitivity of cerebellar purkinje neurons to ethanol in selectively outbred lines of mice: maintenance in vitro independent of synaptic transmission.

    PubMed

    Basile, A; Hoffer, B; Dunwiddie, T

    1983-03-28

    The effects of ethanol on spontaneous firing of cerebellar Purkinje neurons were examined in outbred lines of mice (short-sleep, SS; and long-sleep, LS) which exhibit differential behavioral sensitivity to ethanol. In order to determine whether the differences in Purkinje cell ethanol sensitivity which are observed in situ reflect differences in intrinsic properties of Purkinje neurons, we developed an isolated in vitro preparation of mouse cerebellum. Even when synaptic transmission was largely inhibited by elevating Mg2+ and decreasing Ca2+ concentrations, Purkinje cells demonstrated stable long-term firing rates quite similar to those observed in vivo. Purkinje cells responded to superfusion of ethanol with both increases and decreases in firing rate. Inhibition of rate was more commonly observed, and was the only response which was demonstrably dose-dependent. The differential sensitivity to ethanol which we have previously reported in vivo was maintained even under under these conditions, with the LS mice being approximately 5 times more sensitive to the depressant effects of ethanol. In addition, it was shown that ethanol, at the concentrations used in these experiments, decreased the amplitude and increased the duration of single action potentials. Thus, taken together, these results suggest that the differential sensitivity of outbred lines to the soporific effects of ethanol are paralleled by differences in the sensitivity of Purkinje neurons in vitro to superfusion with ethanol. Because these differences can be observed even when synaptic transmission is largely suppressed, it would appear that these differences are intrinsic to the purkinje neurons themselves.

  10. Non-autonomous consequences of cell death and other perks of being metazoan

    PubMed Central

    Su, Tin Tin

    2015-01-01

    Drosophila melanogaster remains a foremost genetic model to study basic cell biological processes in the context of multi-cellular development. In such context, the behavior of one cell can influence another. Non-autonomous signaling among cells occurs throughout metazoan development and disease, and is too vast to be covered by a single review. I will focus here on non-autonomous signaling events that occur in response to cell death in the larval epithelia and affect the life-death decision of surviving cells. I will summarize the use of Drosophila to study cell death-induced proliferation, apoptosis-induced apoptosis, and apoptosis-induced survival signaling. Key insights from Drosophila will be discussed in the context of analogous processes in mammalian development and cancer biology. PMID:26069889

  11. Subversion of Cell-Autonomous Immunity and Cell Migration by Legionella pneumophila Effectors

    PubMed Central

    Simon, Sylvia; Hilbi, Hubert

    2015-01-01

    Bacteria trigger host defense and inflammatory processes, such as cytokine production, pyroptosis, and the chemotactic migration of immune cells toward the source of infection. However, a number of pathogens interfere with these immune functions by producing specific so-called “effector” proteins, which are delivered to host cells via dedicated secretion systems. Air-borne Legionella pneumophila bacteria trigger an acute and potential fatal inflammation in the lung termed Legionnaires’ disease. The opportunistic pathogen L. pneumophila is a natural parasite of free-living amoebae, but also replicates in alveolar macrophages and accidentally infects humans. The bacteria employ the intracellular multiplication/defective for organelle trafficking (Icm/Dot) type IV secretion system and as many as 300 different effector proteins to govern host–cell interactions and establish in phagocytes an intracellular replication niche, the Legionella-containing vacuole. Some Icm/Dot-translocated effector proteins target cell-autonomous immunity or cell migration, i.e., they interfere with (i) endocytic, secretory, or retrograde vesicle trafficking pathways, (ii) organelle or cell motility, (iii) the inflammasome and programed cell death, or (iv) the transcription factor NF-κB. Here, we review recent mechanistic insights into the subversion of cellular immune functions by L. pneumophila. PMID:26441958

  12. β-Catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche.

    PubMed

    Deschene, Elizabeth R; Myung, Peggy; Rompolas, Panteleimon; Zito, Giovanni; Sun, Thomas Yang; Taketo, Makoto M; Saotome, Ichiko; Greco, Valentina

    2014-03-21

    Wnt/β-catenin signaling is critical for tissue regeneration. However, it is unclear how β-catenin controls stem cell behaviors to coordinate organized growth. Using live imaging, we show that activation of β-catenin specifically within mouse hair follicle stem cells generates new hair growth through oriented cell divisions and cellular displacement. β-Catenin activation is sufficient to induce hair growth independently of mesenchymal dermal papilla niche signals normally required for hair regeneration. Wild-type cells are co-opted into new hair growths by β-catenin mutant cells, which non-cell autonomously activate Wnt signaling within the neighboring wild-type cells via Wnt ligands. This study demonstrates a mechanism by which Wnt/β-catenin signaling controls stem cell-dependent tissue growth non-cell autonomously and advances our understanding of the mechanisms that drive coordinated regeneration.

  13. Towards autonomous lab-on-a-chip devices for cell phone biosensing.

    PubMed

    Comina, Germán; Suska, Anke; Filippini, Daniel

    2016-03-15

    Modern cell phones are a ubiquitous resource with a residual capacity to accommodate chemical sensing and biosensing capabilities. From the different approaches explored to capitalize on such resource, the use of autonomous disposable lab-on-a-chip (LOC) devices-conceived as only accessories to complement cell phones-underscores the possibility to entirely retain cell phones' ubiquity for distributed biosensing. The technology and principles exploited for autonomous LOC devices are here selected and reviewed focusing on their potential to serve cell phone readout configurations. Together with this requirement, the central aspects of cell phones' resources that determine their potential for analytical detection are examined. The conversion of these LOC concepts into universal architectures that are readable on unaccessorized phones is discussed within this context.

  14. Towards autonomous lab-on-a-chip devices for cell phone biosensing.

    PubMed

    Comina, Germán; Suska, Anke; Filippini, Daniel

    2016-03-15

    Modern cell phones are a ubiquitous resource with a residual capacity to accommodate chemical sensing and biosensing capabilities. From the different approaches explored to capitalize on such resource, the use of autonomous disposable lab-on-a-chip (LOC) devices-conceived as only accessories to complement cell phones-underscores the possibility to entirely retain cell phones' ubiquity for distributed biosensing. The technology and principles exploited for autonomous LOC devices are here selected and reviewed focusing on their potential to serve cell phone readout configurations. Together with this requirement, the central aspects of cell phones' resources that determine their potential for analytical detection are examined. The conversion of these LOC concepts into universal architectures that are readable on unaccessorized phones is discussed within this context. PMID:26569446

  15. Excitotoxic and Radiation Stress Increase TERT Levels in the Mitochondria and Cytosol of Cerebellar Purkinje Neurons.

    PubMed

    Eitan, Erez; Braverman, Carmel; Tichon, Ailone; Gitler, Daniel; Hutchison, Emmette R; Mattson, Mark P; Priel, Esther

    2016-08-01

    Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase, an enzyme that elongates telomeres at the ends of chromosomes during DNA replication. Recently, it was shown that TERT has additional roles in cell survival, mitochondrial function, DNA repair, and Wnt signaling, all of which are unrelated to telomeres. Here, we demonstrate that TERT is enriched in Purkinje neurons, but not in the granule cells of the adult mouse cerebellum. TERT immunoreactivity in Purkinje neurons is present in the nucleus, mitochondria, and cytoplasm. Furthermore, TERT co-localizes with mitochondrial markers, and immunoblot analysis of protein extracts from isolated mitochondria and synaptosomes confirmed TERT localization in mitochondria. TERT expression in Purkinje neurons increased significantly in response to two stressors: a sub-lethal dose of X-ray radiation and exposure to a high glutamate concentration. While X-ray radiation increased TERT levels in the nucleus, glutamate exposure elevated TERT levels in mitochondria. Our findings suggest that in mature Purkinje neurons, TERT is present both in the nucleus and in mitochondria, where it may participate in adaptive responses of the neurons to excitotoxic and radiation stress. PMID:26374457

  16. Patched1 and Patched2 inhibit Smoothened non-cell autonomously.

    PubMed

    Roberts, Brock; Casillas, Catalina; Alfaro, Astrid C; Jägers, Carina; Roelink, Henk

    2016-01-01

    Smoothened (Smo) inhibition by Patched (Ptch) is central to Hedgehog (Hh) signaling. Ptch, a proton driven antiporter, is required for Smo inhibition via an unknown mechanism. Hh ligand binding to Ptch reverses this inhibition and activated Smo initiates the Hh response. To determine whether Ptch inhibits Smo strictly in the same cell or also mediates non-cell-autonomous Smo inhibition, we generated genetically mosaic neuralized embryoid bodies (nEBs) from mouse embryonic stem cells (mESCs). These experiments utilized novel mESC lines in which Ptch1, Ptch2, Smo, Shh and 7dhcr were inactivated via gene editing in multiple combinations, allowing us to measure non-cell autonomous interactions between cells with differing Ptch1/2 status. In several independent assays, the Hh response was repressed by Ptch1/2 in nearby cells. When 7dhcr was targeted, cells displayed elevated non-cell autonomous inhibition. These findings support a model in which Ptch1/2 mediate secretion of a Smo-inhibitory cholesterol precursor. PMID:27552050

  17. Patched1 and Patched2 inhibit Smoothened non-cell autonomously

    PubMed Central

    Roberts, Brock; Casillas, Catalina; Alfaro, Astrid C; Jägers, Carina; Roelink, Henk

    2016-01-01

    Smoothened (Smo) inhibition by Patched (Ptch) is central to Hedgehog (Hh) signaling. Ptch, a proton driven antiporter, is required for Smo inhibition via an unknown mechanism. Hh ligand binding to Ptch reverses this inhibition and activated Smo initiates the Hh response. To determine whether Ptch inhibits Smo strictly in the same cell or also mediates non-cell-autonomous Smo inhibition, we generated genetically mosaic neuralized embryoid bodies (nEBs) from mouse embryonic stem cells (mESCs). These experiments utilized novel mESC lines in which Ptch1, Ptch2, Smo, Shh and 7dhcr were inactivated via gene editing in multiple combinations, allowing us to measure non-cell autonomous interactions between cells with differing Ptch1/2 status. In several independent assays, the Hh response was repressed by Ptch1/2 in nearby cells. When 7dhcr was targeted, cells displayed elevated non-cell autonomous inhibition. These findings support a model in which Ptch1/2 mediate secretion of a Smo-inhibitory cholesterol precursor. DOI: http://dx.doi.org/10.7554/eLife.17634.001 PMID:27552050

  18. Stabilizing Motifs in Autonomous Boolean Networks and the Yeast Cell Cycle Oscillator

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan; Gong, Xinwei; Socolar, Joshua

    2009-03-01

    Synchronously updated Boolean networks are widely used to model gene regulation. Some properties of these model networks are known to be artifacts of the clocking in the update scheme. Autonomous updating is a less artificial scheme that allows one to introduce small timing perturbations and study stability of the attractors. We argue that the stabilization of a limit cycle in an autonomous Boolean network requires a combination of motifs such as feed-forward loops and auto-repressive links that can correct small fluctuations in the timing of switching events. A recently published model of the transcriptional cell-cycle oscillator in yeast contains the motifs necessary for stability under autonomous updating [1]. [1] D. A. Orlando, et al. Nature (London), 4530 (7197):0 944--947, 2008.

  19. Non-Cell-Autonomous Regulation of Retrograde Motoneuronal Axonal Transport in an SBMA Mouse Model.

    PubMed

    Halievski, Katherine; Kemp, Michael Q; Breedlove, S Marc; Miller, Kyle E; Jordan, Cynthia L

    2016-01-01

    Defects in axonal transport are seen in motoneuronal diseases, but how that impairment comes about is not well understood. In spinal bulbar muscular atrophy (SBMA), a disorder linked to a CAG/polyglutamine repeat expansion in the androgen receptor (AR) gene, the disease-causing AR disrupts axonal transport by acting in both a cell-autonomous fashion in the motoneurons themselves, and in a non-cell-autonomous fashion in muscle. The non-cell-autonomous mechanism is suggested by data from a unique "myogenic" transgenic (TG) mouse model in which an AR transgene expressed exclusively in skeletal muscle fibers triggers an androgen-dependent SBMA phenotype, including defects in retrograde transport. However, motoneurons in this TG model retain the endogenous AR gene, leaving open the possibility that impairments in transport in this model also depend on ARs in the motoneurons themselves. To test whether non-cell-autonomous mechanisms alone can perturb retrograde transport, we generated male TG mice in which the endogenous AR allele has the testicular feminization mutation (Tfm) and, consequently, is nonfunctional. Males carrying the Tfm allele alone show no deficits in motor function or axonal transport, with or without testosterone treatment. However, when Tfm males carrying the myogenic transgene (Tfm/TG) are treated with testosterone, they develop impaired motor function and defects in retrograde transport, having fewer retrogradely labeled motoneurons and deficits in endosomal flux based on time-lapse video microscopy of living axons. These findings demonstrate that non-cell-autonomous disease mechanisms originating in muscle are sufficient to induce defects in retrograde transport in motoneurons. PMID:27517091

  20. Non-Cell-Autonomous Regulation of Retrograde Motoneuronal Axonal Transport in an SBMA Mouse Model

    PubMed Central

    Halievski, Katherine; Kemp, Michael Q.; Breedlove, S. Marc; Miller, Kyle E.

    2016-01-01

    Abstract Defects in axonal transport are seen in motoneuronal diseases, but how that impairment comes about is not well understood. In spinal bulbar muscular atrophy (SBMA), a disorder linked to a CAG/polyglutamine repeat expansion in the androgen receptor (AR) gene, the disease-causing AR disrupts axonal transport by acting in both a cell-autonomous fashion in the motoneurons themselves, and in a non-cell-autonomous fashion in muscle. The non-cell-autonomous mechanism is suggested by data from a unique “myogenic” transgenic (TG) mouse model in which an AR transgene expressed exclusively in skeletal muscle fibers triggers an androgen-dependent SBMA phenotype, including defects in retrograde transport. However, motoneurons in this TG model retain the endogenous AR gene, leaving open the possibility that impairments in transport in this model also depend on ARs in the motoneurons themselves. To test whether non-cell-autonomous mechanisms alone can perturb retrograde transport, we generated male TG mice in which the endogenous AR allele has the testicular feminization mutation (Tfm) and, consequently, is nonfunctional. Males carrying the Tfm allele alone show no deficits in motor function or axonal transport, with or without testosterone treatment. However, when Tfm males carrying the myogenic transgene (Tfm/TG) are treated with testosterone, they develop impaired motor function and defects in retrograde transport, having fewer retrogradely labeled motoneurons and deficits in endosomal flux based on time-lapse video microscopy of living axons. These findings demonstrate that non-cell-autonomous disease mechanisms originating in muscle are sufficient to induce defects in retrograde transport in motoneurons. PMID:27517091

  1. Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila

    PubMed Central

    Becker, Henrike; Renner, Simone; Technau, Gerhard M.; Berger, Christian

    2016-01-01

    During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental

  2. Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila.

    PubMed

    Becker, Henrike; Renner, Simone; Technau, Gerhard M; Berger, Christian

    2016-03-01

    During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental

  3. Action of ethanol on responses to nicotine from cerebellar Purkinje neurons: relationship to methyllycaconitine (MLA) inhibition of nicotine responses.

    PubMed

    Yang, X; Criswell, H E; Breese, G R

    1999-08-01

    The effect of ethanol on responses to nicotine from rat cerebellar Purkinje neurons was investigated using extracellular single-unit recording. Systemic administration of ethanol initially enhanced the nicotine-induced inhibition from 50% of the Purkinje neurons. However, irrespective of whether there was an initial enhancement, systemic administration of ethanol antagonized the response to nicotine from the majority of Purkinje neurons. When varying ethanol concentrations were electro-osmotically applied to this neuronal cell type, the responses to nicotine (6/8) were enhanced when a low concentration of ethanol (40 mM) was in the pipette, whereas the majority of nicotine responses (10/11) were antagonized when a higher concentration of ethanol (160 mM) was applied to Purkinje neurons. Thus, the concentration of ethanol presented to the neuron seemed to explain the biphasic consequence of systemically administered ethanol on responses to nicotine. In order to determine whether ethanol affected a specific nACh receptor subtype containing the alpha-7 subunit, it was initially established that the nicotinic antagonists, alpha-bungarotoxin (alpha-BTX) and methyllycaconitine (MLA), which are associated with this subunit, had identical actions on responses to nicotine from Purkinje neurons. When MLA was tested against responses to nicotine from this cell type, MLA antagonized the response to nicotine from 45% (9/20) of the neurons tested. In a direct comparison of the action of ethanol to inhibit responses to nicotine with the action of MLA on the same Purkinje neuron, ethanol inhibited responses to nicotine on all neurons sensitive to MLA. However, ethanol also affected nicotine-induced neural changes from some Purkinje neurons not sensitive to MLA antagonism of nicotine. These data support the supposition that ethanol affects a nACh receptor subtype which has an alpha-7 subunit as well as other nACh receptor subtypes without this specific subunit.

  4. Autonomic dysreflexia

    MedlinePlus

    Autonomic hyperreflexia; Spinal cord injury - autonomic dysreflexia; SCI - autonomic dysreflexia ... most common cause of autonomic dysreflexia (AD) is spinal cord injury. The nervous system of people with AD ...

  5. Autonomous proliferation and bcl-2 expression involving haematopoietic cells in patients with myelodysplastic syndrome.

    PubMed Central

    Bincoletto, C.; Saad, S. T.; Soares da Silva, E.; Queiroz, M. L.

    1998-01-01

    In this work, we investigated the autonomous proliferation, bcl-2 expression and number of apoptotic cells in the bone marrow of patients with confirmed diagnosis of myelodysplastic syndromes (MDS). Normal bone marrow cells obtained from donors of the Clinical Hospital of this university were used as a control. The autonomous proliferation, evaluated by clonal culture without exogenous growth factor, and the number of apoptotic cells in bone marrow kept for 10 days in liquid cultures at 37 degrees C and 5% carbon dioxide, were significantly greater in MDS patients than in control subjects (P = 0.001, Wilcoxon). However, bcl-2 expression, measured by immunocytochemistry, was significantly lower in MDS patients than in normal individuals (P = 0.002, Wilcoxon). These results suggest that the high proliferation activity in MDS patients may be counteracted by the high level of medullar cell death, which might be related to the lower bcl-2 expression. PMID:9744502

  6. Oligodendrocyte ablation affects the coordinated interaction between granule and Purkinje neurons during cerebellum development

    SciTech Connect

    Collin, Ludovic; Doretto, Sandrine; Malerba, Monica; Ruat, Martial; Borrelli, Emiliana . E-mail: borrelli@uci.edu

    2007-08-01

    Oligodendrocytes (OLs) are the glial cells of the central nervous system (CNS) classically known to be devoted to the formation of myelin sheaths around most axons of the vertebrate brain. We have addressed the role of these cells during cerebellar development, by ablating OLs in vivo. Previous analyses had indicated that OL ablation during the first six postnatal days results into a striking cerebellar phenotype, whose major features are a strong reduction of granule neurons and aberrant Purkinje cells development. These two cell types are highly interconnected during cerebellar development through the production of molecules that help their proliferation, differentiation and maintenance. In this article, we present data showing that OL ablation has major effects on the physiology of Purkinje (PC) and granule cells (GC). In particular, OL ablation results into a reduction of sonic hedgehog (Shh), Brain Derived Neurotrophic Factor (BDNF), and Reelin (Rln) expression. These results indicate that absence of OLs profoundly alters the normal cerebellar developmental program.

  7. The Drosophila melanogaster cinnabar gene is a cell autonomous genetic marker in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Sethuraman, Nagaraja; O'Brochta, David A

    2005-07-01

    The cinnabar gene of Drosophila melanogaster (Meigen) encodes for kynurenine hydroxylase, an enzyme involved in ommochrome biosynthesis. This gene is commonly included as a visible genetic marker in gene vectors used to create transgenic Aedes aegypti (L.) that are homozygous for the khw allele, the mosquito homolog of cinnabar. Unexpectedly, the phenotype of cells expressing kynurenine hydroxylase in transgenic Ae. aegypti is cell autonomous as demonstrated by the recovery of insects heterozygous for the kynurenine hydroxylase transgene with mosaic eye color patterns. In addition, a transgenic gynandromorph was recovered in which one-half of the insect was expressing the kynurenine hydroxylase transgene, including one eye with red pigmentation, whereas the other half of the insect was homozygous khw and included a white eye. The cell autonomous behavior of cinnabar in transgenic Ae. aegypti is unexpected and increases the utility of this genetic marker. PMID:16119567

  8. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    PubMed Central

    Mostowy, Serge; Shenoy, Avinash R.

    2016-01-01

    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640

  9. Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting

    PubMed Central

    Maeda, Takuya T; Ajioka, Itsuki; Nakajima, Kazunori

    2007-01-01

    Background Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. Results We applied the model to "inside and outside" pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the "inside and outside" pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. Conclusion We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model could predict directional cell

  10. Autonomous molecular cascades for evaluation of cell surfaces

    NASA Astrophysics Data System (ADS)

    Rudchenko, Maria; Taylor, Steven; Pallavi, Payal; Dechkovskaia, Alesia; Khan, Safana; Butler, Vincent P., Jr.; Rudchenko, Sergei; Stojanovic, Milan N.

    2013-08-01

    Molecular automata are mixtures of molecules that undergo precisely defined structural changes in response to sequential interactions with inputs. Previously studied nucleic acid-based automata include game-playing molecular devices (MAYA automata) and finite-state automata for the analysis of nucleic acids, with the latter inspiring circuits for the analysis of RNA species inside cells. Here, we describe automata based on strand-displacement cascades directed by antibodies that can analyse cells by using their surface markers as inputs. The final output of a molecular automaton that successfully completes its analysis is the presence of a unique molecular tag on the cell surface of a specific subpopulation of lymphocytes within human blood cells.

  11. Intracellular sensing of complement C3 activates cell autonomous immunity

    PubMed Central

    Tam, Jerry C.H.; Bidgood, Susanna R.; McEwan, William A.; James, Leo C.

    2014-01-01

    Pathogens traverse multiple barriers during infection including cell membranes. Here we show that during this transition pathogens carry covalently attached complement C3 into the cell, triggering immediate signalling and effector responses. Sensing of C3 in the cytosol activates MAVS-dependent signalling cascades and induces proinflammatory cytokine secretion. C3 also flags viruses for rapid proteasomal degradation, thereby preventing their replication. This system can detect both viral and bacterial pathogens but is antagonized by enteroviruses, such as rhinovirus and poliovirus, which cleave C3 using their 3C protease. The antiviral Rupintrivir inhibits 3C protease and prevents C3 cleavage, rendering enteroviruses susceptible to intracellular complement sensing. Thus, complement C3 allows cells to detect and disable pathogens that have invaded the cytosol. PMID:25190799

  12. Purkinje fibers after myocardial ischemia-reperfusion.

    PubMed

    García Gómez-Heras, Soledad; Álvarez-Ayuso, Lourdes; Torralba Arranz, Amalia; Fernández-García, Héctor

    2015-07-01

    The purpose of this study was to evaluate the effects of ischemia-reperfusion on Purkinje fibers, comparing them with the adjacent cardiomyocytes. In a model of heterotopic heart transplantation in pigs, the donor heart was subjected to 2 hours of ischemia (n=9), preserved in cold saline, and subjected to 24 hours of ischemia with preservation in Wisconsin solution, alone (n=6), or with an additive consisting of calcium (n=4), Nicorandil (n=6) or Trolox (n=7). After 2 hours of reperfusion, we evaluated the recovery of cardiac electrical activity and took samples of ventricular myocardium for morphological study. The prolonged ischemia significantly affected atrial automaticity and A-V conduction in all the groups subjected to 24 hours of ischemia, as compared to 2 hours. There were no significant differences among the groups that underwent prolonged ischemia. Changes in the electrical activity did not correlate with the morphological changes. In the Purkinje fibers, ischemia-reperfusion produced a marked decrease in the glycogen content in all the groups. In the gap junctions the immunolabeling of connexin-43 decreased significantly, adopting a dispersed distribution, and staining the sarcolemma adjacent to the connective tissue. These changes were less marked in the group preserved exclusively with Wisconsin solution, despite the prolonged ischemia. The addition of other substances did not improve the altered morphology. In all the groups, the injury appeared to be more prominent in the Purkinje fibers than in the neighboring cardiomyocytes, indicating the greater susceptibility of the former to ischemia-reperfusion injury. PMID:25648569

  13. NOD2 activation induces muscle cell-autonomous innate immune responses and insulin resistance.

    PubMed

    Tamrakar, Akhilesh K; Schertzer, Jonathan D; Chiu, Tim T; Foley, Kevin P; Bilan, Philip J; Philpott, Dana J; Klip, Amira

    2010-12-01

    Insulin resistance is associated with chronic low-grade inflammation in vivo, largely mediated by activated innate immune cells. Cytokines and pathogen-derived ligands of surface toll-like receptors can directly cause insulin resistance in muscle cells. However, it is not known if intracellular pathogen sensors can, on their own, provoke insulin resistance. Here, we show that the cytosolic pattern recognition receptors nucleotide-binding oligomerization domain-containing protein (NOD)1 and NOD2 are expressed in immune and metabolic tissues and hypothesize that their activation in muscle cells would result in cell-autonomous responses leading to insulin resistance. Bacterial peptidoglycan motifs that selectively activate NOD2 were directly administered to L6- GLUT4myc myotubes in culture. Within 3 h, insulin resistance arose, characterized by reductions in each insulin-stimulated glucose uptake, GLUT4 translocation, Akt Ser(473) phosphorylation, and insulin receptor substrate 1 tyrosine phosphorylation. Muscle cell-autonomous responses to NOD2 ligand included activation of the stress/inflammation markers c-Jun N-terminal kinase, ERK1/2, p38 MAPK, degradation of inhibitor of κBα, and production of proinflammatory cytokines. These results show that NOD2 alone is capable of acutely inducing insulin resistance within muscle cells, possibly by activating endogenous inflammatory signals and/or through cytokine production, curbing upstream insulin signals. NOD2 is hence a new inflammation target connected to insulin resistance, and this link occurs without the need of additional contributing cell types. This study provides supporting evidence for the integration of innate immune and metabolic responses through the involvement of NOD proteins and suggests the possible participation of cell autonomous immune responses in the development of insulin resistance in skeletal muscle, the major depot for postprandial glucose utilization.

  14. Genetic mosaics reveal both cell-autonomous and cell-nonautonomous function of murine p27Kip1

    PubMed Central

    Chien, Wei-Ming; Rabin, Stuart; Macias, Everardo; Miliani de Marval, Paula L.; Garrison, Kendra; Orthel, Jason; Rodriguez-Puebla, Marcelo; Fero, Matthew L.

    2006-01-01

    Loss of the cyclin-dependent kinase inhibitor p27Kip1 leads to an overall increase in animal growth, pituitary tumors, and hyperplasia of hematopoietic organs, yet it is unknown whether all cells function autonomously in response to p27Kip1 activity or whether certain cells take cues from their neighbors. In addition, there is currently no genetic evidence that tumor suppression by p27Kip1 is cell-autonomous because biallelic gene inactivation is absent from tumors arising in p27Kip1 hemizygous mice. We have addressed these questions with tissue-specific targeted mouse mutants and radiation chimeras. Our results indicate that the suppression of pars intermedia pituitary tumors by p27Kip1 is cell-autonomous and does not contribute to overgrowth or infertility phenotypes. In contrast, suppression of spleen growth and hematopoietic progenitor expansion is a consequence of p27Kip1 function external to the hematopoietic compartment. Likewise, p27Kip1 suppresses thymocyte hyperplasia through a cell-nonautonomous mechanism. The interaction of p27Kip1 loss with epithelial cell-specific cyclin-dependent kinase 4 overexpression identifies the thymic epithelium as a relevant site of p27Kip1 activity for the regulation of thymus growth. PMID:16537495

  15. Evolved Colloidosomes Undergoing Cell-like Autonomous Shape Oscillations with Buckling.

    PubMed

    Tamate, Ryota; Ueki, Takeshi; Yoshida, Ryo

    2016-04-18

    In living systems, there are many autonomous and oscillatory phenomena to sustain life, such as heart contractions and breathing. At the microscopic level, oscillatory shape deformations of cells are often observed in dynamic behaviors during cell migration and morphogenesis. In many cases, oscillatory behaviors of cells are not simplistic but complex with diverse deformations. So far, we have succeeded in developing self-oscillating polymers and gels, but complex oscillatory behaviors mimicking those of living cells have yet to be reproduced. Herein, we report a cell-like hollow sphere composed of self-oscillating microgels, that is, a colloidosome, that exhibits drastic shape oscillation in addition to swelling/deswelling oscillations driven by an oscillatory reaction. The resulting oscillatory profile waveform becomes markedly more complex than a conventional one. Especially for larger colloidosomes, multiple buckling and moving buckling points are observed to be analogous to cells. PMID:26960167

  16. STAT3 inhibition for cancer therapy: Cell-autonomous effects only?

    PubMed

    Kroemer, Guido; Galluzzi, Lorenzo; Zitvogel, Laurence

    2016-05-01

    A paper recently published in Science Translational Medicine describes a next-generation antisense oligonucleotide that specifically downregulates the expression of human signal transducer and activator of transcription 3 (STAT3). Such an oligonucleotide, AZD9150, exerts antineoplastic effects on a selected panel of STAT3-dependent human cancer cells growing in vitro and in vivo (as xenografts in immunodeficient mice). Moreover, preliminary data from a Phase I clinical trial indicate that AZD9150 may cause partial tumor regression in patients with chemorefractory lymphoma and non-small cell lung carcinoma. STAT3 not only participates in cell-autonomous processes that are required for the survival and growth of malignant cells, but also limits their ability to elicit anticancer immune responses. Moreover, STAT3 contribute to the establishment of an immunosuppressive tumor microenvironment. Thus, the inhibition of STAT3 may promote immunosurveillance by a dual mechanism: (1) it may increase the immunogenicity of cancer cells via cell-autonomous pathways; and (2) it may favor the reprogramming of the tumor microenvironment toward an immunostimulatory state. It will therefore be important to explore whether immunological biomarkers predict the efficacy of AZD9150 in the clinic. This may ameliorate patient stratification and it may pave the way for rational combination therapies involving classical chemotherapeutics with immunostimulatory effects, AZD9150 and immunotherapeutic agents such as checkpoint blockers. PMID:27467938

  17. Cadherin-2 Is Required Cell Autonomously for Collective Migration of Facial Branchiomotor Neurons

    PubMed Central

    Rebman, Jane K.; Kirchoff, Kathryn E.

    2016-01-01

    Collective migration depends on cell-cell interactions between neighbors that contribute to their overall directionality, yet the mechanisms that control the coordinated migration of neurons remains to be elucidated. During hindbrain development, facial branchiomotor neurons (FBMNs) undergo a stereotypic tangential caudal migration from their place of birth in rhombomere (r)4 to their final location in r6/7. FBMNs engage in collective cell migration that depends on neuron-to-neuron interactions to facilitate caudal directionality. Here, we demonstrate that Cadherin-2-mediated neuron-to-neuron adhesion is necessary for directional and collective migration of FBMNs. We generated stable transgenic zebrafish expressing dominant-negative Cadherin-2 (Cdh2ΔEC) driven by the islet1 promoter. Cell-autonomous inactivation of Cadherin-2 function led to non-directional migration of FBMNs and a defect in caudal tangential migration. Additionally, mosaic analysis revealed that Cdh2ΔEC-expressing FBMNs are not influenced to migrate caudally by neighboring wild-type FBMNs due to a defect in collective cell migration. Taken together, our data suggest that Cadherin-2 plays an essential cell-autonomous role in mediating the collective migration of FBMNs. PMID:27716840

  18. Interactions between HIV-1 and the Cell-Autonomous Innate Immune System

    PubMed Central

    Towers, Greg J.; Noursadeghi, Mahdad

    2014-01-01

    HIV-1 was recognized as the cause of AIDS in humans in 1984. Despite 30 years of intensive research, we are still unraveling the molecular details of the host-pathogen interactions that enable this virus to escape immune clearance and cause immunodeficiency. Here we explore a series of recent studies that consider how HIV-1 interacts with the cell-autonomous innate immune system as it navigates its way in and out of host cells. We discuss how these studies improve our knowledge of HIV-1 and host biology as well as increase our understanding of transmission, persistence, and immunodeficiency and the potential for therapeutic or prophylactic interventions. PMID:25011104

  19. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis.

    PubMed

    Daum, Gabor; Medzihradszky, Anna; Suzaki, Takuya; Lohmann, Jan U

    2014-10-01

    Cell-cell communication is essential for multicellular development and, consequently, evolution has brought about an array of distinct mechanisms serving this purpose. Consistently, induction and maintenance of stem cell fate by noncell autonomous signals is a feature shared by many organisms and may depend on secreted factors, direct cell-cell contact, matrix interactions, or a combination of these mechanisms. Although many basic cellular processes are well conserved between animals and plants, cell-to-cell signaling is one function where substantial diversity has arisen between the two kingdoms of life. One of the most striking differences is the presence of cytoplasmic bridges, called plasmodesmata, which facilitate the exchange of molecules between neighboring plant cells and provide a unique route for cell-cell communication in the plant lineage. Here, we provide evidence that the stem cell inducing transcription factor WUSCHEL (WUS), expressed in the niche, moves to the stem cells via plasmodesmata in a highly regulated fashion and that this movement is required for WUS function and, thus, stem cell activity in Arabidopsis thaliana. We show that cell context-independent mobility is encoded in the WUS protein sequence and mediated by multiple domains. Finally, we demonstrate that parts of the protein that restrict movement are required for WUS homodimerization, suggesting that formation of WUS dimers might contribute to the regulation of apical stem cell activity.

  20. Cell-Autonomous and Non-Cell-Autonomous Regulation of a Feeding State-Dependent Chemoreceptor Gene via MEF-2 and bHLH Transcription Factors

    PubMed Central

    Winbush, Ari; van der Linden, Alexander M.

    2016-01-01

    Food and feeding-state dependent changes in chemoreceptor gene expression may allow Caenorhabditis elegans to modify their chemosensory behavior, but the mechanisms essential for these expression changes remain poorly characterized. We had previously shown that expression of a feeding state-dependent chemoreceptor gene, srh-234, in the ADL sensory neuron of C. elegans is regulated via the MEF-2 transcription factor. Here, we show that MEF-2 acts together with basic helix-loop-helix (bHLH) transcription factors to regulate srh-234 expression as a function of feeding state. We identify a cis-regulatory MEF2 binding site that is necessary and sufficient for the starvation-induced down regulation of srh-234 expression, while an E-box site known to bind bHLH factors is required to drive srh-234 expression in ADL. We show that HLH-2 (E/Daughterless), HLH-3 and HLH-4 (Achaete-scute homologs) act in ADL neurons to regulate srh-234 expression. We further demonstrate that the expression levels of srh-234 in ADL neurons are regulated remotely by MXL-3 (Max-like 3 homolog) and HLH-30 (TFEB ortholog) acting in the intestine, which is dependent on insulin signaling functioning specifically in ADL neurons. We also show that this intestine-to-neuron feeding-state regulation of srh-234 involves a subset of insulin-like peptides. These results combined suggest that chemoreceptor gene expression is regulated by both cell-autonomous and non-cell-autonomous transcriptional mechanisms mediated by MEF2 and bHLH factors, which may allow animals to fine-tune their chemosensory responses in response to changes in their feeding state. PMID:27487365

  1. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Miller, Mark J.; Wei, Sindy H.; Cahalan, Michael D.; Parker, Ian

    2003-03-01

    The recirculation of T cells between the blood and secondary lymphoid organs requires that T cells are motile and sensitive to tissue-specific signals. T cell motility has been studied in vitro, but the migratory behavior of individual T cells in vivo has remained enigmatic. Here, using intravital two-photon laser microscopy, we imaged the locomotion and trafficking of naïve CD4+ T cells in the inguinal lymph nodes of anesthetized mice. Intravital recordings deep within the lymph node showed T cells flowing rapidly in the microvasculature and captured individual homing events. Within the diffuse cortex, T cells displayed robust motility with an average velocity of 11 μm·min1. T cells cycled between states of low and high motility roughly every 2 min, achieving peak velocities >25 μm·min1. An analysis of T cell migration in 3D space revealed a default trafficking program analogous to a random walk. Our results show that naïve T cells do not migrate collectively, as they might under the direction of pervasive chemokine gradients. Instead, they appear to migrate as autonomous agents, each cell taking an independent trafficking path. Our results call into question the role of chemokine gradients for basal T cell trafficking within T cell areas and suggest that antigen detection may result from a stochastic process through which a random walk facilitates contact with antigen-presenting dendritic cells.

  2. Non-cell autonomous influence of the astrocyte system xc- on hypoglycaemic neuronal cell death.

    PubMed

    Jackman, Nicole A; Melchior, Shannon E; Hewett, James A; Hewett, Sandra J

    2012-02-08

    Despite longstanding evidence that hypoglycaemic neuronal injury is mediated by glutamate excitotoxicity, the cellular and molecular mechanisms involved remain incompletely defined. Here, we demonstrate that the excitotoxic neuronal death that follows GD (glucose deprivation) is initiated by glutamate extruded from astrocytes via system xc---an amino acid transporter that imports L-cystine and exports L-glutamate. Specifically, we find that depriving mixed cortical cell cultures of glucose for up to 8 h injures neurons, but not astrocytes. Neuronal death is prevented by ionotropic glutamate receptor antagonism and is partially sensitive to tetanus toxin. Removal of amino acids during the deprivation period prevents--whereas addition of L-cystine restores--GD-induced neuronal death, implicating the cystine/glutamate antiporter, system xc-. Indeed, drugs known to inhibit system xc- ameliorate GD-induced neuronal death. Further, a dramatic reduction in neuronal death is observed in chimaeric cultures consisting of neurons derived from WT (wild-type) mice plated on top of astrocytes derived from sut mice, which harbour a naturally occurring null mutation in the gene (Slc7a11) that encodes the substrate-specific light chain of system xc- (xCT). Finally, enhancement of astrocytic system xc- expression and function via IL-1β (interleukin-1β) exposure potentiates hypoglycaemic neuronal death, the process of which is prevented by removal of l-cystine and/or addition of system xc- inhibitors. Thus, under the conditions of GD, our studies demonstrate that astrocytes, via system xc-, have a direct, non-cell autonomous effect on cortical neuron survival.

  3. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection.

    PubMed

    Steinbach, Karin; Vincenti, Ilena; Kreutzfeldt, Mario; Page, Nicolas; Muschaweckh, Andreas; Wagner, Ingrid; Drexler, Ingo; Pinschewer, Daniel; Korn, Thomas; Merkler, Doron

    2016-07-25

    Tissue-resident memory T cells (TRM) persist at sites of prior infection and have been shown to enhance pathogen clearance by recruiting circulating immune cells and providing bystander activation. Here, we characterize the functioning of brain-resident memory T cells (bTRM) in an animal model of viral infection. bTRM were subject to spontaneous homeostatic proliferation and were largely refractory to systemic immune cell depletion. After viral reinfection in mice, bTRM rapidly acquired cytotoxic effector function and prevented fatal brain infection, even in the absence of circulating CD8(+) memory T cells. Presentation of cognate antigen on MHC-I was essential for bTRM-mediated protective immunity, which involved perforin- and IFN-γ-dependent effector mechanisms. These findings identify bTRM as an organ-autonomous defense system serving as a paradigm for TRM functioning as a self-sufficient first line of adaptive immunity. PMID:27377586

  4. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes.

    PubMed

    Eng, George; Lee, Benjamin W; Protas, Lev; Gagliardi, Mark; Brown, Kristy; Kass, Robert S; Keller, Gordon; Robinson, Richard B; Vunjak-Novakovic, Gordana

    2016-01-01

    The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration. PMID:26785135

  5. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes

    PubMed Central

    Eng, George; Lee, Benjamin W.; Protas, Lev; Gagliardi, Mark; Brown, Kristy; Kass, Robert S.; Keller, Gordon; Robinson, Richard B.; Vunjak-Novakovic, Gordana

    2016-01-01

    The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration. PMID:26785135

  6. Mechanisms of Alpha-Synuclein Action on Neurotransmission: Cell-Autonomous and Non-Cell Autonomous Role

    PubMed Central

    Emanuele, Marco; Chieregatti, Evelina

    2015-01-01

    Mutations and duplication/triplication of the alpha-synuclein (αSyn)-coding gene have been found to cause familial Parkinson’s disease (PD), while genetic polymorphisms in the region controlling the expression level and stability of αSyn have been identified as risk factors for idiopathic PD, pointing to the importance of wild-type (wt) αSyn dosage in the disease. Evidence that αSyn is present in the cerebrospinal fluid and interstitial brain tissue and that healthy neuronal grafts transplanted into PD patients often degenerate suggests that extracellularly-released αSyn plays a role in triggering the neurodegenerative process. αSyn’s role in neurotransmission has been shown in various cell culture models in which the protein was upregulated or deleted and in knock out and transgenic animal, with different results on αSyn’s effect on synaptic vesicle pool size and mobilization, αSyn being proposed as a negative or positive regulator of neurotransmitter release. In this review, we discuss the effect of αSyn on pre- and post-synaptic compartments in terms of synaptic vesicle trafficking, calcium entry and channel activity, and we focus on the process of exocytosis and internalization of αSyn and on the spreading of αSyn-driven effects due to the presence of the protein in the extracellular milieu. PMID:25985082

  7. Cell Autonomous and Nonautonomous Function of CUL4B in Mouse Spermatogenesis.

    PubMed

    Yin, Yan; Liu, Liren; Yang, Chenyi; Lin, Congxing; Veith, George Michael; Wang, Caihong; Sutovsky, Peter; Zhou, Pengbo; Ma, Liang

    2016-03-25

    CUL4B ubiquitin ligase belongs to the cullin-RING ubiquitin ligase family. Although sharing many sequence and structural similarities, CUL4B plays distinct roles in spermatogenesis from its homologous protein CUL4A. We previously reported that genetic ablation ofCul4ain mice led to male infertility because of aberrant meiotic progression. In the present study, we generated Cul4bgerm cell-specific conditional knock-out (Cul4b(Vasa)),as well asCul4bglobal knock-out (Cul4b(Sox2)) mouse, to investigate its roles in spermatogenesis. Germ cell-specific deletion of Cul4bled to male infertility, despite normal testicular morphology and comparable numbers of spermatozoa. Notably, significantly impaired sperm mobility caused by reduced mitochondrial activity and glycolysis level were observed in the majority of the mutant spermatozoa, manifested by low, if any, sperm ATP production. Furthermore,Cul4b(Vasa)spermatozoa exhibited defective arrangement of axonemal microtubules and flagella outer dense fibers. Our mass spectrometry analysis identified INSL6 as a novel CUL4B substrate in male germ cells, evidenced by its direct polyubiquination and degradation by CUL4B E3 ligase. Nevertheless,Cul4bglobal knock-out males lost their germ cells in an age-dependent manner, implying failure of maintaining the spermatogonial stem cell niche in somatic cells. Taken together, our results show that CUL4B is indispensable to spermatogenesis, and it functions cell autonomously in male germ cells to ensure spermatozoa motility, whereas it functions non-cell-autonomously in somatic cells to maintain spermatogonial stemness. Thus, CUL4B links two distinct spermatogenetic processes to a single E3 ligase, highlighting the significance of ubiquitin modification during spermatogenesis. PMID:26846852

  8. Lamin B1 mediates cell-autonomous neuropathology in a leukodystrophy mouse model

    PubMed Central

    Heng, Mary Y.; Lin, Shu-Ting; Verret, Laure; Huang, Yong; Kamiya, Sherry; Padiath, Quasar S.; Tong, Ying; Palop, Jorge J.; Huang, Eric J.; Ptácχek, Louis J.; Fu, Ying-Hui

    2013-01-01

    Adult-onset autosomal-dominant leukodystrophy (ADLD) is a progressive and fatal neurological disorder characterized by early autonomic dysfunction, cognitive impairment, pyramidal tract and cerebellar dysfunction, and white matter loss in the central nervous system. ADLD is caused by duplication of the LMNB1 gene, which results in increased lamin B1 transcripts and protein expression. How duplication of LMNB1 leads to myelin defects is unknown. To address this question, we developed a mouse model of ADLD that overexpresses lamin B1. These mice exhibited cognitive impairment and epilepsy, followed by age-dependent motor deficits. Selective overexpression of lamin B1 in oligodendrocytes also resulted in marked motor deficits and myelin defects, suggesting these deficits are cell autonomous. Proteomic and genome-wide transcriptome studies indicated that lamin B1 overexpression is associated with downregulation of proteolipid protein, a highly abundant myelin sheath component that was previously linked to another myelin-related disorder, Pelizaeus-Merzbacher disease. Furthermore, we found that lamin B1 overexpression leads to reduced occupancy of Yin Yang 1 transcription factor at the promoter region of proteolipid protein. These studies identify a mechanism by which lamin B1 overexpression mediates oligodendrocyte cell–autonomous neuropathology in ADLD and implicate lamin B1 as an important regulator of myelin formation and maintenance during aging. PMID:23676464

  9. Abnormal autonomic cardiac response to transient hypoxia in sickle cell anemia

    PubMed Central

    Sangkatumvong, S; Coates, T D; Khoo, M C K

    2010-01-01

    The objective of this study was to non-invasively assess cardiac autonomic control in subjects with sickle cell anemia (SCA) by tracking the changes in heart rate variability (HRV) that occur following brief exposure to a hypoxic stimulus. Five African–American SCA patients and seven healthy control subjects were recruited to participate in this study. Each subject was exposed to a controlled hypoxic stimulus consisting of five breaths of nitrogen. Time-varying spectral analysis of HRV was applied to estimate the cardiac autonomic response to the transient episode of hypoxia. The confounding effects of changes in respiration on the HRV spectral indices were reduced by using a computational model. A significant decrease in the parameters related to parasympathetic control was detected in the post-hypoxic responses of the SCA subjects relative to normal controls. The spectral index related to sympathetic activity, on the other hand, showed a tendency to increase the following hypoxic stimulation, but the change was not significant. This study suggests that there is some degree of cardiovascular autonomic dysfunction in SCA that is revealed by the response to transient hypoxia. PMID:18460753

  10. Monitoring cell-autonomous circadian clock rhythms of gene expression using luciferase bioluminescence reporters.

    PubMed

    Ramanathan, Chidambaram; Khan, Sanjoy K; Kathale, Nimish D; Xu, Haiyan; Liu, Andrew C

    2012-09-27

    In mammals, many aspects of behavior and physiology such as sleep-wake cycles and liver metabolism are regulated by endogenous circadian clocks (reviewed). The circadian time-keeping system is a hierarchical multi-oscillator network, with the central clock located in the suprachiasmatic nucleus (SCN) synchronizing and coordinating extra-SCN and peripheral clocks elsewhere. Individual cells are the functional units for generation and maintenance of circadian rhythms, and these oscillators of different tissue types in the organism share a remarkably similar biochemical negative feedback mechanism. However, due to interactions at the neuronal network level in the SCN and through rhythmic, systemic cues at the organismal level, circadian rhythms at the organismal level are not necessarily cell-autonomous. Compared to traditional studies of locomotor activity in vivo and SCN explants ex vivo, cell-based in vitro assays allow for discovery of cell-autonomous circadian defects. Strategically, cell-based models are more experimentally tractable for phenotypic characterization and rapid discovery of basic clock mechanisms. Because circadian rhythms are dynamic, longitudinal measurements with high temporal resolution are needed to assess clock function. In recent years, real-time bioluminescence recording using firefly luciferase as a reporter has become a common technique for studying circadian rhythms in mammals, as it allows for examination of the persistence and dynamics of molecular rhythms. To monitor cell-autonomous circadian rhythms of gene expression, luciferase reporters can be introduced into cells via transient transfection or stable transduction. Here we describe a stable transduction protocol using lentivirus-mediated gene delivery. The lentiviral vector system is superior to traditional methods such as transient transfection and germline transmission because of its efficiency and versatility: it permits efficient delivery and stable integration into the host

  11. CHLOROPLAST BIOGENESIS genes act cell and noncell autonomously in early chloroplast development.

    PubMed

    Gutiérrez-Nava, María de la Luz; Gillmor, C Stewart; Jiménez, Luis F; Guevara-García, Arturo; León, Patricia

    2004-05-01

    In order to identify nuclear genes required for early chloroplast development, a collection of photosynthetic pigment mutants of Arabidopsis was assembled and screened for lines with extremely low levels of chlorophyll. Nine chloroplast biogenesis (clb) mutants that affect proplastid growth and thylakoid membrane formation and result in an albino seedling phenotype were identified. These mutations identify six new genes as well as a novel allele of cla1. clb mutants have less than 2% of wild-type chlorophyll levels, and little or no expression of nuclear and plastid-encoded genes required for chloroplast development and function. In all but one mutant, proplastids do not differentiate enough to form elongated stroma thylakoid membranes. Analysis of mutants during embryogenesis allows differentiation between CLB genes that act noncell autonomously, where partial maternal complementation of chloroplast development is observed in embryos, and those that act cell autonomously, where complementation during embryogenesis is not observed. Molecular characterization of the noncell autonomous clb4 mutant established that the CLB4 gene encodes for hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (HDS), the next to the last enzyme of the methylerythritol 4-phosphate (MEP) pathway for the synthesis of plastidic isoprenoids. The noncell autonomous nature of the clb4 mutant suggests that products of the MEP pathway can travel between tissues, and provides in vivo evidence that some movement of MEP intermediates exists from the cytoplasm to the plastid. The isolation and characterization of clb mutants represents the first systematic study of genes required for early chloroplast development in Arabidopsis.

  12. JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism.

    PubMed

    Hassan, Hala; Scheres, Ben; Blilou, Ikram

    2010-05-01

    In Arabidopsis, specification of the hair and non-hair epidermal cell types is position dependent, in that hair cells arise over clefts in the underlying cortical cell layer. Epidermal patterning is determined by a network of transcriptional regulators that respond to an as yet unknown cue from underlying tissues. Previously, we showed that JACKDAW (JKD), a zinc finger protein, localizes in the quiescent centre and the ground tissue, and regulates tissue boundaries and asymmetric cell division by delimiting SHORT-ROOT movement. Here, we provide evidence that JKD controls position-dependent signals that regulate epidermal-cell-type patterning. JKD is required for appropriately patterned expression of the epidermal cell fate regulators GLABRA2, CAPRICE and WEREWOLF. Genetic interaction studies indicate that JKD operates upstream of the epidermal patterning network in a SCRAMBLED (SCM)-dependent fashion after embryogenesis, but acts independent of SCM in embryogenesis. Tissue-specific induction experiments indicate non-cell-autonomous action of JKD from the underlying cortex cell layer to specify epidermal cell fate. Our findings are consistent with a model where JKD induces a signal in every cortex cell that is more abundant in the hair cell position owing to the larger surface contact of cells located over a cleft.

  13. Declining expression of a single epithelial cell-autonomous gene accelerates age-related thymic involution

    PubMed Central

    Sun, Liguang; Guo, Jianfei; Brown, Robert; Amagai, Takashi; Zhao, Yong; Su, Dong-Ming

    2010-01-01

    SUMMARY Age-related thymic involution may be triggered by gene expression changes in lymphohematopoietic and/or non-hematopoietic thymic epithelial cells (TECs). The role of epithelial cell-autonomous gene FoxN1 may be involved in the process, but it is still a puzzle due to shortage of evidence from gradual loss-of-function and exogenous gain-of-function studies. Using our recently generated loxP-floxed-FoxN1(fx) mouse carrying the ubiquitous CreERT (uCreERT) transgene with a low dose of spontaneous activation, which causes gradual FoxN1 deletion with age, we found that the uCreERT-fx/fx mice showed an accelerated age-related thymic involution due to progressive loss of FoxN1+ TECs. The thymic aging phenotypes were clearly observable as early as at 3–6 months of age, resembling the naturally aged (18–22-month-old) murine thymus. By intrathymically supplying aged wild-type mice with exogenous FoxN1-cDNA, thymic involution and defective peripheral CD4+ T-cell function could be partially rescued. The results support the notion that decline of a single epithelial cell-autonomous gene FoxN1 levels with age causes primary deterioration in TECs followed by impairment of the total postnatal thymic microenvironment, and potentially triggers age-related thymic involution in mice. PMID:20156205

  14. Non-cell-autonomous postmortem lignification of tracheary elements in Zinnia elegans.

    PubMed

    Pesquet, Edouard; Zhang, Bo; Gorzsás, András; Puhakainen, Tuula; Serk, Henrik; Escamez, Sacha; Barbier, Odile; Gerber, Lorenz; Courtois-Moreau, Charleen; Alatalo, Edward; Paulin, Lars; Kangasjärvi, Jaakko; Sundberg, Björn; Goffner, Deborah; Tuominen, Hannele

    2013-04-01

    Postmortem lignification of xylem tracheary elements (TEs) has been debated for decades. Here, we provide evidence in Zinnia elegans TE cell cultures, using pharmacological inhibitors and in intact Z. elegans plants using Fourier transform infrared microspectroscopy, that TE lignification occurs postmortem (i.e., after TE programmed cell death). In situ RT-PCR verified expression of the lignin monomer biosynthetic cinnamoyl CoA reductase and cinnamyl alcohol dehydrogenase in not only the lignifying TEs but also in the unlignified non-TE cells of Z. elegans TE cell cultures and in living, parenchymatic xylem cells that surround TEs in stems. These cells were also shown to have the capacity to synthesize and transport lignin monomers and reactive oxygen species to the cell walls of dead TEs. Differential gene expression analysis in Z. elegans TE cell cultures and concomitant functional analysis in Arabidopsis thaliana resulted in identification of several genes that were expressed in the non-TE cells and that affected lignin chemistry on the basis of pyrolysis-gas chromatography/mass spectrometry analysis. These data suggest that living, parenchymatic xylem cells contribute to TE lignification in a non-cell-autonomous manner, thus enabling the postmortem lignification of TEs.

  15. Non-Cell-Autonomous Postmortem Lignification of Tracheary Elements in Zinnia elegans[W][OA

    PubMed Central

    Pesquet, Edouard; Zhang, Bo; Gorzsás, András; Puhakainen, Tuula; Serk, Henrik; Escamez, Sacha; Barbier, Odile; Gerber, Lorenz; Courtois-Moreau, Charleen; Alatalo, Edward; Paulin, Lars; Kangasjärvi, Jaakko; Sundberg, Björn; Goffner, Deborah; Tuominen, Hannele

    2013-01-01

    Postmortem lignification of xylem tracheary elements (TEs) has been debated for decades. Here, we provide evidence in Zinnia elegans TE cell cultures, using pharmacological inhibitors and in intact Z. elegans plants using Fourier transform infrared microspectroscopy, that TE lignification occurs postmortem (i.e., after TE programmed cell death). In situ RT-PCR verified expression of the lignin monomer biosynthetic cinnamoyl CoA reductase and cinnamyl alcohol dehydrogenase in not only the lignifying TEs but also in the unlignified non-TE cells of Z. elegans TE cell cultures and in living, parenchymatic xylem cells that surround TEs in stems. These cells were also shown to have the capacity to synthesize and transport lignin monomers and reactive oxygen species to the cell walls of dead TEs. Differential gene expression analysis in Z. elegans TE cell cultures and concomitant functional analysis in Arabidopsis thaliana resulted in identification of several genes that were expressed in the non-TE cells and that affected lignin chemistry on the basis of pyrolysis–gas chromatography/mass spectrometry analysis. These data suggest that living, parenchymatic xylem cells contribute to TE lignification in a non-cell-autonomous manner, thus enabling the postmortem lignification of TEs. PMID:23572543

  16. Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects

    PubMed Central

    Kenner, Lukas; Hoebertz, Astrid; Beil, Timo; Keon, Niamh; Karreth, Florian; Eferl, Robert; Scheuch, Harald; Szremska, Agnieszka; Amling, Michael; Schorpp-Kistner, Marina; Angel, Peter; Wagner, Erwin F.

    2004-01-01

    Because JunB is an essential gene for placentation, it was conditionally deleted in the embryo proper. JunBΔ/Δ mice are born viable, but develop severe low turnover osteopenia caused by apparent cell-autonomous osteoblast and osteoclast defects before a chronic myeloid leukemia-like disease. Although JunB was reported to be a negative regulator of cell proliferation, junBΔ/Δ osteoclast precursors and osteoblasts show reduced proliferation along with a differentiation defect in vivo and in vitro. Mutant osteoblasts express elevated p16INK4a levels, but exhibit decreased cyclin D1 and cyclin A expression. Runx2 is transiently increased during osteoblast differentiation in vitro, whereas mature osteoblast markers such as osteocalcin and bone sialoprotein are strongly reduced. To support a cell-autonomous function of JunB in osteoclasts, junB was inactivated specifically in the macrophage–osteoclast lineage. Mutant mice develop an osteopetrosis-like phenotype with increased bone mass and reduced numbers of osteoclasts. Thus, these data reveal a novel function of JunB as a positive regulator controlling primarily osteoblast as well as osteoclast activity. PMID:14769860

  17. Modeling our understanding of the His-Purkinje system.

    PubMed

    Vigmond, Edward J; Stuyvers, Bruno D

    2016-01-01

    The His-Purkinje System (HPS) is responsible for the rapid electric conduction in the ventricles. It relays electrical impulses from the atrioventricular node to the muscle cells and, thus, coordinates the contraction of ventricles in order to ensure proper cardiac pump function. The HPS has been implicated in the genesis of ventricular tachycardia and fibrillation as a source of ectopic beats, as well as forming distinct portions of reentry circuitry. Despite its importance, it remains much less well characterized, structurally and functionally, than the myocardium. Notably, important differences exist with regard to cell structure and electrophysiology, including ion channels, intracellular calcium handling, and gap junctions. Very few computational models address the HPS, and the majority of organ level modeling studies omit it. This review will provide an overview of our current knowledge of structure and function (including electrophysiology) of the HPS. We will review the most recent advances in modeling of the system from the single cell to the organ level, with considerations for relevant interspecies distinctions. PMID:26740015

  18. P38 MAPK signaling underlies a cell autonomous loss of stem cell self-renewal in aged skeletal muscle

    PubMed Central

    Bernet, Jennifer D.; Doles, Jason D.; Hall, John K.; Kelly-Tanaka, Kathleen; Carter, Thomas A.; Olwin, Bradley B.

    2014-01-01

    Skeletal muscle aging results in a gradual loss of skeletal muscle mass, skeletal muscle function and decreased regenerative capacity, which can lead to sarcopenia and increased mortality. While the mechanisms underlying sarcopenia remain unclear, the skeletal muscle stem cell, or satellite cell, is required for muscle regeneration. Therefore, identification of signaling pathways affecting satellite cell function during aging may provide insights into therapeutic targets for combating sarcopenia. Here, we show that a cell-autonomous loss in self-renewal occurs via alterations in FGF Receptor 1 and p38αβ MAPK signaling in aged satellite cells. We further demonstrate that pharmacological manipulation of these pathways can ameliorate age-associated self-renewal defects. Thus, our data highlight an age-associated deregulation of a satellite cell homeostatic network and reveal potential therapeutic opportunities for the treatment of progressive muscle wasting. PMID:24531379

  19. Cytoskeletal turnover and Myosin contractility drive cell autonomous oscillations in a model of Drosophila Dorsal Closure

    NASA Astrophysics Data System (ADS)

    Machado, P. F.; Blanchard, G. B.; Duque, J.; Gorfinkiel, N.

    2014-06-01

    Oscillatory behaviour in force-generating systems is a pervasive phenomenon in cell biology. In this work, we investigate how oscillations in the actomyosin cytoskeleton drive cell shape changes during the process of Dorsal Closure (DC), a morphogenetic event in Drosophila embryo development whereby epidermal continuity is generated through the pulsatile apical area reduction of cells constituting the amnioserosa (AS) tissue. We present a theoretical model of AS cell dynamics by which the oscillatory behaviour arises due to a coupling between active myosin-driven forces, actin turnover and cell deformation. Oscillations in our model are cell-autonomous and are modulated by neighbour coupling, and our model accurately reproduces the oscillatory dynamics of AS cells and their amplitude and frequency evolution. A key prediction arising from our model is that the rate of actin turnover and Myosin contractile force must increase during DC in order to reproduce the decrease in amplitude and period of cell area oscillations observed in vivo. This prediction opens up new ways to think about the molecular underpinnings of AS cell oscillations and their link to net tissue contraction and suggests the form of future experimental measurements.

  20. Thymus-autonomous T cell development in the absence of progenitor import.

    PubMed

    Martins, Vera C; Ruggiero, Eliana; Schlenner, Susan M; Madan, Vikas; Schmidt, Manfred; Fink, Pamela J; von Kalle, Christof; Rodewald, Hans-Reimer

    2012-07-30

    Thymus function is thought to depend on a steady supply of T cell progenitors from the bone marrow. The notion that the thymus lacks progenitors with self-renewal capacity is based on thymus transplantation experiments in which host-derived thymocytes replaced thymus-resident cells within 4 wk. Thymus grafting into T cell-deficient mice resulted in a wave of T cell export from the thymus, followed by colonization of the thymus by host-derived progenitors, and cessation of T cell development. Compound Rag2(-/-)γ(c)(-/-)Kit(W/Wv) mutants lack competitive hematopoietic stem cells (HSCs) and are devoid of T cell progenitors. In this study, using this strain as recipients for wild-type thymus grafts, we noticed thymus-autonomous T cell development lasting several months. However, we found no evidence for export of donor HSCs from thymus to bone marrow. A diverse T cell antigen receptor repertoire in progenitor-deprived thymus grafts implied that many thymocytes were capable of self-renewal. Although the process was most efficient in Rag2(-/-)γ(c)(-/-)Kit(W/Wv) hosts, γ(c)-mediated signals alone played a key role in the competition between thymus-resident and bone marrow-derived progenitors. Hence, the turnover of each generation of thymocytes is not only based on short life span but is also driven via expulsion of resident thymocytes by fresh progenitors entering the thymus.

  1. Alcohol potently modulates climbing fiber-->Purkinje neuron synapses: role of metabotropic glutamate receptors.

    PubMed

    Carta, Mario; Mameli, Manuel; Valenzuela, C Fernando

    2006-02-15

    Consumption of alcoholic beverages produces alterations in motor coordination and equilibrium that are responsible for millions of accidental deaths. Studies indicate that ethanol produces these alterations by affecting the cerebellum, a brain region involved in the control of motor systems. Purkinje neurons of the cerebellar cortex have been shown to be particularly important targets of ethanol. However, its mechanism of action at these neurons is poorly understood. We hypothesized that ethanol could modulate Purkinje neuron function by altering the excitatory input provided by the climbing fiber from the inferior olive, which evokes a powerful all-or-none response denoted as the complex spike. To test this hypothesis, we performed whole-cell patch-clamp electrophysiological and Ca2+ imaging experiments in acute slices from rat cerebella. We found that ethanol potently inhibits the late phase of the complex spike and that this effect is the result of inhibition of type-1 metabotropic glutamate receptor-dependent responses at the postsynaptic level. Moreover, ethanol inhibited climbing fiber long-term depression, a form of synaptic plasticity that also depends on activation of these metabotropic receptors. Our findings identify the climbing fiber-->Purkinje neuron synapse as an important target of ethanol in the cerebellar cortex and indicate that ethanol significantly affects cerebellar circuits even at concentrations as low as 10 mm (legal blood alcohol level in the United States is below 0.08 g/dl = 17 mm). PMID:16481422

  2. 'Medusa head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook.

    PubMed

    Jarius, S; Wildemann, B

    2015-09-17

    Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa head antibodies' due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.

  3. A Critical and Cell-Autonomous Role for MeCP2 in Synaptic Scaling Up

    PubMed Central

    Blackman, Melissa P.; Djukic, Biljana; Nelson, Sacha B.; Turrigiano, Gina G.

    2012-01-01

    Rett syndrome is the leading genetic cause of mental retardation in females. Most cases of Rett are due to loss of function mutations in the gene coding for the transcriptional regulator methyl-CpG binding protein 2 (MeCP2), but despite much effort it remains unclear how a loss of MeCP2 function generates the neurological deficits of Rett. Here we show that MeCP2 plays an essential and cell-autonomous role in homeostatic synaptic scaling up in response to reduced firing or reduced sensory drive in rat visual cortical pyramidal neurons. We found that acute RNAi knockdown of MeCP2 blocked synaptic scaling within targeted neocortical pyramidal neurons. Further, MeCP2 knockdown decreased excitatory synapse number without affecting basal mEPSC amplitude or AMPAR accumulation at spared synapses, demonstrating that MeCP2 acts cell-autonomously to maintain both excitatory synapse number and synaptic scaling in individual neocortical neurons. Finally, we used a mouse model of Rett to show that MeCP2 loss prevents homeostatic synaptic scaling up in response to visual deprivation in vivo, demonstrating for the first time that MeCP2 loss disrupts homeostatic plasticity within the intact developing neocortex. Our results establish MeCP2 as a critical mediator of synaptic scaling, and raise the possibility that some of the neurological defects of Rett arise from a disruption of homeostatic plasticity. PMID:23015442

  4. A critical and cell-autonomous role for MeCP2 in synaptic scaling up.

    PubMed

    Blackman, Melissa P; Djukic, Biljana; Nelson, Sacha B; Turrigiano, Gina G

    2012-09-26

    Rett syndrome (Rett) is the leading genetic cause of mental retardation in females. Most cases of Rett are caused by loss-of-function mutations in the gene coding for the transcriptional regulator methyl-CpG binding protein 2 (MeCP2), but despite much effort, it remains unclear how a loss of MeCP2 function generates the neurological deficits of Rett. Here we show that MeCP2 plays an essential and cell-autonomous role in homeostatic synaptic scaling up in response to reduced firing or reduced sensory drive in rat visual cortical pyramidal neurons. We found that acute RNAi knockdown of MeCP2 blocked synaptic scaling within targeted neocortical pyramidal neurons. Furthermore, MeCP2 knockdown decreased excitatory synapse number without affecting basal mEPSC amplitude or AMPAR accumulation at spared synapses, demonstrating that MeCP2 acts cell-autonomously to maintain both excitatory synapse number and synaptic scaling in individual neocortical neurons. Finally, we used a mouse model of Rett to show that MeCP2 loss prevents homeostatic synaptic scaling up in response to visual deprivation in vivo, demonstrating for the first time that MeCP2 loss disrupts homeostatic plasticity within the intact developing neocortex. Our results establish MeCP2 as a critical mediator of synaptic scaling and raise the possibility that some of the neurological defects of Rett arise from a disruption of homeostatic plasticity. PMID:23015442

  5. TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in Caenorhabditis elegans.

    PubMed

    McCallum, Katie C; Liu, Bin; Fierro-González, Juan Carlos; Swoboda, Peter; Arur, Swathi; Miranda-Vizuete, Antonio; Garsin, Danielle A

    2016-05-01

    The Caenorhabditis elegans oxidative stress response transcription factor, SKN-1, is essential for the maintenance of redox homeostasis and is a functional ortholog of the Nrf family of transcription factors. The numerous levels of regulation that govern these transcription factors underscore their importance. Here, we add a thioredoxin, encoded by trx-1, to the expansive list of SKN-1 regulators. We report that loss of trx-1 promotes nuclear localization of intestinal SKN-1 in a redox-independent, cell non-autonomous fashion from the ASJ neurons. Furthermore, this regulation is not general to the thioredoxin family, as two other C. elegans thioredoxins, TRX-2 and TRX-3, do not play a role in this process. Moreover, TRX-1-dependent regulation requires signaling from the p38 MAPK-signaling pathway. However, while TRX-1 regulates SKN-1 nuclear localization, classical SKN-1 transcriptional activity associated with stress response remains largely unaffected. Interestingly, RNA-Seq analysis revealed that loss of trx-1 elicits a general, organism-wide down-regulation of several classes of genes; those encoding for collagens and lipid transport being most prevalent. Together, these results uncover a novel role for a thioredoxin in regulating intestinal SKN-1 nuclear localization in a cell non-autonomous manner, thereby contributing to the understanding of the processes involved in maintaining redox homeostasis throughout an organism. PMID:26920757

  6. Autonomic responses to cold face stimulation in sickle cell disease: a time-varying model analysis.

    PubMed

    Chalacheva, Patjanaporn; Kato, Roberta M; Sangkatumvong, Suvimol; Detterich, Jon; Bush, Adam; Wood, John C; Meiselman, Herbert; Coates, Thomas D; Khoo, Michael C K

    2015-07-14

    Sickle cell disease (SCD) is characterized by sudden onset of painful vaso-occlusive crises (VOC), which occur on top of the underlying chronic blood disorder. The mechanisms that trigger VOC remain elusive, but recent work suggests that autonomic dysfunction may be an important predisposing factor. Heart-rate variability has been employed in previous studies, but the derived indices have provided only limited univariate information about autonomic cardiovascular control in SCD. To circumvent this limitation, a time-varying modeling approach was applied to investigate the functional mechanisms relating blood pressure (BP) and respiration to heart rate and peripheral vascular resistance in healthy controls, untreated SCD subjects and SCD subjects undergoing chronic transfusion therapy. Measurements of respiration, heart rate, continuous noninvasive BP and peripheral vascular resistance were made before, during and after the application of cold face stimulation (CFS), which perturbs both the parasympathetic and sympathetic nervous systems. Cardiac baroreflex sensitivity estimated from the model was found to be impaired in nontransfused SCD subjects, but partially restored in SCD subjects undergoing transfusion therapy. Respiratory-cardiac coupling gain was decreased in SCD and remained unchanged by chronic transfusion. These results are consistent with autonomic dysfunction in the form of impaired parasympathetic control and sympathetic overactivity. As well, CFS led to a significant reduction in vascular resistance baroreflex sensitivity in the nontransfused SCD subjects but not in the other groups. This blunting of the baroreflex control of peripheral vascular resistance during elevated sympathetic drive could be a potential factor contributing to the triggering of VOC in SCD. PMID:26177958

  7. Autonomic responses to cold face stimulation in sickle cell disease: a time-varying model analysis

    PubMed Central

    Chalacheva, Patjanaporn; Kato, Roberta M; Sangkatumvong, Suvimol; Detterich, Jon; Bush, Adam; Wood, John C; Meiselman, Herbert; Coates, Thomas D; Khoo, Michael C K

    2015-01-01

    Sickle cell disease (SCD) is characterized by sudden onset of painful vaso-occlusive crises (VOC), which occur on top of the underlying chronic blood disorder. The mechanisms that trigger VOC remain elusive, but recent work suggests that autonomic dysfunction may be an important predisposing factor. Heart-rate variability has been employed in previous studies, but the derived indices have provided only limited univariate information about autonomic cardiovascular control in SCD. To circumvent this limitation, a time-varying modeling approach was applied to investigate the functional mechanisms relating blood pressure (BP) and respiration to heart rate and peripheral vascular resistance in healthy controls, untreated SCD subjects and SCD subjects undergoing chronic transfusion therapy. Measurements of respiration, heart rate, continuous noninvasive BP and peripheral vascular resistance were made before, during and after the application of cold face stimulation (CFS), which perturbs both the parasympathetic and sympathetic nervous systems. Cardiac baroreflex sensitivity estimated from the model was found to be impaired in nontransfused SCD subjects, but partially restored in SCD subjects undergoing transfusion therapy. Respiratory-cardiac coupling gain was decreased in SCD and remained unchanged by chronic transfusion. These results are consistent with autonomic dysfunction in the form of impaired parasympathetic control and sympathetic overactivity. As well, CFS led to a significant reduction in vascular resistance baroreflex sensitivity in the nontransfused SCD subjects but not in the other groups. This blunting of the baroreflex control of peripheral vascular resistance during elevated sympathetic drive could be a potential factor contributing to the triggering of VOC in SCD. PMID:26177958

  8. Astrocytes and Microglia as Non-cell Autonomous Players in the Pathogenesis of ALS

    PubMed Central

    Hyeon, Seung Jae; Im, Hyeonjoo; Ryu, Hyun; Kim, Yunha

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that leads to a progressive muscle wasting and paralysis. The pathological phenotypes are featured by severe motor neuron death and glial activation in the lumbar spinal cord. Proposed ALS pathogenic mechanisms include glutamate cytotoxicity, inflammatory pathway, oxidative stress, and protein aggregation. However, the exact mechanisms of ALS pathogenesis are not fully understood yet. Recently, a growing body of evidence provides a novel insight on the importance of glial cells in relation to the motor neuronal damage via the non-cell autonomous pathway. Accordingly, the aim of the current paper is to overview the role of astrocytes and microglia in the pathogenesis of ALS and to better understand the disease mechanism of ALS. PMID:27790057

  9. Cell-autonomous signal transduction in the Xenopus egg Wnt/β-catenin pathway.

    PubMed

    Motomura, Eriko; Narita, Tomohiro; Nasu, Yuya; Kato, Hirotaka; Sedohara, Ayako; Nishimatsu, Shin-ichiro; Sakai, Masao

    2014-12-01

    Wnt proteins are thought to bind to their receptors on the cell surfaces of neighboring cells. Wnt8 likely substitutes for the dorsal determinants in Xenopus embryos to dorsalize early embryos via the Wnt/β-catenin pathway. Here, we show that Wnt8 can dorsalize Xenopus embryos working cell autonomously. Wnt8 mRNA was injected into a cleavage-stage blastomere, and the subcellular distribution of Wnt8 protein was analyzed. Wnt8 protein was predominantly found in the endoplasmic reticulum (ER) and resided at the periphery of the cells; however, this protein was restricted to the mRNA-injected cellular region as shown by lineage tracing. A mutant Wnt8 that contained an ER retention signal (Wnt8-KDEL) could dorsalize Xenopus embryos. Finally, Wnt8-induced dorsalization occurred only in cells injected with Wnt8 mRNA. These experiments suggest that the Wnt8 protein acts within the cell, likely in the ER or on the cell surface in an autocrine manner for dorsalization. PMID:25330272

  10. Dynamics of circus movement re-entry across canine Purkinje fibre-muscle junctions.

    PubMed

    Gilmour, R F; Watanabe, M

    1994-05-01

    1. To determine the cellular electrophysiological mechanisms for unidirectional conduction block and re-entrant excitation, single cycles of circus movement re-entry were induced in canine Purkinje fibre-papillary muscle preparations containing two Purkinje fibre-muscle junctions (PMJs). The preparations were mounted in a partitioned tissue bath that permitted independent superfusion of each PMJ. The pre-existing dispersion of refractoriness between PMJs was accentuated by superfusing PMJ1 with normal Tyrode solution or Tyrode solution containing 6-8 mM KCl and superfusing PMJ2 with Tyrode solution containing 0.5 mM heptanol and 4-10 mM KCl. 2. Premature stimuli delivered to the Purkinje fibre induced unidirectional anterograde conduction block at PMJ2. Conduction proceeded from Purkinje cells to papillary muscle at PMJ1 and from papillary muscle retrogradely across the previously blocked PMJ2. 3. The difference in refractory periods between the two PMJs defined a range of premature coupling intervals within which re-entry was inducible. Conduction block at the PMJ occurred in papillary muscle at short coupling intervals and in the Purkinje fibre at longer intervals. 4. Once initiated, re-entry could be reset or annihilated by properly timed subthreshold current pulses delivered to cells at the PMJ. 5. To define better the mechanisms for conduction block and re-entry, an analytical model was developed using non-linear regression analysis to derive equations from the experimental results. Varying parameters within the constraints of the model reproduced the key features of the rate-dependent conduction block observed experimentally. Critical elements of the model included the induction of significant activation delays at short diastolic intervals and a reduction in the rate of action potential duration restitution after exposure to heptanol. 6. These results help to establish the conditions necessary for induction of one-dimensional circus movement re-entry and to

  11. Nodal signaling in Xenopus gastrulae is cell-autonomous and patterned by beta-catenin.

    PubMed

    Hashimoto-Partyka, Minako K; Yuge, Masahiro; Cho, Ken W Y

    2003-01-01

    The classical three-signal model of amphibian mesoderm induction and more recent modifications together propose that an activin-like signaling activity is uniformly distributed across the vegetal half of the Xenopus blastula and that this activity contributes to mesoderm induction. In support of this, we have previously shown that the activin-response element (DE) of the goosecoid promoter is uniformly activated across the vegetal half of midgastrula-stage embryos. Here, we further examine the nature of this activity by measuring DE activation by endogenous signals over time. We find that the spatiotemporal pattern of DE activation is much more dynamic than was previously appreciated and also conclude that DE(6X)Luc activity reflects endogenous nodal signaling in the embryo. Using both the DE(6X)Luc construct and endogenous Xbra and Xgsc expression as read-outs for nodal activity, and the cleavage-mutant version of Xnr2 (CmXnr2) to regionally suppress endogenous nodal activity, we demonstrate that nodal signals act cell-autonomously in Xenopus gastrulae. Nodal-expressing cells are unable to rescue either reporter gene activation or target gene expression in distant nodal-deficient cells, suggesting that nodals function at short range in this context. Finally, we show that DE activation by endogenous signals occurs in the absence of dorsal beta-catenin-mediated signaling, but that the timing of dorsal initiation is altered. We conclude that nodal signals in Xenopus gastrulae function cell autonomously at short ranges and that the spatiotemporal pattern of this signaling along the dorsoventral axis is regulated by maternal Wnt-like signaling. PMID:12490202

  12. Neighboring Parenchyma Cells Contribute to Arabidopsis Xylem Lignification, while Lignification of Interfascicular Fibers Is Cell Autonomous[W

    PubMed Central

    Smith, Rebecca A.; Schuetz, Mathias; Roach, Melissa; Mansfield, Shawn D.; Ellis, Brian; Samuels, Lacey

    2013-01-01

    Lignin is a critical structural component of plants, providing vascular integrity and mechanical strength. Lignin precursors (monolignols) must be exported to the extracellular matrix where random oxidative coupling produces a complex lignin polymer. The objectives of this study were twofold: to determine the timing of lignification with respect to programmed cell death and to test if nonlignifying xylary parenchyma cells can contribute to the lignification of tracheary elements and fibers. This study demonstrates that lignin deposition is not exclusively a postmortem event, but also occurs prior to programmed cell death. Radiolabeled monolignols were not detected in the cytoplasm or vacuoles of tracheary elements or neighbors. To experimentally define which cells in lignifying tissues contribute to lignification in intact plants, a microRNA against CINNAMOYL CoA-REDUCTASE1 driven by the promoter from CELLULOSE SYNTHASE7 (ProCESA7:miRNA CCR1) was used to silence monolignol biosynthesis specifically in cells developing lignified secondary cell walls. When monolignol biosynthesis in ProCESA7:miRNA CCR1 lines was silenced in the lignifying cells themselves, but not in the neighboring cells, lignin was still deposited in the xylem secondary cell walls. Surprisingly, a dramatic reduction in cell wall lignification of extraxylary fiber cells demonstrates that extraxylary fibers undergo cell autonomous lignification. PMID:24096341

  13. Characterization of a cDNA encoding a 34-kDa Purkinje neuron protein recognized by sera from patients with paraneoplastic cerebellar degeneration

    SciTech Connect

    Furneaux, H.M.; Dropcho, E.J.; Barbut, D.; Chen, Yaotseng; Rosenblum, M.K.; Old, L.J.; Posner, J.B. )

    1989-04-01

    Paraneoplastic cerebellar degeneration is a neurological disorder of unknown cause occurring in patients with an identified or occult cancer. An autoimmune etiology is likely since autoantibodies directed against the Purkinje cells of the cerebellum have been found in the serum and cerebrospinal fluid of some patients. Two Purkinje cell-specific antigens are recognized by these autoantibodies, a major antigen of 62 kDa (CDR 62, cerebellar degeneration-related 62-kDa protein) and a minor antigen of 34 kDa (CDR 34). Previous studies have described the isolation and characterization of a human cerebellar cDNA that encodes an epitope recognized by sera from patients with paraneoplastic cerebellar degeneration. The authors have now established by two independent methods that this gene is uniquely expressed in Purkinje cells of the cerebellum and corresponds to the minor antigen CDR 34. This antigen is also expressed in tumor tissue from a patient with paraneoplastic cerebellar degeneration.

  14. Autonomous and Autonomic Swarms

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Truszkowski, Walter F.; Rouff, Christopher A.; Sterritt, Roy

    2005-01-01

    A watershed in systems engineering is represented by the advent of swarm-based systems that accomplish missions through cooperative action by a (large) group of autonomous individuals each having simple capabilities and no global knowledge of the group s objective. Such systems, with individuals capable of surviving in hostile environments, pose unprecedented challenges to system developers. Design and testing and verification at much higher levels will be required, together with the corresponding tools, to bring such systems to fruition. Concepts for possible future NASA space exploration missions include autonomous, autonomic swarms. Engineering swarm-based missions begins with understanding autonomy and autonomicity and how to design, test, and verify systems that have those properties and, simultaneously, the capability to accomplish prescribed mission goals. Formal methods-based technologies, both projected and in development, are described in terms of their potential utility to swarm-based system developers.

  15. Prkci is required for a non-autonomous signal that coordinates cell polarity during cavitation.

    PubMed

    Mah, In Kyoung; Soloff, Rachel; Izuhara, Audrey K; Lakeland, Daniel L; Wang, Charles; Mariani, Francesca V

    2016-08-01

    Polarized epithelia define boundaries, spaces, and cavities within organisms. Cavitation, a process by which multicellular hollow balls or tubes are produced, is typically associated with the formation of organized epithelia. In order for these epithelial layers to form, cells must ultimately establish a distinct apical-basal polarity. Atypical PKCs have been proposed to be required for apical-basal polarity in diverse species. Here we show that while cells null for the Prkci isozyme exhibit some polarity characteristics, they fail to properly segregate apical-basal proteins, form a coordinated ectodermal epithelium, or participate in normal cavitation. A failure to cavitate could be due to an overgrowth of interior cells or to an inability of interior cells to die. Null cells however, do not have a marked change in proliferation rate and are still capable of undergoing cell death, suggesting that alterations in these processes are not the predominant cause of the failed cavitation. Overexpression of BMP4 or EZRIN can partially rescue the phenotype possibly by promoting cell death, polarity, and differentiation. However, neither is sufficient to provide the required cues to generate a polarized epithelium and fully rescue cavitation. Interestingly, when wildtype and Prkci(-/-) ES cells are mixed together, a polarized ectodermal epithelium forms and cavitation is rescued, likely due to the ability of wildtype cells to produce non-autonomous polarity cues. We conclude that Prkci is not required for cells to respond to these cues, though it is required to produce them. Together these findings indicate that environmental cues can facilitate the formation of polarized epithelia and that cavitation requires the proper coordination of multiple basic cellular processes including proliferation, differentiation, cell death, and apical-basal polarization. PMID:27312576

  16. Prkci is required for a non-autonomous signal that coordinates cell polarity during cavitation.

    PubMed

    Mah, In Kyoung; Soloff, Rachel; Izuhara, Audrey K; Lakeland, Daniel L; Wang, Charles; Mariani, Francesca V

    2016-08-01

    Polarized epithelia define boundaries, spaces, and cavities within organisms. Cavitation, a process by which multicellular hollow balls or tubes are produced, is typically associated with the formation of organized epithelia. In order for these epithelial layers to form, cells must ultimately establish a distinct apical-basal polarity. Atypical PKCs have been proposed to be required for apical-basal polarity in diverse species. Here we show that while cells null for the Prkci isozyme exhibit some polarity characteristics, they fail to properly segregate apical-basal proteins, form a coordinated ectodermal epithelium, or participate in normal cavitation. A failure to cavitate could be due to an overgrowth of interior cells or to an inability of interior cells to die. Null cells however, do not have a marked change in proliferation rate and are still capable of undergoing cell death, suggesting that alterations in these processes are not the predominant cause of the failed cavitation. Overexpression of BMP4 or EZRIN can partially rescue the phenotype possibly by promoting cell death, polarity, and differentiation. However, neither is sufficient to provide the required cues to generate a polarized epithelium and fully rescue cavitation. Interestingly, when wildtype and Prkci(-/-) ES cells are mixed together, a polarized ectodermal epithelium forms and cavitation is rescued, likely due to the ability of wildtype cells to produce non-autonomous polarity cues. We conclude that Prkci is not required for cells to respond to these cues, though it is required to produce them. Together these findings indicate that environmental cues can facilitate the formation of polarized epithelia and that cavitation requires the proper coordination of multiple basic cellular processes including proliferation, differentiation, cell death, and apical-basal polarization.

  17. Differential cell autonomous responses determine the outcome of coxsackievirus infections in murine pancreatic α and β cells

    PubMed Central

    Marroqui, Laura; Lopes, Miguel; dos Santos, Reinaldo S; Grieco, Fabio A; Roivainen, Merja; Richardson, Sarah J; Morgan, Noel G; Op de beeck, Anne; Eizirik, Decio L

    2015-01-01

    Type 1 diabetes (T1D) is an autoimmune disease caused by loss of pancreatic β cells via apoptosis while neighboring α cells are preserved. Viral infections by coxsackieviruses (CVB) may contribute to trigger autoimmunity in T1D. Cellular permissiveness to viral infection is modulated by innate antiviral responses, which vary among different cell types. We presently describe that global gene expression is similar in cytokine-treated and virus-infected human islet cells, with up-regulation of gene networks involved in cell autonomous immune responses. Comparison between the responses of rat pancreatic α and β cells to infection by CVB5 and 4 indicate that α cells trigger a more efficient antiviral response than β cells, including higher basal and induced expression of STAT1-regulated genes, and are thus better able to clear viral infections than β cells. These differences may explain why pancreatic β cells, but not α cells, are targeted by an autoimmune response during T1D. DOI: http://dx.doi.org/10.7554/eLife.06990.001 PMID:26061776

  18. Advanced Modular "All in One" Battery System with Intelligent Autonomous Cell Balancing Management

    NASA Astrophysics Data System (ADS)

    Petitdidier, X.; Pasquier, E.; Defer, M.; Koch, M.; Knorr, W.

    2008-09-01

    A new generation of energy storage systems based on Li-ion technology emerged at the end of the last century.To perform the first tests in safe conditions, Saft designed a simple electronic.Today, all Li-ion batteries for autonomous applications such as drones, launchers, missiles, torpedoes and "human" applications such as cellular, laptop, hybrid vehicle and nearly sub-marines need a Battery Management System.The minimum in terms of functions is the overcharge and over-discharge protections.For a battery made of 2 cells connected in series or more, a balancing system is added to maintain the available energy during all the life of the battery. For stringent/demanding applications, the state of charge and state of health are calculated by one or more computers.It is now time to take benefit of the past 10 years of Saft's experience in the domain to re-evaluate the constraints of Li-ion batteries and provide customers with improved products by optimizing the battery management.Benefits of electronic for satellite applications:• Full control over battery.• Confidence whatever the possible change of conditions in environment.• The battery system can resist long exposure to gradient conditions with mitigated and stabilized impact on performances.• The balancing function allow to use all the energy of all the cells: optimize of installed energy (compact design, mass saving). It started out with the basic fact that electrochemists are not intended to be space rated electronic experts and vice versa, even if Saft has a good heritage in the electronic battery management system. Consequently, considering heritage and expertise in their respective core businesses, Saft and ASP teamed up.It became necessary to provide an "all in one" modular energy storage system with intelligent autonomous cell balancing management.

  19. Digital expression profiling of the compartmentalized translatome of Purkinje neurons

    PubMed Central

    Kratz, Anton; Beguin, Pascal; Kaneko, Megumi; Chimura, Takahiko; Suzuki, Ana Maria; Matsunaga, Atsuko; Kato, Sachi; Bertin, Nicolas; Lassmann, Timo; Vigot, Réjan; Carninci, Piero

    2014-01-01

    Underlying the complexity of the mammalian brain is its network of neuronal connections, but also the molecular networks of signaling pathways, protein interactions, and regulated gene expression within each individual neuron. The diversity and complexity of the spatially intermingled neurons pose a serious challenge to the identification and quantification of single neuron components. To address this challenge, we present a novel approach for the study of the ribosome-associated transcriptome—the translatome—from selected subcellular domains of specific neurons, and apply it to the Purkinje cells (PCs) in the rat cerebellum. We combined microdissection, translating ribosome affinity purification (TRAP) in nontransgenic animals, and quantitative nanoCAGE sequencing to obtain a snapshot of RNAs bound to cytoplasmic or rough endoplasmic reticulum (rER)–associated ribosomes in the PC and its dendrites. This allowed us to discover novel markers of PCs, to determine structural aspects of genes, to find hitherto uncharacterized transcripts, and to quantify biophysically relevant genes of membrane proteins controlling ion homeostasis and neuronal electrical activities. PMID:24904046

  20. Cell-Autonomous Gβ Signaling Defines Neuron-Specific Steady State Serotonin Synthesis in Caenorhabditis elegans.

    PubMed

    Xu, Lu; Choi, Sunju; Xie, Yusu; Sze, Ji Ying

    2015-09-01

    Heterotrimeric G proteins regulate a vast array of cellular functions via specific intracellular effectors. Accumulating pharmacological and biochemical studies implicate Gβ subunits as signaling molecules interacting directly with a wide range of effectors to modulate downstream cellular responses, in addition to their role in regulating Gα subunit activities. However, the native biological roles of Gβ-mediated signaling pathways in vivo have been characterized only in a few cases. Here, we identified a Gβ GPB-1 signaling pathway operating in specific serotonergic neurons to the define steady state serotonin (5-HT) synthesis, through a genetic screen for 5-HT synthesis mutants in Caenorhabditis elegans. We found that signaling through cell autonomous GPB-1 to the OCR-2 TRPV channel defines the baseline expression of 5-HT synthesis enzyme tryptophan hydroxylase tph-1 in ADF chemosensory neurons. This Gβ signaling pathway is not essential for establishing the serotonergic cell fates and is mechanistically separated from stress-induced tph-1 upregulation. We identified that ADF-produced 5-HT controls specific innate rhythmic behaviors. These results revealed a Gβ-mediated signaling operating in differentiated cells to specify intrinsic functional properties, and indicate that baseline TPH expression is not a default generic serotonergic fate, but is programmed in a cell-specific manner in the mature nervous system. Cell-specific regulation of TPH expression could be a general principle for tailored steady state 5-HT synthesis in functionally distinct neurons and their regulation of innate behavior. PMID:26402365

  1. Tissue-autonomous promotion of palisade cell development by phototropin 2 in Arabidopsis.

    PubMed

    Kozuka, Toshiaki; Kong, Sam-Geun; Doi, Michio; Shimazaki, Ken-ichiro; Nagatani, Akira

    2011-10-01

    Light is an important environmental information source that plants use to modify their growth and development. Palisade parenchyma cells in leaves develop cylindrical shapes in response to blue light; however, the photosensory mechanism for this response has not been elucidated. In this study, we analyzed the palisade cell response in phototropin-deficient mutants. First, we found that two different light-sensing mechanisms contributed to the response in different proportions depending on the light intensity. One response observed under lower intensities of blue light was mediated exclusively by a blue light photoreceptor, phototropin 2 (PHOT2). Another response was elicited under higher intensities of light in a phototropin-independent manner. To determine the tissue in which PHOT2 perceives the light stimulus to regulate the response, green fluorescent protein (GFP)-tagged PHOT2 (P2G) was expressed under the control of tissue-specific promoters in the phot1 phot2 mutant background. The results revealed that the expression of P2G in the mesophyll, but not in the epidermis, promoted palisade cell development. Furthermore, a constitutively active C-terminal kinase fragment of PHOT2 fused to GFP (P2CG) promoted the development of cylindrical palisade cells in the proper direction without the directional cue provided by light. Hence, in response to blue light, PHOT2 promotes the development of cylindrical palisade cells along a predetermined axis in a tissue-autonomous manner.

  2. Cell-Autonomous Gβ Signaling Defines Neuron-Specific Steady State Serotonin Synthesis in Caenorhabditis elegans

    PubMed Central

    Xu, Lu; Choi, Sunju; Xie, Yusu; Sze, Ji Ying

    2015-01-01

    Heterotrimeric G proteins regulate a vast array of cellular functions via specific intracellular effectors. Accumulating pharmacological and biochemical studies implicate Gβ subunits as signaling molecules interacting directly with a wide range of effectors to modulate downstream cellular responses, in addition to their role in regulating Gα subunit activities. However, the native biological roles of Gβ-mediated signaling pathways in vivo have been characterized only in a few cases. Here, we identified a Gβ GPB-1 signaling pathway operating in specific serotonergic neurons to the define steady state serotonin (5-HT) synthesis, through a genetic screen for 5-HT synthesis mutants in Caenorhabditis elegans. We found that signaling through cell autonomous GPB-1 to the OCR-2 TRPV channel defines the baseline expression of 5-HT synthesis enzyme tryptophan hydroxylase tph-1 in ADF chemosensory neurons. This Gβ signaling pathway is not essential for establishing the serotonergic cell fates and is mechanistically separated from stress-induced tph-1 upregulation. We identified that ADF-produced 5-HT controls specific innate rhythmic behaviors. These results revealed a Gβ-mediated signaling operating in differentiated cells to specify intrinsic functional properties, and indicate that baseline TPH expression is not a default generic serotonergic fate, but is programmed in a cell-specific manner in the mature nervous system. Cell-specific regulation of TPH expression could be a general principle for tailored steady state 5-HT synthesis in functionally distinct neurons and their regulation of innate behavior. PMID:26402365

  3. Non-Cell-Autonomous Regulation of Prostate Epithelial Homeostasis by Androgen Receptor.

    PubMed

    Zhang, Boyu; Kwon, Oh-Joon; Henry, Gervaise; Malewska, Alicia; Wei, Xing; Zhang, Li; Brinkley, William; Zhang, Yiqun; Castro, Patricia D; Titus, Mark; Chen, Rui; Sayeeduddin, Mohammad; Raj, Ganesh V; Mauck, Ryan; Roehrborn, Claus; Creighton, Chad J; Strand, Douglas W; Ittmann, Michael M; Xin, Li

    2016-09-15

    Prostate inflammation has been suggested as an etiology for benign prostatic hyperplasia (BPH). We show that decreased expression of the androgen receptor (AR) in luminal cells of human BPH specimens correlates with a higher degree of regional prostatic inflammation. However, the cause-and-effect relationship between the two events remains unclear. We investigated specifically whether attenuating AR activity in prostate luminal cells induces inflammation. Disrupting luminal cell AR signaling in mouse models promotes cytokine production cell-autonomously, impairs epithelial barrier function, and induces immune cell infiltration, which further augments local production of cytokines and chemokines including Il-1 and Ccl2. This inflammatory microenvironment promotes AR-independent prostatic epithelial proliferation, which can be abolished by ablating IL-1 signaling or depleting its major cellular source, the macrophages. This study demonstrates that disrupting luminal AR signaling promotes prostate inflammation, which may serve as a mechanism for resistance to androgen-targeted therapy for prostate-related diseases. PMID:27594448

  4. Pulse-transmission Oscillators: Autonomous Boolean Models and the Yeast Cell Cycle

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan; Gong, Xinwei; Socolar, Joshua

    2010-03-01

    Models of oscillatory gene expression typically involve a constitutively expressed or positively autoregulated gene which is repressed by a negative feedback loop. In Boolean representations of such systems, which include the repressilator and relaxation oscillators, dynamical stability stems from the impossibility of satisfying all of the Boolean rules at once. We consider a different class of networks, in which oscillations are due to the transmission of a pulse of gene activation around a ring. Using autonomous Boolean modeling methods, we show how the circulating pulse can be stabilized by decoration of the ring with certain feedback and feed-forward motifs. We then discuss the relation of these models to ODE models of transcriptional networks, emphasizing the role of explicit time delays. Finally, we show that a network recently proposed as a generator of cell cycle oscillations in yeast contains the motifs required to support stable transmission oscillations.

  5. Cell Non-Autonomous Activation of Flavin-containing Monooxygenase Promotes Longevity and Healthspan

    PubMed Central

    Leiser, Scott F.; Fletcher, Marissa; Leonard, Alison; Primitivo, Melissa; Rintala, Nicholas; Ramos, Fresnida J.; Miller, Dana L.; Kaeberlein, Matt

    2016-01-01

    Stabilization of the hypoxia-inducible factor-1 (HIF-1) increases lifespan and healthspan in nematodes through an unknown mechanism. We report that neuronal stabilization of HIF-1 mediates these effects in C. elegans through a cell non-autonomous signal to the intestine resulting in activation of the xenobiotic detoxification enzyme flavin-containing monooxygenase-2 (FMO-2). This pro-longevity signal requires the serotonin biosynthetic enzyme TPH-1 in neurons and the serotonin receptor SER-7 in the intestine. Intestinal FMO-2 is also activated by dietary restriction (DR) and necessary for DR-mediated lifespan extension, suggesting that this enzyme represents a point of convergence for two distinct longevity pathways. FMOs are conserved in eukaryotes and induced by multiple lifespan-extending interventions in mice, suggesting that these enzymes may play a critical role in promoting health and longevity across phyla. PMID:26586189

  6. Non cell autonomous upregulation of CDKN2 transcription linked to progression of chronic hepatitis C disease.

    PubMed

    Robinson, Mark W; McGuinness, Dagmara; Swann, Rachael; Barclay, Stephen; Mills, Peter R; Patel, Arvind H; McLauchlan, John; Shiels, Paul G

    2013-12-01

    Chronic hepatitis C virus infection (C-HC) is associated with higher mortality arising from hepatic and extrahepatic disease. This may be due to accelerated biological aging; however, studies in C-HC have thus far been based solely on telomere length as a biomarker of aging (BoA). In this study, we have evaluated CDKN2 locus transcripts as alternative BoAs in C-HC. Our results suggest that C-HC induces non-cell-autonomous senescence and accelerates biological aging. The CDKN2 locus may provide a link between C-HC and increased susceptibility to age-associated diseases and provides novel biomarkers for assessing its impact on aging processes in man.

  7. Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1.

    PubMed

    Albiero, Mattia; Poncina, Nicol; Tjwa, Marc; Ciciliot, Stefano; Menegazzo, Lisa; Ceolotto, Giulio; Vigili de Kreutzenberg, Saula; Moura, Rute; Giorgio, Marco; Pelicci, Piergiuseppe; Avogaro, Angelo; Fadini, Gian Paolo

    2014-04-01

    Diabetes compromises the bone marrow (BM) microenvironment and reduces the number of circulating CD34(+) cells. Diabetic autonomic neuropathy (DAN) may impact the BM, because the sympathetic nervous system is prominently involved in BM stem cell trafficking. We hypothesize that neuropathy of the BM affects stem cell mobilization and vascular recovery after ischemia in patients with diabetes. We report that, in patients, cardiovascular DAN was associated with fewer circulating CD34(+) cells. Experimental diabetes (streptozotocin-induced and ob/ob mice) or chemical sympathectomy in mice resulted in BM autonomic neuropathy, impaired Lin(-)cKit(+)Sca1(+) (LKS) cell and endothelial progenitor cell (EPC; CD34(+)Flk1(+)) mobilization, and vascular recovery after ischemia. DAN increased the expression of the 66-kDa protein from the src homology and collagen homology domain (p66Shc) and reduced the expression of sirtuin 1 (Sirt1) in mice and humans. p66Shc knockout (KO) in diabetic mice prevented DAN in the BM, and rescued defective LKS cell and EPC mobilization. Hematopoietic Sirt1 KO mimicked the diabetic mobilization defect, whereas hematopoietic Sirt1 overexpression in diabetes rescued defective mobilization and vascular repair. Through p66Shc and Sirt1, diabetes and sympathectomy elevated the expression of various adhesion molecules, including CD62L. CD62L KO partially rescued the defective stem/progenitor cell mobilization. In conclusion, autonomic neuropathy in the BM impairs stem cell mobilization in diabetes with dysregulation of the life-span regulators p66Shc and Sirt1.

  8. Crim1 has cell-autonomous and paracrine roles during embryonic heart development

    PubMed Central

    Iyer, Swati; Chou, Fang Yu; Wang, Richard; Chiu, Han Sheng; Raju, Vinay K. Sundar; Little, Melissa H.; Thomas, Walter G.; Piper, Michael; Pennisi, David J.

    2016-01-01

    The epicardium has a critical role during embryonic development, contributing epicardium-derived lineages to the heart, as well as providing regulatory and trophic signals necessary for myocardial development. Crim1 is a unique trans-membrane protein expressed by epicardial and epicardially-derived cells but its role in cardiogenesis is unknown. Using knockout mouse models, we observe that loss of Crim1 leads to congenital heart defects including epicardial defects and hypoplastic ventricular compact myocardium. Epicardium-restricted deletion of Crim1 results in increased epithelial-to-mesenchymal transition and invasion of the myocardium in vivo, and an increased migration of primary epicardial cells. Furthermore, Crim1 appears to be necessary for the proliferation of epicardium-derived cells (EPDCs) and for their subsequent differentiation into cardiac fibroblasts. It is also required for normal levels of cardiomyocyte proliferation and apoptosis, consistent with a role in regulating epicardium-derived trophic factors that act on the myocardium. Mechanistically, Crim1 may also modulate key developmentally expressed growth factors such as TGFβs, as changes in the downstream effectors phospho-SMAD2 and phospho-ERK1/2 are observed in the absence of Crim1. Collectively, our data demonstrates that Crim1 is essential for cell-autonomous and paracrine aspects of heart development. PMID:26821812

  9. Crim1 has cell-autonomous and paracrine roles during embryonic heart development.

    PubMed

    Iyer, Swati; Chou, Fang Yu; Wang, Richard; Chiu, Han Sheng; Raju, Vinay K Sundar; Little, Melissa H; Thomas, Walter G; Piper, Michael; Pennisi, David J

    2016-01-01

    The epicardium has a critical role during embryonic development, contributing epicardium-derived lineages to the heart, as well as providing regulatory and trophic signals necessary for myocardial development. Crim1 is a unique trans-membrane protein expressed by epicardial and epicardially-derived cells but its role in cardiogenesis is unknown. Using knockout mouse models, we observe that loss of Crim1 leads to congenital heart defects including epicardial defects and hypoplastic ventricular compact myocardium. Epicardium-restricted deletion of Crim1 results in increased epithelial-to-mesenchymal transition and invasion of the myocardium in vivo, and an increased migration of primary epicardial cells. Furthermore, Crim1 appears to be necessary for the proliferation of epicardium-derived cells (EPDCs) and for their subsequent differentiation into cardiac fibroblasts. It is also required for normal levels of cardiomyocyte proliferation and apoptosis, consistent with a role in regulating epicardium-derived trophic factors that act on the myocardium. Mechanistically, Crim1 may also modulate key developmentally expressed growth factors such as TGFβs, as changes in the downstream effectors phospho-SMAD2 and phospho-ERK1/2 are observed in the absence of Crim1. Collectively, our data demonstrates that Crim1 is essential for cell-autonomous and paracrine aspects of heart development. PMID:26821812

  10. The neglect of Purkinje's technique of ophthalmoscopy prior to Helmholtz's invention of the ophthalmoscope.

    PubMed

    Reese, P D

    1986-11-01

    A technique for examining the fundus of the eye was devised by Jan Evangelista Purkinje a generation before Helmholtz invented the ophthalmoscope. Yet, Purkinje's technique of ophthalmoscopy went virtually unnoticed by his contemporaries. This neglect of Purkinje's discovery has never been fully explained and warrants re-examination. PMID:3543788

  11. The neglect of Purkinje's technique of ophthalmoscopy prior to Helmholtz's invention of the ophthalmoscope.

    PubMed

    Reese, P D

    1986-11-01

    A technique for examining the fundus of the eye was devised by Jan Evangelista Purkinje a generation before Helmholtz invented the ophthalmoscope. Yet, Purkinje's technique of ophthalmoscopy went virtually unnoticed by his contemporaries. This neglect of Purkinje's discovery has never been fully explained and warrants re-examination.

  12. Impulse responses of automaticity in the Purkinje fiber.

    PubMed Central

    Chay, T R; Lee, Y S

    1984-01-01

    We examined the effects of brief current pulses on the pacemaker oscillations of the Purkinje fiber using the model of McAllister , Noble, and Tsien (1975. J. Physiol. [Lond.]. 251:1-57). This model was used to construct phase-response curves for brief electric stimuli to find "black holes," where rhythmic activity of the Purkinje fiber ceases. In our computer simulation, a brief current stimulus of the right magnitude and timing annihilated oscillations in membrane potential. The model also revealed a sequence of alternating periodic and chaotic regimes as the strength of a steady bias current is varied. We compared the results of our computer simulations with experimental work on Purkinje fibers and pointed out the importance of modeling results of this kind for understanding cardiac arrhythmias. PMID:6722270

  13. [Purkinje images in slit lamp videography : Video article].

    PubMed

    Gellrich, M-M; Kandzia, C

    2016-09-01

    Reflexes that accompany every examination with the slit lamp are usually regarded as annoying and therefore do not receive much attention. In the video available online, clinical information "hidden" in the Purkinje images is analyzed according to our concept of slit lamp videography. In the first part of the video, the four Purkinje images which are reflections on the eye's optical surfaces are introduced for the phakic eye. In the pseudophakic eye, however, the refracting surfaces of the intraocular lens (IOL) have excellent optical properties and therefore form Purkinje images 3 and 4 of high quality. Especially the third Purkinje image from the anterior IOL surface, which is usually hardly visible in the phakic eye can be detected deep in the vitreous, enlarged through the eye's own optics like a magnifying glass. Its area of reflection can be used to visualize changes of the anterior segment at high contrast. The third Purkinje image carries valuable information about the anterior curvature and, thus, about the power of the IOL. If the same IOL type is implanted in a patient, often a difference between right and left of 0.5 diopter in its power can be detected by the difference in size of the respective third Purkinje image. In a historical excursion to the "prenatal phase" of the slit lamp in Uppsala, we show that our most important instrument in clinical work was originally designed for catoptric investigations (of specular reflections). Accordingly A. Gullstrand called it an ophthalmometric Nernst lamp. PMID:27558688

  14. Autonomously replicating episomes contain mdr1 genes in a multidrugresistant human cell line

    SciTech Connect

    Ruiz, J.C.; Wahl, G.M.; Choi, K.; Roninson, I.B.; VonHoff, D.D.

    1989-01-01

    Gene amplification in human tumor cells is frequently mediated by extrachromosomal elements (e.g., double minute chromosomes (DMs)). Recent experiments have shown that DMs can be formed from smaller, submicroscopic circular precursors referred to as episomes. To investigate whether episomes are generally involved as intermediates in gene amplification, the authors determined whether they mediate the amplification of the mdr1 gene, which when overexpressed engenders cross resistance to multiple lipophilic drugs. A variety of methods including electrophoresis of undigested DNAs in high-voltage gradients, NotI digestion, and production of double-strand breaks by gamma radiation were used to distinguish between mdr1 sequences amplified on submicroscopic circular molecules and those amplified within DMs or chromosomal DNA. The gamma-irradiation procedure provides a new method for detecting and determining the size of circular molecules from 50 kilobases (kb) to greater than 1,000 kb. These methods revealed that some of the amplified mdr1 genes in vinblastine-resistant KB-V1 cells are contained in supercoiled circular molecules of --600 and --750 kb. Analysis of the replication of these molecules by a Meselson-Stahl density shift experiment demonstrated that they replicate approximately once in a cell cycle. The data lend further support to a model for gene amplification in which DMs are generally formed from smaller, autonomously replicating precursors.

  15. Continuous, real-time bioimaging of chemical bioavailability and toxicology using autonomously bioluminescent human cell lines

    NASA Astrophysics Data System (ADS)

    Xu, Tingting; Close, Dan M.; Webb, James D.; Price, Sarah L.; Ripp, Steven A.; Sayler, Gary S.

    2013-05-01

    Bioluminescent imaging is an emerging biomedical surveillance strategy that uses external cameras to detect in vivo light generated in small animal models of human physiology or in vitro light generated in tissue culture or tissue scaffold mimics of human anatomy. The most widely utilized of reporters is the firefly luciferase (luc) gene; however, it generates light only upon addition of a chemical substrate, thus only generating intermittent single time point data snapshots. To overcome this disadvantage, we have demonstrated substrate-independent bioluminescent imaging using an optimized bacterial bioluminescence (lux) system. The lux reporter produces bioluminescence autonomously using components found naturally within the cell, thereby allowing imaging to occur continuously and in real-time over the lifetime of the host. We have validated this technology in human cells with demonstrated chemical toxicological profiling against exotoxin exposures at signal strengths comparable to existing luc systems (~1.33 × 107 photons/second). As a proof-in-principle demonstration, we have engineered breast carcinoma cells to express bioluminescence for real-time screening of endocrine disrupting chemicals and validated detection of 17β-estradiol (EC50 = ~ 10 pM). These and other applications of this new reporter technology will be discussed as potential new pathways towards improved models of target chemical bioavailability, toxicology, efficacy, and human safety.

  16. Miniature Piezoelectric Shaker Mechanism for Autonomous Distribution of Unconsolidated Sample to Instrument Cells

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Frankovich, Kent; Bao, Xiaoqi; Tucker, Curtis

    2009-01-01

    To perform in-situ measurements on Mars or other planetary bodies many instruments require powder produced using some sampling technique (drilling/coring) or sample processing technique (core crushing) to be placed in measurement cells. This usually requires filling a small sample cell using an inlet funnel. In order to minimize cross contamination with future samples and ensure the sample is transferred from the funnel to the test cell with minimal residual powder the funnel is shaken. The shaking assists gravity by fluidizing the powder and restoring flow of the material. In order to counter cross contamination or potential clogging due to settling during autonomous handling a piezoelectric shaking mechanism was designed for the deposition of sample fines in instrument inlet funnels. This device was designed to be lightweight, consume low power and demonstrated to be a resilient solid state actuator that can be mechanically and electrically tuned to shake the inlet funnel. In the final design configuration tested under nominal Mars Ambient conditions the funnel mechanism is driven by three symmetrically mounted piezoelectric flexure actuators that are out of the funnel support load path. The frequency of the actuation can be electrically controlled and monitored and mechanically tuned by the addition of tuning mass on the free end of the actuator. Unlike conventional electromagnetic motors these devices are solid state and can be designed with no macroscopically moving parts. This paper will discuss the design and testing results of these shaking mechanisms.

  17. Conditional Deletion of Kit in Melanocytes: White Spotting Phenotype Is Cell Autonomous.

    PubMed

    Aoki, Hitomi; Tomita, Hiroyuki; Hara, Akira; Kunisada, Takahiro

    2015-07-01

    It is well established that cell-intrinsic signaling through the receptor tyrosine kinase KIT is critical for the development of neural crest-derived melanocytes. Nevertheless, it is not entirely clear whether Kit acts exclusively in a melanocyte-autonomous manner or in addition indirectly through other cell types. To address this question in vivo, we generated a targeted allele of Kit that allowed for CRE recombinase-mediated deletion of the transmembrane domain of KIT. Mice carrying one copy of the targeted allele and expressing CRE under the melanoblast/melanocyte-specific tyrosinase promoter exhibited a white spotting phenotype that was even more extensive compared with that found in mice heterozygous for a Kit-null allele. This phenotype is unlikely the result of sequestration of KIT ligand by neighboring cells or by potentially secreted forms of KIT because the spotting phenotype could not be rescued by overexpression of KITL. Likewise, overexpression of endothelin-3 or hepatocyte growth factor was unable to rescue melanocytes in these mice. Although the severity of the observed phenotype remains to be explained, the findings indicate that melanocyte-selective impairment of Kit is sufficient to interfere with normal melanocyte development.

  18. Synchronization of sinoatrial node pacemaker cell clocks and its autonomic modulation impart complexity to heart beating intervals Short title: Beating-rate variability of sinoatrial node cells

    PubMed Central

    Yaniv, Yael; Ahmet, Ismayil; Liu, Jie; Lyashkov, Alexey E.; Guiriba, Toni-Rose; Okamoto, Yosuke; Ziman, Bruce D.; Lakatta, Edward G.

    2014-01-01

    Background A reduction of complexity of heart-beat interval variability (BIV) that is associated with an increased morbidity and mortality in cardiovascular disease states is thought to derive from the balance of sympathetic and parasympathetic neural impulses to the heart. But rhythmic clock-like behavior intrinsic to pacemaker cells within the sinoatrial node (SAN) drives their beating, even in the absence of autonomic neural input. Objective To test how this rhythmic clock-like behavior intrinsic to pacemaker cells interacts with autonomic impulses to the heart-beat interval variability in vivo. Methods We analyzed BIV in the time and frequency domains and by fractal and entropy analyses: i) in vivo, when the brain input to the SAN is intact; ii) during autonomic denervation in vivo; iii) in isolated SAN tissue (i.e., in which the autonomic-neural input is completely absent); iv) in single pacemaker cells isolated from the SAN; and v) following autonomic receptor stimulation of these cells. Results Spontaneous-beating intervals of pacemaker cells residing within the isolated SAN tissue exhibit fractal-like behavior and have lower approximate entropy than in the intact heart. Isolation of pacemaker cells from SAN tissue, however, leads to a loss in the beating-interval order and fractal-like behavior. β adrenergic receptor stimulation of isolated pacemaker cells increases intrinsic clock synchronization, decreases their action potential period and increases system complexity. Conclusions Both the average-beating interval in vivo and beating interval complexity are conferred by the combined effects of clock periodicity intrinsic to pacemaker cells and their response to autonomic-neural input. PMID:24713624

  19. hESC Differentiation toward an Autonomic Neuronal Cell Fate Depends on Distinct Cues from the Co-Patterning Vasculature

    PubMed Central

    Acevedo, Lisette M.; Lindquist, Jeffrey N.; Walsh, Breda M.; Sia, Peik; Cimadamore, Flavio; Chen, Connie; Denzel, Martin; Pernia, Cameron D.; Ranscht, Barbara; Terskikh, Alexey; Snyder, Evan Y.; Cheresh, David A.

    2015-01-01

    Summary To gain insight into the cellular and molecular cues that promote neurovascular co-patterning at the earliest stages of human embryogenesis, we developed a human embryonic stem cell model to mimic the developing epiblast. Contact of ectoderm-derived neural cells with mesoderm-derived vasculature is initiated via the neural crest (NC), not the neural tube (NT). Neurovascular co-patterning then ensues with specification of NC toward an autonomic fate requiring vascular endothelial cell (EC)-secreted nitric oxide (NO) and direct contact with vascular smooth muscle cells (VSMCs) via T-cadherin-mediated homotypic interactions. Once a neurovascular template has been established, NT-derived central neurons then align themselves with the vasculature. Our findings reveal that, in early human development, the autonomic nervous system forms in response to distinct molecular cues from VSMCs and ECs, providing a model for how other developing lineages might coordinate their co-patterning. PMID:26004631

  20. The SNF2 family ATPase LSH promotes cell-autonomous de novo DNA methylation in somatic cells

    PubMed Central

    Termanis, Ausma; Torrea, Natalia; Culley, Jayne; Kerr, Alastair; Ramsahoye, Bernard; Stancheva, Irina

    2016-01-01

    Methylation of DNA at carbon 5 of cytosine is essential for mammalian development and implicated in transcriptional repression of genes and transposons. New patterns of DNA methylation characteristic of lineage-committed cells are established at the exit from pluripotency by de novo DNA methyltransferases enzymes, DNMT3A and DNMT3B, which are regulated by developmental signaling and require access to chromatin-organized DNA. Whether or not the capacity for de novo DNA methylation of developmentally regulated loci is preserved in differentiated somatic cells and can occur in the absence of exogenous signals is currently unknown. Here, we demonstrate that fibroblasts derived from chromatin remodeling ATPase LSH (HELLS)-null mouse embryos, which lack DNA methylation from centromeric repeats, transposons and a number of gene promoters, are capable of reestablishing DNA methylation and silencing of misregulated genes upon re-expression of LSH. We also show that the ability of LSH to bind ATP and the cellular concentration of DNMT3B are critical for cell-autonomous de novo DNA methylation in somatic cells. These data suggest the existence of cellular memory that persists in differentiated cells through many cell generations and changes in transcriptional state. PMID:27179028

  1. Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion

    PubMed Central

    Perrin, Laurent; Loizides-Mangold, Ursula; Skarupelova, Svetlana; Pulimeno, Pamela; Chanon, Stephanie; Robert, Maud; Bouzakri, Karim; Modoux, Christine; Roux-Lombard, Pascale; Vidal, Hubert; Lefai, Etienne; Dibner, Charna

    2015-01-01

    Objective Circadian clocks are functional in all light-sensitive organisms, allowing an adaptation to the external world in anticipation of daily environmental changes. In view of the potential role of the skeletal muscle clock in the regulation of glucose metabolism, we aimed to characterize circadian rhythms in primary human skeletal myotubes and investigate their roles in myokine secretion. Methods We established a system for long-term bioluminescence recording in differentiated human myotubes, employing lentivector gene delivery of the Bmal1-luciferase and Per2-luciferase core clock reporters. Furthermore, we disrupted the circadian clock in skeletal muscle cells by transfecting siRNA targeting CLOCK. Next, we assessed the basal secretion of a large panel of myokines in a circadian manner in the presence or absence of a functional clock. Results Bioluminescence reporter assays revealed that human skeletal myotubes, synchronized in vitro, exhibit a self-sustained circadian rhythm, which was further confirmed by endogenous core clock transcript expression. Moreover, we demonstrate that the basal secretion of IL-6, IL-8 and MCP-1 by synchronized skeletal myotubes has a circadian profile. Importantly, the secretion of IL-6 and several additional myokines was strongly downregulated upon siClock-mediated clock disruption. Conclusions Our study provides for the first time evidence that primary human skeletal myotubes possess a high-amplitude cell-autonomous circadian clock, which could be attenuated. Furthermore, this oscillator plays an important role in the regulation of basal myokine secretion by skeletal myotubes. PMID:26629407

  2. Cell-Autonomous Regulation of Dendritic Spine Density by PirB

    PubMed Central

    2016-01-01

    Synapse density on cortical pyramidal neurons is modulated by experience. This process is highest during developmental critical periods, when mechanisms of synaptic plasticity are fully engaged. In mouse visual cortex, the critical period for ocular dominance (OD) plasticity coincides with the developmental pruning of synapses. At this time, mice lacking paired Ig-like receptor B (PirB) have excess numbers of dendritic spines on L5 neurons; these spines persist and are thought to underlie the juvenile-like OD plasticity observed in adulthood. Here we examine whether PirB is required specifically in excitatory neurons to exert its effect on dendritic spine and synapse density during the critical period. In mice with a conditional allele of PirB (PirBfl/fl), PirB was deleted only from L2/3 cortical pyramidal neurons in vivo by timed in utero electroporation of Cre recombinase. Sparse mosaic expression of Cre produced neurons lacking PirB in a sea of wild-type neurons and glia. These neurons had significantly elevated dendritic spine density, as well as increased frequency of miniature EPSCs, suggesting that they receive a greater number of synaptic inputs relative to Cre– neighbors. The effect of cell-specific PirB deletion on dendritic spine density was not accompanied by changes in dendritic branching complexity or axonal bouton density. Together, results imply a neuron-specific, cell-autonomous action of PirB on synaptic density in L2/3 pyramidal cells of visual cortex. Moreover, they are consistent with the idea that PirB functions normally to corepress spine density and synaptic plasticity, thereby maintaining headroom for cells to encode ongoing experience-dependent structural change throughout life. PMID:27752542

  3. Maternal mobile phone exposure adversely affects the electrophysiological properties of Purkinje neurons in rat offspring.

    PubMed

    Haghani, M; Shabani, M; Moazzami, K

    2013-10-10

    Electromagnetic field (EMF) radiations emitted from mobile phones may cause structural damage to neurons. With the increased usage of mobile phones worldwide, concerns about their possible effects on the nervous system are rising. In the present study, we aimed to elucidate the possible effects of prenatal EMF exposure on the cerebellum of offspring Wistar rats. Rats in the EMF group were exposed to 900-MHz pulse-EMF irradiation for 6h per day during all gestation period. Ten offspring per each group were evaluated for behavioral and electrophysiological evaluations. Cerebellum-related behavioral dysfunctions were analyzed using motor learning and cerebellum-dependent functional tasks (Accelerated Rotarod, Hanging and Open field tests). Whole-cell patch clamp recordings were used for electrophysiological evaluations. The results of the present study failed to show any behavioral abnormalities in rats exposed to chronic EMF radiation. However, whole-cell patch clamp recordings revealed decreased neuronal excitability of Purkinje cells in rats exposed to EMF. The most prominent changes included afterhyperpolarization amplitude, spike frequency, half width and first spike latency. In conclusion, the results of the present study show that prenatal EMF exposure results in altered electrophysiological properties of Purkinje neurons. However, these changes may not be severe enough to alter the cerebellum-dependent functional tasks.

  4. [Hering, Vintschgau and the problem of Purkinje's succession].

    PubMed

    Sablik, K

    1989-01-01

    The problem of Jan Evangelista Purkinje's succession will be presented according to the results of archival research. The Ministery of Cult and Education in Vienna, and especially Karl Rokitansky, who was the adviser for medical education, in 1867 created a new professorship and Institute for Physiology, beside Purkinje and his Institute. Maximilian Vintschgau was to assist the world-famous 80 years old Purkinje but was not permitted to teach the whole field of physiology and to examine students. The fact that the professors of the Prague Medical Faculty in 1868 started to remove the restrictions for Vintschgau with the argument of academic freedom and in 1869 tried to keep the second institute for the future, is not yet mentioned in the literature. Discussions about the problems of the Czech language and its use in physiological lectures were scarcely mentioned by the Ministery: if one day there should be a Czech-speaking lecturer, the problem would be solved. Unfortunately Purkinje had no genuine pupil in Prague, and after his death, Vintschgau was provisional director of the Institute for half a year. In this situation Rokitansky decided that there should only be one institute for physiology in Prague. The Medical Faculty wanted to have Hermann Helmholtz to succeed Purkinje, but Helmholtz refused to come. Ewald Hering, who was nominated in the second place by the Faculty, accepted the call. Vintschgau had only rank four, third was Conrad Eckhard from Giessen. The Ministery in Vienna, however, made a special decision: The Medical Faculty of Innsbruck was founded in 1869, and there was not professor for physiology at the beginning of 1870. The candidates of the Insbruck Medical Faculty were neglected in favour of Vintschgau, who was considered to be a trustworthy Austrian patriot. Hering and Vintschgau became professors on March 6, 1870, and Hering started his work in Prague in a new institute in the "Wenzelsbad". PMID:2529673

  5. [Hering, Vintschgau and the problem of Purkinje's succession].

    PubMed

    Sablik, K

    1989-01-01

    The problem of Jan Evangelista Purkinje's succession will be presented according to the results of archival research. The Ministery of Cult and Education in Vienna, and especially Karl Rokitansky, who was the adviser for medical education, in 1867 created a new professorship and Institute for Physiology, beside Purkinje and his Institute. Maximilian Vintschgau was to assist the world-famous 80 years old Purkinje but was not permitted to teach the whole field of physiology and to examine students. The fact that the professors of the Prague Medical Faculty in 1868 started to remove the restrictions for Vintschgau with the argument of academic freedom and in 1869 tried to keep the second institute for the future, is not yet mentioned in the literature. Discussions about the problems of the Czech language and its use in physiological lectures were scarcely mentioned by the Ministery: if one day there should be a Czech-speaking lecturer, the problem would be solved. Unfortunately Purkinje had no genuine pupil in Prague, and after his death, Vintschgau was provisional director of the Institute for half a year. In this situation Rokitansky decided that there should only be one institute for physiology in Prague. The Medical Faculty wanted to have Hermann Helmholtz to succeed Purkinje, but Helmholtz refused to come. Ewald Hering, who was nominated in the second place by the Faculty, accepted the call. Vintschgau had only rank four, third was Conrad Eckhard from Giessen. The Ministery in Vienna, however, made a special decision: The Medical Faculty of Innsbruck was founded in 1869, and there was not professor for physiology at the beginning of 1870. The candidates of the Insbruck Medical Faculty were neglected in favour of Vintschgau, who was considered to be a trustworthy Austrian patriot. Hering and Vintschgau became professors on March 6, 1870, and Hering started his work in Prague in a new institute in the "Wenzelsbad".

  6. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency

    SciTech Connect

    Barnhoorn, Sander; Uittenboogaard, Lieneke M.; Jaarsma, Dick; Vermeij, Wilbert P.; Tresini, Maria; Weymaere, Michael; Menoni, Hervé; Brandt, Renata M. C.; de Waard, Monique C.; Botter, Sander M.; Sarker, Altaf H.; Jaspers, Nicolaas G. J.; van der Horst, Gijsbertus T. J.; Cooper, Priscilla K.; Hoeijmakers, Jan H. J.; van der Pluijm, Ingrid; Niedernhofer, Laura J.

    2014-10-09

    As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg-/- mouse model which—in a C57BL6/FVB F1 hybrid genetic background—displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.

  7. Autonomously replicating episomes contain mdr1 genes in a multidrug-resistant human cell line.

    PubMed

    Ruiz, J C; Choi, K H; von Hoff, D D; Roninson, I B; Wahl, G M

    1989-01-01

    Gene amplification in human tumor cells is frequently mediated by extrachromosomal elements (e.g., double minute chromosomes [DMs]). Recent experiments have shown that DMs can be formed from smaller, submicroscopic circular precursors referred to as episomes (S. M. Carroll, M. L. DeRose, P. Gaudray, C. M. Moore, D. R. Needham-Vandevanter, D. D. Von Hoff and G. M. Wahl, Mol. Biol. 8:1525-1533, 1988). To investigate whether episomes are generally involved as intermediates in gene amplification, we determined whether they mediate the amplification of the mdr1 gene, which when overexpressed engenders cross resistance to multiple lipophilic drugs. A variety of methods including electrophoresis of undigested DNAs in high-voltage gradients, NotI digestion, and production of double-strand breaks by gamma irradiation were used to distinguish between mdr1 sequences amplified on submicroscopic circular molecules and those amplified within DMs or chromosomal DNA. The gamma-irradiation procedure provides a new method for detecting and determining the size of circular molecules from 50 kilobases (kb) to greater than 1,000 kb. These methods revealed that some of the amplified mdr1 genes in vinblastine-resistant KB-V1 cells are contained in supercoiled circular molecules of approximately 600 and approximately 750 kb. Analysis of the replication of these molecules by a Meselson-Stahl density shift experiment demonstrated that they replicate approximately once in a cell cycle. The data lend further support to a model for gene amplification in which DMs are generally formed from smaller, autonomously replicating precursors.

  8. Cell-Autonomous Progeroid Changes in Conditional Mouse Models for Repair Endonuclease XPG Deficiency

    PubMed Central

    Vermeij, Wilbert P.; Tresini, Maria; Weymaere, Michael; Menoni, Hervé; Brandt, Renata M. C.; de Waard, Monique C.; Botter, Sander M.; Sarker, Altaf H.; Jaspers, Nicolaas G. J.; van der Horst, Gijsbertus T. J.; Cooper, Priscilla K.; Hoeijmakers, Jan H. J.; van der Pluijm, Ingrid

    2014-01-01

    As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg−/− mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg−/− mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging. PMID:25299392

  9. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency

    DOE PAGES

    Barnhoorn, Sander; Uittenboogaard, Lieneke M.; Jaarsma, Dick; Vermeij, Wilbert P.; Tresini, Maria; Weymaere, Michael; Menoni, Hervé; Brandt, Renata M. C.; de Waard, Monique C.; Botter, Sander M.; et al

    2014-10-09

    As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg-/- mouse model which—in a C57BL6/FVB F1 hybrid genetic background—displays manymore » progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.« less

  10. Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology.

    PubMed

    Grice, Stuart J; Sleigh, James N; Motley, William W; Liu, Ji-Long; Burgess, Robert W; Talbot, Kevin; Cader, M Zameel

    2015-08-01

    Charcot-Marie-Tooth (CMT) neuropathies are collectively the most common hereditary neurological condition and a major health burden for society. Dominant mutations in the gene GARS, encoding the ubiquitous enzyme, glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and lead to CMT disease type 2D. This genetic disorder exemplifies a recurring motif in neurodegeneration, whereby mutations in essential, widely expressed genes have selective deleterious consequences for the nervous system. Here, using novel Drosophila models, we show a potential solution to this phenomenon. Ubiquitous expression of mutant GlyRS leads to motor deficits, progressive neuromuscular junction (NMJ) denervation and pre-synaptic build-up of mutant GlyRS. Intriguingly, neuronal toxicity is, at least in part, non-cell autonomous, as expression of mutant GlyRS in mesoderm or muscle alone results in similar pathology. This mutant GlyRS toxic gain-of-function, which is WHEP domain-dependent, coincides with abnormal NMJ assembly, leading to synaptic degeneration, and, ultimately, reduced viability. Our findings suggest that mutant GlyRS gains access to ectopic sub-compartments of the motor neuron, providing a possible explanation for the selective neuropathology caused by mutations in a widely expressed gene.

  11. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

    PubMed

    Conti, Valentina; Gandaglia, Anna; Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions.

  12. Neural Inhibition of Dopaminergic Signaling Enhances Immunity in a Cell-Non-autonomous Manner.

    PubMed

    Cao, Xiou; Aballay, Alejandro

    2016-09-12

    The innate immune system is the front line of host defense against microbial infections, but its rapid and uncontrolled activation elicits microbicidal mechanisms that have deleterious effects [1, 2]. Increasing evidence indicates that the metazoan nervous system, which responds to stimuli originating from both the internal and the external environment, functions as a modulatory apparatus that controls not only microbial killing pathways but also cellular homeostatic mechanisms [3-5]. Here we report that dopamine signaling controls innate immune responses through a D1-like dopamine receptor, DOP-4, in Caenorhabditis elegans. Chlorpromazine inhibition of DOP-4 in the nervous system activates a microbicidal PMK-1/p38 mitogen-activated protein kinase signaling pathway that enhances host resistance against bacterial infections. The immune inhibitory function of dopamine originates in CEP neurons and requires active DOP-4 in downstream ASG neurons. Our findings indicate that dopamine signaling from the nervous system controls immunity in a cell-non-autonomous manner and identifies the dopaminergic system as a potential therapeutic target for not only infectious diseases but also a range of conditions that arise as a consequence of malfunctioning immune responses.

  13. Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology

    PubMed Central

    Grice, Stuart J.; Sleigh, James N.; Motley, William W.; Liu, Ji-Long; Burgess, Robert W.; Talbot, Kevin; Cader, M. Zameel

    2015-01-01

    Charcot–Marie–Tooth (CMT) neuropathies are collectively the most common hereditary neurological condition and a major health burden for society. Dominant mutations in the gene GARS, encoding the ubiquitous enzyme, glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and lead to CMT disease type 2D. This genetic disorder exemplifies a recurring motif in neurodegeneration, whereby mutations in essential, widely expressed genes have selective deleterious consequences for the nervous system. Here, using novel Drosophila models, we show a potential solution to this phenomenon. Ubiquitous expression of mutant GlyRS leads to motor deficits, progressive neuromuscular junction (NMJ) denervation and pre-synaptic build-up of mutant GlyRS. Intriguingly, neuronal toxicity is, at least in part, non-cell autonomous, as expression of mutant GlyRS in mesoderm or muscle alone results in similar pathology. This mutant GlyRS toxic gain-of-function, which is WHEP domain-dependent, coincides with abnormal NMJ assembly, leading to synaptic degeneration, and, ultimately, reduced viability. Our findings suggest that mutant GlyRS gains access to ectopic sub-compartments of the motor neuron, providing a possible explanation for the selective neuropathology caused by mutations in a widely expressed gene. PMID:25972375

  14. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms

    PubMed Central

    Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions. PMID:26098633

  15. Cytosolic PLA2(alpha) activation in Purkinje neurons and its role in AMPA-receptor trafficking.

    PubMed

    Mashimo, Masato; Hirabayashi, Tetsuya; Murayama, Toshihiko; Shimizu, Takao

    2008-09-15

    Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) selectively releases arachidonic acid from membrane phospholipids and has been proposed to be involved in the induction of long-term depression (LTD), a form of synaptic plasticity in the cerebellum. This enzyme requires two events for its full activation: Ca(2+)-dependent translocation from the cytosol to organelle membranes in order to access phospholipids as substrates, and phosphorylation by several kinases. However, the subcellular distribution and activation of cPLA(2)alpha in Purkinje cells and the role of arachidonic acid in cerebellar LTD have not been fully elucidated. In cultured Purkinje cells, stimulation of AMPA receptors, but not metabotropic glutamate receptors, triggered translocation of cPLA(2)alpha to the somatic and dendritic Golgi compartments. This translocation required Ca(2+) influx through P-type Ca(2+) channels. AMPA plus PMA, a chemical method for inducing LTD, released arachidonic acid via phosphorylation of cPLA(2)alpha. AMPA plus PMA induced a decrease in surface GluR2 for more than 2 hours. Interestingly, this reduction was occluded by a cPLA(2)alpha-specific inhibitor. Furthermore, PMA plus arachidonic acid caused the prolonged internalization of GluR2 without activating AMPA receptors. These results suggest that cPLA(2)alpha regulates the persistent decrease in the expression of AMPA receptors, underscoring the role of cPLA(2)alpha in cerebellar LTD. PMID:18713832

  16. Non-cell-autonomous stimulation of stem cell proliferation following ablation of Tcf3

    SciTech Connect

    Yi, Fei; Merrill, Bradley J.

    2010-04-01

    A combination of cell intrinsic factors and extracellular signals determine whether mouse embryonic stem cells (ESC) divide, self-renew, and differentiate. Here, we report a new interaction between cell intrinsic aspects of the canonical Wnt/Tcf/{beta}-catenin signaling pathway and extracellular Lif/Jak/Stat3 stimulation that combines to promote self-renewal and proliferation of ESC. Mutant ESC lacking the Tcf3 transcriptional repressor continue to self-renew in the absence of exogenous Lif and through pharmacological inhibition of Lif/Jak/Stat3 signaling; however, proliferation rates of TCF3-/- ESC were significantly decreased by inhibiting Jak/Stat3 activity. Cell mixing experiments showed that stimulation of Stat3 phosphorylation in TCF3-/- ESC was mediated through secretion of paracrine acting factors, but did not involve elevated Lif or LifR transcription. The new interaction between Wnt and Lif/Jak/Stat3 signaling pathways has potential for new insights into the growth of tumors caused by aberrant activity of Wnt/Tcf/{beta}-catenin signaling.

  17. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  18. Posturography of ataxia induced by Coriolis- and Purkinje-effects.

    PubMed

    Fitger, C; Brandt, T

    1982-02-01

    Vestibular Coriolis- and Purkinje-effect, which are known to induce vertigo, were investigated with respect to body posture. One aim of this investigation was to provide information concerning clinical vertigo symptoms. Standing on a rotatable stabilometer, 25 healthy subjects had to execute lateral head tilts during (Coriolis), or after (Purkinje), rotation varied with different constant velocities. The conditions were varied with respect to eyes open vs. eyes closed, head upright vs. head tilt to the right and left, direction of rotation clockwise vs. counterclockwise, active vs. passive head tilt, and active vs. passive body rotation. The results supported the expectation that destabilization was less severe with open than with closed eyes and that sway amplitudes were increased after head tilt as well as with a higher velocity of rotation. The direction of the induced body shift was, as expected, opposite to the initial vestibular stimulus. A forward shift after stop without head tilt was frequently found, being independent of the previous direction of rotation. Reported perceptions coincided mostly not with the initial vestibular signal but rather with the actual movement of compensation. Active instead of passive movements did not produce clearly different effects. The Purkinje experiment appeared to be equivalent to the situation when a patient with an acute lesion of a horizontal vestibular canal bends his head. The stabilogram under this condition may allow a prediction of the side of the lesion.

  19. Cable analysis in quiescent and active sheep Purkinje fibres.

    PubMed

    Pressler, M L

    1984-07-01

    Cable properties of sheep cardiac Purkinje fibres were studied under resting and paced conditions. Standard micro-electrode techniques were used to apply intracellular current pulses and record the resultant voltage changes at various distances from the current input. In a parallel set of experiments, fibre dimensions were measured after freezing and serial sectioning. Fibres selected on the basis of a cylindrical appearance had approximately uniform cross-sectional diameters which varied +/- 12% along their length. Electrotonic potentials recorded at rest and in diastole (under conditions that minimized diastolic depolarization) adhered quite closely to the behaviour expected for a unidimensional cable provided voltages were recorded greater than or equal to one fibre diameter from the current source. The unidimensional space constant, input resistance, and membrane time constant were significantly larger during quiescence than in diastole. These differences were accounted for by a 90% increase in membrane resistance at rest. There was no significant change in internal longitudinal resistance nor membrane capacitance associated with activity. The voltage distribution close to the current input (i.e. within one fibre diameter) strongly deviated from the theoretical three-dimensional voltage decay expected for a homogeneous cylinder. This finding suggests that the transverse resistance to current flow is much greater than the longitudinal resistance. The anisotropic behaviour within the cardiac Purkinje fibre may explain several previous observations: (i) the lack of a relationship between conduction velocity and fibre diameter; and (ii) the much shorter liminal length for excitation in Purkinje fibres than for point-stimulated squid axons.

  20. Cardiomyocyte Circadian Oscillations Are Cell-Autonomous, Amplified by β-Adrenergic Signaling, and Synchronized in Cardiac Ventricle Tissue

    PubMed Central

    Welsh, David K.

    2016-01-01

    Circadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in culture. In the present study, we examined the relationship between intrinsic myocardial function and circadian rhythms in cultures from mouse heart. We cultured ventricular explants or dispersed cardiomyocytes from neonatal mice expressing a PER2::LUC bioluminescent reporter of circadian clock gene expression. We found that isoproterenol, a β-adrenoceptor agonist known to increase heart rate and contractility, also amplifies PER2 circadian rhythms in ventricular explants. We found robust, cell-autonomous PER2 circadian rhythms in dispersed cardiomyocytes. Single-cell rhythms were initially synchronized in ventricular explants but desynchronized in dispersed cells. In addition, we developed a method for long-term, simultaneous monitoring of clock gene expression, contraction rate, and basal intracellular Ca2+ level in cardiomyocytes using PER2::LUC in combination with GCaMP3, a genetically encoded fluorescent Ca2+ reporter. In contrast to robust PER2 circadian rhythms in cardiomyocytes, we detected no rhythms in contraction rate and only weak rhythms in basal Ca2+ level. In summary, we found that PER2 circadian rhythms of cardiomyocytes are cell-autonomous, amplified by adrenergic signaling, and synchronized by intercellular communication in ventricle explants, but we detected no robust circadian rhythms in contraction rate or basal Ca2+. PMID:27459195

  1. Autonomous Pattern Formation of Micro-organic Cell Density with Optical Interlink between Two Isolated Culture Dishes.

    PubMed

    Ozasa, Kazunari; Lee, Jeesoo; Song, Simon; Hara, Masahiko; Maeda, Mizuo

    2015-01-01

    Artificial linking of two isolated culture dishes is a fascinating means of investigating interactions among multiple groups of microbes or fungi. We examined artificial interaction between two isolated dishes containing Euglena cells, which are photophobic to strong blue light. The spatial distribution of swimming Euglena cells in two micro-aquariums in the dishes was evaluated as a set of new measures: the trace momentums (TMs). The blue light patterns next irradiated onto each dish were deduced from the set of TMs using digital or analogue feedback algorithms. In the digital feedback experiment, one of two different pattern-formation rules was imposed on each feedback system. The resultant cell distribution patterns satisfied the two rules with an and operation, showing that cooperative interaction was realized in the interlink feedback. In the analogue experiment, two dishes A and B were interlinked by a feedback algorithm that illuminated dish A (B) with blue light of intensity proportional to the cell distribution in dish B (A). In this case, a distribution pattern and its reverse were autonomously formed in the two dishes. The autonomous formation of a pair of reversal patterns reflects a type of habitat separation realized by competitive interaction through the interlink feedback. According to this study, interlink feedback between two or more separate culture dishes enables artificial interactions between isolated microbial groups, and autonomous cellular distribution patterns will be achieved by correlating various microbial species, despite environmental and spatial scale incompatibilities. The optical interlink feedback is also useful for enhancing the performance of Euglena-based soft biocomputing. PMID:25622016

  2. Autonomic neuropathies

    NASA Technical Reports Server (NTRS)

    Low, P. A.

    1998-01-01

    A limited autonomic neuropathy may underlie some unusual clinical syndromes, including the postural tachycardia syndrome, pseudo-obstruction syndrome, heat intolerance, and perhaps chronic fatigue syndrome. Antibodies to autonomic structures are common in diabetes, but their specificity is unknown. The presence of autonomic failure worsens prognosis in the diabetic state. Some autonomic neuropathies are treatable. Familial amyloid polyneuropathy may respond to liver transplantation. There are anecdotal reports of acute panautonomic neuropathy responding to intravenous gamma globulin. Orthostatic hypotension may respond to erythropoietin or midodrine.

  3. Novel p53 target genes secreted by the liver are involved in non-cell-autonomous regulation.

    PubMed

    Charni, M; Molchadsky, A; Goldstein, I; Solomon, H; Tal, P; Goldfinger, N; Yang, P; Porat, Z; Lozano, G; Rotter, V

    2016-03-01

    The tumor-suppressor p53 is a transcription factor that prevents cancer development and is involved in regulation of various physiological processes. This is mediated both by induction of cell cycle arrest and apoptosis and by controlling the expression of a plethora of target genes, including secreted proteins. It has been demonstrated that p53 may exert its effect in non-cell-autonomous manner by modulating the expression of genes that encode for secreted factors. In this study, we utilized our microarray data to identify and characterize novel p53 target genes expressed in human liver cells and associated with steroid hormones processing and transfer. We identified the steroid hormones binding factors, sex hormone-binding globulin (SHBG), corticosteroid-binding globulin (CBG) and cytochrome P450 family 21 subfamily A polypeptide 2, as novel p53 target genes. Their expression and secretion was increased following p53 activation in various hepatic cells. We observed that p53 wild-type mice exhibited higher levels of CBG compared with their p53 null counterparts. We demonstrated that the induction of the steroid hormones binding factors can be mediated by binding to specific p53 responsive elements within their promoters. In addition, utilizing conditioned medium experiments we have shown that p53-dependent induction of SHBG secretion from liver cells enhances apoptosis of breast cancer cells. Moreover, depletion of SHBG abolished the induction of breast cancer cells death. The newly identified p53 target genes suggest a novel non-cell-autonomous tumor-suppressive regulation mediated by p53 that is central for maintaining organism homeostasis.

  4. Novel p53 target genes secreted by the liver are involved in non-cell-autonomous regulation

    PubMed Central

    Charni, M; Molchadsky, A; Goldstein, I; Solomon, H; Tal, P; Goldfinger, N; Yang, P; Porat, Z; Lozano, G; Rotter, V

    2016-01-01

    The tumor-suppressor p53 is a transcription factor that prevents cancer development and is involved in regulation of various physiological processes. This is mediated both by induction of cell cycle arrest and apoptosis and by controlling the expression of a plethora of target genes, including secreted proteins. It has been demonstrated that p53 may exert its effect in non-cell-autonomous manner by modulating the expression of genes that encode for secreted factors. In this study, we utilized our microarray data to identify and characterize novel p53 target genes expressed in human liver cells and associated with steroid hormones processing and transfer. We identified the steroid hormones binding factors, sex hormone-binding globulin (SHBG), corticosteroid-binding globulin (CBG) and cytochrome P450 family 21 subfamily A polypeptide 2, as novel p53 target genes. Their expression and secretion was increased following p53 activation in various hepatic cells. We observed that p53 wild-type mice exhibited higher levels of CBG compared with their p53 null counterparts. We demonstrated that the induction of the steroid hormones binding factors can be mediated by binding to specific p53 responsive elements within their promoters. In addition, utilizing conditioned medium experiments we have shown that p53-dependent induction of SHBG secretion from liver cells enhances apoptosis of breast cancer cells. Moreover, depletion of SHBG abolished the induction of breast cancer cells death. The newly identified p53 target genes suggest a novel non-cell-autonomous tumor-suppressive regulation mediated by p53 that is central for maintaining organism homeostasis. PMID:26358154

  5. Human Induced Hepatic Lineage-Oriented Stem Cells: Autonomous Specification of Human iPS Cells toward Hepatocyte-Like Cells without Any Exogenous Differentiation Factors

    PubMed Central

    Yanagi, Satoshi; Kato, Chika; Takashima, Ryokichi; Kobayashi, Eiji; Hagiwara, Keitaro; Ochiya, Takahiro

    2015-01-01

    Preparing targeted cells for medical applications from human induced pluripotent stem cells (hiPSCs) using growth factors, compounds, or gene transfer has been challenging. Here, we report that human induced hepatic lineage-oriented stem cells (hiHSCs) were generated and expanded as a new type of hiPSC under non-typical coculture with feeder cells in a chemically defined hiPSC medium at a very high density. Self-renewing hiHSCs expressed markers of both human embryonic stem cells (hESCs) and hepatocytes. Those cells were highly expandable, markedly enhancing gene expression of serum hepatic proteins and cytochrome P450 enzymes with the omission of FGF-2 from an undefined hiPSC medium. The hepatic specification of hiHSCs was not attributable to the genetic and epigenetic backgrounds of the starting cells, as they were established from distinct donors and different types of cells. Approximately 90% of hiHSCs autonomously differentiated to hepatocyte-like cells, even in a defined minimum medium without any of the exogenous growth factors necessary for hepatic specification. After 12 days of this culture, the differentiated cells significantly enhanced gene expression of serum hepatic proteins (ALB, SERPINA1, TTR, TF, FABP1, FGG, AGT, RBP4, and AHSG), conjugating enzymes (UGT2B4, UGT2B7, UGT2B10, GSTA2, and GSTA5), transporters (SULT2A1, SLC13A5, and SLCO2B1), and urea cycle-related enzymes (ARG1 and CPS1). In addition, the hepatocyte-like cells performed key functions of urea synthesis, albumin secretion, glycogen storage, indocyanine green uptake, and low-density lipoprotein uptake. The autonomous hepatic specification of hiHSCs was due to their culture conditions (coculture with feeder cells in a defined hiPSC medium at a very high density) in self-renewal rather than in differentiation. These results suggest the feasibility of preparing large quantities of hepatocytes as a convenient and inexpensive hiPSC differentiation. Our study also suggests the necessity of

  6. Impaired hypercarbic and hypoxic responses from developmental loss of cerebellar Purkinje neurons: Implications for sudden infant death syndrome

    PubMed Central

    Calton, M.; Dickson, P.; Harper, R.M.; Goldowitz, D.; Mittleman, G.

    2014-01-01

    Impaired responsivity to hypercapnia or hypoxia is commonly considered a mechanism of failure in Sudden Infant Death Syndrome (SIDS). The search for deficient brain structures mediating flawed chemosensitivity typically focuses on medullary regions; however, a network that includes Purkinje cells of the cerebellar cortex and its associated cerebellar nuclei also helps mediate responses to CO2 and O2 challenges, and assists integration of cardiovascular and respiratory interactions. Although cerebellar nuclei contributions to chemoreceptor challenges in adult models are well described, Purkinje cell roles in developing models are unclear. We used a model of developmental cerebellar Purkinje cell loss to determine if such loss influenced compensatory ventilatory responses to hypercapnic and hypoxic challenges. Twenty-four Lurcher mutant mice and wildtype controls were sequentially exposed to 2% increases in CO2 (0%-8%), or 2% reductions in O2 (21%-13%) over four minutes, with return to room air (21% O2 / 79% N2 / 0% CO2) between each exposure. Whole-body plethysmography was used to continuously monitor tidal volume (TV) and breath frequency (f). Increased f to hypercapnia was significantly lower in Mutants, slower to initiate, and markedly lower in compensatory periods, except for very high (8%) CO2 levels. The magnitude of TV changes to increasing CO2 appeared smaller in Mutants, but only approached significance. Smaller, but significant differences emerged in response to hypoxia, with Mutants showing smaller TV when initially exposed to reduced O2, and lower f following exposure to 17% O2. Since cerebellar neuropathology appears in SIDS victims, developmental cerebellar neuropathology may contribute to SIDS vulnerability. PMID:25132500

  7. brother of cdo (umleitung) is cell-autonomously required for Hedgehog-mediated ventral CNS patterning in the zebrafish

    PubMed Central

    Bergeron, Sadie A.; Tyurina, Oksana V.; Miller, Emily; Bagas, Andrea; Karlstrom, Rolf O.

    2011-01-01

    The transmembrane protein Brother of Cdo (Boc) has been implicated in Shh-mediated commissural axon guidance, and can both positively and negatively regulate Hedgehog (Hh) target gene transcription, however, little is known about in vivo requirements for Boc during vertebrate embryogenesis. The zebrafish umleitung (umlty54) mutant was identified by defects in retinotectal axon projections. Here, we show that the uml locus encodes Boc and that Boc function is cell-autonomously required for Hh-mediated neural patterning. Our phenotypic analysis suggests that Boc is required as a positive regulator of Hh signaling in the spinal cord, hypothalamus, pituitary, somites and upper jaw, but that Boc might negatively regulate Hh signals in the lower jaw. This study reveals a role for Boc in ventral CNS cells that receive high levels of Hh and uncovers previously unknown roles for Boc in vertebrate embryogenesis. PMID:21115611

  8. Alterations in the intrinsic burst activity of Purkinje neurons in offspring maternally exposed to the CB1 cannabinoid agonist WIN 55212-2.

    PubMed

    Shabani, Mohammad; Mahnam, Amin; Sheibani, Vahid; Janahmadi, Mahyar

    2014-01-01

    Burst firing plays an important role in normal neuronal function and dysfunction. In Purkinje neurons, where the firing rate and discharge pattern encode the timing signals necessary for motor function, any alteration in firing properties, including burst activity, may affect the motor output. Therefore, we examined whether maternal exposure to the cannabinoid receptor agonist WIN 55212-2 (WIN) may affect the burst firing properties of cerebellar Purkinje cells in offspring. Whole-cell somatic patch-clamp recordings were made from cerebellar slices of adult male rats that were exposed to WIN prenatally. WIN exposure during pregnancy induced long-term alterations in the burst firing behavior of Purkinje neurons in rat offspring as evidenced by a significant increase in the mean number of spikes per burst (p < 0.05) and the prolongation of burst firing activity (p < 0.01). The postburst afterhyperpolarization potential (p < 0.001), the mean intraburst interspike intervals (p < 0.001) and the mean intraburst firing frequency (p < 0.001) were also significantly increased in the WIN-treated group. Prenatal exposure to WIN enhanced the firing irregularity as reflected by a significant decrease in the coefficient of variation of the intraburst interspike interval (p < 0.05). Furthermore, whole-cell voltage-clamp recordings revealed that prenatal WIN exposure significantly enhanced Ca(2+) channel current amplitude in offspring Purkinje neurons compared to control cells. Overall, the data presented here strongly suggest that maternal exposure to cannabinoids can induce long-term changes in complex spike burst activity, which in turn may lead to alterations in neuronal output.

  9. A dual character of flavonoids in influenza A virus replication and spread through modulating cell-autonomous immunity by MAPK signaling pathways.

    PubMed

    Dong, Wenjuan; Wei, Xiuli; Zhang, Fayun; Hao, Junfeng; Huang, Feng; Zhang, Chunling; Liang, Wei

    2014-11-28

    Flavonoids are well known as a large class of polyphenolic compounds, which have a variety of physiological activities, including anti-influenza virus activity. The influenza A/WSN/33 infected A549 cells have been used to screen anti-influenza virus drugs from natural flavonoid compounds library. Unexpectedly, some flavonoid compounds significantly inhibited virus replication, while the others dramatically promoted virus replication. In this study, we attempted to understand these differences between flavonoid compounds in their antivirus mechanisms. Hesperidin and kaempferol were chosen as representatives of both sides, each of which exhibited the opposite effects on influenza virus replication. Our investigation revealed that the opposite effects produced by hesperidin and kaempferol on influenza virus were due to inducing the opposite cell-autonomous immune responses by selectively modulating MAP kinase pathways: hesperidin up-regulated P38 and JNK expression and activation, thus resulting in the enhanced cell-autonomous immunity; while kaempferol dramatically down-regulated p38 and JNK expression and activation, thereby suppressing cell-autonomous immunity. In addition, hesperidin restricted RNPs export from nucleus by down-regulating ERK activation, but kaempferol promoted RNPs export by up-regulating ERK activation. Our findings demonstrate that a new generation of anti-influenza virus drugs could be developed based on selective modulation of MAP kinase pathways to stimulate cell-autonomous immunity.

  10. Intermediate (skeletin) filaments in heart Purkinje fibers. A correlative morphological and biochemical identification with evidence of a cytoskeletal function

    PubMed Central

    1979-01-01

    Cow Purkinje fibers contain a population of free cytoplasmic filaments which consistently differ in ultrastructural appearance from actin and myosin filaments, irrespective of preparation technique. The fixation and staining techniques, however, influenced the filament diameter, which was found to be 7.4--9.5 nm for filaments in plastic-embedded material, and 7.0 nm in cryo-sectioned material, thus intermediate as compared to actin and myosin filaments. Cross-sectional profiles suggested that the intermediate-sized filaments are composed of four subfilaments. To provide a basis for further biochemical investigations on the filaments, extraction procedures were carried out to remove other cell organelles. Electron microscopy showed that undulating bundles of intermediate filaments converging towards desmosomes still remained, after the extractions, together with Z-disk material. In spite of the extensive extraction, the shape of the individual cells and the assemblies of cell bundles remained intact. This confirms that the intermediate filaments of cow Purkinje fibers together with desmosomes do in fact have a cytoskeletal function. On account of (a) the cytoskeletal function of the filaments, (b) the similarities to the smooth muscle "100-A filament" protein subunit skeletin, and (c) the inadequate and confusing existing terminology, we suggest that the filaments be named "skeletin filaments." PMID:572365

  11. Cell-autonomous requirement of the USP/EcR-B ecdysone receptor for mushroom body neuronal remodeling in Drosophila.

    PubMed

    Lee, T; Marticke, S; Sung, C; Robinow, S; Luo, L

    2000-12-01

    Neuronal process remodeling occurs widely in the construction of both invertebrate and vertebrate nervous systems. During Drosophila metamorphosis, gamma neurons of the mushroom bodies (MBs), the center for olfactory learning in insects, undergo pruning of larval-specific dendrites and axons followed by outgrowth of adult-specific processes. To elucidate the underlying molecular mechanisms, we conducted a genetic mosaic screen and identified one ultraspiracle (usp) allele defective in larval process pruning. Consistent with the notion that USP forms a heterodimer with the ecdysone receptor (EcR), we found that the EcR-B1 isoform is specifically expressed in the MB gamma neurons, and is required for the pruning of larval processes. Surprisingly, most identified primary EcR/USP targets are dispensable for MB neuronal remodeling. Our study demonstrates cell-autonomous roles for EcR/USP in controlling neuronal remodeling, potentially through novel downstream targets. PMID:11163268

  12. A Multidirectional Non-Cell Autonomous Control and a Genetic Interaction Restricting Tobacco Etch Virus Susceptibility in Arabidopsis

    PubMed Central

    Gopalan, Suresh

    2007-01-01

    Background Viruses constitute a major class of pathogens that infect a variety of hosts. Understanding the intricacies of signaling during host-virus interactions should aid in designing disease prevention strategies and in understanding mechanistic aspects of host and pathogen signaling machinery. Methodology/Principal Findings An Arabidopsis mutant, B149, impaired in susceptibility to Tobacco etch virus (TEV), a positive strand RNA virus of picoRNA family, was identified using a high-throughput genetic screen and a counterselection scheme. The defects include initiation of infection foci, rate of cell-to-cell movement and long distance movement. Conclusions/Significance The defect in infectivity is conferred by a recessive locus. Molecular genetic analysis and complementation analysis with three alleles of a previously published mutant lsp1 (loss of susceptibility to potyviruses) indicate a genetic interaction conferring haploinsufficiency between the B149 locus and certain alleles of lsp1 resulting in impaired host susceptibility. The pattern of restriction of TEV foci on leaves at or near the boundaries of certain cell types and leaf boundaries suggest dysregulation of a multidirectional non-cell autonomous regulatory mechanism. Understanding the nature of this multidirectional signal and the molecular genetic mechanism conferring it should potentially reveal a novel arsenal in the cellular machinery. PMID:17912362

  13. An inducible knockout mouse to model the cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias

    PubMed Central

    Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-01-01

    SUMMARY PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ERT under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors. PMID:23471917

  14. Generation-V dual-Purkinje-image eyetracker

    NASA Technical Reports Server (NTRS)

    Crane, H. D.; Steele, C. M.

    1985-01-01

    Major advances characterize the Generation-V dual-Purkinje-image eyetracker compared with the Generation-III version previously described. These advances include a large reduction in size, major improvements in frequency response and noise level, automatic alignment to a subject, and automatic adjustment for different separation between the visual and optic axes, which can vary considerably from subject to subject. In a number of applications described in the paper, the eyetracker is coupled with other highly specialized optical devices. These applications include accurately stabilizing an image on a subject's retina; accurately simulating a visually dead retinal region (i.e., a scotoma) of arbitrary shape, size, and position; and, for clinical purposes, stabilizing the position of a laser coagulator beam on a patient's retina so that the point of contact is unaffected by the patient's own eye movements.

  15. Alterations in the intrinsic electrophysiological properties of Purkinje neurons in a rat model of hepatic encephalopathy: Relative preventing effect of PPARγ agonist.

    PubMed

    Aghaei, Iraj; Hajali, Vahid; Dehpour, Ahmadreza; Haghani, Masoud; Sheibani, Vahid; Shabani, Mohammad

    2016-03-01

    Patients suffering from hepatic cirrhosis (HC) have been shown to have motor and cognitive impairments. The cerebellum, which controls coordinated and rapid movements, is a potential target for the deleterious effects of hyperammonemia induced by bile duct ligation. Therefore, the aim of this study was to determine the mechanisms of motor impairments observed in a rat model of HC and second objective of the current study was to evaluate the possible protective effect of pioglitazone (PIO) on these impairments. Male Wistar rats were used in the current study. Bile duct ligation (BDL) surgery was performed and pioglitazone administration was started two weeks after the surgery for the next four weeks. The effects of pioglitazone on BDL-induced electrophysiological changes of the Purkinje cerebellum neurons were evaluated by Whole-cell patch clamp recordings. Purkinje neurons from the BDL group exhibited significant changes in a number of electrophysiological properties and some alterations partially were counteracted by activation of peroxisome proliferator-activated receptor-γ. Purkinje cells from BDL groups showed a significant increase in the spontaneous firing frequency followed by a decrease in the action potential duration of half-amplitude and spike interval. Chronic administration of pioglitazone could contract this effect of BDL on event frequency and interevent interval, though the difference with the sham group was still significant in the duration of action potential. Results of the current study raise the possibility that BDL may profoundly affect the intrinsic membrane properties of the cerebellar Purkinje neurons and PIO administration can counteract some of these effects. PMID:26704786

  16. A Septin Requirement Differentiates Autonomous- and Contact-Facilitated T Cell Proliferation

    PubMed Central

    Mujal, Adriana M.; Gilden, Julia K.; Gérard, Audrey; Kinoshita, Makoto; Krummel, Matthew F.

    2015-01-01

    T cell proliferation is initiated by T cell antigen receptor (TCR) triggering and/or by soluble growth factors. In characterizing T cells lacking the septin cytoskeleton, we found that successful cell division has discrete septin-dependent and -independent pathways. Septin-deficient T cells failed cytokinesis when prompted by pharmacological activation or cytokines. In contrast, cell division was independent of septins when cell-cell contacts, such as those from antigen-presenting cells, provided a niche. This septin-independent pathway was mediated by phosphatidylinositol-3-OH kinase activation through a combination of integrins and co-stimulatory signals. We could differentiate cytokine- versus antigen-driven expansion in vivo and thus demonstrate that targeting septins has strong potential to moderate detrimental bystander or homeostatic cytokine-driven proliferation without influencing expansion driven by conventional antigen-presentation. PMID:26692174

  17. Tumor-selective gene transduction and cell killing with an oncotropic autonomous parvovirus-based vector.

    PubMed

    Dupont, F; Avalosse, B; Karim, A; Mine, N; Bosseler, M; Maron, A; Van den Broeke, A V; Ghanem, G E; Burny, A; Zeicher, M

    2000-05-01

    A recombinant MVMp of the fibrotropic strain of minute virus of mice (MVMp) expressing the chloramphenicol acetyltransferase reporter gene was used to infect a series of biologically relevant cultured cells, normal or tumor-derived, including normal melanocytes versus melanoma cells, normal mammary epithelial cells versus breast adenocarcinoma cells, and normal neurons or astrocytes versus glioma cells. As a reference cell system we used normal human fibroblasts versus the SV40-transformed fibroblast cell line NB324K. After infection, we observed good expression of the reporter gene in the different tumor cell types, but only poor expression if any in the corresponding normal cells. We also constructed a recombinant MVMp expressing the green fluorescent protein reporter gene and assessed by flow cytometry the efficiency of gene transduction into the different target cells. At a multiplicity of infection of 30, we observed substantial transduction of the gene into most of the tumor cell types tested, but only marginal transduction into normal cells under the same experimental conditions. Finally, we demonstrated that a recombinant MVMp expressing the herpes simplex virus thymidine kinase gene can, in vitro, cause efficient killing of most tumor cell types in the presence of ganciclovir, whilst affecting normal proliferating cells only marginally if at all. However, in the same experimental condition, breast tumor cells appeared to be resistant to GCV-mediated cytotoxicity, possibly because these cells are not susceptible to the bystander effect. Our data suggest that MVMp-based vectors could prove useful as selective vehicles for anticancer gene therapy, particularly for in vivo delivery of cytotoxic effector genes into tumor cells.

  18. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    SciTech Connect

    Di Pendina, G. E-mail: eldar.zianbetov@cea.fr Zianbetov, E. E-mail: eldar.zianbetov@cea.fr; Beigne, E. E-mail: eldar.zianbetov@cea.fr

    2015-05-07

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.

  19. TrkB has a cell-autonomous role in the establishment of hippocampal Schaffer collateral synapses.

    PubMed

    Luikart, Bryan W; Nef, Serge; Virmani, Tuhin; Lush, Mark E; Liu, Yajuan; Kavalali, Ege T; Parada, Luis F

    2005-04-13

    Neurotrophin signaling has been implicated in the processes of synapse formation and plasticity. To gain additional insight into the mechanism of BDNF and TrkB influence on synapse formation and synaptic plasticity, we generated a conditional knock-out for TrkB using the cre/loxp system. Using three different cre-expressing transgenic mice, three unique spatial and temporal configurations of TrkB deletion were obtained with regard to the hippocampal Schaffer collateral synapse. We compare synapse formation in mutants in which TrkB is ablated either in presynaptic or in both presynaptic and postsynaptic cells at early developmental or postdevelopmental time points. Our results indicate a requirement for TrkB at both the presynaptic and postsynaptic sites during development. In the absence of TrkB, synapse numbers were significantly reduced. In vivo ablation of TrkB after synapse formation did not affect synapse numbers. In primary hippocampal cultures, deletion of TrkB in only the postsynaptic cell, before synapse formation, also resulted in deficits of synapse formation. We conclude that TrkB signaling has a cell-autonomous role required for normal development of both presynaptic and postsynaptic components of the Schaffer collateral synapse.

  20. Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit

    PubMed Central

    Hatzold, Julia; Beleggia, Filippo; Herzig, Hannah; Altmüller, Janine; Nürnberg, Peter; Bloch, Wilhelm; Wollnik, Bernd; Hammerschmidt, Matthias

    2016-01-01

    The molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of a single gene that together provide a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a (previously unrecognized) contributor to tumor development and establish a novel paradigm of tumor suppression. DOI: http://dx.doi.org/10.7554/eLife.14277.001 PMID:27240166

  1. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes.

    PubMed

    Rozhok, Andrii I; Salstrom, Jennifer L; DeGregori, James

    2014-12-01

    Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms.

  2. Autonomous Soaring

    NASA Technical Reports Server (NTRS)

    Lin, Victor P.

    2007-01-01

    This viewgraph presentation reviews the autonomous soaring flight of unmanned aerial vehicles (UAV). It reviews energy sources for UAVs, and two examples of UAV's that used alternative energy sources, and thermal currents for soaring. Examples of flight tests, plans, and results are given. Ultimately, the concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology.

  3. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses

    PubMed Central

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-01-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it. PMID:26630202

  4. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.

    PubMed

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-12-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.

  5. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously.

    PubMed

    Cho, Hongbaek; Wivagg, Carl N; Kapoor, Mrinal; Barry, Zachary; Rohs, Patricia D A; Suh, Hyunsuk; Marto, Jarrod A; Garner, Ethan C; Bernhardt, Thomas G

    2016-01-01

    Multi-protein complexes organized by cytoskeletal proteins are essential for cell wall biogenesis in most bacteria. Current models of the wall assembly mechanism assume that class A penicillin-binding proteins (aPBPs), the targets of penicillin-like drugs, function as the primary cell wall polymerases within these machineries. Here, we use an in vivo cell wall polymerase assay in Escherichia coli combined with measurements of the localization dynamics of synthesis proteins to investigate this hypothesis. We find that aPBP activity is not necessary for glycan polymerization by the cell elongation machinery, as is commonly believed. Instead, our results indicate that cell wall synthesis is mediated by two distinct polymerase systems, shape, elongation, division, sporulation (SEDS)-family proteins working within the cytoskeletal machines and aPBP enzymes functioning outside these complexes. These findings thus necessitate a fundamental change in our conception of the cell wall assembly process in bacteria. PMID:27643381

  6. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.

    PubMed

    Mei, Szu-Chieh; Brenner, Charles

    2015-01-01

    In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell.

  7. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.

    PubMed

    Mei, Szu-Chieh; Brenner, Charles

    2015-01-01

    In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell. PMID:25633578

  8. Excessive feedback of Cyp26a1 promotes cell non-autonomous loss of retinoic acid signaling

    PubMed Central

    Rydeen, Ariel; Voisin, Norine; D’Aniello, Enrico; Ravisankar, Padmapriyadarshini; Devignes, Claire-Sophie; Waxman, Joshua S.

    2015-01-01

    Teratogenic levels of retinoic acid (RA) signaling can cause seemingly contradictory phenotypes indicative of both increases and decreases of RA signaling. However, the mechanisms underlying these contradictory phenotypes are not completely understood. Here, we report that using a hyperactive RA receptor to enhance RA signaling in zebrafish embryos leads to defects associated with gain and loss of RA signaling. While the gain-of-function phenotypes arise from an initial increase in RA signaling, using genetic epistasis analysis we found that the loss-of-function phenotypes result from a clearing of embryonic RA that requires a rapid and dramatic increase in cyp26a1 expression. Thus, the sensitivity of cyp26a1 expression to increased RA signaling causes an overcompensation of negative feedback and loss of embryonic RA signaling. Additionally, we used blastula transplantation experiments to test if Cyp26a1, despite its cellular localization, can limit RA exposure to neighboring cells. We find that enhanced Cyp26a1 expression limits RA signaling in the local environment, thus providing the first direct evidence that Cyp26 enzymes can have cell non-autonomous consequences on RA levels within tissues. Therefore, our results provide novel insights into the teratogenic mechanisms of RA signaling and the cellular mechanisms by which Cyp26a1 expression can shape a RA gradient. PMID:26116175

  9. Autonomous Inhibition of Apoptosis Correlates with Responsiveness of Colon Carcinoma Cell Lines to Ciglitazone

    PubMed Central

    Baron, David M.; Kaindl, Ulrike; Haudek-Prinz, Verena J.; Bayer, Editha; Röhrl, Clemens

    2014-01-01

    Colorectal cancer is a leading cause of mortality worldwide. Resistance to therapy is common and often results in patients succumbing to the disease. The mechanisms of resistance are poorly understood. Cells basically have two possibilities to survive a treatment with potentially apoptosis-inducing substances. They can make use of their existing proteins to counteract the induced reactions or quickly upregulate protective factors to evade the apoptotic signal. To identify protein patterns involved in resistance to apoptosis, we studied two colorectal adenocarcinoma cell lines with different growth responses to low-molar concentrations of the thiazolidinedione Ciglitazone: HT29 cells underwent apoptosis, whereas SW480 cells increased cell number. Fluorescence detection and autoradiography scans of 2D-PAGE gels were performed in both cell lines to assess protein synthesis and turnover, respectively. To verify the data we performed shotgun analysis using the same treatment procedure as in 2D-experiments. Biological functions of the identified proteins were mainly associated with apoptosis regulation, chaperoning, intrinsic inflammation, and DNA repair. The present study suggests that different growth response of two colorectal carcinoma cell lines after treatment with Ciglitazone results from cell-specific protein synthesis and differences in protein regulation. PMID:25502518

  10. Autonomous silencing of the imprinted Cdkn1c gene in stem cells

    PubMed Central

    Wood, Michelle D.; Hiura, Hitoshi; Tunster, Simon; Arima, Takahiro; Shin, Jong-Yeon; Higgins, Michael; John, Rosalind M.

    2010-01-01

    Parent-of-origin specific expression of imprinted genes relies on the differential DNA methylation of specific genomic regions. Differentially methylated regions (DMRs) acquire DNA methylation either during gametogenesis (primary DMR) or after fertilization when allele-specific expression is established (secondary DMR). Little is known about the function of these secondary DMRs. We investigated the DMR spanning Cdkn1c in mouse embryonic stem cells, androgenetic stem cells and embryonic germ stem cells. In all cases, expression of Cdkn1c was appropriately repressed in in vitro differentiated cells. However, stem cells failed to de novo methylate the silenced gene even after sustained differentiation. In the absence of maintained DNA methylation (Dnmt1−/−), Cdkn1c escapes silencing demonstrating the requirement for DNA methylation in long term silencing in vivo. We propose that post-fertilization differential methylation reflects the importance of retaining single gene dosage of a subset of imprinted loci in the adult. PMID:20372090

  11. Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model

    PubMed Central

    Maltecca, Francesca; Baseggio, Elisa; Consolato, Francesco; Mazza, Davide; Podini, Paola; Young, Samuel M.; Drago, Ilaria; Bahr, Ben A.; Puliti, Aldamaria; Codazzi, Franca; Quattrini, Angelo; Casari, Giorgio

    2014-01-01

    Spinocerebellar ataxia type 28 (SCA28) is a neurodegenerative disease caused by mutations of the mitochondrial protease AFG3L2. The SCA28 mouse model, which is haploinsufficient for Afg3l2, exhibits a progressive decline in motor function and displays dark degeneration of Purkinje cells (PC-DCD) of mitochondrial origin. Here, we determined that mitochondria in cultured Afg3l2-deficient PCs ineffectively buffer evoked Ca2+ peaks, resulting in enhanced cytoplasmic Ca2+ concentrations, which subsequently triggers PC-DCD. This Ca2+-handling defect is the result of negative synergism between mitochondrial depolarization and altered organelle trafficking to PC dendrites in Afg3l2-mutant cells. In SCA28 mice, partial genetic silencing of the metabotropic glutamate receptor mGluR1 decreased Ca2+ influx in PCs and reversed the ataxic phenotype. Moreover, administration of the β-lactam antibiotic ceftriaxone, which promotes synaptic glutamate clearance, thereby reducing Ca2+ influx, improved ataxia-associated phenotypes in SCA28 mice when given either prior to or after symptom onset. Together, the results of this study indicate that ineffective mitochondrial Ca2+ handling in PCs underlies SCA28 pathogenesis and suggest that strategies that lower glutamate stimulation of PCs should be further explored as a potential treatment for SCA28 patients. PMID:25485680

  12. Autonomous vehicles

    SciTech Connect

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  13. Autonomous cure of damaged human intestinal epithelial cells by TLR2 and TLR4-dependent production of IL-22 in response to Spirulina polysaccharides.

    PubMed

    Tominaga, Akira; Konishi, Yuko; Taguchi, Takahiro; Fukuoka, Satoshi; Kawaguchi, Tokuichi; Noda, Tetsuo; Shimizu, Keiji

    2013-12-01

    In order to analyze the damage of human epithelial cells, we used human quasi-normal FPCK-1-1 cells derived from a colonic polyp in a patient with familial adenomatous polyposis as a monolayer, which is co-cultured with peptidoglycan (PGN)-stimulated THP-1 cells. Co-cultured FPCK-1-1 cells showed a decreased transepithelial electrical resistance (TER) and the lower level of claudin-2. When Spirulina complex polysaccharides were added one day before the start of the co-culture, there was no decrease of TER and claudin-2 (early phase damage). In contrast, when Spirulina complex polysaccharides were added to FPCK-1-1 cells after the level of TER had decreased, there was no recovery at the level of claudin-2, though the TER level recovered (late phase damage). The mucosa reconstitution is suggested to be involved in the recovery from the damaged status. Interestingly, autonomous recovery of FPCK-1-1 cells from both the early and late phase damage requires the production of IL-22, because anti-IL-22 antibodies inhibited recovery in these cases. Antibodies against either TLR2 or TLR4 inhibited the production of IL-22 from FPCK-1-1 colon epithelial cells, suggesting that signals through TLR2 and TLR4 are necessary for autonomous recovery of FPCK-1-1 colon epithelial cells by producing IL-22. In conclusion, we have established a useful model for the study of intestinal damage and recovery using human colon epithelial cells and our data suggest that damage to human colon epithelial cells can, at least in part, be recovered by the autonomous production of IL-22 in response to Spirulina complex polysaccharides. PMID:24126111

  14. A Cell-Autonomous Molecular Cascade Initiated by AMP-Activated Protein Kinase Represses Steroidogenesis

    PubMed Central

    Abdou, Houssein S.; Bergeron, Francis

    2014-01-01

    Steroid hormones regulate essential physiological processes, and inadequate levels are associated with various pathological conditions. In testosterone-producing Leydig cells, steroidogenesis is strongly stimulated by luteinizing hormone (LH) via its receptor leading to increased cyclic AMP (cAMP) production and expression of the steroidogenic acute regulatory (STAR) protein, which is essential for the initiation of steroidogenesis. Steroidogenesis then passively decreases with the degradation of cAMP into AMP by phosphodiesterases. In this study, we show that AMP-activated protein kinase (AMPK) is activated following cAMP-to-AMP breakdown in MA-10 and MLTC-1 Leydig cells. Activated AMPK then actively inhibits cAMP-induced steroidogenesis by repressing the expression of key regulators of steroidogenesis, including Star and Nr4a1. Similar results were obtained in Y-1 adrenal cells and in the constitutively steroidogenic R2C cells. We have also determined that maximum AMPK activation following stimulation of steroidogenesis in MA-10 Leydig cells occurs when steroid hormone production has reached a plateau. Our data identify AMPK as a molecular rheostat that actively represses steroid hormone biosynthesis to preserve cellular energy homeostasis and prevent excess steroid production. PMID:25225331

  15. A Discrete Model of Drosophila Eggshell Patterning Reveals Cell-Autonomous and Juxtacrine Effects

    PubMed Central

    Fauré, Adrien; Vreede, Barbara M. I.; Sucena, Élio; Chaouiya, Claudine

    2014-01-01

    The Drosophila eggshell constitutes a remarkable system for the study of epithelial patterning, both experimentally and through computational modeling. Dorsal eggshell appendages arise from specific regions in the anterior follicular epithelium that covers the oocyte: two groups of cells expressing broad (roof cells) bordered by rhomboid expressing cells (floor cells). Despite the large number of genes known to participate in defining these domains and the important modeling efforts put into this developmental system, key patterning events still lack a proper mechanistic understanding and/or genetic basis, and the literature appears to conflict on some crucial points. We tackle these issues with an original, discrete framework that considers single-cell models that are integrated to construct epithelial models. We first build a phenomenological model that reproduces wild type follicular epithelial patterns, confirming EGF and BMP signaling input as sufficient to establish the major features of this patterning system within the anterior domain. Importantly, this simple model predicts an instructive juxtacrine signal linking the roof and floor domains. To explore this prediction, we define a mechanistic model that integrates the combined effects of cellular genetic networks, cell communication and network adjustment through developmental events. Moreover, we focus on the anterior competence region, and postulate that early BMP signaling participates with early EGF signaling in its specification. This model accurately simulates wild type pattern formation and is able to reproduce, with unprecedented level of precision and completeness, various published gain-of-function and loss-of-function experiments, including perturbations of the BMP pathway previously seen as conflicting results. The result is a coherent model built upon rules that may be generalized to other epithelia and developmental systems. PMID:24675973

  16. Cell-autonomous requirement for TCF1 and LEF1 in the development of Natural Killer T cells.

    PubMed

    Berga-Bolaños, Rosa; Zhu, Wandi S; Steinke, Farrah C; Xue, Hai-Hui; Sen, Jyoti Misra

    2015-12-01

    Natural killer T (NKT) cells develop from common CD4(+) CD8(+) thymocyte precursors. Transcriptional programs that regulate the development of NKT cells in the thymus development remain to be fully delineated. Here, we demonstrate a cell-intrinsic requirement for transcription factors TCF1 and LEF1 for the development of all subsets of NKT cells. Conditional deletion of TCF1 alone results in a substantial reduction in NKT cells. The remaining NKT cells are eliminated when TCF1 and LEF1 are both deleted. These data reveal an essential role for TCF1 and LEF1 in development of NKT cells.

  17. Cell non-autonomous regulation of hepatic IGF-1 and neonatal growth by Kinase Suppressor of Ras 2 (KSR2)

    PubMed Central

    Guo, Lili; Costanzo-Garvey, Diane L.; Smith, Deandra R.; Zavorka, Megan E.; Venable-Kang, Megan; MacDonald, Richard G.; Lewis, Robert E.

    2016-01-01

    Individuals with poor postnatal growth are at risk for cardiovascular and metabolic problems as adults. Here we show that disruption of the molecular scaffold Kinase Suppressor of Ras 2 (KSR2) causes selective inhibition of hepatic GH signaling in neonatal mice with impaired expression of IGF-1 and IGFBP3. ksr2−/− mice are normal size at birth but show a marked increase in FGF21 accompanied by reduced body mass, shortened body length, and reduced bone mineral density (BMD) and content (BMC) first evident during postnatal development. However, disrupting FGF21 in ksr2−/− mice does not normalize mass, length, or bone density and content in fgf21−/−ksr2−/− mice. Body length, BMC and BMD, but not body mass, are rescued by infection of two-day-old ksr2−/− mice with a recombinant adenovirus encoding human IGF-1. Relative to wild-type mice, GH injections reveal a significant reduction in JAK2 and STAT5 phosphorylation in liver, but not in skeletal muscle, of ksr2−/− mice. However, primary hepatocytes isolated from ksr2−/− mice show no reduction in GH-stimulated STAT5 phosphorylation. These data indicate that KSR2 functions in a cell non-autonomous fashion to regulate GH-stimulated IGF-1 expression in the liver of neonatal mice, which plays a key role in the development of body length. PMID:27561547

  18. Cell non-autonomous regulation of hepatic IGF-1 and neonatal growth by Kinase Suppressor of Ras 2 (KSR2).

    PubMed

    Guo, Lili; Costanzo-Garvey, Diane L; Smith, Deandra R; Zavorka, Megan E; Venable-Kang, Megan; MacDonald, Richard G; Lewis, Robert E

    2016-01-01

    Individuals with poor postnatal growth are at risk for cardiovascular and metabolic problems as adults. Here we show that disruption of the molecular scaffold Kinase Suppressor of Ras 2 (KSR2) causes selective inhibition of hepatic GH signaling in neonatal mice with impaired expression of IGF-1 and IGFBP3. ksr2(-/-) mice are normal size at birth but show a marked increase in FGF21 accompanied by reduced body mass, shortened body length, and reduced bone mineral density (BMD) and content (BMC) first evident during postnatal development. However, disrupting FGF21 in ksr2(-/-) mice does not normalize mass, length, or bone density and content in fgf21(-/-)ksr2(-/-) mice. Body length, BMC and BMD, but not body mass, are rescued by infection of two-day-old ksr2(-/-) mice with a recombinant adenovirus encoding human IGF-1. Relative to wild-type mice, GH injections reveal a significant reduction in JAK2 and STAT5 phosphorylation in liver, but not in skeletal muscle, of ksr2(-/-) mice. However, primary hepatocytes isolated from ksr2(-/-) mice show no reduction in GH-stimulated STAT5 phosphorylation. These data indicate that KSR2 functions in a cell non-autonomous fashion to regulate GH-stimulated IGF-1 expression in the liver of neonatal mice, which plays a key role in the development of body length. PMID:27561547

  19. Sall1 in renal stromal progenitors non-cell autonomously restricts the excessive expansion of nephron progenitors.

    PubMed

    Ohmori, Tomoko; Tanigawa, Shunsuke; Kaku, Yusuke; Fujimura, Sayoko; Nishinakamura, Ryuichi

    2015-10-29

    The mammalian kidney develops from reciprocal interactions between the metanephric mesenchyme and ureteric bud, the former of which contains nephron progenitors. The third lineage, the stroma, fills up the interstitial space and is derived from distinct progenitors that express the transcription factor Foxd1. We showed previously that deletion of the nuclear factor Sall1 in nephron progenitors leads to their depletion in mice. However, Sall1 is expressed not only in nephron progenitors but also in stromal progenitors. Here we report that specific Sall1 deletion in stromal progenitors leads to aberrant expansion of nephron progenitors, which is in sharp contrast with a nephron progenitor-specific deletion. The mutant mice also exhibited cystic kidneys after birth and died before adulthood. We found that Decorin, which inhibits Bmp-mediated nephron differentiation, was upregulated in the mutant stroma. In contrast, the expression of Fat4, which restricts nephron progenitor expansion, was reduced mildly. Furthermore, the Sall1 protein binds to many stroma-related gene loci, including Decorin and Fat4. Thus, the expression of Sall1 in stromal progenitors restricts the excessive expansion of nephron progenitors in a non-cell autonomous manner, and Sall1-mediated regulation of Decorin and Fat4 might at least partially underlie the pathogenesis.

  20. An α2-Na/K ATPase/α-adducin complex in astrocytes triggers non–cell autonomous neurodegeneration

    PubMed Central

    Gallardo, Gilbert; Barowski, Jessica; Ravits, John; Siddique, Teepu; Lingrel, Jerry B; Robertson, Janice; Steen, Hanno; Bonni, Azad

    2015-01-01

    Perturbations of astrocytes trigger neurodegeneration in several diseases, but the glial cell–intrinsic mechanisms that induce neurodegeneration remain poorly understood. We found that a protein complex of α2-Na/K ATPase and α-adducin was enriched in astrocytes expressing mu