Sample records for cell axon sprouting

  1. The Molecular and Cellular Mechanisms of Axon Guidance in Mossy Fiber Sprouting

    PubMed Central

    Koyama, Ryuta; Ikegaya, Yuji

    2018-01-01

    The question of whether mossy fiber sprouting is epileptogenic has not been resolved; both sprouting-induced recurrent excitatory and inhibitory circuit hypotheses have been experimentally (but not fully) supported. Therefore, whether mossy fiber sprouting is a potential therapeutic target for epilepsy remains under debate. Moreover, the axon guidance mechanisms of mossy fiber sprouting have attracted the interest of neuroscientists. Sprouting of mossy fibers exhibits several uncommon axonal growth features in the basically non-plastic adult brain. For example, robust branching of axonal collaterals arises from pre-existing primary mossy fiber axons. Understanding the branching mechanisms in adulthood may contribute to axonal regeneration therapies in neuroregenerative medicine in which robust axonal re-growth is essential. Additionally, because granule cells are produced throughout life in the neurogenic dentate gyrus, it is interesting to examine whether the mossy fibers of newly generated granule cells follow the pre-existing trajectories of sprouted mossy fibers in the epileptic brain. Understanding these axon guidance mechanisms may contribute to neuron transplantation therapies, for which the incorporation of transplanted neurons into pre-existing neural circuits is essential. Thus, clarifying the axon guidance mechanisms of mossy fiber sprouting could lead to an understanding of central nervous system (CNS) network reorganization and plasticity. Here, we review the molecular and cellular mechanisms of axon guidance in mossy fiber sprouting by discussing mainly in vitro studies. PMID:29896153

  2. Neuroimmune processes associated with Wallerian degeneration support neurotrophin-3-induced axonal sprouting in the injured spinal cord.

    PubMed

    Chen, Qin; Shine, H David

    2013-10-01

    Lesions of the spinal cord cause two distinctive types of neuroimmune responses, a response at the lesion site that leads to additional tissue destruction and a more subtle response, termed Wallerian degeneration (WD), that occurs distal to the lesion site. We have evidence that the neuroimmune response associated with WD may support tissue repair. Previously, we found that overexpression of neurotrophin-3 (NT-3) induced axonal growth in the spinal cord after a unilateral corticospinal tract (CST) lesion, but only if the immune system was intact and activated. We reasoned that a neuroimmune response associated with WD was involved in this neuroplasticity. To test this, we compared NT-3-induced axonal sprouting in athymic nude rats that lack functional T cells with rats with functional T cells and in nude rats grafted with CD4(+) T cells or CD8(+) T cells. There was no sprouting in nude rats and in nude rats grafted with CD8(+) T cells. However, nude rats grafted with CD4(+) T cells mounted a sprouting response. To determine which CD4(+) subtype, type 1 T helper (Th1) or type 2 T helper (Th2) cells, was responsible, we grafted Th1 and Th2 cells into nude rats and tested whether they would support sprouting. Axonal sprouting was greater in rats grafted with Th2 cells, demonstrating that the Th2 subtype was responsible for supporting axonal sprouting. These data suggest that WD activates Th2 cells that, along with the direct effects of NT-3 on CST axons, act to support axonal sprouting in the lesioned spinal cord. Copyright © 2013 Wiley Periodicals, Inc.

  3. Axonal sprouting and laminin appearance after destruction of glial sheaths.

    PubMed Central

    Masuda-Nakagawa, L M; Muller, K J; Nicholls, J G

    1993-01-01

    Laminin, a large extracellular matrix molecule, is associated with axonal outgrowth during development and regeneration of the nervous system in a variety of animals. In the leech central nervous system, laminin immunoreactivity appears after axon injury in advance of the regenerating axons. Although studies of vertebrate nervous system in culture have implicated glial and Schwann cells as possible sources, the cells that deposit laminin at sites crucial for regeneration in the living animal are not known. We have made a direct test to determine whether, in the central nervous system of the leech, cells other than ensheathing glial cells can produce laminin. Ensheathing glial cells of adult leeches were ablated selectively by intracellular injection of a protease. As a result, leech laminin accumulated within 10 days in regions of the central nervous system where it is not normally found, and undamaged, intact axons began to sprout extensively. In normal leeches laminin immunoreactivity is situated only in the basement membrane that surrounds the central nervous system, whereas after ablation of ensheathing glia it appeared in spaces through which neurons grew. Within days of ablation of the glial cell, small mobile phagocytes, or microglia, accumulated in the spaces formerly occupied by the glial cell. Microglia were concentrated at precisely the sites of new laminin appearance and axon sprouting. These results suggest that in the animal, as in culture, leech laminin promotes sprouting and that microglia may be responsible for its appearance. Images Fig. 1 Fig. 2 Fig. 3 PMID:8506343

  4. Control of axonal sprouting and dendrite branching by the Nrg-Ank complex at the neuron-glia interface.

    PubMed

    Yamamoto, Misato; Ueda, Ryu; Takahashi, Kuniaki; Saigo, Kaoru; Uemura, Tadashi

    2006-08-22

    Neurons are highly polarized cells with distinct subcellular compartments, including dendritic arbors and an axon. The proper function of the nervous system relies not only on correct targeting of axons, but also on development of neuronal-class-specific geometry of dendritic arbors [1-4]. To study the intercellular control of the shaping of dendritic trees in vivo, we searched for cell-surface proteins expressed by Drosophila dendritic arborization (da) neurons [5-7]. One of them was Neuroglian (Nrg), a member of the Ig superfamily ; Nrg and vertebrate L1-family molecules have been implicated in various aspects of neuronal wiring, such as axon guidance, axonal myelination, and synapse formation [9-12]. A subset of the da neurons in nrg mutant embryos exhibited deformed dendritic arbors and abnormal axonal sprouting. Our functional analysis in a cell-type-selective manner strongly suggested that those da neurons employed Nrg to interact with the peripheral glia for suppressing axonal sprouting and for forming second-order dendritic branches. At least for the former role, Nrg functioned in concert with the intracellular adaptor protein Ankyrin (Ank) [13]. Thus, the neuron-glia interaction that is mediated by Nrg, together with Ank under some situations, contributes to axonal and dendritic morphogenesis.

  5. Molecular, Cellular and Functional Events in Axonal Sprouting after Stroke

    PubMed Central

    Kathirvelu, Balachander; Schweppe, Catherine A; Nie, Esther H

    2016-01-01

    Stroke is the leading cause of adult disability. Yet there is a limited degree of recovery in this disease. One of the mechanisms of recovery is the formation of new connections in the brain and spinal cord after stroke: post-stroke axonal sprouting. Studies indicate that post-stroke axonal sprouting occurs in mice, rats, primates and humans. Inducing post-stroke axonal sprouting in specific connections enhances recovery; blocking axonal sprouting impairs recovery. Behavioral activity patterns after stroke modify the axonal sprouting response. A unique regenerative molecular program mediates this aspect of tissue repair in the CNS. The types of connections that are formed after stroke indicate three patterns of axonal sprouting after stroke: Reactive, Reparative and Unbounded Axonal Sprouting. These differ in mechanism, location, relationship to behavioral recovery and, importantly, in their prospect for therapeutic manipulation to enhance tissue repair. PMID:26874223

  6. Functional compatibility between Purkinje cell axon branches and their target neurons in the cerebellum.

    PubMed

    Yang, Zhilai; Chen, Na; Ge, Rongjing; Qian, Hao; Wang, Jin-Hui

    2017-09-22

    A neuron sprouts an axon, and its branches to innervate many target neurons that are divergent in their functions. In order to efficiently regulate the diversified cells, the axon branches should differentiate functionally to be compatible with their target neurons, i.e., a function compatibility between presynaptic and postsynaptic partners. We have examined this hypothesis by using electrophysiological method in the cerebellum, in which the main axon of Purkinje cell projected to deep nucleus cells and the recurrent axons innervated the adjacent Purkinje cells. The fidelity of spike propagation is superior in the recurrent branches than the main axon. The capabilities of encoding spikes and processing GABAergic inputs are advanced in Purkinje cells versus deep nucleus cells. The functional differences among Purkinje's axonal branches and their postsynaptic neurons are preset by the variable dynamics of their voltage-gated sodium channels. In addition, activity strengths between presynaptic and postsynaptic partners are proportionally correlated, i.e., active axonal branches innervate active target neurons, or vice versa. The physiological impact of the functional compatibility is to make the neurons in their circuits to be activated appropriately. In conclusion, each cerebellar Purkinje cell sprouts the differentiated axon branches to be compatible with the diversified target cells in their functions, in order to construct the homeostatic and efficient units for their coordinated activity in neural circuits.

  7. Functional compatibility between Purkinje cell axon branches and their target neurons in the cerebellum

    PubMed Central

    Qian, Hao; Wang, Jin-Hui

    2017-01-01

    A neuron sprouts an axon, and its branches to innervate many target neurons that are divergent in their functions. In order to efficiently regulate the diversified cells, the axon branches should differentiate functionally to be compatible with their target neurons, i.e., a function compatibility between presynaptic and postsynaptic partners. We have examined this hypothesis by using electrophysiological method in the cerebellum, in which the main axon of Purkinje cell projected to deep nucleus cells and the recurrent axons innervated the adjacent Purkinje cells. The fidelity of spike propagation is superior in the recurrent branches than the main axon. The capabilities of encoding spikes and processing GABAergic inputs are advanced in Purkinje cells versus deep nucleus cells. The functional differences among Purkinje's axonal branches and their postsynaptic neurons are preset by the variable dynamics of their voltage-gated sodium channels. In addition, activity strengths between presynaptic and postsynaptic partners are proportionally correlated, i.e., active axonal branches innervate active target neurons, or vice versa. The physiological impact of the functional compatibility is to make the neurons in their circuits to be activated appropriately. In conclusion, each cerebellar Purkinje cell sprouts the differentiated axon branches to be compatible with the diversified target cells in their functions, in order to construct the homeostatic and efficient units for their coordinated activity in neural circuits. PMID:29069799

  8. GDF10 Is a Signal for Axonal Sprouting and Functional Recovery after Stroke

    PubMed Central

    Li, S; Nie, EH; Yin, Y; Benowitz, LI; Tung, S; Vinters, HV; Bahjat, FR; Stenzel-Poore, MP; Kawaguchi, R; Coppola, G; Carmichael, ST

    2016-01-01

    Stroke produces a limited process of neural repair. Axonal sprouting in cortex adjacent to the infarct is part of this recovery process, but the signal that initiates axonal sprouting is not known. Growth and Differentiation Factor 10 (GDF10) is induced in peri-infarct neurons in mouse, non-human primate and human. GDF10 promotes axonal outgrowth in vitro in mouse, rat and human neurons through TGFβRI/II signaling. Using pharmacogenetic gain and loss of function studies, GDF10 produces axonal sprouting and enhanced functional recovery after stroke; knocking down GDF10 blocks axonal sprouting and reduces recovery. RNA-seq from peri-infarct cortical neurons indicates that GDF10 downregulates PTEN and upregulates PI3 kinase signaling and induces specific axonal guidance molecules. Unsupervised genome-wide association analysis of the GDF10 transcriptome shows that it is not related to neurodevelopment but may partially overlap with other CNS injury patterns. GDF10 is a stroke-induced signal for axonal sprouting and functional recovery. PMID:26502261

  9. Axon guidance molecules in vascular patterning.

    PubMed

    Adams, Ralf H; Eichmann, Anne

    2010-05-01

    Endothelial cells (ECs) form extensive, highly branched and hierarchically organized tubular networks in vertebrates to ensure the proper distribution of molecular and cellular cargo in the vertebrate body. The growth of this vascular system during development, tissue repair or in disease conditions involves the sprouting, migration and proliferation of endothelial cells in a process termed angiogenesis. Surprisingly, specialized ECs, so-called tip cells, which lead and guide endothelial sprouts, share many feature with another guidance structure, the axonal growth cone. Tip cells are motile, invasive and extend numerous filopodial protrusions sensing growth factors, extracellular matrix and other attractive or repulsive cues in their tissue environment. Axonal growth cones and endothelial tip cells also respond to signals belonging to the same molecular families, such as Slits and Roundabouts, Netrins and UNC5 receptors, Semaphorins, Plexins and Neuropilins, and Eph receptors and ephrin ligands. Here we summarize fundamental principles of angiogenic growth, the selection and function of tip cells and the underlying regulation by guidance cues, the Notch pathway and vascular endothelial growth factor signaling.

  10. Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3

    PubMed Central

    Jin, Duo; Liu, Yuanyuan; Sun, Fang; Wang, Xuhua; Liu, Xuefeng; He, Zhigang

    2015-01-01

    The limited rewiring of the corticospinal tract (CST) only partially compensates the lost functions after stroke, brain trauma and spinal cord injury. Therefore it is important to develop new therapies to enhance the compensatory circuitry mediated by spared CST axons. Here by using a unilateral pyramidotomy model, we find that deletion of cortical suppressor of cytokine signaling 3 (SOCS3), a negative regulator of cytokine-activated pathway, promotes sprouting of uninjured CST axons to the denervated spinal cord. A likely trigger of such sprouting is ciliary neurotrophic factor (CNTF) expressed in local spinal neurons. Such sprouting can be further enhanced by deletion of phosphatase and tensin homolog (PTEN), a mechanistic target of rapamycin (mTOR) negative regulator, resulting in significant recovery of skilled locomotion. Ablation of the corticospinal neurons with sprouting axons abolishes the improved behavioural performance. Furthermore, by optogenetics-based specific CST stimulation, we show a direct limb motor control by sprouting CST axons, providing direct evidence for the reformation of a functional circuit. PMID:26598325

  11. In vivo single branch axotomy induces GAP-43-dependent sprouting and synaptic remodeling in cerebellar cortex.

    PubMed

    Allegra Mascaro, Anna Letizia; Cesare, Paolo; Sacconi, Leonardo; Grasselli, Giorgio; Mandolesi, Georgia; Maco, Bohumil; Knott, Graham W; Huang, Lieven; De Paola, Vincenzo; Strata, Piergiorgio; Pavone, Francesco S

    2013-06-25

    Plasticity in the central nervous system in response to injury is a complex process involving axonal remodeling regulated by specific molecular pathways. Here, we dissected the role of growth-associated protein 43 (GAP-43; also known as neuromodulin and B-50) in axonal structural plasticity by using, as a model, climbing fibers. Single axonal branches were dissected by laser axotomy, avoiding collateral damage to the adjacent dendrite and the formation of a persistent glial scar. Despite the very small denervated area, the injured axons consistently reshape the connectivity with surrounding neurons. At the same time, adult climbing fibers react by sprouting new branches through the intact surroundings. Newly formed branches presented varicosities, suggesting that new axons were more than just exploratory sprouts. Correlative light and electron microscopy reveals that the sprouted branch contains large numbers of vesicles, with varicosities in the close vicinity of Purkinje dendrites. By using an RNA interference approach, we found that downregulating GAP-43 causes a significant increase in the turnover of presynaptic boutons. In addition, silencing hampers the generation of reactive sprouts. Our findings show the requirement of GAP-43 in sustaining synaptic stability and promoting the initiation of axonal regrowth.

  12. The Adaptor Protein CD2AP Is a Coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity

    PubMed Central

    Harrison, Benjamin J.; Venkat, Gayathri; Lamb, James L.; Hutson, Tom H.; Drury, Cassa; Rau, Kristofer K.; Bunge, Mary Barlett; Mendell, Lorne M.; Gage, Fred H.; Johnson, Richard D.; Hill, Caitlin E.; Rouchka, Eric C.; Moon, Lawrence D.F.

    2016-01-01

    Growth of intact axons of noninjured neurons, often termed collateral sprouting, contributes to both adaptive and pathological plasticity in the adult nervous system, but the intracellular factors controlling this growth are largely unknown. An automated functional assay of genes regulated in sensory neurons from the rat in vivo spared dermatome model of collateral sprouting identified the adaptor protein CD2-associated protein (CD2AP; human CMS) as a positive regulator of axon growth. In non-neuronal cells, CD2AP, like other adaptor proteins, functions to selectively control the spatial/temporal assembly of multiprotein complexes that transmit intracellular signals. Although CD2AP polymorphisms are associated with increased risk of late-onset Alzheimer's disease, its role in axon growth is unknown. Assessments of neurite arbor structure in vitro revealed CD2AP overexpression, and siRNA-mediated knockdown, modulated (1) neurite length, (2) neurite complexity, and (3) growth cone filopodia number, in accordance with CD2AP expression levels. We show, for the first time, that CD2AP forms a novel multiprotein complex with the NGF receptor TrkA and the PI3K regulatory subunit p85, with the degree of TrkA:p85 association positively regulated by CD2AP levels. CD2AP also regulates NGF signaling through AKT, but not ERK, and regulates long-range signaling though TrkA+/RAB5+ signaling endosomes. CD2AP mRNA and protein levels were increased in neurons during collateral sprouting but decreased following injury, suggesting that, although typically considered together, these two adult axonal growth processes are fundamentally different. These data position CD2AP as a major intracellular signaling molecule coordinating NGF signaling to regulate collateral sprouting and structural plasticity of intact adult axons. SIGNIFICANCE STATEMENT Growth of noninjured axons in the adult nervous system contributes to adaptive and maladaptive plasticity, and dysfunction of this process may contribute to neurologic pathologies. Functional screening of genes regulated during growth of noninjured axons revealed CD2AP as a positive regulator of axon outgrowth. A novel association of CD2AP with TrkA and p85 suggests a distinct intracellular signaling pathway regulating growth of noninjured axons. This may also represent a novel mechanism of generating specificity in multifunctional NGF signaling. Divergent regulation of CD2AP in different axon growth conditions suggests that separate mechanisms exist for different modes of axon growth. CD2AP is the first signaling molecule associated with adult sensory axonal collateral sprouting, and this association may offer new insights for NGF/TrkA-related Alzheimer's disease mechanisms. PMID:27076424

  13. Prevention of posttraumatic axon sprouting by blocking CRMP2-mediated neurite outgrowth and tubulin polymerization

    PubMed Central

    Wilson, Sarah M.; Xiong, Wenhui; Wang, Yuying; Ping, Xingjie; Head, Jessica D.; Brittain, Joel M.; Gagare, Pravin D.; Ramachandran, P. Veeraraghavan; Jin, Xiaoming; Khanna, Rajesh

    2012-01-01

    Epileptogenesis following traumatic brain injury (TBI) is likely due to a combination of increased excitability, disinhibition, and increased excitatory connectivity via aberrant axon sprouting. Targeting these pathways could be beneficial in the prevention and treatment of posttraumatic epilepsy. Here, we tested this possibility using the novel anticonvulsant (R)-N-benzyl 2-acetamido-3-methoxypropionamide ((R)-lacosamide (LCM) which acts on both voltage-gated sodium channels and collapsin response mediator protein 2 (CRMP2), an axonal growth/guidance protein. LCM inhibited CRMP2-mediated neurite outgrowth, an effect phenocopied by CRMP2 knockdown. Mutation of LCM binding sites in CRMP2 reduced the neurite inhibitory effect of LCM by ~8-fold. LCM also reduced CRMP2-mediated tubulin polymerization. Thus, LCM selectively impairs CRMP2-mediated microtubule polymerization which underlies its neurite outgrowth and branching. To determine whether LCM inhibits axon sprouting in vivo, LCM was injected into rats subjected to partial cortical isolation, an animal model of posttraumatic epileptogenesis that exhibits axon sprouting in cortical pyramidal neurons. Two weeks following injury, excitatory synaptic connectivity of cortical layer V pyramidal neurons was mapped using patch clamp recordings and laser scanning photostimulation of caged glutamate. In comparison to injured control animals, there was a significant decrease in the map size of excitatory synaptic connectivity in LCM-treated rats, suggesting that LCM treatment prevented enhanced excitatory synaptic connectivity due to posttraumatic axon sprouting. These findings suggest, for the first time, that LCM’s mode of action involves interactions with CRMP2 to inhibit posttraumatic axon sprouting. PMID:22433297

  14. A Reorganized GABAergic Circuit in a Model of Epilepsy: Evidence from Optogenetic Labeling and Stimulation of Somatostatin Interneurons

    PubMed Central

    Peng, Zechun; Zhang, Nianhui; Wei, Weizheng; Huang, Christine S.; Cetina, Yliana; Otis, Thomas S.

    2013-01-01

    Axonal sprouting of excitatory neurons is frequently observed in temporal lobe epilepsy, but the extent to which inhibitory interneurons undergo similar axonal reorganization remains unclear. The goal of this study was to determine whether somatostatin (SOM)-expressing neurons in stratum (s.) oriens of the hippocampus exhibit axonal sprouting beyond their normal territory and innervate granule cells of the dentate gyrus in a pilocarpine model of epilepsy. To obtain selective labeling of SOM-expressing neurons in s. oriens, a Cre recombinase-dependent construct for channelrhodopsin2 fused to enhanced yellow fluorescent protein (ChR2-eYFP) was virally delivered to this region in SOM-Cre mice. In control mice, labeled axons were restricted primarily to s. lacunosum-moleculare. However, in pilocarpine-treated animals, a rich plexus of ChR2-eYFP-labeled fibers and boutons extended into the dentate molecular layer. Electron microscopy with immunogold labeling demonstrated labeled axon terminals that formed symmetric synapses on dendritic profiles in this region, consistent with innervation of granule cells. Patterned illumination of ChR2-labeled fibers in s. lacunosum-moleculare of CA1 and the dentate molecular layer elicited GABAergic inhibitory responses in dentate granule cells in pilocarpine-treated mice but not in controls. Similar optical stimulation in the dentate hilus evoked no significant responses in granule cells of either group of mice. These findings indicate that under pathological conditions, SOM/GABAergic neurons can undergo substantial axonal reorganization beyond their normal territory and establish aberrant synaptic connections. Such reorganized circuitry could contribute to functional deficits in inhibition in epilepsy, despite the presence of numerous GABAergic terminals in the region. PMID:24005292

  15. [Experimental studies for the improvement of facial nerve regeneration].

    PubMed

    Guntinas-Lichius, O; Angelov, D N

    2008-02-01

    Using a combination of the following, it is possible to investigate procedures to improve the morphological and functional regeneration of the facial nerve in animal models: 1) retrograde fluorescence tracing to analyse collateral axonal sprouting and the selectivity of reinnervation of the mimic musculature, 2) immunohistochemistry to analyse both the terminal axonal sprouting in the muscles and the axon reaction within the nucleus of the facial nerve, the peripheral nerve, and its environment, and 3) digital motion analysis of the muscles. To obtain good functional facial nerve regeneration, a reduction of terminal sprouting in the mimic musculature seems to be more important than a reduction of collateral sprouting at the lesion site. Promising strategies include acceleration of nerve regeneration, forced induced use of the paralysed face, mechanical stimulation of the face, and transplantation of nerve-growth-promoting olfactory epithelium at the lesion site.

  16. Regeneration-associated genes on optic nerve regeneration in fish retina.

    PubMed

    Ogai, Kazuhiro; Nishitani, Maki; Kuwana, Ayaka; Mawatari, Kazuhiro; Koriyama, Yoshiki; Sugitani, Kayo; Nakashima, Hiroshi; Kato, Satoru

    2014-01-01

    It has been well documented that fish central nervous system, including retina and optic nerve, can regenerate and recover its function after nerve injury. Within a few decades, a number of regeneration-associated genes (RAGs) have been identified in fish retina following optic nerve injury (ONI). RAGs can be classified into two groups: cell survival- and axonal outgrowth-related genes. In fish retina after ONI, cell survival-related genes were upregulated in 1-6 days after ONI, which corresponds to the preparation stage for cell survival and axonal sprouting. Subsequently, axonal outgrowth-related genes were upregulated in 1-6 weeks after ONI, which corresponds to the axonal regrowth stage. Recently, we've found a novel type of RAGs, dedifferentiation-related genes, that are upregulated in overlapping time between cell survival and axonal regrowth (3-10 days after ONI). In this chapter we summarize these three types of RAGs that promote optic nerve regeneration in the fish retina after ONI.

  17. Brain Endothelial Cells Control Fertility through Ovarian-Steroid–Dependent Release of Semaphorin 3A

    PubMed Central

    Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, Joost; Ciofi, Philippe; Bouret, Sébastien G.; Tamagnone, Luca; Prevot, Vincent

    2014-01-01

    Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3a loxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction. PMID:24618750

  18. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A.

    PubMed

    Giacobini, Paolo; Parkash, Jyoti; Campagne, Céline; Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, Joost; Ciofi, Philippe; Bouret, Sébastien G; Tamagnone, Luca; Prevot, Vincent

    2014-03-01

    Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.

  19. Lost in the jungle: new hurdles for optic nerve axon regeneration.

    PubMed

    Pernet, Vincent; Schwab, Martin E

    2014-07-01

    The poor regenerative capacity of injured central nervous system (CNS) axons leads to permanent neurological deficits after brain, spinal cord, or optic nerve lesions. In the optic nerve, recent studies showed that stimulation of the cytokine or mammalian target of rapamycin (mTOR) signaling pathways potently enhances sprouting and regeneration of injured retinal ganglion cell axons in adult mice, but does not allow the majority of axons to reach their main cerebral targets. New analyses have revealed axon navigation defects in the optic nerve and at the optic chiasm under conditions of strong growth stimulation. We propose that a balanced growth stimulatory treatment will have to be combined with guidance factors and suppression of local growth inhibitory factors to obtain the full regeneration of long CNS axonal tracts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Neural guidance molecules regulate vascular remodeling and vessel navigation.

    PubMed

    Eichmann, Anne; Makinen, Taija; Alitalo, Kari

    2005-05-01

    The development of the embryonic blood vascular and lymphatic systems requires the coordinated action of several transcription factors and growth factors that target endothelial and periendothelial cells. However, according to recent studies, the precise "wiring" of the vascular system does not occur without an ordered series of guidance decisions involving several molecules initially discovered for axons in the nervous system, including ephrins, netrins, slits, and semaphorins. Here, we summarize the new advances in our understanding of the roles of these axonal pathfinding molecules in vascular remodeling and vessel guidance, indicating that neuronal axons and vessel sprouts use common molecular mechanisms for navigation in the body.

  1. Astrocytes as gate-keepers in optic nerve regeneration--a mini-review.

    PubMed

    García, Dana M; Koke, Joseph R

    2009-02-01

    Animals that develop without extra-embryonic membranes (anamniotes--fish, amphibians) have impressive regenerative capacity, even to the extent of replacing entire limbs. In contrast, animals that develop within extra-embryonic membranes (amniotes--reptiles, birds, mammals) have limited capacity for regeneration as adults, particularly in the central nervous system (CNS). Much is known about the process of nerve development in fish and mammals and about regeneration after lesions in the CNS in fish and mammals. Because the retina of the eye and optic nerve are functionally part of the brain and are accessible in fish, frogs, and mice, optic nerve lesion and regeneration (ONR) has been extensively used as a model system for study of CNS nerve regeneration. When the optic nerve of a mouse is severed, the axons leading into the brain degenerate. Initially, the cut end of the axons on the proximal, eye-side of the injury sprout neurites which begin to grow into the lesion. Simultaneously, astrocytes of the optic nerve become activated to initiate wound repair as a first step in reestablishing the structural integrity of the optic nerve. This activation appears to initiate a cascade of molecular signals resulting in apoptotic cell death of the retinal ganglion cells axons of which make up the neural component of the optic nerve; regeneration fails and the injury is permanent. Evidence specifically implicating astrocytes comes from studies showing selective poisoning of astrocytes at the optic nerve lesion, along with activation of a gene whose product blocks apoptosis in retinal ganglion cells, creates conditions favorable to neurites sprouting from the cut proximal stump, growing through the lesion and into the distal portion of the injured nerve, eventually reaching appropriate targets in the brain. In anamniotes, astrocytes ostensibly present no such obstacle since optic nerve regeneration occurs without intervention; however, no systematic study of glial involvement has been done. In fish, vigorously growing neurites sprout from the cut axons and within a few days begin to re-enervate the brain. This review offers a new perspective on the role of glia, particularly astrocytes, as "gate-keepers;" i.e., as being permissive or inhibitory, by comparison between fish and mammals of glial function during ONR.

  2. Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis.

    PubMed

    Larrivée, Bruno; Freitas, Catarina; Trombe, Marc; Lv, Xiang; Delafarge, Benjamin; Yuan, Li; Bouvrée, Karine; Bréant, Christiane; Del Toro, Raquel; Bréchot, Nicolas; Germain, Stéphane; Bono, Françoise; Dol, Frédérique; Claes, Filip; Fischer, Christian; Autiero, Monica; Thomas, Jean-Léon; Carmeliet, Peter; Tessier-Lavigne, Marc; Eichmann, Anne

    2007-10-01

    Netrins are secreted molecules with roles in axonal growth and angiogenesis. The Netrin receptor UNC5B is required during embryonic development for vascular patterning, suggesting that it may also contribute to postnatal and pathological angiogenesis. Here we show that unc5b is down-regulated in quiescent adult vasculature, but re-expressed during sprouting angiogenesis in matrigel and tumor implants. Stimulation of UNC5B-expressing neovessels with an agonist (Netrin-1) inhibits sprouting angiogenesis. Genetic loss of function of unc5b reduces Netrin-1-mediated angiogenesis inhibition. Expression of UNC5B full-length receptor also triggers endothelial cell repulsion in response to Netrin-1 in vitro, whereas a truncated UNC5B lacking the intracellular signaling domain fails to induce repulsion. These data show that UNC5B activation inhibits sprouting angiogenesis, thus identifying UNC5B as a potential anti-angiogenic target.

  3. Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis

    PubMed Central

    Larrivée, Bruno; Freitas, Catarina; Trombe, Marc; Lv, Xiang; DeLafarge, Benjamin; Yuan, Li; Bouvrée, Karine; Bréant, Christiane; Del Toro, Raquel; Bréchot, Nicolas; Germain, Stéphane; Bono, Françoise; Dol, Frédérique; Claes, Filip; Fischer, Christian; Autiero, Monica; Thomas, Jean-Léon; Carmeliet, Peter; Tessier-Lavigne, Marc; Eichmann, Anne

    2007-01-01

    Netrins are secreted molecules with roles in axonal growth and angiogenesis. The Netrin receptor UNC5B is required during embryonic development for vascular patterning, suggesting that it may also contribute to postnatal and pathological angiogenesis. Here we show that unc5b is down-regulated in quiescent adult vasculature, but re-expressed during sprouting angiogenesis in matrigel and tumor implants. Stimulation of UNC5B-expressing neovessels with an agonist (Netrin-1) inhibits sprouting angiogenesis. Genetic loss of function of unc5b reduces Netrin-1-mediated angiogenesis inhibition. Expression of UNC5B full-length receptor also triggers endothelial cell repulsion in response to Netrin-1 in vitro, whereas a truncated UNC5B lacking the intracellular signaling domain fails to induce repulsion. These data show that UNC5B activation inhibits sprouting angiogenesis, thus identifying UNC5B as a potential anti-angiogenic target. PMID:17908930

  4. LIM Kinase, a Newly Identified Regulator of Presynaptic Remodeling by Rod Photoreceptors After Injury

    PubMed Central

    Wang, Weiwei; Townes-Anderson, Ellen

    2015-01-01

    Purpose Rod photoreceptors retract their axon terminals and develop neuritic sprouts in response to retinal detachment and reattachment, respectively. This study examines the role of LIM kinase (LIMK), a component of RhoA and Rac pathways, in the presynaptic structural remodeling of rod photoreceptors. Methods Phosphorylated LIMK (p-LIMK), the active form of LIMK, was examined in salamander retina with Western blot and confocal microscopy. Axon length within the first 7 hours and process growth after 3 days of culture were assessed in isolated rod photoreceptors treated with inhibitors of upstream regulators ROCK and p21-activated kinase (Pak) (Y27632 and IPA-3) and a direct LIMK inhibitor (BMS-5). Porcine retinal explants were also treated with BMS-5 and analyzed 24 hours after detachment. Because Ca2+ influx contributes to axonal retraction, L-type channels were blocked in some experiments with nicardipine. Results Phosphorylated LIMK is present in rod terminals during retraction and in newly formed processes. Axonal retraction over 7 hours was significantly reduced by inhibition of LIMK or its regulators, ROCK and Pak. Process growth was reduced by LIMK or Pak inhibition especially at the basal (axon-bearing) region of the rod cells. Combining Ca2+ channel and LIMK inhibition had no additional effect on retraction but did further inhibit sprouting after 3 days. In detached porcine retina, LIMK inhibition reduced rod axonal retraction and improved retinal morphology. Conclusions Thus structural remodeling, in the form of either axonal retraction or neuritic growth, requires LIMK activity. LIM kinase inhibition may have therapeutic potential for reducing pathologic rod terminal plasticity after retinal injury. PMID:26658506

  5. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    PubMed Central

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  6. Conditional Sox9 ablation improves locomotor recovery after spinal cord injury by increasing reactive sprouting.

    PubMed

    McKillop, William M; York, Elisa M; Rubinger, Luc; Liu, Tony; Ossowski, Natalie M; Xu, Kathy; Hryciw, Todd; Brown, Arthur

    2016-09-01

    The absence of axonal regeneration after spinal cord injury (SCI) has been attributed to the up-regulation of axon-repelling molecules, such as chondroitin sulfate proteoglycans (CSPGs) present in the glial scar that forms post-SCI. We previously identified the transcription factor SOX9 as a key up-regulator of CSPG production and also demonstrated that conditional Sox9 ablation leads to decreased CSPG levels and improved recovery of hind limb function after SCI. We herein demonstrate increased neural input onto spinal neurons caudal to the lesion in spinal cord injured Sox9 conditional knock out mice as indicated by increased levels of the presynaptic markers synaptophysin and vesicular glutamate transporter 1 (VGLUT1) compared to controls. Axonal sparing, long-range axonal regeneration and reactive sprouting were investigated as possible explanations for the increase in neural inputs caudal to the lesion and for the improved locomotor outcomes in spinal cord-injured Sox9 conditional knock out mice. Whereas retrograde tract-tracing studies failed to reveal any evidence for increased axonal sparing or for long-range regeneration in the Sox9 conditional knock out mice, anterograde tract-tracing experiments demonstrated increased reactive sprouting caudal to the lesion after SCI. Finally we demonstrate that application of a broad spectrum MMP inhibitor to reduce CSPG degradation in Sox9 conditional knock out mice prevents the improvements in locomotor recovery observed in untreated Sox9 conditional knock out mice. These results suggest that improved recovery of locomotor function in Sox9 conditional knock out mice after SCI is due to increased reactive sprouting secondary to reduced CSPG levels distal to the lesion. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Evidence for Sprouting of Dopamine and Serotonin Axons in the Pallidum of Parkinsonian Monkeys

    PubMed Central

    Gagnon, Dave; Eid, Lara; Coudé, Dymka; Whissel, Carl; Di Paolo, Thérèse; Parent, André; Parent, Martin

    2018-01-01

    This light and electron microscopie immunohistochemical quantitative study aimed at determining the state of the dopamine (DA) and serotonin (5-HT) innervations of the internal (GPi) and external (GPe) segments of the pallidum in cynomolgus monkeys (Macaca fascicularis) rendered parkinsonian by systemic injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In contrast to the prominent DA denervation of striatum, the GPi in MPTP monkeys was found to be markedly enriched in DA (TH+) axon varicosities. The posterior sensorimotor region of this major output structure of the basal ganglia was about 8 times more intensely innervated in MPTP monkeys (0.71 ± 0.08 × 106 TH+ axon varicosities/mm3) than in controls (0.09 ± 0.01 × 106). MPTP intoxication also induced a two-fold increase in the density of 5-HT (SERT+) axon varicosities in both GPe and GPi. This augmentation was particularly pronounced anteriorly in the so-called associative and limbic pallidal territories. The total length of the labeled pallidal axons was also significantly increased in MPTP monkeys compared to controls, but the number of DA and 5-HT axon varicosities per axon length unit remained the same in the two groups, indicating that the DA and 5-HT pallidal hyperinnervations seen in MPTP monkeys result from axon sprouting rather than from the appearance of newly formed axon varicosities on non-growing axons. At the ultrastructural level, pallidal TH+ and SERT+ axons were morphologically similar in MPTP and controls, and their synaptic incidence was very low suggesting a volumic mode of transmission. Altogether, our data reveal a significant sprouting of DA and 5-HT pallidal afferents in parkinsonian monkeys, the functional significance of which remains to be determined. We suggest that the marked DA hyperinnervation of the GPi represents a neuroadaptive change designed to normalize pallidal firing patterns associated with the delayed appearance of motor symptoms, whereas the 5-HT hyperinnervation might be involved in the early expression of non-motor symptoms in Parkinson's disease. PMID:29867377

  8. Cellular and network properties of the subiculum in the pilocarpine model of temporal lobe epilepsy.

    PubMed

    Knopp, Andreas; Kivi, Anatol; Wozny, Christian; Heinemann, Uwe; Behr, Joachim

    2005-03-21

    The subiculum was recently shown to be crucially involved in the generation of interictal activity in human temporal lobe epilepsy. Using the pilocarpine model of epilepsy, this study examines the anatomical substrates for network hyperexcitability recorded in the subiculum. Regular- and burst-spiking subicular pyramidal cells were stained with fluorescence dyes and reconstructed to analyze seizure-induced alterations of the dendritic and axonal system. In control animals burst-spiking cells outnumbered regular-spiking cells by about two to one. Regular- and burst-spiking cells were characterized by extensive axonal branching and autapse-like contacts, suggesting a high intrinsic connectivity. In addition, subicular axons projecting to CA1 indicate a CA1-subiculum-CA1 circuit. In the subiculum of pilocarpine-treated rats we found an enhanced network excitability characterized by spontaneous rhythmic activity, polysynaptic responses, and all-or-none evoked bursts of action potentials. In pilocarpine-treated rats the subiculum showed cell loss of about 30%. The ratio of regular- and burst-spiking cells was practically inverse as compared to control preparations. A reduced arborization and spine density in the proximal part of the apical dendrites suggests a partial deafferentiation from CA1. In pilocarpine-treated rats no increased axonal outgrowth of pyramidal cells was observed. Hence, axonal sprouting of subicular pyramidal cells is not mandatory for the development of the pathological events. We suggest that pilocarpine-induced seizures cause an unmasking or strengthening of synaptic contacts within the recurrent subicular network. Copyright 2005 Wiley-Liss, Inc.

  9. Linking Essential Tremor to the Cerebellum: Neuropathological Evidence.

    PubMed

    Louis, Elan D

    2016-06-01

    A fundamental question about essential tremor (ET) is whether its associated pathological changes and disease mechanisms are linkable to a specific brain region. To that end, recent tissue-based studies have made significant strides in elucidating changes in the ET brain. Emerging from these studies is increasing neuropathological evidence linking ET to the cerebellum. These studies have systematically identified a broad range of structural, degenerative changes in the ET cerebellum, spanning across all Purkinje cell compartments. These include the dendritic compartment (where there is an increase in number of Purkinje cell dendritic swellings, a pruning of the dendritic arbor, and a reduction in spine density), the cell body (where, aside from reductions in Purkinje cell linear density in some studies, there is an increase in the number of heterotopic Purkinje cell soma), and the axonal compartment (where a plethora of changes in axonal morphology have been observed, including an increase in the number of thickened axonal profiles, torpedoes, axonal recurrent collaterals, axonal branching, and terminal axonal sprouting). Additional changes, possibly due to secondary remodeling, have been observed in neighboring neuronal populations. These include a hypertrophy of basket cell axonal processes and changes in the distribution of climbing fiber-Purkinje cell synapses. These changes all distinguish ET from normal control brains. Initial studies further indicate that the profile (i.e., constellation) of these changes may separate ET from other diseases of the cerebellum, thereby serving as a disease signature. With the discovery of these changes, a new model of ET has arisen, which posits that it may be a neurodegenerative disorder centered in the cerebellar cortex. These newly emerging neuropathological studies pave the way for anatomically focused, hypothesis-driven, molecular mechanistic studies of disease pathogenesis.

  10. The Extracellular Environment of the CNS: Influence on Plasticity, Sprouting, and Axonal Regeneration after Spinal Cord Injury

    PubMed Central

    Forbes, Lindsey H.

    2018-01-01

    The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a “developmental state” to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury. PMID:29849554

  11. Alterations of Hippocampal Myelin Sheath and Axon Sprouting by Status Convulsion and Regulating Lingo-1 Expression with RNA Interference in Immature and Adult Rats.

    PubMed

    Song, Xiao-Jie; Han, Wei; He, Rong; Li, Tian-Yi; Xie, Ling-Ling; Cheng, Li; Chen, Heng-Sheng; Jiang, Li

    2018-03-01

    Seizure-induced brain damage is age-dependent, as evidenced by the different alterations of neural physiopathology in developing and mature brains. However, little is known about the age-dependent characteristics of myelinated fiber injury induced by seizures. Considering the critical functions of oligodendrocyte progenitor cells (OPCs) in myelination and Lingo-1 signaling in regulating OPCs' differentiation, the present study aimed to explore the effects of Lingo-1 on myelin and axon in immature and adult rats after status convulsion (SC) induced by lithium-pilocarpine, and the differences between immature and adult brains. Dynamic variations in electrophysiological activity and spontaneous recurrent seizures were recorded by electroencephalogram monitoring after SC. The impaired microstructures of myelin sheaths and decrease in myelin basic protein caused by SC were observed through transmission electron microscopy and western blot analysis respectively, which became more severe in adult rats, but improved gradually in immature rats. Aberrant axon sprouting occurred in adult rats, which was more prominent than in immature rats, as shown by a Timm stain. This damage was improved or negatively affected after down or upregulating Lingo-1 expression. These results demonstrated that in both immature and adult brains, Lingo-1 signaling plays important roles in seizure-induced damage to myelin sheaths and axon growth. The plasticity of the developing brain may provide a potential window of opportunity to prevent the brain from damage.

  12. Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury.

    PubMed

    Lee, Hyunjung; McKeon, Robert J; Bellamkonda, Ravi V

    2010-02-23

    Chondroitin sulfate proteoglycans (CSPGs) are a major class of axon growth inhibitors that are up-regulated after spinal cord injury (SCI) and contribute to regenerative failure. Chondroitinase ABC (chABC) digests glycosaminoglycan chains on CSPGs and can thereby overcome CSPG-mediated inhibition. But chABC loses its enzymatic activity rapidly at 37 degrees C, necessitating the use of repeated injections or local infusions for a period of days to weeks. These infusion systems are invasive, infection-prone, and clinically problematic. To overcome this limitation, we have thermostabilized chABC and developed a system for its sustained local delivery in vivo, obviating the need for chronically implanted catheters and pumps. Thermostabilized chABC remained active at 37 degrees C in vitro for up to 4 weeks. CSPG levels remained low in vivo up to 6 weeks post-SCI when thermostabilized chABC was delivered by a hydrogel-microtube scaffold system. Axonal growth and functional recovery following the sustained local release of thermostabilized chABC versus a single treatment of unstabilized chABC demonstrated significant differences in CSPG digestion. Animals treated with thermostabilized chABC in combination with sustained neurotrophin-3 delivery showed significant improvement in locomotor function and enhanced growth of cholera toxin B subunit-positive sensory axons and sprouting of serotonergic fibers. Therefore, improving chABC thermostability facilitates minimally invasive, sustained, local delivery of chABC that is potentially effective in overcoming CSPG-mediated regenerative failure. Combination therapy with thermostabilized chABC with neurotrophic factors enhances axonal regrowth, sprouting, and functional recovery after SCI.

  13. In vivo imaging of neural reactive plasticity after laser axotomy in cerebellar cortex

    NASA Astrophysics Data System (ADS)

    Allegra Mascaro, A. L.; Sacconi, L.; Maco, B.; Knott, G. W.; Pavone, F. S.

    2014-03-01

    Multi-photon imaging provides valuable insights into the continuous reshaping of neuronal connectivity in live brain. We previously showed that single neuron or even single spine ablation can be achieved by laser-mediated dissection. Furthermore, single axonal branches can be dissected avoiding collateral damage to the adjacent dendrite and the formation of a persistent glial scar. Here, we describe the procedure to address the structural plasticity of cerebellar climbing fibers by combining two-photon in vivo imaging with laser axotomy in a mouse model. This method is a powerful tool to study the basic mechanisms of axonal rewiring after single branch axotomy in vivo. In fact, despite the denervated area being very small, the injured axons consistently reshape the connectivity with surrounding neurons, as indicated by the increase in the turnover of synaptic boutons. In addition, time-lapse imaging reveals the sprouting of new branches from the injured axon. Newly formed branches with varicosities suggest the possible formation of synaptic contacts. Correlative light and electron microscopy revealed that the sprouted branch contains large numbers of vesicles, with varicosities in the close vicinity of Purkinje dendrites.

  14. Effects of spaceflight in the adductor longus muscle of rats flown in the Soviet Biosatellite COSMOS 2044. A study employing neural cell adhesion molecule (N-CAM) immunocytochemistry and conventional morphological techniques (light and electron microscopy)

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Daunton, N. G.

    1992-01-01

    The effects of spaceflight upon the "slow" muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  15. THE REGENERATIVE CYCLE OF MOTONEURONS, WITH SPECIAL REFERENCE TO PHOSPHATASE ACTIVITY.

    PubMed

    Bodian, D; Mellors, R C

    1945-05-01

    1. The regenerative cycle of motoneurons after axon amputation is described, and an attempt made to correlate morphological and chemical events in cell bodies with the growth requirements of regenerating axons. 2. The "normal" pattern of Nissl material in the cell is considered to be the resultant of a steady state in cytoplasmic nucleoprotein. Chromatol is then interpreted as a shift of the balance of nucleoprotein turnover in fa of degradation. The rapid early depletion of Nissl substance in chromatolysis is ascribed to the increased growth requirements created by the active early sprouting of the regenerating axon. Acid phosphatase activity begins to increase above normal levels during this period in the region of nucleopro degradation. 3. The recovery period of chromatolysis due to axon section coincide in time with the phase of gradual lengthening of the regenerating axon, and is thought to represent a gradual restoration of the balance of nucleoprotein degradation and synthesis. During this period acid phosphatase activity is at its height in the region of transformation of Nissl substance, later declines to normal levels when the original pattern of Nissl bodie is restored. 4. The transformation of cytoplasmic nucleoprotein which occurs in chromatolysis after axon section, with the probable liberation (46), and depletion (44), of nucleotides, associated with acid phosphatase activity, suggests the hypothesis that liberated nucleotides or nucleotide compounds may pass down the axon in which they take part in enzymatic activity associated with growth and organization of the newly formed axon. This type of activity would not be incompatible with the ideas previously expressed (30, 81) of a continual function of Nissl substance in maintaining the integrity of the large volume of cytoplasm represented by the axon, as well perhaps as the associated myelin sheath.

  16. Axonal remodeling for motor recovery after traumatic brain injury requires downregulation of γ-aminobutyric acid signaling

    PubMed Central

    Lee, S; Ueno, M; Yamashita, T

    2011-01-01

    Remodeling of the remnant neuronal network after brain injury possibly mediates spontaneous functional recovery; however, the mechanisms inducing axonal remodeling during spontaneous recovery remain unclear. Here, we show that altered γ-aminobutyric acid (GABA) signaling is crucial for axonal remodeling of the contralesional cortex after traumatic brain injury. After injury to the sensorimotor cortex in mice, we found a significant decrease in the expression of GABAAR-α1 subunits in the intact sensorimotor cortex for 2 weeks. Motor functions, assessed by grid walk and cylinder tests, spontaneously improved in 4 weeks after the injury to the sensorimotor cortex. With motor recovery, corticospinal tract (CST) axons from the contralesional cortex sprouted into the denervated side of the cervical spinal cord at 2 and 4 weeks after the injury. To determine the functional implications of the changes in the expression of GABAAR-α1 subunits, we infused muscimol, a GABA R agonist, into the contralesional cortex for a week after the injury. Compared with the vehicle-treated mice, we noted significantly inhibited recovery in the muscimol-treated mice. Further, muscimol infusion greatly suppressed the axonal sprouting into the denervated side of the cervical spinal cord. In conclusion, recovery of motor function and axonal remodeling of the CST following cortical injury requires suppressed GABAAR subunit expression and decreased GABAergic signaling. PMID:21412279

  17. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    PubMed

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  18. Contralesional Axonal Remodeling of the Corticospinal System in Adult Rats After Stroke and Bone Marrow Stromal Cell Treatment

    PubMed Central

    Liu, Zhongwu; Li, Yi; Zhang, Xueguo; Savant-Bhonsale, Smita; Chopp, Michael

    2008-01-01

    Background and Purpose Motor recovery after stroke is associated with neuronal reorganization in bilateral hemispheres. We investigated contralesional corticospinal tract remodeling in the brain and spinal cord in rats after stroke and treatment of bone marrow stromal cells. Methods Adult male Wistar rats were subjected to permanent right middle cerebral artery occlusion. Phosphate-buffered saline or bone marrow stromal cells were injected into a tail vein 1 day postischemia. An adhesive removal test was performed weekly to monitor functional recovery. Threshold currents of intracortical microstimulation on the left motor cortex for evoking bilateral forelimb movements were measured 6 weeks after stroke. When intracortical microstimulation was completed, biotinylated dextran amine was injected into the left motor cortex to anterogradely label the corticospinal tract. At 4 days before euthanization, pseudorabies virus-152-EGFP and 614-mRFP were injected into left or right forelimb extensor muscles, respectively. All animals were euthanized 8 weeks after stroke. Results In normal rats (n=5), the corticospinal tract showed a unilateral innervation pattern. In middle cerebral artery occlusion rats (n=8), our data demonstrated that: 1) stroke reduced the stimulation threshold evoking ipsilateral forelimb movement; 2) EGFP-positive pyramidal neurons were increased in the left intact cortex, which were labeled from the left stroke-impaired forelimb; and 3) biotinylated dextran amine-labeled contralesional axons sprouted into the denervated spinal cord. Bone marrow stromal cells significantly enhanced all 3 responses (n=8, P<0.05). Conclusions Our data demonstrated that corticospinal tract fibers originating from the contralesional motor cortex sprout into the denervated spinal cord after stroke and bone marrow stromal cells treatment, which may contribute to functional recovery. PMID:18617661

  19. Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar

    PubMed Central

    Wu, Di; Klaw, Michelle C.; Connors, Theresa; Kholodilov, Nikolai; Burke, Robert E.

    2015-01-01

    After a spinal cord injury (SCI), CNS axons fail to regenerate, resulting in permanent deficits. This is due to: (1) the presence of inhibitory molecules, e.g., chondroitin sulfate proteoglycans (CSPG), in the glial scar at the lesion; and (2) the diminished growth capacity of adult neurons. We sought to determine whether expressing a constitutively active form of the GTPase Rheb (caRheb) in adult neurons after a complete SCI in rats improves intrinsic growth potential to result in axon regeneration out of a growth-supportive peripheral nerve grafted (PNG) into the SCI cavity. We also hypothesized that treating the glial scar with chondroitinase ABC (ChABC), which digests CSPG, would further allow caRheb-transduced neurons to extend axons across the distal graft interface. We found that targeting this pathway at a clinically relevant post-SCI time point improves both sprouting and regeneration of axons. CaRheb increased the number of axons, but not the number of neurons, that projected into the PNG, indicative of augmented sprouting. We also saw that caRheb enhanced sprouting far rostral to the injury. CaRheb not only increased growth rostral and into the graft, it also resulted in significantly more regrowth of axons across a ChABC-treated scar into caudal spinal cord. CaRheb+ neurons had higher levels of growth-associated-43, suggestive of a newly identified mechanism for mTOR-mediated enhancement of regeneration. Thus, we demonstrate for the first time that simultaneously addressing intrinsic and scar-associated, extrinsic impediments to regeneration results in significant regrowth beyond an extremely challenging, complete SCI site. SIGNIFICANCE STATEMENT After spinal cord injury (SCI), CNS axons fail to regenerate, resulting in permanent deficits. This is due to the diminished growth capacity of adult neurons and the presence of inhibitory molecules in the scar at the lesion. We sought to simultaneously counter both of these obstacles to achieve more robust regeneration after complete SCI. We transduced neurons postinjury to express a constitutively active Rheb to enhance their intrinsic growth potential, transplanted a growth supporting peripheral nerve graft into the lesion cavity, and enzymatically modulated the inhibitory glial scar distal to the graft. We demonstrate, for the first time, that simultaneously addressing neuron-related, intrinsic deficits in axon regrowth and extrinsic, scar-associated impediments to regeneration results in significant regeneration after SCI. PMID:26245968

  20. Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar.

    PubMed

    Wu, Di; Klaw, Michelle C; Connors, Theresa; Kholodilov, Nikolai; Burke, Robert E; Tom, Veronica J

    2015-08-05

    After a spinal cord injury (SCI), CNS axons fail to regenerate, resulting in permanent deficits. This is due to: (1) the presence of inhibitory molecules, e.g., chondroitin sulfate proteoglycans (CSPG), in the glial scar at the lesion; and (2) the diminished growth capacity of adult neurons. We sought to determine whether expressing a constitutively active form of the GTPase Rheb (caRheb) in adult neurons after a complete SCI in rats improves intrinsic growth potential to result in axon regeneration out of a growth-supportive peripheral nerve grafted (PNG) into the SCI cavity. We also hypothesized that treating the glial scar with chondroitinase ABC (ChABC), which digests CSPG, would further allow caRheb-transduced neurons to extend axons across the distal graft interface. We found that targeting this pathway at a clinically relevant post-SCI time point improves both sprouting and regeneration of axons. CaRheb increased the number of axons, but not the number of neurons, that projected into the PNG, indicative of augmented sprouting. We also saw that caRheb enhanced sprouting far rostral to the injury. CaRheb not only increased growth rostral and into the graft, it also resulted in significantly more regrowth of axons across a ChABC-treated scar into caudal spinal cord. CaRheb(+) neurons had higher levels of growth-associated-43, suggestive of a newly identified mechanism for mTOR-mediated enhancement of regeneration. Thus, we demonstrate for the first time that simultaneously addressing intrinsic and scar-associated, extrinsic impediments to regeneration results in significant regrowth beyond an extremely challenging, complete SCI site. After spinal cord injury (SCI), CNS axons fail to regenerate, resulting in permanent deficits. This is due to the diminished growth capacity of adult neurons and the presence of inhibitory molecules in the scar at the lesion. We sought to simultaneously counter both of these obstacles to achieve more robust regeneration after complete SCI. We transduced neurons postinjury to express a constitutively active Rheb to enhance their intrinsic growth potential, transplanted a growth supporting peripheral nerve graft into the lesion cavity, and enzymatically modulated the inhibitory glial scar distal to the graft. We demonstrate, for the first time, that simultaneously addressing neuron-related, intrinsic deficits in axon regrowth and extrinsic, scar-associated impediments to regeneration results in significant regeneration after SCI. Copyright © 2015 the authors 0270-6474/15/3511068-13$15.00/0.

  1. Endogenous neurotrophin-3 promotes neuronal sprouting from dorsal root ganglia.

    PubMed

    Wang, Xu-Yang; Gu, Pei-Yuan; Chen, Shi-Wen; Gao, Wen-Wei; Tian, Heng-Li; Lu, Xiang-He; Zheng, Wei-Ming; Zhuge, Qi-Chuan; Hu, Wei-Xing

    2015-11-01

    In the present study, we investigated the role of endogenous neurotrophin-3 in nerve terminal sprouting 2 months after spinal cord dorsal root rhizotomy. The left L1-5 and L7-S2 dorsal root ganglia in adult cats were exposed and removed, preserving the L6 dorsal root ganglia. Neurotrophin-3 was mainly expressed in large neurons in the dorsal root ganglia and in some neurons in spinal lamina II. Two months after rhizotomy, the number of neurotrophin-3-positive neurons in the spared dorsal root ganglia and the density of neurite sprouts emerging from these ganglia were increased. Intraperitoneal injection of an antibody against neurotrophin-3 decreased the density of neurite sprouts. These findings suggest that endogenous neurotrophin-3 is involved in spinal cord plasticity and regeneration, and that it promotes axonal sprouting from the dorsal root ganglia after spinal cord dorsal root rhizotomy.

  2. Evidence for the Involvement of Lfc and Tctex-1 in Axon Formation

    PubMed Central

    Conde, Cecilia; Arias, Cristina; Robin, Maria; Li, Aiqun; Saito, Masaki; Chuang, Jen-Zen; Nairn, Angus C.; Sung, Ching-Hwa; Cáceres, Alfredo

    2013-01-01

    RhoA and Rac play key and opposite roles during neuronal polarization. We now show that Lfc, a guanosine nucleotide exchange factor (GEF), localizes to the Golgi apparatus and growth cones of developing neurons and negatively regulates neurite sprouting and axon formation through a Rho signaling pathway. Tctex-1, a dynein light chain implicated in axon outgrowth by modulating actin dynamics and Rac activity, colocalizes and physically interacts with Lfc, thus inhibiting its GEF activity, decreasing Rho-GTP levels, and functionally antagonizing Lfc during neurite formation. PMID:20463241

  3. Electric field stimulation through a biodegradable polypyrrole-co-polycaprolactone substrate enhances neural cell growth

    PubMed Central

    Nguyen, Hieu T; Wei, Claudia; Chow, Jacqueline K; Nguyen, Alvin; Coursen, Jeff; Sapp, Shawn; Luebben, Silvia; Chang, Emily; Ross, Robert; Schmidt, Christine E

    2014-01-01

    Nerve guidance conduits (NGCs) are FDA-approved devices used to bridge gaps across severed nerve cables and help direct axons sprouting from the proximal end toward the distal stump. In this paper we present the development of a novel electrically conductive, biodegradable NGC made from a polypyrrole-block-polycaprolactone (PPy-PCL) copolymer material laminated with poly(lactic-co-glycolic acid) (PLGA). The PPy-PCL has a bulk conductivity ranging 10–20 S/cm and loses 40 wt% after 7 months under physiologic conditions. Dorsal root ganglia (DRG) grown on flat PPy-PCL/PLGA material exposed to direct current electric fields (EF) of 100 mV/cm for 2 h increased axon growth by 13% (± 2%) towards either electrode of a 2-electrode setup, compared to control grown on identical substrates without EF exposure. Alternating current increased axon growth by 21% (± 3%) without an observable directional preference, compared to the same control group. The results from this study demonstrate PLGA-coated PPy-PCL is a unique biodegradable material that can deliver substrate EF stimulation to improve axon growth for peripheral nerve repair. PMID:23964001

  4. Complement Protein C1q Modulates Neurite Outgrowth In Vitro and Spinal Cord Axon Regeneration In Vivo

    PubMed Central

    Peterson, Sheri L.; Nguyen, Hal X.; Mendez, Oscar A.

    2015-01-01

    Traumatic injury to CNS fiber tracts is accompanied by failure of severed axons to regenerate and results in lifelong functional deficits. The inflammatory response to CNS trauma is mediated by a diverse set of cells and proteins with varied, overlapping, and opposing effects on histological and behavioral recovery. Importantly, the contribution of individual inflammatory complement proteins to spinal cord injury (SCI) pathology is not well understood. Although the presence of complement components increases after SCI in association with axons and myelin, it is unknown whether complement proteins affect axon growth or regeneration. We report a novel role for complement C1q in neurite outgrowth in vitro and axon regrowth after SCI. In culture, C1q increased neurite length on myelin. Protein and molecular assays revealed that C1q interacts directly with myelin associated glycoprotein (MAG) in myelin, resulting in reduced activation of growth inhibitory signaling in neurons. In agreement with a C1q-outgrowth-enhancing mechanism in which C1q binding to MAG reduces MAG signaling to neurons, complement C1q blocked both the growth inhibitory and repulsive turning effects of MAG in vitro. Furthermore, C1q KO mice demonstrated increased sensory axon turning within the spinal cord lesion after SCI with peripheral conditioning injury, consistent with C1q-mediated neutralization of MAG. Finally, we present data that extend the role for C1q in axon growth and guidance to include the sprouting patterns of descending corticospinal tract axons into spinal gray matter after dorsal column transection SCI. PMID:25762679

  5. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration.

    PubMed

    Wang, Wei; Itoh, Soichiro; Konno, Katsumi; Kikkawa, Takeshi; Ichinose, Shizuko; Sakai, Katsuyoshi; Ohkuma, Tsuneo; Watabe, Kazuhiko

    2009-12-15

    We have constructed a chitosan nonwoven nanofiber mesh tube consisting of oriented fibers by the electrospinning method. The efficacy of oriented nanofibers on Schwann cell alignment and positive effect of this tube on peripheral nerve regeneration were confirmed. The physical properties of the chitosan nanofiber mesh sheets prepared by electrospinning with or without fiber orientation were characterized. Then, immortalized Schwann cells were cultured on these sheets. Furthermore, the chitosan nanofiber mesh tubes with or without orientation, and bilayered chitosan mesh tube with an inner layer of oriented nanofibers and an outer layer of randomized nanofibers were bridgegrafted into rat sciatic nerve defect. As a result of fiber orientation, the tensile strength along the axis of the sheet increased. Because Schwann cells aligned along the nanofibers, oriented fibrous sheets could exhibit a Schwann cell column. Functional recovery and electrophysiological recovery occurred in time in the oriented group as well as in the bilayered group, and approximately matched those in the isograft. Furthermore, histological analysis revealed that the sprouting of myelinated axons occurred vigorously followed by axonal maturation in the isograft, oriented, and bilayered group in the order. The oriented chitosan nanofiber mesh tube may be a promising substitute for autogenous nerve graft.

  6. A molecular mechanism of optic nerve regeneration in fish: the retinoid signaling pathway.

    PubMed

    Kato, Satoru; Matsukawa, Toru; Koriyama, Yoshiki; Sugitani, Kayo; Ogai, Kazuhiro

    2013-11-01

    The fish optic nerve regeneration process takes more than 100 days after axotomy and comprises four stages: neurite sprouting (1-4 days), axonal elongation (5-30 days), synaptic refinement (35-80 days) and functional recovery (100-120 days). We screened genes specifically upregulated in each stage from axotomized fish retina. The mRNAs for heat shock protein 70 and insulin-like growth factor-1 rapidly increased in the retinal ganglion cells soon after axotomy and function as cell-survival factors. Purpurin mRNA rapidly and transiently increased in the photoreceptors and purpurin protein diffusely increased in all nuclear layers at 1-4 days after injury. The purpurin gene has an active retinol-binding site and a signal peptide. Purpurin with retinol functions as a sprouting factor for thin neurites. This neurite-sprouting effect was closely mimicked by retinoic acid and blocked by its inhibitor. We propose that purpurin works as a retinol transporter to supply retinoic acid to damaged RGCs which in turn activates target genes. We also searched for genes involved in the second stage of regeneration. The mRNA of retinoid-signaling molecules increased in retinal ganglion cells at 7-14 days after injury and tissue transglutaminase and neuronal nitric oxide synthase mRNAs, RA-target genes, increased in retinal ganglion cells at 10-30 days after injury. They function as factors for the outgrowth of thick, long neurites. Here we present a retinoid-signaling hypothesis to explain molecular events during the early stages of optic nerve regeneration in fish. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Sympathetic sprouting in visual cortex stimulated by cholinergic denervation rescues expression of two forms of long-term depression at layer 2/3 synapses.

    PubMed

    McCoy, P A; McMahon, L L

    2010-07-14

    Cholinergic innervation of hippocampus and cortex is required for some forms of learning and memory. Several reports have shown that activation of muscarinic m1 receptors induces a long-term depression (mLTD) at glutamate synapses in hippocampus and in several areas of cortex, including perirhinal and visual cortices. This plasticity likely contributes to cognitive function dependent upon the cholinergic system. In rodent models, degeneration of hippocampal cholinergic innervation following lesion of the medial septum stimulates sprouting of adrenergic sympathetic axons, originating from the superior cervical ganglia (SCG), into denervated hippocampal subfields. We previously reported that this adrenergic sympathetic sprouting occurs simultaneously with a reappearance of cholinergic fibers in hippocampus and rescue of mLTD at CA3-CA1 synapses. Because cholinergic neurons throughout basal forebrain degenerate in aging and Alzheimer's disease, it is critical to determine if this compensatory sprouting occurs in other regions impacted by cholinergic cell loss. To this end, we investigated whether lesion of the nucleus basalis magnocellularis (NbM) to cholinergically denervate cortex stimulates adrenergic sympathetic sprouting and the accompanying increase in cholinergic innervation. Further, we assessed whether the presence of sprouting positively correlates with the ability of glutamate synapses in acute visual cortex slices to express mLTD and low frequency stimulation induced LTD (LFS LTD), another cholinergic dependent form of plasticity in visual cortex. We found that both mLTD and LFS LTD are absent in animals when NbM lesion is combined with bilateral removal of the SCG to prevent possible compensatory sprouting. In contrast, when the SCG remain intact to permit sprouting in animals with NbM lesion, cholinergic fiber density is increased concurrently with adrenergic sympathetic sprouting, and mLTD and LFS LTD are preserved. Our findings suggest that autonomic compensation for central cholinergic degeneration is not specific to hippocampus, but is a general repair mechanism occurring in other brain regions important for normal cognitive function. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.

    PubMed

    Zareen, N; Shinozaki, M; Ryan, D; Alexander, H; Amer, A; Truong, D Q; Khadka, N; Sarkar, A; Naeem, S; Bikson, M; Martin, J H

    2017-11-01

    Cervical injuries are the most common form of SCI. In this study, we used a neuromodulatory approach to promote skilled movement recovery and repair of the corticospinal tract (CST) after a moderately severe C4 midline contusion in adult rats. We used bilateral epidural intermittent theta burst (iTBS) electrical stimulation of motor cortex to promote CST axonal sprouting and cathodal trans-spinal direct current stimulation (tsDCS) to enhance spinal cord activation to motor cortex stimulation after injury. We used Finite Element Method (FEM) modeling to direct tsDCS to the cervical enlargement. Combined iTBS-tsDCS was delivered for 30min daily for 10days. We compared the effect of stimulation on performance in the horizontal ladder and the Irvine Beattie and Bresnahan forepaw manipulation tasks and CST axonal sprouting in injury-only and injury+stimulation animals. The contusion eliminated the dorsal CST in all animals. tsDCS significantly enhanced motor cortex evoked responses after C4 injury. Using this combined spinal-M1 neuromodulatory approach, we found significant recovery of skilled locomotion and forepaw manipulation skills compared with injury-only controls. The spared CST axons caudal to the lesion in both animal groups derived mostly from lateral CST axons that populated the contralateral intermediate zone. Stimulation enhanced injury-dependent CST axonal outgrowth below and above the level of the injury. This dual neuromodulatory approach produced partial recovery of skilled motor behaviors that normally require integration of posture, upper limb sensory information, and intent for performance. We propose that the motor systems use these new CST projections to control movements better after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Nerve Growth Factor Gene Therapy Activates Neuronal Responses in Alzheimer’s Disease

    PubMed Central

    Tuszynski, Mark H.; Yang, Jennifer H.; Barba, David; U, H S.; Bakay, Roy; Pay, Mary M.; Masliah, Eliezer; Conner, James M.; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H.

    2016-01-01

    IMPORTANCE Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and lacks effective disease modifying therapies. In 2001 we initiated a clinical trial of Nerve Growth Factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in AD patients. We present post-mortem findings in 10 subjects with survival times ranging from 1 to 10 years post-treatment. OBJECTIVE To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. DESIGN, SETTING, AND PARTICIPANTS 10 patients with early AD underwent NGF gene therapy using either ex vivo or in vivo gene transfer. The brains of all eight patients in the first Phase 1 ex vivo trial and two patients in a subsequent Phase 1 in vivo trial were examined. MAIN OUTCOME MEASURES Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In two cases, NGF protein levels were measured by ELISA. RESULTS Degenerating neurons in the AD brain respond to NGF. All patients exhibited a trophic response to NGF, in the form of axonal sprouting toward the NGF source. Comparing treated and non-treated sides of the brain in three patients that underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P>0.05). Activation of cellular signaling and functional markers were present in two patients that underwent AAV2-mediated NGF gene transfer. Neurons exhibiting tau pathology as well as neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic genes with resulting activation of cell signaling. No adverse pathological effects related to NGF were observed. CONCLUSIONS AND RELEVANCE These findings indicate that neurons of the degenerating brain retain the ability to respond to growth factors, with axonal sprouting, cell hypertrophy and activation of functional markers. NGF-induced sprouting persists over ten years. Growth factor therapy appears safe over extended time periods and merits continued testing as a means of treating neurodegenerative disorders. Trial Registration: NCT00087789 and NCT00017940 PMID:26302439

  10. A homologous form of human interleukin 16 is implicated in microglia recruitment following nervous system injury in leech Hirudo medicinalis.

    PubMed

    Croq, Françoise; Vizioli, Jacopo; Tuzova, Marina; Tahtouh, Muriel; Sautiere, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Cruikshank, William W; Pestel, Joel; Lefebvre, Christophe

    2010-11-01

    In contrast to mammals, the medicinal leech Hirudo medicinalis can completely repair its central nervous system (CNS) after injury. This invertebrate model offers unique opportunities to study the molecular and cellular basis of the CNS repair processes. When the leech CNS is injured, microglial cells migrate and accumulate at the site of lesion, a phenomenon known to be essential for the usual sprouting of injured axons. In the present study, we demonstrate that a new molecule, designated HmIL-16, having functional homologies with human interleukin-16 (IL-16), has chemotactic activity on leech microglial cells as observed using a gradient of human IL-16. Preincubation of microglial cells either with an anti-human IL-16 antibody or with anti-HmIL-16 antibody significantly reduced microglia migration induced by leech-conditioned medium. Functional homology was demonstrated further by the ability of HmIL-16 to promote human CD4+ T cell migration which was inhibited by antibody against human IL-16, an IL-16 antagonist peptide or soluble CD4. Immunohistochemistry of leech CNS indicates that HmIL-16 protein present in the neurons is rapidly transported and stored along the axonal processes to promote the recruitment of microglial cells to the injured axons. To our knowledge, this is the first identification of a functional interleukin-16 homologue in invertebrate CNS. The ability of HmIL-16 to recruit microglial cells to sites of CNS injury suggests a role for HmIL-16 in the crosstalk between neurons and microglia in the leech CNS repair.

  11. Double-Edge Sword of Sustained ROCK Activation in Prion Diseases through Neuritogenesis Defects and Prion Accumulation

    PubMed Central

    Alleaume-Butaux, Aurélie; Nicot, Simon; Pietri, Mathéa; Baudry, Anne; Dakowski, Caroline; Tixador, Philippe; Ardila-Osorio, Hector; Haeberlé, Anne-Marie; Bailly, Yannick; Peyrin, Jean-Michel; Launay, Jean-Marie; Kellermann, Odile; Schneider, Benoit

    2015-01-01

    In prion diseases, synapse dysfunction, axon retraction and loss of neuronal polarity precede neuronal death. The mechanisms driving such polarization defects, however, remain unclear. Here, we examined the contribution of RhoA-associated coiled-coil containing kinases (ROCK), key players in neuritogenesis, to prion diseases. We found that overactivation of ROCK signaling occurred in neuronal stem cells infected by pathogenic prions (PrPSc) and impaired the sprouting of neurites. In reconstructed networks of mature neurons, PrPSc-induced ROCK overactivation provoked synapse disconnection and dendrite/axon degeneration. This overactivation of ROCK also disturbed overall neurotransmitter-associated functions. Importantly, we demonstrated that beyond its impact on neuronal polarity ROCK overactivity favored the production of PrPSc through a ROCK-dependent control of 3-phosphoinositide-dependent kinase 1 (PDK1) activity. In non-infectious conditions, ROCK and PDK1 associated within a complex and ROCK phosphorylated PDK1, conferring basal activity to PDK1. In prion-infected neurons, exacerbated ROCK activity increased the pool of PDK1 molecules physically interacting with and phosphorylated by ROCK. ROCK-induced PDK1 overstimulation then canceled the neuroprotective α-cleavage of normal cellular prion protein PrPC by TACE α-secretase, which physiologically precludes PrPSc production. In prion-infected cells, inhibition of ROCK rescued neurite sprouting, preserved neuronal architecture, restored neuronal functions and reduced the amount of PrPSc. In mice challenged with prions, inhibition of ROCK also lowered brain PrPSc accumulation, reduced motor impairment and extended survival. We conclude that ROCK overactivation exerts a double detrimental effect in prion diseases by altering neuronal polarity and triggering PrPSc accumulation. Eventually ROCK emerges as therapeutic target to combat prion diseases. PMID:26241960

  12. Compensatory axon sprouting for very slow axonal die-back in a transgenic model of spinal muscular atrophy type III.

    PubMed

    Udina, Esther; Putman, Charles T; Harris, Luke R; Tyreman, Neil; Cook, Victoria E; Gordon, Tessa

    2017-03-01

    Smn +/- transgenic mouse is a model of the mildest form of spinal muscular atrophy. Although there is a loss of spinal motoneurons in 11-month-old animals, muscular force is maintained. This maintained muscular force is mediated by reinnervation of the denervated fibres by surviving motoneurons. The spinal motoneurons in these animals do not show an increased susceptibility to death after nerve injury and they retain their regenerative capacity. We conclude that the hypothesized immaturity of the neuromuscular system in this model cannot explain the loss of motoneurons by systematic die-back. Spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and is the leading genetic cause of infantile death. Patients lack the SMN1 gene with the severity of the disease depending on the number of copies of the highly homologous SMN2 gene. Although motoneuron death in the Smn +/- transgenic mouse model of the mildest form of SMA, SMA type III, has been reported, we have used retrograde tracing of sciatic and femoral motoneurons in the hindlimb with recording of muscle and motor unit isometric forces to count the number of motoneurons with intact neuromuscular connections. Thereby, we investigated whether incomplete maturation of the neuromuscular system induced by survival motoneuron protein (SMN) defects is responsible for die-back of axons relative to survival of motoneurons. First, a reduction of ∼30% of backlabelled motoneurons began relatively late, at 11 months of age, with a significant loss of 19% at 7 months. Motor axon die-back was affirmed by motor unit number estimation. Loss of functional motor units was fully compensated by axonal sprouting to retain normal contractile force in four hindlimb muscles (three fast-twitch and one slow-twitch) innervated by branches of the sciatic nerve. Second, our evaluation of whether axotomy of motoneurons in the adult Smn +/- transgenic mouse increases their susceptibility to cell death demonstrated that all the motoneurons survived and they sustained their capacity to regenerate their nerve fibres. It is concluded the systematic die-back of motoneurons that innervate both fast- and slow-twitch muscle fibres is not related to immaturity of the neuromuscular system in SMA. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  13. Deletion of the Fractalkine Receptor, CX3CR1, Improves Endogenous Repair, Axon Sprouting, and Synaptogenesis after Spinal Cord Injury in Mice

    PubMed Central

    Wei, Ping; Guan, Zhen

    2017-01-01

    Impaired signaling via CX3CR1, the fractalkine receptor, promotes recovery after traumatic spinal contusion injury in mice, a benefit achieved in part by reducing macrophage-mediated injury at the lesion epicenter. Here, we tested the hypothesis that CX3CR1-dependent changes in microglia and macrophage functions also will enhance neuroplasticity, at and several segments below the injury epicenter. New data show that in the presence of inflammatory stimuli, CX3CR1-deficient (CX3CR1−/−) microglia and macrophages adopt a reparative phenotype and increase expression of genes that encode neurotrophic and gliogenic proteins. At the lesion epicenter (mid-thoracic spinal cord), the microenvironment created by CX3CR1−/− microglia/macrophages enhances NG2 cell responses, axon sparing, and sprouting of serotonergic axons. In lumbar spinal cord, inflammatory signaling is reduced in CX3CR1−/− microglia. This is associated with reduced dendritic pathology and improved axonal and synaptic plasticity on ventral horn motor neurons. Together, these data indicate that CX3CR1, a microglia-specific chemokine receptor, is a novel therapeutic target for enhancing neuroplasticity and recovery after SCI. Interventions that specifically target CX3CR1 could reduce the adverse effects of inflammation and augment activity-dependent plasticity and restoration of function. Indeed, limiting CX3CR1-dependent signaling could improve rehabilitation and spinal learning. SIGNIFICANCE STATEMENT Published data show that genetic deletion of CX3CR1, a microglia-specific chemokine receptor, promotes recovery after traumatic spinal cord injury in mice, a benefit achieved in part by reducing macrophage-mediated injury at the lesion epicenter. Data in the current manuscript indicate that CX3CR1 deletion changes microglia and macrophage function, creating a tissue microenvironment that enhances endogenous repair and indices of neuroplasticity, at and several segments below the injury epicenter. Interventions that specifically target CX3CR1 might be used in the future to reduce the adverse effects of intraspinal inflammation and augment activity-dependent plasticity (e.g., rehabilitation) and restoration of function. PMID:28264978

  14. Hippocampal neuropathology of domoic acid-induced epilepsy in California sea lions (Zalophus californianus)

    PubMed Central

    Buckmaster, Paul S.; Wen, Xiling; Toyoda, Izumi; Gulland, Frances M. D.; Van Bonn, William

    2014-01-01

    California sea lions (Zalophus californianus) are abundant human-sized carnivores with large gyrencephalic brains. They develop epilepsy after experiencing status epilepticus when naturally exposed to domoic acid. We tested whether sea lions previously exposed to DA (chronic DA sea lions) display hippocampal neuropathology similar to that of human patients with temporal lobe epilepsy. Hippocampi were obtained from control and chronic DA sea lions. Stereology was used to estimate numbers of Nissl-stained neurons per hippocampus in the granule cell layer, hilus, and the pyramidal cell layer of CA3, CA2, and CA1 subfields. Adjacent sections were processed for somatostatin-immunoreactivity or Timm-stained, and the extent of mossy fiber sprouting was measured stereologically. Chronic DA sea lions displayed hippocampal neuron loss in patterns and extents similar but not identical to those reported previously for human patients with temporal lobe epilepsy. Similar to human patients, hippocampal sclerosis in sea lions was unilateral in 79% of cases, mossy fiber sprouting was a common neuropathological abnormality, and somatostatin-immunoreactive axons were exuberant in the dentate gyrus despite loss of immunopositive hilar neurons. Thus, hippocampal neuropathology of chronic DA sea lions is similar to that of human patients with temporal lobe epilepsy. PMID:24638960

  15. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 1; A Study Employing Neural Cell Adhesion Molecules (N-CAM) Immunocytochemistry and Conventional Morphological Techniques (Light and Electron Microscopy)

    NASA Technical Reports Server (NTRS)

    Daunton, N. G.; DAmelio, F.; Wu, L.; Ilyina-Kakueva, E. I.; Krasnov, I. B.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    The effects of spaceflight upon the 'slow' muscle adductor longus was examined in rats flown in the Soviet Biosatellite COSMOS 2044. Three groups - synchronous, vivarium and basal served as controls. The techniques employed included standard methods for light microscopy, N-CAM immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy, contraction bands and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leucocytes and mononuclear cells. N-CAM immunoreactivity was seen (N-CAM-IR) on the myofiber surface, satellite cells and in regenerating myofibers reminiscent of myotubes. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments that displayed varied distributive patterns. The principal electron microscopic changes of the neuromuscular junctions consisted of a decrease or absence of synaptic vesicles, degeneration of axon terminals, increased number of microtubules, vacant axonal spaces and axonal sprouting. The present observations indicate that major alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  16. Netrins and UNC5 receptors in angiogenesis.

    PubMed

    Freitas, Catarina; Larrivée, Bruno; Eichmann, Anne

    2008-01-01

    Both neuronal and vascular development require guidance to establish a precise branching pattern of these systems in the vertebrate body. Several molecules implicated in axon navigation have also been shown to regulate vessel sprouting. Among these guidance cues, Netrins constitute a family of diffusible molecules with a bifuncional role in axon pathfinding. Recent findings implicate Netrins in other developmental processes, including vascular development. We here review recent studies and discuss the possible dual function of Netrins and its receptors during branching of blood vessels in developmental and pathological angiogenesis.

  17. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering.

    PubMed

    Chiono, Valeria; Tonda-Turo, Chiara

    2015-08-01

    The current trend of peripheral nerve tissue engineering is the design of advanced nerve guidance channels (NGCs) acting as physical guidance for regeneration of nerves across lesions. NGCs should present multifunctional properties aiming to direct the sprouting of axons from the proximal nerve end, to concentrate growth factors secreted by the injured nerve ends, and to reduce the ingrowth of scar tissue into the injury site. A critical aspect in the design of NGCs is conferring them the ability to provide topographic, chemotactic and haptotactic cues that lead to functional nerve regeneration thus increasing the axon growth rate and avoiding or minimizing end-organ (e.g. muscle) atrophy. The present work reviews the recent state of the art in NGCs engineering and defines the external guide and internal fillers structural and compositional requirements that should be satisfied to improve nerve regeneration, especially in the case of large gaps (>2 cm). Techniques for NGCs fabrication were described highlighting the innovative approaches direct to enhance the regeneration of axon stumps compared to current clinical treatments. Furthermore, the possibility to apply stem cells as internal cues to the NGCs was discussed focusing on scaffold properties necessary to ensure cell survival. Finally, the optimized features for NGCs design were summarized showing as multifunctional cues are needed to produce NGCs having improved results in clinics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts

    PubMed Central

    Szabó, A.; Czirók, A.

    2010-01-01

    Collective cell motility and its guidance via cell-cell contacts is instrumental in several morphogenetic and pathological processes such as vasculogenesis or tumor growth. Multicellular sprout elongation, one of the simplest cases of collective motility, depends on a continuous supply of cells streaming along the sprout towards its tip. The phenomenon is often explained as leader cells pulling the rest of the sprout forward via cell-cell adhesion. Building on an empirically demonstrated analogy between surface tension and cell-cell adhesion, we demonstrate that such a mechanism is unable to recruit cells to the sprout. Moreover, the expansion of such hypothetical sprouts is limited by a form of the Plateau-Taylor instability. In contrast, actively moving cells – guided by cell-cell contacts – can readily populate and expand linear sprouts. We argue that preferential attraction to the surfaces of elongated cells can provide a generic mechanism, shared by several cell types, for multicellular sprout formation. PMID:20165554

  19. Negative regulators of vessel patterning.

    PubMed

    Suchting, Steven; Freitas, Catarina; le Noble, Ferdinand; Benedito, Rui; Bréant, Christiane; Duarte, Antonio; Eichmann, Anne

    2007-01-01

    Blood vessels and nerves are structurally similar, complex branched networks that require guidance to ensure their proper positioning in the body. Recent studies have demonstrated that specialized endothelial cells, resembling axonal growth cones, are located at the tips of growing capillaries. These endothelial tip cells guide outgrowing capillaries in response to gradients of extracellular matrix-bound vascular endothelial growth factor (VEGF). Here we show that endothelial tip cell formation and vessel branching are negatively regulated by the Notch ligand Delta-like 4 (Dll4). Heterozygous deletion of Dll4 or pharmacological inhibition of Notch signalling using gamma-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared to controls. Filopodia extension in Dll4+/- retinal vessels required VEGF and was inhibited when VEGF signalling was blocked. While VEGF expression was not significantly altered in Dll4+- retinas, Dll4+/- vessels showed increased expression of VEGF Receptor 2 and decreased expression of VEGF Receptor 1 compared to wildtype, suggesting that they could be more responsive to VEGF stimulation. In addition, expression of Dll4 in wildtype tip cells was itself decreased when VEGF signalling was blocked, indicating that Dll4 may act downstream of VEGF as a 'brake' on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a novel negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development.

  20. Hippocampal neuropathology of domoic acid-induced epilepsy in California sea lions (Zalophus californianus).

    PubMed

    Buckmaster, Paul S; Wen, Xiling; Toyoda, Izumi; Gulland, Frances M D; Van Bonn, William

    2014-05-01

    California sea lions (Zalophus californianus) are abundant human-sized carnivores with large gyrencephalic brains. They develop epilepsy after experiencing status epilepticus when naturally exposed to domoic acid. We tested whether sea lions previously exposed to DA (chronic DA sea lions) display hippocampal neuropathology similar to that of human patients with temporal lobe epilepsy. Hippocampi were obtained from control and chronic DA sea lions. Stereology was used to estimate numbers of Nissl-stained neurons per hippocampus in the granule cell layer, hilus, and pyramidal cell layer of CA3, CA2, and CA1 subfields. Adjacent sections were processed for somatostatin immunoreactivity or Timm-stained, and the extent of mossy fiber sprouting was measured stereologically. Chronic DA sea lions displayed hippocampal neuron loss in patterns and extents similar but not identical to those reported previously for human patients with temporal lobe epilepsy. Similar to human patients, hippocampal sclerosis in sea lions was unilateral in 79% of cases, mossy fiber sprouting was a common neuropathological abnormality, and somatostatin-immunoreactive axons were exuberant in the dentate gyrus despite loss of immunopositive hilar neurons. Thus, hippocampal neuropathology of chronic DA sea lions is similar to that of human patients with temporal lobe epilepsy. Copyright © 2013 Wiley Periodicals, Inc.

  1. Effects of microgravity on muscle and cerebral cortex: a suggested interaction

    NASA Astrophysics Data System (ADS)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.; Corcoran, M. L.

    The ``slow'' antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension (``simulated'' microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  2. In silico modeling of axonal reconnection within a discrete fiber tract after spinal cord injury.

    PubMed

    Woolfe, Franco; Waxman, Stephen G; Hains, Bryan C

    2007-02-01

    Following spinal cord injury (SCI), descending axons that carry motor commands from the brain to the spinal cord are injured or transected, producing chronic motor dysfunction and paralysis. Reconnection of these axons is a major prerequisite for restoration of function after SCI. Thus far, only modest gains in motor function have been achieved experimentally or in the clinic after SCI, identifying the practical limitations of current treatment approaches. In this paper, we use an ordinary differential equation (ODE) to simulate the relative and synergistic contributions of several experimentally-established biological factors related to inhibition or promotion of axonal repair and restoration of function after SCI. The factors were mathematically modeled by the ODE. The results of our simulation show that in a model system, many factors influenced the achievability of axonal reconnection. Certain factors more strongly affected axonal reconnection in isolation, and some factors interacted in a synergistic fashion to produce further improvements in axonal reconnection. Our data suggest that mathematical modeling may be useful in evaluating the complex interactions of discrete therapeutic factors not possible in experimental preparations, and highlight the benefit of a combinatorial therapeutic approach focused on promoting axonal sprouting, attraction of cut ends, and removal of growth inhibition for achieving axonal reconnection. Predictions of this simulation may be of utility in guiding future experiments aimed at restoring function after SCI.

  3. Extensive cortical rewiring after brain injury.

    PubMed

    Dancause, Numa; Barbay, Scott; Frost, Shawn B; Plautz, Erik J; Chen, Daofen; Zoubina, Elena V; Stowe, Ann M; Nudo, Randolph J

    2005-11-02

    Previously, we showed that the ventral premotor cortex (PMv) underwent neurophysiological remodeling after injury to the primary motor cortex (M1). In the present study, we examined cortical connections of PMv after such lesions. The neuroanatomical tract tracer biotinylated dextran amine was injected into the PMv hand area at least 5 months after ischemic injury to the M1 hand area. Comparison of labeling patterns between experimental and control animals demonstrated extensive proliferation of novel PMv terminal fields and the appearance of retrogradely labeled cell bodies within area 1/2 of the primary somatosensory cortex after M1 injury. Furthermore, evidence was found for alterations in the trajectory of PMv intracortical axons near the site of the lesion. The results suggest that M1 injury results in axonal sprouting near the ischemic injury and the establishment of novel connections within a distant target. These results support the hypothesis that, after a cortical injury, such as occurs after stroke, cortical areas distant from the injury undergo major neuroanatomical reorganization. Our results reveal an extraordinary anatomical rewiring capacity in the adult CNS after injury that may potentially play a role in recovery.

  4. Protecting Neural Structures and Cognitive Function During Prolonged Space Flight by Targeting the Brain Derived Neurotrophic Factor Molecular Network

    NASA Technical Reports Server (NTRS)

    Schmidt, M. A.; Goodwin, T. J.

    2014-01-01

    Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth

  5. Rabies Tracing of Birthdated Dentate Granule Cells in Rat Temporal Lobe Epilepsy

    PubMed Central

    Du, Xi; Zhang, Helen; Parent, Jack M.

    2017-01-01

    Objective To understand how monosynaptic inputs onto adult-born dentate granule cells (DGCs) are altered in experimental mesial temporal lobe epilepsy (mTLE) and whether their integration differs from early-born DGCs that are mature at the time of epileptogenesis. Methods A dual-virus tracing strategy combining retroviral birthdating with rabies virus-mediated putative retrograde trans-synaptic tracing was used to identify and compare presynaptic inputs onto adult- and early-born DGCs in the rat pilocarpine model of mTLE. Results Our results demonstrate that hilar ectopic DGCs preferentially synapse onto adult-born DGCs after pilocarpine-induced status epilepticus (SE) while normotopic DGCs synapse onto both adult- and early-born DGCs. We also find that parvalbumin+ and somatostatin+ interneuron inputs are greatly diminished onto early-born DGCs after SE. However, somatostatin+ interneuron inputs onto adult-born DGCs are maintained, likely due to preferential sprouting. Intriguingly, CA3 pyramidal cell backprojections that specifically target adult-born DGCs arise in the epileptic brain, while axons of interneurons and pyramidal cells in CA1 appear to sprout across the hippocampal fissure to preferentially synapse onto early-born DGCs. Interpretation These data support the presence of substantial hippocampal circuit remodeling after an epileptogenic insult that generates prominent excitatory monosynaptic inputs, both local recurrent and widespread feedback loops, involving DGCs. Both adult- and early-born DGCs are targets of new inputs from other DGCs as well as from CA3 and CA1 pyramidal cells after pilocarpine-treatment, changes that likely contribute to epileptogenesis in experimental mTLE. PMID:28470680

  6. Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control.

    PubMed

    Carmel, Jason B; Kimura, Hiroki; Martin, John H

    2014-01-08

    Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To test motor skill, rats were trained and tested to walk on a horizontal ladder with irregularly spaced rungs. Eight weeks after injury, produced by pyramidal tract transection, half of the rats received forelimb motor cortex stimulation of the intact hemisphere. Rats with injury and stimulation had significantly improved forelimb control compared with rats with injury alone and achieved a level of proficiency similar to uninjured rats. To test whether recovery of forelimb function was attributable to ipsilateral control, we selectively inactivated the stimulated motor cortex using the GABA agonist muscimol. The dose of muscimol we used produces strong contralateral but no ipsilateral impairments in naive rats. In rats with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be targeted for brain stimulation in people with large unilateral CST lesions.

  7. Molecular and cell biological effects of 3,5,3'-triiodothyronine on progenitor cells of the enteric nervous system in vitro.

    PubMed

    Mohr, Roland; Neckel, Peter; Zhang, Ying; Stachon, Susanne; Nothelfer, Katharina; Schaeferhoff, Karin; Obermayr, Florian; Bonin, Michael; Just, Lothar

    2013-11-01

    Thyroid hormones play important roles in the development of neural cells in the central nervous system. Even minor changes to normal thyroid hormone levels affect dendritic and axonal outgrowth, sprouting and myelination and might even lead to irreversible damages such as cretinism. Despite our knowledge of the influence on the mammalian CNS, the role of thyroid hormones in the development of the enteric nervous system (ENS) still needs to be elucidated. In this study we have analyzed for the first time the influence of 3,5,3'-triiodothyronine (T3) on ENS progenitor cells using cell biological assays and a microarray technique. In our in vitro model, T3 inhibited cell proliferation and stimulated neurite outgrowth of differentiating ENS progenitor cells. Microarray analysis revealed a group of 338 genes that were regulated by T3 in differentiating enterospheres. 67 of these genes are involved in function and development of the nervous system. 14 of them belong to genes that are involved in axonal guidance or neurite outgrowth. Interestingly, T3 regulated the expression of netrin G1 and endothelin 3, two guidance molecules that are involved in human enteric dysganglionoses. The results of our study give first insights how T3 may affect the enteric nervous system. T3 is involved in proliferation and differentiation processes in enterospheres. Microarray analysis revealed several interesting gene candidates that might be involved in the observed effects on enterosphere differentiation. Future studies need to be conducted to better understand the gene to gene interactions. © 2013.

  8. Recovery of function, peripheral sensitization and sensory neurone activation by novel pathways following axonal injury in Aplysia californica.

    PubMed

    Dulin, M F; Steffensen, I; Morris, C E; Walters, E T

    1995-10-01

    Recovery of behavioural and sensory function was examined following unilateral pedal nerve crush in Aplysia californica. Nerve crush that transected all axons connecting the tail to the central nervous system (CNS) eliminated the ipsilateral tail-evoked siphon reflex, whose sensory input travels in the crushed tail nerve (p9). The first reliable signs of recovery of this reflex were observed within 1 week, and most animals displayed tail-evoked siphon responses within 2 weeks. Wide-dynamic-range mechanosensory neurons with somata in the ventrocaudal (VC) cluster of the ipsilateral pleural ganglion exhibited a few receptive fields (RFs) on the tail 3 weeks after unilateral pedal nerve crush, indicating that the RFs had either regenerated or been reconnected to the central somata. These RFs were smaller and sensitized compared with corresponding RFs on the contralateral, uncrushed side. Centrally conducted axon responses of VC sensory neurones to electrical stimulation distal to the nerve crush site did not reappear until at least 10 days after the crush. Because the crush site was much closer to the CNS than to the tail, the failure of axon responses to be restored earlier than the behavioural responses indicates that early stages of reflex recovery are not due to regeneration of VC sensory neurone axons into the tail. Following nerve crush, VC sensory neurones often could be activated by stimulating central connectives or peripheral nerves that do not normally contain the sensory neurone's axons. These results suggest that recovery of behavioral function after nerve injury involves complex mechanisms, including regenerative growth of axotomized VC sensory neurones, sensitization of regenerating RFs and sprouting of VC sensory neurone fibres within the CNS. Furthermore, the rapidity of behavioural recovery indicates that its initial phases are mediated by additional mechanisms, perhaps centripetal regeneration of unidentified sensory neurones having peripheral somata, or transient reconnection of proximal and distal stumps of axotomized VC cells.

  9. Histochemical discrimination of fibers in regenerating rat infraorbital nerve

    NASA Technical Reports Server (NTRS)

    Wilke, R. A.; Riley, D. A.; Sanger, J. R.

    1992-01-01

    In rat dorsal root ganglia, histochemical staining of carbonic anhydrase (CA) and cholinesterase (CE) yields a reciprocal pattern of activity: Sensory processes are CA positive and CE negative, whereas motor processes are CA negative and CE positive. In rat infraorbital nerve (a sensory peripheral nerve), we saw extensive CA staining of nearly 100% of the myelinated axons. Although CE reactivity in myelinated axons was extremely rare, we did observe CE staining of unmyelinated autonomic fibers. Four weeks after transection of infraorbital nerves, CA-stained longitudinal sections of the proximal stump demonstrated 3 distinct morphological zones. A fraction of the viable axons retained CA activity to within 2 mm of the distal extent of the stump, and the stain is capable of resolving growth sprouts being regenerated from these fibers. Staining of unmyelinated autonomic fibers in serial sections shows that CE activity was not retained as far distally as is the CA sensory staining.

  10. High plasticity of axonal pathology in Alzheimer's disease mouse models.

    PubMed

    Blazquez-Llorca, Lidia; Valero-Freitag, Susana; Rodrigues, Eva Ferreira; Merchán-Pérez, Ángel; Rodríguez, J Rodrigo; Dorostkar, Mario M; DeFelipe, Javier; Herms, Jochen

    2017-02-07

    Axonal dystrophies (AxDs) are swollen and tortuous neuronal processes that are associated with extracellular depositions of amyloid β (Aβ) and have been observed to contribute to synaptic alterations occurring in Alzheimer's disease. Understanding the temporal course of this axonal pathology is of high relevance to comprehend the progression of the disease over time. We performed a long-term in vivo study (up to 210 days of two-photon imaging) with two transgenic mouse models (dE9xGFP-M and APP-PS1xGFP-M). Interestingly, AxDs were formed only in a quarter of GFP-expressing axons near Aβ-plaques, which indicates a selective vulnerability. AxDs, especially those reaching larger sizes, had long lifetimes and appeared as highly plastic structures with large variations in size and shape and axonal sprouting over time. In the case of the APP-PS1 mouse only, the formation of new long axonal segments in dystrophic axons (re-growth phenomenon) was observed. Moreover, new AxDs could appear at the same point of the axon where a previous AxD had been located before disappearance (re-formation phenomenon). In addition, we observed that most AxDs were formed and developed during the imaging period, and numerous AxDs had already disappeared by the end of this time. This work is the first in vivo study analyzing quantitatively the high plasticity of the axonal pathology around Aβ plaques. We hypothesized that a therapeutically early prevention of Aβ plaque formation or their growth might halt disease progression and promote functional axon regeneration and the recovery of neural circuits.

  11. Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1.

    PubMed

    Pasquini, Juana M; Barrantes, Francisco J; Quintá, Héctor R

    2017-09-01

    It was recently described that Galectin-1 (Gal-1) promotes axonal growth after spinal cord injury. This effect depends on protein dimerization, since monomeric Gal-1 fails to stimulate axonal re-growth. Gal-1 is expressed in vivo at concentrations that favor the monomeric species. The aim of the present study is to investigate whether endogenous Gal-1 is required for spinal axon development and normal locomotor behavior in mice. In order to characterize axonal development, we used a novel combination of 3-DISCO technique with 1-photon microscopy and epifluorescence microscopy under high power LED illumination, followed by serial image section deconvolution and 3-D reconstruction. Cleared whole lgals-1 -/- embryos were used to analyze the 3-D cytoarchitecture of motor, commissural, and sensory axons. This approach allowed us to evaluate axonal development, including the number of fibers, fluorescence density of the fiber tracts, fiber length as well as the morphology of axonal sprouting, deep within the tissue. Gal-1 deficient embryos did not show morphological/anatomical alterations in any of the axonal populations and parameters analyzed. In addition, specific guidance receptor PlexinA4 did not change its axonal localization in the absence of Gal-1. Finally, Gal-1 deficiency did not change normal locomotor activity in post-natal animals. Taken together, our results show that development of spinal axons as well as the locomotor abilities observed in adult mice are independent of Gal-1. Supporting our previous observations, the present study further validates the use of lgals-1 -/- mice to develop spinal cord- or traumatic brain injury models for the evaluation of the regenerative action of Gal-1. © 2017 Wiley Periodicals, Inc.

  12. Structural parameters of collagen nerve grafts influence peripheral nerve regeneration.

    PubMed

    Stang, Felix; Fansa, Hisham; Wolf, Gerald; Reppin, Michael; Keilhoff, Gerburg

    2005-06-01

    Large nerve defects require nerve grafts to allow regeneration. To avoid donor nerve problems the concept of tissue engineering was introduced into nerve surgery. However, non-neuronal grafts support axonal regeneration only to a certain extent. They lack viable Schwann cells which provide neurotrophic and neurotopic factors and guide the sprouting nerve. This experimental study used the rat sciatic nerve to bridge 2 cm nerve gaps with collagen (type I/III) tubes. The tubes were different in their physical structure (hollow versus inner collagen skeleton, different inner diameters). To improve regeneration Schwann cells were implanted. After 8 weeks the regeneration process was monitored clinically, histologically and morphometrically. Autologous nerve grafts and collagen tubes without Schwann cells served as control. In all parameters autologous nerve grafts showed best regeneration. Nerve regeneration in a noteworthy quality was also seen with hollow collagen tubes and tubes with reduced lumen, both filled with Schwann cells. The inner skeleton, however, impaired nerve regeneration independent of whether Schwann cells were added or not. This indicates that not only viable Schwann cells are an imperative prerequisite but also structural parameters determine peripheral nerve regeneration.

  13. Small GTPases are involved in sprout formation in human granulosa lutein cells.

    PubMed

    Franz, Maximilian B; Daube, Stefanie; Keck, Christoph; Sator, Michael; Pietrowski, Detlef

    2013-04-01

    The corpus luteum (CL), develops from the ruptured follicle after gonadotropin stimulation. Based on intracellular reorganization of the cytoskeleton an human chorionic gonadotropin (hCG) dependent sprouting and migration of luteinizing granulosa cells (LGCs) and endothelial cells is observed. Rho-GTPases are shown to be key regulators of cytoskeletal restructuring. In the present study we analyzed the role of Rho-GTPases in the sprouting activity of LGCs. We used the Rho-GTPase-inhibitors Toxin A and -B and the Cdc42-activator Bradykinin in a LGC-spheroid sprouting assay to determine the effect of these modulators in LGCs. Toxin A and Toxin B reduces sprout formation in LGC spheroids. However, the reduction is less than in hCG treated cells. The usage of Bradykinin demonstrates both, a reduction of sprouts in untreated spheroids and an increase of sprouting in previous hCG treated spheroids. The presented results let us suggest that small Rho-GTPases may regulate the sprouting activity of LGCs after stimulation by hCG and that this mechanism may play a role in CL formation.

  14. Human iPSC-Derived Endothelial Cell Sprouting Assay in ...

    EPA Pesticide Factsheets

    Activation of vascular endothelial cells (ECs) by growth factors initiates a cascade of events in vivo consisting of EC tip cell selection, sprout formation, EC stalk cell proliferation, and ultimately vascular stabilization by support cells. Although EC functional assays can recapitulate one or more aspects of angiogenesis in vitro, they are often limited by a lack of definition to the substratum and lack of dependence on key angiogenic signaling axes. Here, we designed and characterized a chemically-defined model of endothelial sprouting behavior in vitro using human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs). Thiol-ene photopolymerization was used to rapidly encapsulate iPSC-ECs at high density in poly(ethylene glycol) (PEG) hydrogel spheres and subsequently to rapidly encapsulate iPSC-EC-containing hydrogel spheres in a cell-free over-layer. The hydrogel sprouting array here maintained pro-angiogenic phenotype of iPSC-ECs and supported growth factor-dependent proliferation and sprouting behavior. The sprouting model responded appropriately to several reference pharmacological angiogenesis inhibitors, which suggests the functional role of vascular endothelial growth factor, NF-κB, matrix metalloproteinase-2/9, protein kinase activity, and β-tubulin in endothelial sprouting. A blinded screen of 38 putative vascular disrupting compounds (pVDCs) from the US Environmental Protection Agency’s ToxCast library identified five compounds th

  15. Neuropilin-2 mediates VEGF-C–induced lymphatic sprouting together with VEGFR3

    PubMed Central

    Xu, Yunling; Yuan, Li; Mak, Judy; Pardanaud, Luc; Caunt, Maresa; Kasman, Ian; Larrivée, Bruno; del Toro, Raquel; Suchting, Steven; Medvinsky, Alexander; Silva, Jillian; Yang, Jian; Thomas, Jean-Léon; Koch, Alexander W.; Alitalo, Kari

    2010-01-01

    Vascular sprouting is a key process-driving development of the vascular system. In this study, we show that neuropilin-2 (Nrp2), a transmembrane receptor for the lymphangiogenic vascular endothelial growth factor C (VEGF-C), plays an important role in lymphatic vessel sprouting. Blocking VEGF-C binding to Nrp2 using antibodies specifically inhibits sprouting of developing lymphatic endothelial tip cells in vivo. In vitro analyses show that Nrp2 modulates lymphatic endothelial tip cell extension and prevents tip cell stalling and retraction during vascular sprout formation. Genetic deletion of Nrp2 reproduces the sprouting defects seen after antibody treatment. To investigate whether this defect depends on Nrp2 interaction with VEGF receptor 2 (VEGFR2) and/or 3, we intercrossed heterozygous mice lacking one allele of these receptors. Double-heterozygous nrp2vegfr2 mice develop normally without detectable lymphatic sprouting defects. In contrast, double-heterozygote nrp2vegfr3 mice show a reduction of lymphatic vessel sprouting and decreased lymph vessel branching in adult organs. Thus, interaction between Nrp2 and VEGFR3 mediates proper lymphatic vessel sprouting in response to VEGF-C. PMID:20065093

  16. The Changeable Nervous System: Studies On Neuroplasticity In Cerebellar Cultures

    PubMed Central

    Seil, Fredrick J.

    2014-01-01

    Circuit reorganization after injury was studied in a cerebellar culture model. When cerebellar cultures derived from newborn mice were exposed at explantation to a preparation of cytosine arabinoside that destroyed granule cells and oligodendrocytes and compromised astrocytes, Purkinje cells surviving in greater than usual numbers were unensheathed by astrocytic processes and received twice the control number of inhibitory axosomatic synapses. Purkinje cell axon collaterals sprouted and many of their terminals formed heterotypical synapses with other Purkinje cell dendritic spines. The resulting circuit reorganization preserved inhibition in the cerebellar cortex. Following this reorganization, replacement of the missing granule cells and glia was followed by a restitution of the normal circuitry. Most of these developmental and reconstructive changes were not dependent on neuronal activity, the major exception being inhibitory synaptogenesis. The full complement of inhibitory synapses did not develop in the absence of neuronal activity, which could be mitigated by application of exogenous TrkB receptor ligands. Inhibitory synaptogenesis could also be promoted by activity-induced release of endogenous TrkB receptor ligands or by antibody activation of the TrkB receptor. PMID:24933693

  17. Human neural stem cells survive long term in the midbrain of dopamine-depleted monkeys after GDNF overexpression and project neurites toward an appropriate target.

    PubMed

    Wakeman, Dustin R; Redmond, D Eugene; Dodiya, Hemraj B; Sladek, John R; Leranth, Csaba; Teng, Yang D; Samulski, R Jude; Snyder, Evan Y

    2014-06-01

    Transplanted multipotent human fetal neural stem cells (hfNSCs) significantly improved the function of parkinsonian monkeys in a prior study primarily by neuroprotection, with only 3%-5% of cells expressing a dopamine (DA) phenotype. In this paper, we sought to determine whether further manipulation of the neural microenvironment by overexpression of a developmentally critical molecule, glial cell-derived neurotrophic factor (GDNF), in the host striatum could enhance DA differentiation of hfNSCs injected into the substantia nigra and elicit growth of their axons to the GDNF-expressing target. hfNSCs were transplanted into the midbrain of 10 green monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine. GDNF was delivered concomitantly to the striatum via an adeno-associated virus serotype 5 vector, and the fate of grafted cells was assessed after 11 months. Donor cells remained predominantly within the midbrain at the injection site and sprouted numerous neurofilament-immunoreactive fibers that appeared to course rostrally toward the striatum in parallel with tyrosine hydroxylase-immunoreactive fibers from the host substantia nigra but did not mature into DA neurons. This work suggests that hfNSCs can generate neurons that project long fibers in the adult primate brain. However, in the absence of region-specific signals and despite GDNF overexpression, hfNSCs did not differentiate into mature DA neurons in large numbers. It is encouraging, however, that the adult primate brain appeared to retain axonal guidance cues. We believe that transplantation of stem cells, specifically instructed ex vivo to yield DA neurons, could lead to reconstruction of some portion of the nigrostriatal pathway and prove beneficial for the parkinsonian condition. ©AlphaMed Press.

  18. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting.

    PubMed

    Jakobsson, Lars; Franco, Claudio A; Bentley, Katie; Collins, Russell T; Ponsioen, Bas; Aspalter, Irene M; Rosewell, Ian; Busse, Marta; Thurston, Gavin; Medvinsky, Alexander; Schulte-Merker, Stefan; Gerhardt, Holger

    2010-10-01

    Sprouting angiogenesis requires the coordinated behaviour of endothelial cells, regulated by Notch and vascular endothelial growth factor receptor (VEGFR) signalling. Here, we use computational modelling and genetic mosaic sprouting assays in vitro and in vivo to investigate the regulation and dynamics of endothelial cells during tip cell selection. We find that endothelial cells compete for the tip cell position through relative levels of Vegfr1 and Vegfr2, demonstrating a biological role for differential Vegfr regulation in individual endothelial cells. Differential Vegfr levels affect tip selection only in the presence of a functional Notch system by modulating the expression of the ligand Dll4. Time-lapse microscopy imaging of mosaic sprouts identifies dynamic position shuffling of tip and stalk cells in vitro and in vivo, indicating that the VEGFR-Dll4-Notch signalling circuit is constantly re-evaluated as cells meet new neighbours. The regular exchange of the leading tip cell raises novel implications for the concept of guided angiogenic sprouting.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Hironao; Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115; Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1{sup +}) endothelial cells (designated as GLUT1{sup sel} cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis.more » We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1{sup sel}-to-EC differentiation.« less

  20. Oligodendrocytes as Regulators of Neuronal Networks during Early Postnatal Development

    PubMed Central

    Ramos, Maria; Ikrar, Taruna; Kinoshita, Chisato; De Mei, Claudia; Tirotta, Emanuele; Xu, Xiangmin; Borrelli, Emiliana

    2011-01-01

    Oligodendrocytes are the glial cells responsible for myelin formation. Myelination occurs during the first postnatal weeks and, in rodents, is completed during the third week after birth. Myelin ensures the fast conduction of the nerve impulse; in the adult, myelin proteins have an inhibitory role on axon growth and regeneration after injury. During brain development, oligodendrocytes precursors originating in multiple locations along the antero-posterior axis actively proliferate and migrate to colonize the whole brain. Whether the initial interactions between oligodendrocytes and neurons might play a functional role before the onset of myelination is still not completely elucidated. In this article, we addressed this question by transgenically targeted ablation of proliferating oligodendrocytes during cerebellum development. Interestingly, we show that depletion of oligodendrocytes at postnatal day 1 (P1) profoundly affects the establishment of cerebellar circuitries. We observed an impressive deregulation in the expression of molecules involved in axon growth, guidance and synaptic plasticity. These effects were accompanied by an outstanding increase of neurofilament staining observed 4 hours after the beginning of the ablation protocol, likely dependent from sprouting of cerebellar fibers. Oligodendrocyte ablation modifies localization and function of ionotropic glutamate receptors in Purkinje neurons. These results show a novel oligodendrocyte function expressed during early postnatal brain development, where these cells participate in the formation of cerebellar circuitries, and influence its development. PMID:21589880

  1. Paired immunoglobulin-like receptor B knockout does not enhance axonal regeneration or locomotor recovery after spinal cord injury.

    PubMed

    Nakamura, Yuka; Fujita, Yuki; Ueno, Masaki; Takai, Toshiyuki; Yamashita, Toshihide

    2011-01-21

    Myelin components that inhibit axonal regeneration are believed to contribute significantly to the lack of axonal regeneration noted in the adult central nervous system. Three proteins found in myelin, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein, inhibit neurite outgrowth in vitro. All of these proteins interact with the same receptors, namely, the Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PIR-B). As per previous reports, corticospinal tract (CST) regeneration is not enhanced in NgR-knock-out mice after spinal cord injury. Therefore, we assessed CST regeneration in PIR-B-knock-out mice. We found that hindlimb motor function, as assessed using the Basso mouse scale, footprint test, inclined plane test, and beam walking test, did not differ between the PIR-B-knock-out and wild-type mice after dorsal hemisection of the spinal cord. Further, tracing of the CST fibers after injury did not reveal enhanced axonal regeneration or sprouting in the CST of the PIR-B-knock-out mice. Systemic administration of NEP1-40, a NgR antagonist, to PIR-B knock-out mice did not enhance the regenerative response. These results indicate that PIR-B knock-out is not sufficient to induce extensive axonal regeneration after spinal cord injury.

  2. BDNF - A key player in cardiovascular system.

    PubMed

    Pius-Sadowska, Ewa; Machaliński, Bogusław

    2017-09-01

    Neurotrophins (NTs) were first identified as target-derived survival factors for neurons of the central and peripheral nervous system (PNS). They are known to control neural cell fate, development and function. Independently of their neuronal properties, NTs exert unique cardiovascular activity. The heart is innervated by sensory, sympathetic and parasympathetic neurons, which require NTs during early development and in the establishment of mature properties, contributing to the maintenance of cardiovascular homeostasis. The identification of molecular mechanisms regulated by NTs and involved in the crosstalk between cardiac sympathetic nerves, cardiomyocytes, cardiac fibroblasts, and vascular cells, has a fundamental importance in both normal heart function and disease. The article aims to review the recent data on the effects of Brain-Derived Neurotrophic Factor (BDNF) on various cardiovascular neuronal and non-neuronal functions such as the modulation of synaptic properties of autonomic neurons, axonal outgrowth and sprouting, formation of the vascular and neural networks, smooth muscle migration, and control of endothelial cell survival and cardiomyocytes. Understanding these mechanisms may be crucial for developing novel therapeutic strategies, including stem cell-based therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Presynaptic NCAM Is Required for Motor Neurons to Functionally Expand Their Peripheral Field of Innervation in Partially Denervated Muscles

    PubMed Central

    Chipman, Peter H.; Schachner, Melitta

    2014-01-01

    The function of neural cell adhesion molecule (NCAM) expression in motor neurons during axonal sprouting and compensatory reinnervation was explored by partially denervating soleus muscles in mice lacking presynaptic NCAM (Hb9creNCAMflx). In agreement with previous studies, the contractile force of muscles in wild-type (NCAM+/+) mice recovered completely 2 weeks after 75% of the motor innervation was removed because motor unit size increased by 2.5 times. In contrast, similarly denervated muscles in Hb9creNCAMflx mice failed to recover the force lost due to the partial denervation because motor unit size did not change. Anatomical analysis indicated that 50% of soleus end plates were completely denervated 1–4 weeks post-partial denervation in Hb9creNCAMflx mice, while another 25% were partially reinnervated. Synaptic vesicles (SVs) remained at extrasynaptic regions in Hb9creNCAMflx mice rather than being distributed, as occurs normally, to newly reinnervated neuromuscular junctions (NMJs). Electrophysiological analysis revealed two populations of NMJs in partially denervated Hb9creNCAMflx soleus muscles, one with high (mature) quantal content, and another with low (immature) quantal content. Extrasynaptic SVs in Hb9creNCAMflx sprouts were associated with L-type voltage-dependent calcium channel (L-VDCC) immunoreactivity and maintained an immature, L-VDCC-dependent recycling phenotype. Moreover, acute nifedipine treatment potentiated neurotransmission at newly sprouted NMJs, while chronic intraperitoneal treatment with nifedipine during a period of synaptic consolidation enhanced functional motor unit expansion in the absence of presynaptic NCAM. We propose that presynaptic NCAM bridges a critical link between the SV cycle and the functional expansion of synaptic territory through the regulation of L-VDCCs. PMID:25100585

  4. Cerebellar Expression of Copper Chaperone for Superoxide, Cytosolic Cu/Zn-Superoxide Dismutase, 4-Hydroxy-2-Nonenal, Acrolein and Heat Shock Protein 32 in Patients with Menkes Kinky Hair Disease: Immunohistochemical Study

    PubMed Central

    Yokoyama, Atsushi; Ohno, Kousaku; Hirano, Asao; Shintaku, Masayuki; Kato, Masako; Hayashi, Kazuhiko; Kato, Shinsuke

    2014-01-01

    Background To clarify the pathogenesis of cerebellar Purkinje cell death in patients with Menkes kinky hair disease (MD), a disorder of copper absorption, we investigated the morphological and functional abnormalities of residual Purkinje cells in MD patients and the mechanism of cell death. Methods Seven MD patients and 39 neurologically normal autopsy cases were studied. We performed histopathological and quantitative analyses of the Purkinje cells. In addition, we used immunohistochemistry to detect copper-dependent enzymes [cytosolic Cu/Zn-superoxide dismutase (SOD1) and copper chaperone for superoxide dismutase (CCS)], oxidative stress markers [4-hydroxy-2-nonenal (HNE) and acrolein] and heat shock protein 32 (hsp 32). Results The surviving MD Purkinje cells showed abnormal development, such as somatic sprouts and heterotopic location. Due to maldevelopment and degeneration, dendrites showed the cactus and weeping willow patterns. Axonal degeneration led to the formation of torpedoes. Quantitative analysis revealed loss of approximately 50% of the Purkinje cells in MD patients. Almost all of the normal Purkinje cells were positive for immunostaining by anti-CCS and anti-SOD1 antibodies, with staining of the cell bodies, dendrites and axons. Normal Purkinje cells were not stained by antibodies for HNE, acrolein or hsp 32. In MD patients, the majority of Purkinje cells were positive for CCS, but the positive rate for SOD1 was only about 23%. Approximately 56%, 42% and 40% of the Purkinje cells of MD patients were positive for HNE, acrolein and hsp 32, respectively. Conclusion In MD patients, about 50% of the Purkinje cells have been lost due to maldevelopment and degeneration. In the residual Purkinje cells, CCS expression seems to be nearly normal as a protective response to decreased SOD1 activity due to copper deficiency. Because oxidative stress is elevated secondary to decreased SOD1 activity, hsp 32 is induced as another protective mechanism. PMID:25067875

  5. Cerebellar expression of copper chaperone for superoxide, cytosolic cu/zn-superoxide dismutase, 4-hydroxy-2-nonenal, acrolein and heat shock protein 32 in patients with menkes kinky hair disease: immunohistochemical study.

    PubMed

    Yokoyama, Atsushi; Ohno, Kousaku; Hirano, Asao; Shintaku, Masayuki; Kato, Masako; Hayashi, Kazuhiko; Kato, Shinsuke

    2014-03-01

    To clarify the pathogenesis of cerebellar Purkinje cell death in patients with Menkes kinky hair disease (MD), a disorder of copper absorption, we investigated the morphological and functional abnormalities of residual Purkinje cells in MD patients and the mechanism of cell death. Seven MD patients and 39 neurologically normal autopsy cases were studied. We performed histopathological and quantitative analyses of the Purkinje cells. In addition, we used immunohistochemistry to detect copper-dependent enzymes [cytosolic Cu/Zn-superoxide dismutase (SOD1) and copper chaperone for superoxide dismutase (CCS)], oxidative stress markers [4-hydroxy-2-nonenal (HNE) and acrolein] and heat shock protein 32 (hsp 32). The surviving MD Purkinje cells showed abnormal development, such as somatic sprouts and heterotopic location. Due to maldevelopment and degeneration, dendrites showed the cactus and weeping willow patterns. Axonal degeneration led to the formation of torpedoes. Quantitative analysis revealed loss of approximately 50% of the Purkinje cells in MD patients. Almost all of the normal Purkinje cells were positive for immunostaining by anti-CCS and anti-SOD1 antibodies, with staining of the cell bodies, dendrites and axons. Normal Purkinje cells were not stained by antibodies for HNE, acrolein or hsp 32. In MD patients, the majority of Purkinje cells were positive for CCS, but the positive rate for SOD1 was only about 23%. Approximately 56%, 42% and 40% of the Purkinje cells of MD patients were positive for HNE, acrolein and hsp 32, respectively. In MD patients, about 50% of the Purkinje cells have been lost due to maldevelopment and degeneration. In the residual Purkinje cells, CCS expression seems to be nearly normal as a protective response to decreased SOD1 activity due to copper deficiency. Because oxidative stress is elevated secondary to decreased SOD1 activity, hsp 32 is induced as another protective mechanism.

  6. Niaspan increases axonal remodeling after stroke in type 1 diabetes rats✩

    PubMed Central

    Yan, Tao; Chopp, Michael; Ye, Xinchun; Liu, Zhongwu; Zacharek, Alex; Cui, Yisheng; Roberts, Cynthia; Buller, Ben; Chen, Jieli

    2012-01-01

    Background and objective We investigated axonal plasticity in the bilateral motor cortices and the long term therapeutic effect of Niaspan on axonal remodeling after stroke in type-1 diabetic (T1DM) rats. Experimental approaches T1DM was induced in young adult male Wistar rats via injection of streptozotocin. T1DM rats were subjected to 2 h transient middle cerebral artery occlusion (MCAo) and were treated with 40 mg/kg Niaspan or saline starting 24 h after MCAo and daily for 28 days. Anterograde tracing using biotinylated dextran amine (BDA) injected into the contralateral motor cortex was performed to assess axonal sprouting in the ipsilateral motor cortex area. Functional outcome, SMI-31 (a pan-axonal microfilament marker), Bielschowsky silver and synaptophysin expression were measured. In vitro studies using primary cortical neuron (PCN) cultures and in vivo BDA injection into the brain to anterogradely label axons and terminals were employed. Results Niaspan treatment of stroke in T1DM–MCAo rats significantly improved functional outcome after stroke and increased SMI-31, Bielschowsky silver and synaptophysin expression in the ischemic brain compared to saline treated T1DM–MCAo rats (p<0.05). Using BDA to anterograde label axons and terminals, Niaspan treatment significantly increased axonal density in ipsilateral motor cortex in T1DM–MCAo rats (p<0.05, n=7/group). Niacin treatment of PCN significantly increased Ang1 expression under high glucose condition. Niacin and Ang1 significantly increased neurite outgrowth, and anti-Ang1 antibody marginally attenuated Niacin induced neurite outgrowth (p=0.06, n=6/group) in cultured PCN under high glucose condition. Conclusion Niaspan treatment increased ischemic brain Ang1 expression and promoted axonal remodeling in the ischemic brain as well as improved functional outcome after stroke. Ang1 may partially contribute to Niaspan-induced axonal remodeling after stroke in T1DM-rats. PMID:22266016

  7. Methylene-Cycloalkylacetate (MCA) Scaffold-Based Compounds as Novel Neurotropic Agents.

    PubMed

    Lankri, David; Haham, Dikla; Lahiani, Adi; Lazarovici, Philip; Tsvelikhovsky, Dmitry

    2018-04-18

    One of the main symptoms in degenerative diseases is death of neuronal cell followed by the loss of neuronal pathways. In neuronal cultures, neurite outgrowths are cell sprouts capable of transforming into either axons or dendrites, to further form functional neuronal synaptic connections. Such connections have an important role in brain cognition, neuronal plasticity, neuronal survival, and regeneration. Therefore, drugs that stimulate neurite outgrowth may be found beneficial in ameliorating neural degeneration. Here, we establish the existence of a unique family of methylene-cycloalkylacetate-based molecules (MCAs) that interface with neuronal cell properties and operate as acceptable pharmacophores for a novel neurotropic (neurite outgrowth inducing) lead compounds. Using an established PC12 cell bioassay, we investigated the neurotropic effect of methylene-cycloalkylacetate compounds by comparison to NGF, a known neurotropic factor. Micrographs of the cells were collected by using a light microscope camera, and digitized photographs were analyzed for compound-induced neurotropic activity using an NIH image protocol. The results indicate that the alkene element, integrated within the cycloalkylacetate core, is indispensable for neurotropic activity. The discovered lead compounds need further mechanistic investigation and may be improved toward development of a neurotropic drug.

  8. A Biological Model of the Effects of Toxic Substances

    DTIC Science & Technology

    1990-02-28

    show uner te hghes aenifia in (lwerrigh) te neron (arows ar ofte ovl i shpe nd "igh~up wih pace pti. mgniicaion Fig, 12 A neuron viewed under Hoffman...keyhole), the neurons seem to form a more substantial network . Scratches in the collagen surface controlled the direction of axon sprouting such that...Fig. 5). Templates could be removed without disturbing the neural network and hence might be a valuable tool in the future to focus the growth of

  9. S1P1 inhibits sprouting angiogenesis during vascular development.

    PubMed

    Ben Shoham, Adi; Malkinson, Guy; Krief, Sharon; Shwartz, Yulia; Ely, Yona; Ferrara, Napoleone; Yaniv, Karina; Zelzer, Elazar

    2012-10-01

    Coordination between the vascular system and forming organs is essential for proper embryonic development. The vasculature expands by sprouting angiogenesis, during which tip cells form filopodia that incorporate into capillary loops. Although several molecules, such as vascular endothelial growth factor A (Vegfa), are known to induce sprouting, the mechanism that terminates this process to ensure neovessel stability is still unknown. Sphingosine-1-phosphate receptor 1 (S1P(1)) has been shown to mediate interaction between endothelial and mural cells during vascular maturation. In vitro studies have identified S1P(1) as a pro-angiogenic factor. Here, we show that S1P(1) acts as an endothelial cell (EC)-autonomous negative regulator of sprouting angiogenesis during vascular development. Severe aberrations in vessel size and excessive sprouting found in limbs of S1P(1)-null mouse embryos before vessel maturation imply a previously unknown, mural cell-independent role for S1P(1) as an anti-angiogenic factor. A similar phenotype observed when S1P(1) expression was blocked specifically in ECs indicates that the effect of S1P(1) on sprouting is EC-autonomous. Comparable vascular abnormalities in S1p(1) knockdown zebrafish embryos suggest cross-species evolutionary conservation of this mechanism. Finally, genetic interaction between S1P(1) and Vegfa suggests that these factors interplay to regulate vascular development, as Vegfa promotes sprouting whereas S1P(1) inhibits it to prevent excessive sprouting and fusion of neovessels. More broadly, because S1P, the ligand of S1P(1), is blood-borne, our findings suggest a new mode of regulation of angiogenesis, whereby blood flow closes a negative feedback loop that inhibits sprouting angiogenesis once the vascular bed is established and functional.

  10. Human iPSC-Derived Endothelial Cell Sprouting Assay in Synthetic Hydrogel Arrays

    EPA Science Inventory

    Activation of vascular endothelial cells (ECs) by growth factors initiates a cascade of events in vivo consisting of EC tip cell selection, sprout formation, EC stalk cell proliferation, and ultimately vascular stabilization by support cells. Although EC functional assays can rec...

  11. Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, P.-F.; Yeh, Alvin T.; Bayless, Kayla J.

    The interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are fundamental in mediating various steps of angiogenesis, including cell adhesion, migration and sprout formation. Here, we used a noninvasive and non-destructive nonlinear optical microscopy (NLOM) technique to optically image endothelial sprouting morphogenesis in three-dimensional (3D) collagen matrices. We simultaneously captured signals from collagen fibers and endothelial cells using second harmonic generation (SHG) and two-photon excited fluorescence (TPF), respectively. Dynamic 3D imaging revealed EC interactions with collagen fibers along with quantifiable alterations in collagen matrix density elicited by EC movement through and morphogenesis within the matrix. Specifically, we observedmore » increased collagen density in the area between bifurcation points of sprouting structures and anisotropic increases in collagen density around the perimeter of lumenal structures, but not advancing sprout tips. Proteinase inhibition studies revealed membrane-associated matrix metalloproteinase were utilized for sprout advancement and lumen expansion. Rho-associated kinase (p160ROCK) inhibition demonstrated that the generation of cell tension increased collagen matrix alterations. This study followed sprouting ECs within a 3D matrix and revealed that the advancing structures recognize and significantly alter their extracellular environment at the periphery of lumens as they progress.« less

  12. BREAST CANCER-INDUCED BONE REMODELING, SKELETAL PAIN AND SPROUTING OF SENSORY NERVE FIBERS

    PubMed Central

    Bloom, Aaron P.; Jimenez-Andrade, Juan M.; Taylor, Reid N.; Castañeda-Corral, Gabriela; Kaczmarska, Magdalena J.; Freeman, Katie T.; Coughlin, Kathleen A.; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2011-01-01

    Breast cancer metastasis to bone is frequently accompanied by pain. What remains unclear is why this pain tends to become more severe and difficult to control with disease progression. Here we test the hypothesis that with disease progression sensory nerve fibers that innervate the breast cancer bearing bone undergo a pathological sprouting and reorganization, which in other non-malignant pathologies has been shown to generate and maintain chronic pain. Injection of human breast cancer cells (MDA-MB-231-BO) into the femoral intramedullary space of female athymic nude mice induces sprouting of calcitonin gene-related peptide (CGRP+) sensory nerve fibers. Nearly all CGRP+ nerve fibers that undergo sprouting also co-express tropomyosin receptor kinase A (TrkA+) and growth associated protein-43 (GAP43+). This ectopic sprouting occurs in periosteal sensory nerve fibers that are in close proximity to breast cancer cells, tumor-associated stromal cells and remodeled cortical bone. Therapeutic treatment with an antibody that sequesters nerve growth factor (NGF), administered when the pain and bone remodeling were first observed, blocks this ectopic sprouting and attenuates cancer pain. The present data suggest that the breast cancer cells and tumor-associated stromal cells express and release NGF, which drives bone pain and the pathological reorganization of nearby CGRP+ / TrkA+ / GAP43+ sensory nerve fibers. PMID:21497141

  13. Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts.

    PubMed

    Frassinetti, Stefania; Moccia, Eleonora; Caltavuturo, Leonardo; Gabriele, Morena; Longo, Vincenzo; Bellani, Lorenza; Giorgi, Gianluca; Giorgetti, Lucia

    2018-10-01

    In this study the antioxidant effect of Cannabis sativa L. seeds and sprouts (3 and 5 days of germination) was evaluated. Total polyphenols, flavonoids and flavonols content, when expressed on dry weight basis, were highest in sprouts; ORAC and DPPH (in vitro assays), CAA-RBC (cellular antioxidant activity in red blood cells) and hemolysis test (ex vivo assays) evidenced a good antioxidant activity higher in sprouts than in seeds. Untargeted analysis by high resolution mass spectrometry in negative ion mode allowed the identification of main polyphenols (caffeoyltyramine, cannabisin A, B, C) in seeds and of ω-6 (linoleic acid) in sprouts. Antimutagenic effect of seeds and sprouts extracts evidenced a significant decrease of mutagenesis induced by hydrogen peroxide in Saccharomyces cerevisiae D7 strain. In conclusion our results show that C. sativa seeds and sprouts exert beneficial effects on yeast and human cells and should be further investigated as a potential functional food. Copyright © 2018. Published by Elsevier Ltd.

  14. Dietary broccoli sprouts protect against myocardial oxidative damage and cell death during ischemia-reperfusion.

    PubMed

    Akhlaghi, Masoumeh; Bandy, Brian

    2010-09-01

    Cruciferous vegetables are known for antioxidant and anti-carcinogenic effects. In the current study we asked whether dietary broccoli sprouts can protect the heart from ischemia-reperfusion. Rats were fed either control diet (sham and control groups) or a diet mixed with 2% dried broccoli sprouts for 10 days. After 10 days the isolated hearts were subjected to ischemia for 20 min and reperfusion for 2 h, and evaluated for cell death, oxidative damage, and Nrf2-regulated phase 2 enzyme activities. Broccoli sprouts feeding inhibited markers of necrosis (lactate dehydrogenase release) and apoptosis (caspase-3 activity) by 78-86%, and decreased indices of oxidative stress (thiobarbituric acid reactive substances and aconitase inactivation) by 82-116%. While broccoli sprouts increased total glutathione and activities of the phase 2 enzymes glutamate cysteine ligase and quinone reductase in liver, they did not affect these in ischemic-reperfused heart. While the mechanism is not clear, the results show that a relatively short dietary treatment with broccoli sprouts can strongly protect the heart against oxidative stress and cell death caused by ischemia-reperfusion.

  15. Causal Link between the Cortico-Rubral Pathway and Functional Recovery through Forced Impaired Limb Use in Rats with Stroke

    PubMed Central

    Ishida, Akimasa; Isa, Kaoru; Umeda, Tatsuya; Kobayashi, Kazuto; Kobayashi, Kenta; Hida, Hideki

    2016-01-01

    Intensive rehabilitation is believed to induce use-dependent plasticity in the injured nervous system; however, its causal relationship to functional recovery is unclear. Here, we performed systematic analysis of the effects of forced use of an impaired forelimb on the recovery of rats after lesioning the internal capsule with intracerebral hemorrhage (ICH). Forced limb use (FLU) group rats exhibited better recovery of skilled forelimb functions and their cortical motor area with forelimb representation was restored and enlarged on the ipsilesional side. In addition, abundant axonal sprouting from the reemerged forelimb area was found in the ipsilateral red nucleus after FLU. To test the causal relationship between the plasticity in the cortico-rubral pathway and recovery, loss-of-function experiments were conducted using a double-viral vector technique, which induces selective blockade of the target pathway. Blockade of the cortico-rubral tract resulted in deficits of the recovered forelimb function in FLU group rats. These findings suggest that the cortico-rubral pathway is a substrate for recovery induced by intensive rehabilitation after ICH. SIGNIFICANCE STATEMENT The research aimed at determining the causal linkage between reorganization of the motor pathway induced by intensive rehabilitative training and recovery after stroke. We clarified the expansion of the forelimb representation area of the ipsilesional motor cortex by forced impaired forelimb use (FLU) after lesioning the internal capsule with intracerebral hemorrhaging (ICH) in rats. Anterograde tracing showed robust axonal sprouting from the forelimb area to the red nucleus in response to FLU. Selective blockade of the cortico-rubral pathway by the novel double-viral vector technique clearly revealed that the increased cortico-rubral axonal projections had causal linkage to the recovery of reaching movements induced by FLU. Our data demonstrate that the cortico-rubral pathway is responsible for the effect of intensive limb use. PMID:26758837

  16. Angiogenesis in the reparatory mucosa of the mandibular edentulous ridge is driven by endothelial tip cells.

    PubMed

    Stănescu, Ruxandra; Didilescu, Andreea Cristiana; Jianu, Adelina Maria; Rusu, M C

    2012-01-01

    Sprouting angiogenesis is led by specialized cell--the endothelial tip cells (ETCs) which can be targeted by pro- or anti-angiogenic therapies. We aimed to perform a qualitative study in order to assess the guidance by tip cells of the endothelial sprouts in the repairing mucosa of the edentulous mandibular crest. Mucosa of the mandibular edentulous ridge was collected from six adult patients, prior to healing abutment placement (second surgery). Slides were prepared and immunostained with antibodies for CD34 and Ki67. The abundant vasculature of the lamina propria was observed on slides and the CD34 antibodies labeled endothelial tip cells in various stages of the endothelial sprouts. Ki67 identified positive endothelial cells, confirming the proliferative status of the microvascular bed. According to the results, the in situ sprouting angiogenesis is driven by tip cells in the oral mucosa of the edentulous ridge and these cells can be targeted by various therapies, as required by the local pathologic or therapeutic conditions.

  17. Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System

    PubMed Central

    Gennaro, Mariangela; Mattiello, Alessandro; Mazziotti, Raffaele; Antonelli, Camilla; Gherardini, Lisa; Guzzetta, Andrea; Berardi, Nicoletta; Cioni, Giovanni; Pizzorusso, Tommaso

    2017-01-01

    Motor system development is characterized by an activity-dependent competition between ipsilateral and contralateral corticospinal tracts (CST). Clinical evidence suggests that age is crucial for developmental stroke outcome, with early lesions inducing a “maladaptive” strengthening of ipsilateral projections from the healthy hemisphere and worse motor impairment. Here, we investigated in developing rats the relation between lesion timing, motor outcome and CST remodeling pattern. We induced a focal ischemia into forelimb motor cortex (fM1) at two distinct pre-weaning ages: P14 and P21. We compared long-term motor outcome with changes in axonal sprouting of contralesional CST at red nucleus and spinal cord level using anterograde tracing. We found that P14 stroke caused a more severe long-term motor impairment than at P21, and induced a strong and aberrant contralesional CST sprouting onto denervated spinal cord and red nucleus. The mistargeted sprouting of CST, and the worse motor outcome of the P14 stroke rats were reversed by an early skilled motor training, underscoring the potential of early activity-dependent plasticity in modulating lesion outcome. Thus, changes in the mechanisms controlling CST plasticity occurring during the third postnatal week are associated with age-dependent regulation of the motor outcome after stroke. PMID:28706475

  18. Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System.

    PubMed

    Gennaro, Mariangela; Mattiello, Alessandro; Mazziotti, Raffaele; Antonelli, Camilla; Gherardini, Lisa; Guzzetta, Andrea; Berardi, Nicoletta; Cioni, Giovanni; Pizzorusso, Tommaso

    2017-01-01

    Motor system development is characterized by an activity-dependent competition between ipsilateral and contralateral corticospinal tracts (CST). Clinical evidence suggests that age is crucial for developmental stroke outcome, with early lesions inducing a "maladaptive" strengthening of ipsilateral projections from the healthy hemisphere and worse motor impairment. Here, we investigated in developing rats the relation between lesion timing, motor outcome and CST remodeling pattern. We induced a focal ischemia into forelimb motor cortex (fM1) at two distinct pre-weaning ages: P14 and P21. We compared long-term motor outcome with changes in axonal sprouting of contralesional CST at red nucleus and spinal cord level using anterograde tracing. We found that P14 stroke caused a more severe long-term motor impairment than at P21, and induced a strong and aberrant contralesional CST sprouting onto denervated spinal cord and red nucleus. The mistargeted sprouting of CST, and the worse motor outcome of the P14 stroke rats were reversed by an early skilled motor training, underscoring the potential of early activity-dependent plasticity in modulating lesion outcome. Thus, changes in the mechanisms controlling CST plasticity occurring during the third postnatal week are associated with age-dependent regulation of the motor outcome after stroke.

  19. Targeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury

    PubMed Central

    Keefe, Kathleen M.; Sheikh, Imran S.; Smith, George M.

    2017-01-01

    Neurotrophins are a family of proteins that regulate neuronal survival, synaptic function, and neurotransmitter release, and elicit the plasticity and growth of axons within the adult central and peripheral nervous system. Since the 1950s, these factors have been extensively studied in traumatic injury models. Here we review several members of the classical family of neurotrophins, the receptors they bind to, and their contribution to axonal regeneration and sprouting of sensory and motor pathways after spinal cord injury (SCI). We focus on nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and their effects on populations of neurons within diverse spinal tracts. Understanding the cellular targets of neurotrophins and the responsiveness of specific neuronal populations will allow for the most efficient treatment strategies in the injured spinal cord. PMID:28273811

  20. Targeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury.

    PubMed

    Keefe, Kathleen M; Sheikh, Imran S; Smith, George M

    2017-03-03

    Neurotrophins are a family of proteins that regulate neuronal survival, synaptic function, and neurotransmitter release, and elicit the plasticity and growth of axons within the adult central and peripheral nervous system. Since the 1950s, these factors have been extensively studied in traumatic injury models. Here we review several members of the classical family of neurotrophins, the receptors they bind to, and their contribution to axonal regeneration and sprouting of sensory and motor pathways after spinal cord injury (SCI). We focus on nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and their effects on populations of neurons within diverse spinal tracts. Understanding the cellular targets of neurotrophins and the responsiveness of specific neuronal populations will allow for the most efficient treatment strategies in the injured spinal cord.

  1. Anti-inflammatory activities of garlic sprouts, a source of α-linolenic acid and 5-hydroxy-l-tryptophan, in RAW 264.7 cells.

    PubMed

    Gdula-Argasińska, Joanna; Paśko, Paweł; Sułkowska-Ziaja, Katarzyna; Kała, Katarzyna; Muszyńska, Bożena

    2017-01-01

    The purpose of this study was to analyze the indolic, phenolic, and fatty acid content and antioxidant activity of garlic sprouts growing in the dark and in the daylight. The pro- or anti-inflammatory properties of the garlic sprout extract were investigated by evaluating the cyclooxygenase-2 (COX-2), prostaglandin E synthase (cPGES), glutathione S transferase (GSTM1), nuclear factor NF-κB, peroxisome proliferator-activated receptors (PPARs), and aryl hydrocarbon receptor (AhR) protein levels in the RAW 264.7 cells activated with lipopolysaccharide (LPS). The highest amount of total indolic (73.56 mg/100 g f.w.) and phenolic compounds (36.23 mg/100 g f.w.) was detected in garlic sprouts grown in the daylight. Studies on antioxidant activity (the FRAP and DPPH method) of garlic sprouts showed that this activity is significantly higher for sprouts grown in full access to light when compared to those grown in the dark. In garlic sprout extracts, α-linolenic acid (ALA) was found to be in greater amount. COX-2 and cPGES level was lower when compared to LPS alone activated cells. After garlic extract treatment, higher level of GSTM1, PPARΥ, cytosolic p50 and p65 protein, as well as a lower NF-ĸB p50/p65 activity was noted in the RAW 264.7 cells which suggested PPARs and AhR transrepression mechanism of NF-ĸB signalling. The obtained results indicate Allium sativum sprouts are a rich source of n-3 fatty acids, indolic and phenolic compounds characterized by anti-inflammatory and antioxidative activity, which may support their high therapeutic and dietary potential.

  2. Lipoprotein Uptake by Neuronal Growth Cones in Vitro

    NASA Astrophysics Data System (ADS)

    Ignatius, Michael J.; Shooter, Eric M.; Pitas, Robert E.; Mahley, Robert W.

    1987-05-01

    Macrophages that rapidly enter injured peripheral nerve synthesize and secrete large quantities of apolipoprotein E. This protein may be involved in the redistribution of lipid, including cholesterol released during degeneration, to the regenerating axons. To test this postulate, apolipoprotein E-associated lipid particles released from segments of injured rat sciatic nerve and apolipoprotein E-containing lipoproteins from plasma were used to determine whether sprouting neurites, specifically their growth cones, possessed lipoprotein receptors. Pheochromocytoma (PC12) cells, which can be stimulated to produce neurites in vitro, were used as a model system. Apolipoprotein E-containing lipid particles and lipoproteins, which had been labeled with fluorescent dye, were internalized by the neurites and their growth cones; the unmetabolized dye appeared to be localized to the lysosomes. The rapid rate of accumulation in the growth cones precludes the possibility of orthograde transport of the fluorescent particles from the PC12 cell bodies. Thus, receptor-mediated lipoprotein uptake is performed by the apolipoprotein B,E(LDL) (low density lipoprotein) receptors, and in the regenerating peripheral nerve apolipoprotein E may deliver lipids to the neurites and their growth cones for membrane biosynthesis.

  3. Epileptogenesis and companion animals.

    PubMed

    Patterson, Edward Ned E

    2013-05-01

    Epileptogenesis is the process by which a normal brain develops into an epileptic brain. There are 3 distinct phases of epileptogenesis-the latent period before seizures occur, the occurrence of recurrent seizures, and in about 30% of patients, the development of refractory epilepsy. Understanding the basic epileptic circuit abnormalities associated with recurrent seizures via aberrations in glutamate, gamma-aminobutyric acid, and ligand- and voltage-gated ion channel activity can help the small-animal practitioner understand the mechanism of action of the antiepileptic drugs currently used for dogs and cats for new-onset and refractory epilepsy. Understanding the latest research results and theories about the pathophysiology of the latent period of epileptogenesis, where recurrent seizures have not yet developed, would help the practitioner understand possible target areas for future treatments to treat epilepsy by preventing it rather than just symptomatically preventing recurrent seizures. The current areas of focus of research on the latent period include neurodegeneration, neurogenesis, axonal sprouting, glial cell activation, invasion of inflammatory cells, angiogenesis, and subclinical alteration of ligand- and receptor-gated ion channels. © 2013 Elsevier Inc. All rights reserved.

  4. A Single Bolus of Docosahexaenoic Acid Promotes Neuroplastic Changes in the Innervation of Spinal Cord Interneurons and Motor Neurons and Improves Functional Recovery after Spinal Cord Injury.

    PubMed

    Liu, Zhuo-Hao; Yip, Ping K; Adams, Louise; Davies, Meirion; Lee, Jae Won; Michael, Gregory J; Priestley, John V; Michael-Titus, Adina T

    2015-09-16

    Docosahexaenoic acid (DHA) is an ω-3 polyunsaturated fatty acid that is essential in brain development and has structural and signaling roles. Acute DHA administration is neuroprotective and promotes functional recovery in animal models of adult spinal cord injury (SCI). However, the mechanisms underlying this recovery have not been fully characterized. Here we investigated the effects of an acute intravenous bolus of DHA delivered after SCI and characterized DHA-induced neuroplasticity within the adult injured spinal cord. We found robust sprouting of uninjured corticospinal and serotonergic fibers in a rat cervical hemisection SCI model. A mouse pyramidotomy model was used to confirm that this robust sprouting was not species or injury model specific. Furthermore, we demonstrated that corticospinal fibers sprouting to the denervated side of the cord following pyramidotomy contact V2a interneurons. We also demonstrated increased serotonin fibers and synaptophysin in direct contact with motor neurons. DHA also increased synaptophysin in rat cortical cell cultures. A reduction in phosphatase and tensin homolog (PTEN) has been shown to be involved in axonal regeneration and synaptic plasticity. We showed that DHA significantly upregulates miR-21 and downregulates PTEN in corticospinal neurons. Downregulation of PTEN and upregulation of phosphorylated AKT by DHA were also seen in primary cortical neuron cultures and were accompanied by increased neurite outgrowth. In summary, acute DHA induces anatomical and synaptic plasticity in adult injured spinal cord. This study shows that DHA has therapeutic potential in cervical SCI and provides evidence that DHA could exert its beneficial effects in SCI via enhancement of neuroplasticity. In this study, we show that an acute intravenous injection of docosahexaenoic acid (DHA) 30 min after spinal cord injury induces neuroplasticity. We found robust sprouting of uninjured corticospinal and serotonergic fibers in a rat hemisection spinal cord injury model. A mouse pyramidotomy model was used to confirm that the robust sprouting involved V2a interneurons. We show that DHA significantly upregulates miR-21 and phosphorylated AKT, and downregulates phosphatase and tensin homolog (PTEN), which is involved in suppressing anatomical plasticity, in corticospinal neurons and in primary cortical neuron cultures. We conclude that acute DHA can induce anatomical and synaptic plasticity. This provides direct evidence that DHA could exert its beneficial effects in spinal cord injury via neuroplasticity enhancement. Copyright © 2015 the authors 0270-6474/15/3512734-20$15.00/0.

  5. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks

    PubMed Central

    Walpole, J.; Chappell, J.C.; Cluceru, J.G.; Mac Gabhann, F.; Bautch, V.L.; Peirce, S. M.

    2015-01-01

    Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods. PMID:26158406

  6. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks.

    PubMed

    Walpole, J; Chappell, J C; Cluceru, J G; Mac Gabhann, F; Bautch, V L; Peirce, S M

    2015-09-01

    Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods.

  7. Excess centrosomes perturb dynamic endothelial cell repolarization during blood vessel formation

    PubMed Central

    Kushner, Erich J.; Ferro, Luke S.; Yu, Zhixian; Bautch, Victoria L.

    2016-01-01

    Blood vessel formation requires dynamic movements of endothelial cells (ECs) within sprouts. The cytoskeleton regulates migratory polarity, and centrosomes organize the microtubule cytoskeleton. However, it is not well understood how excess centrosomes, commonly found in tumor stromal cells, affect microtubule dynamics and interphase cell polarity. Here we find that ECs dynamically repolarize during sprouting angiogenesis, and excess centrosomes block repolarization and reduce migration and sprouting. ECs with excess centrosomes initially had more centrosome-derived microtubules but, paradoxically, fewer steady-state microtubules. ECs with excess centrosomes had elevated Rac1 activity, and repolarization was rescued by blockade of Rac1 or actomyosin blockers, consistent with Rac1 activity promoting cortical retrograde actin flow and actomyosin contractility, which precludes cortical microtubule engagement necessary for dynamic repolarization. Thus normal centrosome numbers are required for dynamic repolarization and migration of sprouting ECs that contribute to blood vessel formation. PMID:27099371

  8. [Establishment of sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo].

    PubMed

    Jiang, Hua; Feng, You-Ji; Xie, Yi; Han, Jin-Lan; Wang, Zack; Chen, Tong

    2008-10-14

    To establish a sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo. Human embryonic stem were (hESCs) were cultured on the mouse embryo fibroblasts and then were induced to differentiate to form three-dimensional EB. The hEBs were cultured in media containing various angiogenesis-related factors: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), endostatin, angiostatin, and platelet factor (PF)-4 of different concentrations for 3 days to observe the sprouting of the hEBs. 3, 3, 3', 3'-tetramethylindo-carbocyanine perchlorate labeled acetylated low density lipoprotein (Dil-AcLDL) was added onto the hEBs foe 4 h Immunofluorescence assay was used to observe if Dil-AcLDL was absorbed and if CD31 was expressed so as to determine the existence of embryonic endothelial cells in the sprouting structures. The ideal culturing condition was analyzed. The differentiated EBs formed sprouting structures in the collagen I matrix containing VEGF and FGF. The sprouts among individual EBs were able to link to each other and form vascular network-like structures. In the presence of VEGF and FGF, the sprouts branching from the EBs assimilated Dil-AcLDL, expressed CD31 and formed a 3-dimensional cylindrical organization. The concentrations of growth factors ideally stimulating sprouting growth were 100 ng/ml of VEGF and 50 ng/ml of FGF. The networks among the EBs were abolished by the angiostatin, endostatin, and PF4. The sprouting from hEBs accumulates embryonic endothelial cells and the sprouting network-like structures are indeed endothelial in nature. Inducing of sprouting EBs is an ideal model that mimics early embryonic vasculogenesis in humans.

  9. New bioactive motifs and their use in functionalized self-assembling peptides for NSC differentiation and neural tissue engineering

    NASA Astrophysics Data System (ADS)

    Gelain, F.; Cigognini, D.; Caprini, A.; Silva, D.; Colleoni, B.; Donegá, M.; Antonini, S.; Cohen, B. E.; Vescovi, A.

    2012-04-01

    Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications.Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications. Electronic supplementary information (ESI) available: Supporting methods and data about CD spectral analysis of SAPeptide solutions (Fig. S1), neural differentiation of murine and human NSCs (Fig. S2) on SAPeptide scaffolds, and their statistical analysis (Table S1). See DOI: 10.1039/c2nr30220a

  10. RAIN-Droplet: A Novel 3-D in vitro Angiogenesis Model

    PubMed Central

    Zeitlin, Benjamin D.; Dong, Zhihong; Nör, Jacques E.

    2012-01-01

    Angiogenesis is fundamentally required for the initialization, development and metastatic spread of cancer. A rapidly expanding number of new experimental, chemical modulators of endothelial cell function have been described for the therapeutic inhibition of angiogenesis in cancer. Despite this expansion there has been very limited parallel growth of in vitro angiogenesis models or experimental tools. Here we present the Responsive Angiogenic Implanted Network (RAIN)-Droplet model and novel angiogenesis assay using an endothelial cell culture model of microvascular endothelial cells encapsulated in a spontaneously self-assembling, toroidal hydrogel droplet uniquely yielding discrete, pre-formed, angiogenic networks that may be embedded in 3-D matrices. On embedding, radial growth of capillary-like sprouts and cell invasion was observed. The sprouts formed as both outgrowths from endothelial cells on the surface of the droplets but also, uniquely, from the pre-formed network structures within the droplet. We demonstrate proof-of-principle for the utility of the model showing significant inhibition of sprout formation (p<0.001) in the presence of bevacizumab, an anti-angiogenic antibody. Using the RAIN-Droplet assay we also demonstrate a novel dose dependent pro-angiogenic function for the characteristically anti-angiogenic multi-kinase inhibitor sorafenib. Exposure of endothelial cells in 3-D culture to low, non-lethal doses (<1 μM) of sorafenib after initiation of sprouting resulted in the formation of significantly (p<0.05) more endothelial sprouts compared to controls over a 48-hour period. Higher doses of sorafenib (5 μM) resulted in a significant (p<0.05) reduction of sprouting over the same time period. The RAIN-Droplet model is a highly versatile and simply constructed 3-D focal sprouting approach well suited for the study of vascular morphogenesis and for preclinical testing of drugs. Furthermore, the RAIN-Droplet model has facilitated the discovery of a novel pro-angiogenic capacity for sorafenib which may impact the clinical application and dosing regimen of that drug. PMID:22565576

  11. PATHOLOGICAL SPROUTING OF ADULT NOCICEPTORS IN CHRONIC PROSTATE CANCER-INDUCED BONE PAIN

    PubMed Central

    Jimenez-Andrade, Juan M.; Bloom, Aaron P.; Stake, James I.; Mantyh, William G.; Taylor, Reid N.; Freeman, Katie T.; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2012-01-01

    Pain frequently accompanies cancer. What remains unclear is why this pain frequently becomes more severe and difficult to control with disease progression. Here we test the hypothesis that with disease progression, sensory nerve fibers that innervate the tumor-bearing tissue undergo a pathological sprouting and reorganization, which in other non-malignant pathologies has been shown to generate and maintain chronic pain. Injection of canine prostate cancer cells into mouse bone induces a remarkable sprouting of calcitonin gene related peptide (CGRP+) and neurofilament 200 kDa (NF200+) sensory nerve fibers. Nearly all sensory nerve fibers that undergo sprouting also co-express tropomyosin receptor kinase A (TrkA+). This ectopic sprouting occurs in sensory nerve fibers that are in close proximity to colonies of prostate cancer cells, tumor-associated stromal cells and newly formed woven bone, which together form sclerotic lesions that closely mirror the osteoblastic bone lesions induced by metastatic prostate tumors in humans. Preventive treatment with an antibody that sequesters nerve growth factor (NGF), administered when the pain and bone remodeling were first observed, blocks this ectopic sprouting and attenuates cancer pain. Interestingly, RT-PCR analysis indicated that the prostate cancer cells themselves do not express detectable levels of mRNA coding for NGF. This suggests that the tumor-associated stromal cells express and release NGF, which drives the pathological reorganization of nearby TrkA+ sensory nerve fibers. Therapies that prevent this reorganization of sensory nerve fibers may provide insight into the evolving mechanisms that drive cancer pain and lead to more effective control of this chronic pain state. PMID:21048122

  12. Promotion of neural sprouting using low-level green light-emitting diode phototherapy

    NASA Astrophysics Data System (ADS)

    Alon, Noa; Duadi, Hamootal; Cohen, Ortal; Samet, Tamar; Zilony, Neta; Schori, Hadas; Shefi, Orit; Zalevsky, Zeev

    2015-02-01

    We irradiated neuroblastoma SH-SY5Y cell line with low-level light-emitting diode (LED) illumination at a visible wavelength of 520 nm (green) and intensity of 100 mW/cm2. We captured and analyzed the cell morphology before LED treatment, immediately after, and 12 and 24 h after treatment. Our study demonstrated that LED illumination increases the amount of sprouting dendrites in comparison to the control untreated cells. This treatment also resulted in more elongated cells after treatment in comparison to the control cells and higher levels of expression of a differentiation related gene. This result is a good indication that the proposed method could serve in phototherapy treatment for increasing sprouting and enhancing neural network formation.

  13. Can the Nerve Growth Factor promote the reinnervation of the transplanted heart?

    PubMed

    Galli, Alessio

    2014-02-01

    The activity of the heart is widely regulated by the autonomous nervous system. This important mechanism of control may be impaired in chronic diseases such as heart failure or lost in those patients who undergo heart transplantation, owing to the surgical interruption of cardiac nerves in the transplanted heart. It has been demonstrated that spontaneous reinnervation can occur in transplanted hearts and is associated with an improvement in cardiac function. However, this process may require many years and the restoration of a proper cardiac innervation and functioning during exercise is never complete. In this perspective, the Nerve Growth Factor (NGF) and other neurotrophic hormones might ameliorate cardiac innervation in the transplanted heart and should be tried in animal models. Endothelial cells engineered with a viral vector to overexpress the NGF might be engrafted in the heart and integrate into cardiac small vessels, thus providing a source of neurotrophic factors which might promote and direct regrowth and axonal sprouting of cardiac nerves. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The Drosophila homologue of SRF acts as a boosting mechanism to sustain FGF-induced terminal branching in the tracheal system.

    PubMed

    Gervais, Louis; Casanova, Jordi

    2011-04-01

    Recent data have demonstrated a crucial role for the transcription factor SRF (serum response factor) downstream of VEGF and FGF signalling during branching morphogenesis. This is the case for sprouting angiogenesis in vertebrates, axonal branching in mammals and terminal branching of the Drosophila tracheal system. However, the specific functions of SRF in these processes remain unclear. Here, we establish the relative contributions of the Drosophila homologues of FGF [Branchless (BNL)] and SRF [Blistered (BS)] in terminal tracheal branching. Conversely to an extended view, we show that BNL triggers terminal branching initiation in a DSRF-independent mechanism and that DSRF transcription induced by BNL signalling is required to maintain terminal branch elongation. Moreover, we report that increased and continuous FGF signalling can trigger tracheal cells to develop full-length terminal branches in the absence of DSRF transcription. Our results indicate that DSRF acts as an amplifying step to sustain the progression of terminal branch elongation even in the wild-type conditions of FGF signalling.

  15. HIF-2α Expression Regulates Sprout Formation into 3D Fibrin Matrices in Prolonged Hypoxia in Human Microvascular Endothelial Cells.

    PubMed

    Nauta, Tessa D; Duyndam, Monique C A; Weijers, Ester M; van Hinsbergh, Victor M W; Koolwijk, Pieter

    2016-01-01

    During short-term hypoxia, Hypoxia Inducible Factors (particular their subunits HIF-1α and HIF-2α) regulate the expression of many genes including the potent angiogenesis stimulator VEGF. However, in some pathological conditions chronic hypoxia occurs and is accompanied by reduced angiogenesis. We investigated the effect of prolonged hypoxia on the proliferation and sprouting ability of human microvascular endothelial cells and the involvement of the HIFs and Dll4/Notch signaling. Human microvascular endothelial cells (hMVECs), cultured at 20% oxygen for 14 days and seeded on top of 3D fibrin matrices, formed sprouts when stimulated with VEGF-A/TNFα. In contrast, hMVECs precultured at 1% oxygen for 14 days were viable and proliferative, but did not form sprouts into fibrin upon VEGF-A/TNFα stimulation at 1% oxygen. Silencing of HIF-2α with si-RNA partially restored the inhibition of endothelial sprouting, whereas HIF-1α or HIF-3α by si-RNA had no effect. No involvement of Dll4/Notch pathway in the inhibitory effect on endothelial sprouting by prolonged hypoxia was found. In addition, hypoxia decreased the production of urokinase-type plasminogen activator (uPA), needed for migration and invasion, without a significant effect on its inhibitor PAI-1. This was independent of HIF-2α, as si-HIF-2α did not counteract uPA reduction. Prolonged culturing of hMVECs at 1% oxygen inhibited endothelial sprouting into fibrin. Two independent mechanisms contribute. Silencing of HIF-2α with si-RNA partially restored the inhibition of endothelial sprouting pointing to a HIF-2α-dependent mechanism. In addition, reduction of uPA contributed to reduced endothelial tube formation in a fibrin matrix during prolonged hypoxia.

  16. Dll4-containing exosomes induce capillary sprout retraction in a 3D microenvironment

    PubMed Central

    Sharghi-Namini, Soheila; Tan, Evan; Ong, Lee-Ling Sharon; Ge, Ruowen; Asada, H. Harry

    2014-01-01

    Delta-like 4 (Dll4), a membrane-bound Notch ligand, plays a fundamental role in vascular development and angiogenesis. Dll4 is highly expressed in capillary endothelial tip cells and is involved in suppressing neighboring stalk cells to become tip cells during angiogenesis. Dll4-Notch signaling is mediated either by direct cell-cell contact or by Dll4-containing exosomes from a distance. However, whether Dll4-containing exosomes influence tip cells of existing capillaries is unknown. Using a 3D microfluidic device and time-lapse confocal microscopy, we show here for the first time that Dll4-containing exosomes causes tip cells to lose their filopodia and trigger capillary sprout retraction in collagen matrix. We demonstrate that Dll4 exosomes can freely travel through 3D collagen matrix and transfer Dll4 protein to distant tip cells. Upon reaching endothelial sprout, it causes filopodia and tip cell retraction. Continuous application of Dll4 exosomes from a distance lead to significant reduction of sprout formation. This effect correlates with Notch signaling activation upon Dll4-containing exosome interaction with recipient endothelial cells. Furthermore, we show that Dll4-containing exosomes increase endothelial cell motility while suppressing their proliferation. These data revealed novel functions of Dll4 in angiogenesis through exosomes. PMID:24504253

  17. Evaluation of commercial kit based on loop-mediated isothermal amplification for rapid detection of low levels of uninjured and injured Salmonella on duck meat, bean sprouts, and fishballs in Singapore.

    PubMed

    Lim, Hazel Sin Yue; Zheng, Qianwang; Miks-Krajnik, Marta; Turner, Matthew; Yuk, Hyun-Gyun

    2015-06-01

    The objective of this study was to evaluate performance of the commercial kit based on loop-mediated isothermal amplification (LAMP) in comparison with the International Organization for Standardization method for detecting uninjured and sublethally injured Salmonella cells artificially inoculated at levels of 10(0) and 10(1) CFU/25 g on raw duck wing, raw mung bean sprouts, and processed fishballs. Injured cells were prepared by a heat treatment for duck wings and fishball samples and a chlorine treatment for bean sprout samples. Additionally, a validation study was performed on naturally contaminated food samples sold in Singapore. A total of 110 samples of each commodity were analyzed in this study. Regardless of inoculum levels, the detection by the commercial LAMP kit showed 100% sensitivity and specificity for both inoculated and uninoculated samples compared with the International Organization for Standardization method, with the exception of bean sprout samples. Only 20% of bean sprout samples inoculated with 10(0) CFU/25 g injured Salmonella cells were positive by using the commercial LAMP-based kit. However, all negative samples became positive following a secondary enrichment in Rappaport-Vassiliadis medium with soy broth or after concentration by centrifugation. These results suggest that secondary enrichment or centrifugation should be considered as an additional step to increase the sensitivity of the commercial LAMP-based kit with low numbers of injured target cells in samples with high background microflora (such as mung bean sprouts). The validation study also showed that the commercial LAMP-based kit provided 91% sensitivity and 95% specificity for naturally contaminated samples. Thus, this study demonstrates that the commercial LAMP-based kit might be a cost-effective method, as this system could provide rapid, accurate detection of both uninjured and injured Salmonella cells on raw duck wings, raw mung bean sprouts, and processed fishballs in less than 26 h.

  18. Composition and physiological profiling of sprout-associated microbial communities

    NASA Technical Reports Server (NTRS)

    Matos, Anabelle; Garland, Jay L.; Fett, William F.

    2002-01-01

    The native microfloras of various types of sprouts (alfalfa, clover, sunflower, mung bean, and broccoli sprouts) were examined to assess the relative effects of sprout type and inoculum factors (i.e., sprout-growing facility, seed lot, and inoculation with sprout-derived inocula) on the microbial community structure of sprouts. Sprouts were sonicated for 7 min or hand shaken with glass beads for 2 min to recover native microfloras from the surface, and the resulting suspensions were diluted and plated. The culturable fraction was characterized by the density (log CFU/g), richness (e.g., number of types of bacteria), and diversity (e.g., microbial richness and evenness) of colonies on tryptic soy agar plates incubated for 48 h at 30 degrees C. The relative similarity between sprout-associated microbial communities was assessed with the use of community-level physiological profiles (CLPPs) based on patterns of utilization of 95 separate carbon sources. Aerobic plate counts of 7.96 +/- 0.91 log CFU/g of sprout tissue (fresh weight) were observed, with no statistically significant differences in microbial cell density, richness, or diversity due to sprout type, sprout-growing facility, or seed lot. CLPP analyses revealed that the microbial communities associated with alfalfa and clover sprouts are more similar than those associated with the other sprout types tested. Variability among sprout types was more extensive than any differences between microbial communities associated with alfalfa and clover sprouts from different sprout-growing facilities and seed lots. These results indicate that the subsequent testing of biocontrol agents should focus on similar organisms for alfalfa and clover, but alternative types may be most suitable for the other sprout types tested. The inoculation of alfalfa sprouts with communities derived from various sprout types had a significant, source-independent effect on microbial community structure, indicating that the process of inoculation alters the dynamics of community development regardless of the types of organisms involved.

  19. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neo-Vascularization

    PubMed Central

    Dubrac, Alexandre; Genet, Gael; Ola, Roxana; Zhang, Feng; Pibouin-Fragner, Laurence; Han, Jinah; Zhang, Jiasheng; Thomas, Jean-Léon; Chedotal, Alain; Schwartz, Martin A.; Eichmann, Anne

    2015-01-01

    Background Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. Methods and Results Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2 and VEGF induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, as well as pathological ocular neovascularization and wound healing. Conclusions These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2 and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis. PMID:26659946

  20. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neovascularization.

    PubMed

    Dubrac, Alexandre; Genet, Gael; Ola, Roxana; Zhang, Feng; Pibouin-Fragner, Laurence; Han, Jinah; Zhang, Jiasheng; Thomas, Jean-Léon; Chedotal, Alain; Schwartz, Martin A; Eichmann, Anne

    2016-01-26

    Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here, we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2- and VEGF-induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, and pathological ocular neovascularization and wound healing, as well. These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2, and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis. © 2015 American Heart Association, Inc.

  1. A Comparative Study of Collagen Matrix Density Effect on Endothelial Sprout Formation Using Experimental and Computational Approaches.

    PubMed

    Shamloo, Amir; Mohammadaliha, Negar; Heilshorn, Sarah C; Bauer, Amy L

    2016-04-01

    A thorough understanding of determining factors in angiogenesis is a necessary step to control the development of new blood vessels. Extracellular matrix density is known to have a significant influence on cellular behaviors and consequently can regulate vessel formation. The utilization of experimental platforms in combination with numerical models can be a powerful method to explore the mechanisms of new capillary sprout formation. In this study, using an integrative method, the interplay between the matrix density and angiogenesis was investigated. Owing the fact that the extracellular matrix density is a global parameter that can affect other parameters such as pore size, stiffness, cell-matrix adhesion and cross-linking, deeper understanding of the most important biomechanical or biochemical properties of the ECM causing changes in sprout morphogenesis is crucial. Here, we implemented both computational and experimental methods to analyze the mechanisms responsible for the influence of ECM density on the sprout formation that is difficult to be investigated comprehensively using each of these single methods. For this purpose, we first utilized an innovative approach to quantify the correspondence of the simulated collagen fibril density to the collagen density in the experimental part. Comparing the results of the experimental study and computational model led to some considerable achievements. First, we verified the results of the computational model using the experimental results. Then, we reported parameters such as the ratio of proliferating cells to migrating cells that was difficult to obtain from experimental study. Finally, this integrative system led to gain an understanding of the possible mechanisms responsible for the effect of ECM density on angiogenesis. The results showed that stable and long sprouts were observed at an intermediate collagen matrix density of 1.2 and 1.9 mg/ml due to a balance between the number of migrating and proliferating cells. As a result of weaker connections between the cells and matrix, a lower collagen matrix density (0.7 mg/ml) led to unstable and broken sprouts. However, higher matrix density (2.7 mg/ml) suppressed sprout formation due to the high level of matrix entanglement, which inhibited cell migration. This study also showed that extracellular matrix density can influence sprout branching. Our experimental results support this finding.

  2. Static mechanical strain induces capillary endothelial cell cycle re-entry and sprouting.

    PubMed

    Zeiger, A S; Liu, F D; Durham, J T; Jagielska, A; Mahmoodian, R; Van Vliet, K J; Herman, I M

    2016-08-16

    Vascular endothelial cells are known to respond to a range of biochemical and time-varying mechanical cues that can promote blood vessel sprouting termed angiogenesis. It is less understood how these cells respond to sustained (i.e., static) mechanical cues such as the deformation generated by other contractile vascular cells, cues which can change with age and disease state. Here we demonstrate that static tensile strain of 10%, consistent with that exerted by contractile microvascular pericytes, can directly and rapidly induce cell cycle re-entry in growth-arrested microvascular endothelial cell monolayers. S-phase entry in response to this strain correlates with absence of nuclear p27, a cyclin-dependent kinase inhibitor. Furthermore, this modest strain promotes sprouting of endothelial cells, suggesting a novel mechanical 'angiogenic switch'. These findings suggest that static tensile strain can directly stimulate pathological angiogenesis, implying that pericyte absence or death is not necessarily required of endothelial cell re-activation.

  3. Jab1 regulates Schwann cell proliferation and axonal sorting through p27

    PubMed Central

    Porrello, Emanuela; Rivellini, Cristina; Dina, Giorgia; Triolo, Daniela; Del Carro, Ubaldo; Ungaro, Daniela; Panattoni, Martina; Feltri, Maria Laura; Wrabetz, Lawrence; Pardi, Ruggero; Quattrini, Angelo

    2014-01-01

    Axonal sorting is a crucial event in nerve formation and requires proper Schwann cell proliferation, differentiation, and contact with axons. Any defect in axonal sorting results in dysmyelinating peripheral neuropathies. Evidence from mouse models shows that axonal sorting is regulated by laminin211– and, possibly, neuregulin 1 (Nrg1)–derived signals. However, how these signals are integrated in Schwann cells is largely unknown. We now report that the nuclear Jun activation domain–binding protein 1 (Jab1) may transduce laminin211 signals to regulate Schwann cell number and differentiation during axonal sorting. Mice with inactivation of Jab1 in Schwann cells develop a dysmyelinating neuropathy with axonal sorting defects. Loss of Jab1 increases p27 levels in Schwann cells, which causes defective cell cycle progression and aberrant differentiation. Genetic down-regulation of p27 levels in Jab1-null mice restores Schwann cell number, differentiation, and axonal sorting and rescues the dysmyelinating neuropathy. Thus, Jab1 constitutes a regulatory molecule that integrates laminin211 signals in Schwann cells to govern cell cycle, cell number, and differentiation. Finally, Jab1 may constitute a key molecule in the pathogenesis of dysmyelinating neuropathies. PMID:24344238

  4. C3 toxin and poly-DL-lactide-ε-caprolactone conduits in the critically damaged peripheral nervous system: a combined therapeutic approach.

    PubMed

    Leibig, Nico; Boyle, Veronika; Kraus, Daniel; Stark, Gerhard Bjoern; Penna, Vincenzo

    2015-03-01

    Peripheral nerve regeneration over longer distances through conduits is limited. In the presented study, critical size nerve gap bridging with a poly-DL-lactide-ε-caprolactone (PLC) conduit was combined with application of C3 toxin to facilitate axonal sprouting. The PLC filled with fibrin (n = 10) and fibrin gel loaded with 1-μg C3-C2I and 2-μg C2II (n = 10) were compared to autologous nerve grafts (n = 10) in a 15-mm sciatic nerve gap lesion model of the rat. Functional and electrophysiological analyses were performed before histological evaluation. Evaluation of motor function and nerve conduction velocity at 16 weeks revealed no differences between the groups. All histological parameters and muscle weight were significantly elevated in nerve graft group. No differences were observed in both PLC groups. The PLCs are permissive for nerve regeneration over a 15-mm defect in rats. Intraluminal application of C3 toxin did not lead to significant enhancement of nerve sprouting.

  5. Axonal interferon responses and alphaherpesvirus neuroinvasion

    NASA Astrophysics Data System (ADS)

    Song, Ren

    Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore, unlike treatment with IFNgamma, IFNbeta induces a non-canonical, local antiviral response in axons. The activation of a local IFNbeta response in axons represents a new paradigm for early cytokine control of neuroinvasion. And the two response modes induced by the two distinct types of IFN erect an efficient and appropriate barrier against PNS infection.

  6. Heterogeneity of the Axon Initial Segment in Interneurons and Pyramidal Cells of Rodent Visual Cortex

    PubMed Central

    Höfflin, Felix; Jack, Alexander; Riedel, Christian; Mack-Bucher, Julia; Roos, Johannes; Corcelli, Corinna; Schultz, Christian; Wahle, Petra; Engelhardt, Maren

    2017-01-01

    The microdomain that orchestrates action potential initiation in neurons is the axon initial segment (AIS). It has long been considered to be a rather homogeneous domain at the very proximal axon hillock with relatively stable length, particularly in cortical pyramidal cells. However, studies in other brain regions paint a different picture. In hippocampal CA1, up to 50% of axons emerge from basal dendrites. Further, in about 30% of thick-tufted layer V pyramidal neurons in rat somatosensory cortex, axons have a dendritic origin. Consequently, the AIS is separated from the soma. Recent in vitro and in vivo studies have shown that cellular excitability is a function of AIS length/position and somatodendritic morphology, undermining a potentially significant impact of AIS heterogeneity for neuronal function. We therefore investigated neocortical axon morphology and AIS composition, hypothesizing that the initial observation of seemingly homogeneous AIS is inadequate and needs to take into account neuronal cell types. Here, we biolistically transfected cortical neurons in organotypic cultures to visualize the entire neuron and classify cell types in combination with immunolabeling against AIS markers. Using confocal microscopy and morphometric analysis, we investigated axon origin, AIS position, length, diameter as well as distance to the soma. We find a substantial AIS heterogeneity in visual cortical neurons, classified into three groups: (I) axons with somatic origin with proximal AIS at the axon hillock; (II) axons with somatic origin with distal AIS, with a discernible gap between the AIS and the soma; and (III) axons with dendritic origin (axon-carrying dendrite cell, AcD cell) and an AIS either starting directly at the axon origin or more distal to that point. Pyramidal cells have significantly longer AIS than interneurons. Interneurons with vertical columnar axonal projections have significantly more distal AIS locations than all other cells with their prevailing phenotype as an AcD cell. In contrast, neurons with perisomatic terminations display most often an axon originating from the soma. Our data contribute to the emerging understanding that AIS morphology is highly variable, and potentially a function of the cell type. PMID:29170630

  7. CD8+ T Cells Cause Disability and Axon Loss in a Mouse Model of Multiple Sclerosis

    PubMed Central

    Schmalstieg, William F.; Sauer, Brian M.; Wang, Huan; German, Christopher L.; Windebank, Anthony J.; Rodriguez, Moses; Howe, Charles L.

    2010-01-01

    Background The objective of this study was to test the hypothesis that CD8+ T cells directly mediate motor disability and axon injury in the demyelinated central nervous system. We have previously observed that genetic deletion of the CD8+ T cell effector molecule perforin leads to preservation of motor function and preservation of spinal axons in chronically demyelinated mice. Methodology/Principal Findings To determine if CD8+ T cells are necessary and sufficient to directly injure demyelinated axons, we adoptively transferred purified perforin-competent CD8+ spinal cord-infiltrating T cells into profoundly demyelinated but functionally preserved perforin-deficient host mice. Transfer of CD8+ spinal cord-infiltrating T cells rapidly and irreversibly impaired motor function, disrupted spinal cord motor conduction, and reduced the number of medium- and large-caliber spinal axons. Likewise, immunodepletion of CD8+ T cells from chronically demyelinated wildtype mice preserved motor function and limited axon loss without altering other disease parameters. Conclusions/Significance In multiple sclerosis patients, CD8+ T cells outnumber CD4+ T cells in active lesions and the number of CD8+ T cells correlates with the extent of ongoing axon injury and functional disability. Our findings suggest that CD8+ T cells may directly injure demyelinated axons and are therefore a viable therapeutic target to protect axons and motor function in patients with multiple sclerosis. PMID:20814579

  8. Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord.

    PubMed

    Tahtouh, Muriel; Croq, Françoise; Vizioli, Jacopo; Sautiere, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Daha, Mohamed R; Pestel, Joël; Lefebvre, Christophe

    2009-02-01

    In vertebrates, central nervous system (CNS) protection is dependent on many immune cells including microglial cells. Indeed, activated microglial cells are involved in neuroinflammation mechanisms by interacting with numerous immune factors. Unlike vertebrates, some lophotrochozoan invertebrates can fully repair their CNS following injury. In the medicinal leech Hirudo medicinalis, the recruitment of microglial cells at the lesion site is essential for sprouting of injured axons. Interestingly, a new molecule homologous to vertebrate C1q was characterized in leech, named HmC1q (for H. medicinalis) and detected in neurons and glial cells. In chemotaxis assays, leech microglial cells were demonstrated to respond to human C1q. The chemotactic activity was reduced when microglia was preincubated with signaling pathway inhibitors (Pertussis Toxin or wortmannin) or anti-human gC1qR antibody suggesting the involvement of gC1qR in C1q-mediated migration in leech. Assays using cells preincubated with NO chelator (cPTIO) showed that C1q-mediated migration was associated to NO production. Of interest, by using anti-HmC1q antibodies, HmC1q released in the culture medium was shown to exhibit a similar chemotactic effect on microglial cells as human C1q. In summary, we have identified, for the first time, a molecule homologous to mammalian C1q in leech CNS. Its chemoattractant activity on microglia highlights a new investigation field leading to better understand leech CNS repair mechanisms.

  9. Fate of Salmonella enterica and Enterohemorrhagic Escherichia coli Cells Artificially Internalized into Vegetable Seeds during Germination.

    PubMed

    Liu, Da; Cui, Yue; Walcott, Ronald; Chen, Jinru

    2018-01-01

    Vegetable seeds contaminated with bacterial pathogens have been linked to fresh-produce-associated outbreaks of gastrointestinal infections. This study was undertaken to observe the physiological behavior of Salmonella enterica and enterohemorrhagic Escherichia coli (EHEC) cells artificially internalized into vegetable seeds during the germination process. Surface-decontaminated seeds of alfalfa, fenugreek, lettuce, and tomato were vacuum-infiltrated with four individual strains of Salmonella or EHEC. Contaminated seeds were germinated at 25°C for 9 days, and different sprout/seedling tissues were microbiologically analyzed every other day. The internalization of Salmonella and EHEC cells into vegetable seeds was confirmed by the absence of pathogens in seed-rinsing water and the presence of pathogens in seed homogenates after postinternalization seed surface decontamination. Results show that 317 (62%) and 343 (67%) of the 512 collected sprout/seedling tissue samples were positive for Salmonella and EHEC, respectively. The average Salmonella populations were significantly larger ( P < 0.05) than the EHEC populations. Significantly larger Salmonella populations were recovered from the cotyledon and seed coat tissues, followed by the root tissues, but the mean EHEC populations from all sampled tissue sections were statistically similar, except in pregerminated seeds. Three Salmonella and two EHEC strains had significantly larger cell populations on sprout/seedling tissues than other strains used in the study. Salmonella and EHEC populations from fenugreek and alfalfa tissues were significantly larger than those from tomato and lettuce tissues. The study showed the fate of internalized human pathogens on germinating vegetable seeds and sprout/seedling tissues and emphasized the importance of using pathogen-free seeds for sprout production. IMPORTANCE The internalization of microorganisms into vegetable seeds could occur naturally and represents a possible pathway of vegetable seed contamination by human pathogens. The present study investigated the ability of two important bacterial pathogens, Salmonella and enterohemorrhagic Escherichia coli (EHEC), when artificially internalized into vegetable seeds, to grow and disseminate along vegetable sprouts/seedlings during germination. The data from the study revealed that the pathogen cells artificially internalized into vegetable seeds caused the contamination of different tissues of sprouts/seedlings and that pathogen growth on germinating seeds is bacterial species and vegetable seed-type dependent. These results further stress the necessity of using pathogen-free vegetable seeds for edible sprout production. Copyright © 2017 American Society for Microbiology.

  10. E. coli o157:H7 population reduction from alfalfa seeds with malic acid and thiamine dilauryl sulfate and quality evaluation of the resulting sprouts.

    PubMed

    Fransisca, Lilia; Park, Hee Kyung; Feng, Hao

    2012-02-01

    It has been reported that washing seeds with a 20000 ppm Ca(OCl)(2) solution as recommended by the U.S. Food and Drug Administration is unable to eliminate E. coli cells attached to seed surfaces, and the bacterial cells that have survived a sanitation wash can proliferate during sprouting to a high population. The objectives of this research were to examine the efficacy of malic acid (MA) and thiamine dilauryl sulfate (TDS) combined treatments on the inactivation of E. coli O157:H7 on alfalfa seeds, to study the growth of the remaining E. coli cells during sprouting, and to evaluate the sprout quality. When 10 g of inoculated alfalfa seeds were washed in a 10% MA-1% TDS solution, a complete elimination of E. coli was achieved. The same result was observed by washing the seeds in a 20000 ppm Ca(OCl)(2) solution. However, when the seed size was increased to 50 g while maintaining the same seed-to-sanitizer ratio, both the MA + TDS and the 20000 ppm chlorine washes failed to completely inactivate the E. coli cells on the seeds. Nevertheless, the 10% MA-1% TDS solution was significantly more effective in E. coli count reduction compared to the 20000 ppm chlorine wash. The E. coli O157:H7 cells remaining on the seeds after treatments with both sanitizers grew up to 7 to 8 log CFU/g sprout after 96 h of sprouting. Under the treatment conditions used in this study, none of the treatments resulted in significant differences in germination rate, yield, or quality of the sprouts. The malic acid (MA) and thiamine dilauryl sulfate (TDS) combined treatment may provide a new solution to secure the microbial safety of seeds and sprouts. An important finding of this study is that seed sample size has a significant impact on the inactivation of E. coli O157:H7 on alfalfa seeds. The microbial inactivation results obtained in a laboratory set-up cannot be directly applied to a large scale operation. A validation test on the large scale has to be performed to evaluate the efficacy of the sanitizer. © 2012 Institute of Food Technologists®

  11. Systemic administration of thrombin peptide TP508 enhances VEGF-stimulated angiogenesis and attenuates effects of chronic hypoxia

    PubMed Central

    Olszewska-Pazdrak, Barbara; Carney, Darrell H.

    2015-01-01

    Revascularization of chronic wounds and ischemic tissue is attenuated by endothelial dysfunction and the inability of angiogenic factors to stimulate angiogenesis. We recently showed that TP508, a nonproteolytic thrombin peptide, increases perfusion and NO-dependent vasodilation in hearts with chronic ischemia and stimulates NO production by endothelial cells. In this study, we investigated systemic in vivo effects of TP508 on VEGF-stimulated angiogenesis in vitro using aortic explants in normoxic and hypoxic conditions. Mice were injected with saline or TP508 and 24h later aortas were removed and cultured to quantify endothelial sprouting. TP508 injection increased endothelial sprouting and potentiated the in vitro response to VEGF. Exposure of control explants to hypoxia inhibited basal and VEGF-stimulated endothelial cell sprouting. This effect of hypoxia was significantly prevented by TP508 injection. Thus, TP508 systemic administration increases responsiveness of aortic endothelial cells to VEGF and diminishes the effect of chronic hypoxia on endothelial cell sprouting. Studies using human endothelial cells in culture suggest that protective effects of TP508 during hypoxia may involve stimulation of endothelial cell NO production. These data suggest potential clinical benefit of using a combination of systemic TP508 and local VEGF as a therapy for revascularization of ischemic tissue. PMID:23594718

  12. Burn Eschar Stimulates Fibroblast and Adipose Mesenchymal Stromal Cell Proliferation and Migration but Inhibits Endothelial Cell Sprouting

    PubMed Central

    Monsuur, Hanneke N.; van den Broek, Lenie J.; Jhingoerie, Renushka L.; Vloemans, Adrianus F. P. M.

    2017-01-01

    The majority of full-thickness burn wounds heal with hypertrophic scar formation. Burn eschar most probably influences early burn wound healing, since granulation tissue only forms after escharotomy. In order to investigate the effect of burn eschar on delayed granulation tissue formation, burn wound extract (BWE) was isolated from the interface between non-viable eschar and viable tissue. The influence of BWE on the activity of endothelial cells derived from dermis and adipose tissue, dermal fibroblasts and adipose tissue-derived mesenchymal stromal cells (ASC) was determined. It was found that BWE stimulated endothelial cell inflammatory cytokine (CXCL8, IL-6 and CCL2) secretion and migration. However, BWE had no effect on endothelial cell proliferation or angiogenic sprouting. Indeed, BWE inhibited basic Fibroblast Growth Factor (bFGF) induced endothelial cell proliferation and sprouting. In contrast, BWE stimulated fibroblast and ASC proliferation and migration. No difference was observed between cells isolated from dermis or adipose tissue. The inhibitory effect of BWE on bFGF-induced endothelial proliferation and sprouting would explain why excessive granulation tissue formation is prevented in full-thickness burn wounds as long as the eschar is still present. Identifying the eschar factors responsible for this might give indications for therapeutic targets aimed at reducing hypertrophic scar formation which is initiated by excessive granulation tissue formation once eschar is removed. PMID:28820426

  13. Temporal Dynamics of Parvalbumin-Expressing Axo-axonic and Basket Cells in the Rat Medial Prefrontal Cortex In Vivo

    PubMed Central

    Hartwich, Katja; Borhegyi, Zsolt; Somogyi, Peter; Klausberger, Thomas

    2015-01-01

    Axo-axonic interneurons, innervating exclusively axon initial segments, and parvalbumin-expressing basket interneurons, targeting somata, dendrites, and spines of pyramidal cells, have been proposed to control neuronal activity in prefrontal circuits. We recorded the spike-timing of identified neurons in the prelimbic cortex of anesthetized rats, and show that axo-axonic cells increase their firing during tail pinch-induced brain state-activation. In addition, axo-axonic cells differ from other GABAergic parvalbumin-expressing cells in their spike timing during DOWN- to UP-state transitions of slow oscillations and in their coupling to gamma and spindle oscillations. The distinct firing dynamics and synaptic targets of axo-axonic and other parvalbumin-expressing cells provide differential contributions to the temporal organization of prefrontal networks. PMID:23152631

  14. Cell intrinsic control of axon regeneration

    PubMed Central

    Mar, Fernando M; Bonni, Azad; Sousa, Mónica M

    2014-01-01

    Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only the regulation of transcriptional and epigenetic mechanisms, but also the modulation of local protein translation, retrograde and anterograde axonal transport, and microtubule dynamics. We further explore the causes underlying the failure of CNS neurons to mount a vigorous regenerative response, and the paradigms demonstrating the activation of cell intrinsic axon growth programs. Finally, we present potential mechanisms to support axon regeneration, as these may represent future therapeutic approaches to promote recovery following CNS injury and disease. PMID:24531721

  15. In Vitro Analysis of the Role of Schwann Cells on Axonal Degeneration and Regeneration Using Sensory Neurons from Dorsal Root Ganglia.

    PubMed

    López-Leal, Rodrigo; Diaz, Paula; Court, Felipe A

    2018-01-01

    Sensory neurons from dorsal root ganglion efficiently regenerate after peripheral nerve injuries. These neurons are widely used as a model system to study degenerative mechanisms of the soma and axons, as well as regenerative axonal growth in the peripheral nervous system. This chapter describes techniques associated to the study of axonal degeneration and regeneration using explant cultures of dorsal root ganglion sensory neurons in vitro in the presence or absence of Schwann cells. Schwann cells are extremely important due to their involvement in tissue clearance during axonal degeneration as well as their known pro-regenerative effect during regeneration in the peripheral nervous system. We describe methods to induce and study axonal degeneration triggered by axotomy (mechanical separation of the axon from its soma) and treatment with vinblastine (which blocks axonal transport), which constitute clinically relevant mechanical and toxic models of axonal degeneration. In addition, we describe three different methods to evaluate axonal regeneration using quantitative methods. These protocols constitute a valuable tool to analyze in vitro mechanisms associated to axonal degeneration and regeneration of sensory neurons and the role of Schwann cells in these processes.

  16. Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation

    PubMed Central

    Chappell, John C.; Cluceru, Julia G.; Nesmith, Jessica E.; Mouillesseaux, Kevin P.; Bradley, Vanessa B.; Hartland, Caitlin M.; Hashambhoy-Ramsay, Yasmin L.; Walpole, Joseph; Peirce, Shayn M.; Mac Gabhann, Feilim; Bautch, Victoria L.

    2016-01-01

    Aims In developing blood vessel networks, the overall level of vessel branching often correlates with angiogenic sprout initiations, but in some pathological situations, increased sprout initiations paradoxically lead to reduced vessel branching and impaired vascular function. We examine the hypothesis that defects in the discrete stages of angiogenesis can uniquely contribute to vessel branching outcomes. Methods and results Time-lapse movies of mammalian blood vessel development were used to define and quantify the dynamics of angiogenic sprouting. We characterized the formation of new functional conduits by classifying discrete sequential stages—sprout initiation, extension, connection, and stability—that are differentially affected by manipulation of vascular endothelial growth factor-A (VEGF-A) signalling via genetic loss of the receptor flt-1 (vegfr1). In mouse embryonic stem cell-derived vessels genetically lacking flt-1, overall branching is significantly decreased while sprout initiations are significantly increased. Flt-1−/− mutant sprouts are less likely to retract, and they form increased numbers of connections with other vessels. However, loss of flt-1 also leads to vessel collapse, which reduces the number of new stable conduits. Computational simulations predict that loss of flt-1 results in ectopic Flk-1 signalling in connecting sprouts post-fusion, causing protrusion of cell processes into avascular gaps and collapse of branches. Thus, defects in stabilization of new vessel connections offset increased sprout initiations and connectivity in flt-1−/− vascular networks, with an overall outcome of reduced numbers of new conduits. Conclusions These results show that VEGF-A signalling has stage-specific effects on vascular morphogenesis, and that understanding these effects on dynamic stages of angiogenesis and how they integrate to expand a vessel network may suggest new therapeutic strategies. PMID:27142980

  17. Activation of glial FGFRs is essential in glial migration, proliferation, and survival and in glia-neuron signaling during olfactory system development.

    PubMed

    Gibson, Nicholas J; Tolbert, Leslie P; Oland, Lynne A

    2012-01-01

    Development of the adult olfactory system of the moth Manduca sexta depends on reciprocal interactions between olfactory receptor neuron (ORN) axons growing in from the periphery and centrally-derived glial cells. Early-arriving ORN axons induce a subset of glial cells to proliferate and migrate to form an axon-sorting zone, in which later-arriving ORN axons will change their axonal neighbors and change their direction of outgrowth in order to travel with like axons to their target areas in the olfactory (antennal) lobe. These newly fasciculated axon bundles will terminate in protoglomeruli, the formation of which induces other glial cells to migrate to surround them. Glial cells do not migrate unless ORN axons are present, axons fail to fasciculate and target correctly without sufficient glial cells, and protoglomeruli are not maintained without a glial surround. We have shown previously that Epidermal Growth Factor receptors and the IgCAMs Neuroglian and Fasciclin II play a role in the ORN responses to glial cells. In the present work, we present evidence for the importance of glial Fibroblast Growth Factor receptors in glial migration, proliferation, and survival in this developing pathway. We also report changes in growth patterns of ORN axons and of the dendrites of olfactory (antennal lobe) neurons following blockade of glial FGFR activation that suggest that glial FGFR activation is important in reciprocal communication between neurons and glial cells.

  18. Activation of Glial FGFRs Is Essential in Glial Migration, Proliferation, and Survival and in Glia-Neuron Signaling during Olfactory System Development

    PubMed Central

    Gibson, Nicholas J.; Tolbert, Leslie P.; Oland, Lynne A.

    2012-01-01

    Development of the adult olfactory system of the moth Manduca sexta depends on reciprocal interactions between olfactory receptor neuron (ORN) axons growing in from the periphery and centrally-derived glial cells. Early-arriving ORN axons induce a subset of glial cells to proliferate and migrate to form an axon-sorting zone, in which later-arriving ORN axons will change their axonal neighbors and change their direction of outgrowth in order to travel with like axons to their target areas in the olfactory (antennal) lobe. These newly fasciculated axon bundles will terminate in protoglomeruli, the formation of which induces other glial cells to migrate to surround them. Glial cells do not migrate unless ORN axons are present, axons fail to fasciculate and target correctly without sufficient glial cells, and protoglomeruli are not maintained without a glial surround. We have shown previously that Epidermal Growth Factor receptors and the IgCAMs Neuroglian and Fasciclin II play a role in the ORN responses to glial cells. In the present work, we present evidence for the importance of glial Fibroblast Growth Factor receptors in glial migration, proliferation, and survival in this developing pathway. We also report changes in growth patterns of ORN axons and of the dendrites of olfactory (antennal lobe) neurons following blockade of glial FGFR activation that suggest that glial FGFR activation is important in reciprocal communication between neurons and glial cells. PMID:22493675

  19. L1CAM/Neuroglian controls the axon-axon interactions establishing layered and lobular mushroom body architecture.

    PubMed

    Siegenthaler, Dominique; Enneking, Eva-Maria; Moreno, Eliza; Pielage, Jan

    2015-03-30

    The establishment of neuronal circuits depends on the guidance of axons both along and in between axonal populations of different identity; however, the molecular principles controlling axon-axon interactions in vivo remain largely elusive. We demonstrate that the Drosophila melanogaster L1CAM homologue Neuroglian mediates adhesion between functionally distinct mushroom body axon populations to enforce and control appropriate projections into distinct axonal layers and lobes essential for olfactory learning and memory. We addressed the regulatory mechanisms controlling homophilic Neuroglian-mediated cell adhesion by analyzing targeted mutations of extra- and intracellular Neuroglian domains in combination with cell type-specific rescue assays in vivo. We demonstrate independent and cooperative domain requirements: intercalating growth depends on homophilic adhesion mediated by extracellular Ig domains. For functional cluster formation, intracellular Ankyrin2 association is sufficient on one side of the trans-axonal complex whereas Moesin association is likely required simultaneously in both interacting axonal populations. Together, our results provide novel mechanistic insights into cell adhesion molecule-mediated axon-axon interactions that enable precise assembly of complex neuronal circuits. © 2015 Siegenthaler et al.

  20. Quantitative phase imaging characterization of tumor-associated blood vessel formation on a chip

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Huang, Jing; Moses, Marsha A.

    2018-02-01

    Angiogenesis, the formation of new blood vessels from existing ones, is a biological process that has an essential role in solid tumor growth, development, and progression. Recent advances in Lab-on-a-Chip technology has created an opportunity for scientists to observe endothelial cell (EC) behaviors during the dynamic process of angiogenesis using a simple and economical in vitro platform that recapitulates in vivo blood vessel formation. Here, we use quantitative phase imaging (QPI) microscopy to continuously and non-invasively characterize the dynamic process of tumor cell-induced angiogenic sprout formation on a microfluidic chip. The live tumor cell-induced angiogenic sprouts are generated by multicellular endothelial sprouting into 3 dimensional (3D) Matrigel using human umbilical vein endothelial cells (HUVECs). By using QPI, we quantitatively measure a panel of cellular morphological and behavioral parameters of each individual EC participating in this sprouting. In this proof-of-principle study, we demonstrate that QPI is a powerful tool that can provide real-time quantitative analysis of biological processes in in vitro 3D biomimetic devices, which, in turn, can improve our understanding of the biology underlying functional tissue engineering.

  1. Trafficking of cholesterol from cell bodies to distal axons in Niemann Pick C1-deficient neurons.

    PubMed

    Karten, Barbara; Vance, Dennis E; Campenot, Robert B; Vance, Jean E

    2003-02-07

    Niemann Pick type C (NPC) disease is a progressive neurodegenerative disorder. In cells lacking functional NPC1 protein, endocytosed cholesterol accumulates in late endosomes/lysosomes. We utilized primary neuronal cultures in which cell bodies and distal axons reside in separate compartments to investigate the requirement of NPC1 protein for transport of cholesterol from cell bodies to distal axons. We have recently observed that in NPC1-deficient neurons compared with wild-type neurons, cholesterol accumulates in cell bodies but is reduced in distal axons (Karten, B., Vance, D. E., Campenot, R. B., and Vance, J. E. (2002) J. Neurochem. 83, 1154-1163). We now show that NPC1 protein is expressed in both cell bodies and distal axons. In NPC1-deficient neurons, cholesterol delivered to cell bodies from low density lipoproteins (LDLs), high density lipoproteins, or cyclodextrin complexes was transported into axons in normal amounts, whereas transport of endogenously synthesized cholesterol was impaired. Inhibition of cholesterol synthesis with pravastatin in wild-type and NPC1-deficient neurons reduced axonal growth. However, LDLs restored a normal rate of growth to wild-type but not NPC1-deficient neurons treated with pravastatin. Thus, although LDL cholesterol is transported into axons of NPC1-deficient neurons, this source of cholesterol does not sustain normal axonal growth. Over the lifespan of NPC1-deficient neurons, these defects in cholesterol transport might be responsible for the observed altered distribution of cholesterol between cell bodies and axons and, consequently, might contribute to the neurological dysfunction in NPC disease.

  2. ON Cone Bipolar Cell Axonal Synapses in the OFF Inner Plexiform Layer of the Rabbit Retina

    PubMed Central

    Lauritzen, J. Scott; Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Mohammed, Shoeb; Hoang, John V.; Marc, Robert E.

    2012-01-01

    Analysis of the rabbit retinal connectome RC1 reveals that the division between the ON and OFF inner plexiform layer (IPL) is not structurally absolute. ON cone bipolar cells make non-canonical axonal synapses onto specific targets and receive amacrine cell synapses in the nominal OFF layer, creating novel motifs, including inhibitory crossover networks. Automated transmission electron microscope (ATEM) imaging, molecular tagging, tracing, and rendering of ≈ 400 bipolar cells reveals axonal ribbons in 36% of ON cone bipolar cells, throughout the OFF IPL. The targets include GABA-positive amacrine cells (γACs), glycine-positive amacrine cells (GACs) and ganglion cells. Most ON cone bipolar cell axonal contacts target GACs driven by OFF cone bipolar cells, forming new architectures for generating ON-OFF amacrine cells. Many of these ON-OFF GACs target ON cone bipolar cell axons, ON γACs and/or ON-OFF ganglion cells, representing widespread mechanisms for OFF to ON crossover inhibition. Other targets include OFF γACs presynaptic to OFF bipolar cells, forming γAC-mediated crossover motifs. ON cone bipolar cell axonal ribbons drive bistratified ON-OFF ganglion cells in the OFF layer and provide ON drive to polarity-appropriate targets such as bistratified diving ganglion cells (bsdGCs). The targeting precision of ON cone bipolar cell axonal synapses shows that this drive incidence is necessarily a joint distribution of cone bipolar cell axonal frequency and target cell trajectories through a given volume of the OFF layer. Such joint distribution sampling is likely common when targets are sparser than sources and when sources are coupled, as are ON cone bipolar cells. PMID:23042441

  3. Action Potential Dynamics in Fine Axons Probed with an Axonally Targeted Optical Voltage Sensor.

    PubMed

    Ma, Yihe; Bayguinov, Peter O; Jackson, Meyer B

    2017-01-01

    The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used a genetically encoded hybrid voltage sensor (hVOS) harboring an axonal targeting motif. Expressing this probe in transgenic mice enabled us to monitor voltage changes optically in two populations of axons in hippocampal slices, the large axons of dentate granule cells (mossy fibers) in the stratum lucidum of the CA3 region and the much finer axons of hilar mossy cells in the inner molecular layer of the dentate gyrus. Action potentials propagated with distinct velocities in each type of axon. Repetitive firing broadened action potentials in both populations, but at an intermediate frequency the degree of broadening differed. Repetitive firing also attenuated action potential amplitudes in both mossy cell and granule cell axons. These results indicate that the features of use-dependent action potential broadening, and possible failure, observed previously in large nerve terminals also appear in much finer unmyelinated axons. Subtle differences in the frequency dependences could influence the propagation of activity through different pathways to excite different populations of neurons. The axonally targeted hVOS probe used here opens up the diverse repertoire of neuronal processes to detailed biophysical study.

  4. The Pseudopod System for Axon-Glia Interactions: Stimulation and Isolation of Schwann Cell Protrusions that Form in Response to Axonal Membranes.

    PubMed

    Poitelon, Yannick; Feltri, M Laura

    2018-01-01

    In the peripheral nervous system, axons dictate the differentiation state of Schwann cells. Most of this axonal influence on Schwann cells is due to juxtacrine interactions between axonal transmembrane molecules (e.g., the neuregulin growth factor) and receptors on the Schwann cell (e.g., the ErbB2/ErbB3 receptor). The fleeting nature of this interaction together with the lack of synchronicity in the development of the Schwann cell population limits our capability to study this phenomenon in vivo. Here we present a simple Boyden Chamber-based method to study this important cell-cell interaction event. We isolate the early protrusions of Schwann cells that are generated in response to juxtacrine stimulation by sensory neuronal membranes. This method is compatible with a large array of current biochemical analyses and provides an effective approach to study biomolecules that are differentially localized in Schwann cell protrusions and cell bodies in response to axonal signals. A similar approach can be extended to different kinds of cell-cell interactions.

  5. Squid Giant Axon Contains Neurofilament Protein mRNA but does not Synthesize Neurofilament Proteins.

    PubMed

    Gainer, Harold; House, Shirley; Kim, Dong Sun; Chin, Hemin; Pant, Harish C

    2017-04-01

    When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon's neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia-axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.

  6. Characterization of axon formation in the embryonic stem cell-derived motoneuron.

    PubMed

    Pan, Hung-Chuan; Wu, Ya-Ting; Shen, Shih-Cheng; Wang, Chi-Chung; Tsai, Ming-Shiun; Cheng, Fu-Chou; Lin, Shinn-Zong; Chen, Ching-Wen; Liu, Ching-San; Su, Hong-Lin

    2011-01-01

    The developing neural cell must form a highly organized architecture to properly receive and transmit nerve signals. Neural formation from embryonic stem (ES) cells provides a novel system for studying axonogenesis, which are orchestrated by polarity-regulating molecules. Here the ES-derived motoneurons, identified by HB9 promoter-driven green fluorescent protein (GFP) expression, showed characteristics of motoneuron-specific gene expression. In the majority of motoneurons, one of the bilateral neurites developed into an axon that featured with axonal markers, including Tau1, vesicle acetylcholine transporter, and synaptophysin. Interestingly, one third of the motoneurons developed bi-axonal processes but no multiple axonal GFP cell was found. The neuronal polarity-regulating proteins, including the phosphorylated AKT and ERK, were compartmentalized into both of the bilateral axonal tips. Importantly, this aberrant axon morphology was still present after the engraftment of GFP(+) neurons into the spinal cord, suggesting that even a mature neural environment fails to provide a proper niche to guide normal axon formation. These findings underscore the necessity for evaluating the morphogenesis and functionality of neurons before the clinical trials using ES or somatic stem cells.

  7. Axonal properties determine somatic firing in a model of in vitro CA1 hippocampal sharp wave/ripples and persistent gamma oscillations

    PubMed Central

    Traub, Roger D.; Schmitz, Dietmar; Maier, Nikolaus; Whittington, Miles A.; Draguhn, Andreas

    2012-01-01

    Evidence has been presented that CA1 pyramidal cells, during spontaneous in vitro sharp wave/ripple (SPW-R) complexes, generate somatic action potentials that originate in axons. ‘Participating’ (somatically firing) pyramidal cells fire (almost always) at most once during a particular SPW-R whereas non-participating cells virtually never fire during an SPW-R. Somatic spikelets were small or absent, while ripple-frequency EPSCs and IPSCs occurred during the SPW-R in pyramidal neurons. These experimental findings could be replicated with a network model in which electrical coupling was present between small pyramidal cell axonal branches. Here, we explore this model in more depth. Factors that influence somatic participation include: (i) the diameter of axonal branches that contain coupling sites to other axons, because firing in larger branches injects more current into the main axon, increasing antidromic firing probability; (ii) axonal K+ currents; and (iii) somatic hyperpolarization and shunting. We predict that portions of axons fire at high frequency during SPW-R, while somata fire much less. In the model, somatic firing can occur by occasional generation of full action potentials in proximal axonal branches, which are excited by high-frequency spikelets. When the network contains phasic synaptic inhibition, at the axonal gap junction site, gamma oscillations result, again with more frequent axonal firing than somatic firing. Combining the models, so as to generate gamma followed by sharp waves, leads to strong overlap between the population of cells firing during gamma the population of cells firing during a subsequent sharp wave, as observed in vivo. PMID:22697272

  8. Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding.

    PubMed

    Germain, Stéphane; Monnot, Catherine; Muller, Laurent; Eichmann, Anne

    2010-05-01

    Angiogenesis is a highly coordinated tissue remodeling process leading to blood vessel formation. Hypoxia triggers angiogenesis via induction of expression of growth factors such as vascular endothelial growth factor (VEGF). VEGF instructs endothelial cells to form tip cells, which lead outgrowing capillary sprouts, whereas Notch signaling inhibits sprout formation. Basement membrane deposition and mechanical cues from the extracellular matrix (ECM) induced by hypoxia may participate to coordinated vessel sprouting in conjunction with the VEGF and Notch signaling pathways. Hypoxia regulates ECM composition, deposition, posttranslational modifications and rearrangement. In particular, hypoxia-driven vascular remodeling is dynamically regulated through modulation of ECM-modifying enzyme activities that eventually affect both matricellular proteins and growth factor availability. Better understanding of the complex interplay between endothelial cells and soluble growth factors and mechanical factors from the ECM will certainly have significant implications for understanding the regulation of developmental and pathological angiogenesis driven by hypoxia.

  9. Regulation of neuronal axon specification by glia-neuron gap junctions in C. elegans.

    PubMed

    Meng, Lingfeng; Zhang, Albert; Jin, Yishi; Yan, Dong

    2016-10-21

    Axon specification is a critical step in neuronal development, and the function of glial cells in this process is not fully understood. Here, we show that C. elegans GLR glial cells regulate axon specification of their nearby GABAergic RME neurons through GLR-RME gap junctions. Disruption of GLR-RME gap junctions causes misaccumulation of axonal markers in non-axonal neurites of RME neurons and converts microtubules in those neurites to form an axon-like assembly. We further uncover that GLR-RME gap junctions regulate RME axon specification through activation of the CDK-5 pathway in a calcium-dependent manner, involving a calpain clp-4 . Therefore, our study reveals the function of glia-neuron gap junctions in neuronal axon specification and shows that calcium originated from glial cells can regulate neuronal intracellular pathways through gap junctions.

  10. Nucleolin inhibitor GroA triggers reduction in epidermal growth factor receptor activation: Pharmacological implication for glial scarring after spinal cord injury.

    PubMed

    Goldshmit, Yona; Schokoroy Trangle, Sari; Afergan, Fabian; Iram, Tal; Pinkas-Kramarski, Ronit

    2016-09-01

    Glial scarring, formed by reactive astrocytes, is one of the major impediments for regeneration after spinal cord injury (SCI). Reactive astrocytes become hypertrophic, proliferate and secrete chondroitin sulphate proteoglycans into the extracellular matrix (ECM). Many studies have demonstrated that epidermal growth factor receptors (EGFR) can mediate astrocyte reactivity after neurotrauma. Previously we showed that there is crosstalk between nucleolin and EGFR that leads to increased EGFR activation followed by increased cell proliferation. Treatment with the nucleolin inhibitor GroA (AS1411) prevented these effects in vitro and in vivo. In this study, we hypothesized that similar interactions may mediate astrogliosis after SCI. Our results demonstrate that nucleolin and EGFR interaction may play a pivotal role in mediating astrocyte proliferation and reactivity after SCI. Moreover, we demonstrate that treatment with GroA reduces EGFR activation, astrocyte proliferation and chondroitin sulphate proteoglycans secretion, therefore promoting axonal regeneration and sprouting into the lesion site. Our results identify, for the first time, a role for the interaction between nucleolin and EGFR in astrocytes after SCI, indicating that nucleolin inhibitor GroA may be used as a novel treatment after neurotrauma. A major barrier for axonal regeneration after spinal cord injury is glial scar created by reactive and proliferating astrocytes. EGFR mediate astrocyte reactivity. We showed that inhibition of nucleolin by GroA, reduces EGFR activation, which results in attenuation of astrocyte reactivity and proliferation in vivo and in vitro. EGFR, epidermal growth factor receptor. © 2016 International Society for Neurochemistry.

  11. Prolyl hydroxylase regulates axonal rewiring and motor recovery after traumatic brain injury

    PubMed Central

    Miyake, S; Muramatsu, R; Hamaguchi, M; Yamashita, T

    2015-01-01

    Prolyl 4-hydroxylases (PHDs; PHD1, PHD2, and PHD3) are a component of cellular oxygen sensors that regulate the adaptive response depending on the oxygen concentration stabilized by hypoxia/stress-regulated genes transcription. In normoxic condition, PHD2 is required to stabilize hypoxia inducible factors. Silencing of PHD2 leads to the activation of intracellular signaling including RhoA and Rho-associated protein kinase (ROCK), which are key regulators of neurite growth. In this study, we determined that genetic or pharmacological inhibition of PHD2 in cultured cortical neurons prevents neurite elongation through a ROCK-dependent mechanism. We then explored the role of PHDs in axonal reorganization following a traumatic brain injury in adult mice. Unilateral destruction of motor cortex resulted in behavioral deficits due to disruption of the corticospinal tract (CST), a part of the descending motor pathway. In the spinal cord, sprouting of fibers from the intact side of the CST into the denervated side is thought to contribute to the recovery process following an injury. Intracortical infusion of PHD inhibitors into the intact side of the motor cortex abrogated spontaneous formation of CST collaterals and functional recovery after damage to the sensorimotor cortex. These findings suggest PHDs have an important role in the formation of compensatory axonal networks following an injury and may represent a new molecular target for the central nervous system disorders. PMID:25675298

  12. Spinal cord injury: overview of experimental approaches used to restore locomotor activity.

    PubMed

    Fakhoury, Marc

    2015-01-01

    Spinal cord injury affects more than 2.5 million people worldwide and can lead to paraplegia and quadriplegia. Anatomical discontinuity in the spinal cord results in disruption of the impulse conduction that causes temporary or permanent changes in the cord's normal functions. Although axonal regeneration is limited, damage to the spinal cord is often accompanied by spontaneous plasticity and axon regeneration that help improve sensory and motor skills. The recovery process depends mainly on synaptic plasticity in the preexisting circuits and on the formation of new pathways through collateral sprouting into neighboring denervated territories. However, spontaneous recovery after spinal cord injury can go on for several years, and the degree of recovery is very limited. Therefore, the development of new approaches that could accelerate the gain of motor function is of high priority to patients with damaged spinal cord. Although there are no fully restorative treatments for spinal injury, various rehabilitative approaches have been tested in animal models and have reached clinical trials. In this paper, a closer look will be given at the potential therapies that could facilitate axonal regeneration and improve locomotor recovery after injury to the spinal cord. This article highlights the application of several interventions including locomotor training, molecular and cellular treatments, and spinal cord stimulation in the field of rehabilitation research. Studies investigating therapeutic approaches in both animal models and individuals with injured spinal cords will be presented.

  13. Axons take a dive

    PubMed Central

    Tong, Cheuk Ka; Cebrián-Silla, Arantxa; Paredes, Mercedes F; Huang, Eric J; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2015-01-01

    In the walls of the lateral ventricles of the adult mammalian brain, neural stem cells (NSCs) and ependymal (E1) cells share the apical surface of the ventricular–subventricular zone (V–SVZ). In a recent article, we show that supraependymal serotonergic (5HT) axons originating from the raphe nuclei in mice form an extensive plexus on the walls of the lateral ventricles where they contact E1 cells and NSCs. Here we further characterize the contacts between 5HT supraependymal axons and E1 cells in mice, and show that suprependymal axons tightly associated to E1 cells are also present in the walls of the human lateral ventricles. These observations raise interesting questions about the function of supraependymal axons in the regulation of E1 cells. PMID:26413556

  14. Different effects of astrocytes and Schwann cells on regenerating retinal axons.

    PubMed

    Campbell, Gregor; Kitching, Juliet; Anderson, Patrick N; Lieberman, A Robert

    2003-11-14

    Following a crush injury of the optic nerve in adult rats, the axons of retinal ganglion cells, stimulated to regenerate by a lens injury and growing within the optic nerve, are associated predominantly with astrocytes: they remain of small diameter (0.1-0.5 microm) and unmyelinated for > or = 2 months after the operation. In contrast, when the optic nerve is cut and a segment of a peripheral nerve is grafted to the ocular stump of the optic nerve, the regenerating retinal axons are associated predominantly with Schwann cells: they are of larger diameter than in the previous experiment and include unmyelinated axons (0.2-2.5 microm) and myelinated axons (mean diameter 2.3 microm). Thus, the grafted peripheral nerve, and presumably its Schwann cells, stimulate enlargement of the regenerating retinal axons leading to partial myelination, whereas the injured optic nerve itself, and presumably its astrocytes, does not. The result points to a marked difference of peripheral (Schwann cells) and central (astrocytes) glia in their effect on regenerating retinal axons.

  15. Will stem cell therapies be safe and effective for treating spinal cord injuries?

    PubMed Central

    Thomas, Katharine E.; Moon, Lawrence D. F.

    2017-01-01

    Introduction A large number of different cells including embryonic and adult stem cells have been transplanted into animal models of spinal cord injury, and in many cases these procedures have resulted in modest sensorimotor benefits. In October 2010 the world’s first clinical trial using human embryonic stem cells began, using stem cells converted into oligodendrocyte precursor cells. Sources of data In this review we examine some of the publically-available pre-clinical evidence that some of these cell types improve outcome in animal models of spinal cord injury. Much evidence is not available for public scrutiny, however, being private commercial property of various stem cell companies. Areas of agreement Transplantation of many different types of stem and progenitor cell enhances spontaneous recovery of function when transplanted acutely after spinal cord injury in animal models. Areas of disagreement The common mechanism(s) whereby the generic procedure of cellular transplantation enhances recovery of function are not well understood, although a range of possibilities are usually cited (including preservation of tissue, remyelination, axon sprouting, glial cell replacement). Only in exceptional cases has it been shown that functional recovery depends causally on the survival and differentiation of the transplanted cells. There is no agreement about the optimal cell type for transplantation: candidate stem cells have not yet been compared with each other or with other cell types (e.g., autologous Schwann cells) in a single study. Areas timely for developing research Transplantation of cells into animals with a long lifespan is important to determine whether or not tumours will eventually form. It will also be important to determine whether long-term survival of cells is required for functional recovery, and if so, how many are optimal. PMID:21586446

  16. Mitochondria localize to injured axons to support regeneration

    PubMed Central

    Han, Sung Min; Baig, Huma S.; Hammarlund, Marc

    2016-01-01

    SUMMARY Axon regeneration is essential to restore the nervous system after axon injury. However, the neuronal cell biology that underlies axon regeneration is incompletely understood. Here we use in vivo single-neuron analysis to investigate the relationship between nerve injury, mitochondrial localization, and axon regeneration. Mitochondria translocate into injured axons, so that average mitochondria density increases after injury. Moreover, single-neuron analysis reveals that axons that fail to increase mitochondria have poor regeneration. Experimental alterations to axonal mitochondrial distribution or mitochondrial respiratory chain function result in corresponding changes to regeneration outcomes. Axonal mitochondria are specifically required for growth cone migration, identifying a key energy challenge for injured neurons. Finally, mitochondrial localization to the axon after injury is regulated in part by dual-leucine zipper kinase-1 (DLK-1), a conserved regulator of axon regeneration. These data identify regulation of axonal mitochondria as a new cell biological mechanism that helps determine the regenerative response of injured neurons. PMID:28009276

  17. Herpes Simplex Virus Membrane Proteins gE/gI and US9 Act Cooperatively To Promote Transport of Capsids and Glycoproteins from Neuron Cell Bodies into Initial Axon Segments

    PubMed Central

    Howard, Paul W.; Howard, Tiffani L.

    2013-01-01

    Herpes simplex virus (HSV) and other alphaherpesviruses must move from sites of latency in ganglia to peripheral epithelial cells. How HSV navigates in neuronal axons is not well understood. Two HSV membrane proteins, gE/gI and US9, are key to understanding the processes by which viral glycoproteins, unenveloped capsids, and enveloped virions are transported toward axon tips. Whether gE/gI and US9 function to promote the loading of viral proteins onto microtubule motors in neuron cell bodies or to tether viral proteins onto microtubule motors within axons is not clear. One impediment to understanding how HSV gE/gI and US9 function in axonal transport relates to observations that gE−, gI−, or US9− mutants are not absolutely blocked in axonal transport. Mutants are significantly reduced in numbers of capsids and glycoproteins in distal axons, but there are less extensive effects in proximal axons. We constructed HSV recombinants lacking both gE and US9 that transported no detectable capsids and glycoproteins to distal axons and failed to spread from axon tips to adjacent cells. Live-cell imaging of a gE−/US9− double mutant that expressed fluorescent capsids and gB demonstrated >90% diminished capsids and gB in medial axons and no evidence for decreased rates of transport, stalling, or increased retrograde transport. Instead, capsids, gB, and enveloped virions failed to enter proximal axons. We concluded that gE/gI and US9 function in neuron cell bodies, in a cooperative fashion, to promote the loading of HSV capsids and vesicles containing glycoproteins and enveloped virions onto microtubule motors or their transport into proximal axons. PMID:23077321

  18. Evaluation of the in vitro and in vivo angiogenic effects of exendin-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Hye-Min; Kang, Yujung; Chun, Hyung J.

    2013-04-26

    Highlights: •We investigated the effects of exendin-4 on the angiogenic process. •Exendin-4 increased migration, sprouting, and tube formation by HUVECs in in vitro. •Exendin-4 increased sprouts in aortic rings and induced new vessels in Matrigel in in vivo. •Exendin-4 may be of potential use for the treatment of vascular complications of diabetes. -- Abstract: Exendin-4, an analog of glucagon-like peptide (GLP)-1, has beneficial effects on cardiovascular disease induced by diabetes mellitus (DM). Recently, exendin-4 was reported to induce the proliferation of endothelial cells. However, its angiogenic effect on endothelial cells has not been clearly evaluated. Therefore, we investigated the effectsmore » of exendin-4 on the angiogenic process with respect to migration, sprouting, and neovascularization using in vitro and in vivo assays. Treatment with exendin-4 increased the migration of human umbilical vein endothelial cells (HUVECs) in in vitro scratch wound assays, as well as the number of lumenized vessels sprouting from HUVECs in in vitro 3D bead assays. These responses were abolished by co-treatment with exendin (9–39), a GLP-1 receptor antagonist, which suggests that exendin-4 regulates endothelial cell migration and tube formation in a GLP-1 receptor-dependent manner. In an ex vivo assay, treatment of aortic rings with exendin-4 increased the sprouting of endothelial cells. Exendin-4 also significantly increased the number of new vessels and induced blood flow in Matrigel plugs in in vivo assays. Our results provide clear evidence for the angiogenic effect of exendin-4 in in vitro and in vivo assays and provide a mechanism underlying the cardioprotective effects of exendin-4.« less

  19. Creatine pretreatment protects cortical axons from energy depletion in vitro

    PubMed Central

    Shen, Hua; Goldberg, Mark P.

    2012-01-01

    Creatine is a natural nitrogenous guanidino compound involved in bioenergy metabolism. Although creatine has been shown to protect neurons of the central nervous system (CNS) from experimental hypoxia/ischemia, it remains unclear if creatine may also protect CNS axons, and if the potential axonal protection depends on glial cells. To evaluate the direct impact of creatine on CNS axons, cortical axons were cultured in a separate compartment from their somas and proximal neurites using a modified two-compartment culture device. Axons in the axon compartment were subjected to acute energy depletion, an in vitro model of white matter ischemia, by exposure to 6 mM sodium azide for 30 min in the absence of glucose and pyruvate. Energy depletion reduced axonal ATP by 65%, depolarized axonal resting potential, and damaged 75% of axons. Application of creatine (10 mM) to both compartments of the culture at 24 h prior to energy depletion significantly reduced axonal damage by 50%. In line with the role of creatine in the bioenergy metabolism, this application also alleviated the axonal ATP loss and depolarization. Inhibition of axonal depolarization by blocking sodium influx with tetrodotoxin also effectively reduced the axonal damage caused by energy depletion. Further study revealed that the creatine effect was independent of glial cells, as axonal protection was sustained even when creatine was applied only to the axon compartment (free from somas and glial cells) for as little as 2 h. In contrast, application of creatine after energy depletion did not protect axons. The data provide the first evidence that creatine pretreatment may directly protect CNS axons from energy deficiency. PMID:22521466

  20. Morphological characterization of rat entorhinal neurons in vivo: soma-dendritic structure and axonal domains.

    PubMed

    Lingenhöhl, K; Finch, D M

    1991-01-01

    We used in vivo intracellular labeling with horseradish peroxidase in order to study the soma-dendritic morphology and axonal projections of rat entorhinal neurons. The cells responded to hippocampal stimulation with inhibitory postsynaptic potentials, and thus likely received direct or indirect hippocampal input. All cells (n = 24) showed extensive dendritic domains that extended in some cases for more than 1 mm. The dendrites of layer II neurons were largely restricted to layers I and II or layers I-III, while the dendrites of deeper cells could extend through all cortical layers. Computed 3D rotations showed that the basilar dendrites of deep pyramids extended roughly parallel to the cortical layering, and that they were mostly confined to the layer containing the soma and layers immediately adjacent. Total dendritic lengths averaged 9.8 mm +/- 3.8 (SD), and ranged from 5 mm to more than 18 mm. Axonal processes could be visualized in 21 cells. Most of these showed axonal branching within the entorhinal cortex, sometimes extensive. Efferent axonal domains were reconstructed in detail in 3 layer II stellate cells. All 3 projected axons across the subicular complex to the dentate gyrus. One of these cells showed an extensive net-like axonal domain that also projected to several other structures, including the hippocampus proper, subicular complex, and the amygdalo-piriform transition area. The axons of layer III and IV cells projected to the angular bundle, where they continued in a rostral direction. In contrast to the layer II, III and IV cells, no efferent axonal branches leaving the entorhinal cortex could be visualized in 5 layer V neurons. The data indicate that entorhinal neurons can integrate input from a considerable volume of entorhinal cortex by virtue of their extensive dendritic domains, and provide a further basis for specifying the layers in which cells receive synaptic input. The extensive axonal branching pattern seen in most of the cells would support divergent propagation of their activity.

  1. Optimization of interneuron function by direct coupling of cell migration and axonal targeting.

    PubMed

    Lim, Lynette; Pakan, Janelle M P; Selten, Martijn M; Marques-Smith, André; Llorca, Alfredo; Bae, Sung Eun; Rochefort, Nathalie L; Marín, Oscar

    2018-06-18

    Neural circuit assembly relies on the precise synchronization of developmental processes, such as cell migration and axon targeting, but the cell-autonomous mechanisms coordinating these events remain largely unknown. Here we found that different classes of interneurons use distinct routes of migration to reach the embryonic cerebral cortex. Somatostatin-expressing interneurons that migrate through the marginal zone develop into Martinotti cells, one of the most distinctive classes of cortical interneurons. For these cells, migration through the marginal zone is linked to the development of their characteristic layer 1 axonal arborization. Altering the normal migratory route of Martinotti cells by conditional deletion of Mafb-a gene that is preferentially expressed by these cells-cell-autonomously disrupts axonal development and impairs the function of these cells in vivo. Our results suggest that migration and axon targeting programs are coupled to optimize the assembly of inhibitory circuits in the cerebral cortex.

  2. Biology of Schwann cells.

    PubMed

    Kidd, Grahame J; Ohno, Nobuhiko; Trapp, Bruce D

    2013-01-01

    The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. SRF selectively controls tip cell invasive behavior in angiogenesis.

    PubMed

    Franco, Claudio A; Blanc, Jocelyne; Parlakian, Ara; Blanco, Raquel; Aspalter, Irene M; Kazakova, Natalia; Diguet, Nicolas; Mylonas, Elena; Gao-Li, Jacqueline; Vaahtokari, Anne; Penard-Lacronique, Virgine; Fruttiger, Markus; Rosewell, Ian; Mericskay, Mathias; Gerhardt, Holger; Li, Zhenlin

    2013-06-01

    Efficient angiogenic sprouting is essential for embryonic, postnatal and tumor development. Serum response factor (SRF) is known to be important for embryonic vascular development. Here, we studied the effect of inducible endothelial-specific deletion of Srf in postnatal and adult mice. We find that endothelial SRF activity is vital for postnatal growth and survival, and is equally required for developmental and pathological angiogenesis, including during tumor growth. Our results demonstrate that SRF is selectively required for endothelial filopodia formation and cell contractility during sprouting angiogenesis, but seems dispensable for vascular remodeling. At the molecular level, we observe that vascular endothelial growth factor A induces nuclear accumulation of myocardin-related transcription factors (MRTFs) and regulates MRTF/SRF-dependent target genes including Myl9, which is important for endothelial cell migration in vitro. We conclude that SRF has a unique function in regulating migratory tip cell behavior during sprouting angiogenesis. We hypothesize that targeting the SRF pathway could provide an opportunity to selectively target tip cell filopodia-driven angiogenesis to restrict tumor growth.

  4. Contribution of cytoskeletal elements to the axonal mechanical properties

    PubMed Central

    2013-01-01

    Background Microtubules, microfilaments, and neurofilaments are cytoskeletal elements that affect cell morphology, cellular processes, and mechanical structures in neural cells. The objective of the current study was to investigate the contribution of each type of cytoskeletal element to the mechanical properties of axons of dorsal root and sympathetic ganglia cells in chick embryos. Results Microtubules, microfilaments, and neurofilaments in axons were disrupted by nocodazole, cytochalasin D, and acrylamide, respectively, or a combination of the three. An atomic force microscope (AFM) was then used to compress the treated axons, and the resulting corresponding force-deformation information was analyzed to estimate the mechanical properties of axons that were partially or fully disrupted. Conclusion We have found that the mechanical stiffness was most reduced in microtubules-disrupted-axons, followed by neurofilaments-disrupted- and microfilaments-disrupted-axons. This suggests that microtubules contribute the most of the mechanical stiffness to axons. PMID:24007256

  5. Retrograde and Wallerian Axonal Degeneration Occur Synchronously after Retinal Ganglion Cell Axotomy

    PubMed Central

    Kanamori, Akiyasu; Catrinescu, Maria-Magdalena; Belisle, Jonathan M.; Costantino, Santiago; Levin, Leonard A.

    2013-01-01

    Axonal injury and degeneration are pivotal pathological events in diseases of the nervous system. In the past decade, it has been recognized that the process of axonal degeneration is distinct from somal degeneration and that axoprotective strategies may be distinct from those that protect the soma. Preserving the cell body via neuroprotection cannot improve function if the axon is damaged, because the soma is still disconnected from its target. Therefore, understanding the mechanisms of axonal degeneration is critical for developing new therapeutic interventions for axonal disease treatment. We combined in vivo imaging with a multilaser confocal scanning laser ophthalmoscope and in vivo axotomy with a diode-pumped solid-state laser to assess the time course of Wallerian and retrograde degeneration of unmyelinated retinal ganglion cell axons in living rats for 4 weeks after intraretinal axotomy. Laser injury resulted in reproducible axon loss both distal and proximal to the site of injury. Longitudinal polarization-sensitive imaging of axons demonstrated that Wallerian and retrograde degeneration occurred synchronously. Neurofilament immunostaining of retinal whole-mounts confirmed axonal loss and demonstrated sparing of adjacent axons to the axotomy site. In vivo fluorescent imaging of axonal transport and photobleaching of labeled axons demonstrated that the laser axotomy model did not affect adjacent axon function. These results are consistent with a shared mechanism for Wallerian and retrograde degeneration. PMID:22642911

  6. Hyperforin--a key constituent of St. John's wort specifically activates TRPC6 channels.

    PubMed

    Leuner, Kristina; Kazanski, Victor; Müller, Margarethe; Essin, Kirill; Henke, Bettina; Gollasch, Maik; Harteneck, Christian; Müller, Walter E

    2007-12-01

    Hyperforin, a bicyclic polyprenylated acylphloroglucinol derivative, is the main active principle of St. John's wort extract responsible for its antidepressive profile. Hyperforin inhibits the neuronal serotonin and norepinephrine uptake comparable to synthetic antidepressants. In contrast to synthetic antidepressants directly blocking neuronal amine uptake, hyperforin increases synaptic serotonin and norepinephrine concentrations by an indirect and yet unknown mechanism. Our attempts to identify the molecular target of hyperforin resulted in the identification of TRPC6. Hyperforin induced sodium and calcium entry as well as currents in TRPC6-expressing cells. Sodium currents and the subsequent breakdown of the membrane sodium gradients may be the rationale for the inhibition of neuronal amine uptake. The hyperforin-induced cation entry was highly specific and related to TRPC6 and was suppressed in cells expressing a dominant negative mutant of TRPC6, whereas phylogenetically related channels, i.e., TRPC3 remained unaffected. Furthermore, hyperforin induces neuronal axonal sprouting like nerve growth factor in a TRPC6-dependent manner. These findings support the role of TRPC channels in neurite extension and identify hyperforin as the first selective pharmacological tool to study TRPC6 function. Hyperforin integrates inhibition of neurotransmitter uptake and neurotrophic property by specific activation of TRPC6 and represents an interesting lead-structure for a new class of antidepressants.

  7. Formation of a PKCζ/β-catenin complex in endothelial cells promotes angiopoietin-1–induced collective directional migration and angiogenic sprouting

    PubMed Central

    Oubaha, Malika; Lin, Michelle I.; Margaron, Yoran; Filion, Dominic; Price, Emily N.; Zon, Leonard I.; Côté, Jean-François

    2012-01-01

    Angiogenic sprouting requires that cell-cell contacts be maintained during migration of endothelial cells. Angiopoietin-1 (Ang-1) and vascular endothelial growth factor act oppositely on endothelial cell junctions. We found that Ang-1 promotes collective and directional migration and, in contrast to VEGF, induces the formation of a complex formed of atypical protein kinase C (PKC)-ζ and β-catenin at cell-cell junctions and at the leading edge of migrating endothelial cells. This complex brings Par3, Par6, and adherens junction proteins at the front of migrating cells to locally activate Rac1 in response to Ang-1. The colocalization of PKCζ and β-catenin at leading edge along with PKCζ-dependent stabilization of cell-cell contacts promotes directed and collective endothelial cell migration. Consistent with these results, down-regulation of PKCζ in endothelial cells alters Ang-1–induced sprouting in vitro and knockdown in developing zebrafish results in intersegmental vessel defects caused by a perturbed directionality of tip cells and by loss of cell contacts between tip and stalk cells. These results reveal that PKCζ and β-catenin function in a complex at adherens junctions and at the leading edge of migrating endothelial cells to modulate collective and directional migration during angiogenesis. PMID:22936663

  8. An Optimization of Pulsed ElectroMagnetic Fields Study

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  9. A Heterogeneous In Vitro Three Dimensional Model of Tumour-Stroma Interactions Regulating Sprouting Angiogenesis

    PubMed Central

    Correa de Sampaio, Pedro; Auslaender, David; Krubasik, Davia; Failla, Antonio Virgilio; Skepper, Jeremy N.; Murphy, Gillian; English, William R.

    2012-01-01

    Angiogenesis, the formation of new blood vessels, is an essential process for tumour progression and is an area of significant therapeutic interest. Different in vitro systems and more complex in vivo systems have been described for the study of tumour angiogenesis. However, there are few human 3D in vitro systems described to date which mimic the cellular heterogeneity and complexity of angiogenesis within the tumour microenvironment. In this study we describe the Minitumour model – a 3 dimensional human spheroid-based system consisting of endothelial cells and fibroblasts in co-culture with the breast cancer cell line MDA-MB-231, for the study of tumour angiogenesis in vitro. After implantation in collagen-I gels, Minitumour spheroids form quantifiable endothelial capillary-like structures. The endothelial cell pre-capillary sprouts are supported by the fibroblasts, which act as mural cells, and their growth is increased by the presence of cancer cells. Characterisation of the Minitumour model using small molecule inhibitors and inhibitory antibodies show that endothelial sprout formation is dependent on growth factors and cytokines known to be important for tumour angiogenesis. The model also shows a response to anti-angiogenic agents similar to previously described in vivo data. We demonstrate that independent manipulation of the different cell types is possible, using common molecular techniques, before incorporation into the model. This aspect of Minitumour spheroid analysis makes this model ideal for high content studies of gene function in individual cell types, allowing for the dissection of their roles in cell-cell interactions. Finally, using this technique, we were able to show the requirement of the metalloproteinase MT1-MMP in endothelial cells and fibroblasts, but not cancer cells, for sprouting angiogenesis. PMID:22363483

  10. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression.

    PubMed

    Gurevich, David B; Severn, Charlotte E; Twomey, Catherine; Greenhough, Alexander; Cash, Jenna; Toye, Ashley M; Mellor, Harry; Martin, Paul

    2018-06-04

    Wound angiogenesis is an integral part of tissue repair and is impaired in many pathologies of healing. Here, we investigate the cellular interactions between innate immune cells and endothelial cells at wounds that drive neoangiogenic sprouting in real time and in vivo Our studies in mouse and zebrafish wounds indicate that macrophages are drawn to wound blood vessels soon after injury and are intimately associated throughout the repair process and that macrophage ablation results in impaired neoangiogenesis. Macrophages also positively influence wound angiogenesis by driving resolution of anti-angiogenic wound neutrophils. Experimental manipulation of the wound environment to specifically alter macrophage activation state dramatically influences subsequent blood vessel sprouting, with premature dampening of tumour necrosis factor-α expression leading to impaired neoangiogenesis. Complementary human tissue culture studies indicate that inflammatory macrophages associate with endothelial cells and are sufficient to drive vessel sprouting via vascular endothelial growth factor signalling. Subsequently, macrophages also play a role in blood vessel regression during the resolution phase of wound repair, and their absence, or shifted activation state, impairs appropriate vessel clearance. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Plasticity Related Gene 3 (PRG3) overcomes myelin-associated growth inhibition and promotes functional recovery after spinal cord injury

    PubMed Central

    Broggini, Thomas; Schnell, Lisa; Ghoochani, Ali; Mateos, José María; Buchfelder, Michael; Wiendieck, Kurt; Schäfer, Michael K.; Eyupoglu, Ilker Y.; Savaskan, Nicolai E.

    2016-01-01

    The Plasticity Related Gene family covers five, brain-specific, transmembrane proteins (PRG1-5, also termed LPPR1-5) that operate in neuronal plasticity during development, aging and brain trauma. Here we investigated the role of the PRG family on axonal and filopodia outgrowth. Comparative analysis revealed the strongest outgrowth induced by PRG3 (LPPR1). During development, PRG3 is ubiquitously located at the tip of neuronal processes and at the plasma membrane and declines with age. In utero electroporation of PRG3 induced dendritic protrusions and accelerated spine formations in cortical pyramidal neurons. The neurite growth promoting activity of PRG3 requires RasGRF1 (RasGEF1/Cdc25) mediated downstream signaling. Moreover, in axon collapse assays, PRG3-induced neurites resisted growth inhibitors such as myelin, Nogo-A (Reticulon/RTN-4), thrombin and LPA and impeded the RhoA-Rock-PIP5K induced neurite repulsion. Transgenic adult mice with constitutive PRG3 expression displayed strong axonal sprouting distal to a spinal cord lesion. Moreover, fostered PRG3 expression promoted complex motor-behavioral recovery compared to wild type controls as revealed in the Schnell swim test (SST). Thus, PRG3 emerges as a developmental RasGRF1-dependent conductor of filopodia formation and axonal growth enhancer. PRG3-induced neurites resist brain injury-associated outgrowth inhibitors and contribute to functional recovery after spinal cord lesions. Here, we provide evidence that PRG3 operates as an essential neuronal growth promoter in the nervous system. Maintaining PRG3 expression in aging brain may turn back the developmental clock for neuronal regeneration and plasticity. PMID:27744421

  12. Glia to axon RNA transfer.

    PubMed

    Sotelo, José Roberto; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José Roberto; Calliari, Aldo; Cal, Karina; Bresque, Mariana; Dipaolo, Andrés; Farias, Joaquina; Mercer, John A

    2014-03-01

    The existence of RNA in axons has been a matter of dispute for decades. Evidence for RNA and ribosomes has now accumulated to a point at which it is difficult to question, much of the disputes turned to the origin of these axonal RNAs. In this review, we focus on studies addressing the origin of axonal RNAs and ribosomes. The neuronal soma as the source of most axonal RNAs has been demonstrated and is indisputable. However, the surrounding glial cells may be a supplemental source of axonal RNAs, a matter scarcely investigated in the literature. Here, we review the few papers that have demonstrated that glial-to-axon RNA transfer is not only feasible, but likely. We describe this process in both invertebrate axons and vertebrate axons. Schwann cell to axon ribosomes transfer was conclusively demonstrated (Court et al. [2008]: J. Neurosci 28:11024-11029; Court et al. [2011]: Glia 59:1529-1539). However, mRNA transfer still remains to be demonstrated in a conclusive way. The intercellular transport of mRNA has interesting implications, particularly with respect to the integration of glial and axonal function. This evolving field is likely to impact our understanding of the cell biology of the axon in both normal and pathological conditions. Most importantly, if the synthesis of proteins in the axon can be controlled by interacting glia, the possibilities for clinical interventions in injury and neurodegeneration are greatly increased. Copyright © 2013 Wiley Periodicals, Inc.

  13. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.

    PubMed

    Liu, Shengwen; Sandner, Beatrice; Schackel, Thomas; Nicholson, LaShae; Chtarto, Abdelwahed; Tenenbaum, Liliane; Puttagunta, Radhika; Müller, Rainer; Weidner, Norbert; Blesch, Armin

    2017-09-15

    Grafting of cell-seeded alginate capillary hydrogels into a spinal cord lesion site provides an axonal bridge while physically directing regenerating axonal growth in a linear pattern. However, without an additional growth stimulus, bridging axons fail to extend into the distal host spinal cord. Here we examined whether a combinatory strategy would support regeneration of descending axons across a cervical (C5) lateral hemisection lesion in the rat spinal cord. Following spinal cord transections, Schwann cell (SC)-seeded alginate hydrogels were grafted to the lesion site and AAV5 expressing brain-derived neurotrophic factor (BDNF) under control of a tetracycline-regulated promoter was injected caudally. In addition, we examined whether SC injection into the caudal spinal parenchyma would further enhance regeneration of descending axons to re-enter the host spinal cord. Our data show that both serotonergic and descending axons traced by biotinylated dextran amine (BDA) extend throughout the scaffolds. The number of regenerating axons is significantly increased when caudal BDNF expression is activated and transient BDNF delivery is able to sustain axons after gene expression is switched off. Descending axons are confined to the caudal graft/host interface even with continuous BDNF expression for 8weeks. Only with a caudal injection of SCs, a pathway facilitating axonal regeneration through the host/graft interface is generated allowing axons to successfully re-enter the caudal spinal cord. Recovery from spinal cord injury is poor due to the limited regeneration observed in the adult mammalian central nervous system. Biomaterials, cell transplantation and growth factors that can guide axons across a lesion site, provide a cellular substrate, stimulate axon growth and have shown some promise in increasing the growth distance of regenerating axons. In the present study, we combined an alginate biomaterial with linear channels with transplantation of Schwann cells within and beyond the lesion site and injection of a regulatable vector for the transient expression of brain-derived neurotrophic factor (BDNF). Our data show that only with the full combination axons extend across the lesion site and that expression of BDNF beyond 4weeks does not further increase the number of regenerating axons. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Axonal ensheathment and septate junction formation in the peripheral nervous system of Drosophila.

    PubMed

    Banerjee, Swati; Pillai, Anilkumar M; Paik, Raehum; Li, Jingjun; Bhat, Manzoor A

    2006-03-22

    Axonal insulation is critical for efficient action potential propagation and normal functioning of the nervous system. In Drosophila, the underlying basis of nerve ensheathment is the axonal insulation by glial cells and the establishment of septate junctions (SJs) between glial cell membranes. However, the details of the cellular and molecular mechanisms underlying axonal insulation and SJ formation are still obscure. Here, we report the characterization of axonal insulation in the Drosophila peripheral nervous system (PNS). Targeted expression of tau-green fluorescent protein in the glial cells and ultrastructural analysis of the peripheral nerves allowed us to visualize the glial ensheathment of axons. We show that individual or a group of axons are ensheathed by inner glial processes, which in turn are ensheathed by the outer perineurial glial cells. SJs are formed between the inner and outer glial membranes. We also show that Neurexin IV, Contactin, and Neuroglian are coexpressed in the peripheral glial membranes and that these proteins exist as a complex in the Drosophila nervous system. Mutations in neurexin IV, contactin, and neuroglian result in the disruption of blood-nerve barrier function in the PNS, and ultrastructural analyses of the mutant embryonic peripheral nerves show loss of glial SJs. Interestingly, the murine homologs of Neurexin IV, Contactin, and Neuroglian are expressed at the paranodal SJs and play a key role in axon-glial interactions of myelinated axons. Together, our data suggest that the molecular machinery underlying axonal insulation and axon-glial interactions may be conserved across species.

  15. c-Jun activation in Schwann cells protects against loss of sensory axons in inherited neuropathy

    PubMed Central

    Hantke, Janina; Carty, Lucy; Wagstaff, Laura J.; Turmaine, Mark; Wilton, Daniel K.; Quintes, Susanne; Koltzenburg, Martin; Baas, Frank; Mirsky, Rhona

    2014-01-01

    Charcot–Marie–Tooth disease type 1A is the most frequent inherited peripheral neuropathy. It is generally due to heterozygous inheritance of a partial chromosomal duplication resulting in over-expression of PMP22. A key feature of Charcot–Marie–Tooth disease type 1A is secondary death of axons. Prevention of axonal loss is therefore an important target of clinical intervention. We have previously identified a signalling mechanism that promotes axon survival and prevents neuron death in mechanically injured peripheral nerves. This work suggested that Schwann cells respond to injury by activating/enhancing trophic support for axons through a mechanism that depends on upregulation of the transcription factor c-Jun in Schwann cells, resulting in the sparing of axons that would otherwise die. As c-Jun orchestrates Schwann cell support for distressed neurons after mechanical injury, we have now asked: do Schwann cells also activate a c-Jun dependent neuron-supportive programme in inherited demyelinating disease? We tested this by using the C3 mouse model of Charcot–Marie–Tooth disease type 1A. In line with our previous findings in humans with Charcot–Marie–Tooth disease type 1A, we found that Schwann cell c-Jun was elevated in (uninjured) nerves of C3 mice. We determined the impact of this c-Jun activation by comparing C3 mice with double mutant mice, namely C3 mice in which c-Jun had been conditionally inactivated in Schwann cells (C3/Schwann cell-c-Jun−/− mice), using sensory-motor tests and electrophysiological measurements, and by counting axons in proximal and distal nerves. The results indicate that c-Jun elevation in the Schwann cells of C3 nerves serves to prevent loss of myelinated sensory axons, particularly in distal nerves, improve behavioural symptoms, and preserve F-wave persistence. This suggests that Schwann cells have two contrasting functions in Charcot–Marie–Tooth disease type 1A: on the one hand they are the genetic source of the disease, on the other, they respond to it by mounting a c-Jun-dependent response that significantly reduces its impact. Because axonal death is a central feature of much nerve pathology it will be important to establish whether an axon-supportive Schwann cell response also takes place in other conditions. Amplification of this axon-supportive mechanism constitutes a novel target for clinical intervention that might be useful in Charcot–Marie–Tooth disease type 1A and other neuropathies that involve axon loss. PMID:25216747

  16. PI3K-Akt signaling activates mTOR-mediated epileptogenesis in organotypic hippocampal culture model of posttraumatic epilepsy

    PubMed Central

    Berdichevsky, Yevgeny; Dryer, Alexandra M.; Saponjian, Yero; Mahoney, Mark M.; Pimentel, Corrin A.; Lucini, Corrina A.; Usenovic, Marija; Staley, Kevin J.

    2013-01-01

    mTOR is activated in epilepsy, but the mechanisms of mTOR activation in post-traumatic epileptogenesis are unknown. It is also not clear whether mTOR inhibition has an antiepileptogenic, or merely anti-convulsive effect. The rat hippocampal organotypic culture model of post-traumatic epilepsy was used to study the effects of long term (four weeks) inhibition of signaling pathways that interact with mTOR. Ictal activity was quantified by measurement of lactate production and electrical recordings, and cell death was quantified with LDH release measurements and Nissl-stained neuron counts. Lactate and LDH measurements were well-correlated with electrographic activity and neuron counts, respectively. Inhibition of PI3K and Akt prevented activation of mTOR, and was as effective as inhibition of mTOR in reducing ictal activity and cell death. A dual inhibitor of PI3K and mTOR, NVP-BEZ235, was also effective. Inhibition of mTOR with rapamycin reduced axon sprouting. Late start of rapamycin treatment was effective in reducing epileptic activity and cell death, while early termination of rapamycin treatment did not result in increased epileptic activity or cell death. The conclusions of the study are: (1), the organotypic hippocampal culture model of posttraumatic epilepsy comprises a rapid assay of antiepileptogenic and neuroprotective activities and, in this model (2), mTOR activation depends on PI3K-Akt signaling, and (3) transient inhibition of mTOR has sustained effects on epilepsy. PMID:23699517

  17. L1CAM/Neuroglian controls the axon–axon interactions establishing layered and lobular mushroom body architecture

    PubMed Central

    Siegenthaler, Dominique; Enneking, Eva-Maria; Moreno, Eliza

    2015-01-01

    The establishment of neuronal circuits depends on the guidance of axons both along and in between axonal populations of different identity; however, the molecular principles controlling axon–axon interactions in vivo remain largely elusive. We demonstrate that the Drosophila melanogaster L1CAM homologue Neuroglian mediates adhesion between functionally distinct mushroom body axon populations to enforce and control appropriate projections into distinct axonal layers and lobes essential for olfactory learning and memory. We addressed the regulatory mechanisms controlling homophilic Neuroglian-mediated cell adhesion by analyzing targeted mutations of extra- and intracellular Neuroglian domains in combination with cell type–specific rescue assays in vivo. We demonstrate independent and cooperative domain requirements: intercalating growth depends on homophilic adhesion mediated by extracellular Ig domains. For functional cluster formation, intracellular Ankyrin2 association is sufficient on one side of the trans-axonal complex whereas Moesin association is likely required simultaneously in both interacting axonal populations. Together, our results provide novel mechanistic insights into cell adhesion molecule–mediated axon–axon interactions that enable precise assembly of complex neuronal circuits. PMID:25825519

  18. Genome-Wide Analysis of Long Non-Coding RNAs in Potato and Their Potential Role in Tuber Sprouting Process

    PubMed Central

    Hou, Xiaodong; Du, Yongmei; Liu, Xinmin; Zhang, Hongbo; Liu, Yanhua; Yan, Ning; Zhang, Zhongfeng

    2017-01-01

    Sprouting is a key factor affecting the quality of potato tubers. The present study aimed to compare the differential expression of long non-coding RNAs (lncRNAs) in the apical meristem during the dormancy release and sprouting stages by using lncRNA sequencing. Microscopic observations and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed the changes in the morphology and expression of lncRNAs in potato tubers during sprouting. Meristematic cells of potato tuber apical buds divided continuously and exhibited vegetative cone bulging and vascularisation. In all, 3175 lncRNAs were identified from the apical buds of potato tubers, among which 383 lncRNAs were up-regulated and 340 were down-regulated during sprouting. The GO enrichment analysis revealed that sprouting mainly influenced the expression of lncRNAs related to the cellular components of potato apical buds (e.g., cytoplasm and organelles) and cellular metabolic processes. The KEGG enrichment analysis also showed significant enrichment of specific metabolic pathways. In addition, 386 differentially expressed lncRNAs during sprouting were identified as putative targets of 235 potato miRNAs. Quantitative real-time polymerase chain reaction results agreed with the sequencing data. Our study provides the first systematic study of numerous lncRNAs involved in the potato tuber sprouting process and lays the foundation for further studies to elucidate their precise functions. PMID:29286332

  19. Roof Plate-Derived Radial Glial-like Cells Support Developmental Growth of Rapidly Adapting Mechanoreceptor Ascending Axons.

    PubMed

    Kridsada, Kim; Niu, Jingwen; Haldipur, Parthiv; Wang, Zhiping; Ding, Long; Li, Jian J; Lindgren, Anne G; Herrera, Eloisa; Thomas, Gareth M; Chizhikov, Victor V; Millen, Kathleen J; Luo, Wenqin

    2018-06-05

    Spinal cord longitudinal axons comprise some of the longest axons in our body. However, mechanisms that drive this extra long-distance axonal growth are largely unclear. We found that ascending axons of rapidly adapting (RA) mechanoreceptors closely abut a previously undescribed population of roof plate-derived radial glial-like cells (RGLCs) in the spinal cord dorsal column, which form a network of processes enriched with growth-promoting factors. In dreher mutant mice that lack RGLCs, the lengths of ascending RA mechanoreceptor axon branches are specifically reduced, whereas their descending and collateral branches, and other dorsal column and sensory pathways, are largely unaffected. Because the number and intrinsic growth ability of RA mechanoreceptors are normal in dreher mice, our data suggest that RGLCs provide critical non-cell autonomous growth support for the ascending axons of RA mechanoreceptors. Together, our work identifies a developmental mechanism specifically required for long-range spinal cord longitudinal axons. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Reversing the Outcome of Synapse Elimination at Developing Neuromuscular Junctions In Vivo: Evidence for Synaptic Competition and Its Mechanism

    PubMed Central

    Turney, Stephen G.; Lichtman, Jeff W.

    2012-01-01

    During mammalian development, neuromuscular junctions and some other postsynaptic cells transition from multiple- to single-innervation as synaptic sites are exchanged between different axons. It is unclear whether one axon invades synaptic sites to drive off other inputs or alternatively axons expand their territory in response to sites vacated by other axons. Here we show that soon-to-be-eliminated axons rapidly reverse fate and grow to occupy vacant sites at a neuromuscular junction after laser removal of a stronger input. This reversal supports the idea that axons take over sites that were previously vacated. Indeed, during normal development we observed withdrawal followed by takeover. The stimulus for axon growth is not postsynaptic cell inactivity because axons grow into unoccupied sites even when target cells are functionally innervated. These results demonstrate competition at the synaptic level and enable us to provide a conceptual framework for understanding this form of synaptic plasticity. PMID:22745601

  1. Stem cell autotomy and niche interaction in different systems

    PubMed Central

    Dorn, David C; Dorn, August

    2015-01-01

    The best known cases of cell autotomy are the formation of erythrocytes and thrombocytes (platelets) from progenitor cells that reside in special niches. Recently, autotomy of stem cells and its enigmatic interaction with the niche has been reported from male germline stem cells (GSCs) in several insect species. First described in lepidopterans, the silkmoth, followed by the gipsy moth and consecutively in hemipterans, foremost the milkweed bug. In both, moths and the milkweed bug, GSCs form finger-like projections toward the niche, the apical cells (homologs of the hub cells in Drosophila). Whereas in the milkweed bug the projection terminals remain at the surface of the niche cells, in the gipsy moth they protrude deeply into the singular niche cell. In both cases, the projections undergo serial retrograde fragmentation with progressing signs of autophagy. In the gipsy moth, the autotomized vesicles are phagocytized and digested by the niche cell. In the milkweed bug the autotomized vesicles accumulate at the niche surface and disintegrate. Autotomy and sprouting of new projections appears to occur continuously. The significance of the GSC-niche interactions, however, remains enigmatic. Our concept on the signaling relationship between stem cell-niche in general and GSC and niche (hub cells and cyst stem cells) in particular has been greatly shaped by Drosophila melanogaster. In comparing the interactions of GSCs with their niche in Drosophila with those in species exhibiting GSC autotomy it is obvious that additional or alternative modes of stem cell-niche communication exist. Thus, essential signaling pathways, including niche-stem cell adhesion (E-cadherin) and the direction of asymmetrical GSC division - as they were found in Drosophila - can hardly be translated into the systems where GSC autotomy was reported. It is shown here that the serial autotomy of GSC projections shows remarkable similarities with Wallerian axonal destruction, developmental axon pruning and dying-back degeneration in neurodegenerative diseases. Especially the hypothesis of an existing evolutionary conserved “autodestruction program” in axons that might also be active in GSC projections appears attractive. Investigations on the underlying signaling pathways have to be carried out. There are two other well known cases of programmed cell autotomy: the enucleation of erythroblasts in the process of erythrocyte maturation and the segregation of thousands of thrombocytes (platelets) from one megakaryocyte. Both progenitor cell types - erythroblasts and megakaryocytes - are associated with a niche in the bone marrow, erythroblasts with a macrophage, which they surround, and the megakaryocytes with the endothelial cells of sinusoids and their extracellular matrix. Although the regulatory mechanisms may be specific in each case, there is one aspect that connects all described processes of programmed cell autotomy and neuronal autodestruction: apoptotic pathways play always a prominent role. Studies on the role of male GSC autotomy in stem cell-niche interaction have just started but are expected to reveal hitherto unknown ways of signal exchange. Spermatogenesis in mammals advance our understanding of insect spermatogenesis. Mammal and insect spermatogenesis share some broad principles, but a comparison of the signaling pathways is difficult. We have intimate knowledge from Drosophila, but of almost no other insect, and we have only limited knowledge from mammals. The discovery of stem cell autotomy as part of the interaction with the niche promises new general insights into the complicated stem cell-niche interdependence. PMID:26240680

  2. The perivascular niche regulates breast tumor dormancy

    PubMed Central

    Peinado, Héctor; Mori, Hidetoshi; Matei, Irina R.; Evason, Kimberley J.; Brazier, Hélène; Almeida, Dena; Koller, Antonius; Hajjar, Katherine A.; Stainier, Didier Y.R.; Chen, Emily I.; Lyden, David

    2013-01-01

    In a significant fraction of breast cancer patients, distant metastases emerge after years or even decades of latency. How disseminated tumor cells (DTCs) are kept dormant, and what ‘wakes them up’, are fundamental problems in tumor biology. To address these questions, we utilized metastasis assays in mice to show that dormant DTCs reside upon microvasculature of lung, bone marrow and brain. We then engineered organotypic microvascular niches to determine whether endothelial cells directly influence breast cancer cell (BCC) growth. These models demonstrated that endothelial-derived thrombospondin-1 induces sustained BCC quiescence. This suppressive cue was lost in sprouting neovasculature; time-lapse analysis showed that sprouting vessels not only permit, but accelerate BCC outgrowth. We confirmed this surprising result in dormancy models and in zebrafish, and identified active TGF-β1 and periostin as tumor-promoting, endothelial tip cell-derived factors. Our work reveals that stable microvasculature constitutes a ‘dormant niche,’ whereas sprouting neovasculature sparks micrometastatic outgrowth. PMID:23728425

  3. Distinct activities of Bartonella henselae type IV secretion effector proteins modulate capillary-like sprout formation.

    PubMed

    Scheidegger, F; Ellner, Y; Guye, P; Rhomberg, T A; Weber, H; Augustin, H G; Dehio, C

    2009-07-01

    The zoonotic pathogen Bartonella henselae (Bh) can lead to vasoproliferative tumour lesions in the skin and inner organs known as bacillary angiomatosis and bacillary peliosis. The knowledge on the molecular and cellular mechanisms involved in this pathogen-triggered angiogenic process is confined by the lack of a suitable animal model and a physiologically relevant cell culture model of angiogenesis. Here we employed a three-dimensional in vitro angiogenesis assay of collagen gel-embedded endothelial cell (EC) spheroids to study the angiogenic properties of Bh. Spheroids generated from Bh-infected ECs displayed a high capacity to form sprouts, which represent capillary-like projections into the collagen gel. The VirB/VirD4 type IV secretion system and a subset of its translocated Bartonella effector proteins (Beps) were found to profoundly modulate this Bh-induced sprouting activity. BepA, known to protect ECs from apoptosis, strongly promoted sprout formation. In contrast, BepG, triggering cytoskeletal rearrangements, potently inhibited sprouting. Hence, the here established in vitro model of Bartonella- induced angiogenesis revealed distinct and opposing activities of type IV secretion system effector proteins, which together with a VirB/VirD4-independent effect may control the angiogenic activity of Bh during chronic infection of the vasculature.

  4. Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis

    PubMed Central

    2012-01-01

    Background In invertebrates, the medicinal leech is considered to be an interesting and appropriate model to study neuroimmune mechanisms. Indeed, this non-vertebrate animal can restore normal function of its central nervous system (CNS) after injury. Microglia accumulation at the damage site has been shown to be required for axon sprouting and for efficient regeneration. We characterized HmC1q as a novel chemotactic factor for leech microglial cell recruitment. In mammals, a C1q-binding protein (C1qBP alias gC1qR), which interacts with the globular head of C1q, has been reported to participate in C1q-mediated chemotaxis of blood immune cells. In this study, we evaluated the chemotactic activities of a recombinant form of HmC1q and its interaction with a newly characterized leech C1qBP that acts as its potential ligand. Methods Recombinant HmC1q (rHmC1q) was produced in the yeast Pichia pastoris. Chemotaxis assays were performed to investigate rHmC1q-dependent microglia migration. The involvement of a C1qBP-related molecule in this chemotaxis mechanism was assessed by flow cytometry and with affinity purification experiments. The cellular localization of C1qBP mRNA and protein in leech was investigated using immunohistochemistry and in situ hybridization techniques. Results rHmC1q-stimulated microglia migrate in a dose-dependent manner. This rHmC1q-induced chemotaxis was reduced when cells were preincubated with either anti-HmC1q or anti-human C1qBP antibodies. A C1qBP-related molecule was characterized in leech microglia. Conclusions A previous study showed that recruitment of microglia is observed after HmC1q release at the cut end of axons. Here, we demonstrate that rHmC1q-dependent chemotaxis might be driven via a HmC1q-binding protein located on the microglial cell surface. Taken together, these results highlight the importance of the interaction between C1q and C1qBP in microglial activation leading to nerve repair in the medicinal leech. PMID:22356764

  5. Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis.

    PubMed

    Tahtouh, Muriel; Garçon-Bocquet, Annelise; Croq, Françoise; Vizioli, Jacopo; Sautière, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Nagnan-le Meillour, Patricia; Pestel, Joël; Lefebvre, Christophe

    2012-02-22

    In invertebrates, the medicinal leech is considered to be an interesting and appropriate model to study neuroimmune mechanisms. Indeed, this non-vertebrate animal can restore normal function of its central nervous system (CNS) after injury. Microglia accumulation at the damage site has been shown to be required for axon sprouting and for efficient regeneration. We characterized HmC1q as a novel chemotactic factor for leech microglial cell recruitment. In mammals, a C1q-binding protein (C1qBP alias gC1qR), which interacts with the globular head of C1q, has been reported to participate in C1q-mediated chemotaxis of blood immune cells. In this study, we evaluated the chemotactic activities of a recombinant form of HmC1q and its interaction with a newly characterized leech C1qBP that acts as its potential ligand. Recombinant HmC1q (rHmC1q) was produced in the yeast Pichia pastoris. Chemotaxis assays were performed to investigate rHmC1q-dependent microglia migration. The involvement of a C1qBP-related molecule in this chemotaxis mechanism was assessed by flow cytometry and with affinity purification experiments. The cellular localization of C1qBP mRNA and protein in leech was investigated using immunohistochemistry and in situ hybridization techniques. rHmC1q-stimulated microglia migrate in a dose-dependent manner. This rHmC1q-induced chemotaxis was reduced when cells were preincubated with either anti-HmC1q or anti-human C1qBP antibodies. A C1qBP-related molecule was characterized in leech microglia. A previous study showed that recruitment of microglia is observed after HmC1q release at the cut end of axons. Here, we demonstrate that rHmC1q-dependent chemotaxis might be driven via a HmC1q-binding protein located on the microglial cell surface. Taken together, these results highlight the importance of the interaction between C1q and C1qBP in microglial activation leading to nerve repair in the medicinal leech.

  6. Recording axonal conduction to evaluate the integration of pluripotent cell-derived neurons into a neuronal network.

    PubMed

    Shimba, Kenta; Sakai, Koji; Takayama, Yuzo; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-10-01

    Stem cell transplantation is a promising therapy to treat neurodegenerative disorders, and a number of in vitro models have been developed for studying interactions between grafted neurons and the host neuronal network to promote drug discovery. However, methods capable of evaluating the process by which stem cells integrate into the host neuronal network are lacking. In this study, we applied an axonal conduction-based analysis to a co-culture study of primary and differentiated neurons. Mouse cortical neurons and neuronal cells differentiated from P19 embryonal carcinoma cells, a model for early neural differentiation of pluripotent stem cells, were co-cultured in a microfabricated device. The somata of these cells were separated by the co-culture device, but their axons were able to elongate through microtunnels and then form synaptic contacts. Propagating action potentials were recorded from these axons by microelectrodes embedded at the bottom of the microtunnels and sorted into clusters representing individual axons. While the number of axons of cortical neurons increased until 14 days in vitro and then decreased, those of P19 neurons increased throughout the culture period. Network burst analysis showed that P19 neurons participated in approximately 80% of the bursting activity after 14 days in vitro. Interestingly, the axonal conduction delay of P19 neurons was significantly greater than that of cortical neurons, suggesting that there are some physiological differences in their axons. These results suggest that our method is feasible to evaluate the process by which stem cell-derived neurons integrate into a host neuronal network.

  7. BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells.

    PubMed

    Hirono, Moritoshi; Ogawa, Yasuhiro; Misono, Kaori; Zollinger, Daniel R; Trimmer, James S; Rasband, Matthew N; Misonou, Hiroaki

    2015-05-06

    In myelinated axons, K(+) channels are clustered in distinct membrane domains to regulate action potentials (APs). At nodes of Ranvier, Kv7 channels are expressed with Na(+) channels, whereas Kv1 channels flank nodes at juxtaparanodes. Regulation of axonal APs by K(+) channels would be particularly important in fast-spiking projection neurons such as cerebellar Purkinje cells. Here, we show that BK/Slo1 channels are clustered at the paranodal junctions of myelinated Purkinje cell axons of rat and mouse. The paranodal junction is formed by a set of cell-adhesion molecules, including Caspr, between the node and juxtaparanodes in which it separates nodal from internodal membrane domains. Remarkably, only Purkinje cell axons have detectable paranodal BK channels, whose clustering requires the formation of the paranodal junction via Caspr. Thus, BK channels occupy this unique domain in Purkinje cell axons along with the other K(+) channel complexes at nodes and juxtaparanodes. To investigate the physiological role of novel paranodal BK channels, we examined the effect of BK channel blockers on antidromic AP conduction. We found that local application of blockers to the axon resulted in a significant increase in antidromic AP failure at frequencies above 100 Hz. We also found that Ni(2+) elicited a similar effect on APs, indicating the involvement of Ni(2+)-sensitive Ca(2+) channels. Furthermore, axonal application of BK channel blockers decreased the inhibitory synaptic response in the deep cerebellar nuclei. Thus, paranodal BK channels uniquely support high-fidelity firing of APs in myelinated Purkinje cell axons, thereby underpinning the output of the cerebellar cortex. Copyright © 2015 the authors 0270-6474/15/357082-13$15.00/0.

  8. Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis.

    PubMed

    Song, Jonathan W; Bazou, Despina; Munn, Lance L

    2012-08-01

    Here we describe a microfluidic device that accurately reproduces the dynamics of vascular anastomosis, the process by which vascular sprouts connect to achieve perfusion during angiogenesis. The micro-device features two parallel endothelial cell-lined vessel analogues separated by a 300 μm wide collagenous matrix into which the vessels can sprout and form perfused bridging connections. By accurately recapitulating anastomosis in vitro, the device will enable a new generation of studies of the mechanisms of angiogenesis and provide a novel and practical platform for drug screening.

  9. Thresholds for activation of rabbit retinal ganglion cells with an ultrafine, extracellular microelectrode.

    PubMed

    Jensen, Ralph J; Rizzo, Joseph F; Ziv, Ofer R; Grumet, Andrew; Wyatt, John

    2003-08-01

    To determine electrical thresholds required for extracellular activation of retinal ganglion cells as part of a project to develop an epiretinal prosthesis. Retinal ganglion cells were recorded extracellularly in retinas isolated from adult New Zealand White rabbits. Electrical current pulses of 100- micro s duration were delivered to the inner surface of the retina from a 5- micro m long electrode. In about half of the cells, the point of lowest threshold was found by searching with anodal current pulses; in the other cells, cathodal current pulses were used. Threshold measurements were obtained near the cell bodies of 20 ganglion cells and near the axons of 19 ganglion cells. Both cathodal and anodal stimuli evoked a neural response in the ganglion cells that consisted of a single action potential of near-constant latency that persisted when retinal synaptic transmission was blocked with cadmium chloride. For cell bodies, but not axons, thresholds for both cathodal and anodal stimulation were dependent on the search method used to find the point of lowest threshold. With search and stimulation of matching polarity, cathodal stimuli evoked a ganglion cell response at lower currents (approximately one seventh to one tenth axonal threshold) than did anodal stimuli for both cell bodies and axons. With cathodal search and stimulation, cell body median thresholds were somewhat lower (approximately one half) than the axonal median thresholds. With anodal search and stimulation, cell body median thresholds were approximately the same as axonal median thresholds. The results suggest that cathodal stimulation should produce lower thresholds, more localized stimulation, and somewhat better selectivity for cell bodies over axons than would anodal stimulation.

  10. Changes in the serotonergic system and in brain-derived neurotrophic factor distribution in the main olfactory bulb of pcd mice before and after mitral cell loss.

    PubMed

    Gómez, C; Curto, G G; Baltanás, F C; Valero, J; O'Shea, E; Colado, M I; Díaz, D; Weruaga, E; Alonso, J R

    2012-01-10

    The serotonergic centrifugal system innervating the main olfactory bulb (MOB) plays a key role in the modulation of olfactory processing. We have previously demonstrated that this system suffers adaptive changes under conditions of a lack of olfactory input. The present work examines the response of this centrifugal system after mitral cell loss in the Purkinje cell degeneration (pcd) mutant mice. The distribution and density of serotonergic centrifugal axons were studied in the MOB of control and pcd mice, both before and after the loss of mitral cells, using serotonin (5-HT) and 5-HT transporter immunohistochemistry. Studies of the amount of 5-HT and its metabolite, 5-hydroxyindole acetic acid (5-HIAA), were performed by means of high-performance liquid chromatography (HPLC), and the relative amounts of brain-derived neurotrophin factor, BDNF, and its major receptor, tropomyosin-related kinase B (TrkB), were measured by Western blot. Our study revealed that the serotonergic system develops adaptive changes after, but not before, mitral cell loss. The lack of the main bulbar projection cells causes a decrease in the serotonergic input received by the MOB, whereas the number of serotonergic cells in the raphe nuclei remains constant. In addition, one of the molecules directly involved in serotonergic sprouting, the neurotrophin BDNF and its main receptor TrkB, underwent alterations in the MOBs of the pcd animals even before the loss of mitral cells. These data indicate that serotonergic function in the MOB is closely related to olfactory activity and that mitral cell loss induces serotonergic plastic responses. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Direct transfer of viral and cellular proteins from varicella-zoster virus-infected non-neuronal cells to human axons.

    PubMed

    Grigoryan, Sergei; Yee, Michael B; Glick, Yair; Gerber, Doron; Kepten, Eldad; Garini, Yuval; Yang, In Hong; Kinchington, Paul R; Goldstein, Ronald S

    2015-01-01

    Varicella Zoster Virus (VZV), the alphaherpesvirus that causes varicella upon primary infection and Herpes zoster (shingles) following reactivation in latently infected neurons, is known to be fusogenic. It forms polynuclear syncytia in culture, in varicella skin lesions and in infected fetal human ganglia xenografted to mice. After axonal infection using VZV expressing green fluorescent protein (GFP) in compartmentalized microfluidic cultures there is diffuse filling of axons with GFP as well as punctate fluorescence corresponding to capsids. Use of viruses with fluorescent fusions to VZV proteins reveals that both proteins encoded by VZV genes and those of the infecting cell are transferred in bulk from infecting non-neuronal cells to axons. Similar transfer of protein to axons was observed following cell associated HSV1 infection. Fluorescence recovery after photobleaching (FRAP) experiments provide evidence that this transfer is by diffusion of proteins from the infecting cells into axons. Time-lapse movies and immunocytochemical experiments in co-cultures demonstrate that non-neuronal cells fuse with neuronal somata and proteins from both cell types are present in the syncytia formed. The fusogenic nature of VZV therefore may enable not only conventional entry of virions and capsids into axonal endings in the skin by classical entry mechanisms, but also by cytoplasmic fusion that permits viral protein transfer to neurons in bulk.

  12. Direct Transfer of Viral and Cellular Proteins from Varicella-Zoster Virus-Infected Non-Neuronal Cells to Human Axons

    PubMed Central

    Grigoryan, Sergei; Yee, Michael B; Glick, Yair; Gerber, Doron; Kepten, Eldad; Garini, Yuval; Yang, In Hong; Kinchington, Paul R.; Goldstein, Ronald S.

    2015-01-01

    Varicella Zoster Virus (VZV), the alphaherpesvirus that causes varicella upon primary infection and Herpes zoster (shingles) following reactivation in latently infected neurons, is known to be fusogenic. It forms polynuclear syncytia in culture, in varicella skin lesions and in infected fetal human ganglia xenografted to mice. After axonal infection using VZV expressing green fluorescent protein (GFP) in compartmentalized microfluidic cultures there is diffuse filling of axons with GFP as well as punctate fluorescence corresponding to capsids. Use of viruses with fluorescent fusions to VZV proteins reveals that both proteins encoded by VZV genes and those of the infecting cell are transferred in bulk from infecting non-neuronal cells to axons. Similar transfer of protein to axons was observed following cell associated HSV1 infection. Fluorescence recovery after photobleaching (FRAP) experiments provide evidence that this transfer is by diffusion of proteins from the infecting cells into axons. Time-lapse movies and immunocytochemical experiments in co-cultures demonstrate that non-neuronal cells fuse with neuronal somata and proteins from both cell types are present in the syncytia formed. The fusogenic nature of VZV therefore may enable not only conventional entry of virions and capsids into axonal endings in the skin by classical entry mechanisms, but also by cytoplasmic fusion that permits viral protein transfer to neurons in bulk. PMID:25973990

  13. A RET-ER81-NRG1 Signaling Pathway Drives the Development of Pacinian Corpuscles.

    PubMed

    Fleming, Michael S; Li, Jian J; Ramos, Daniel; Li, Tong; Talmage, David A; Abe, Shin-Ichi; Arber, Silvia; Luo, Wenqin

    2016-10-05

    Axon-Schwann cell interactions are crucial for the development, function, and repair of the peripheral nervous system, but mechanisms underlying communication between axons and nonmyelinating Schwann cells are unclear. Here, we show that ER81 is functionally required in a subset of mouse RET + mechanosensory neurons for formation of Pacinian corpuscles, which are composed of a single myelinated axon and multiple layers of nonmyelinating Schwann cells, and Ret is required for the maintenance of Er81 expression. Interestingly, Er81 mutants have normal myelination but exhibit deficient interactions between axons and corpuscle-forming nonmyelinating Schwann cells. Finally, ablating Neuregulin-1 (Nrg1) in mechanosensory neurons results in no Pacinian corpuscles, and an Nrg1 isoform not required for communication with myelinating Schwann cells is specifically decreased in Er81-null somatosensory neurons. Collectively, our results suggest that a RET-ER81-NRG1 signaling pathway promotes axon communication with nonmyelinating Schwann cells, and that neurons use distinct mechanisms to interact with different types of Schwann cells. Communication between neurons and Schwann cells is critical for development, normal function, and regeneration of the peripheral nervous system. Despite many studies about axonal communication with myelinating Schwann cells, mostly via a specific isoform of Neuregulin1, the molecular nature of axonal communication with nonmyelinating Schwann cells is poorly understood. Here, we described a RET-ER81-Neuregulin1 signaling pathway in neurons innervating Pacinian corpuscle somatosensory end organs, which is essential for communication between the innervating axon and the end organ nonmyelinating Schwann cells. We also showed that this signaling pathway uses isoforms of Neuregulin1 that are not involved in myelination, providing evidence that neurons use different isoforms of Neuregulin1 to interact with different types of Schwann cells. Copyright © 2016 the authors 0270-6474/16/3610337-19$15.00/0.

  14. Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus.

    PubMed

    Buhl, E H; Han, Z S; Lörinczi, Z; Stezhka, V V; Karnup, S V; Somogyi, P

    1994-04-01

    1. The properties of a well-defined type of GABAergic local circuit neuron, the axo-axonic cell (n = 17), were investigated in rat hippocampal slice preparations. During intracellular recording we injected axo-axonic cells with biocytin and subsequently identified them with correlated light and electron microscopy. Employing an immunogold-silver intensification technique we showed that one of the physiologically characterized cells was immunoreactive for gamma-aminobutyric acid (GABA). 2. Axo-axonic cells were encountered in the dentate gyrus (n = 5) as well as subfields CA3 (n = 2) and CA1 (n = 10). They generally had smooth, beaded dendrites that extended throughout all hippocampal layers. Their axons ramified densely in the cell body layers and in the subjacent stratum oriens or hilus, respectively. Tested with electron microscopy, labeled terminals (n = 53) established synapses exclusively with the axon initial segment of principal cells in strata oriens and pyramidale and rarely in lower radiatum. Within a 400-microns slice a single CA1 axo-axonic cell was estimated to be in synaptic contact with 686 pyramidal cells. 3. Axo-axonic cells (n = 14) had a mean resting membrane potential of -65.1 mV, an average input resistance of 73.9 M omega, and a mean time constant of 7.7 ms. Action potentials were of short duration (389-microseconds width at half-amplitude) and had a mean amplitude of 64.1 mV. 4. Nine of 10 tested cells showed a varying degree of spike frequency adaptation in response to depolarizing current injection. Current-evoked action potentials were usually curtailed by a deep (10.2 mV) short-latency afterhyperpolarization (AHP) with a mean duration of 28.1 ms. 5. Cells with strong spike frequency accommodation (n = 5) had a characteristic firing pattern with numerous spike doublets. These appeared to be triggered by an underlying depolarizing afterpotential. In the same cells, prolonged bursts of action potentials were followed by a prominent long-duration AHP with a mean time constant of 1.15 s. 6. Axo-axonic cells responded to the stimulation of afferent pathways with short-latency excitatory postsynaptic potentials (EPSPs) or at higher stimulation intensity with up to three action potentials. Axo-axonic cells in the dentate gyrus could be activated by stimulating the CA3 area as well as the perforant path, whereas in the CA1 area responses were elicited after shocks to the perforant path, Schaffer collaterals, and the stratum oriens-alveus border. 7. In the CA1 area the EPSP amplitude increased in response to membrane hyperpolarization.(ABSTRACT TRUNCATED AT 400 WORDS)

  15. Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrion, Bita; Kong, Yen P.; Kaigler, Darnell

    Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes theirmore » failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. Highlights: • BMSCs stimulate angiogenesis, but the mechanisms remain unclear. • We silenced the expression of the α6 integrin subunit in BMSCs. • Silencing this receptor subunit significantly inhibited angiogenic sprouting. • Knocking down α6 integrin affected laminin and αSMA expression. • Silencing α6 integrin expression also reduced BMSC proliferation.« less

  16. Epilepsy following cortical injury: Cellular and molecular mechanisms as targets for potential prophylaxis

    PubMed Central

    Prince, David A.; Parada, Isabel; Scalise, Karina; Graber, Kevin; Shen, Fran

    2009-01-01

    Summary The sequelae of traumatic brain injury, including posttraumatic epilepsy, represent a major societal problem. Significant resources are required to develop a better understanding of the underlying pathophysiologic mechanisms as targets for potential prophylactic therapies. Posttraumatic epilepsy undoubtedly involves numerous pathogenic factors that develop more or less in parallel. We have highlighted two potential “prime movers”: disinhibition and development of new functional excitatory connectivity, which occur in a number of animal models and some forms of epilepsy in humans. Previous experiments have shown that tetrodotoxin (TTX) applied to injured cortex during a critical period early after lesion placement can prevent epileptogenesis in the partial cortical (“undercut”) model of posttraumatic epilepsy. Here we show that such treatment markedly attenuates histologic indices of axonal and terminal sprouting and presumably associated aberrant excitatory connectivity. A second finding in the undercut model is a decrease in spontaneous inhibitory events. Current experiments show that this is accompanied by regressive alterations in fast-spiking γ-aminobutyric acid (GABA)ergic interneurons, including shrinkage of dendrites, marked decreases in axonal length, structural changes in inhibitory boutons, and loss of inhibitory synapses on pyramidal cells. Other data support the hypothesis that these anatomic abnormalities may result from loss of trophic support normally provided to interneurons by brain-derived neurotrophic factor (BDNF). Approaches that prevent these two pathophysiologic mechanisms may offer avenues for prophylaxis for posttraumatic epilepsy. However, major issues such as the role of these processes in functional recovery from injury and the timing of the critical period(s) for application of potential therapies in humans are critical and need to be resolved. PMID:19187292

  17. The Neuronal Organization of a Unique Cerebellar Specialization: The Valvula Cerebelli of a Mormyrid Fish

    PubMed Central

    Shi, Zhigang; Zhang, Yueping; Meek, Johannes; Qiao, Jiantian; Han, Victor Z.

    2018-01-01

    The distal valvula cerebelli is the most prominent part of the mormyrid cerebellum. It is organized in ridges of ganglionic and molecular layers, oriented perpendicular to the granular layer. We have combined intracellular recording and labelling techniques to reveal the cellular morphology of the valvula ridges in slice preparations. We have also locally ejected tracer in slices and in intact animals to examine its input fibers. The palisade dendrites and fine axon arbors of Purkinje cells are oriented in the horizontal plane of the ridge. The dendrites of basal efferent cells and large central cells are confined to the molecular layer, but are not planer. Basal efferent cell axons are thick, and join the basal bundle leaving the cerebellum. Large central cell axons are also thick, and traverse long distances in the transverse plane, with local collaterals in the ganglionic layer. Vertical cells and small central cells also have thick axons with local collaterals. The dendrites of Golgi cells are confined to the molecular layer, but their axon arbors are either confined to the granular layer or proliferate in both the granular and ganglionic layers. Dendrites of deep stellate cells are distributed in the molecular layer, with fine axon arbors in the ganglionic layer. Granule cell axons enter the molecular layer as parallel fibers without bifurcating. Climbing fibers run in the horizontal plane and terminate exclusively in the ganglionic layer. Our results confirm and extend previous studies and suggest a new concept of the circuitry of the mormyrid valvula cerebelli. PMID:18537139

  18. Loss of spastin function results in disease-specific axonal defects in human pluripotent stem cell-based models of hereditary spastic paraplegia

    PubMed Central

    Denton, Kyle R.; Lei, Ling; Grenier, Jeremy; Rodionov, Vladimir; Blackstone, Craig; Li, Xue-Jun

    2013-01-01

    Human neuronal models of hereditary spastic paraplegias (HSP) that recapitulate disease-specific axonal pathology hold the key to understanding why certain axons degenerate in patients and to developing therapies. SPG4, the most common form of HSP, is caused by autosomal dominant mutations in the SPAST gene, which encodes the microtubule-severing ATPase spastin. Here, we have generated a human neuronal model of SPG4 by establishing induced pluripotent stem cells (iPSCs) from an SPG4 patient and differentiating these cells into telencephalic glutamatergic neurons. The SPG4 neurons displayed a significant increase in axonal swellings, which stained strongly for mitochondria and tau, indicating the accumulation of axonal transport cargoes. In addition, mitochondrial transport was decreased in SPG4 neurons, revealing that these patient iPSC-derived neurons recapitulate disease-specific axonal phenotypes. Interestingly, spastin protein levels were significantly decreased in SPG4 neurons, supporting a haploinsufficiency mechanism. Furthermore, cortical neurons derived from spastin-knockdown human embryonic stem cells (hESCs) exhibited similar axonal swellings, confirming that the axonal defects can be caused by loss of spastin function. These spastin-knockdown hESCs serve as an additional model for studying HSP. Finally, levels of stabilized acetylated-tubulin were significantly increased in SPG4 neurons. Vinblastine, a microtubule-destabilizing drug, rescued this axonal swelling phenotype in neurons derived from both SPG4 iPSCs and spastin-knockdown hESCs. Thus, this study demonstrates the successful establishment of human pluripotent stem cell-based neuronal models of SPG4, which will be valuable for dissecting the pathogenic cellular mechanisms and screening compounds to rescue the axonal degeneration in HSP. PMID:24123785

  19. The Core Molecular Machinery Used for Engulfment of Apoptotic Cells Regulates the JNK Pathway Mediating Axon Regeneration in Caenorhabditis elegans.

    PubMed

    Pastuhov, Strahil Iv; Fujiki, Kota; Tsuge, Anna; Asai, Kazuma; Ishikawa, Sho; Hirose, Kazuya; Matsumoto, Kunihiro; Hisamoto, Naoki

    2016-09-14

    The mechanisms that govern the ability of specific neurons to regenerate their axons after injury are not well understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we identify two components functioning upstream of the JNK pathway: the Ste20-related protein kinase MAX-2 and the Rac-type GTPase CED-10. CED-10, when bound by GTP, interacts with MAX-2 and functions as its upstream regulator in axon regeneration. CED-10, in turn, is activated by axon injury via signals initiated from the integrin α-subunit INA-1 and the nonreceptor tyrosine kinase SRC-1 and transmitted via the signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO. This module is also known to regulate the engulfment of apoptotic cells during development. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway. The molecular mechanisms of axon regeneration after injury remain poorly understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we show that integrin, Rac-GTPase, and several other molecules, all of which are known to regulate engulfment of apoptotic cells during development, also regulate axon regeneration. This signaling module activates the JNK-MAPK cascade via MAX-2, a PAK-like protein kinase that binds Rac. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway. Copyright © 2016 the authors 0270-6474/16/369710-12$15.00/0.

  20. Three-dimensional rapid visualization of matrix deformations around angiogenic sprouts (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Steuwe, Christian; Vayens, Marie-Mo; Jorge Peñas, Alvaro; Krajnik, Bartosz; Van Oosterwyck, Hans; Roeffaers, Maarten B. J.

    2017-02-01

    At the cell - extracellular matrix interface, physiologically important traction forces exerted by angiogenic sprouts can be investigated indirectly by mapping the consecutive matrix deformations. In this paper we present an approach to study these forces in three dimensions and with high time resolution. The technique employs lightsheet microscopy, in which a sheet of light is used to illuminate the sample - resulting in z-sectioning capability, superior image recording speed and reduced phototoxicity. For this study, human umbilical vein endothelial cells (HUVEC) are transduced with a LifeAct adenoviral vector to visualize the actin cytoskeleton during live sprouting into a collagen type I hydrogel. The calculation of the matrix deformations is formulated as a B-spline-based 3D non-rigid image registration process that warps the image of beads inside the stressed gel to match the image after stress relaxation. Using this approach we study the role of fast moving actin filaments for filopodia- and tip-cell dynamics in 3D under chemically defined culture conditions such as inhibited acto-myosin force generation. With a time resolution in the range of ten seconds, we find that our technique is at least 20 times faster than conventional traction force microscopy based on confocal imaging. Ultimately, this approach will shed light on rapid mechano-chemical feedback mechanisms important for sprouting angiogenesis.

  1. Retention of retinal axon collateral is responsible for induced ipsilateral retinotectal projections in adult goldfish.

    PubMed

    Sharma, S C; Tsai, C

    1991-01-01

    In normal goldfish, optic axons innervate only the contralateral optic tectum. When one eye was enucleated and the optic nerve of the other eye crushed, the regenerating optic axons innervated both optic tecta. We studied the presence of bilaterally projecting retinal ganglion cells by double retrograde cell labeling methods using Nuclear Yellow and True Blue dyes. About 10% of the retinal ganglion cells were double labeled and these cells were found throughout the retina. In addition, HRP application to the ipsilateral tectum revealed retrogradely-labeled retinal ganglion cells of all morphological types. These results suggest that induced ipsilateral projections are formed by regenerating axon collaterals and that all cell types are involved in the generation of normal mirror image typography.

  2. Myosin-Va-Dependent Cell-To-Cell Transfer of RNA from Schwann Cells to Axons

    PubMed Central

    Sotelo, José R.; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José R.; Xu, Lei; Wallrabe, Horst; Calliari, Aldo; Rosso, Gonzalo; Cal, Karina; Mercer, John A.

    2013-01-01

    To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells) at the site of injury to promote regeneration. PMID:23626749

  3. Myosin-Va-dependent cell-to-cell transfer of RNA from Schwann cells to axons.

    PubMed

    Sotelo, José R; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José R; Xu, Lei; Wallrabe, Horst; Calliari, Aldo; Rosso, Gonzalo; Cal, Karina; Mercer, John A

    2013-01-01

    To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells) at the site of injury to promote regeneration.

  4. Regeneration of Drosophila sensory neuron axons and dendrites is regulated by the Akt pathway involving Pten and microRNA bantam

    PubMed Central

    Song, Yuanquan; Ori-McKenney, Kassandra M.; Zheng, Yi; Han, Chun; Jan, Lily Yeh; Jan, Yuh Nung

    2012-01-01

    Both cell-intrinsic and extrinsic pathways govern axon regeneration, but only a limited number of factors have been identified and it is not clear to what extent axon regeneration is evolutionarily conserved. Whether dendrites also regenerate is unknown. Here we report that, like the axons of mammalian sensory neurons, the axons of certain Drosophila dendritic arborization (da) neurons are capable of substantial regeneration in the periphery but not in the CNS, and activating the Akt pathway enhances axon regeneration in the CNS. Moreover, those da neurons capable of axon regeneration also display dendrite regeneration, which is cell type-specific, developmentally regulated, and associated with microtubule polarity reversal. Dendrite regeneration is restrained via inhibition of the Akt pathway in da neurons by the epithelial cell-derived microRNA bantam but is facilitated by cell-autonomous activation of the Akt pathway. Our study begins to reveal mechanisms for dendrite regeneration, which depends on both extrinsic and intrinsic factors, including the PTEN–Akt pathway that is also important for axon regeneration. We thus established an important new model system—the fly da neuron regeneration model that resembles the mammalian injury model—with which to study and gain novel insights into the regeneration machinery. PMID:22759636

  5. Dependence of regenerated sensory axons on continuous neurotrophin-3 delivery.

    PubMed

    Hou, Shaoping; Nicholson, LaShae; van Niekerk, Erna; Motsch, Melanie; Blesch, Armin

    2012-09-19

    Previous studies have shown that injured dorsal column sensory axons extend across a spinal cord lesion site if axons are guided by a gradient of neurotrophin-3 (NT-3) rostral to the lesion. Here we examined whether continuous NT-3 delivery is necessary to sustain regenerated axons in the injured spinal cord. Using tetracycline-regulated (tet-off) lentiviral gene delivery, NT-3 expression was tightly controlled by doxycycline administration. To examine axon growth responses to regulated NT-3 expression, adult rats underwent a C3 dorsal funiculus lesion. The lesion site was filled with bone marrow stromal cells, tet-off-NT-3 virus was injected rostral to the lesion site, and the intrinsic growth capacity of sensory neurons was activated by a conditioning lesion. When NT-3 gene expression was turned on, cholera toxin β-subunit-labeled sensory axons regenerated into and beyond the lesion/graft site. Surprisingly, the number of regenerated axons significantly declined when NT-3 expression was turned off, whereas continued NT-3 expression sustained regenerated axons. Quantification of axon numbers beyond the lesion demonstrated a significant decline of axon growth in animals with transient NT-3 expression, only some axons that had regenerated over longer distance were sustained. Regenerated axons were located in white matter and did not form axodendritic synapses but expressed presynaptic markers when closely associated with NG2-labeled cells. A decline in axon density was also observed within cellular grafts after NT-3 expression was turned off possibly via reduction in L1 and laminin expression in Schwann cells. Thus, multiple mechanisms underlie the inability of transient NT-3 expression to fully sustain regenerated sensory axons.

  6. The L1-type cell adhesion molecule Neuroglian is necessary for maintenance of sensory axon advance in the Drosophila embryo.

    PubMed

    Martin, Veronica; Mrkusich, Eli; Steinel, Martin C; Rice, Jason; Merritt, David J; Whitington, Paul M

    2008-04-08

    Cell adhesion molecules have long been implicated in the regulation of axon growth, but the precise cellular roles played by individual cell adhesion molecules and the molecular basis for their action are still not well understood. We have used the sensory system of the Drosophila embryo to shed light on the mechanism by which the L1-type cell adhesion molecule Neuroglian regulates axon growth. We have found a highly penetrant sensory axon stalling phenotype in neuroglian mutant embryos. Axons stalled at a variety of positions along their normal trajectory, but most commonly in the periphery some distance along the peripheral nerve. All lateral and dorsal cluster sensory neurons examined, except for the dorsal cluster neuron dbd, showed stalling. Sensory axons were never seen to project along inappropriate pathways in neuroglian mutants and stalled axons showed normal patterns of fasciculation within nerves. The growth cones of stalled axons possessed a simple morphology, similar to their appearance in wild-type embryos when advancing along nerves. Driving expression of the wild-type form of Neuroglian in sensory neurons alone rescued the neuroglian mutant phenotype of both pioneering and follower neurons. A partial rescue was achieved by expressing the Neuroglian extracellular domain. Over/mis-expression of Neuroglian in all neurons, oenocytes or trachea had no apparent effect on sensory axon growth. We conclude that Neuroglian is necessary to maintain axon advance along axonal substrates, but is not required for initiation of axon outgrowth, axon fasciculation or recognition of correct growth substrates. Expression of Neuroglian in sensory neurons alone is sufficient to promote axon advance and the intracellular region of the molecule is largely dispensable for this function. It is unlikely, therefore, that Nrg acts as a molecular 'clutch' to couple adhesion of F-actin within the growth cone to the extracellular substrate. Rather, we suggest that Neuroglian mediates sensory axon advance by promoting adhesion of the surface of the growth cone to its substrate. Our finding that stalling of a pioneer sensory neuron is rescued by driving Neuroglian in sensory neurons alone may suggest that Neuroglian can act in a heterophilic fashion.

  7. The L1-type cell adhesion molecule Neuroglian is necessary for maintenance of sensory axon advance in the Drosophila embryo

    PubMed Central

    Martin, Veronica; Mrkusich, Eli; Steinel, Martin C; Rice, Jason; Merritt, David J; Whitington, Paul M

    2008-01-01

    Background Cell adhesion molecules have long been implicated in the regulation of axon growth, but the precise cellular roles played by individual cell adhesion molecules and the molecular basis for their action are still not well understood. We have used the sensory system of the Drosophila embryo to shed light on the mechanism by which the L1-type cell adhesion molecule Neuroglian regulates axon growth. Results We have found a highly penetrant sensory axon stalling phenotype in neuroglian mutant embryos. Axons stalled at a variety of positions along their normal trajectory, but most commonly in the periphery some distance along the peripheral nerve. All lateral and dorsal cluster sensory neurons examined, except for the dorsal cluster neuron dbd, showed stalling. Sensory axons were never seen to project along inappropriate pathways in neuroglian mutants and stalled axons showed normal patterns of fasciculation within nerves. The growth cones of stalled axons possessed a simple morphology, similar to their appearance in wild-type embryos when advancing along nerves. Driving expression of the wild-type form of Neuroglian in sensory neurons alone rescued the neuroglian mutant phenotype of both pioneering and follower neurons. A partial rescue was achieved by expressing the Neuroglian extracellular domain. Over/mis-expression of Neuroglian in all neurons, oenocytes or trachea had no apparent effect on sensory axon growth. Conclusion We conclude that Neuroglian is necessary to maintain axon advance along axonal substrates, but is not required for initiation of axon outgrowth, axon fasciculation or recognition of correct growth substrates. Expression of Neuroglian in sensory neurons alone is sufficient to promote axon advance and the intracellular region of the molecule is largely dispensable for this function. It is unlikely, therefore, that Nrg acts as a molecular 'clutch' to couple adhesion of F-actin within the growth cone to the extracellular substrate. Rather, we suggest that Neuroglian mediates sensory axon advance by promoting adhesion of the surface of the growth cone to its substrate. Our finding that stalling of a pioneer sensory neuron is rescued by driving Neuroglian in sensory neurons alone may suggest that Neuroglian can act in a heterophilic fashion. PMID:18397531

  8. Neuron-glia signaling and the protection of axon function by Schwann cells.

    PubMed

    Quintes, Susanne; Goebbels, Sandra; Saher, Gesine; Schwab, Markus H; Nave, Klaus-Armin

    2010-03-01

    The interaction between neurons and glial cells is a feature of all higher nervous systems. In the vertebrate peripheral nervous system, Schwann cells ensheath and myelinate axons thereby allowing rapid saltatory conduction and ensuring axonal integrity. Recently, some of the key molecules in neuron-Schwann cell signaling have been identified. Neuregulin-1 (NRG1) type III presented on the axonal surface determines the myelination fate of axons and controls myelin sheath thickness. Recent observations suggest that NRG1 regulates myelination via the control of Schwann cell cholesterol biosynthesis. This concept is supported by the finding that high cholesterol levels in Schwann cells are a rate-limiting factor for myelin protein production and transport of the major myelin protein P0 from the endoplasmic reticulum into the growing myelin sheath. NRG1 type III activates ErbB receptors on the Schwann cell, which leads to an increase in intracellular PIP3 levels via the PI3-kinase pathway. Surprisingly, enforced elevation of PIP3 levels by inactivation of the phosphatase PTEN in developing and mature Schwann cells does not entirely mimic NRG1 type III stimulated myelin growth, but predominantly causes focal hypermyelination starting at Schmidt-Lanterman incisures and nodes of Ranvier. This indicates that the glial transduction of pro-myelinating signals has to be under tight and life-long control to preserve integrity of the myelinated axon. Understanding the cross talk between neurons and Schwann cells will help to further define the role of glia in preserving axonal integrity and to develop therapeutic strategies for peripheral neuropathies such as CMT1A.

  9. Olfactory Ensheathing Cell Transplantation after a Complete Spinal Cord Transection Mediates Neuroprotective and Immunomodulatory Mechanisms to Facilitate Regeneration

    PubMed Central

    Khankan, Rana R.; Griffis, Khris G.; Haggerty-Skeans, James R.; Zhong, Hui; Roy, Roland R.; Edgerton, V. Reggie

    2016-01-01

    Multiple neural and peripheral cell types rapidly respond to tissue damage after spinal cord injury to form a structurally and chemically inhibitory scar that limits axon regeneration. Astrocytes form an astroglial scar and produce chondroitin sulfate proteoglycans (CSPGs), activate microglia, and recruit blood-derived immune cells to the lesion for debris removal. One beneficial therapy, olfactory ensheathing cell (OEC) transplantation, results in functional improvements and promotes axon regeneration after spinal cord injury. The lack of an OEC-specific marker, however, has limited the investigation of mechanisms underlying their proregenerative effects. We compared the effects of enhanced green fluorescent protein-labeled fibroblast (FB) and OEC transplants acutely after a complete low-thoracic spinal cord transection in adult rats. We assessed the preservation of neurons and serotonergic axons, the levels of inhibitory CSPGs and myelin debris, and the extent of immune cell activation between 1 and 8 weeks postinjury. Our findings indicate that OECs survive longer than FBs post-transplantation, preserve axons and neurons, and reduce inhibitory molecules in the lesion core. Additionally, we show that OECs limit immune-cell activation and infiltration, whereas FBs alter astroglial scar formation and increase immune-cell infiltration and concomitant secondary tissue damage. Administration of cyclosporine-A to enhance graft survival demonstrated that immune suppression can augment OEC contact-mediated protection of axons and neurons during the first 2 weeks postinjury. Collectively, these data suggest that OECs have neuroprotective and immunomodulatory mechanisms that create a supportive environment for neuronal survival and axon regeneration after spinal cord injury. SIGNIFICANCE STATEMENT Spinal cord injury creates physical and chemical barriers to axon regeneration. We used a complete spinal cord transection model and olfactory ensheathing cell (OEC) or fibroblast (FB; control) transplantation as a repair strategy. OECs, but not FBs, intermingled with astrocytes, facilitated astroglial scar border formation and sequestered invading peripheral cells. OECs attenuated immune cell infiltration, reduced secondary tissue damage, protected neurons and axons in the lesion core, and helped clear myelin debris. Immunosuppression enhanced survival of OECs and FBs, but only OEC transplantation promoted scaffold formation in the lesion site that facilitated axon regeneration and neuron preservation. PMID:27277804

  10. Cerebellar pathology in childhood-onset vs. adult-onset essential tremor.

    PubMed

    Louis, Elan D; Kuo, Sheng-Han; Tate, William J; Kelly, Geoffrey C; Faust, Phyllis L

    2017-10-17

    Although the incidence of ET increases with advancing age, the disease may begin at any age, including childhood. The question arises as to whether childhood-onset ET cases manifest the same sets of pathological changes in the cerebellum as those whose onset is during adult life. We quantified a broad range of postmortem features (Purkinje cell [PC] counts, PC axonal torpedoes, a host of associated axonal changes [PC axonal recurrent collateral count, PC thickened axonal profile count, PC axonal branching count], heterotopic PCs, and basket cell rating) in 60 ET cases (11 childhood-onset and 49 adult-onset) and 30 controls. Compared to controls, childhood-onset ET cases had lower PC counts, higher torpedo counts, higher heterotopic PC counts, higher basket cell plexus rating, and marginally higher PC axonal recurrent collateral counts. The median PC thickened axonal profile count and median PC axonal branching count were two to five times higher in childhood-onset ET than controls, but the differences did not reach statistical significance. Childhood-onset and adult-onset ET had similar PC counts, torpedo counts, heterotopic PC counts, basket cell plexus rating, PC axonal recurrent collateral counts, PC thickened axonal profile count and PC axonal branching count. In conclusion, we found that childhood-onset and adult-onset ET shared similar pathological changes in the cerebellum. The data suggest that pathological changes we have observed in the cerebellum in ET are a part of the pathophysiological cascade of events in both forms of the disease and that both groups seem to reach the same pathological endpoints at a similar age of death. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The potential of milk thistle (Silybum marianum L.), an Israeli native, as a source of edible sprouts rich in antioxidants.

    PubMed

    Vaknin, Yiftach; Hadas, Rivka; Schafferman, Dan; Murkhovsky, Leonid; Bashan, Neta

    2008-06-01

    The potential of wild plants in Israel as sources of edible sprouts has not been investigated until now. Milk thistle (Silybum marianum L.) is native to the Mediterranean basin and is now widespread throughout the world; its young fleshy stems are traditionally eaten by the local Arab sector in Israel, and its sprouts are rich in antioxidants and have been used as a traditional medicine for diseases of the liver and biliary tract. The active extract of milk thistle, silymarin, is a mixture of flavonolignans and is a strong antioxidant that has been proved to promote liver cell regeneration, to reduce blood cholesterol and to help prevent cancer. The present objective was to investigate the potential of milk thistle as a source of edible sprouts rich in antioxidants. We found that seed germination within 3-4 days was high (96%, except for striated seeds). Exposure to light significantly reduced sprout growth and significantly increased the polyphenol content and antioxidative capacity. The polyphenol content was 30% higher in seeds originating from purple inflorescences than in those from white ones. We thus found milk thistle to be a good candidate source of healthy edible sprouts.

  12. Abluminal Stimulation of Sphingosine 1-Phosphate Receptors 1 and 3 Promotes and Stabilizes Endothelial Sprout Formation

    PubMed Central

    Lenz, Steven M.; Awojoodu, Anthony O.

    2015-01-01

    Local delivery of lipid mediators has become a promising new approach for therapeutic angiogenesis and regenerative medicine. In this study, we investigated how gradient stimulation (either abluminal/distal or luminal/proximal) of engineered microvessels with sphingosine 1-phosphate (S1P) receptor-subtype-targeted molecules affects endothelial sprout growth using a microfluidic device. Our studies show that distal stimulation of microvessels with FTY720, an S1P1/3 selective agonist, promotes both arterial and venular sprout growth, whereas proximal stimulation does not. Using novel pharmacological antagonists of S1P receptor subtypes, we further show that S1P3 functionality is necessary for VEGF-induced sprouting, and confirmed these findings ex vivo using a murine aortic ring assay from S1P3-deficient mice. S1P3 agonist stimulation enhanced vascular stability in both cell types via upregulation of the interendothelial junction protein VE-cadherin. Lastly, S1P3 activation under flow promoted endothelial sprouting and branching while decreasing migratory cell fate in the microfluidic device. We used an in vivo murine dorsal skinfold window chamber model to confirm S1P3's role in neovascular branching. Together, these data suggest that a distal transendothelial gradient of S1P1/3-targeted drugs is an effective technique for both enhancing and stabilizing capillary morphogenesis in angiogenic applications. PMID:25315888

  13. Axon Regeneration in C. elegans

    PubMed Central

    Hammarlund, Marc; Jin, Yishi

    2014-01-01

    Single axon transection by laser surgery has made C. elegans a new model for axon regeneration. Multiple conserved molecular signaling modules have been discovered through powerful genetic screening. in vivo imaging with single cell and axon resolution has revealed unprecedented cellular dynamics in regenerating axons. Information from C. elegans has greatly expanded our knowledge of the molecular and cellular mechanisms of axon regeneration. PMID:24794753

  14. The crossed phrenic phenomenon

    PubMed Central

    Ghali, Michael George Zaki

    2017-01-01

    The cervical spine is the most common site of traumatic vertebral column injuries. Respiratory insufficiency constitutes a significant proportion of the morbidity burden and is the most common cause of mortality in these patients. In seeking to enhance our capacity to treat specifically the respiratory dysfunction following spinal cord injury, investigators have studied the “crossed phrenic phenomenon”, wherein contraction of a hemidiaphragm paralyzed by a complete hemisection of the ipsilateral cervical spinal cord above the phrenic nucleus can be induced by respiratory stressors and recovers spontaneously over time. Strengthening of latent contralateral projections to the phrenic nucleus and sprouting of new descending axons have been proposed as mechanisms contributing to the observed recovery. We have recently demonstrated recovery of spontaneous crossed phrenic activity occurring over minutes to hours in C1-hemisected unanesthetized decerebrate rats. The specific neurochemical and molecular pathways underlying crossed phrenic activity following injury require further clarification. A thorough understanding of these is necessary in order to develop targeted therapies for respiratory neurorehabilitation following spinal trauma. Animal studies provide preliminary evidence for the utility of neuropharmacological manipulation of serotonergic and adenosinergic pathways, nerve grafts, olfactory ensheathing cells, intraspinal microstimulation and a possible role for dorsal rhizotomy in recovering phrenic activity following spinal cord injury PMID:28761411

  15. Sonic Hedgehog switches on Wnt/planar cell polarity signaling in commissural axon growth cones by reducing levels of Shisa2

    PubMed Central

    Onishi, Keisuke

    2017-01-01

    Commissural axons switch on responsiveness to Wnt attraction during midline crossing and turn anteriorly only after exiting the floor plate. We report here that Sonic Hedgehog (Shh)-Smoothened signaling downregulates Shisa2, which inhibits the glycosylation and cell surface presentation of Frizzled3 in rodent commissural axon growth cones. Constitutive Shisa2 expression causes randomized turning of post-crossing commissural axons along the anterior–posterior (A–P) axis. Loss of Shisa2 led to precocious anterior turning of commissural axons before or during midline crossing. Post-crossing commissural axon turning is completely randomized along the A–P axis when Wntless, which is essential for Wnt secretion, is conditionally knocked out in the floor plate. This regulatory link between Shh and planar cell polarity (PCP) signaling may also occur in other developmental processes. PMID:28885142

  16. Sprouting angiogenesis in human midterm uterus and fallopian tube is guided by endothelial tip cells.

    PubMed

    Rusu, M C; Motoc, A G M; Pop, F; Folescu, R

    2013-01-01

    Five samples of human midterm fetal uterus and fallopian tube (four donor bodies) were used to assess whether or not processes of angiogenesis are guided by endothelial tip cells (ETCs), and if cytokine-receptors, such as CD117/c-kit and PDGFR-α, are expressed in the microenvironment of the endothelial tubes. CD34 labeled microvessels in the uterine wall (myometrium and endometrium) and in the wall of the uterine (fallopian) tube, and accurately identified ETCs in both organs. We conclude that sprouting angiogenesis in the developing human female tract is guided by ETCs. Moreover, CD117/c-kit antibodies labeled mural networks of pericytes, α-SMA-positive and desmin-negative, related to the endometrial (but not myometrial) microvessels, and similar labeling was identified in the wall of the uterine tube. PDGFR-α positive labeling, stromal and pericytary, was also found. Thus, sprouting angiogenesis in human fetal genital organs appears to be guided by tip cells and is influenced by tyrosine kinase receptor signaling.

  17. VEGF165 Stimulates Vessel Density and Vessel Diameter Differently in Angiogenesis and Lymphangiogenesis

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Radhakrishnan, Krishnan; DiCorleto, Paul E.; Leontiev, Dmitry; Anand-Apte, Bela; Albarran, Brian; Farr, Andrew G.

    2005-01-01

    Vascular endothelial growth factor-165 (VEGF(sub 165)) stimulated angiogenesis in the quail chorioallantoic membrane (CAM) by vessel expansion from the capillary network. However, lymphangiogenesis was stimulated by the filopodial guidance of tip cells located on blind-ended lymphatic sprouts. As quantified by fractal/generational branching analysis using the computer code VESGEN, vascular density increased maximally at low VEGF concentrations, and vascular diameter increased most at high VEGF concentrations. Increased vascular density and diameter were statistically independent events (r(sub s), -0.06). By fluorescence immunohistochemistry of VEGF receptors VEGFR-1 and VEGFR-2, alpha smooth muscle actin ((alpha) SMA) and a vascular/lymphatic marker, VEGF(sub 165) increased the density and diameter of sprouting lymphatic vessels guided by tip cells (accompanied by the dissociation of lymphatics from blood vessels). Isolated migratory cells expressing (alpha)SMA were recruited to blood vessels, whereas isolated cells expressing VEGFR-2 were recruited primarily to lymphatics. In conclusion, VEGF(sub 165) increased lymphatic vessel density by lymphatic sprouting, but increased blood vessel density by vascular expansion from the capillary network.

  18. Axon Termination, Pruning, and Synaptogenesis in the Giant Fiber System of Drosophila melanogaster Is Promoted by Highwire.

    PubMed

    Borgen, Melissa; Rowland, Kimberly; Boerner, Jana; Lloyd, Brandon; Khan, Aruna; Murphey, Rodney

    2017-03-01

    The ubiquitin ligase Highwire has a conserved role in synapse formation. Here, we show that Highwire coordinates several facets of central synapse formation in the Drosophila melanogaster giant fiber system, including axon termination, axon pruning, and synaptic function. Despite the similarities to the fly neuromuscular junction, the role of Highwire and the underlying signaling pathways are distinct in the fly's giant fiber system. During development, branching of the giant fiber presynaptic terminal occurs and, normally, the transient branches are pruned away. However, in highwire mutants these ectopic branches persist, indicating that Highwire promotes axon pruning. highwire mutants also exhibit defects in synaptic function. Highwire promotes axon pruning and synaptic function cell-autonomously by attenuating a mitogen-activated protein kinase pathway including Wallenda, c-Jun N-terminal kinase/Basket, and the transcription factor Jun. We also show a novel role for Highwire in non-cell autonomous promotion of synaptic function from the midline glia. Highwire also regulates axon termination in the giant fibers, as highwire mutant axons exhibit severe overgrowth beyond the pruning defect. This excessive axon growth is increased by manipulating Fos expression in the cells surrounding the giant fiber terminal, suggesting that Fos regulates a trans -synaptic signal that promotes giant fiber axon growth. Copyright © 2017 by the Genetics Society of America.

  19. A Comparative Morphometric Analysis of Three Cranial Nerves in Two Phocids: The Hooded Seal (Cystophora cristata) and the Harbor Seal (Phoca vitulina).

    PubMed

    Wohlert, Dennis; Kröger, Jürgen; Witt, Martin; Schmitt, Oliver; Wree, Andreas; Czech-Damal, Nicole; Siebert, Ursula; Folkow, Lars; Hanke, Frederike D

    2016-03-01

    While our knowledge about the senses of pinnipeds has increased over the last decades almost nothing is known about the organization of the neuroanatomical pathways. In a first approach to this field of research, we assessed the total number of myelinated axons of three cranial nerves (CNs) in the harbor (Phoca vitulina, Pv) and hooded seal (Cystophora cristata, Cc). Axons were counted in semithin sections of the nerves embedded in Epon and stained with toluidine blue. In both species, the highest axon number was found within the optic nerve (Pv 187,000 ± 8,000 axons, Cc 481,600 ± 1,300 axons). Generally, considering absolute axon numbers, far more axons were counted within the optic and trigmenial nerve (Pv 136,700 ± 2,500 axons, Cc 179,300 ± 6,900 axons) in hooded in comparison to harbor seals. The axon counts of the vestibulocochlear nerve are nearly identical for both species (Pv 87,100 ± 8,100 axons, Cc 86,600 ± 2,700 axons). However, when comparing cell density, the cell density is almost equal for all nerves for both species except for the optic nerve in which cell density was particularly higher than in the other nerves and higher in hooded in comparison to harbor seals. We here present the first comparative analysis of three CNs in two phocid seals. While the CNs of these closely related species share some general characteristics, pronounced differences in axon numbers/densities are apparent. These differences seem to reflect differences in e.g. size, habitat, and/or functional significance of the innervated sensory systems. © 2015 Wiley Periodicals, Inc.

  20. Choroid Sprouting Assay: An Ex Vivo Model of Microvascular Angiogenesis

    PubMed Central

    Shao, Zhuo; Friedlander, Mollie; Hurst, Christian G.; Cui, Zhenghao; Pei, Dorothy T.; Evans, Lucy P.; Juan, Aimee M.; Tahir, Houda; Duhamel, François; Chen, Jing; Sapieha, Przemyslaw; Chemtob, Sylvain; Joyal, Jean-Sébastien; Smith, Lois E. H.

    2013-01-01

    Angiogenesis of the microvasculature is central to the etiology of many diseases including proliferative retinopathy, age-related macular degeneration and cancer. A mouse model of microvascular angiogenesis would be very valuable and enable access to a wide range of genetically manipulated tissues that closely approximate small blood vessel growth in vivo. Vascular endothelial cells cultured in vitro are widely used, however, isolating pure vascular murine endothelial cells is technically challenging. A microvascular mouse explant model that is robust, quantitative and can be reproduced without difficulty would overcome these limitations. Here we characterized and optimized for reproducibility an organotypic microvascular angiogenesis mouse and rat model from the choroid, a microvascular bed in the posterior of eye. The choroidal tissues from C57BL/6J and 129S6/SvEvTac mice and Sprague Dawley rats were isolated and incubated in Matrigel. Vascular sprouting was comparable between choroid samples obtained from different animals of the same genetic background. The sprouting area, normalized to controls, was highly reproducible between independent experiments. We developed a semi-automated macro in ImageJ software to allow for more efficient quantification of sprouting area. Isolated choroid explants responded to manipulation of the external environment while maintaining the local interactions of endothelial cells with neighboring cells, including pericytes and macrophages as evidenced by immunohistochemistry and fluorescence-activated cell sorting (FACS) analysis. This reproducible ex vivo angiogenesis assay can be used to evaluate angiogenic potential of pharmacologic compounds on microvessels and can take advantage of genetically manipulated mouse tissue for microvascular disease research. PMID:23922736

  1. Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin.

    PubMed

    Hartmann, Anja; Senning, Melanie; Hedden, Peter; Sonnewald, Uwe; Sonnewald, Sophia

    2011-02-01

    Reactivation of dormant meristems is of central importance for plant fitness and survival. Due to their large meristem size, potato (Solanum tuberosum) tubers serve as a model system to study the underlying molecular processes. The phytohormones cytokinins (CK) and gibberellins (GA) play important roles in releasing potato tuber dormancy and promoting sprouting, but their mode of action in these processes is still obscure. Here, we established an in vitro assay using excised tuber buds to study the dormancy-releasing capacity of GA and CK and show that application of gibberellic acid (GA(3)) is sufficient to induce sprouting. In contrast, treatment with 6-benzylaminopurine induced bud break but did not support further sprout growth unless GA(3) was administered additionally. Transgenic potato plants expressing Arabidopsis (Arabidopsis thaliana) GA 20-oxidase or GA 2-oxidase to modify endogenous GA levels showed the expected phenotypical changes as well as slight effects on tuber sprouting. The isopentenyltransferase (IPT) from Agrobacterium tumefaciens and the Arabidopsis cytokinin oxidase/dehydrogenase1 (CKX) were exploited to modify the amounts of CK in transgenic potato plants. IPT expression promoted earlier sprouting in vitro. Strikingly, CKX-expressing tubers exhibited a prolonged dormancy period and did not respond to GA(3). This supports an essential role of CK in terminating tuber dormancy and indicates that GA is not sufficient to break dormancy in the absence of CK. GA(3)-treated wild-type and CKX-expressing tuber buds were subjected to a transcriptome analysis that revealed transcriptional changes in several functional groups, including cell wall metabolism, cell cycle, and auxin and ethylene signaling, denoting events associated with the reactivation of dormant meristems.

  2. Association of Myosin Va and Schwann cells-derived RNA in mammal myelinated axons, analyzed by immunocytochemistry and confocal FRET microscopy.

    PubMed

    Canclini, Lucía; Wallrabe, Horst; Di Paolo, Andrés; Kun, Alejandra; Calliari, Aldo; Sotelo-Silveira, José Roberto; Sotelo, José Roberto

    2014-03-15

    Evidence from multiple sources supports the hypothesis that Schwann cells in the peripheral nervous system transfer messenger RNA and ribosomes to the axons they ensheath. Several technical and methodological difficulties exist for investigators to unravel this process in myelinated axons - a complex two-cell unit. We present an experimental design to demonstrate that newly synthesized RNA is transferred from Schwann cells to axons in association with Myosin Va. The use of quantitative confocal FRET microscopy to track newly-synthesized RNA and determine the molecular association with Myosin Va, is described in detail. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Long-Distance Axonal Growth from Human Induced Pluripotent Stem Cells After Spinal Cord Injury

    PubMed Central

    Lu, Paul; Woodruff, Grace; Wang, Yaozhi; Graham, Lori; Hunt, Matt; Wu, Di; Boehle, Eileen; Ahmad, Ruhel; Poplawski, Gunnar; Brock, John; Goldstein, Lawrence S. B.; Tuszynski, Mark H.

    2014-01-01

    Human induced pluripotent stem cells (iPSCs) from a healthy 86 year-old male were differentiated into neural stem cells and grafted into adult immunodeficient rats after spinal cord injury. Three months after C5 lateral hemisections, iPSCs survived and differentiated into neurons and glia, and extended tens of thousands of axons from the lesion site over virtually the entire length of the rat central nervous system. These iPSC-derived axons extended through adult white matter of the injured spinal cord, frequently penetrating gray matter and forming synapses with rat neurons. In turn, host supraspinal motor axons penetrated human iPSC grafts and formed synapses. These findings indicate that intrinsic neuronal mechanisms readily overcome the inhibitory milieu of the adult injured spinal cord to extend many axons over very long distances; these capabilities persist even in neurons reprogrammed from very aged human cells. PMID:25123310

  4. Granulocyte colony-stimulating factor induces in vitro lymphangiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ae Sin; Kim, Dal; Wagle, Susbin Raj

    2013-07-12

    Highlights: •G-CSF induces tube formation, migration and proliferation of lymphatic cells. •G-CSF increases phosphorylation of MAPK and Akt in lymphatic endothelial cells. •MAPK and Akt pathways are linked to G-CSF-induced in vitro lymphangiogenesis. •G-CSF increases sprouting of a lymphatic ring. •G-CSF produces peritoneal lymphangiogenesis. -- Abstract: Granulocyte-colony stimulating factor (G-CSF) is reported to induce differentiation in cells of the monocyte lineage and angiogenesis in vascular endothelial cells, but its effects on lymphangiogenesis is uncertain. Here we examined the effects and the mechanisms of G-CSF-induced lymphangiogenesis using human lymphatic endothelial cells (hLECs). Our results showed that G-CSF induced capillary-like tube formation,more » migration and proliferation of hLECs in a dose- and time-dependent manner and enhanced sprouting of thoracic duct. G-CSF increased phosphorylation of Akt and ERK1/2 in hLECs. Supporting the observations, specific inhibitors of phosphatidylinositol 3′-kinase and MAPK suppressed the G-CSF-induced in vitro lymphangiogenesis and sprouting. Intraperitoneal administration of G-CSF to mice also stimulated peritoneal lymphangiogenesis. These findings suggest that G-CSF is a lymphangiogenic factor.« less

  5. Spatial distribution of neurons innervated by chandelier cells.

    PubMed

    Blazquez-Llorca, Lidia; Woodruff, Alan; Inan, Melis; Anderson, Stewart A; Yuste, Rafael; DeFelipe, Javier; Merchan-Perez, Angel

    2015-09-01

    Chandelier (or axo-axonic) cells are a distinct group of GABAergic interneurons that innervate the axon initial segments of pyramidal cells and are thus thought to have an important role in controlling the activity of cortical circuits. To examine the circuit connectivity of chandelier cells (ChCs), we made use of a genetic targeting strategy to label neocortical ChCs in upper layers of juvenile mouse neocortex. We filled individual ChCs with biocytin in living brain slices and reconstructed their axonal arbors from serial semi-thin sections. We also reconstructed the cell somata of pyramidal neurons that were located inside the ChC axonal trees and determined the percentage of pyramidal neurons whose axon initial segments were innervated by ChC terminals. We found that the total percentage of pyramidal neurons that were innervated by a single labeled ChC was 18-22 %. Sholl analysis showed that this percentage peaked at 22-35 % for distances between 30 and 60 µm from the ChC soma, decreasing to lower percentages with increasing distances. We also studied the three-dimensional spatial distribution of the innervated neurons inside the ChC axonal arbor using spatial statistical analysis tools. We found that innervated pyramidal neurons are not distributed at random, but show a clustered distribution, with pockets where almost all cells are innervated and other regions within the ChC axonal tree that receive little or no innervation. Thus, individual ChCs may exert a strong, widespread influence on their local pyramidal neighbors in a spatially heterogeneous fashion.

  6. Essential role of axonal VGSC inactivation in time-dependent deceleration and unreliability of spike propagation at cerebellar Purkinje cells

    PubMed Central

    2014-01-01

    Background The output of the neuronal digital spikes is fulfilled by axonal propagation and synaptic transmission to influence postsynaptic cells. Similar to synaptic transmission, spike propagation on the axon is not secure, especially in cerebellar Purkinje cells whose spiking rate is high. The characteristics, mechanisms and physiological impacts of propagation deceleration and infidelity remain elusive. The spike propagation is presumably initiated by local currents that raise membrane potential to the threshold of activating voltage-gated sodium channels (VGSC). Results We have investigated the natures of spike propagation and the role of VGSCs in this process by recording spikes simultaneously on the somata and axonal terminals of Purkinje cells in cerebellar slices. The velocity and fidelity of spike propagation decreased during long-lasting spikes, to which the velocity change was more sensitive than fidelity change. These time-dependent deceleration and infidelity of spike propagation were improved by facilitating axonal VGSC reactivation, and worsen by intensifying VGSC inactivation. Conclusion Our studies indicate that the functional status of axonal VGSCs is essential to influencing the velocity and fidelity of spike propagation. PMID:24382121

  7. Development of dielectrophoresis MEMS device for PC12 cell patterning to elucidate nerve-network generation

    NASA Astrophysics Data System (ADS)

    Nakamachi, Eiji; Koga, Hirotaka; Morita, Yusuke; Yamamoto, Koji; Sakamoto, Hidetoshi

    2018-01-01

    We developed a PC12 cell trapping and patterning device by combining the dielectrophoresis (DEP) methodology and the micro electro mechanical systems (MEMS) technology for time-lapse observation of morphological change of nerve network to elucidate the generation mechanism of neural network. We succeeded a neural network generation, which consisted of cell body, axon and dendrites by using tetragonal and hexagonal cell patterning. Further, the time laps observations was carried out to evaluate the axonal extension rate. The axon extended in the channel and reached to the target cell body. We found that the shorter the PC12 cell distance, the less the axonal connection time in both tetragonal and hexagonal structures. After 48 hours culture, a maximum success rate of network formation was 85% in the case of 40 μm distance tetragonal structure.

  8. PI3K-Akt signaling activates mTOR-mediated epileptogenesis in organotypic hippocampal culture model of post-traumatic epilepsy.

    PubMed

    Berdichevsky, Yevgeny; Dryer, Alexandra M; Saponjian, Yero; Mahoney, Mark M; Pimentel, Corrin A; Lucini, Corrina A; Usenovic, Marija; Staley, Kevin J

    2013-05-22

    mTOR is activated in epilepsy, but the mechanisms of mTOR activation in post-traumatic epileptogenesis are unknown. It is also not clear whether mTOR inhibition has an anti-epileptogenic, or merely anticonvulsive effect. The rat hippocampal organotypic culture model of post-traumatic epilepsy was used to study the effects of long-term (four weeks) inhibition of signaling pathways that interact with mTOR. Ictal activity was quantified by measurement of lactate production and electrical recordings, and cell death was quantified with lactate dehydrogenase (LDH) release measurements and Nissl-stained neuron counts. Lactate and LDH measurements were well correlated with electrographic activity and neuron counts, respectively. Inhibition of PI3K and Akt prevented activation of mTOR, and was as effective as inhibition of mTOR in reducing ictal activity and cell death. A dual inhibitor of PI3K and mTOR, NVP-BEZ235, was also effective. Inhibition of mTOR with rapamycin reduced axon sprouting. Late start of rapamycin treatment was effective in reducing epileptic activity and cell death, while early termination of rapamycin treatment did not result in increased epileptic activity or cell death. The conclusions of the study are as follows: (1) the organotypic hippocampal culture model of post-traumatic epilepsy comprises a rapid assay of anti-epileptogenic and neuroprotective activities and, in this model (2) mTOR activation depends on PI3K-Akt signaling, and (3) transient inhibition of mTOR has sustained effects on epilepsy.

  9. Myosin phosphatase Fine-tunes Zebrafish Motoneuron Position during Axonogenesis

    PubMed Central

    Granato, Michael

    2016-01-01

    During embryogenesis the spinal cord shifts position along the anterior-posterior axis relative to adjacent tissues. How motor neurons whose cell bodies are located in the spinal cord while their axons reside in adjacent tissues compensate for such tissue shift is not well understood. Using live cell imaging in zebrafish, we show that as motor axons exit from the spinal cord and extend through extracellular matrix produced by adjacent notochord cells, these cells shift several cell diameters caudally. Despite this pronounced shift, individual motoneuron cell bodies stay aligned with their extending axons. We find that this alignment requires myosin phosphatase activity within motoneurons, and that mutations in the myosin phosphatase subunit mypt1 increase myosin phosphorylation causing a displacement between motoneuron cell bodies and their axons. Thus, we demonstrate that spinal motoneurons fine-tune their position during axonogenesis and we identify the myosin II regulatory network as a key regulator. PMID:27855159

  10. Side-To-Side Nerve Bridges Support Donor Axon Regeneration Into Chronically Denervated Nerves and Are Associated With Characteristic Changes in Schwann Cell Phenotype.

    PubMed

    Hendry, J Michael; Alvarez-Veronesi, M Cecilia; Snyder-Warwick, Alison; Gordon, Tessa; Borschel, Gregory H

    2015-11-01

    Chronic denervation resulting from long nerve regeneration times and distances contributes greatly to suboptimal outcomes following nerve injuries. Recent studies showed that multiple nerve grafts inserted between an intact donor nerve and a denervated distal recipient nerve stump (termed "side-to-side nerve bridges") enhanced regeneration after delayed nerve repair. To examine the cellular aspects of axon growth across these bridges to explore the "protective" mechanism of donor axons on chronically denervated Schwann cells. In Sprague Dawley rats, 3 side-to-side nerve bridges were placed over a 10-mm distance between an intact donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) distal nerve stump. Green fluorescent protein-expressing TIB axons grew across the bridges and were counted in cross section after 4 weeks. Immunofluorescent axons and Schwann cells were imaged over a 4-month period. Denervated Schwann cells dedifferentiated to a proliferative, nonmyelinating phenotype within the bridges and the recipient denervated CP nerve stump. As donor TIB axons grew across the 3 side-to-side nerve bridges and into the denervated CP nerve, the Schwann cells redifferentiated to the myelinating phenotype. Bridge placement led to an increased mass of hind limb anterior compartment muscles after 4 months of denervation compared with muscles whose CP nerve was not "protected" by bridges. This study describes patterns of donor axon regeneration and myelination in the denervated recipient nerve stump and supports a mechanism where these donor axons sustain a proregenerative state to prevent deterioration in the face of chronic denervation.

  11. Guidepost neurons for the lateral olfactory tract: expression of metabotropic glutamate receptor 1 and innervation by glutamatergic olfactory bulb axons.

    PubMed

    Hirata, Tatsumi; Kumada, Tatsuro; Kawasaki, Takahiko; Furukawa, Tomonori; Aiba, Atsu; Conquet, François; Saga, Yumiko; Fukuda, Atsuo

    2012-12-01

    The guidepost neurons for the lateral olfactory tract, which are called lot cells, are the earliest-generated neurons in the neocortex. They migrate tangentially and ventrally further down this tract, and provide scaffolding for the olfactory bulb axons projecting into this pathway. The molecular profiles of the lot cells are largely uncharacterized. We found that lot cells specifically express metabotropic glutamate receptor subtype-1 at a very early stage of development. This receptor is functionally competent and responds to a metabotropic glutamate receptor agonist with a transient increase in the intracellular calcium ion concentration. When the glutamatergic olfactory bulb axons were electrically stimulated, lot cells responded to the stimulation with a calcium increase mainly via ionotropic glutamate receptors, suggesting potential neurotransmission between the axons and lot cells during early development. Together with the finding that lot cells themselves are glutamatergic excitatory neurons, our results provide another notable example of precocious interactions between the projecting axons and their intermediate targets. Copyright © 2012 Wiley Periodicals, Inc.

  12. Schwann cell glycogen selectively supports myelinated axon function.

    PubMed

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-09-01

    Interruption of energy supply to peripheral axons is a cause of axon loss. We determined whether glycogen was present in mammalian peripheral nerve, and whether it supported axon conduction during aglycemia. We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Glycogen was present in sciatic nerve, its concentration varying directly with ambient glucose. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm, and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time course of glycogen loss. Latency to compound action potential (CAP) failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small-diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large-diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. . Copyright © 2012 American Neurological Association.

  13. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    PubMed Central

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  14. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans

    PubMed Central

    Chisholm, Andrew D.; Hutter, Harald; Jin, Yishi; Wadsworth, William G.

    2016-01-01

    The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment. PMID:28114100

  15. Axonal Transport and Morphology: How Myelination gets Nerves into Shape

    NASA Astrophysics Data System (ADS)

    Jung, Peter; Zhao, Peng; Monsma, Paula; Brown, Tony

    2011-03-01

    The local caliber of mature axons is largely determined by neurofilament (NF) content. The axoskeleton, mainly consisting of NFs, however, is dynamic. NFs are assembled in the cell body and are transported by molecular motors on microtubule tracks along the axon at a slow rate of fractions of mm per day. We combine live cell fluorescent imaging techniques to access NF transport in myelinated and non-myelinated segments of axons with computational modeling of the active NF flow to show that a), myelination locally slows NF transport rates by regulating duty ratios and b), that the predicted increase in axon caliber agrees well with experiments. This study, for the first time, links NF kinetics directly to axonal morphology, providing a novel conceptual framework for the physical understanding of processes leading to the formation of axonal structures such as the ``Nodes of Ranvier'' as well as abnormal axonal swellings associated with neurodegenerative diseases like Amyotrophic lateral sclerosis (ALS). NSF grants # IOS-0818412(PJ) and IOS-0818653 (AB).

  16. Partial Denervation of Subbasal Axons Persists Following Debridement Wounds to the Mouse Cornea

    PubMed Central

    Pajoohesh-Ganji, Ahdeah; Pal-Ghosh, Sonali; Tadvalkar, Gauri; Kyne, Briana M.; Saban, Daniel R.; Stepp, Mary Ann

    2015-01-01

    Although sensory reinnervation occurs after injury in the PNS, poor reinnervation in the elderly and those with diabetes often leads to pathology. Here we quantify subbasal axon density in the central and peripheral mouse cornea over time after three different types of injury. The mouse cornea is highly innervated with a dense array of subbasal nerves that form a spiral called the vortex at the corneal center or apex; these nerves are readily detected within flat mounted corneas. After anesthesia, corneal epithelial cells were removed using either a dulled blade or a rotating burr within an area demarcated centrally with a 1.5 mm trephine. A third wound type, superficial trephination, involved demarcating the area with the 1.5 mm trephine but not removing cells. By 7d after superficial trephination, subbasal axon density returns to control levels; by 28d the vortex reforms. Although axon density is similar to control 14d after dulled blade and rotating burr wounding, defects in axon morphology at the corneal apex remain. After 14d, axons retract from the center leaving the subbasal axon density reduced by 37.2% and 36.8% at 28d after dulled blade and rotating burr wounding, respectively, compared to control. Assessment of inflammation using flow cytometry shows that persistent inflammation is not a factor in the incomplete reinnervation. Expression of mRNAs encoding 22 regeneration associated genes (RAGs) involved in axon targeting assessed by QPCR reveals that netrin-1 and ephrin signaling are altered after wounding. Subpopulations of corneal epithelial basal cells at the corneal apex stop expressing ki67 as early as 7d after injury and by 14d and 28d after wounding, many of these basal cells undergo apoptosis and die. While subbasal axons are restored to their normal density and morphology after superficial trephination, subbasal axon recovery is partial after debridement wounds. The increase in corneal epithelial basal cell apoptosis at the apex observed at 14d after corneal debridement may destabilize newly reinnervated subbasal axons and lead to their retraction towards the periphery. PMID:26280222

  17. Partial denervation of sub-basal axons persists following debridement wounds to the mouse cornea.

    PubMed

    Pajoohesh-Ganji, Ahdeah; Pal-Ghosh, Sonali; Tadvalkar, Gauri; Kyne, Briana M; Saban, Daniel R; Stepp, Mary Ann

    2015-11-01

    Although sensory reinnervation occurs after injury in the peripheral nervous system, poor reinnervation in the elderly and those with diabetes often leads to pathology. Here we quantify sub-basal axon density in the central and peripheral mouse cornea over time after three different types of injury. The mouse cornea is highly innervated with a dense array of sub-basal nerves that form a spiral called the vortex at the corneal center or apex; these nerves are readily detected within flat mounted corneas. After anesthesia, corneal epithelial cells were removed using either a dulled blade or a rotating burr within an area demarcated centrally with a 1.5 mm trephine. A third wound type, superficial trephination, involved demarcating the area with the 1.5 mm trephine but not removing cells. By 7 days after superficial trephination, sub-basal axon density returns to control levels; by 28 days the vortex reforms. Although axon density is similar to control 14 days after dulled blade and rotating burr wounding, defects in axon morphology at the corneal apex remain. After 14 days, axons retract from the center leaving the sub-basal axon density reduced by 37.2 and 36.8% at 28 days after dulled blade and rotating burr wounding, respectively, compared with control. Assessment of inflammation using flow cytometry shows that persistent inflammation is not a factor in the incomplete reinnervation. Expression of mRNAs encoding 22 regeneration-associated genes involved in axon targeting assessed by QPCR reveals that netrin-1 and ephrin signaling are altered after wounding. Subpopulations of corneal epithelial basal cells at the corneal apex stop expressing ki67 as early as 7 days after injury and by 14 and 28 days after wounding, many of these basal cells undergo apoptosis and die. Although sub-basal axons are restored to their normal density and morphology after superficial trephination, sub-basal axon recovery is partial after debridement wounds. The increase in corneal epithelial basal cell apoptosis at the apex observed at 14 days after corneal debridement may destabilize newly reinnervated sub-basal axons and lead to their retraction toward the periphery.

  18. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching

    PubMed Central

    Suchting, Steven; Freitas, Catarina; le Noble, Ferdinand; Benedito, Rui; Bréant, Christiane; Duarte, Antonio; Eichmann, Anne

    2007-01-01

    Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using γ-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared with controls. Filopodia extension in dll4+/− retinal vessels required the vascular growth factor VEGF and was inhibited when VEGF signaling was blocked. Although VEGF expression was not significantly altered in dll4+/− retinas, dll4+/− vessels showed increased expression of VEGF receptor 2 and decreased expression of VEGF receptor 1 compared with wild-type, suggesting they could be more responsive to VEGF stimulation. In addition, expression of dll4 in wild-type tip cells was itself decreased when VEGF signaling was blocked, indicating that dll4 may act downstream of VEGF as a “brake” on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development. PMID:17296941

  19. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching.

    PubMed

    Suchting, Steven; Freitas, Catarina; le Noble, Ferdinand; Benedito, Rui; Bréant, Christiane; Duarte, Antonio; Eichmann, Anne

    2007-02-27

    Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using gamma-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared with controls. Filopodia extension in dll4(+/-) retinal vessels required the vascular growth factor VEGF and was inhibited when VEGF signaling was blocked. Although VEGF expression was not significantly altered in dll4(+/-) retinas, dll4(+/-) vessels showed increased expression of VEGF receptor 2 and decreased expression of VEGF receptor 1 compared with wild-type, suggesting they could be more responsive to VEGF stimulation. In addition, expression of dll4 in wild-type tip cells was itself decreased when VEGF signaling was blocked, indicating that dll4 may act downstream of VEGF as a "brake" on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development.

  20. Bone Marrow-Derived Mesenchymal Stem Cells Enhance Angiogenesis via their α6β1 Integrin Receptor

    PubMed Central

    Carrion, Bita; Kong, Yen P.; Kaigler, Darnell; Putnam, Andrew J

    2013-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. PMID:24056178

  1. Effects of luteinizing hormone and human chorionic gonadotropin on corpus luteum cells in a spheroid cell culture system.

    PubMed

    Walz, A; Keck, C; Weber, H; Kissel, C; Pietrowski, D

    2005-09-01

    The human corpus luteum (CL) is a highly vascularized, temporarily active endocrine gland and consists mainly of granulosa cells (GCs), theca cells (TCs), and endothelial cells (ECs). Its cyclic growth and development takes place under the influence of gonadotropic hormones. If pregnancy does occur, human chorionic gonadotropin (hCG) takes over the function of luteinizing hormone (LH) and, in contrast to LH, extends the functional life span of the CL. In this study, we investigated the effects of hCG and LH in a spheroidal cell culture model of CL development. Our data indicate that GCs secrete factors under the control of hCG that increase sprout formation of EC-spheroids. We demonstrate that the most prominent of these factors is VEGF-A. Furthermore, we found that both LH and hCG decrease sprout formation of GC-spheroids. After forming EC-GC coculture spheroids and consequently bringing GCs and ECs in close contact, sprouting increased under the influence of hCG, however not under LH. These experiments provide evidence for an hCG dependent functional switch in the GCs after coming in contact with ECs. Moreover, it demonstrates the considerably different effects of hCG and LH on GCs although their signaling is transmitted via the same receptor.

  2. Clinical progression in Parkinson disease and the neurobiology of axons.

    PubMed

    Cheng, Hsiao-Chun; Ulane, Christina M; Burke, Robert E

    2010-06-01

    Despite tremendous growth in recent years in our knowledge of the molecular basis of Parkinson disease (PD) and the molecular pathways of cell injury and death, we remain without therapies that forestall disease progression. Although there are many possible explanations for this lack of success, one is that experimental therapeutics to date have not adequately focused on an important component of the disease process, that of axon degeneration. It remains unknown what neuronal compartment, either the soma or the axon, is involved at disease onset, although some have proposed that it is the axons and their terminals that take the initial brunt of injury. Nevertheless, this concept has not been formally incorporated into many of the current theories of disease pathogenesis, and it has not achieved a wide consensus. More importantly, in view of growing evidence that the molecular mechanisms of axon degeneration are separate and distinct from the canonical pathways of programmed cell death that mediate soma destruction, the possibility of early involvement of axons in PD has not been adequately emphasized as a rationale to explore the neurobiology of axons for novel therapeutic targets. We propose that ongoing degeneration of axons, not cell bodies, is the primary determinant of clinically apparent progression of disease, and that future experimental therapeutics intended to forestall disease progression will benefit from a new focus on the distinct mechanisms of axon degeneration.

  3. Functional ionotropic glutamate receptors on peripheral axons and myelin.

    PubMed

    Christensen, Pia Crone; Welch, Nicole Cheryl; Brideau, Craig; Stys, Peter K

    2016-09-01

    Neurotransmitter-dependent signaling is traditionally restricted to axon terminals. However, receptors are present on myelinating glia, suggesting that chemical transmission may also occur along axons. Confocal microscopy and Ca(2+) -imaging using an axonally expressed FRET-based reporter was used to measure Ca(2+) changes and morphological alterations in myelin in response to stimulation of glutamate receptors. Activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or N-methyl-D-aspartate (NMDA) receptors induced a Ca(2+) increase in axon cylinders. However, only the latter caused structural alterations in axons, despite similar Ca(2+) increases. Myelin morphology was significantly altered by NMDA receptor activation, but not by AMPA receptors. Cu(2+) ions influenced the NMDA receptor-dependent response, suggesting that this metal modulates axonal receptors. Glutamate increased ribosomal signal in Schwann cell cytoplasm. Axon cylinders and myelin of peripheral nervous system axons respond to glutamate, with a consequence being an increase in Schwann cell ribosomes. This may have implications for nerve pathology and regeneration. Muscle Nerve 54: 451-459, 2016. © 2016 Wiley Periodicals, Inc.

  4. Axon growth regulation by a bistable molecular switch.

    PubMed

    Padmanabhan, Pranesh; Goodhill, Geoffrey J

    2018-04-25

    For the brain to function properly, its neurons must make the right connections during neural development. A key aspect of this process is the tight regulation of axon growth as axons navigate towards their targets. Neuronal growth cones at the tips of developing axons switch between growth and paused states during axonal pathfinding, and this switching behaviour determines the heterogeneous axon growth rates observed during brain development. The mechanisms controlling this switching behaviour, however, remain largely unknown. Here, using mathematical modelling, we predict that the molecular interaction network involved in axon growth can exhibit bistability, with one state representing a fast-growing growth cone state and the other a paused growth cone state. Owing to stochastic effects, even in an unchanging environment, model growth cones reversibly switch between growth and paused states. Our model further predicts that environmental signals could regulate axon growth rate by controlling the rates of switching between the two states. Our study presents a new conceptual understanding of growth cone switching behaviour, and suggests that axon guidance may be controlled by both cell-extrinsic factors and cell-intrinsic growth regulatory mechanisms. © 2018 The Author(s).

  5. Con-nectin axons and dendrites.

    PubMed

    Beaudoin, Gerard M J

    2006-07-03

    Unlike adherens junctions, synapses are asymmetric connections, usually between axons and dendrites, that rely on various cell adhesion molecules for structural stability and function. Two cell types of adhesion molecules found at adherens junctions, cadherins and nectins, are thought to mediate homophilic interaction between neighboring cells. In this issue, Togashi et al. (see p. 141) demonstrate that the differential localization of two heterophilic interacting nectins mediates the selective attraction of axons and dendrites in cooperation with cadherins.

  6. Frequency-dependent reliability of spike propagation is function of axonal voltage-gated sodium channels in cerebellar Purkinje cells.

    PubMed

    Yang, Zhilai; Wang, Jin-Hui

    2013-12-01

    The spike propagation on nerve axons, like synaptic transmission, is essential to ensure neuronal communication. The secure propagation of sequential spikes toward axonal terminals has been challenged in the neurons with a high firing rate, such as cerebellar Purkinje cells. The shortfall of spike propagation makes some digital spikes disappearing at axonal terminals, such that the elucidation of the mechanisms underlying spike propagation reliability is crucial to find the strategy of preventing loss of neuronal codes. As the spike propagation failure is influenced by the membrane potentials, this process is likely caused by altering the functional status of voltage-gated sodium channels (VGSC). We examined this hypothesis in Purkinje cells by using pair-recordings at their somata and axonal blebs in cerebellar slices. The reliability of spike propagation was deteriorated by elevating spike frequency. The frequency-dependent reliability of spike propagation was attenuated by inactivating VGSCs and improved by removing their inactivation. Thus, the functional status of axonal VGSCs influences the reliability of spike propagation.

  7. Neuronal growth cones respond to laser-induced axonal damage

    PubMed Central

    Wu, Tao; Mohanty, Samarendra; Gomez-Godinez, Veronica; Shi, Linda Z.; Liaw, Lih-Huei; Miotke, Jill; Meyer, Ronald L.; Berns, Michael W.

    2012-01-01

    Although it is well known that damage to neurons results in release of substances that inhibit axonal growth, release of chemical signals from damaged axons that attract axon growth cones has not been observed. In this study, a 532 nm 12 ns laser was focused to a diffraction-limited spot to produce site-specific damage to single goldfish axons in vitro. The axons underwent a localized decrease in thickness (‘thinning’) within seconds. Analysis by fluorescence and transmission electron microscopy indicated that there was no gross rupture of the cell membrane. Mitochondrial transport along the axonal cytoskeleton immediately stopped at the damage site, but recovered over several minutes. Within seconds of damage nearby growth cones extended filopodia towards the injury and were often observed to contact the damaged site. Turning of the growth cone towards the injured axon also was observed. Repair of the laser-induced damage was evidenced by recovery of the axon thickness as well as restoration of mitochondrial movement. We describe a new process of growth cone response to damaged axons. This has been possible through the interface of optics (laser subcellular surgery), fluorescence and electron microscopy, and a goldfish retinal ganglion cell culture model. PMID:21831892

  8. Process Extension from Embryonic Stem Cell-Derived Motor Neurons through Synthetic Extracellular Matrix Mimics

    NASA Astrophysics Data System (ADS)

    McKinnon, Daniel Devaud

    This thesis focuses on studying the extension of motor axons through synthetic poly(ethylene glycol) PEG hydrogels that have been modified with biochemical functionalities to render them more biologically relevant. Specifically, the research strategy is to encapsulate embryonic stem cell-derived motor neurons (ESMNs) in synthetic PEG hydrogels crosslinked through three different chemistries providing three mechanisms for dynamically tuning material properties. First, a covalently crosslinked, enzymatically degradable hydrogel is developed and exploited to study the biophysical dynamics of axon extension and matrix remodeling. It is demonstrated that dispersed motor neurons require a battery of adhesive peptides and growth factors to maintain viability and extend axons while those in contact with supportive neuroglial cells do not. Additionally, cell-degradable crosslinker peptides and a soft modulus mimicking that of the spinal cord are requirements for axon extension. However, because local degradation of the hydrogel results in a cellular environment significantly different than that of the bulk, enzymatically degradable peptide crosslinkers were replaced with reversible covalent hydrazone bonds to study the effect of hydrogel modulus on axon extension. This material is characterized in detail and used to measure forces involved in axon extension. Finally, a hydrogel with photocleavable linkers incorporated into the network structure is exploited to explore motor axon response to physical channels. This system is used to direct the growth of motor axons towards co-cultured myotubes, resulting in the formation of an in vitro neural circuit.

  9. Comparison of trophic factors' expression between paralyzed and recovering muscles after facial nerve injury. A quantitative analysis in time course.

    PubMed

    Grosheva, Maria; Nohroudi, Klaus; Schwarz, Alisa; Rink, Svenja; Bendella, Habib; Sarikcioglu, Levent; Klimaschewski, Lars; Gordon, Tessa; Angelov, Doychin N

    2016-05-01

    After peripheral nerve injury, recovery of motor performance negatively correlates with the poly-innervation of neuromuscular junctions (NMJ) due to excessive sprouting of the terminal Schwann cells. Denervated muscles produce short-range diffusible sprouting stimuli, of which some are neurotrophic factors. Based on recent data that vibrissal whisking is restored perfectly during facial nerve regeneration in blind rats from the Sprague Dawley (SD)/RCS strain, we compared the expression of brain derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF2), insulin growth factors 1 and 2 (IGF1, IGF2) and nerve growth factor (NGF) between SD/RCS and SD-rats with normal vision but poor recovery of whisking function after facial nerve injury. To establish which trophic factors might be responsible for proper NMJ-reinnervation, the transected facial nerve was surgically repaired (facial-facial anastomosis, FFA) for subsequent analysis of mRNA and proteins expressed in the levator labii superioris muscle. A complicated time course of expression included (1) a late rise in BDNF protein that followed earlier elevated gene expression, (2) an early increase in FGF2 and IGF2 protein after 2 days with sustained gene expression, (3) reduced IGF1 protein at 28 days coincident with decline of raised mRNA levels to baseline, and (4) reduced NGF protein between 2 and 14 days with maintained gene expression found in blind rats but not the rats with normal vision. These findings suggest that recovery of motor function after peripheral nerve injury is due, at least in part, to a complex regulation of lesion-associated neurotrophic factors and cytokines in denervated muscles. The increase of FGF-2 protein and concomittant decrease of NGF (with no significant changes in BDNF or IGF levels) during the first week following FFA in SD/RCS blind rats possibly prevents the distal branching of regenerating axons resulting in reduced poly-innervation of motor endplates. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Live-cell imaging of retrograde transport initiation in primary neurons.

    PubMed

    Nirschl, Jeffrey J; Holzbaur, Erika L F

    2016-01-01

    Axonal transport is an essential function in neurons, as mutations in either motor proteins or their adaptors cause neurodegeneration. While some mutations cause a complete block in axonal transport, other mutations affect transport more subtly. This is especially true of mutations identified in human patients, many of which impair but do not block motor function in the cell. Dissecting the pathogenic mechanisms of these more subtle mutations requires assays that can tease apart the distinct phases of axonal transport, including transport initiation, sustained/regulated motility, and cargo-specific sorting or delivery. Here, we describe a live-cell photobleaching assay to assess retrograde flux from the distal axon tip, a measure for distal transport initiation. We have previously used this method to show that the CAP-Gly domain of DCTN1 is required for efficient retrograde transport initiation in the distal axon, but it is not required to maintain retrograde flux along the mid-axon (Moughamian & Holzbaur, 2012). This approach has allowed us to examine the effects of disease-causing mutations in the axonal transport machinery, and in combination with other assays, will be useful in determining the mechanisms and regulation of axonal transport in normal and diseased conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Pathfinding in a large vertebrate axon tract: isotypic interactions guide retinotectal axons at multiple choice points

    PubMed Central

    Pittman, Andrew J.; Law, Mei-Yee; Chien, Chi-Bin

    2008-01-01

    Summary Navigating axons respond to environmental guidance signals, but can also follow axons that have gone before—pioneer axons. Pioneers have been studied extensively in simple systems, but the role of axon-axon interactions remains largely unexplored in large vertebrate axon tracts, where cohorts of identical axons could potentially use isotypic interactions to guide each other through multiple choice points. Furthermore, the relative importance of axon-axon interactions compared to axon-autonomous receptor function has not been assessed. Here we test the role of axon-axon interactions in retinotectal development, by devising a technique to selectively remove or replace early-born retinal ganglion cells (RGCs). We find that early RGCs are both necessary and sufficient for later axons to exit the eye. Furthermore, introducing misrouted axons by transplantation reveals that guidance from eye to tectum relies heavily on interactions between axons, including both pioneer-follower and community effects. We conclude that axon-axon interactions and ligand-receptor signaling have coequal roles, cooperating to ensure the fidelity of axon guidance in developing vertebrate tracts. PMID:18653554

  12. The effect of nerve section on the incidence and distribution of gap junctions in the odontoblast layer of the cat.

    PubMed

    Holland, G R

    1987-08-01

    Gap junctions are numerous in the odontoblast layer of the dental pulp and may link sensory axons to odontoblasts. If these junctions do link axons and odontoblasts, they, together with the axons, should disappear after cutting the pulpal nerves centrally. Under general anesthesia the inferior alveolar nerve on one side of two young adult cats was sectioned. Under general anesthesia the animals were perfused with fixative 56 hours later and the coronal dental pulp prepared for electron microscopy. Ultrathin sections were examined from the level of the pulpal cornu and levels approximately one, two, and three mm below this. The incidence of cell processes and gap junctions was measured at different distances from the pulp predentin junction, and operated and control sides compared. The odontoblast layer at the level of the cornu differed from elsewhere in having, on the control side, a greater density of cell processes and gap junctions and in having clearly recognizable axons approaching to within 5 to 10 micron of the predentin. The only statistically significant changes after nerve section occurred in this layer and consisted of a decline in the incidence of cell processes and of gap junctions that link one cell process to another. There was no significant difference between the operated and control sides in the number of gap junctions linking cell processes to recognizable cell bodies. The odontoblast layer in the pulpal cornu contained substantial numbers of unsheathed axons, many presumably en route to the dentin. These axons may participate in gap junctions that link them to other cell processes, possibly even other axons.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Trafficking of cell surface beta-amyloid precursor protein: retrograde and transcytotic transport in cultured neurons

    PubMed Central

    1995-01-01

    Amyloid beta-protein (A beta), the principal constituent of senile plaques seen in Alzheimer's disease (AD), is derived by proteolysis from the beta-amyloid precursor protein (beta PP). The mechanism of A beta production in neurons, which are hypothesized to be a rich source of A beta in brain, remains to be defined. In this study, we describe a detailed localization of cell surface beta PP and its subsequent trafficking in primary cultured neurons. Full-length cell surface beta PP was present primarily on perikarya and axons, the latter with a characteristic discontinuous pattern. At growth cones, cell surface beta PP was inconsistently detected. By visualizing the distribution of beta PP monoclonal antibodies added to intact cultures, beta PP was shown to be internalized from distal axons or terminals and retrogradely transported back to perikarya in organelles which colocalized with fluid-phase endocytic markers. Retrograde transport of beta PP was shown in both hippocampal and peripheral sympathetic neurons, the latter using a compartment culture system that isolated cell bodies from distal axons and terminals. In addition, we demonstrated that beta PP from distal axons was transcytotically transported to the surface of perikarya from distal axons in sympathetic neurons. Indirect evidence of this transcytotic pathway was obtained in hippocampal neurons using antisense oligonucleotide to the kinesin heavy chain to inhibit anterograde beta PP transport. Taken together, these results demonstrate novel aspects of beta PP trafficking in neurons, including retrograde axonal transport and transcytosis. Moreover, the axonal predominance of cell surface beta PP is unexpected in view of the recent report of polarized sorting of beta PP to the basolateral domain of MDCK cells. PMID:7721945

  14. Morphological characterization of sprouting and intussusceptive angiogenesis by SEM in oral squamous cell carcinoma.

    PubMed

    Oliveira de Oliveira, Laura Beatriz; Faccin Bampi, Vinícius; Ferreira Gomes, Carolina; Braga da Silva, Jefferson Luis; Encarnação Fiala Rechsteiner, Sandra Mara

    2014-01-01

    The word angiogenesis indicates the formation of new vascular segments from existing vessels such as capillaries and venules. Blood vessel formation in tumors is the result of rapid, disorganized vascular growth through two distinct mechanisms: sprouting and intussusceptive angiogenesis. The objective of this study was to elucidate the morphological aspects of these two vascular growth mechanisms in oral squamous cell carcinoma induced in hamster buccal pouch. Eight Syrian golden hamsters had their right buccal pouch treated with DMBA 0.5% and 10% carbamide peroxide for 90 days in order to produce squamous cell carcinoma in this site. Next, buccal pouches of the animals were submitted to the vascular corrosion technique and then analyzed by scanning electron microscopy. The vascular figures of sprouts were observed in the entire vascular network of the buccal pouches, as opposed to the intussusceptive angiogenesis that was predominantly observed in the sub-epithelial network. It was possible to differentiate the figures of sprouts from artifacts by the analysis of the blind ending of these structures. Intussusceptive angiogenesis was identified by the presence of holes trespassing the lumen of the capillaries. Vascular expansion occurred through intussusceptive angiogenesis in two ways: by the fusion of the pillars to form a new capillary and, by increasing the girth of the pillar to form meshes. The method of corrosion associated with scanning electron microscopy proved to be an excellent tool to study the two types of angiogenesis in oral squamous cell carcinoma in the hamster buccal pouch. © 2013 Wiley Periodicals, Inc.

  15. AUTONOMIC AXONS IN THE HUMAN ENDOCRINE PANCREAS SHOW UNIQUE INNERVATION PATTERNS

    PubMed Central

    Rodriguez-Diaz, Rayner; Abdulreda, Midhat H.; Formoso, Alexander L.; Gans, Itai; Ricordi, Camillo; Berggren, Per-Olof; Caicedo, Alejandro

    2011-01-01

    SUMMARY The autonomic nervous system regulates hormone secretion from the endocrine pancreas, the islets of Langerhans, and thus impacts glucose metabolism. The parasympathetic and sympathetic nerves innervate the pancreatic islet, but the precise innervation patterns are not known, particularly in human islets. Here we demonstrate that the innervation of human islets is different from that of mouse islets and that it does not conform to existing models of autonomic control of islet function. By visualizing axons in three dimensions and quantifying axonal densities and contacts within pancreatic islets, we found that, in contrast to mouse endocrine cells, human endocrine cells are sparsely contacted by autonomic axons. Few parasympathetic cholinergic axons penetrate the human islet and the invading sympathetic fibers preferentially innervate smooth muscle cells of blood vessels located within the islet. Thus, rather than modulating endocrine cell function directly, sympathetic nerves may regulate hormone secretion in human islets by controlling local blood flow or by acting on islet regions located downstream. PMID:21723503

  16. Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior.

    PubMed

    Mason, Brooke N; Starchenko, Alina; Williams, Rebecca M; Bonassar, Lawrence J; Reinhart-King, Cynthia A

    2013-01-01

    Numerous studies have described the effects of matrix stiffening on cell behavior using two-dimensional synthetic surfaces; however, less is known about the effects of matrix stiffening on cells embedded in three-dimensional in vivo-like matrices. A primary limitation in investigating the effects of matrix stiffness in three dimensions is the lack of materials that can be tuned to control stiffness independently of matrix density. Here, we use collagen-based scaffolds where the mechanical properties are tuned using non-enzymatic glycation of the collagen in solution, prior to polymerization. Collagen solutions glycated prior to polymerization result in collagen gels with a threefold increase in compressive modulus without significant changes to the collagen architecture. Using these scaffolds, we show that endothelial cell spreading increases with matrix stiffness, as does the number and length of angiogenic sprouts and the overall spheroid outgrowth. Differences in sprout length are maintained even when the receptor for advanced glycation end products is inhibited. Our results demonstrate the ability to de-couple matrix stiffness from matrix density and structure in collagen gels, and that increased matrix stiffness results in increased sprouting and outgrowth. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus

    PubMed Central

    Somogyi, Peter; Katona, Linda; Klausberger, Thomas; Lasztóczi, Bálint; Viney, Tim J.

    2014-01-01

    The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states. PMID:24366131

  18. Physiological, biochemical and transcriptional analysis of onion bulbs during storage

    PubMed Central

    Chope, Gemma A.; Cools, Katherine; Hammond, John P.; Thompson, Andrew J.; Terry, Leon A.

    2012-01-01

    Background and Aims During the transition from endo-dormancy to eco-dormancy and subsequent growth, the onion bulb undergoes the transition from sink organ to source, to sustain cell division in the meristematic tissue. The mechanisms controlling these processes are not fully understood. Here, a detailed analysis of whole onion bulb physiological, biochemical and transcriptional changes in response to sprouting is reported, enabling a better knowledge of the mechanisms regulating post-harvest onion sprout development. Methods Biochemical and physiological analyses were conducted on different cultivars (‘Wellington’, ‘Sherpa’ and ‘Red Baron’) grown at different sites over 3 years, cured at different temperatures (20, 24 and 28 °C) and stored under different regimes (1, 3, 6 and 6 → 1 °C). In addition, the first onion oligonucleotide microarray was developed to determine differential gene expression in onion during curing and storage, so that transcriptional changes could support biochemical and physiological analyses. Key Results There were greater transcriptional differences between samples at harvest and before sprouting than between the samples taken before and after sprouting, with some significant changes occurring during the relatively short curing period. These changes are likely to represent the transition from endo-dormancy to sprout suppression, and suggest that endo-dormancy is a relatively short period ending just after curing. Principal component analysis of biochemical and physiological data identified the ratio of monosaccharides (fructose and glucose) to disaccharide (sucrose), along with the concentration of zeatin riboside, as important factors in discriminating between sprouting and pre-sprouting bulbs. Conclusions These detailed analyses provide novel insights into key regulatory triggers for sprout dormancy release in onion bulbs and provide the potential for the development of biochemical or transcriptional markers for sprout initiation. Evidence presented herein also suggests there is no detrimental effect on bulb storage life and quality caused by curing at 20 °C, producing a considerable saving in energy and costs. PMID:22234560

  19. A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures.

    PubMed

    Mok, Sue-Ann; Lund, Karen; Campenot, Robert B

    2009-05-01

    Previous investigations of retrograde survival signaling by nerve growth factor (NGF) and other neurotrophins have supported diverse mechanisms, but all proposed mechanisms have in common the generation of survival signals retrogradely transmitted to the neuronal cell bodies. We report the finding of a retrograde apoptotic signal in axons that is suppressed by local NGF signaling. NGF withdrawal from distal axons alone was sufficient to activate the pro-apoptotic transcription factor, c-jun, in the cell bodies. Providing NGF directly to cell bodies, thereby restoring a source of NGF-induced survival signals, could not prevent c-jun activation caused by NGF withdrawal from the distal axons. This is evidence that c-jun is not activated due to loss of survival signals at the cell bodies. Moreover, blocking axonal transport with colchicine inhibited c-jun activation caused by NGF deprivation suggesting that a retrogradely transported pro-apoptotic signal, rather than loss of a retrogradely transported survival signal, caused c-jun activation. Additional experiments showed that activation of c-jun, pro-caspase-3 cleavage, and apoptosis were blocked by the protein kinase C inhibitors, rottlerin and chelerythrine, only when applied to distal axons suggesting that they block the axon-specific pro-apoptotic signal. The rottlerin-sensitive mechanism was found to regulate glycogen synthase kinase 3 (GSK3) activity. The effect of siRNA knockdown, and pharmacological inhibition of GSK3 suggests that GSK3 is required for apoptosis caused by NGF deprivation and may function as a retrograde carrier of the axon apoptotic signal. The existence of a retrograde death signaling system in axons that is suppressed by neurotrophins has broad implications for neurodevelopment and for discovering treatments for neurodegenerative diseases and neurotrauma.

  20. Erythropoietin has an antiapoptotic effect after myocardial infarction and stimulates in vitro aortic ring sprouting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansson Broberg, Agneta; Grinnemo, Karl-Henrik; Genead, Rami

    Aims were to explore if darbepoietin-{alpha} in mouse can induce angiogenesis and if moderate doses after myocardial infarction stimulates periinfarct capillary and arteriolar densities, cell proliferation, and apoptosis. Myocardial infarction was induced by ligation of LAD. Mouse aortic rings (0.8 mm) were cultured in matrigel and the angiogenic sprouting was studied after addition of darbepoietin-{alpha} with and without VEGF-165. After 12 days the hemoglobin concentration was 25% higher in the darbepoietin-{alpha} treated mice than in the control group. No difference in capillary densities in the periinfarct or noninfarcted areas was seen with darbepoietin-{alpha}. Cell proliferation was about 10 times highermore » in the periinfarct area than in the noninfarcted wall. Darbepoietin-{alpha} treatment led to a decrease of cell proliferation (BrdU, (p < 0.02)) and apoptosis (TUNEL, p < 0.005) with about 30% in the periinfarct area. Darbepoietin-{alpha} and VEGF-165 both independently induced sprouting from aortic rings. The results suggest that darbepoietin-{alpha} can induce angiogenesis but that moderate doses after myocardial infarction are not angiogenic but antiapoptotic.« less

  1. Netrin1 establishes multiple boundaries for axon growth in the developing spinal cord.

    PubMed

    Varadarajan, Supraja G; Butler, Samantha J

    2017-10-01

    The canonical model for netrin1 function proposed that it acted as a long-range chemotropic axon guidance cue. In the developing spinal cord, floor-plate (FP)-derived netrin1 was thought to act as a diffusible attractant to draw commissural axons to the ventral midline. However, our recent studies have shown that netrin1 is dispensable in the FP for axon guidance. We have rather found that netrin1 acts locally: netrin1 is produced by neural progenitor cells (NPCs) in the ventricular zone (VZ), and deposited on the pial surface as a haptotactic adhesive substrate that guides Dcc + axon growth. Here, we further demonstrate that this netrin1 pial-substrate has an early role orienting pioneering spinal axons, directing them to extend ventrally. However, as development proceeds, commissural axons choose to grow around a boundary of netrin1 expressing cells in VZ, instead of continuing to extend alongside the netrin1 pial-substrate in the ventral spinal cord. This observation suggests netrin1 may supply a more complex activity than pure adhesion, with netrin1-expressing cells also supplying a growth boundary for axons. Supporting this possibility, we have observed that additional domains of netrin1 expression arise adjacent to the dorsal root entry zone (DREZ) in E12.5 mice that are also required to sculpt axonal growth. Together, our studies suggest that netrin1 provides "hederal" boundaries: a local growth substrate that promotes axon extension, while also preventing local innervation of netrin1-expressing domains. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A small molecule targeting ALK1 prevents Notch cooperativity and inhibits functional angiogenesis.

    PubMed

    Kerr, Georgina; Sheldon, Helen; Chaikuad, Apirat; Alfano, Ivan; von Delft, Frank; Bullock, Alex N; Harris, Adrian L

    2015-04-01

    Activin receptor-like kinase 1 (ALK1, encoded by the gene ACVRL1) is a type I BMP/TGF-β receptor that mediates signalling in endothelial cells via phosphorylation of SMAD1/5/8. During angiogenesis, sprouting endothelial cells specialise into tip cells and stalk cells. ALK1 synergises with Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2 and thereby represses tip cell formation and angiogenic sprouting. The ALK1-Fc soluble protein fusion has entered clinic trials as a therapeutic strategy to sequester the high-affinity extracellular ligand BMP9. Here, we determined the crystal structure of the ALK1 intracellular kinase domain and explored the effects of a small molecule kinase inhibitor K02288 on angiogenesis. K02288 inhibited BMP9-induced phosphorylation of SMAD1/5/8 in human umbilical vein endothelial cells to reduce both the SMAD and the Notch-dependent transcriptional responses. In endothelial sprouting assays, K02288 treatment induced a hypersprouting phenotype reminiscent of Notch inhibition. Furthermore, K02288 caused dysfunctional vessel formation in a chick chorioallantoic membrane assay of angiogenesis. Such activity may be advantageous for small molecule inhibitors currently in preclinical development for specific BMP gain of function conditions, including diffuse intrinsic pontine glioma and fibrodysplasia ossificans progressiva, as well as more generally for other applications in tumour biology.

  3. The electromotor system of the electric catfish (Malapterurus electricus): a fine-structural analysis.

    PubMed

    Janetzko, A; Zimmermann, H; Volknandt, W

    1987-03-01

    The electromotor system of the electric catfish (Malapterurus electricus) consists of two large ganglion cells situated in the spinal cord, two single axons containing electric nerves and two large electric organs with several million electroplaque cells. The small, irregularly stacked electroplaque cells possess at their center a crater-like indentation from which a stalk like protrusion arises. Many synaptic contacts derived from a single axon collateral are carried on lobe-like protrusions at the terminal knob of this stalk. The electric nerve consists of a large myelinated axon (diameter: 25 micron) surrounded by many layers of connective tissue cells. The two ganglion cells (200 micron in diameter) are rich in elements of the rough endoplasmic reticulum, Golgi apparatus and lysosomal structures. The cytoplasm of the soma changes its appearance towards the voluminous axon hillock (50 micron in diameter) which these organelles do not enter. The cell soma is perforated in a tunnel-like manner by blood capillaries, axons and processes of glial cells. The cell soma and dendrites are covered with two types of synapse. One type forms mixed chemical and electrical (gap junctions) contacts with intermediate attachment plaques. The other type is only chemical in nature. This system may be useful in the study of an identified vertebrate giant neuron.

  4. Aurora kinase B regulates axonal outgrowth and regeneration in the spinal motor neurons of developing zebrafish.

    PubMed

    Gwee, Serene S L; Radford, Rowan A W; Chow, Sharron; Syal, Monisha D; Morsch, Marco; Formella, Isabel; Lee, Albert; Don, Emily K; Badrock, Andrew P; Cole, Nicholas J; West, Adrian K; Cheung, Steve N S; Chung, Roger S

    2018-02-21

    Aurora kinase B (AurkB) is a serine/threonine protein kinase with a well-characterised role in orchestrating cell division and cytokinesis, and is prominently expressed in healthy proliferating and cancerous cells. However, the role of AurkB in differentiated and non-dividing cells has not been extensively explored. Previously, we have described a significant upregulation of AurkB expression in cultured cortical neurons following an experimental axonal transection. This is somewhat surprising, as AurkB expression is generally associated only with dividing cells Frangini et al. (Mol Cell 51:647-661, 2013); Hegarat et al. (J Cell Biol 195:1103-1113, 2011); Lu et al. (J Biol Chem 283:31785-31790, 2008); Trakala et al. (Cell Cycle 12:1030-1041, 2014). Herein, we present the first description of a role for AurkB in terminally differentiated neurons. AurkB was prominently expressed within post-mitotic neurons of the zebrafish brain and spinal cord. The expression of AurkB varied during the development of the zebrafish spinal motor neurons. Utilising pharmacological and genetic manipulation to impair AurkB activity resulted in truncation and aberrant motor axon morphology, while overexpression of AurkB resulted in extended axonal outgrowth. Further pharmacological inhibition of AurkB activity in regenerating axons delayed their recovery following UV laser-mediated injury. Collectively, these results suggest a hitherto unreported role of AurkB in regulating neuronal development and axonal outgrowth.

  5. α-Synuclein pathology in the cranial and spinal nerves in Lewy body disease.

    PubMed

    Nakamura, Keiko; Mori, Fumiaki; Tanji, Kunikazu; Miki, Yasuo; Toyoshima, Yasuko; Kakita, Akiyoshi; Takahashi, Hitoshi; Yamada, Masahito; Wakabayashi, Koichi

    2016-06-01

    Accumulation of phosphorylated α-synuclein in neurons and glial cells is a histological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA). Recently, filamentous aggregations of phosphorylated α-synuclein have been reported in the cytoplasm of Schwann cells, but not in axons, in the peripheral nervous system in MSA, mainly in the cranial and spinal nerve roots. Here we conducted an immunohistochemical investigation of the cranial and spinal nerves and dorsal root ganglia of patients with LBD. Lewy axons were found in the oculomotor, trigeminal and glossopharyngeal-vagus nerves, but not in the hypoglossal nerve. The glossopharyngeal-vagus nerves were most frequently affected, with involvement in all of 20 subjects. In the spinal nerve roots, Lewy axons were found in all of the cases examined. Lewy axons in the anterior nerves were more frequent and numerous in the thoracic and sacral segments than in the cervical and lumbar segments. On the other hand, axonal lesions in the posterior spinal nerve roots appeared to increase along a cervical-to-sacral gradient. Although Schwann cell cytoplasmic inclusions were found in the spinal nerves, they were only minimal. In the dorsal root ganglia, axonal lesions were seldom evident. These findings indicate that α-synuclein pathology in the peripheral nerves is axonal-predominant in LBD, whereas it is restricted to glial cells in MSA. © 2015 Japanese Society of Neuropathology.

  6. Exosomes Derived from Mesenchymal Stromal Cells Promote Axonal Growth of Cortical Neurons.

    PubMed

    Zhang, Yi; Chopp, Michael; Liu, Xian Shuang; Katakowski, Mark; Wang, Xinli; Tian, Xinchu; Wu, David; Zhang, Zheng Gang

    2017-05-01

    Treatment of brain injury with exosomes derived from mesenchymal stromal cells (MSCs) enhances neurite growth. However, the direct effect of exosomes on axonal growth and molecular mechanisms underlying exosome-enhanced neurite growth are not known. Using primary cortical neurons cultured in a microfluidic device, we found that MSC-exosomes promoted axonal growth, whereas attenuation of argonaut 2 protein, one of the primary microRNA (miRNA) machinery proteins, in MSC-exosomes abolished their effect on axonal growth. Both neuronal cell bodies and axons internalized MSC-exosomes, which was blocked by botulinum neurotoxins (BoNTs) that cleave proteins of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. Moreover, tailored MSC-exosomes carrying elevated miR-17-92 cluster further enhanced axonal growth compared to native MSC-exosomes. Quantitative RT-PCR and Western blot analysis showed that the tailored MSC-exosomes increased levels of individual members of this cluster and activated the PTEN/mTOR signaling pathway in recipient neurons, respectively. Together, our data demonstrate that native MSC-exosomes promote axonal growth while the tailored MSC-exosomes can further boost this effect and that tailored exosomes can deliver their selective cargo miRNAs into and activate their target signals in recipient neurons. Neuronal internalization of MSC-exosomes is mediated by the SNARE complex. This study reveals molecular mechanisms that contribute to MSC-exosome-promoted axonal growth, which provides a potential therapeutic strategy to enhance axonal growth.

  7. Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo

    PubMed Central

    Tukker, John J; Klausberger, Thomas; Somogyi, Peter

    2015-01-01

    Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation. PMID:24141313

  8. The Role of Direct Current Electric Field-Guided Stem Cell Migration in Neural Regeneration.

    PubMed

    Yao, Li; Li, Yongchao

    2016-06-01

    Effective directional axonal growth and neural cell migration are crucial in the neural regeneration of the central nervous system (CNS). Endogenous currents have been detected in many developing nervous systems. Experiments have demonstrated that applied direct current (DC) electric fields (EFs) can guide axonal growth in vitro, and attempts have been made to enhance the regrowth of damaged spinal cord axons using DC EFs in in vivo experiments. Recent work has revealed that the migration of stem cells and stem cell-derived neural cells can be guided by DC EFs. These studies have raised the possibility that endogenous and applied DC EFs can be used to direct neural tissue regeneration. Although the mechanism of EF-directed axonal growth and cell migration has not been fully understood, studies have shown that the polarization of cell membrane proteins and the activation of intracellular signaling molecules are involved in the process. The application of EFs is a promising biotechnology for regeneration of the CNS.

  9. Interactions of UNC-34 Enabled With Rac GTPases and the NIK Kinase MIG-15 in Caenorhabditis elegans Axon Pathfinding and Neuronal Migration

    PubMed Central

    Shakir, M. Afaq; Gill, Jason S.; Lundquist, Erik A.

    2006-01-01

    Many genes that affect axon pathfinding and cell migration have been identified. Mechanisms by which these genes and the molecules they encode interact with one another in pathways and networks to control developmental events are unclear. Rac GTPases, the cytoskeletal signaling molecule Enabled, and NIK kinase have all been implicated in regulating axon pathfinding and cell migration. Here we present evidence that, in Caenorhabditis elegans, three Rac GTPases, CED-10, RAC-2, and MIG-2, define three redundant pathways that each control axon pathfinding, and that the NIK kinase MIG-15 acts in each Rac pathway. Furthermore, we show that the Enabled molecule UNC-34 defines a fourth partially redundant pathway that acts in parallel to Rac/MIG-15 signaling in axon pathfinding. Enabled and the three Racs also act redundantly to mediate AQR and PQR neuronal cell migration. The Racs and UNC-34 Ena might all control the formation of actin-based protrusive structures (lamellipodia and filopodia) that mediate growth cone outgrowth and cell migration. MIG-15 does not act with the three Racs in execution of cell migration. Rather, MIG-15 affects direction of PQR neuronal migration, similar to UNC-40 and DPY-19, which control initial Q cell polarity, and Wnt signaling, which acts later to control Q cell-directed migration. MIG-2 Rac, which acts with CED-10 Rac, RAC-2 Rac, and UNC-34 Ena in axon pathfinding and cell migration, also acts with MIG-15 in PQR directional migration. PMID:16204220

  10. ARF6 directs axon transport and traffic of integrins and regulates axon growth in adult DRG neurons.

    PubMed

    Eva, Richard; Crisp, Sarah; Marland, Jamie R K; Norman, Jim C; Kanamarlapudi, Venkateswarlu; ffrench-Constant, Charles; Fawcett, James W

    2012-07-25

    Integrins are involved in axon growth and regeneration. Manipulation of integrins is a route to promoting axon regeneration and understanding regeneration failure in the CNS. Expression of α9 integrin promotes axon regeneration, so we have investigated α9β1 trafficking and transport in axons and at the growth cone. We have previously found that α9 and β1 integrins traffic via Rab11-positive recycling endosomes in peripheral axons and growth cones. However, transport via Rab11 is slow, while rapid transport occurs in vesicles lacking Rab11. We have further studied α9 and β1 integrin transport and traffic in adult rat dorsal root ganglion axons and PC12 cells. Integrins are in ARF6 vesicles during rapid axonal transport and during trafficking in the growth cone. We report that rapid axonal transport of these integrins and their trafficking at the cell surface is regulated by ARF6. ARF6 inactivation by expression of ACAP1 leads to increased recycling of β1 integrins to the neuronal surface and to increased anterograde axonal transport. ARF6 activation by expression of the neuronal guanine nucleotide exchange factors, ARNO or EFA6, increases retrograde integrin transport in axons and increases integrin internalization. ARF6 inactivation increases integrin-mediated outgrowth, while activation decreases it. The coordinated changes in integrin transport and recycling resulting from ARF6 activation or inactivation are the probable mechanism behind this regulation of axon growth. Our data suggest a novel mechanism of integrin traffic and transport in peripheral axons, regulated by the activation state of ARF6, and suggest that ARF6 might be targeted to enhance integrin-dependent axon regeneration after injury.

  11. Schwann cell transplantation improves reticulospinal axon growth and forelimb strength after severe cervical spinal cord contusion.

    PubMed

    Schaal, S M; Kitay, B M; Cho, K S; Lo, T P; Barakat, D J; Marcillo, A E; Sanchez, A R; Andrade, C M; Pearse, D D

    2007-01-01

    Schwann cell (SC) implantation alone has been shown to promote the growth of propriospinal and sensory axons, but not long-tract descending axons, after thoracic spinal cord injury (SCI). In the current study, we examined if an axotomy close to the cell body of origin (so as to enhance the intrinsic growth response) could permit supraspinal axons to grow onto SC grafts. Adult female Fischer rats received a severe (C5) cervical contusion (1.1 mm displacement, 3 KDyn). At 1 week postinjury, 2 million SCs ex vivo transduced with lentiviral vector encoding enhanced green fluorescent protein (EGFP) were implanted within media into the injury epicenter; injury-only animals served as controls. Animals were tested weekly using the BBB score for 7 weeks postimplantation and received at end point tests for upper body strength: self-supported forelimb hanging, forearm grip force, and the incline plane. Following behavioral assessment, animals were anterogradely traced bilaterally from the reticular formation using BDA-Texas Red. Stereological quantification revealed a twofold increase in the numbers of preserved NeuN+ neurons rostral and caudal to the injury/graft site in SC implanted animals, corroborating previous reports of their neuroprotective efficacy. Examination of labeled reticulospinal axon growth revealed that while rarely an axon was present within the lesion site of injury-only controls, numerous reticulospinal axons had penetrated the SC implant/lesion milieu. This has not been observed following implantation of SCs alone into the injured thoracic spinal cord. Significant behavioral improvements over injury-only controls in upper limb strength, including an enhanced grip strength (a 296% increase) and an increased self-supported forelimb hanging, accompanied SC-mediated neuroprotection and reticulospinal axon growth. The current study further supports the neuroprotective efficacy of SC implants after SCI and demonstrates that SCs alone are capable of supporting modest supraspinal axon growth when the site of axon injury is closer to the cell body of the axotomized neuron.

  12. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Jialing, E-mail: hjialing@mail.med.upenn.edu; Lazear, Helen M., E-mail: Hlazear@DOM.wustl.edu; Friedman, Harvey M., E-mail: hfriedma@mail.med.upenn.ed

    2011-01-05

    The morphology of alphaherpesviruses during anterograde axonal transport from the neuron cell body towards the axon terminus is controversial. Reports suggest that transport of herpes simplex virus type 1 (HSV-1) nucleocapsids and envelope proteins occurs in separate compartments and that complete virions form at varicosities or axon termini (subassembly transport model), while transport of a related alphaherpesvirus, pseudorabies virus (PRV) occurs as enveloped capsids in vesicles (assembled transport model). Transmission electron microscopy of proximal and mid-axons of primary superior cervical ganglion (SCG) neurons was used to compare anterograde axonal transport of HSV-1, HSV-2 and PRV. SCG cell bodies were infectedmore » with HSV-1 NS and 17, HSV-2 2.12 and PRV Becker. Fully assembled virus particles were detected intracellularly within vesicles in proximal and mid-axons adjacent to microtubules after infection with each virus, indicating that assembled virions are transported anterograde within axons for all three alphaherpesviruses.« less

  13. Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila.

    PubMed

    Hing, H; Xiao, J; Harden, N; Lim, L; Zipursky, S L

    1999-06-25

    The SH2/SH3 adaptor protein Dock has been proposed to transduce signals from guidance receptors to the actin cytoskeleton in Drosophila photoreceptor (R cell) growth cones. Here, we demonstrate that Drosophila p21-activated kinase (Pak) is required in a Dock pathway regulating R cell axon guidance and targeting. Dock and Pak colocalize to R cell axons and growth cones, physically interact, and their loss-of-function phenotypes are indistinguishable. Normal patterns of R cell connectivity require Pak's kinase activity and binding sites for both Dock and Cdc42/Rac. A membrane-tethered form of Pak (Pak(myr) acts as a dominant gain-of-function protein. Retinal expression of Pak(myr) rescues the R cell connectivity phenotype in dock mutants. These data establish Pak as a critical regulator of axon guidance and a downstream effector of Dock in vivo.

  14. Evolution of the Mauthner axon cap.

    PubMed

    Bierman, Hilary S; Zottoli, Steven J; Hale, Melina E

    2009-01-01

    Studies of vertebrate brain evolution have focused primarily on patterns of gene expression or changes in size and organization of major brain regions. The Mauthner cell, an important reticulospinal neuron that functions in the startle response of many species, provides an opportunity for evolutionary comparisons at the cellular level. Despite broad interspecific similarities in Mauthner cell morphology, the motor patterns and startle behaviors it initiates vary markedly. Response diversity has been hypothesized to result, in part, from differences in the structure and function of the Mauthner cell-associated axon cap. We used light microscopy techniques to compare axon cap morphology across a wide range of species, including all four extant basal actinopterygian orders, representatives of a variety of teleost lineages and lungfishes, and we combined our data with published descriptions of axon cap structure. The 'composite' axon cap, observed in teleosts, is an organized conglomeration of glia and fibers of inhibitory and excitatory interneurons. Lungfish, amphibian tadpoles and several basal actinopterygian fishes have 'simple' axon caps that appear to lack glia and include few fibers. Several other basal actinopterygian fishes have 'simple-dense' caps that include greater numbers of fibers than simple caps, but lack the additional elements and organization of composite caps. Phylogenetic mapping shows that through evolution there are discrete transitions in axon cap morphology occurring at the base of gnathostomes, within basal actinopterygians, and at the base of the teleost radiation. Comparing axon cap evolution to the evolution of startle behavior and motor pattern provides insight into the relationship between Mauthner cell-associated structures and their functions in behavior. Copyright 2009 S. Karger AG, Basel.

  15. Distributed vasculogenesis from modular agarose-hydroxyapatite-fibrinogen microbeads.

    PubMed

    Rioja, Ana Y; Daley, Ethan L H; Habif, Julia C; Putnam, Andrew J; Stegemann, Jan P

    2017-06-01

    Critical limb ischemia impairs circulation to the extremities, causing pain, disrupted wound healing, and potential tissue necrosis. Therapeutic angiogenesis seeks to repair the damaged microvasculature directly to restore blood flow. In this study, we developed modular, micro-scale constructs designed to possess robust handling qualities, allow in vitro pre-culture, and promote microvasculature formation. The microbead matrix consisted of an agarose (AG) base to prevent aggregation, combined with cell-adhesive components of fibrinogen (FGN) and/or hydroxyapatite (HA). Microbeads encapsulating a co-culture of human umbilical vein endothelial cells (HUVEC) and fibroblasts were prepared and characterized. Microbeads were generally 80-100µm in diameter, and the size increased with the addition of FGN and HA. Addition of HA increased the yield of microbeads, as well as the homogeneity of distribution of FGN within the matrix. Cell viability was high in all microbead types. When cell-seeded microbeads were embedded in fibrin hydrogels, HUVEC sprouting and inosculation between neighboring microbeads were observed over seven days. Pre-culture of microbeads for an additional seven days prior to embedding in fibrin resulted in significantly greater HUVEC network length in AG+HA+FGN microbeads, as compared to AG, AG+HA or AG+FGN microbeads. Importantly, composite microbeads resulted in more even and widespread endothelial network formation, relative to control microbeads consisting of pure fibrin. These results demonstrate that AG+HA+FGN microbeads support HUVEC sprouting both within and between adjacent microbeads, and can promote distributed vascularization of an external matrix. Such modular microtissues may have utility in treating ischemic tissue by rapidly re-establishing a microvascular network. Critical limb ischemia (CLI) is a chronic disease that can lead to tissue necrosis, amputation, and death. Cell-based therapies are being explored to restore blood flow and prevent the complications of CLI. In this study, we developed small, non-aggregating agarose-hydroxyapatite-fibrinogen microbeads that contained endothelial cells and fibroblasts. Microbeads were easy to handle and culture, and endothelial sprouts formed within and between microbeads. Our data demonstrates that the composition of the microbead matrix altered the degree of endothelial sprouting, and that the addition of hydroxyapatite and fibrinogen resulted in more distributed sprouting compared to pure fibrin microbeads. The microbead format and control of the matrix formulation may therefore be useful in developing revascularization strategies for the treatment of ischemic disease. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Selective control of cortical axonal spikes by a slowly inactivating K+ current

    PubMed Central

    Shu, Yousheng; Yu, Yuguo; Yang, Jing; McCormick, David A.

    2007-01-01

    Neurons are flexible electrophysiological entities in which the distribution and properties of ionic channels control their behaviors. Through simultaneous somatic and axonal whole-cell recording of layer 5 pyramidal cells, we demonstrate a remarkable differential expression of slowly inactivating K+ currents. Depolarizing the axon, but not the soma, rapidly activated a low-threshold, slowly inactivating, outward current that was potently blocked by low doses of 4-aminopyridine, α-dendrotoxin, and rTityustoxin-Kα. Block of this slowly inactivating current caused a large increase in spike duration in the axon but only a small increase in the soma and could result in distal axons generating repetitive discharge in response to local current injection. Importantly, this current was also responsible for slow changes in the axonal spike duration that are observed after somatic membrane potential change. These data indicate that low-threshold, slowly inactivating K+ currents, containing Kv1.2 α subunits, play a key role in the flexible properties of intracortical axons and may contribute significantly to intracortical processing. PMID:17581873

  17. The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD+ Cleavage Activity that Promotes Pathological Axonal Degeneration.

    PubMed

    Essuman, Kow; Summers, Daniel W; Sasaki, Yo; Mao, Xianrong; DiAntonio, Aaron; Milbrandt, Jeffrey

    2017-03-22

    Axonal degeneration is an early and prominent feature of many neurological disorders. SARM1 is the central executioner of the axonal degeneration pathway that culminates in depletion of axonal NAD + , yet the identity of the underlying NAD + -depleting enzyme(s) is unknown. Here, in a series of experiments using purified proteins from mammalian cells, bacteria, and a cell-free protein translation system, we show that the SARM1-TIR domain itself has intrinsic NADase activity-cleaving NAD + into ADP-ribose (ADPR), cyclic ADPR, and nicotinamide, with nicotinamide serving as a feedback inhibitor of the enzyme. Using traumatic and vincristine-induced injury models in neurons, we demonstrate that the NADase activity of full-length SARM1 is required in axons to promote axonal NAD + depletion and axonal degeneration after injury. Hence, the SARM1 enzyme represents a novel therapeutic target for axonopathies. Moreover, the widely utilized TIR domain is a protein motif that can possess enzymatic activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport

    PubMed Central

    Freundt, Eric C.; Maynard, Nate; Clancy, Eileen K.; Roy, Shyamali; Bousset, Luc; Sourigues, Yannick; Covert, Markus; Melki, Ronald; Kirkegaard, Karla; Brahic, Michel

    2012-01-01

    Objective The lesions of Parkinson's disease spread through the brain in a characteristic pattern that corresponds to axonal projections. Previous observations suggest that misfolded α-synuclein could behave as a prion, moving from neuron to neuron and causing endogenous α-synuclein to misfold. Here, we characterized and quantified the axonal transport of α-synuclein fibrils and showed that fibrils could be transferred from axons to second-order neurons following anterograde transport. Methods We grew primary cortical mouse neurons in microfluidic devices to separate soma from axonal projections in fluidically isolated microenvironments. We used live-cell imaging and immunofluorescence to characterize the transport of fluorescent α-synuclein fibrils and their transfer to second-order neurons. Results Fibrillar α-synuclein was internalized by primary neurons and transported in axons with kinetics consistent with slow component-b of axonal transport (fast axonal transport with saltatory movement). Fibrillar α-synuclein was readily observed in the cell bodies of second-order neurons following anterograde axonal transport. Axon-to-soma transfer appeared not to require synaptic contacts. Interpretation These results support the hypothesis that the progression of Parkinson's disease can be caused by neuron-to-neuron spread of α-synuclein aggregates and that the anatomical pattern of progression of lesions between axonally connected areas results from the axonal transport of such aggregates. That the transfer did not appear to be transsynaptic gives hope that α-synuclein fibrils could be intercepted by drugs during the extra-cellular phase of their journey. PMID:23109146

  19. [Neuron differential attachment purification and its influence factor].

    PubMed

    Li, Jun; Feng, Daxiong; Huang, Yize; Ye, Fei

    2010-02-01

    Neuron purification is essential to procedure of various nerve cell experimental research, however, at present there is few reports on the effect of various factors on neural axons during purification. To find out a simple method of neuron purification, and to investigate the influence factors of corresponding purification culture in dorsal root ganglion (DRG) tissue culture on beta3-tubulin positive axon. The DRGs were obtained from the 3 days neonatal SD rat microscopically and were made into cell suspension. Then, the amount of attached DRG neurons and nonneuronal cells in poly-D-lysine (PDL) group, PDL/Laminin (PDL/LN) group and collagen-I (Col I) group was observed from 10 to 100 minutes. Then, the extension and arborization of beta3-tubulin positive axons were observed after 72 hours completely randomised DRG tissue culture for the research of the influences among culture substrates (PDL, PDL/LN, and Col I), FBS (0, 5%, and 10%), 5 fluorouracil (5-Fu, 0, 20, and 40 micromol/L), and cytarabine (Ara-C, 0, 10, and 20 micromol/L). Adherent cells were observed instantly after inoculation by inverted phase contrast microscope and inverted fluorescence microscope; after cell suspension was removed, adherent growth of DRGn cells and non-DRGn cells were still seen. In PDL group, the amount of NSE negative cells was significantly higher than that of NSE positive cells at 10 and 30 minutes (P < 0.05); the amount of NSE positive cells was significantly higher than that of NSE negative cells at 80, 90 and 100 minutes (P < 0.05). In PDL/LN group, there was no significant difference (P > 0.05) in the amount of NSE negative cells and NSE positive cells at 10, 20, 30, 40, and 50 minutes; the amount of NSE positive cells was significantly higher (P < 0.05) than that of NSE negative cells at 60, 70, 80, 90, 100 minutes. In Col I group, the amount of NSE negative cells was higher than that of NSE positive cells at 10-40 minutes, but showing no significant difference (P > 0.05); the amount of NSE positive cells was significantly higher (P < 0.05) than that of NSE negative cells at 70-100 minutes. At 72 hours after DRG tissue culture, the best result of beta3-tubulin positive axon extension and arborization was obtained when the substrate level was PDL/LN, and the average length of PDL/LN level was significantly larger than that of other two substrates (P < 0.05). The highest number of beta3-tubulin positive axon distal end was obtained at 5% concentration level of FBS (P < 0.05), but showing no significant differences in beta3-tubulin positive axon length among three levels (P > 0.05). Both the most of beta3-tubulin positive axon distal ends and the longest beta3-tubulin positive axon average length were obtained at 0 micromol/L concentration level of 5-Fu, showing significant differences between 0 micromol/L level and 20, 40 micromol/L levels (P < 0.05). A similar result of 33-tubulin positive axon distal end was got at the 0 micromol/L level and 10 micromol/L level of Ara-C, which was significantly higher than that of 20 micromol/L level (P < 0.05). A purified DRG neuron suspension for neuron culture could be obtained via PDL differential attachment for 30 minutes. When DRG neuron culture, neuron special medium, PDL/LN substrate and 10 micromol/L Ara-C are recommended in beta3-tubulin positive axon research.

  20. Cerebellar afferents originating from the medullary reticular formation that are different from mossy, climbing or monoaminergic fibers in the rat.

    PubMed

    Luo, Yuanjun; Sugihara, Izumi

    2014-05-30

    Integration of cortical Purkinje cell inputs and brain stem inputs is essential in generating cerebellar outputs to the cerebellar nuclei (CN). Currently, collaterals of climbing and mossy fiber axons, noradrenergic, serotoninergic and cholinergic axons, and collaterals of rubrospinal axons are known to innervate the CN from the brain stem. We investigated whether other afferents to the CN from the medulla exist in the rat. Retrograde labeling revealed the presence of neurons that project to the CN but not to the cerebellar cortex in the median reticular formation in the rostrodorsal medulla (tentatively named 'caudal raphe interpositus area', CRI). Anterograde tracer injection into the CRI labeled abundant axonal terminals in the CN, mainly in the ventral parvocellular part of the posterior interposed and lateral nucleus. Axonal reconstruction showed that a single CRI axon projected to the CN with 170-1086 varicosities, more broadly and densely than collaterals of a mossy or climbing fiber axon. CRI axons had no or a few collaterals that projected to the granular and Purkinje cell layers of the cerebellar cortex with some small terminals, indicating that these axons are different from mossy fiber axons. CRI axons also had collaterals that projected to the medial vestibular nucleus and an ascending branch that was not reconstructed. The location of the CRI, electron microscopic observations, and immunostaining results all indicated that CRI axons are not monoaminergic. We conclude that CRI axons form a type of afferent projection to the CN that is different from mossy, climbing or monoaminergic fibers. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Limits to the capacity of transplants of olfactory glia to promote axonal regrowth in the CNS.

    PubMed

    Gudiño-Cabrera, G; Pastor, A M; de la Cruz, R R; Delgado-García, J M; Nieto-Sampedro, M

    2000-02-28

    Olfactory bulb ensheathing cell (OBEC) transplants promoted axonal regeneration in the spinal cord dorsal root entry zone and in the corticospinal tract. However, OBECs failed to promote abducens internuclear neuron axon regeneration when transplanted at the site of nerve fibre transection. In experiments performed in both cats and rats, OBECs survived for up to 2 months, lining themselves up along the portion of the regrowing axons proximal to the interneuron cell body. However, OBECs migrated preferentially towards abducens somata, in the direction opposite to the oculomotor nucleus target. OBECs seem to promote nerve fibre regeneration only where preferred direction of glial migration coincides with the direction of axonal growth towards its target.

  2. Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus.

    PubMed

    Hájos, N; Papp, E C; Acsády, L; Levey, A I; Freund, T F

    1998-01-01

    In previous studies m2 muscarinic acetylcholine receptor-immunoreactive interneurons and various types of m2-positive axon terminals have been described in the hippocampal formation. The aim of the present study was to identify the types of interneurons expressing m2 receptor and to examine whether the somadendritic and axonal m2 immunostaining labels the same or distinct cell populations. In the CA1 subfield, neurons immunoreactive for m2 have horizontal dendrites, they are located at the stratum oriens/alveus border and have an axon that project to the dendritic region of pyramidal cells. In the CA3 subfield and the hilus, m2-positive neurons are multipolar and are scattered in all layers except stratum lacunosum-moleculare. In stratum pyramidale of the CA1 and CA3 regions, striking axon terminal staining for m2 was observed, surrounding the somata and axon initial segments of pyramidal cells in a basket-like manner. The co-localization of m2 with neurochemical markers and GABA was studied using the "mirror" technique and fluorescent double-immunostaining at the light microscopic level and with double-labelling using colloidal gold-conjugated antisera and immunoperoxidase reaction (diaminobenzidine) at the electron microscopic level. GABA was shown to be present in the somata of most m2-immunoreactive interneurons, as well as in the majority of m2-positive terminals in all layers. The calcium-binding protein parvalbumin was absent from practically all m2-immunoreactive cell bodies and dendrites. In contrast, many of the terminals synapsing on pyramidal cell somata and axon initial segments co-localized parvalbumin and m2, suggesting a differential distribution of m2 receptor immunoreactivity on the axonal and somadendritic membrane of parvalbumin-containing basket and axo-axonic cells. The co-existence of m2 receptors with the calcium-binding protein calbindin and the neuropeptides cholecystokinin and vasoactive intestinal polypeptide was rare throughout the hippocampal formation. Only calretinin and somatostatin showed an appreciable degree of co-localization with m2 (20% and 15%, respectively). Using retrograde tracing, some of the m2-positive cells in stratum oriens were shown to project to the medial septum, accouting for 38% of all projection neurons. The present results demonstrate that there is a differential distribution of m2 receptor immunoreactivity on the axonal vs the somadendritic membranes of distinct interneuron types and suggest that acetylcholine via m2 receptors may reduce GABA release presynaptically from the terminals of perisomatic inhibitory cells, while it may act to increase the activity of another class of interneuron, which innervates the dendritic region of pyramidal cells.

  3. Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex.

    PubMed

    Briggs, F; Callaway, E M

    2001-05-15

    Layer 6 of monkey V1 contains a physiologically and anatomically diverse population of excitatory pyramidal neurons. Distinctive arborization patterns of axons and dendrites within the functionally specialized cortical layers define eight types of layer 6 pyramidal neurons and suggest unique information processing roles for each cell type. To address how input sources contribute to cellular function, we examined the laminar sources of functional excitatory input onto individual layer 6 pyramidal neurons using scanning laser photostimulation. We find that excitatory input sources correlate with cell type. Class I neurons with axonal arbors selectively targeting magnocellular (M) recipient layer 4Calpha receive input from M-dominated layer 4B, whereas class I neurons whose axonal arbors target parvocellular (P) recipient layer 4Cbeta receive input from P-dominated layer 2/3. Surprisingly, these neuronal types do not differ significantly in the inputs they receive directly from layers 4Calpha or 4Cbeta. Class II cells, which lack dense axonal arbors within layer 4C, receive excitatory input from layers targeted by their local axons. Specifically, type IIA cells project axons to and receive input from the deep but not superficial layers. Type IIB neurons project to and receive input from the deepest and most superficial, but not middle layers. Type IIC neurons arborize throughout the cortical layers and tend to receive inputs from all cortical layers. These observations have implications for the functional roles of different layer 6 cell types in visual information processing.

  4. Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons.

    PubMed

    Hirokawa, N; Funakoshi, T; Sato-Harada, R; Kanai, Y

    1996-02-01

    In mature neurons, tau is abundant in axons, whereas microtubule-associated protein 2 (MAP2) and MAP2C are specifically localized in dendrites. Known mechanisms involved in the compartmentalization of these cytoskeletal proteins include the differential localization of mRNA (MAP2 mRNA in dendrites, MAP2C mRNA in cell body, and Tau mRNA in proximal axon revealed by in situ hybridization) (Garner, C.C., R.P. Tucker, and A. Matus. 1988. Nature (Lond.). 336:674-677; Litman, P., J. Barg, L. Rindzooski, and I. Ginzburg. 1993. Neuron. 10:627-638), suppressed transit of MAP2 into axons (revealed by cDNA transfection into neurons) (Kanai, Y., and N. Hirokawa. 1995. Neuron. 14:421-432), and differential turnover of MAP2 in axons vs dendrites (Okabe, S., and N. Hirokawa. 1989. Proc. Natl. Acad. Sci. USA. 86:4127-4131). To investigate whether differential turnover of MAPs contributes to localization of other major MAPs in general, we microinjected biotinylated tau, MAP2C, or MAP2 into mature spinal cord neurons in culture (approximately 3 wk) and then analyzed their fates by antibiotin immunocytochemistry. Initially, each was detected in axons and dendrites, although tau persisted only in axons, whereas MAP2C and MAP2 were restricted to cell bodies and dendrites. Injected MAP2C and MAP2 bound to dendritic microtubules more firmly than to microtubules in axons, while injected tau bound to axonal microtubules more firmly than to microtubules in dendrites. Thus, beyond contributions from mRNA localization and selective axonal transport, compartmentalization of each of the three major MAPs occurs through local differential turnover.

  5. Idiopathic preretinal glia in aging and age-related macular degeneration

    PubMed Central

    Edwards, Malia M.; McLeod, D. Scott; Bhutto, Imran A.; Villalonga, Mercedes B.; Seddon, Johanna M.; Lutty, Gerard A.

    2015-01-01

    During analysis of glia in wholemount aged human retinas, frequent projections onto the vitreal surface of the inner limiting membrane (ILM) were noted. The present study characterized these preretinal glial structures. The amount of glial cells on the vitreal side of the ILM was compared between eyes with age-related macular degeneration (AMD) and age-matched control eyes. Retinal wholemounts were stained for markers of retinal astrocytes and activated Müller cells (glial fibrillary acidic protein, GFAP), Müller cells (vimentin, glutamine synthetase) and microglia/hyalocytes (IBA-1). Retinal vessels were labeled with UEA lectin. Images were collected using a Zeiss 710 confocal microscope. Retinas were then cryopreserved. Laminin labeling of cryosections determined the location of glial structures in relation to the ILM. All retinas investigated herein had varied amounts of preretinal glial. These glial structures were classified into three groups based on size: sprouts, blooms, and membranes. The simplest of the glial structures observed were focal sprouts of singular GFAP-positive cells or processes on the vitreal surface of the ILM. The intermediate structures observed, glial blooms, were created by multiple cells/processes exiting from a single point and extending along the vitreoretinal surface. The most extensive structures, glial membranes, consisted of compact networks of cells and processes. Preretinal glia were observed in all areas of the retina but they were most prominent over large vessels. While all glial blooms and membranes contained vimentin and GFAP-positive cells, these proteins did not always co-localize. Many areas had no preretinal GFAP but had numerous vimentin only glial sprouts. In double labelled glial sprouts, vimentin staining extended beyond that of GFAP. Hyalocytes and microglia were detected along with glial sprouts, blooms, and membranes. They did not, however, concentrate in the retina below these structures. Cross sectional analysis identified small breaks in the ILM above large retinal vessels through which glial cells exited the retina. Preretinal glial structures of varied sizes are a common occurrence in aged retinas and, in most cases, are subclinical. While all retinal glia are found in blooms, vimentin labeling suggests that Müller cells form the leading edge. All retinas investigated from eyes with active choroidal neovascularization (CNV) had extensive glial membranes on the vitreal surface of the ILM. Although these structures may be benign, they may exert traction on the retina as they spread along the vitreoretinal interface. In cases with CNV, glial cells in the vitreous could bind intravitreally injected anti-vascular endothelial growth factor. These preretinal glial structures indicate the remodeling of both astrocytes and Müller cells in aged retinas, in particular those with advanced AMD. PMID:26220834

  6. Plasticity and regeneration in the injured spinal cord after cell transplantation therapy.

    PubMed

    Nori, Satoshi; Nakamura, Masaya; Okano, Hideyuki

    2017-01-01

    Spinal cord injury (SCI) typically damages the long axonal tracts of the spinal cord which results in permanent disability. However, regeneration of the injured spinal cord is approaching reality according to the advances in stem cell biology. Cell transplantation therapy holds potential to lead to recovery following SCI through some positive mechanisms. Grafted cells induce plasticity and regeneration in the injured spinal cord by promoting remyelination of damaged axons, reconstruction of neural circuits by synapse formation between host neurons and graft-derived neurons, and secreting neurotrophic factors to promote axonal elongation as well as reduce retrograde axonal degeneration. In this review, we will delineate (1) the microenvironment of the injured spinal cord that influence the plasticity and regeneration capacity after SCI, (2) a number of different kinds of cell transplantation therapies for SCI that has been extensively studied by researchers, and (3) potential mechanisms of grafted cell-induced regeneration and plasticity in the injured spinal cord. © 2017 Elsevier B.V. All rights reserved.

  7. Axonal Control of the Adult Neural Stem Cell Niche

    PubMed Central

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D.; Tecott, Laurence H.; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-01-01

    SUMMARY The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSC) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  8. Single-cell axotomy of cultured hippocampal neurons integrated in neuronal circuits.

    PubMed

    Gomis-Rüth, Susana; Stiess, Michael; Wierenga, Corette J; Meyn, Liane; Bradke, Frank

    2014-05-01

    An understanding of the molecular mechanisms of axon regeneration after injury is key for the development of potential therapies. Single-cell axotomy of dissociated neurons enables the study of the intrinsic regenerative capacities of injured axons. This protocol describes how to perform single-cell axotomy on dissociated hippocampal neurons containing synapses. Furthermore, to axotomize hippocampal neurons integrated in neuronal circuits, we describe how to set up coculture with a few fluorescently labeled neurons. This approach allows axotomy of single cells in a complex neuronal network and the observation of morphological and molecular changes during axon regeneration. Thus, single-cell axotomy of mature neurons is a valuable tool for gaining insights into cell intrinsic axon regeneration and the plasticity of neuronal polarity of mature neurons. Dissociation of the hippocampus and plating of hippocampal neurons takes ∼2 h. Neurons are then left to grow for 2 weeks, during which time they integrate into neuronal circuits. Subsequent axotomy takes 10 min per neuron and further imaging takes 10 min per neuron.

  9. Non-cytotoxic Concentration of Cisplatin Decreases Neuroplasticity-Related Proteins and Neurite Outgrowth Without Affecting the Expression of NGF in PC12 Cells.

    PubMed

    Ferreira, Rafaela Scalco; Dos Santos, Neife Aparecida Guinaim; Martins, Nádia Maria; Fernandes, Laís Silva; Dos Santos, Antonio Cardozo

    2016-11-01

    Cisplatin is the most effective and neurotoxic platinum chemotherapeutic agent. It induces a peripheral neuropathy characterized by distal axonal degeneration that might progress to degeneration of cell bodies and apoptosis. Most symptoms occur nearby distal axonal branches and axonal degeneration might induce peripheral neuropathy regardless neuronal apoptosis. The toxic mechanism of cisplatin has been mainly associated with DNA damage, but cisplatin might also affect neurite outgrowth. Nevertheless, the neurotoxic mechanism of cisplatin remains unclear. We investigated the early effects of cisplatin on axonal plasticity by using non-cytotoxic concentrations of cisplatin and PC12 cells as a model of neurite outgrowth and differentiation. PC12 cells express NGF-receptors (trkA) and respond to NGF by forming neurites, branches and synaptic vesicles. For comparison, we used a neuronal model (SH-SY5Y cells) that does not express trkA nor responds to NGF. Cisplatin did not change NGF expression in PC12 cells and decreased neurite outgrowth in both models, suggesting a NGF/trkA independent mechanism. It also reduced axonal growth (GAP-43) and synaptic (synapsin I and synaptophysin) proteins in PC12 cells, without inducing mitochondrial damage or apoptosis. Therefore, cisplatin might affect axonal plasticity before DNA damage, NGF/trkA down-regulation, mitochondrial damage or neuronal apoptosis. This is the first study to show that neuroplasticity-related proteins might be early targets of the neurotoxic action of cisplatin and their role on cisplatin-induced peripheral neuropathy should be investigated in vivo.

  10. Spatial integration and cortical dynamics.

    PubMed

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  11. Altered Expression of Retinal Molecular Markers in the Canine RPE65 Model of Leber Congenital Amaurosis

    PubMed Central

    Hernández, Maria; Pearce-Kelling, Susan E.; Rodriguez, F. David; Aguirre, Gustavo D.; Vecino, Elena

    2010-01-01

    Purpose. Leber congenital amaurosis (LCA) is a group of childhood-onset retinal diseases characterized by severe visual impairment or blindness. One form is caused by mutations in the RPE65 gene, which encodes the retinal pigment epithelium (RPE) isomerase. In this study, the retinal structure and expression of molecular markers for different retinal cell types were characterized, and differences between control and RPE65 mutant dogs during the temporal evolution of the disease were analyzed. Methods. Retinas from normal and mutant dogs of different ages were examined by immunofluorescence with a panel of 16 different antibodies. Results. Cones and rods were preserved in the mutant retinas, and the number of cones was normal. However, there was altered expression of cone arrestin and delocalization of rod opsin. The ON bipolar cells showed sprouting of the dendritic arbors toward the outer nuclear layer (ONL) and retraction of their axons in the inner nuclear layer (INL). A decreased expression of GABA, and an increased expression of intermediate filament glial markers was also found in the mutant retinas. These changes were more evident in the adult than the young mutant retinas. Conclusions. The structure of the retina is well preserved in the mutant retina, but several molecular changes take place in photoreceptors and in bipolar and amacrine cells. Some of these changes are structural, whereas others reflect a change in localization of the examined proteins. This study provides new information that can be applied to the interpretation of outcomes of retinal gene therapy in animal models and humans. PMID:20671290

  12. Coronary veins determine the pattern of sympathetic innervation in the developing heart

    PubMed Central

    Nam, Joseph; Onitsuka, Izumi; Hatch, John; Uchida, Yutaka; Ray, Saugata; Huang, Siyi; Li, Wenling; Zang, Heesuk; Ruiz-Lozano, Pilar; Mukouyama, Yoh-suke

    2013-01-01

    Anatomical congruence of peripheral nerves and blood vessels is well recognized in a variety of tissues. Their physical proximity and similar branching patterns suggest that the development of these networks might be a coordinated process. Here we show that large diameter coronary veins serve as an intermediate template for distal sympathetic axon extension in the subepicardial layer of the dorsal ventricular wall of the developing mouse heart. Vascular smooth muscle cells (VSMCs) associate with large diameter veins during angiogenesis. In vivo and in vitro experiments demonstrate that these cells mediate extension of sympathetic axons via nerve growth factor (NGF). This association enables topological targeting of axons to final targets such as large diameter coronary arteries in the deeper myocardial layer. As axons extend along veins, arterial VSMCs begin to secrete NGF, which allows axons to reach target cells. We propose a sequential mechanism in which initial axon extension in the subepicardium is governed by transient NGF expression by VSMCs as they are recruited to coronary veins; subsequently, VSMCs in the myocardium begin to express NGF as they are recruited by remodeling arteries, attracting axons toward their final targets. The proposed mechanism underlies a distinct, stereotypical pattern of autonomic innervation that is adapted to the complex tissue structure and physiology of the heart. PMID:23462468

  13. Slits are chemorepellents endogenous to hypothalamus and steer thalamocortical axons into ventral telencephalon.

    PubMed

    Braisted, Janet E; Ringstedt, Thomas; O'Leary, Dennis D M

    2009-07-01

    Thalamocortical axons (TCAs) originate in dorsal thalamus, extend ventrally along the lateral thalamic surface, and as they approach hypothalamus make a lateral turn into ventral telencephalon. In vitro studies show that hypothalamus releases a chemorepellent for TCAs, and analyses of knockout mice indicate that Slit chemorepellents and their receptor Robo2 influence TCA pathfinding. We show that Slit chemorepellents are the hypothalamic chemorepellent and act through Robos to steer TCAs into ventral telencephalon. During TCA pathfinding, Slit1 and Slit2 are expressed in hypothalamus and ventral thalamus and Robo1 and Robo2 are expressed in dorsal thalamus. In collagen gel cocultures of dorsal thalamus and Slit2-expressing cells, axon number and length are decreased on the explant side facing Slit2-expressing cells, overall axon outgrowth is diminished, and axons turn away from the Slit2-expressing cells. Thus, Slit2 is an inhibitor and chemorepellent for dorsal thalamic axons. Collagen gel cocultures of dorsal thalamus with sections of live diencephalon, with and without the hypothalamus portion overlaid with Robo2-fc-expressing cells to block Slit function, identify Slits as the hypothalamic chemorepellent. Thus, Slits are chemorepellents for TCAs endogenous to hypothalamus and steer TCAs from diencephalon into ventral telencephalon, a critical pathfinding event defective in Slit and Robo2 mutant mice.

  14. Sodium channels in axons and glial cells of the optic nerve of Necturus maculosa.

    PubMed

    Tang, C M; Strichartz, G R; Orkand, R K

    1979-11-01

    Experiments investigating both the binding of radioactively labelled saxitoxin (STX) and the electrophysiological response to drugs that increase the sodium permeability of excitable membranes were conducted in an effort to detect sodium channels in glial cells of the optic nerve of Necturus maculosa, the mudpuppy. Glial cells in nerves from chronically enucleated animals, which lack optic nerve axons, show no saturable uptake of STX whereas a saturable uptake is clearly present in normal optic nerves. The normal nerve is depolarized by aconitine, batrachotoxin, and veratridine (10(-6)-10(-5) M), whereas the all-glial preparation is only depolarized by veratridine and at concentrations greater than 10(-3) M. Unlike the depolarization caused by veratridine in normal nerves, the response in the all-glial tissue is not blocked by tetrodotoxin nor enhanced by scorpion venom (Leiurus quinquestriatus). In glial cells of the normal nerve, where axons are also present, the addition of 10(-5) M veratridine does lead to a transient depolarization; however, it is much briefer than the axonal response to veratridine in this same tissue. This glial response to veratridine could be caused by the efflux of K+ from the drug-depolarized axons, and is similar to the glial response to extracellular K+ accumulation resulting from action potentials in the axon.

  15. Sodium channels in axons and glial cells of the optic nerve of Necturus maculosa

    PubMed Central

    1979-01-01

    Experiments investigating both the binding of radioactively labelled saxitoxin (STX) and the electrophysiological response to drugs that increase the sodium permeability of excitable membranes were conducted in an effort to detect sodium channels in glial cells of the optic nerve of Necturus maculosa, the mudpuppy. Glial cells in nerves from chronically enucleated animals, which lack optic nerve axons, show no saturable uptake of STX whereas a saturable uptake is clearly present in normal optic nerves. The normal nerve is depolarized by aconitine, batrachotoxin, and veratridine (10(-6)-10(-5) M), whereas the all-glial preparation is only depolarized by veratridine and at concentrations greater than 10(-3) M. Unlike the depolarization caused by veratridine in normal nerves, the response in the all-glial tissue is not blocked by tetrodotoxin nor enhanced by scorpion venom (Leiurus quinquestriatus). In glial cells of the normal nerve, where axons are also present, the addition of 10(-5) M veratridine does lead to a transient depolarization; however, it is much briefer than the axonal response to veratridine in this same tissue. This glial response to veratridine could be caused by the efflux of K+ from the drug- depolarized axons, and is similar to the glial response to extracellular K+ accumulation resulting from action potentials in the axon. PMID:512633

  16. Identification, emergence and mobilization of circulating endothelial cells or progenitors in the embryo.

    PubMed

    Pardanaud, Luc; Eichmann, Anne

    2006-07-01

    Using quail-chick parabiosis and QH1 monoclonal antibody analysis, we have identified circulating endothelial cells and/or progenitors in the embryo. These cells were already present early in ontogeny, before the third embryonic day. Under normal conditions, they integrated into most tissues but remained scarce. When experimental angiogenic responses were induced by wounding or grafts onto the chorioallantoic membrane, circulating endothelial cells were rapidly mobilized and selectively integrated sites of neoangiogenesis. Their mobilization was not dependent on the presence of the bone marrow as it was effective before its differentiation. Surprisingly, mobilization was not effective during sprouting angiogenesis following VEGF treatment of chorioallantoic membrane. Thus, embryonic circulating endothelial cells were efficiently mobilized during the establishment of an initial vascular supply to ischemic tissues following wounding or grafting, but were not involved during classical sprouting angiogenesis.

  17. Genetics Home Reference: infantile-onset ascending hereditary spastic paralysis

    MedlinePlus

    ... cell membrane to the interior of the cell (endocytosis), and the development of specialized structures called axons ... the subsequent loss of GTPase functions, such as endocytosis and the development of axons and dendrites, contribute ...

  18. Regenerating reptile retinas: a comparative approach to restoring retinal ganglion cell function.

    PubMed

    Williams, D L

    2017-02-01

    Transection or damage to the mammalian optic nerve generally results in loss of retinal ganglion cells by apoptosis. This cell death is seen less in fish or amphibians where retinal ganglion cell survival and axon regeneration leads to recovery of sight. Reptiles lie somewhere in the middle of this spectrum of nerve regeneration, and different species have been reported to have a significant variation in their retinal ganglion cell regenerative capacity. The ornate dragon lizard Ctenophoris ornatus exhibits a profound capacity for regeneration, whereas the Tenerife wall lizard Gallotia galloti has a more variable response to optic nerve damage. Some individuals regain visual activity such as the pupillomotor responses, whereas in others axons fail to regenerate sufficiently. Even in Ctenophoris, although the retinal ganglion cell axons regenerate adequately enough to synapse in the tectum, they do not make long-term topographic connections allowing recovery of complex visually motivated behaviour. The question then centres on where these intraspecies differences originate. Is it variation in the innate ability of retinal ganglion cells from different species to regenerate with functional validity? Or is it variances between different species in the substrate within which the nerves regenerate, the extracellular environment of the damaged nerve or the supporting cells surrounding the regenerating axons? Investigations of retinal ganglion cell regeneration between different species of lower vertebrates in vivo may shed light on these questions. Or perhaps more interesting are in vitro studies comparing axon regeneration of retinal ganglion cells from various species placed on differing substrates.

  19. Morpho-physiological Characteristics of Dorsal Subicular Network in Mice after Pilocarpine Induced Status Epilepticus

    PubMed Central

    He, De Fu; Ma, Dong Liang; Tang, Yong Cheng; Engel, Jerome; Bragin, Anatol; Tang, Feng Ru

    2010-01-01

    The goal of this study was to examine morpho-physiological changes in the dorsal subiculum network in the mouse model of temporal lobe epilepsy using extracellular recording, juxtacellular and immunofluorescence double labeling, and anterograde tracing methods. A significant loss of total dorsal subicular neurons, particularly calbindin, parvalbumin (PV), and immunopositive interneurons, was found at 2 months after pilocarpine-induced status epilepticus (SE). However, the sprouting of axons from lateral entorhinal cortex (LEnt) was observed to contact with surviving subicular neurons. These neurons had two predominant discharge patterns: bursting and fast irregular discharges. The bursting neurons were mainly pyramidal cells, and their dendritic spine density and bursting discharge rates were increased significantly in SE mice compared to the control group. Fast irregular discharge neurons were PV-immunopositive interneurons, and had less dendritic spines in SE mice when compared to control mice. When LEnt was stimulated, bursting and fast irregular discharge neurons had much shorter latency and stronger excitatory response in SE mice compared to the control group. Our results illustrate that morpho-physiological changes in the dorsal subiculum could be part of a multilevel pathological network that occurs simultaneously in many brain areas to contribute to the generation of epileptiform activity. PMID:19298597

  20. Large nerve cells with long axons in the granular layer and white matter of the murine cerebellum.

    PubMed Central

    Müller, T

    1994-01-01

    The murine cerebellum was investigated by light microscopy using an improved modification of Ehrlich's methylene blue supravital staining technique. The dye exhibited a special affinity for the perikarya as well as the axons of Purkinje cells. In addition, large fusiform or stellate nerve cells which were characterised by long descending axons were seen to be distributed diffusely within the granular layer and the subcortical white matter. These findings indicate the existence of a 2nd type of projection neuron besides the Purkinje cells and are therefore in full accordance with older neuroanatomical observations based on silver impregnation. When correlated with recent studies on the occurrence of different calcium-binding proteins, the results show that the large perikarya demonstrated immunohistochemically within the granular layer seem to belong to the group of methylene blue positive neurons. Nevertheless, the definitive association of a single neuron with a nerve cell class is only possible if the axon is stained and clearly identifiable. Because of its selectivity for a special type of nerve cell, including its axon, the histological method used in this study may therefore also be suitable for investigating other parts of the brain and the spinal cord. Images Fig. 1 Fig. 2 PMID:7516932

  1. JUN regulates early transcriptional responses to axonal injury in retinal ganglion cells.

    PubMed

    Fernandes, Kimberly A; Harder, Jeffrey M; Kim, Jessica; Libby, Richard T

    2013-07-01

    The AP1 family transcription factor JUN is an important molecule in the neuronal response to injury. In retinal ganglion cells (RGCs), JUN is upregulated soon after axonal injury and disrupting JUN activity delays RGC death. JUN is known to participate in the control of many different injury response pathways in neurons, including pathways controlling cell death and axonal regeneration. The role of JUN in regulating genes involved in cell death, ER stress, and regeneration was tested to determine the overall importance of JUN in regulating RGC response to axonal injury. Genes from each of these pathways were transcriptionally controlled following axonal injury and Jun deficiency altered the expression of many of these genes. The differentially expressed genes included, Atf3, Ddit3, Ecel1, Gadd45α, Gal, Hrk, Pten, Socs3, and Sprr1a. Two of these genes, Hrk and Atf3, were tested for importance in RGC death using null alleles of each gene. Disruption of the prodeath Bcl2 family member Hrk did not affect the rate or amount of RGC death after axonal trauma. Deficiency in the ATF/CREB family transcription factor Atf3 did lessen the amount of RGC death after injury, though it did not provide long term protection to RGCs. Since JUN's dimerization partner determines its transcriptional targets, the expression of several candidate AP1 family members were examined. Multiple AP1 family members were induced by axonal injury and had a different expression profile in Jun deficient retinas compared to wildtype retinas (Fosl1, Fosl2 and Jund). Overall, JUN appears to play a multifaceted role in regulating RGC response to axonal injury. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Virtual tissue engineering and optic pathways: plotting the course of the axons in the retinal nerve fiber layer.

    PubMed

    Carreras, Francisco Javier; Medina, Javier; Ruiz-Lozano, Mariola; Carreras, Ignacio; Castro, Juan Luis

    2014-04-17

    As part of a larger project on virtual tissue engineering of the optic pathways, we describe the conditions that guide axons extending from the retina to the optic nerve head and formulate algorithms that meet such conditions. To find the entrance site on the optic nerve head of each axon, we challenge the fibers to comply with current models of axonal pathfinding. First, we build a retinal map using a single type of retinal ganglion cell (RGC) using density functions from the literature. Dendritic arbors are equated to receptive fields. Shape and size of retinal surface and optic nerve head (ONH) are defined. A computer model relates each soma to the corresponding entry point of its axon into the optic disc. Weights are given to the heuristics that guide the preference entry order in the nerve. Retinal ganglion cells from the area centralis saturate the temporal section of the disc. Retinal ganglion cells temporal to the area centralis curve their paths surrounding the fovea; some of these cells enter the disc centrally rather than peripherally. Nasal regions of the disc receive mixed axons from the far periphery of the temporal hemiretina, together with axons from the nasal half. The model plots the course of the axon using Bezier curves and compares them with clinical data, for a coincidence level of 86% or higher. Our model is able to simulate basic data of the early optic pathways including certain singularities and to mimic mechanisms operating during development, such as timing and fasciculation. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  3. Action Potentials Initiate in the Axon Initial Segment and Propagate Through Axon Collaterals Reliably in Cerebellar Purkinje Neurons

    PubMed Central

    Foust, Amanda; Popovic, Marko; Zecevic, Dejan; McCormick, David A.

    2010-01-01

    Purkinje neurons are the output cells of the cerebellar cortex and generate spikes in two distinct modes, known as simple and complex spikes. Revealing the point of origin of these action potentials, and how they conduct into local axon collaterals, is important for understanding local and distal neuronal processing and communication. By utilizing a recent improvement in voltage sensitive dye imaging technique that provided exceptional spatial and temporal resolution, we were able to resolve the region of spike initiation as well as follow spike propagation into axon collaterals for each action potential initiated on single trials. All fast action potentials, for both simple and complex spikes, whether occurring spontaneously or in response to a somatic current pulse or synaptic input, initiated in the axon initial segment. At discharge frequencies of less than approximately 250 Hz, spikes propagated faithfully through the axon and axon collaterals, in a saltatory manner. Propagation failures were only observed for very high frequencies or for the spikelets associated with complex spikes. These results demonstrate that the axon initial segment is a critical decision point in Purkinje cell processing and that the properties of axon branch points are adjusted to maintain faithful transmission. PMID:20484631

  4. Nogo receptor blockade overcomes remyelination failure after white matter stroke and stimulates functional recovery in aged mice

    PubMed Central

    Sozmen, Elif G.; Rosenzweig, Shira; Llorente, Irene L.; DiTullio, David J.; Machnicki, Michal; Vinters, Harry V.; Havton, Lief A.; Giger, Roman J.; Hinman, Jason D.

    2016-01-01

    White matter stroke is a distinct stroke subtype, accounting for up to 25% of stroke and constituting the second leading cause of dementia. The biology of possible tissue repair after white matter stroke has not been determined. In a mouse stroke model, white matter ischemia causes focal damage and adjacent areas of axonal myelin disruption and gliosis. In these areas of only partial damage, local white matter progenitors respond to injury, as oligodendrocyte progenitors (OPCs) proliferate. However, OPCs fail to mature into oligodendrocytes (OLs) even in regions of demyelination with intact axons and instead divert into an astrocytic fate. Local axonal sprouting occurs, producing an increase in unmyelinated fibers in the corpus callosum. The OPC maturation block after white matter stroke is in part mediated via Nogo receptor 1 (NgR1) signaling. In both aged and young adult mice, stroke induces NgR1 ligands and down-regulates NgR1 inhibitors during the peak OPC maturation block. Nogo ligands are also induced adjacent to human white matter stroke in humans. A Nogo signaling blockade with an NgR1 antagonist administered after stroke reduces the OPC astrocytic transformation and improves poststroke oligodendrogenesis in mice. Notably, increased white matter repair in aged mice is translated into significant poststroke motor recovery, even when NgR1 blockade is provided during the chronic time points of injury. These data provide a perspective on the role of NgR1 ligand function in OPC fate in the context of a specific and common type of stroke and show that it is amenable to systemic intervention to promote recovery. PMID:27956620

  5. Nogo receptor blockade overcomes remyelination failure after white matter stroke and stimulates functional recovery in aged mice.

    PubMed

    Sozmen, Elif G; Rosenzweig, Shira; Llorente, Irene L; DiTullio, David J; Machnicki, Michal; Vinters, Harry V; Havton, Lief A; Giger, Roman J; Hinman, Jason D; Carmichael, S Thomas

    2016-12-27

    White matter stroke is a distinct stroke subtype, accounting for up to 25% of stroke and constituting the second leading cause of dementia. The biology of possible tissue repair after white matter stroke has not been determined. In a mouse stroke model, white matter ischemia causes focal damage and adjacent areas of axonal myelin disruption and gliosis. In these areas of only partial damage, local white matter progenitors respond to injury, as oligodendrocyte progenitors (OPCs) proliferate. However, OPCs fail to mature into oligodendrocytes (OLs) even in regions of demyelination with intact axons and instead divert into an astrocytic fate. Local axonal sprouting occurs, producing an increase in unmyelinated fibers in the corpus callosum. The OPC maturation block after white matter stroke is in part mediated via Nogo receptor 1 (NgR1) signaling. In both aged and young adult mice, stroke induces NgR1 ligands and down-regulates NgR1 inhibitors during the peak OPC maturation block. Nogo ligands are also induced adjacent to human white matter stroke in humans. A Nogo signaling blockade with an NgR1 antagonist administered after stroke reduces the OPC astrocytic transformation and improves poststroke oligodendrogenesis in mice. Notably, increased white matter repair in aged mice is translated into significant poststroke motor recovery, even when NgR1 blockade is provided during the chronic time points of injury. These data provide a perspective on the role of NgR1 ligand function in OPC fate in the context of a specific and common type of stroke and show that it is amenable to systemic intervention to promote recovery.

  6. Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules

    PubMed Central

    Martin, Maud; Veloso, Alexandra; Wu, Jingchao; Katrukha, Eugene A

    2018-01-01

    Microtubules control different aspects of cell polarization. In cells with a radial microtubule system, a pivotal role in setting up asymmetry is attributed to the relative positioning of the centrosome and the nucleus. Here, we show that centrosome loss had no effect on the ability of endothelial cells to polarize and move in 2D and 3D environments. In contrast, non-centrosomal microtubules stabilized by the microtubule minus-end-binding protein CAMSAP2 were required for directional migration on 2D substrates and for the establishment of polarized cell morphology in soft 3D matrices. CAMSAP2 was also important for persistent endothelial cell sprouting during in vivo zebrafish vessel development. In the absence of CAMSAP2, cell polarization in 3D could be partly rescued by centrosome depletion, indicating that in these conditions the centrosome inhibited cell polarity. We propose that CAMSAP2-protected non-centrosomal microtubules are needed for establishing cell asymmetry by enabling microtubule enrichment in a single-cell protrusion. PMID:29547120

  7. Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization.

    PubMed

    Valverde, F; Facal-Valverde, M V

    1986-01-01

    The intrinsic organization and interlaminar connections in neocortical layers I and II have been studied in adult hedgehogs (Erinaceus europaeus) using the Golgi method. Layer I contains a dense plexus of horizontal fibers, the terminal dendritic bouquets of pyramidal cells of layer II and of underlying layers, and varieties of intrinsic neurons. Four main types of cells were found in layer I. Small horizontal cells represent most probably persisting foetal horizontal cells described for other mammals. Large horizontal cells, tufted cells, and spinous horizontal cells were also found in this layer. Layer II contains primitive pyramidal cells representing the most outstanding feature of the neocortex of the hedgehog. Most pyramidal cells in layer II have two, three or more apical dendrites, richly covered by spines predominating over the basal dendrites. These cells resemble pyramidal cells found in the piriform cortex, hippocampus and other olfactory areas. It is suggested that the presence of these neurons reflects the retention of a primitive character in neocortical evolution. Cells with intrinsic axons were found among pyramidal cells in layer II. These have smooth dendrites penetrating layer I and local axons forming extremely complex terminal arborizations around the bodies and proximal dendritic portions of pyramidal cells. They most probably effect numerous axo-somatic contacts resembling basket cells. The similarity of some axonal terminals with the chandelier type of axonal arborization is discussed. Other varieties of cells located in deep cortical layers and having ascending axons for layers I and II were also studied. It is concluded that the two first neocortical layers represent a level of important integration in this primitive mammal.

  8. Development of "Pinceaux" formations and dendritic translocation of climbing fibers during the acquisition of the balance between glutamatergic and gamma-aminobutyric acidergic inputs in developing Purkinje cells.

    PubMed

    Sotelo, Constantino

    2008-01-10

    The acquisition of the dynamic balance between excitation and inhibition in developing Purkinje cells, necessary for their proper function, is analyzed. Newborn (P0) mouse cerebellum contains glutamatergic (VGLUT2-IR) and gamma-aminobutyric acid (GABA)-ergic (VIAAT-IR) axons. The former prevail and belong to climbing fibers, whereas the latter neither colabel with calbindin-expressing fibers nor belong to axons of the cortical GABAergic interneurons. During the first postnatal week, VIAAT-IR axons in the Purkinje cell neighborhood remains very low, and the first synapses with basket fibers are formed at P7, when climbing fibers have already established dense pericellular nets. The descending basket fibers reach the Purkinje cell axon initial segment by P9, immediately establishing axoaxonic synapses. The pinceaux appear as primitive vortex-like arrangements by P12, and by P20 interbasket fiber septate-like junctions, typical of fully mature pinceaux, are still missing. The climbing fiber's somatodendritic translocation occurs later than expected, after the regression of the multiple innervation, and follows the ascending collaterals of the basket axons, which are apparently the optimal substrate for the proper subcellular targeting of the climbing fibers. These results emphasize that chemical transmission in the axon initial segment precedes the electrical inhibition generated by field effects. In addition, GABAergic Purkinje cells, as opposed to glutamatergic projection neurons in other cortical structures, do not begin to receive their excitation to inhibition balance until the end of the first postnatal week, despite the early presence of potentially functional GABAergic axons that possess the required vesicular transport system. (c) 2007 Wiley-Liss, Inc.

  9. High dendritic expression of Ih in the proximity of the axon origin controls the integrative properties of nigral dopamine neurons.

    PubMed

    Engel, Dominique; Seutin, Vincent

    2015-11-15

    The hyperpolarization-activated cation current Ih is expressed in dopamine neurons of the substantia nigra, but the subcellular distribution of the current and its role in synaptic integration remain unknown. We used cell-attached patch recordings to determine the localization profile of Ih along the somatodendritic axis of nigral dopamine neurons in slices from young rats. Ih density is higher in axon-bearing dendrites, in a membrane area close to the axon origin, than in the soma and axon-lacking dendrites. Dual current-clamp recordings revealed a similar contribution of Ih to the waveform of single excitatory postsynaptic potentials throughout the somatodendritic domain. The Ih blocker ZD 7288 increased the temporal summation in all dendrites with a comparable effect in axon- and non-axon dendrites. The strategic position of Ih in the proximity of the axon may influence importantly transitions between pacemaker and bursting activities and consequently the downstream release of dopamine. Dendrites of most neurons express voltage-gated ion channels in their membrane. In combination with passive properties, active currents confer to dendrites a high computational potential. The hyperpolarization-activated cation current Ih present in the dendrites of some pyramidal neurons affects their membrane and integration properties, synaptic plasticity and higher functions such as memory. A gradient of increasing h-channel density towards distal dendrites has been found to be responsible for the location independence of excitatory postsynaptic potential (EPSP) waveform and temporal summation in cortical and hippocampal pyramidal cells. However, reports on other cell types revealed that smoother gradients or even linear distributions of Ih can achieve homogeneous temporal summation. Although the existence of a robust, slowly activating Ih current has been repeatedly demonstrated in nigral dopamine neurons, its subcellular distribution and precise role in synaptic integration are unknown. Using cell-attached patch-clamp recordings, we find a higher Ih current density in the axon-bearing dendrite than in the soma or in dendrites without axon in nigral dopamine neurons. Ih is mainly concentrated in the dendritic membrane area surrounding the axon origin and decreases with increasing distances from this site. Single EPSPs and temporal summation are similarly affected by blockade of Ih in axon- and non-axon-bearing dendrites. The presence of Ih close to the axon is pivotal to control the integrative functions and the output signal of dopamine neurons and may consequently influence the downstream coding of movement. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  10. A glial palisade delineates the ipsilateral optic projection in Monodelphis.

    PubMed

    MacLaren, R E

    1998-01-01

    In developing marsupials, the path taken through the optic chiasm by ipsilaterally projecting retinal ganglion cells is complicated. Just prior to entry into the chiasm, ganglion cells destined for the ipsilateral optic tract separate from the remainder of axons by turning abruptly downwards to take a position in the ventral part of the optic nerve. In this report, it is shown that a discrete population of about 10-15 large glial cells transiently form a linear array across the prechiasmatic part of the optic nerve, precisely at this axon turning point. The distinct morphology of these cells and their novel location may reflect a specialized role in axon guidance.

  11. Immunolocalisation of two tropinone reductases in potato (Solanum tuberosum L.) root, stolon, and tuber sprouts.

    PubMed

    Kaiser, Heike; Richter, Ute; Keiner, Ronald; Brabant, Anja; Hause, Bettina; Dräger, Birgit

    2006-12-01

    Tropinone reductases (TRs) are essential enzymes in the tropane alkaloid biosynthesis, providing either tropine for hyoscyamine and scopolamine formation or providing pseudotropine for calystegines. Two cDNAs coding for TRs were isolated from potato (Solanum tuberosum L.) tuber sprouts and expressed in E. coli. One reductase formed pseudotropine, the other formed tropine and showed kinetic properties typical for tropine-forming tropinone reductases (TRI) involved in hyoscyamine formation. Hyoscyamine and tropine are not found in S. tuberosum plants. Potatoes contain calystegines as the only products of the tropane alkaloid pathway. Polyclonal antibodies raised against both enzymes were purified to exclude cross reactions and were used for Western-blot analysis and immunolocalisation. The TRI (EC 1.1.1.206) was detected in protein extracts of tuber tissues, but mostly in levels too low to be localised in individual cells. The function of this enzyme in potato that does not form hyoscyamine is not clear. The pseudotropine-forming tropinone reductase (EC 1.1.1.236) was detected in potato roots, stolons, and tuber sprouts. Cortex cells of root and stolon contained the protein; additional strong immuno-labelling was located in phloem parenchyma. In tuber spouts, however, the protein was detected in companion cells.

  12. A Novel ex vivo Mouse Mesometrium Culture Model for Investigating Angiogenesis in Microvascular Networks.

    PubMed

    Suarez-Martinez, Ariana D; Bierschenk, Susanne; Huang, Katie; Kaplan, Dana; Bayer, Carolyn L; Meadows, Stryder M; Sperandio, Markus; Murfee, Walter L

    2018-05-18

    The development of models that incorporate intact microvascular networks enables the investigation of multicellular dynamics during angiogenesis. Our laboratory introduced the rat mesentery culture model as such a tool, which would be enhanced with mouse tissue. Since mouse mesentery is avascular, an alternative is mouse mesometrium, the connective tissue of uterine horns. The study's objective was to demonstrate that mouse mesometrium contains microvascular networks that can be cultured to investigate multicellular dynamics during angiogenesis. Harvested mesometrium tissues from C57Bl/6 female mice were cultured in media with serum for up to 7 days. PECAM, NG2, αSMA, and LYVE-1 labeling identified endothelial cells, pericytes, smooth muscle cells, and lymphatic endothelial cells, respectively. These cells comprised microvascular networks with arterioles, venules, and capillaries. Compared to day 0, capillary sprouts per vascular length were increased by 3 and 5 days in culture (day 0, 0.08 ± 0.01; day 3, 3.19 ± 0.78; day 5, 2.49 ± 0.05 sprouts/mm; p < 0.05). Time-lapse imaging of cultured tissues from FlkEGFP mice showcases the use of the model for lineage studies. The impact is supported by the identification of endothelial cell jumping from one sprout to another. These results introduce a novel culture model for investigating multicellular dynamics during angiogenesis in real-time ex vivo microvascular networks. © 2018 S. Karger AG, Basel.

  13. Glypican Is a Modulator of Netrin-Mediated Axon Guidance

    PubMed Central

    Blanchette, Cassandra R.; Perrat, Paola N.; Thackeray, Andrea; Bénard, Claire Y.

    2015-01-01

    Netrin is a key axon guidance cue that orients axon growth during neural circuit formation. However, the mechanisms regulating netrin and its receptors in the extracellular milieu are largely unknown. Here we demonstrate that in Caenorhabditis elegans, LON-2/glypican, a heparan sulfate proteoglycan, modulates UNC-6/netrin signaling and may do this through interactions with the UNC-40/DCC receptor. We show that developing axons misorient in the absence of LON-2/glypican when the SLT-1/slit guidance pathway is compromised and that LON-2/glypican functions in both the attractive and repulsive UNC-6/netrin pathways. We find that the core LON-2/glypican protein, lacking its heparan sulfate chains, and secreted forms of LON-2/glypican are functional in axon guidance. We also find that LON-2/glypican functions from the epidermal substrate cells to guide axons, and we provide evidence that LON-2/glypican associates with UNC-40/DCC receptor–expressing cells. We propose that LON-2/glypican acts as a modulator of UNC-40/DCC-mediated guidance to fine-tune axonal responses to UNC-6/netrin signals during migration. PMID:26148345

  14. Sonic Hedgehog Has a Dual Effect on the Growth of Retinal Ganglion Axons Depending on Its Concentration

    PubMed Central

    Kolpak, Adrianne; Zhang, Jinhua; Bao, Zheng-Zheng

    2006-01-01

    The stereotypical projection of retinal ganglion cell (RGC) axons to the optic disc has served as a good model system for studying axon guidance. By both in vitro and in vivo experiments, we show that a secreted molecule, Sonic hedgehog (Shh), may play a critical role in the process. It is expressed in a dynamic pattern in the ganglion cell layer with a relatively higher expression in the center of the retina. Through gel culture and stripe assays, we show that Shh has a dual effect on RGC axonal growth, acting as a positive factor at low concentrations and a negative factor at high concentrations. Results from time-lapse video microscopic and stripe assay experiments further suggest that the effects of Shh on axons are not likely attributable to indirect transcriptional regulation by Shh. Overexpression of Shh protein or inhibition of Shh function inside the retina resulted in a complete loss of centrally directed projection of RGC axons, suggesting that precise regulation of Shh level inside the retina is critical for the projection of RGC axons to the optic disc. PMID:15800198

  15. The core planar cell polarity gene prickle interacts with flamingo to promote sensory axon advance in the Drosophila embryo.

    PubMed

    Mrkusich, Eli M; Flanagan, Dustin J; Whitington, Paul M

    2011-10-01

    The atypical cadherin Drosophila protein Flamingo and its vertebrate homologues play widespread roles in the regulation of both dendrite and axon growth. However, little is understood about the molecular mechanisms that underpin these functions. Whereas flamingo interacts with a well-defined group of genes in regulating planar cell polarity, previous studies have uncovered little evidence that the other core planar cell polarity genes are involved in regulation of neurite growth. We present data in this study showing that the planar cell polarity gene prickle interacts with flamingo in regulating sensory axon advance at a key choice point - the transition between the peripheral nervous system and the central nervous system. The cytoplasmic tail of the Flamingo protein is not required for this interaction. Overexpression of another core planar cell polarity gene dishevelled produces a similar phenotype to prickle mutants, suggesting that this gene may also play a role in regulation of sensory axon advance. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  16. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties

    PubMed Central

    Casale, Amanda E.; Foust, Amanda J.; Bal, Thierry

    2015-01-01

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca2+-activated K+ channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. SIGNIFICANCE STATEMENT Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main compartments: dendritic, somatic, and axonal. How the neurons receive information, process it, and pass on new information depends upon how these three compartments operate. While it has long been assumed that axons are simply for conducting information from the cell body to the synapses, here we demonstrate that the axons of different types of interneurons, the inhibitory cells, possess differing electrophysiological properties. This result implies that differing types of interneurons perform different tasks in the cortex, not only through their anatomical connections, but also through how their axons operate. PMID:26609152

  17. Dendrites In Vitro and In Vivo Contain Microtubules of Opposite Polarity and Axon Formation Correlates with Uniform Plus-End-Out Microtubule Orientation.

    PubMed

    Yau, Kah Wai; Schätzle, Philipp; Tortosa, Elena; Pagès, Stéphane; Holtmaat, Anthony; Kapitein, Lukas C; Hoogenraad, Casper C

    2016-01-27

    In cultured vertebrate neurons, axons have a uniform arrangement of microtubules with plus-ends distal to the cell body (plus-end-out), whereas dendrites contain mixed polarity orientations with both plus-end-out and minus-end-out oriented microtubules. Rather than non-uniform microtubules, uniparallel minus-end-out microtubules are the signature of dendrites in Drosophila and Caenorhabditis elegans neurons. To determine whether mixed microtubule organization is a conserved feature of vertebrate dendrites, we used live-cell imaging to systematically analyze microtubule plus-end orientations in primary cultures of rat hippocampal and cortical neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neurons in the somatosensory cortex of living mice. In vitro and in vivo, all microtubules had a plus-end-out orientation in axons, whereas microtubules in dendrites had mixed orientations. When dendritic microtubules were severed by laser-based microsurgery, we detected equal numbers of plus- and minus-end-out microtubule orientations throughout the dendritic processes. In dendrites, the minus-end-out microtubules were generally more stable and comparable with plus-end-out microtubules in axons. Interestingly, at early stages of neuronal development in nonpolarized cells, newly formed neurites already contained microtubules of opposite polarity, suggesting that the establishment of uniform plus-end-out microtubules occurs during axon formation. We propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. Live-cell imaging was used to systematically analyze microtubule organization in primary cultures of rat hippocampal neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neuron in somatosensory cortex of living mice. In vitro and in vivo, all microtubules have a plus-end-out orientation in axons, whereas microtubules in dendrites have mixed orientations. Interestingly, newly formed neurites of nonpolarized neurons already contain mixed microtubules, and the specific organization of uniform plus-end-out microtubules only occurs during axon formation. Based on these findings, the authors propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. Copyright © 2016 the authors 0270-6474/16/361072-15$15.00/0.

  18. Functional role of NT-3 in synapse regeneration by spiral ganglion neurons on inner hair cells after excitotoxic trauma in vitro

    PubMed Central

    Wang, Qiong; Green, Steven H.

    2011-01-01

    Spiral ganglion neurons (SGNs) are postsynaptic to hair cells and project to the brainstem. The inner hair cell (IHC) to SGN synapse is susceptible to glutamate excitotoxicity and to acoustic trauma, with potentially adverse consequences to long-term SGN survival. We used a cochlear explant culture from P6 rat pups consisting of a portion of organ of Corti maintained intact with the corresponding portion of spiral ganglion to investigate excitotoxic damage to IHC-SGN synapses in vitro. The normal innervation pattern is preserved in vitro. Brief treatment with NMDA and kainate results in loss of IHC–SGN synapses and degeneration of the distal type 1 SGN peripheral axons, mimicking damage to SGN peripheral axons caused by excitotoxicity or noise in vivo. The number of IHC presynaptic ribbons is not significantly altered. Reinnervation of IHCs occurs and regenerating axons remain restricted to the IHC row. However, the number of postsynaptic densities (PSDs) does not fully recover and not all axons regrow to the IHCs. Addition of either NT-3 or BDNF increases axon growth and synaptogenesis. Selective blockade of endogenous NT-3 signaling with TrkC-IgG reduced regeneration of axons and PSDs, but TrkB-IgG, which blocks BDNF, has no such effect, indicating that endogenous NT-3 is necessary for SGN axon growth and synaptogenesis. Remarkably, TrkC-IgG reduced axon growth and synaptogenesis even in the presence of BDNF, indicating that endogenous NT-3 has a distinctive role, not mimicked by BDNF, in promoting SGN axon growth in the organ of Corti and synaptogenesis on IHCs. PMID:21613508

  19. Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function.

    PubMed

    Cioni, Jean-Michel; Wong, Hovy Ho-Wai; Bressan, Dario; Kodama, Lay; Harris, William A; Holt, Christine E

    2018-03-07

    The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2's function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Axonal degeneration and regeneration in sensory roots in a genital herpes model.

    PubMed

    Soffer, D; Martin, J R

    1989-01-01

    In a mouse model of genital herpes simplex virus type 2 (HSV-2) infection, roots of the lower spinal cord were examined 5 days to 6 months after inoculation. Using immunoperoxidase methods on paraffin sections, viral antigen was found in sensory ganglia, their proximal roots and distal nerves on days 5 and 6 after infection. In Epon sections, most mice had focal sensory root abnormalities in lower thoracic, lumbar or sacral levels. At days 7 and 10, lesions showed chiefly nerve fiber degeneration, particularly of large myelinated fibers. At 2 weeks, lesions contained relatively large bundles of small unmyelinated fibers with immature axon-Schwann cell relationships. From 3 to 6 weeks, lesions again contained many more small unmyelinated fibers than normal but, in increasing proportions, axons in bundles were isolated from their neighbors by Schwann cell cytoplasm, and Schwann cells having 1:1 relationships with axons showed mesaxon or thin myelin sheath formation. At later times, the proportion of small unmyelinated axons decreased in parallel with increased numbers of small myelinated axons. By 6 months, affected roots showed a relative reduction in large myelinated fibers, increased proportions of small myelinated fibers and Schwann cell nuclei. Numbers of unmyelinated fibers were reduced relative to 3- to 6-week lesions. Axonal degeneration and regeneration appears to be the chief pathological change in sensory roots in this model. If regenerated fibers arise from latently infected neurons, then establishment of latency is not a relatively silent event, but is associated with major long-lasting, morphologically detectable effects.

  1. Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch.

    PubMed

    Aspalter, Irene Maria; Gordon, Emma; Dubrac, Alexandre; Ragab, Anan; Narloch, Jarek; Vizán, Pedro; Geudens, Ilse; Collins, Russell Thomas; Franco, Claudio Areias; Abrahams, Cristina Luna; Thurston, Gavin; Fruttiger, Marcus; Rosewell, Ian; Eichmann, Anne; Gerhardt, Holger

    2015-06-17

    Sprouting angiogenesis drives blood vessel growth in healthy and diseased tissues. Vegf and Dll4/Notch signalling cooperate in a negative feedback loop that specifies endothelial tip and stalk cells to ensure adequate vessel branching and function. Current concepts posit that endothelial cells default to the tip-cell phenotype when Notch is inactive. Here we identify instead that the stalk-cell phenotype needs to be actively repressed to allow tip-cell formation. We show this is a key endothelial function of neuropilin-1 (Nrp1), which suppresses the stalk-cell phenotype by limiting Smad2/3 activation through Alk1 and Alk5. Notch downregulates Nrp1, thus relieving the inhibition of Alk1 and Alk5, thereby driving stalk-cell behaviour. Conceptually, our work shows that the heterogeneity between neighbouring endothelial cells established by the lateral feedback loop of Dll4/Notch utilizes Nrp1 levels as the pivot, which in turn establishes differential responsiveness to TGF-β/BMP signalling.

  2. Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch

    PubMed Central

    Aspalter, Irene Maria; Gordon, Emma; Dubrac, Alexandre; Ragab, Anan; Narloch, Jarek; Vizán, Pedro; Geudens, Ilse; Collins, Russell Thomas; Franco, Claudio Areias; Abrahams, Cristina Luna; Thurston, Gavin; Fruttiger, Marcus; Rosewell, Ian; Eichmann, Anne; Gerhardt, Holger

    2015-01-01

    Sprouting angiogenesis drives blood vessel growth in healthy and diseased tissues. Vegf and Dll4/Notch signalling cooperate in a negative feedback loop that specifies endothelial tip and stalk cells to ensure adequate vessel branching and function. Current concepts posit that endothelial cells default to the tip-cell phenotype when Notch is inactive. Here we identify instead that the stalk-cell phenotype needs to be actively repressed to allow tip-cell formation. We show this is a key endothelial function of neuropilin-1 (Nrp1), which suppresses the stalk-cell phenotype by limiting Smad2/3 activation through Alk1 and Alk5. Notch downregulates Nrp1, thus relieving the inhibition of Alk1 and Alk5, thereby driving stalk-cell behaviour. Conceptually, our work shows that the heterogeneity between neighbouring endothelial cells established by the lateral feedback loop of Dll4/Notch utilizes Nrp1 levels as the pivot, which in turn establishes differential responsiveness to TGF-β/BMP signalling. PMID:26081042

  3. Role of Netrin-1 Signaling in Nerve Regeneration

    PubMed Central

    Dun, Xin-Peng; Parkinson, David B.

    2017-01-01

    Netrin-1 was the first axon guidance molecule to be discovered in vertebrates and has a strong chemotropic function for axonal guidance, cell migration, morphogenesis and angiogenesis. It is a secreted axon guidance cue that can trigger attraction by binding to its canonical receptors Deleted in Colorectal Cancer (DCC) and Neogenin or repulsion through binding the DCC/Uncoordinated (Unc5) A–D receptor complex. The crystal structures of Netrin-1/receptor complexes have recently been revealed. These studies have provided a structure based explanation of Netrin-1 bi-functionality. Netrin-1 and its receptor are continuously expressed in the adult nervous system and are differentially regulated after nerve injury. In the adult spinal cord and optic nerve, Netrin-1 has been considered as an inhibitor that contributes to axon regeneration failure after injury. In the peripheral nervous system, Netrin-1 receptors are expressed in Schwann cells, the cell bodies of sensory neurons and the axons of both motor and sensory neurons. Netrin-1 is expressed in Schwann cells and its expression is up-regulated after peripheral nerve transection injury. Recent studies indicated that Netrin-1 plays a positive role in promoting peripheral nerve regeneration, Schwann cell proliferation and migration. Targeting of the Netrin-1 signaling pathway could develop novel therapeutic strategies to promote peripheral nerve regeneration and functional recovery. PMID:28245592

  4. Combination of Engineered Schwann Cell Grafts to Secrete Neurotrophin and Chondroitinase Promotes Axonal Regeneration and Locomotion after Spinal Cord Injury

    PubMed Central

    Pressman, Yelena; Moody, Alison; Berg, Randall; Muir, Elizabeth M.; Rogers, John H.; Ozawa, Hiroshi; Itoi, Eiji; Pearse, Damien D.; Bunge, Mary Bartlett

    2014-01-01

    Transplantation of Schwann cells (SCs) is a promising therapeutic strategy for spinal cord repair. SCs introduced into lesions support axon regeneration, but because these axons do not exit the transplant, additional approaches with SCs are needed. Here, we transplanted SCs genetically modified to secrete a bifunctional neurotrophin (D15A) and chondroitinase ABC (ChABC) into a subacute contusion injury in rats. We examined the effects of these modifications on graft volume, SC number, degradation of chondroitin sulfate proteoglycans (CSPGs), astrogliosis, SC myelination of axons, propriospinal and supraspinal axon numbers, locomotor outcome (BBB scoring, CatWalk gait analysis), and mechanical and thermal sensitivity on the hind paws. D15A secreted from transplanted SCs increased graft volume and SC number and myelinated axon number. SCs secreting ChABC significantly decreased CSPGs, led to some egress of SCs from the graft, and increased propriospinal and 5-HT-positive axons in the graft. SCs secreting both D15A and ChABC yielded the best responses: (1) the largest number of SC myelinated axons, (2) more propriospinal axons in the graft and host tissue around and caudal to it, (3) more corticospinal axons closer to the graft and around and caudal to it, (4) more brainstem neurons projecting caudal to the transplant, (5) increased 5-HT-positive axons in the graft and caudal to it, (6) significant improvement in aspects of locomotion, and (7) improvement in mechanical and thermal allodynia. This is the first evidence that the combination of SC transplants engineered to secrete neurotrophin and chondroitinase further improves axonal regeneration and locomotor and sensory function. PMID:24478364

  5. BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon

    PubMed Central

    Farías, Ginny G.; Guardia, Carlos M.; De Pace, Raffaella; Britt, Dylan J.; Bonifacino, Juan S.

    2017-01-01

    The ability of lysosomes to move within the cytoplasm is important for many cellular functions. This ability is particularly critical in neurons, which comprise vast, highly differentiated domains such as the axon and dendrites. The mechanisms that control lysosome movement in these domains, however, remain poorly understood. Here we show that an ensemble of BORC, Arl8, SKIP, and kinesin-1, previously shown to mediate centrifugal transport of lysosomes in nonneuronal cells, specifically drives lysosome transport into the axon, and not the dendrites, in cultured rat hippocampal neurons. This transport is essential for maintenance of axonal growth-cone dynamics and autophagosome turnover. Our findings illustrate how a general mechanism for lysosome dispersal in nonneuronal cells is adapted to drive polarized transport in neurons, and emphasize the importance of this mechanism for critical axonal processes. PMID:28320970

  6. BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon.

    PubMed

    Farías, Ginny G; Guardia, Carlos M; De Pace, Raffaella; Britt, Dylan J; Bonifacino, Juan S

    2017-04-04

    The ability of lysosomes to move within the cytoplasm is important for many cellular functions. This ability is particularly critical in neurons, which comprise vast, highly differentiated domains such as the axon and dendrites. The mechanisms that control lysosome movement in these domains, however, remain poorly understood. Here we show that an ensemble of BORC, Arl8, SKIP, and kinesin-1, previously shown to mediate centrifugal transport of lysosomes in nonneuronal cells, specifically drives lysosome transport into the axon, and not the dendrites, in cultured rat hippocampal neurons. This transport is essential for maintenance of axonal growth-cone dynamics and autophagosome turnover. Our findings illustrate how a general mechanism for lysosome dispersal in nonneuronal cells is adapted to drive polarized transport in neurons, and emphasize the importance of this mechanism for critical axonal processes.

  7. Neurotrophin Signaling via Long-Distance Axonal Transport

    NASA Astrophysics Data System (ADS)

    Chowdary, Praveen D.; Che, Dung L.; Cui, Bianxiao

    2012-05-01

    Neurotrophins are a family of target-derived growth factors that support survival, development, and maintenance of innervating neurons. Owing to the unique architecture of neurons, neurotrophins that act locally on the axonal terminals must convey their signals across the entire axon for subsequent regulation of gene transcription in the cell nucleus. This long-distance retrograde signaling, a motor-driven process that can take hours or days, has been a subject of intense interest. In the last decade, live-cell imaging with high sensitivity has significantly increased our capability to track the transport of neurotrophins, their receptors, and subsequent signals in real time. This review summarizes recent research progress in understanding neurotrophin-receptor interactions at the axonal terminal and their transport dynamics along the axon. We emphasize high-resolution studies at the single-molecule level and also discuss recent technical advances in the field.

  8. Development of microarray device for functional evaluation of PC12D cell axonal extension ability

    NASA Astrophysics Data System (ADS)

    Nakamachi, Eiji; Yanagimoto, Junpei; Murakami, Shinya; Morita, Yusuke

    2014-04-01

    In this study, we developed a microarray bio-MEMS device that could trap PC12D (rat pheochromocytoma cells) cells to examine the intercellular interaction effect on the cell activation and the axonal extension ability. This is needed to assign particular patterns of PC12D cells to establish a cell functional evaluation technique. This experimental observation-based technique can be used for design of the cell sheet and scaffold for peripheral and central nerve regeneration. We have fabricated a micropillar-array bio-MEMS device, whose diameter was approximately 10 μm, by using thick photoresist SU-8 on the glass slide substrate. A maximum trapped PC12D cell ratio, 48.5%, was achieved. Through experimental observation of patterned PC12D "bi-cells" activation, we obtained the following results. Most of the PC12D "bi-cells" which had distances between 40 and 100 μm were connected after 24 h with a high probability. On the other hand, "bi-cells" which had distances between 110 and 200 μm were not connected. In addition, we measured axonal extension velocities in cases where the intercellular distance was between 40 and 100 μm. A maximum axonal extension velocity, 86.4 μm/h, was obtained at the intercellular distance of 40 μm.

  9. A gain-of-function screen for genes that influence axon guidance identifies the NF-kappaB protein dorsal and reveals a requirement for the kinase Pelle in Drosophila photoreceptor axon targeting.

    PubMed

    Mindorff, Elizabeth N; O'Keefe, David D; Labbé, Alain; Yang, Jennie Ping; Ou, Yimiao; Yoshikawa, Shingo; van Meyel, Donald J

    2007-08-01

    To identify novel regulators of nervous system development, we used the GAL4-UAS misexpression system in Drosophila to screen for genes that influence axon guidance in developing embryos. We mobilized the Gene Search (GS) P element and identified 42 lines with insertions in unique loci, including leak/roundabout2, which encodes an axon guidance receptor and confirms the utility of our screen. The genes we identified encode proteins of diverse classes, some acting near the cell surface and others in the cytoplasm or nucleus. We found that one GS line drove misexpression of the NF-kappaB transcription factor Dorsal, causing motor axons to bypass their correct termination sites. In the developing visual system, Dorsal misexpression also caused photoreceptor axons to reach incorrect positions within the optic lobe. This mistargeting occurred without observable changes of cell fate and correlated with localization of ectopic Dorsal in distal axons. We found that Dorsal and its inhibitor Cactus are expressed in photoreceptors, though neither was required for axon targeting. However, mutation analyses of genes known to act upstream of Dorsal revealed a requirement for the interleukin receptor-associated kinase family kinase Pelle for layer-specific targeting of photoreceptor axons, validating our screen as a means to identify new molecular determinants of nervous system development in vivo.

  10. Cannabinoids inhibit angiogenic capacities of endothelial cells via release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells.

    PubMed

    Ramer, Robert; Fischer, Sascha; Haustein, Maria; Manda, Katrin; Hinz, Burkhard

    2014-09-15

    Cannabinoids inhibit tumor neovascularization as part of their tumorregressive action. However, the underlying mechanism is still under debate. In the present study the impact of cannabinoids on potential tumor-to-endothelial cell communication conferring anti-angiogenesis was studied. Cellular behavior of human umbilical vein endothelial cells (HUVEC) associated with angiogenesis was evaluated by Boyden chamber, two-dimensional tube formation and fibrin bead assay, with the latter assessing three-dimensional sprout formation. Viability was quantified by the WST-1 test. Conditioned media (CM) from A549 lung cancer cells treated with cannabidiol, Δ(9)-tetrahydrocannabinol, R(+)-methanandamide or the CB2 agonist JWH-133 elicited decreased migration as well as tube and sprout formation of HUVEC as compared to CM of vehicle-treated cancer cells. Inhibition of sprout formation was further confirmed for cannabinoid-treated A549 cells co-cultured with HUVEC. Using antagonists to cannabinoid-activated receptors the antimigratory action was shown to be mediated via cannabinoid receptors or transient receptor potential vanilloid 1. SiRNA approaches revealed a cannabinoid-induced expression of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) as well as its upstream trigger, the intercellular adhesion molecule-1, to be causally linked to the observed decrease of HUVEC migration. Comparable anti-angiogenic effects were not detected following direct exposure of HUVEC to cannabinoids, but occurred after addition of recombinant TIMP-1 to HUVEC. Finally, antimigratory effects were confirmed for CM of two other cannabinoid-treated lung cancer cell lines (H460 and H358). Collectively, our data suggest a pivotal role of the anti-angiogenic factor TIMP-1 in intercellular tumor-endothelial cell communication resulting in anti-angiogenic features of endothelial cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The secretome of endothelial progenitor cells promotes brain endothelial cell activity through PI3-kinase and MAP-kinase.

    PubMed

    Di Santo, Stefano; Seiler, Stefanie; Fuchs, Anna-Lena; Staudigl, Jennifer; Widmer, Hans Rudolf

    2014-01-01

    Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved. Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM. Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM. The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects.

  12. Human Periodontal Ligament-Derived Stem Cells Promote Retinal Ganglion Cell Survival and Axon Regeneration After Optic Nerve Injury.

    PubMed

    Cen, Ling-Ping; Ng, Tsz Kin; Liang, Jia-Jian; Zhuang, Xi; Yao, Xiaowu; Yam, Gary Hin-Fai; Chen, Haoyu; Cheung, Herman S; Zhang, Mingzhi; Pang, Chi Pui

    2018-06-01

    Optic neuropathies are the leading cause of irreversible blindness and visual impairment in the developed countries, affecting more than 80 million people worldwide. While most optic neuropathies have no effective treatment, there is intensive research on retinal ganglion cell (RGC) protection and axon regeneration. We previously demonstrated potential of human periodontal ligament-derived stem cells (PDLSCs) for retinal cell replacement. Here, we report the neuroprotective effect of human PDLSCs to ameliorate RGC degeneration and promote axonal regeneration after optic nerve crush (ONC) injury. Human PDLSCs were intravitreally injected into the vitreous chamber of adult Fischer rats after ONC in vivo as well as cocultured with retinal explants in vitro. Human PDLSCs survived in the vitreous chamber and were maintained on the RGC layer even at 3 weeks after ONC. Immunofluorescence analysis of βIII-tubulin and Gap43 showed that the numbers of surviving RGCs and regenerating axons were significantly increased in the rats with human PDLSC transplantation. In vitro coculture experiments confirmed that PDLSCs enhanced RGC survival and neurite regeneration in retinal explants without inducing inflammatory responses. Direct cell-cell interaction and elevated brain-derived neurotrophic factor secretion, but not promoting endogenous progenitor cell regeneration, were the RGC protective mechanisms of human PDLSCs. In summary, our results revealed the neuroprotective role of human PDLSCs by strongly promoting RGC survival and axonal regeneration both in vivo and in vitro, indicating a therapeutic potential for RGC protection against optic neuropathies. Stem Cells 2018;36:844-855. © AlphaMed Press 2018.

  13. Axons guided by insulin receptor in Drosophila visual system.

    PubMed

    Song, Jianbo; Wu, Lingling; Chen, Zun; Kohanski, Ronald A; Pick, Leslie

    2003-04-18

    Insulin receptors are abundant in the central nervous system, but their roles remain elusive. Here we show that the insulin receptor functions in axon guidance. The Drosophila insulin receptor (DInR) is required for photoreceptor-cell (R-cell) axons to find their way from the retina to the brain during development of the visual system. DInR functions as a guidance receptor for the adapter protein Dock/Nck. This function is independent of Chico, the Drosophila insulin receptor substrate (IRS) homolog.

  14. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury.

    PubMed

    Stewart, Andrew Nathaniel; Matyas, Jessica Jane; Welchko, Ryan Matthew; Goldsmith, Alison Delanie; Zeiler, Sarah Elizabeth; Hochgeschwender, Ute; Lu, Ming; Nan, Zhenhong; Rossignol, Julien; Dunbar, Gary Leo

    2017-01-01

    Utilizing genetic overexpression of trophic molecules in cell populations has been a promising strategy to develop cell replacement therapies for spinal cord injury (SCI). Over-expressing the chemokine, stromal derived factor-1 (SDF-1α), which has chemotactic effects on many cells of the nervous system, offers a promising strategy to promote axonal regrowth following SCI. The purpose of this study was to explore the effects of human SDF-1α, when overexpressed by mesenchymal stem cells (MSCs), on axonal growth and motor behavior in a contusive rat model of SCI. Using a transwell migration assay, the paracrine effects of MSCs, which were engineered to secrete human SDF-1α (SDF-1-MSCs), were assessed on cultured neural stem cells (NSCs). For in vivo analyses, the SDF-1-MSCs, unaltered MSCs, or Hanks Buffered Saline Solution (vehicle) were injected into the lesion epicenter of rats at 9-days post-SCI. Behavior was analyzed for 7-weeks post-injury, using the Basso, Beattie, and Bresnahan (BBB) scale of locomotor functions. Immunohistochemistry was performed to evaluate major histopathological outcomes, including gliosis, inflammation, white matter sparing, and cavitation. New axonal outgrowth was characterized using immunohistochemistry against the neuron specific growth-associated protein-43 (GAP-43). The results of these experiments demonstrate that the overexpression of SDF-1α by MSCs can enhance the migration of NSCs in vitro. Although only modest functional improvements were observed following transplantation of SDF-1-MSCs, a significant reduction in cavitation surrounding the lesion, and an increased density of GAP-43-positive axons inside the SCI lesion/graft site were found. The results from these experiments support the potential role for utilizing SDF-1α as a treatment for enhancing growth and regeneration of axons after traumatic SCI.

  15. Walking the Line: A Fibronectin Fiber-Guided Assay to Probe Early Steps of (Lymph)angiogenesis

    PubMed Central

    Mitsi, Maria; Schulz, Martin Michael Peter; Gousopoulos, Epameinondas; Ochsenbein, Alexandra Michaela; Detmar, Michael; Vogel, Viola

    2015-01-01

    Angiogenesis and lymphangiogenesis are highly complex morphogenetic processes, central to many physiological and pathological conditions, including development, cancer metastasis, inflammation and wound healing. While it is described that extracellular matrix (ECM) fibers are involved in the spatiotemporal regulation of angiogenesis, current angiogenesis assays are not specifically designed to dissect and quantify the underlying molecular mechanisms of how the fibrillar nature of ECM regulates vessel sprouting. Even less is known about the role of the fibrillar ECM during the early stages of lymphangiogenesis. To address such questions, we introduced here an in vitro (lymph)angiogenesis assay, where we used microbeads coated with endothelial cells as simple sprouting sources and deposited them on single Fn fibers used as substrates to mimic fibrillar ECM. The fibers were deposited on a transparent substrate, suitable for live microscopic observation of the ensuing cell outgrowth events at the single cell level. Our proof-of-concept studies revealed that fibrillar Fn, compared to Fn-coated surfaces, provides far stronger sprouting and guidance cues to endothelial cells, independent of the tested mechanical strains of the Fn fibers. Additionally, we found that VEGF-A, but not VEGF-C, stimulates the collective outgrowth of lymphatic endothelial cells (LEC), while the collective outgrowth of blood vascular endothelial cells (HUVEC) was prominent even in the absence of these angiogenic factors. In addition to the findings presented here, the modularity of our assay allows for the use of different ECM or synthetic fibers as substrates, as well as of other cell types, thus expanding the range of applications in vascular biology and beyond. PMID:26689200

  16. Sustained neurochemical plasticity in central terminals of mouse DRG neurons following colitis.

    PubMed

    Benson, Jessica R; Xu, Jiameng; Moynes, Derek M; Lapointe, Tamia K; Altier, Christophe; Vanner, Stephen J; Lomax, Alan E

    2014-05-01

    Sensitization of dorsal root ganglia (DRG) neurons is an important mechanism underlying the expression of chronic abdominal pain caused by intestinal inflammation. Most studies have focused on changes in the peripheral terminals of DRG neurons in the inflamed intestine but recent evidence suggests that the sprouting of central nerve terminals in the dorsal horn is also important. Therefore, we examine the time course and reversibility of changes in the distribution of immunoreactivity for substance P (SP), a marker of the central terminals of DRG neurons, in the spinal cord during and following dextran sulphate sodium (DSS)-induced colitis in mice. Acute and chronic treatment with DSS significantly increased SP immunoreactivity in thoracic and lumbosacral spinal cord segments. This increase developed over several weeks and was evident in both the superficial laminae of the dorsal horn and in lamina X. These increases persisted for 5 weeks following cessation of both the acute and chronic models. The increase in SP immunoreactivity was not observed in segments of the cervical spinal cord, which were not innervated by the axons of colonic afferent neurons. DRG neurons dissociated following acute DSS-colitis exhibited increased neurite sprouting compared with neurons dissociated from control mice. These data suggest significant colitis-induced enhancements in neuropeptide expression in DRG neuron central terminals. Such neurotransmitter plasticity persists beyond the period of active inflammation and might contribute to a sustained increase in nociceptive signaling following the resolution of inflammation.

  17. High pressure effects on myrosinase activity and glucosinolate preservation in seedlings of Brussels sprouts.

    PubMed

    Wang, Jia; Barba, Francisco J; Sørensen, Jens C; Frandsen, Heidi B; Sørensen, Susanne; Olsen, Karsten; Orlien, Vibeke

    2018-04-15

    Combinations of pressure, temperature and time (100-600 MPa, 30-60 °C, 3-10 min) influence enzyme activity of the myrosinase-glucosinolate system. Seedlings of Brussels sprouts were used as a model, which constitutes a well-defined and homogenous sample matrix with simple cell structures. A response surface methodology approach was used to determine the combined effect of pressure level, temperature and time on glucosinolate concentration and myrosinase activity in Brussels sprouts seedlings. The effects on residual myrosinase activity and intact glucosinolate concentration differed according to combinations of pressure, time and temperature. The results showed that maximum inactivation of myrosinase and preservation of glucosinolate (85% of the untreated level) was obtained after HP treatment at 600 MPa, 60 °C, 10 min. The highest preservation of myrosinase activity compared to untreated seedlings was after HP at 100 MPa, 30 °C, 3 min and 10 min with low degree of cell permeabilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Recovery From Experimental Parkinsonism by Semaphorin-guided Axonal Growth of Grafted Dopamine Neurons

    PubMed Central

    Díaz-Martínez, N Emmanuel; Tamariz, Elisa; Díaz, N Fabián; García-Peña, Claudia M; Varela-Echavarría, Alfredo; Velasco, Iván

    2013-01-01

    Cell therapy in animal models of Parkinson's disease (PD) is effective after intrastriatal grafting of dopamine (DA) neurons, whereas intranigral transplantation of dopaminergic cells does not cause consistent behavioral recovery. One strategy to promote axonal growth of dopaminergic neurons from the substantia nigra (SN) to the striatum is degradation of inhibitory components such as chondroitin sulphate proteoglycans (CSPG). An alternative is the guidance of DA axons by chemotropic agents. Semaphorins 3A and 3C enhance axonal growth of embryonic stem (ES) cell–derived dopaminergic neurons in vitro, while Semaphorin 3C also attracts them. We asked whether intranigral transplantation of DA neurons, combined with either degradation of CSPG or with grafts of Semaphorin 3–expressing cells, towards the striatum, is effective in establishing a new nigrostriatal dopaminergic pathway in rats with unilateral depletion of DA neurons. We found depolarization-induced DA release in dorsal striatum, DA axonal projections from SN to striatum, and concomitant behavioral improvement in Semaphorin 3–treated animals. These effects were absent in animals that received intranigral transplants combined with Chondroitinase ABC treatment, although partial degradation of CSPG was observed. These results are evidence that Semaphorin 3–directed long-distance axonal growth of dopaminergic neurons, resulting in behavioral improvement, is possible in adult diseased brains. PMID:23732989

  19. Axonal Regeneration after Sciatic Nerve Lesion Is Delayed but Complete in GFAP- and Vimentin-Deficient Mice

    PubMed Central

    Berg, Alexander; Zelano, Johan; Pekna, Marcela; Wilhelmsson, Ulrika; Pekny, Milos; Cullheim, Staffan

    2013-01-01

    Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP–/–Vim–/– mice. After sciatic nerve crush in GFAP–/–Vim–/– mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics. PMID:24223940

  20. Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis.

    PubMed

    Spitzbarth, Ingo; Lempp, Charlotte; Kegler, Kristel; Ulrich, Reiner; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Seehusen, Frauke

    2016-07-01

    CDV-DL (Canine distemper virus-induced demyelinating leukoencephalitis) represents a spontaneously occurring animal model for demyelinating disorders. Axonopathy represents a key pathomechanism in this disease; however, its underlying pathogenesis has not been addressed in detail so far. This study aimed at the characterization of axonal cytoskeletal, transport, and potential regenerative changes with a parallel focus upon Schwann cell remyelination. Immunohistochemistry of canine cerebellar tissue as well as a comparative analysis of genes from an independent microarray study were performed. Increased axonal immunoreactivity for nonphosphorylated neurofilament was followed by loss of cytoskeletal and motor proteins. Interestingly, a subset of genes encoding for neurofilament subunits and motor proteins was up-regulated in the chronic stage compared to dogs with subacute CDV-DL. However, immunohistochemically, hints for axonal regeneration were restricted to up-regulated axonal positivity of hypoxia-inducible factor 1 alpha, while growth-associated protein 43, erythropoietin and its receptor were not or even down-regulated. Periaxin-positive structures, indicative of Schwann cell remyelination, were only detected within few advanced lesions. The present findings demonstrate a complex sequence of axonal cytoskeletal breakdown mechanisms. Moreover, though sparse, this is the first report of Schwann cell remyelination in CDV-DL. Facilitation of these very limited endogenous regenerative responses represents an important topic for future research.

  1. Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury.

    PubMed

    Armstrong, Regina C; Mierzwa, Amanda J; Sullivan, Genevieve M; Sanchez, Maria A

    2016-11-01

    Impact to the head or rapid head acceleration-deceleration can cause traumatic brain injury (TBI) with a characteristic pathology of traumatic axonal injury (TAI) and secondary damage in white matter tracts. Myelin and oligodendrocyte lineage cells have significant roles in the progression of white matter pathology after TBI and in the potential for plasticity and subsequent recovery. The myelination pattern of specific brain regions, such as frontal cortex, may also increase susceptibility to neurodegeneration and psychiatric symptoms after TBI. White matter pathology after TBI depends on the extent and distribution of axon damage, microhemorrhages and/or neuroinflammation. TAI occurs in a pattern of damaged axons dispersed among intact axons in white matter tracts. TAI accompanied by bleeding and/or inflammation produces focal regions of overt tissue destruction, resulting in loss of both axons and myelin. White matter regions with TAI may also exhibit demyelination of intact axons. Demyelinated axons that remain viable have the potential for remyelination and recovery of function. Indeed, animal models of TBI have demonstrated demyelination that is associated with evidence of remyelination, including oligodendrocyte progenitor cell proliferation, generation of new oligodendrocytes, and formation of thinner myelin. Changes in neuronal activity that accompany TBI may also involve myelin remodeling, which modifies conduction efficiency along intact myelinated fibers. Thus, effective remyelination and myelin remodeling may be neurobiological substrates of plasticity in neuronal circuits that require long-distance communication. This perspective integrates findings from multiple contexts to propose a model of myelin and oligodendrocyte lineage cell relevance in white matter injury after TBI. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'. Published by Elsevier Ltd.

  2. Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier

    PubMed Central

    Nelson, Andrew D.; Jenkins, Paul M.

    2017-01-01

    Neurons are highly specialized cells of the nervous system that receive, process and transmit electrical signals critical for normal brain function. Here, we review the intricate organization of axonal membrane domains that facilitate rapid action potential conduction underlying communication between complex neuronal circuits. Two critical excitable domains of vertebrate axons are the axon initial segment (AIS) and the nodes of Ranvier, which are characterized by the high concentrations of voltage-gated ion channels, cell adhesion molecules and specialized cytoskeletal networks. The AIS is located at the proximal region of the axon and serves as the site of action potential initiation, while nodes of Ranvier, gaps between adjacent myelin sheaths, allow rapid propagation of the action potential through saltatory conduction. The AIS and nodes of Ranvier are assembled by ankyrins, spectrins and their associated binding partners through the clustering of membrane proteins and connection to the underlying cytoskeleton network. Although the AIS and nodes of Ranvier share similar protein composition, their mechanisms of assembly are strikingly different. Here we will cover the mechanisms of formation and maintenance of these axonal excitable membrane domains, specifically highlighting the similarities and differences between them. We will also discuss recent advances in super resolution fluorescence imaging which have elucidated the arrangement of the submembranous axonal cytoskeleton revealing a surprising structural organization necessary to maintain axonal organization and function. Finally, human mutations in axonal domain components have been associated with a growing number of neurological disorders including severe cognitive dysfunction, epilepsy, autism, neurodegenerative diseases and psychiatric disorders. Overall, this review highlights the assembly, maintenance and function of axonal excitable domains, particularly the AIS and nodes of Ranvier, and how abnormalities in these processes may contribute to disease. PMID:28536506

  3. Modeling Axonal Defects in Hereditary Spastic Paraplegia with Human Pluripotent Stem Cells

    PubMed Central

    Denton, Kyle R.; Xu, Chongchong; Shah, Harsh; Li, Xue-Jun

    2016-01-01

    BACKGROUND Cortical motor neurons, also known as upper motor neurons, are large projection neurons whose axons convey signals to lower motor neurons to control the muscle movements. Degeneration of cortical motor neuron axons is implicated in several debilitating disorders, including hereditary spastic paraplegia (HSP) and amyotrophic lateral sclerosis (ALS). Since the discovery of the first HSP gene, SPAST that encodes spastin, over 70 distinct genetic loci associated with HSP have been identified. How the mutations of these functionally diverse genes result in axonal degeneration and why certain axons are affected in HSP remains largely unknown. The development of induced pluripotent stem cell (iPSC) technology has provided researchers an excellent resource to generate patient-specific human neurons to model human neuropathologic processes including axonal defects. METHODS In this article, we will frst review the pathology and pathways affected in the common forms of HSP subtypes by searching the PubMed database. We will then summurize the findings and insights gained from studies using iPSC-based models, and discuss the challenges and future directions. RESULTS HSPs, a heterogeneous group of genetic neurodegenerative disorders, are characterized by lower extremity weakness and spasticity that result from retrograde axonal degeneration of cortical motor neurons. Recently, iPSCs have been generated from several common forms of HSP including SPG4, SPG3A, and SPG11 patients. Neurons derived from HSP iPSCs exhibit disease-relevant axonal defects, such as impaired neurite outgrowth, increased axonal swellings, and reduced axonal transport. CONCLUSION These patient-derived neurons offer unique tools to study the pathogenic mechanisms and explore the treatments for rescuing axonal defects in HSP, as well as other diseases involving axonopathy. PMID:27956894

  4. Jagged gives endothelial tip cells an edge.

    PubMed

    Suchting, Steven; Eichmann, Anne

    2009-06-12

    Sprouting blood vessels have tip cells that lead and stalk cells that follow. Benedito et al. (2009) now show that competition between endothelial cells for the tip position is regulated by glycosylation of Notch receptors and by the opposing actions of the Notch ligands Jagged1 and Delta-like 4.

  5. Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites

    PubMed Central

    LaRocca, Greg

    2017-01-01

    In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input. SIGNIFICANCE STATEMENT The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory input to modulate principal cell activity selectively. PMID:28003347

  6. Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus.

    PubMed

    Atherton, Jeremy F; Wokosin, David L; Ramanathan, Sankari; Bevan, Mark D

    2008-12-01

    The activity of the subthalamic nucleus (STN) is intimately related to movement and is generated, in part, by voltage-dependent Na(+) (Na(v)) channels that drive autonomous firing. In order to determine the principles underlying the initiation and propagation of action potentials in STN neurons, 2-photon laser scanning microscopy was used to guide tight-seal whole-cell somatic and loose-seal cell-attached axonal/dendritic patch-clamp recordings and compartment-selective ion channel manipulation in rat brain slices. Action potentials were first detected in a region that corresponded most closely to the unmyelinated axon initial segment, as defined by Golgi and ankyrin G labelling. Following initiation, action potentials propagated reliably into axonal and somatodendritic compartments with conduction velocities of approximately 5 m s(-1) and approximately 0.7 m s(-1), respectively. Action potentials generated by neurons with axons truncated within or beyond the axon initial segment were not significantly different. However, axon initial segment and somatic but not dendritic or more distal axonal application of low [Na(+)] ACSF or the selective Na(v) channel blocker tetrodotoxin consistently depolarized action potential threshold. Finally, somatodendritic but not axonal application of GABA evoked large, rapid inhibitory currents in concordance with electron microscopic analyses, which revealed that the somatodendritic compartment was the principal target of putative inhibitory inputs. Together the data are consistent with the conclusions that in STN neurons the axon initial segment and soma express an excess of Na(v) channels for the generation of autonomous activity, while synaptic activation of somatodendritic GABA(A) receptors regulates the axonal initiation of action potentials.

  7. Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus

    PubMed Central

    Atherton, Jeremy F; Wokosin, David L; Ramanathan, Sankari; Bevan, Mark D

    2008-01-01

    The activity of the subthalamic nucleus (STN) is intimately related to movement and is generated, in part, by voltage-dependent Na+ (Nav) channels that drive autonomous firing. In order to determine the principles underlying the initiation and propagation of action potentials in STN neurons, 2-photon laser scanning microscopy was used to guide tight-seal whole-cell somatic and loose-seal cell-attached axonal/dendritic patch-clamp recordings and compartment-selective ion channel manipulation in rat brain slices. Action potentials were first detected in a region that corresponded most closely to the unmyelinated axon initial segment, as defined by Golgi and ankyrin G labelling. Following initiation, action potentials propagated reliably into axonal and somatodendritic compartments with conduction velocities of ∼5 m s−1 and ∼0.7 m s−1, respectively. Action potentials generated by neurons with axons truncated within or beyond the axon initial segment were not significantly different. However, axon initial segment and somatic but not dendritic or more distal axonal application of low [Na+] ACSF or the selective Nav channel blocker tetrodotoxin consistently depolarized action potential threshold. Finally, somatodendritic but not axonal application of GABA evoked large, rapid inhibitory currents in concordance with electron microscopic analyses, which revealed that the somatodendritic compartment was the principal target of putative inhibitory inputs. Together the data are consistent with the conclusions that in STN neurons the axon initial segment and soma express an excess of Nav channels for the generation of autonomous activity, while synaptic activation of somatodendritic GABAA receptors regulates the axonal initiation of action potentials. PMID:18832425

  8. In vivo reactive neural plasticity investigation by means of correlative two photon: electron microscopy

    NASA Astrophysics Data System (ADS)

    Allegra Mascaro, A. L.; Cesare, P.; Sacconi, L.; Grasselli, G.; Mandolesi, G.; Maco, B.; Knott, G.; Huang, L.; De Paola, V.; Strata, P.; Pavone, F. S.

    2013-02-01

    In the adult nervous system, different populations of neurons correspond to different regenerative behavior. Although previous works showed that olivocerebellar fibers are capable of axonal regeneration in a suitable environment as a response to injury1, we have hitherto no details about the real dynamics of fiber regeneration. We set up a model of singularly axotomized climbing fibers (CF) to investigate their reparative properties in the adult central nervous system (CNS) in vivo. Time lapse two-photon imaging has been combined to laser nanosurgery2, 3 to define a temporal pattern of the degenerative event and to follow the structural rearrangement after injury. To characterize the damage and to elucidate the possible formation of new synaptic contacts on the sprouted branches of the lesioned CF, we combined two-photon in vivo imaging with block face scanning electron microscopy (FIB-SEM). Here we describe the approach followed to characterize the reactive plasticity after injury.

  9. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

    PubMed Central

    Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A

    2017-01-01

    After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400

  10. Optic nerve regeneration in the mouse is a complex trait modulated by genetic background

    PubMed Central

    Wang, Jiaxing; Li, Ying; King, Rebecca; Struebing, Felix L.

    2018-01-01

    Purpose The present study is designed to identify the influences of genetic background on optic nerve regeneration using the two parental strains (C57BL/6J and DBA/2J) and seven BXD recombinant inbred mouse strains. Methods To study regeneration in the optic nerve, Pten was knocked down in the retinal ganglion cells using adenoassociated virus (AAV) delivery of shRNA, and a mild inflammatory response was induced with an intravitreal injection of zymosan with CPT-cAMP. The axons of the retinal ganglion cells were damaged by optic nerve crush (ONC). Following a 12-day survival period, regenerating axons were labeled by cholera toxin B, and 2 days later, the regenerating axons within the optic nerve were examined. The number of axons at 0.5 mm and 1 mm from the crush site were counted. In addition, we measured the distance that five axons had grown down the nerve and the longest distance a single axon reached. Results The analysis revealed a considerable amount of differential axonal regeneration across the seven BXD strains and the parental strains. There was a statistically significant difference (p=0.014 Mann–Whitney U test) in the regenerative capacity in the number of axons reaching 0.5 mm from a low of 236.1±24.4 axons in the BXD102 mice to a high of 759.8±79.2 axons in the BXD29 mice. There were also statistically significant differences (p=0.014 Mann–Whitney U test) in the distance axons traveled. Looking at a minimum of five axons, the shortest distance was 787.2±46.5 µm in the BXD102 mice, and the maximum distance was 2025.5±223.3 µm in the BXD29 mice. Conclusions Differences in genetic background can have a profound effect on axonal regeneration causing a threefold increase in the number of regenerating axons at 0.5 mm from the crush site and a 2.5-fold increase in the distance traveled by at least five axons in the damaged optic nerve. PMID:29463955

  11. Live-cell imaging of neurofilament transport in cultured neurons.

    PubMed

    Uchida, Atsuko; Monsma, Paula C; Fenn, J Daniel; Brown, Anthony

    2016-01-01

    Neurofilaments, which are the intermediate filaments of nerve cells, are space-filling cytoskeletal polymers that contribute to the growth of axonal caliber. In addition to their structural role, neurofilaments are cargos of axonal transport that move along microtubule tracks in a rapid, intermittent, and bidirectional manner. Though they measure just 10nm in diameter, which is well below the diffraction limit of optical microscopes, these polymers can reach 100 μm or more in length and are often packed densely, just tens of nanometers apart. These properties of neurofilaments present unique challenges for studies on their movement. In this article, we describe several live-cell fluorescence imaging strategies that we have developed to image neurofilament transport in axons of cultured neurons on short and long timescales. Together, these methods form a powerful set of complementary tools with which to study the axonal transport of these unique intracellular cargos. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Limited remyelination of CNS axons by Schwann cells transplanted into the sub-arachnoid space.

    PubMed

    Blakemore, W F

    1984-06-01

    Areas of primary demyelination which did not subsequently remyelinate spontaneously were prepared in the cat spinal cord by injecting small volumes of ethidium bromide into tissue which had previously been exposed to 40 Grays of X-irradiation. Autologous peripheral nerve tissue was placed in the sub-arachnoid space over such lesions, either at the time of injecting ethidium bromide, or at 14 days or 28 days after injecting ethidium bromide. The extent of Schwann cell remyelination was assessed 28 days after transplantation. In no case were all the demyelinated axons remyelinated; rather, remyelination was limited to axons near to blood vessels. It was concluded that Schwann cells migrated from the transplanted tissue into the lesion via the perivascular space and that they failed to remyelinate the bulk of demyelinated axons because of an absence within the CNS of suitable extracellular matrix.

  13. Neurotrophic factors switch between two signaling pathways that trigger axonal growth.

    PubMed

    Paveliev, Mikhail; Lume, Maria; Velthut, Agne; Phillips, Matthew; Arumäe, Urmas; Saarma, Mart

    2007-08-01

    Integration of multiple inputs from the extracellular environment, such as extracellular matrix molecules and growth factors, is a crucial process for cell function and information processing in multicellular organisms. Here we demonstrate that co-stimulation of dorsal root ganglion neurons with neurotrophic factors (NTFs) - glial-cell-line-derived neurotrophic factor, neurturin or nerve growth factor - and laminin leads to axonal growth that requires activation of Src family kinases (SFKs). A different, SFK-independent signaling pathway evokes axonal growth on laminin in the absence of the NTFs. By contrast, axonal branching is regulated by SFKs both in the presence and in the absence of NGF. We propose and experimentally verify a Boolean model of the signaling network triggered by NTFs and laminin. Our results demonstrate that NTFs provide an environmental cue that triggers a switch between separate pathways in the cell signaling network.

  14. Rho and Ras GTPases in Axon Growth, Guidance, and Branching

    PubMed Central

    Hall, Alan; Lalli, Giovanna

    2010-01-01

    The establishment of precise neuronal cell morphology provides the foundation for all aspects of neurobiology. During development, axons emerge from cell bodies after an initial polarization stage, elongate, and navigate towards target regions guided by a range of environmental cues. The Rho and Ras families of small GTPases have emerged as critical players at all stages of axonogenesis. Their ability to coordinately direct multiple signal transduction pathways with precise spatial control drives many of the activities that underlie this morphogenetic program: the dynamic assembly, disassembly, and reorganization of the actin and microtubule cytoskeletons, the interaction of the growing axon with other cells and extracellular matrix, the delivery of lipids and proteins to the axon through the exocytic machinery, and the internalization of membrane and proteins at the leading edge of the growth cone through endocytosis. This article highlights the contribution of Rho and Ras GTPases to axonogenesis. PMID:20182621

  15. GSK3β regulates AKT-induced central nervous system axon regeneration via an eIF2Bε-dependent, mTORC1-independent pathway.

    PubMed

    Guo, Xinzheng; Snider, William D; Chen, Bo

    2016-03-14

    Axons fail to regenerate after central nervous system (CNS) injury. Modulation of the PTEN/mTORC1 pathway in retinal ganglion cells (RGCs) promotes axon regeneration after optic nerve injury. Here, we report that AKT activation, downstream of Pten deletion, promotes axon regeneration and RGC survival. We further demonstrate that GSK3β plays an indispensable role in mediating AKT-induced axon regeneration. Deletion or inactivation of GSK3β promotes axon regeneration independently of the mTORC1 pathway, whereas constitutive activation of GSK3β reduces AKT-induced axon regeneration. Importantly, we have identified eIF2Bε as a novel downstream effector of GSK3β in regulating axon regeneration. Inactivation of eIF2Bε reduces both GSK3β and AKT-mediated effects on axon regeneration. Constitutive activation of eIF2Bε is sufficient to promote axon regeneration. Our results reveal a key role of the AKT-GSK3β-eIF2Bε signaling module in regulating axon regeneration in the adult mammalian CNS.

  16. Sprouting of old-growth redwood stumps...first year after logging

    Treesearch

    Robert L. Neal

    1967-01-01

    A survey of 104 old-growth stumps on the Redwood Experimental Forest, in northern California showed that (a) probability of a stump sprouting varied inversely with its diameter; (b) number of sprouts per sprouting stump and height of tallest sprout were not related to stump diameter; (c) lower portions of stumps sprouted more often and produced more sprouts than did...

  17. YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development

    PubMed Central

    Neto, Filipa; Klaus-Bergmann, Alexandra; Ong, Yu Ting; Alt, Silvanus; Vion, Anne-Clémence; Szymborska, Anna; Carvalho, Joana R; Hollfinger, Irene; Bartels-Klein, Eireen; Franco, Claudio A

    2018-01-01

    Formation of blood vessel networks by sprouting angiogenesis is critical for tissue growth, homeostasis and regeneration. How endothelial cells arise in adequate numbers and arrange suitably to shape functional vascular networks is poorly understood. Here we show that YAP/TAZ promote stretch-induced proliferation and rearrangements of endothelial cells whilst preventing bleeding in developing vessels. Mechanistically, YAP/TAZ increase the turnover of VE-Cadherin and the formation of junction associated intermediate lamellipodia, promoting both cell migration and barrier function maintenance. This is achieved in part by lowering BMP signalling. Consequently, the loss of YAP/TAZ in the mouse leads to stunted sprouting with local aggregation as well as scarcity of endothelial cells, branching irregularities and junction defects. Forced nuclear activity of TAZ instead drives hypersprouting and vascular hyperplasia. We propose a new model in which YAP/TAZ integrate mechanical signals with BMP signaling to maintain junctional compliance and integrity whilst balancing endothelial cell rearrangements in angiogenic vessels. PMID:29400648

  18. Neural cell adhesion molecule, NCAM, regulates thalamocortical axon pathfinding and the organization of the cortical somatosensory representation in mouse

    PubMed Central

    Enriquez-Barreto, Lilian; Palazzetti, Cecilia; Brennaman, Leann H.; Maness, Patricia F.; Fairén, Alfonso

    2012-01-01

    To study the potential role of neural cell adhesion molecule (NCAM) in the development of thalamocortical (TC) axon topography, wild type, and NCAM null mutant mice were analyzed for NCAM expression, projection, and targeting of TC afferents within the somatosensory area of the neocortex. Here we report that NCAM and its α-2,8-linked polysialic acid (PSA) are expressed in developing TC axons during projection to the neocortex. Pathfinding of TC axons in wild type and null mutant mice was mapped using anterograde DiI labeling. At embryonic day E16.5, null mutant mice displayed misguided TC axons in the dorsal telencephalon, but not in the ventral telencephalon, an intermediate target that initially sorts TC axons toward correct neocortical areas. During the early postnatal period, rostrolateral TC axons within the internal capsule along the ventral telencephalon adopted distorted trajectories in the ventral telencephalon and failed to reach the neocortex in NCAM null mutant animals. NCAM null mutants showed abnormal segregation of layer IV barrels in a restricted portion of the somatosensory cortex. As shown by Nissl and cytochrome oxidase staining, barrels of the anterolateral barrel subfield (ALBSF) and the most distal barrels of the posteromedial barrel subfield (PMBSF) did not segregate properly in null mutant mice. These results indicate a novel role for NCAM in axonal pathfinding and topographic sorting of TC axons, which may be important for the function of specific territories of sensory representation in the somatosensory cortex. PMID:22723769

  19. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties.

    PubMed

    Casale, Amanda E; Foust, Amanda J; Bal, Thierry; McCormick, David A

    2015-11-25

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca(2+)-activated K(+) channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main compartments: dendritic, somatic, and axonal. How the neurons receive information, process it, and pass on new information depends upon how these three compartments operate. While it has long been assumed that axons are simply for conducting information from the cell body to the synapses, here we demonstrate that the axons of different types of interneurons, the inhibitory cells, possess differing electrophysiological properties. This result implies that differing types of interneurons perform different tasks in the cortex, not only through their anatomical connections, but also through how their axons operate. Copyright © 2015 the authors 0270-6474/15/3515555-13$15.00/0.

  20. Serotonergic Innervation of the Caudal Spinal Stump in Rats After Complete Spinal Transection: Effect of Olfactory Ensheathing Glia

    PubMed Central

    Takeoka, Aya; Kubasak, Marc D.; Zhong, Hui; Roy, Roland R.; Phelps, Patricia E.

    2010-01-01

    Spinal cord injury studies use the presence of serotonin (5-HT)-immunoreactive axons caudal to the injury site as evidence of axonal regeneration. As olfactory ensheathing glia (OEG) transplantation improves hindlimb locomotion in adult rats with complete spinal cord transection, we hypothesized that more 5-HT-positive axons would be found in the caudal stump of OEG- than media-injected rats. Previously we found 5-HT-immunolabeled axons that spanned the transection site only in OEG-injected rats but detected labeled axons just caudal to the lesion in both media- and OEG-injected rats. Now we report that many 5-HT-labeled axons are present throughout the caudal stump of both media- and OEG-injected rats. We found occasional 5-HT-positive interneurons that are one likely source of 5-HT-labeled axons. These results imply that the presence of 5-HT-labeled fibers in the caudal stump is not a reliable indicator of regeneration. We then asked if 5-HT-positive axons appose cholinergic neurons associated with motor functions: central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more 5-HT-positive varicosities in lamina X adjacent to central canal cluster cells in lumbar and sacral segments of OEG- than media-injected rats. SMNs and partition cells are less frequently apposed. As nonsynaptic release of 5-HT is common in the spinal cord, an increase in 5-HT-positive varicosities along motor-associated cholinergic neurons may contribute to the locomotor improvement observed in OEG-injected spinal rats. Furthermore, serotonin located within the caudal stump may activate lumbosacral locomotor networks. J. Comp. Neurol. 515: 664–676, 2009. PMID:19496067

  1. Serotonergic innervation of the caudal spinal stump in rats after complete spinal transection: effect of olfactory ensheathing glia.

    PubMed

    Takeoka, Aya; Kubasak, Marc D; Zhong, Hui; Roy, Roland R; Phelps, Patricia E

    2009-08-20

    Spinal cord injury studies use the presence of serotonin (5-HT)-immunoreactive axons caudal to the injury site as evidence of axonal regeneration. As olfactory ensheathing glia (OEG) transplantation improves hindlimb locomotion in adult rats with complete spinal cord transection, we hypothesized that more 5-HT-positive axons would be found in the caudal stump of OEG- than media-injected rats. Previously we found 5-HT-immunolabeled axons that spanned the transection site only in OEG-injected rats but detected labeled axons just caudal to the lesion in both media- and OEG-injected rats. Now we report that many 5-HT-labeled axons are present throughout the caudal stump of both media- and OEG-injected rats. We found occasional 5-HT-positive interneurons that are one likely source of 5-HT-labeled axons. These results imply that the presence of 5-HT-labeled fibers in the caudal stump is not a reliable indicator of regeneration. We then asked if 5-HT-positive axons appose cholinergic neurons associated with motor functions: central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more 5-HT-positive varicosities in lamina X adjacent to central canal cluster cells in lumbar and sacral segments of OEG- than media-injected rats. SMNs and partition cells are less frequently apposed. As nonsynaptic release of 5-HT is common in the spinal cord, an increase in 5-HT-positive varicosities along motor-associated cholinergic neurons may contribute to the locomotor improvement observed in OEG-injected spinal rats. Furthermore, serotonin located within the caudal stump may activate lumbosacral locomotor networks. (c) 2009 Wiley-Liss, Inc.

  2. Evidence of the Primary Afferent Tracts Undergoing Neurodegeneration in Horses With Equine Degenerative Myeloencephalopathy Based on Calretinin Immunohistochemical Localization.

    PubMed

    Finno, C J; Valberg, S J; Shivers, J; D'Almeida, E; Armién, A G

    2016-01-01

    Equine degenerative myeloencephalopathy (EDM) is characterized by a symmetric general proprioceptive ataxia in young horses, and is likely underdiagnosed for 2 reasons: first, clinical signs overlap those of cervical vertebral compressive myelopathy; second, histologic lesions--including axonal spheroids in specific tracts of the somatosensory and motor systems--may be subtle. The purpose of this study was (1) to utilize immunohistochemical (IHC) markers to trace axons in the spinocuneocerebellar, dorsal column-medial lemniscal, and dorsospinocerebellar tracts in healthy horses and (2) to determine the IHC staining characteristics of the neurons and degenerated axons along the somatosensory tracts in EDM-affected horses. Examination of brain, spinal cord, and nerves was performed on 2 age-matched control horses, 3 EDM-affected horses, and 2 age-matched disease-control horses via IHC for calbindin, vesicular glutamate transporter 2, parvalbumin, calretinin, glutamic acid decarboxylase, and glial fibrillary acidic protein. Primary afferent axons of the spinocuneocerebellar, dorsal column-medial lemniscal, and dorsospinocerebellar tracts were successfully traced with calretinin. Calretinin-positive cell bodies were identified in a subset of neurons in the dorsal root ganglia, suggesting that calretinin IHC could be used to trace axonal projections from these cell bodies. Calretinin-immunoreactive spheroids were present in EDM-affected horses within the nuclei cuneatus medialis, cuneatus lateralis, and thoracicus. Neurons within those nuclei were calretinin negative. Cell bodies of degenerated axons in EDM-affected horses are likely located in the dorsal root ganglia. These findings support the role of sensory axonal degeneration in the pathogenesis of EDM and provide a method to highlight tracts with axonal spheroids to aid in the diagnosis of this neurodegenerative disease. © The Author(s) 2015.

  3. miR126-5p Downregulation Facilitates Axon Degeneration and NMJ Disruption via a Non-Cell-Autonomous Mechanism in ALS.

    PubMed

    Maimon, Roy; Ionescu, Ariel; Bonnie, Avichai; Sweetat, Sahar; Wald-Altman, Shane; Inbar, Shani; Gradus, Tal; Trotti, Davide; Weil, Miguel; Behar, Oded; Perlson, Eran

    2018-06-13

    Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in amyotrophic lateral sclerosis (ALS) pathology. Although the disease's etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR126-5p in presymptomatic ALS male mice models, and an increase in its targets: axon destabilizing Type 3 Semaphorins and their coreceptor Neuropilins. Using compartmentalized in vitro cocultures, we demonstrated that myocytes expressing diverse ALS-causing mutations promote axon degeneration and NMJ dysfunction, which were inhibited by applying Neuropilin1 blocking antibody. Finally, overexpressing miR126-5p is sufficient to transiently rescue axon degeneration and NMJ disruption both in vitro and in vivo Thus, we demonstrate a novel mechanism underlying ALS pathology, in which alterations in miR126-5p facilitate a non-cell-autonomous mechanism of motor neuron degeneration in ALS. SIGNIFICANCE STATEMENT Despite some progress, currently no effective treatment is available for amyotrophic lateral sclerosis (ALS). We suggest a novel regulatory role for miR126-5p in ALS and demonstrate, for the first time, a mechanism by which alterations in miR126-5p contribute to axon degeneration and NMJ disruption observed in ALS. We show that miR126-5p is altered in ALS models and that it can modulate Sema3 and NRP protein expression. Furthermore, NRP1 elevations in motor neurons and muscle secretion of Sema3A contribute to axon degeneration and NMJ disruption in ALS. Finally, overexpressing miR126-5p is sufficient to transiently rescue NMJ disruption and axon degeneration both in vitro and in vivo . Copyright © 2018 Maimon et al.

  4. Evidence of the Primary Afferent Tracts Undergoing Neurodegeneration in Horses With Equine Degenerative Myeloencephalopathy Based on Calretinin Immunohistochemical Localization

    PubMed Central

    Finno, C. J.; Valberg, S. J.; Shivers, J.; D’Almeida, E.; Armién, A. G.

    2016-01-01

    Equine degenerative myeloencephalopathy (EDM) is characterized by a symmetric general proprioceptive ataxia in young horses, and is likely underdiagnosed for 2 reasons: first, clinical signs overlap those of cervical vertebral compressive myelopathy; second, histologic lesions—including axonal spheroids in specific tracts of the somatosensory and motor systems—may be subtle. The purpose of this study was (1) to utilize immunohistochemical (IHC) markers to trace axons in the spinocuneocerebellar, dorsal column–medial lemniscal, and dorsospinocerebellar tracts in healthy horses and (2) to determine the IHC staining characteristics of the neurons and degenerated axons along the somatosensory tracts in EDM-affected horses. Examination of brain, spinal cord, and nerves was performed on 2 age-matched control horses, 3 EDM-affected horses, and 2 age-matched disease-control horses via IHC for calbindin, vesicular glutamate transporter 2, parvalbumin, calretinin, glutamic acid decarboxylase, and glial fibrillary acidic protein. Primary afferent axons of the spinocuneocerebellar, dorsal column–medial lemniscal, and dorsospinocerebellar tracts were successfully traced with calretinin. Calretinin-positive cell bodies were identified in a subset of neurons in the dorsal root ganglia, suggesting that calretinin IHC could be used to trace axonal projections from these cell bodies. Calretinin-immunoreactive spheroids were present in EDM-affected horses within the nuclei cuneatus medialis, cuneatus lateralis, and thoracicus. Neurons within those nuclei were calretinin negative. Cell bodies of degenerated axons in EDM-affected horses are likely located in the dorsal root ganglia. These findings support the role of sensory axonal degeneration in the pathogenesis of EDM and provide a method to highlight tracts with axonal spheroids to aid in the diagnosis of this neurodegenerative disease. PMID:26253880

  5. The SNARE Protein Syntaxin 3 Confers Specificity for Polarized Axonal Trafficking in Neurons

    PubMed Central

    Soo Hoo, Linda; Banna, Chris D.; Radeke, Carolyn M.; Sharma, Nikunj; Albertolle, Mary E.; Low, Seng Hui; Weimbs, Thomas; Vandenberg, Carol A.

    2016-01-01

    Cell polarity and precise subcellular protein localization are pivotal to neuronal function. The SNARE machinery underlies intracellular membrane fusion events, but its role in neuronal polarity and selective protein targeting remain unclear. Here we report that syntaxin 3 is involved in orchestrating polarized trafficking in cultured rat hippocampal neurons. We show that syntaxin 3 localizes to the axonal plasma membrane, particularly to axonal tips, whereas syntaxin 4 localizes to the somatodendritic plasma membrane. Disruption of a conserved N-terminal targeting motif, which causes mislocalization of syntaxin 3, results in coincident mistargeting of the axonal cargos neuron-glia cell adhesion molecule (NgCAM) and neurexin, but not transferrin receptor, a somatodendritic cargo. Similarly, RNAi-mediated knockdown of endogenous syntaxin 3 leads to partial mistargeting of NgCAM, demonstrating that syntaxin 3 plays an important role in its targeting. Additionally, overexpression of syntaxin 3 results in increased axonal growth. Our findings suggest an important role for syntaxin 3 in maintaining neuronal polarity and in the critical task of selective trafficking of membrane protein to axons. PMID:27662481

  6. The SNARE Protein Syntaxin 3 Confers Specificity for Polarized Axonal Trafficking in Neurons.

    PubMed

    Soo Hoo, Linda; Banna, Chris D; Radeke, Carolyn M; Sharma, Nikunj; Albertolle, Mary E; Low, Seng Hui; Weimbs, Thomas; Vandenberg, Carol A

    Cell polarity and precise subcellular protein localization are pivotal to neuronal function. The SNARE machinery underlies intracellular membrane fusion events, but its role in neuronal polarity and selective protein targeting remain unclear. Here we report that syntaxin 3 is involved in orchestrating polarized trafficking in cultured rat hippocampal neurons. We show that syntaxin 3 localizes to the axonal plasma membrane, particularly to axonal tips, whereas syntaxin 4 localizes to the somatodendritic plasma membrane. Disruption of a conserved N-terminal targeting motif, which causes mislocalization of syntaxin 3, results in coincident mistargeting of the axonal cargos neuron-glia cell adhesion molecule (NgCAM) and neurexin, but not transferrin receptor, a somatodendritic cargo. Similarly, RNAi-mediated knockdown of endogenous syntaxin 3 leads to partial mistargeting of NgCAM, demonstrating that syntaxin 3 plays an important role in its targeting. Additionally, overexpression of syntaxin 3 results in increased axonal growth. Our findings suggest an important role for syntaxin 3 in maintaining neuronal polarity and in the critical task of selective trafficking of membrane protein to axons.

  7. Effects of the 3D-clinorotation on endogenous substances of broccoli sprout (Brassica oleracea var. italica) and its food safety

    NASA Astrophysics Data System (ADS)

    Hiraishi, K.; Tomita-Yokotani, K.; Wakabayashi, K.; Hashimoto, H.; Miyagawa, T.; Yamashita, M.

    Habitation in outer space is one of our challenges in this century We are studying on space agriculture to provide foods for space living people However careful assessment should be made on the effects of exotic environment on the endogenous production of biologically active substances and food safety of plants cultivated in space Broccoli sprout Brassica oleracea var italica is known to produce sulforaphane 4-methylsulfinybutyl isothiocyanate which is effective to function as an antioxidant and enhance immunity Because of such substance it is recognized to be good food materials Broccoli sprouts were then cultivated for 3 days under the 3D-clinorotation The amount of sulforaphane produced by this treatment showed no significant difference compared to the ground control Secondly we examined population of microorganisms adhered on the surface of sprout cultivated under the 3D-clinorotation Number of the microorganisms colony formed was statistically higher than the control Mold species was identified to penicillium sp based on the microscopic observation Poor construction of plant cell wall elements cellulose lignin etc is well known effects of microgravity Defense function of the broccoli plant cells might be weakened against microorganism We also speculate other possible causes for the high rate of contamination such as photosynthetic activity of the plant or microclimate air flow heat transport and humidity around the seedling affected by pseudo-microgravity or the 3D-clinorotation Those factors may relate to the difference in proliferation

  8. Linking Essential Tremor to the Cerebellum-Animal Model Evidence.

    PubMed

    Handforth, Adrian

    2016-06-01

    In this review, we hope to stimulate interest in animal models as opportunities to understand tremor mechanisms within the cerebellar system. We begin by considering the harmaline model of essential tremor (ET), which has ET-like anatomy and pharmacology. Harmaline induces the inferior olive (IO) to burst fire rhythmically, recruiting rhythmic activity in Purkinje cells (PCs) and deep cerebellar nuclei (DCN). This model has fostered the IO hypothesis of ET, which postulates that factors that promote excess IO, and hence PC complex spike synchrony, also promote tremor. In contrast, the PC hypothesis postulates that partial PC cell loss underlies tremor of ET. We describe models in which chronic partial PC loss is associated with tremor, such as the Weaver mouse, and others with PC loss that do not show tremor, such as the Purkinje cell degeneration mouse. We postulate that partial PC loss with tremor is associated with terminal axonal sprouting. We then discuss tremor that occurs with large lesions of the cerebellum in primates. This tremor has variable frequency and is an ataxic tremor not related to ET. Another tremor type that is not likely related to ET is tremor in mice with mutations that cause prolonged synaptic GABA action. This tremor is probably due to mistiming within cerebellar circuitry. In the final section, we catalog tremor models involving neurotransmitter and ion channel perturbations. Some appear to be related to the IO hypothesis of ET, while in others tremor may be ataxic or due to mistiming. In summary, we offer a tentative framework for classifying animal action tremor, such that various models may be considered potentially relevant to ET, subscribing to IO or PC hypotheses, or not likely relevant, as with mistiming or ataxic tremor. Considerable further research is needed to elucidate the mechanisms of tremor in animal models.

  9. Effectiveness of a spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157:H7 on contaminated broccoli and radish seeds.

    PubMed

    Landry, Kyle S; Micheli, Sean; McClements, David Julian; McLandsborough, Lynne

    2015-10-01

    The incidence of foodborne illness associated with the consumption of fresh produce has continued to increase over the past decade. Sprouts, such as mung bean, alfalfa, radish, and broccoli, are minimally processed and have been sources for foodborne illness. Currently, a 20,000 ppm calcium hypochlorite soak is recommended for the treatment of sprouting seeds. In this study, the efficacy of an antimicrobial carvacrol nanoemulsion was tested against Salmonella enterica subspecies enterica serovar Enteritidis (ATCC BAA-1045) or EGFP expressing Escherichia coli O157:H7 (ATCC 42895) contaminated sprouting seeds. Antimicrobial treatments were performed by soaking inoculated seeds in nanoemulsions (4000 or 8000 ppm) for 30 or 60 min. Following treatment, surviving cells were determined by performing plate counts and/or Most Probable Number (MPN) enumeration. Treated seeds were sprouted and tested for the presence of pathogens. Treatment successfully inactivated low levels (2 and 3 log CFU/g) of S. Enteritidis and E. coli on radish seeds when soaked for 60 min at concentrations ≥4000 (0.4%) ppm carvacrol. This treatment method was not affective on contaminated broccoli seeds. Total sprout yield was not influenced by any treatments. These results show that carvacrol nanoemulsions may be an alternative treatment method for contaminated radish seeds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The biotoxicity of hydroxyapatite nanoparticles to the plant growth.

    PubMed

    Jiang, Hao; Liu, Jin-Ku; Wang, Jian-Dong; Lu, Yi; Zhang, Min; Yang, Xiao-Hong; Hong, Dan-Jing

    2014-04-15

    In the present study, hydroxyapatite (HAP) nanoparticles of different particle sizes with high crystallinity and similiar structure were prepared by hydrothermal method. The crystal structure and particle size were characterized by X-ray diffraction pattern (XRD), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. Mung bean sprouts were first used as experimental models. Instead of by MTT assay, the cytoxicity of HAP nanoparticles were proved and evaluated by measuring the hypocotyle length of mung bean sprouts in the culture media. The result showed that the inhibition effect to the growth of mung bean sprouts enhanced when HAP nanoparticles existed. Culture media of HAP nanoparticles with different concentrations and particle sizes was prepared to investigate the level of inhibition effect to the growth of mung bean sprouts. The result found that hypocotyl length of mung bean sprouts were the shortest cultured in 5mg/mL culture media in which the HAP nanoparticles were prepared by hydrothermal method for 24h. It was concluded the inhibition effect depended on the amount of intracellular HAP nanoparticles. The nanostructure and Ca(2+) concentration were considered as the main factors to cause cell apoptosis which was the reason of inhibition. The study provided a preliminary perspective about biotoxicity of HAP nanomaterials to the plant growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Flamingo, a seven-pass transmembrane cadherin, cooperates with Netrin/Frazzled in Drosophila midline guidance.

    PubMed

    Organisti, Cristina; Hein, Irina; Grunwald Kadow, Ilona C; Suzuki, Takashi

    2015-01-01

    During central nervous system development, several guidance cues and receptors, as well as cell adhesion molecules, are required for guiding axons across the midline and along the anterior-posterior axis. In Drosophila, commissural axons sense the midline attractants Netrin A and B (Net) through Frazzled (Fra) receptors. Despite their importance, lack of Net or fra affects only some commissures, suggesting that additional molecules can fulfill this function. Recently, planar cell polarity (PCP) proteins have been implicated in midline axon guidance in both vertebrate and invertebrate systems. Here, we report that the atypical cadherin and PCP molecule Flamingo/Starry night (Fmi/Stan) acts jointly with Net/Fra signaling during midline development. Additional removal of fmi strongly increases the guidance defects in Net/fra mutants. Rescue and domain deletion experiments suggest that Fmi signaling facilitates commissural pathfinding potentially by mediating axonal fasciculation in a partly homophilic manner. Altogether, our results indicate that contact-mediated cell adhesion via Fmi acts in addition to the Net/Fra guidance system during axon pathfinding across the midline, underlining the importance of PCP molecules during vertebrates and invertebrates midline development. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  12. Mechanosensing is critical for axon growth in the developing brain

    PubMed Central

    Pillai, Eva K.; Sheridan, Graham K.; Svoboda, Hanno; Viana, Matheus; da F. Costa, Luciano; Guck, Jochen; Holt, Christine E.; Franze, Kristian

    2016-01-01

    During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signalling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro, substrate stiffness determined growth patterns of Xenopus retinal ganglion cell (RGC) axons. In vivo atomic force microscopy revealed striking stiffness gradient patterns in the embryonic brain. RGC axons grew towards the tissue’s softer side, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo, we altered brain stiffness, blocked mechanotransduction pharmacologically, and knocked down the mechanosensitive ion channel Piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness–read out by mechanosensitive ion channels–is critically involved in instructing neuronal growth in vivo. PMID:27643431

  13. Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner.

    PubMed

    Mitew, Stanislaw; Gobius, Ilan; Fenlon, Laura R; McDougall, Stuart J; Hawkes, David; Xing, Yao Lulu; Bujalka, Helena; Gundlach, Andrew L; Richards, Linda J; Kilpatrick, Trevor J; Merson, Tobias D; Emery, Ben

    2018-01-22

    Mounting evidence suggests that neuronal activity influences myelination, potentially allowing for experience-driven modulation of neural circuitry. The degree to which neuronal activity is capable of regulating myelination at the individual axon level is unclear. Here we demonstrate that stimulation of somatosensory axons in the mouse brain increases proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) within the underlying white matter. Stimulated axons display an increased probability of being myelinated compared to neighboring non-stimulated axons, in addition to being ensheathed with thicker myelin. Conversely, attenuating neuronal firing reduces axonal myelination in a selective activity-dependent manner. Our findings reveal that the process of selecting axons for myelination is strongly influenced by the relative activity of individual axons within a population. These observed cellular changes are consistent with the emerging concept that adaptive myelination is a key mechanism for the fine-tuning of neuronal circuitry in the mammalian CNS.

  14. ImagePAD, a Novel Counting Application for the Apple iPad®, Used to Quantify Axons in the Mouse Optic Nerve

    PubMed Central

    Templeton, Justin P.; Struebing, Felix L.; Lemmon, Andrew; Geisert, Eldon E.

    2014-01-01

    The present article introduces a new and easy to use counting application for the Apple iPad. The application “ImagePAD” takes advantage of the advanced user interface features offered by the Apple iOS® platform, simplifying the rather tedious task of quantifying features in anatomical studies. For example, the image under analysis can be easily panned and zoomed using iOS-supported multi-touch gestures without losing the spatial context of the counting task, which is extremely important for ensuring count accuracy. This application allows one to quantify up to 5 different types of objects in a single field and output the data in a tab-delimited format for subsequent analysis. We describe two examples of the use of the application: quantifying axons in the optic nerve of the C57BL/6J mouse and determining the percentage of cells labeled with NeuN or ChAT in the retinal ganglion cell layer. For the optic nerve, contiguous images at 60× magnification were taken and transferred onto an Apple iPad®. Axons were counted by tapping on the touch-sensitive screen using ImagePAD. Nine optic nerves were sampled and the number of axons in the nerves ranged from 38872 axons to 50196 axons with an average of 44846 axons per nerve (SD = 3980 axons). PMID:25281829

  15. Serum From Advanced Heart Failure Patients Promotes Angiogenic Sprouting and Affects the Notch Pathway in Human Endothelial Cells

    PubMed Central

    Pannella, Micaela; Caliceti, Cristiana; Fortini, Francesca; Aquila, Giorgio; Sega, Francesco Vieceli Dalla; Pannuti, Antonio; Fortini, Cinzia; Morelli, Marco Bruno; Fucili, Alessandro; Francolini, Gloria; Voltan, Rebecca; Secchiero, Paola; Dinelli, GiovannI; Leoncini, Emanuela; Ferracin, Manuela; Hrelia, Silvana; Miele, Lucio; Rizzo, Paola

    2017-01-01

    It is unknown whether components present in heart failure (HF) patients' serum provide an angiogenic stimulus. We sought to determine whether serum from HF patients affects angiogenesis and its major modulator, the Notch pathway, in human umbilical vein endothelial cells (HUVECs). In cells treated with serum from healthy subjects or from patients at different HF stage we determined: (1) Sprouting angiogenesis, by measuring cells network (closed tubes) in collagen gel. (2) Protein levels of Notch receptors 1, 2, 4, and ligands Jagged1, Delta-like4. We found a higher number of closed tubes in HUVECs treated with advanced HF patients serum in comparison with cells treated with serum from mild HF patients or controls. Furthermore, as indicated by the reduction of the active form of Notch4 (N4IC) and of Jagged1, advanced HF patients serum inhibited Notch signalling in HUVECs in comparison with mild HF patients' serum and controls. The circulating levels of NT-proBNP (N-terminal of the pro-hormone brain natriuretic peptide), a marker for the detection and evalutation of HF, were positively correlated with the number of closed tubes (r = 0.485) and negatively with Notch4IC and Jagged1 levels in sera-treated cells (r = −0.526 and r = −0.604, respectively). In conclusion, we found that sera from advanced HF patients promote sprouting angiogenesis and dysregulate Notch signaling in HUVECs. Our study provides in vitro evidence of an angiogenic stimulus arising during HF progression and suggests a role for the Notch pathway in it. PMID:26987674

  16. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury.

    PubMed

    Lee, Yee-Shuan; Funk, Lucy H; Lee, Jae K; Bunge, Mary Bartlett

    2018-04-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage depletion does improve histopathology of the injury site, the effect on axon growth and behavioral recovery appears no better than what can be achieved with Schwann cell transplants alone.

  17. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury

    PubMed Central

    Lee, Yee-Shuan; Funk, Lucy H.; Lee, Jae K.; Bunge, Mary Bartlett

    2018-01-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage depletion does improve histopathology of the injury site, the effect on axon growth and behavioral recovery appears no better than what can be achieved with Schwann cell transplants alone. PMID:29722321

  18. Regulation of Conduction Time along Axons

    PubMed Central

    Seidl, Armin H.

    2013-01-01

    Timely delivery of information is essential for proper function of the nervous system. Precise regulation of nerve conduction velocity is needed for correct exertion of motor skills, sensory integration and cognitive functions. In vertebrates, the rapid transmission of signals along nerve fibers is made possible by the myelination of axons and the resulting saltatory conduction in between nodes of Ranvier. Myelin is a specialization of glia cells and is provided by oligodendrocytes in the central nervous system. Myelination not only maximizes conduction velocity, but also provides a means to systematically regulate conduction times in the nervous system. Systematic regulation of conduction velocity along axons, and thus systematic regulation of conduction time in between neural areas, is a common occurrence in the nervous system. To date, little is understood about the mechanism that underlies systematic conduction velocity regulation and conduction time synchrony. Node assembly, internode distance (node spacing) and axon diameter - all parameters determining the speed of signal propagation along axons - are controlled by myelinating glia. Therefore, an interaction between glial cells and neurons has been suggested. This review summarizes examples of neural systems in which conduction velocity is regulated by anatomical variations along axons. While functional implications in these systems are not always clear, recent studies in the auditory system of birds and mammals present examples of conduction velocity regulation in systems with high temporal precision and a defined biological function. Together these findings suggest an active process that shapes the interaction between axons and myelinating glia to control conduction velocity along axons. Future studies involving these systems may provide further insight into how specific conduction times in the brain are established and maintained in development. Throughout the text, conduction velocity is used for the speed of signal propagation, i.e. the speed at which an action potential travels. Conduction time refers to the time it takes for a specific signal to travel from its origin to its target, i.e. neuronal cell body to axonal terminal. PMID:23820043

  19. Microtubule-Targeting Agents Eribulin and Paclitaxel Differentially Affect Neuronal Cell Bodies in Chemotherapy-Induced Peripheral Neuropathy.

    PubMed

    Benbow, Sarah J; Wozniak, Krystyna M; Kulesh, Bridget; Savage, April; Slusher, Barbara S; Littlefield, Bruce A; Jordan, Mary Ann; Wilson, Leslie; Feinstein, Stuart C

    2017-07-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of anticancer treatment with microtubule-targeted agents (MTAs). The frequency of severe CIPN, which can be dose limiting and even life threatening, varies widely among different MTAs. For example, paclitaxel induces a higher frequency of severe CIPN than does eribulin. Different MTAs also possess distinct mechanisms of microtubule-targeted action. Recently, we demonstrated that paclitaxel and eribulin differentially affect sciatic nerve axons, with paclitaxel inducing more pronounced neurodegenerative effects and eribulin inducing greater microtubule stabilizing biochemical effects. Here, we complement and extend these axonal studies by assessing the effects of paclitaxel and eribulin in the cell bodies of sciatic nerve axons, housed in the dorsal root ganglia (DRG). Importantly, the microtubule network in cell bodies is known to be significantly more dynamic than in axons. Paclitaxel induced activating transcription factor 3 expression, a marker of neuronal stress/injury. Paclitaxel also increased expression levels of acetylated tubulin and end binding protein 1, markers of microtubule stability and growth, respectively. These effects are hypothesized to be detrimental to the dynamic microtubule network within the cell bodies. In contrast, eribulin had no significant effect on any of these parameters in the cell bodies. Taken together, DRG cell bodies and their axons, two distinct neuronal cell compartments, contain functionally distinct microtubule networks that exhibit unique biochemical responses to different MTA treatments. We hypothesize that these distinct mechanistic actions may underlie the variability seen in the initiation, progression, persistence, and recovery from CIPN.

  20. Pre-differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model.

    PubMed

    Boecker, Arne Hendrik; van Neerven, Sabien Geraldine Antonia; Scheffel, Juliane; Tank, Julian; Altinova, Haktan; Seidensticker, Katrin; Deumens, Ronald; Tolba, Rene; Weis, Joachim; Brook, Gary Anthony; Pallua, Norbert; Bozkurt, Ahmet

    2016-02-01

    Many bioartificial nerve guides have been investigated pre-clinically for their nerve regeneration-supporting function, often in comparison to autologous nerve transplantation, which is still regarded as the current clinical gold standard. Enrichment of these scaffolds with cells intended to support axonal regeneration has been explored as a strategy to boost axonal regeneration across these nerve guides Ansselin et al. (1998). In the present study, 20 mm rat sciatic nerve defects were implanted with a cell-seeded microstructured collagen nerve guide (Perimaix) or an autologous nerve graft. Under the influence of seeded, pre-differentiated mesenchymal stromal cells, axons regenerated well into the Perimaix nerve guide. Myelination-related parameters, like myelin sheath thickness, benefitted from an additional seeding with pre-differentiated mesenchymal stromal cells. Furthermore, both the number of retrogradely labelled sensory neurons and the axon density within the implant were elevated in the cell-seeded scaffold group with pre-differentiated mesenchymal stromal cells. However, a pre-differentiation had no influence on functional recovery. An additional cell seeding of the Perimaix nerve guide with mesenchymal stromal cells led to an extent of functional recovery, independent of the differentiation status, similar to autologous nerve transplantation. These findings encourage further investigations on pre-differentiated mesenchymal stromal cells as a cellular support for peripheral nerve regeneration. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. S6 Kinase Inhibits Intrinsic Axon Regeneration Capacity via AMP Kinase in Caenorhabditis elegans

    PubMed Central

    Hubert, Thomas; Wu, Zilu; Chisholm, Andrew D.

    2014-01-01

    The ability of axons to regrow after injury is determined by the complex interplay of intrinsic growth programs and external cues. In Caenorhabditis elegans mechanosensory neuron, axons exhibit robust regenerative regrowth following laser axotomy. By surveying conserved metabolic signaling pathways, we have identified the ribosomal S6 kinase RSKS-1 as a new cell-autonomous inhibitor of axon regeneration. RSKS-1 is not required for axonal development but inhibits axon regrowth after injury in multiple neuron types. Loss of function in rsks-1 results in more rapid growth cone formation after injury and accelerates subsequent axon extension. The enhanced regrowth of rsks-1 mutants is partly dependent on the DLK-1 MAPK cascade. An essential output of RSKS-1 in axon regrowth is the metabolic sensor AMP kinase, AAK-2. We further show that the antidiabetic drug phenformin, which activates AMP kinase, can promote axon regrowth. Our data reveal a new function for an S6 kinase acting through an AMP kinase in regenerative growth of injured axons. PMID:24431434

  2. Axonal/Glial Upregulation of EphB/ephrin-B Signaling in Mouse Experimental Ocular Hypertension

    PubMed Central

    Tran, Tony; Sretavan, David

    2010-01-01

    Purpose. To use a laser-induced ocular hypertension (LIOH) mouse model to examine the optic nerve head (ONH) expression of EphB/ephrin-B, previously shown to be upregulated in glaucomatous DBA/2J mice. To relate ephrin-B reverse signaling with states of axonal response to disease. Methods. LIOH was induced unilaterally in CD-1 mice by laser photocoagulation of limbal and episcleral veins. Intraocular pressure (IOP) was measured with a tonometer. EphB/ephrin-B mRNA expression was assessed by in situ hybridization on eyecup cryosections and real-time PCR. Cell specific markers were used to identify the cellular origin of EphB/ephrin-B expression. Activation of ephrin-B signaling was investigated with a phosphospecific antibody on cryosections and retinal whole-mounts. Results. Upregulation of EphB/ephrin-B expression occurred early within a day of IOP elevation. A transient increase of phosphorylation-dependent ephrin-B (pEB) reverse signaling was observed in ONH axons, microglia, and some astrocytes. Morphologically unaffected retinal ganglion cell (RGC) axons differed from axons with reactive aberrant trajectories by exhibiting increased pEB activation, whereas pEB levels in morphologically affected axons were comparable to those of controls. Conclusions. An Eph-ephrin signaling network is activated at the ONH after LIOH in CD-1 mice, either before or coincident with the initial morphologic signs of RGC axon damage reported previously. Of note, ephrin-B reverse signaling was transiently upregulated in RGC axons at the ONH early in their response to IOP elevation but was downregulated in axons that had been damaged by glaucomatous injury and exhibited aberrant trajectories. Ephrin-B reverse signaling may mark RGC axons for damage or confer a protective advantage against injury. PMID:19815726

  3. The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons

    PubMed Central

    2014-01-01

    6-hydroxydopamine (6-OHDA) is one of the most commonly used toxins for modeling degeneration of dopaminergic (DA) neurons in Parkinson's disease. 6-OHDA also causes axonal degeneration, a process that appears to precede the death of DA neurons. To understand the processes involved in 6-OHDA-mediated axonal degeneration, a microdevice designed to isolate axons fluidically from cell bodies was used in conjunction with green fluorescent protein (GFP)-labeled DA neurons. Results showed that 6-OHDA quickly induced mitochondrial transport dysfunction in both DA and non-DA axons. This appeared to be a general effect on transport function since 6-OHDA also disrupted transport of synaptophysin-tagged vesicles. The effects of 6-OHDA on mitochondrial transport were blocked by the addition of the SOD1-mimetic, Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), as well as the anti-oxidant N-acetyl-cysteine (NAC) suggesting that free radical species played a role in this process. Temporally, microtubule disruption and autophagy occurred after transport dysfunction yet before DA cell death following 6-OHDA treatment. The results from the study suggest that ROS-mediated transport dysfunction occurs early and plays a significant role in inducing axonal degeneration in response to 6-OHDA treatment. PMID:24885281

  4. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury.

    PubMed

    Mead, Ben; Logan, Ann; Berry, Martin; Leadbeater, Wendy; Scheven, Ben A

    2013-11-15

    To investigate the potential therapeutic benefit of intravitreally implanted dental pulp stem cells (DPSCs) on axotomized adult rat retinal ganglion cells (RGCs) using in vitro and in vivo neural injury models. Conditioned media collected from cultured rat DPSCs and bone marrow-derived mesenchymal stem cells (BMSCs) were assayed for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) secretion using ELISA. DPSCs or BMSCs were cocultured with retinal cells, with or without Fc-TrK inhibitors, in a Transwell system, and the number of surviving βIII-tubulin⁺ retinal cells and length/number of βIII-tubulin⁺ neurites were quantified. For the in vivo study, DPSCs or BMSCs were transplanted into the vitreous body of the eye after a surgically induced optic nerve crush injury. At 7, 14, and 21 days postlesion (dpl), optical coherence tomography (OCT) was used to measure the retinal nerve fiber layer thickness as a measure of axonal atrophy. At 21 dpl, numbers of Brn-3a⁺ RGCs in parasagittal retinal sections and growth-associated protein-43⁺ axons in longitudinal optic nerve sections were quantified as measures of RGC survival and axon regeneration, respectively. Both DPSCs and BMSCs secreted NGF, BDNF, and NT-3, with DPSCs secreting significantly higher titers of NGF and BDNF than BMSCs. DPSCs, and to a lesser extent BMSCs, promoted statistically significant survival and neuritogenesis/axogenesis of βIII-tubulin⁺ retinal cells in vitro and in vivo where the effects were abolished after TrK receptor blockade. Intravitreal transplants of DPSCs promoted significant neurotrophin-mediated RGC survival and axon regeneration after optic nerve injury.

  5. The structure and function of cutaneous sensory receptors.

    PubMed

    Munger, B L; Ide, C

    1988-03-01

    The present review of cutaneous sensory receptors begins with a consideration of free nerve endings (FNEs) that can be considered as sensory terminals evidencing the least structural specialization of the axon and associated cells. Using the criteria established by Kruger et al (1981), FNEs of both A delta and C fibers can be identified on the basis of ultrastructural characteristics that include an intimate relationship between axons and the associated epithelium, the lack of a complete Schwann cell investment, the accumulation of numerous vesicles and other cytoplasmic organelles, and for A delta terminals a 1:1 relationship between axon and investing Schwann cell. Using these criteria, the so-called genital end bulbs of the human glans penis are merely a skein of FNEs based on the ultrastructural study of Halata and Munger (1986). Hair follicles of most species studied to date (the exception being the rabbit and to some extent the guinea pig) are multiply innervated with lanceolate, Ruffini and FNEs. The lanceolate terminals are the rapidly adapting terminals that are numerous in guard hairs. Ruffini terminals of hairs resemble those of the periodontal ligament or joint capsules and both are remarkably similar to Golgi tendon organs in terms of ultrastructural characteristics. The key ultrastructural characteristic is the encircling of collagen bundles by axons and associated Schwann and connective tissue cells. Axons frequently enter the epidermis either to terminate as FNEs or become associated with Merkel cells in glabrous skin at the base of the papillary ridges or in clusters of Merkel cells in hairy skin in touch domes or Haarscheiben. Merkel cells have clusters of apparent secretory granules polarized toward the axon and the axon is typically a slowly adapting mechanoreceptor. The function of the granules is not known. Pacinian corpuscles are the largest of the corpuscular receptors of the dermis and are characterized by an elaborate inner core of stacks of numerous thin lamellae arranged in a bilaterally symmetrical manner. Based on the fact that the lamellae are coupled with gap junctions and the outer core lamellae isolated by numerous tight junctions, the authors have proposed that the unique ionic environment may be in part responsible for the remarkable sensitivity of Pacinian corpuscles (Munger and Ide, 1987). Meissner corpuscles are a typical corpuscular receptor of murine (Ide, 1976, 1977), marsupial and primate glabrous skin (Munger, 1971). The axons typically weave back and forth between stacks of lamellae.(ABSTRACT TRUNCATED AT 400 WORDS)

  6. Novel Combinatory Approaches to Repair Visual System after Optic Nerve Damage

    DTIC Science & Technology

    2014-09-01

    Intravitreal Viral Treatment Outcome Measures PTEN/SOCS3f/f AAV-GFP (Control) RGC staining and axon tracing PTEN/SOCS3f/f AAV-Cre “ “ CHOP-/- AAV-XBP1...survival and axon regeneration using immunohistochemistry and axon tracing methods used in our previous studies. At 4 and 8 weeks after injury, retinas...the cell body. After peripheral nerve injury, phosphorylated (i.e., active) STAT3 is detected in the injured axons and later in the soma (Lee, Neitzel

  7. Gap junction networks can generate both ripple-like and fast ripple-like oscillations

    PubMed Central

    Simon, Anna; Traub, Roger D.; Vladimirov, Nikita; Jenkins, Alistair; Nicholson, Claire; Whittaker, Roger G.; Schofield, Ian; Clowry, Gavin J.; Cunningham, Mark O.; Whittington, Miles A.

    2014-01-01

    Fast ripples (FRs) are network oscillations, defined variously as having frequencies of > 150 to > 250 Hz, with a controversial mechanism. FRs appear to indicate a propensity of cortical tissue to originate seizures. Here, we demonstrate field oscillations, at up to 400 Hz, in spontaneously epileptic human cortical tissue in vitro, and present a network model that could explain FRs themselves, and their relation to ‘ordinary’ (slower) ripples. We performed network simulations with model pyramidal neurons, having axons electrically coupled. Ripples (< 250 Hz) were favored when conduction of action potentials, axon to axon, was reliable. Whereas ripple population activity was periodic, firing of individual axons varied in relative phase. A switch from ripples to FRs took place when an ectopic spike occurred in a cell coupled to another cell, itself multiply coupled to others. Propagation could then start in one direction only, a condition suitable for re-entry. The resulting oscillations were > 250 Hz, were sustained or interrupted, and had little jitter in the firing of individual axons. The form of model FR was similar to spontaneously occurring FRs in excised human epileptic tissue. In vitro, FRs were suppressed by a gap junction blocker. Our data suggest that a given network can produce ripples, FRs, or both, via gap junctions, and that FRs are favored by clusters of axonal gap junctions. If axonal gap junctions indeed occur in epileptic tissue, and are mediated by connexin 26 (recently shown to mediate coupling between immature neocortical pyramidal cells), then this prediction is testable. PMID:24118191

  8. Gap junction networks can generate both ripple-like and fast ripple-like oscillations.

    PubMed

    Simon, Anna; Traub, Roger D; Vladimirov, Nikita; Jenkins, Alistair; Nicholson, Claire; Whittaker, Roger G; Schofield, Ian; Clowry, Gavin J; Cunningham, Mark O; Whittington, Miles A

    2014-01-01

    Fast ripples (FRs) are network oscillations, defined variously as having frequencies of > 150 to > 250 Hz, with a controversial mechanism. FRs appear to indicate a propensity of cortical tissue to originate seizures. Here, we demonstrate field oscillations, at up to 400 Hz, in spontaneously epileptic human cortical tissue in vitro, and present a network model that could explain FRs themselves, and their relation to 'ordinary' (slower) ripples. We performed network simulations with model pyramidal neurons, having axons electrically coupled. Ripples (< 250 Hz) were favored when conduction of action potentials, axon to axon, was reliable. Whereas ripple population activity was periodic, firing of individual axons varied in relative phase. A switch from ripples to FRs took place when an ectopic spike occurred in a cell coupled to another cell, itself multiply coupled to others. Propagation could then start in one direction only, a condition suitable for re-entry. The resulting oscillations were > 250 Hz, were sustained or interrupted, and had little jitter in the firing of individual axons. The form of model FR was similar to spontaneously occurring FRs in excised human epileptic tissue. In vitro, FRs were suppressed by a gap junction blocker. Our data suggest that a given network can produce ripples, FRs, or both, via gap junctions, and that FRs are favored by clusters of axonal gap junctions. If axonal gap junctions indeed occur in epileptic tissue, and are mediated by connexin 26 (recently shown to mediate coupling between immature neocortical pyramidal cells), then this prediction is testable. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Morphometry of Hilar Ectopic Granule Cells in the Rat

    PubMed Central

    Pierce, Joseph P.; McCloskey, Daniel P.; Scharfman, Helen E.

    2014-01-01

    Granule cell (GC) neurogenesis in the dentate gyrus (DG) does not always proceed normally. After severe seizures (e.g., status epilepticus [SE]) and some other conditions, newborn GCs appear in the hilus. Hilar ectopic GCs (EGCs) can potentially provide insight into the effects of abnormal location and seizures on GC development. Additionally, hilar EGCs that develop after SE may contribute to epileptogenesis and cognitive impairments that follow SE. Thus, it is critical to understand how EGCs differ from normal GCs. Relatively little morphometric information is available on EGCs, especially those restricted to the hilus. This study quantitatively analyzed the structural morphology of hilar EGCs from adult male rats several months after pilocarpineinduced SE, when they are considered to have chronic epilepsy. Hilar EGCs were physiologically identified in slices, intracellularly labeled, processed for light microscopic reconstruction, and compared to GC layer GCs, from both the same post-SE tissue and the NeuroMorpho database (normal GCs). Consistently, hilar EGC and GC layer GCs had similar dendritic lengths and field sizes, and identifiable apical dendrites. However, hilar EGC dendrites were topologically more complex, with more branch points and tortuous dendritic paths. Three-dimensional analysis revealed that, remarkably, hilar EGC dendrites often extended along the longitudinal DG axis, suggesting increased capacity for septotemporal integration. Axonal reconstruction demonstrated that hilar EGCs contributed to mossy fiber sprouting. This combination of preserved and aberrant morphological features, potentially supporting convergent afferent input to EGCs and broad, divergent efferent output, could help explain why the hilar EGC population could impair DG function. PMID:21344409

  10. Evidence that the protocell was also a protoneuron. [Abstract only

    NASA Technical Reports Server (NTRS)

    Bi, YU; Pappelis, Aristotel; Sikes, C. Steven; Fox, Sidney W.

    1994-01-01

    A blueprint for a protocell was presented in 1960 (Fox) as a consequence of the newly discovered self-ordering of amino acids and the self-organization of the resultant thermal proteins into cellular structures. The biofunctions of the laboratory protocells (proteinoid microspheres) have since been cataloged; they display roots of many phenomena of modern cells, e.g. synthesis of internucleotide and peptide bonds in aqueous media. These results are inconsistent with a popular assumption that DNA/RNA preceded protein in earliest molecular evolution. The necessity for synthetic research on molecules and cells to 'begin at the beginning' is being realized. Ivanov and Fortsch (1986) have described by analysis how the self-ordering mechanism of amino acids into informed thermal proteins was conserved in evolution from the earliest stage as modern (reverse) mechanisms assumed control. Tyagi and Ponnamperuma (1990) have negated assumptions corollary to DNA/RNA. Ponnamperuma has demonstrated the powerful effect of self-ordering of amino acids in polymerization of aminoacyl nucleotides and the irrelevance of mononucleotide residues. Excitable thermal proteins (Vaughan et al, 1987) are neurotrophic and antiaging when added to cultures of real neurons (Hefti et al, 1991) and are memory enhancers in mice (Fox and Flood, 1992). Proteinoid microspheres of dominant hydrophobic constitution form 'gap junctions', sprout axon-like outgrowths, and form dendritic networks spontaneously. In the latest studies, phenylalanine-rich equimolar proteinoid or the leucine analog (Ishima et al 1981), is found to produce electrical signals for several days when lecithin is included in the assembly with the thermal polymer.

  11. Elicitation and treatment with precursors of phenolics synthesis improve low-molecular antioxidants and antioxidant capacity of buckwheat sprouts.

    PubMed

    Świeca, Michał

    2016-01-01

    Recently, an increase of interest in the modification of food products on each step of production (breeding, production technology, storage condition) is observed. Nutritional properties as well as level and activity of bioactive compounds in plant-origin food may be modified using a range of technological and biotechnological practices and elicitation should be mentioned between them. Elicitation with willow bark infusion supported by feeding with the phenylpropanoid pathway precursors were used for improving the quality of buckwheat sprouts. Special emphasis has been placed on the metabolomic and biochemical changes and the mechanism of overproduction of low-molecular antioxidants. The accumulation of phenolics is caused by stimulation of two main enzymes the phenylpropanoid pathway (tyrosine ammonia-lyase and phenylalanine ammonia-lyase). Tyrosine ammonia-lyase activities were effectively induced by feeding with tyrosine (about four times that of the control), whereas phenylalanine ammonia-lyase activity was the highest in the elicited control sprouts and those fed with shikimic acid (an increase by 60% compared to the control). Shikimic acid feeding (both elicited and non-elicited sprouts) effectively improved the total phenolics (by about 10% and 20%, respectively), condensed tannins (by about 30% and 28%, respectively), and flavonoids (by about 46% and 70%, respectively). Significant increase of vitexin, rutin, chlorogenic acid and isoorientin contents was also observed. The treatments increased the ascorbic acid content, too. Total antioxidant capacity of sprouts was most effectively increased by feeding with shikimic acid and further elicitation. The studies transfer biotechnology commonly used for the induction of overproduction of secondary metabolites in plant cell line systems to low-processed food production. The obtained results could be used for better understanding of the effect of elicitation and precursor feeding on antioxidants production and contribute to improving the buckwheat sprouts quality.

  12. Flotillin-mediated endocytic events dictate cell type-specific responses to semaphorin 3A.

    PubMed

    Carcea, Ioana; Ma'ayan, Avi; Mesias, Roxana; Sepulveda, Bryan; Salton, Stephen R; Benson, Deanna L

    2010-11-10

    Cortical efferents growing in the same environment diverge early in development. The expression of particular transcription factors dictates the trajectories taken, presumably by regulating responsiveness to guidance cues via cellular mechanisms that are not yet known. Here, we show that cortical neurons that are dissociated and grown in culture maintain their cell type-specific identities defined by the expression of transcription factors. Using this model system, we sought to identify and characterize mechanisms that are recruited to produce cell type-specific responses to Semaphorin 3A (Sema3A), a guidance cue that would be presented similarly to cortical axons in vivo. Axons from presumptive corticofugal neurons lacking the transcription factor Satb2 and expressing Ctip2 or Tbr1 respond far more robustly to Sema3A than those from presumptive callosal neurons expressing Satb2. Both populations of axons express similar levels of Sema3A receptors (neuropilin-1, cell adhesion molecule L1, and plexinA4), but significantly, axons from neurons lacking Satb2 internalize more Sema3A, and they do so via a raft-mediated endocytic pathway. We used an in silico approach to identify the endocytosis effector flotillin-1 as a Sema3A signaling candidate. We tested the contributions of flotillin-1 to Sema3A endocytosis and signaling, and show that raft-mediated Sema3A endocytosis is defined by and depends on the recruitment of flotillin-1, which mediates LIM domain kinase activation and regulates axon responsiveness to Sema3A in presumptive corticofugal axons.

  13. Bipolar Cell-Photoreceptor Connectivity in the Zebrafish (Danio rerio) Retina

    PubMed Central

    Li, Yong N.; Tsujimura, Taro; Kawamura, Shoji; Dowling, John E.

    2013-01-01

    Bipolar cells convey luminance, spatial and color information from photoreceptors to amacrine and ganglion cells. We studied the photoreceptor connectivity of 321 bipolar cells in the adult zebrafish retina. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was inserted into whole-mounted transgenic zebrafish retinas to label bipolar cells. The photoreceptors that connect to these DiI-labeled cells were identified by transgenic fluorescence or their positions relative to the fluorescent cones, as cones are arranged in a highly-ordered mosaic: rows of alternating blue- (B) and ultraviolet-sensitive (UV) single cones alternate with rows of red- (R) and green-sensitive (G) double cones. Rod terminals intersperse among cone terminals. As many as 18 connectivity subtypes were observed, 9 of which – G, GBUV, RG, RGB, RGBUV, RGRod, RGBRod, RGBUVRod and RRod bipolar cells – accounted for 96% of the population. Based on their axon terminal stratification, these bipolar cells could be further sub-divided into ON, OFF, and ON-OFF cells. The dendritic spread size, soma depth and size, and photoreceptor connections of the 308 bipolar cells within the 9 common connectivity subtypes were determined, and their dendritic tree morphologies and axonal stratification patterns compared. We found that bipolar cells with the same axonal stratification patterns could have heterogeneous photoreceptor connectivity whereas bipolar cells with the same dendritic tree morphology usually had the same photoreceptor connectivity, although their axons might stratify on different levels. PMID:22907678

  14. Differential effects of amyloid-beta 1-40 and 1-42 fibrils on 5-HT1A serotonin receptors in rat brain.

    PubMed

    Verdurand, Mathieu; Chauveau, Fabien; Daoust, Alexia; Morel, Anne-Laure; Bonnefoi, Frédéric; Liger, François; Bérod, Anne; Zimmer, Luc

    2016-04-01

    Evidence accumulates suggesting a complex interplay between neurodegenerative processes and serotonergic neurotransmission. We have previously reported an overexpression of serotonin 5-HT1A receptors (5-HT(1A)R) after intrahippocampal injections of amyloid-beta 1-40 (Aβ40) fibrils in rats. This serotonergic reactivity paralleled results from clinical positron emission tomography studies with [(18)F]MPPF revealing an overexpression of 5-HT(1A)R in the hippocampus of patients with mild cognitive impairment. Because Aβ40 and Aβ42 isoforms are found in amyloid plaques, we tested in this study the hypothesis of a peptide- and region-specific 5-HT(1A)R reactivity by injecting them, separately, into the hippocampus or striatum of rats. [(18)F]MPPF in vitro autoradiography revealed that Aβ40 fibrils, but not Aβ42, were triggering an overexpression of 5-HT(1A)R in the hippocampus and striatum of rat brains after 7 days. Immunohistochemical approaches targeting neuronal precursor cells, mature neurons, and astrocytes showed that Aβ42 fibrils caused more pathophysiological damages than Aβ40 fibrils. The mechanisms of Aβ40 fibrils-induced 5-HT(1A)R expression remains unknown, but hypotheses including neurogenesis, glial expression, and axonal sprouting are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. AN ORGANOTYPIC UNIAXIAL STRAIN MODEL USING MICROFLUIDICS

    PubMed Central

    Dollé, Jean-Pierre; Morrison, Barclay; Schloss, Rene R.; Yarmush, Martin L.

    2012-01-01

    Traumatic brain injuries are the leading cause of disability each year in the US. The most common and devastating consequence is the stretching of axons caused by shear deformation that occurs during rotational acceleration of the brain during injury. The injury effects on axonal molecular and functional events are not fully characterized. We have developed a strain injury model that maintains the three dimensional cell architecture and neuronal networks found in vivo with the ability to visualize individual axons and their response to a mechanical injury. The advantage of this model is that it can apply uniaxial strains to axons that make functional connections between two organotypic slices and injury responses can be observed in real-time and over long term. This uniaxial strain model was designed to be capable of applying an array of mechanical strains at various rates of strain, thus replicating a range of modes of axonal injury. Long term culture, preservation of slice and cell orientation, and slice-slice connection on the device was demonstrated. The device has the ability to strain either individual axons or bundles of axons through the control of microchannel dimensions. The fidelity of the model was verified by observing characteristic responses to various strain injuries which included axonal beading, delayed elastic effects and breakdown in microtubules. Microtubule breakdown was shown to be dependent on the degree of the applied strain field, where maximal breakdown was observed at peak strain and minimal breakdown is observed at low strain. This strain injury model could be a powerful tool in assessing strain injury effects on functional axonal connections. PMID:23233120

  16. Compartmental culture of embryonic stem cell-derived neurons in microfluidic devices for use in axonal biology.

    PubMed

    Shin, Hwa Sung; Kim, Hyung Joon; Min, Seul Ki; Kim, Sung Hoon; Lee, Byung Man; Jeon, Noo Li

    2010-08-01

    Axonal pathology has been clearly implicated in neurodegenerative diseases making the compartmental culture of neurons a useful research tool. Primary neurons have already been cultured in compartmental microfluidic devices but their derivation from an animal is a time-consuming and difficult work and has a limit in their sources. Embryonic stem cell (ESC)-derived neurons (ESC_Ns) overcome this limit, since ESCs can be renewed without limit and can be differentiated into ESC_Ns by robust and reproducible protocols. In this research, ESC_Ns were derived from mouse ESCs in compartmental microfluidic devices, and their axons were isolated from the somal cell bodies. Once embryoid bodies (EBs) were localized in the microfluidic culture chamber, ESC_Ns spread out from the EBs and occupied the cell culture chamber. Their axons traversed the microchannels and finally were isolated from the somata, providing an arrangement comparable to dissociated primary neurons. This ESC_N compartmental microfluidic culture system not only offers a substitute for the primary neuron counterpart system but also makes it possible to make comparisons between the two systems.

  17. Foxg1 regulates retinal axon pathfinding by repressing an ipsilateral program in nasal retina and by causing optic chiasm cells to exert a net axonal growth-promoting activity.

    PubMed

    Tian, Natasha M; Pratt, Thomas; Price, David J

    2008-12-01

    Mammalian binocular vision relies on the divergence of retinal ganglion cell axons at the optic chiasm, with strictly controlled numbers projecting contralaterally and ipsilaterally. In mouse, contralateral projections arise from the entire retina, whereas ipsilateral projections arise from ventrotemporal retina. We investigate how development of these patterns of projection is regulated by the contralateral determinant Foxg1, a forkhead box transcription factor expressed in nasal retina and at the chiasm. In nasal retina, loss of Foxg1 causes increased numbers of ipsilateral projections and ectopic expression of the ipsilateral determinants Zic2, Ephb1 and Foxd1, indicating that nasal retina is competent to express an ipsilateral program that is normally suppressed by Foxg1. Using co-cultures that combine Foxg1-expressing with Foxg1-null retinal explants and chiasm cells, we provide functional evidence that Foxg1 promotes contralateral projections through actions in nasal retina, and that in chiasm cells, Foxg1 is required for the generation of a hitherto unrecognized activity supporting RGC axon growth.

  18. Hair cell tufts and afferent innervation of the bullfrog crista ampullaris

    NASA Technical Reports Server (NTRS)

    Myers, Steven F.; Lewis, Edwin R.

    1990-01-01

    Within the bullfrog semicircular canal crista, hair cell tuft types were defined and mapped with the aid of scanning electron microscopy. Dye-filled planar afferent axons had mean distal axonal diameters of 1.6-4.9 microns, highly branched arbors, and contacted 11-24 hair cells. Dye-filled isthmus afferent axons had mean distal axonal diameters of 1.8-7.9 microns, with either small or large field arbors contacting 4-9 or 25-31 hair cells. The estimated mean number of contacts per innervated hair cell was 2.2 for planar and 1.3 for isthmus afferent neurons. Data on evoked afferent responses were available only for isthmus units that were observed to respond to our microrotational stimuli. Of 21 such afferent neurons, eight were successfully dye-filled. Within this sample, high-gain units had large field arbors and lower-gain units had small field arbors. The sensitivity of each afferent neuron was analyzed in terms of noise equivalent input (NEI), the stimulus amplitude for which the afferent response amplitude is just equivalent to the rms deviation of the instantaneous spike rate. NEI for isthmus units varied from 0.63 to 8.2 deg/s; the mean was 3.2 deg/s.

  19. Roles of specific membrane lipid domains in EGF receptor activation and cell adhesion molecule stabilization in a developing olfactory system.

    PubMed

    Gibson, Nicholas J; Tolbert, Leslie P; Oland, Lynne A

    2009-09-29

    Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-beta-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons.

  20. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    PubMed Central

    Gründemann, Jan; Clark, Beverley A.

    2015-01-01

    Summary Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1) by local, activity-dependent calcium (Ca2+) influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells. PMID:26344775

  1. Mild myelin disruption elicits early alteration in behavior and proliferation in the subventricular zone.

    PubMed

    Gould, Elizabeth A; Busquet, Nicolas; Shepherd, Douglas; Dietz, Robert M; Herson, Paco S; Simoes de Souza, Fabio M; Li, Anan; George, Nicholas M; Restrepo, Diego; Macklin, Wendy B

    2018-02-13

    Myelin, the insulating sheath around axons, supports axon function. An important question is the impact of mild myelin disruption. In the absence of the myelin protein proteolipid protein (PLP1), myelin is generated but with age, axonal function/maintenance is disrupted. Axon disruption occurs in Plp1 -null mice as early as 2 months in cortical projection neurons. High-volume cellular quantification techniques revealed a region-specific increase in oligodendrocyte density in the olfactory bulb and rostral corpus callosum that increased during adulthood. A distinct proliferative response of progenitor cells was observed in the subventricular zone (SVZ), while the number and proliferation of parenchymal oligodendrocyte progenitor cells was unchanged. This SVZ proliferative response occurred prior to evidence of axonal disruption. Thus, a novel SVZ response contributes to the region-specific increase in oligodendrocytes in Plp1 -null mice. Young adult Plp1- null mice exhibited subtle but substantial behavioral alterations, indicative of an early impact of mild myelin disruption. © 2018, Gould et al.

  2. Mild myelin disruption elicits early alteration in behavior and proliferation in the subventricular zone

    PubMed Central

    Gould, Elizabeth A; Busquet, Nicolas; Shepherd, Douglas; Dietz, Robert M; Herson, Paco S; Simoes de Souza, Fabio M; Li, Anan; George, Nicholas M

    2018-01-01

    Myelin, the insulating sheath around axons, supports axon function. An important question is the impact of mild myelin disruption. In the absence of the myelin protein proteolipid protein (PLP1), myelin is generated but with age, axonal function/maintenance is disrupted. Axon disruption occurs in Plp1-null mice as early as 2 months in cortical projection neurons. High-volume cellular quantification techniques revealed a region-specific increase in oligodendrocyte density in the olfactory bulb and rostral corpus callosum that increased during adulthood. A distinct proliferative response of progenitor cells was observed in the subventricular zone (SVZ), while the number and proliferation of parenchymal oligodendrocyte progenitor cells was unchanged. This SVZ proliferative response occurred prior to evidence of axonal disruption. Thus, a novel SVZ response contributes to the region-specific increase in oligodendrocytes in Plp1-null mice. Young adult Plp1-null mice exhibited subtle but substantial behavioral alterations, indicative of an early impact of mild myelin disruption. PMID:29436368

  3. A Fine-Scale Functional Logic to Convergence from Retina to Thalamus.

    PubMed

    Liang, Liang; Fratzl, Alex; Goldey, Glenn; Ramesh, Rohan N; Sugden, Arthur U; Morgan, Josh L; Chen, Chinfei; Andermann, Mark L

    2018-05-31

    Numerous well-defined classes of retinal ganglion cells innervate the thalamus to guide image-forming vision, yet the rules governing their convergence and divergence remain unknown. Using two-photon calcium imaging in awake mouse thalamus, we observed a functional arrangement of retinal ganglion cell axonal boutons in which coarse-scale retinotopic ordering gives way to fine-scale organization based on shared preferences for other visual features. Specifically, at the ∼6 μm scale, clusters of boutons from different axons often showed similar preferences for either one or multiple features, including axis and direction of motion, spatial frequency, and changes in luminance. Conversely, individual axons could "de-multiplex" information channels by participating in multiple, functionally distinct bouton clusters. Finally, ultrastructural analyses demonstrated that retinal axonal boutons in a local cluster often target the same dendritic domain. These data suggest that functionally specific convergence and divergence of retinal axons may impart diverse, robust, and often novel feature selectivity to visual thalamus. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Mast cell hyperactivity underpins the development of oxygen-induced retinopathy

    PubMed Central

    Matsuda, Kenshiro; Okamoto, Noriko; Kondo, Masatoshi; Arkwright, Peter D.; Karasawa, Kaoru; Ishizaka, Saori; Yokota, Shinichi; Matsuda, Akira; Jung, Kyungsook; Oida, Kumiko; Jang, Hyosun; Noda, Eiichiro; Kakinuma, Ryota; Yasui, Koujirou; Kaku, Uiko; Mori, Yasuo; Onai, Nobuyuki; Ohteki, Toshiaki; Tanaka, Akane

    2017-01-01

    Mast cells are classically thought to play an important role in protection against helminth infections and in the induction of allergic diseases; however, recent studies indicate that these cells also contribute to neovascularization, which is critical for tissue remodeling, chronic inflammation, and carcinogenesis. Here, we demonstrate that mast cells are essential for sprouting angiogenesis in a murine model of oxygen-induced retinopathy (OIR). Although mouse strains lacking mast cells did not exhibit retinal neovascularization following hypoxia, these mice developed OIR following infusion of mast cells or after injection of mast cell tryptase (MCT). Relative hypoxia stimulated mast cell degranulation via transient receptor potential ankyrin 1. Subsequent surges in MCT stimulated retinal endothelial cells to produce monocyte chemotactic protein-1 (MCP1) and angiogenic factors, leading to sprouting angiogenesis. Mast cell stabilizers as well as specific tryptase and MCP1 inhibitors prevented the development of OIR in WT mice. Preterm infants with early retinopathy of prematurity had markedly higher plasma MCT levels than age-matched infants without disease, suggesting mast cells contribute to human disease. Together, these results suggest therapies that suppress mast cell activity should be further explored as a potential option for preventing eye diseases and subsequent blindness induced by neovascularization. PMID:28990934

  5. Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways

    NASA Astrophysics Data System (ADS)

    Kilinc, Devrim; Blasiak, Agata; O'Mahony, James J.; Lee, Gil U.

    2014-11-01

    Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g., elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules, and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones via magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.

  6. Endothelial Snail Regulates Capillary Branching Morphogenesis via Vascular Endothelial Growth Factor Receptor 3 Expression

    PubMed Central

    Park, Jeong Ae; Kim, Dong Young; Kim, Young-Myeong; Kwon, Young-Guen

    2015-01-01

    Vascular branching morphogenesis is activated and maintained by several signaling pathways. Among them, vascular endothelial growth factor receptor 2 (VEGFR2) signaling is largely presented in arteries, and VEGFR3 signaling is in veins and capillaries. Recent reports have documented that Snail, a well-known epithelial-to-mesenchymal transition protein, is expressed in endothelial cells, where it regulates sprouting angiogenesis and embryonic vascular development. Here, we identified Snail as a regulator of VEGFR3 expression during capillary branching morphogenesis. Snail was dramatically upregulated in sprouting vessels in the developing retinal vasculature, including the leading-edged vessels and vertical sprouting vessels for capillary extension toward the deep retina. Results from in vitro functional studies demonstrate that Snail expression colocalized with VEGFR3 and upregulated VEGFR3 mRNA by directly binding to the VEGFR3 promoter via cooperating with early growth response protein-1. Snail knockdown in postnatal mice attenuated the formation of the deep capillary plexus, not only by impairing vertical sprouting vessels but also by downregulating VEGFR3 expression. Collectively, these data suggest that the Snail-VEGFR3 axis controls capillary extension, especially in vessels expressing VEGFR2 at low levels. PMID:26147525

  7. Integration and long distance axonal regeneration in the central nervous system from transplanted primitive neural stem cells.

    PubMed

    Zhao, Jiagang; Sun, Woong; Cho, Hyo Min; Ouyang, Hong; Li, Wenlin; Lin, Ying; Do, Jiun; Zhang, Liangfang; Ding, Sheng; Liu, Yizhi; Lu, Paul; Zhang, Kang

    2013-01-04

    Spinal cord injury (SCI) results in devastating motor and sensory deficits secondary to disrupted neuronal circuits and poor regenerative potential. Efforts to promote regeneration through cell extrinsic and intrinsic manipulations have met with limited success. Stem cells represent an as yet unrealized therapy in SCI. Recently, we identified novel culture methods to induce and maintain primitive neural stem cells (pNSCs) from human embryonic stem cells. We tested whether transplanted human pNSCs can integrate into the CNS of the developing chick neural tube and injured adult rat spinal cord. Following injection of pNSCs into the developing chick CNS, pNSCs integrated into the dorsal aspects of the neural tube, forming cell clusters that spontaneously differentiated into neurons. Furthermore, following transplantation of pNSCs into the lesioned rat spinal cord, grafted pNSCs survived, differentiated into neurons, and extended long distance axons through the scar tissue at the graft-host interface and into the host spinal cord to form terminal-like structures near host spinal neurons. Together, these findings suggest that pNSCs derived from human embryonic stem cells differentiate into neuronal cell types with the potential to extend axons that associate with circuits of the CNS and, more importantly, provide new insights into CNS integration and axonal regeneration, offering hope for repair in SCI.

  8. The intriguing nature of dorsal root ganglion neurons: linking structure with polarity and function.

    PubMed

    Nascimento, Ana Isabel; Mar, Fernando Milhazes; Sousa, Mónica Mendes

    2018-05-02

    Dorsal root ganglion (DRG) neurons are the first neurons of the sensory pathway. They are activated by a variety of sensory stimuli that are then transmitted to the central nervous system. An important feature of DRG neurons is their unique morphology where a single process -the stem axon- bifurcates into a peripheral and a central axonal branch, with different functions and cellular properties. Distinctive structural aspects of the two DRG neuron branches may have important implications for their function in health and disease. However, the link between DRG axonal branch structure, polarity and function has been largely neglected in the field, and relevant information is rather scattered across the literature. In particular, ultrastructural differences between the two axonal branches are likely to account for the higher transport and regenerative ability of the peripheral DRG neuron axon when compared to the central one. Nevertheless, the cell intrinsic factors contributing to this central-peripheral asymmetry are still unknown. Here we critically review the factors that may underlie the functional asymmetry between the peripheral and central DRG axonal branches. Also, we discuss the hypothesis that DRG neurons may assemble a structure resembling the axon initial segment that may be responsible, at least in part, for their polarity and electrophysiological features. Ultimately, we suggest that the clarification of the axonal ultrastructure of DRG neurons using state-of-the-art techniques will be crucial to understand the physiology of this peculiar cell type. Copyright © 2018. Published by Elsevier Ltd.

  9. ImagePAD, a novel counting application for the Apple iPad, used to quantify axons in the mouse optic nerve.

    PubMed

    Templeton, Justin P; Struebing, Felix L; Lemmon, Andrew; Geisert, Eldon E

    2014-11-01

    The present article introduces a new and easy to use counting application for the Apple iPad. The application "ImagePAD" takes advantage of the advanced user interface features offered by the Apple iOS platform, simplifying the rather tedious task of quantifying features in anatomical studies. For example, the image under analysis can be easily panned and zoomed using iOS-supported multi-touch gestures without losing the spatial context of the counting task, which is extremely important for ensuring count accuracy. This application allows one to quantify up to 5 different types of objects in a single field and output the data in a tab-delimited format for subsequent analysis. We describe two examples of the use of the application: quantifying axons in the optic nerve of the C57BL/6J mouse and determining the percentage of cells labeled with NeuN or ChAT in the retinal ganglion cell layer. For the optic nerve, contiguous images at 60× magnification were taken and transferred onto an Apple iPad. Axons were counted by tapping on the touch-sensitive screen using ImagePAD. Nine optic nerves were sampled and the number of axons in the nerves ranged from 38,872 axons to 50,196 axons with an average of 44,846 axons per nerve (SD = 3980 axons). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. IFATS Collection: Human Adipose Tissue-Derived Stem Cells Induce Angiogenesis and Nerve Sprouting Following Myocardial Infarction, in Conjunction with Potent Preservation of Cardiac Function

    PubMed Central

    Cai, Liying; Johnstone, Brian H.; Cook, Todd G.; Tan, Jian; Fishbein, Michael C.; Chen, Peng-Sheng; March, Keith L.

    2010-01-01

    The administration of therapeutic cell types, such as stem and progenitor cells, has gained much interest for the limitation or repair of tissue damage caused by a variety of insults. However, it is still uncertain whether the morphological and functional benefits are mediated predominantly via cell differentiation or paracrine mechanisms. Here, we assessed the extent and mechanisms of adipose-derived stromal/stem cells (ASC)-dependent tissue repair in the context of acute myocardial infarction. Human ASCs in saline or saline alone was injected into the peri-infarct region in athymic rats following left anterior descending (LAD) coronary artery ligation. Cardiac function and structure were evaluated by serial echocardiography and histology. ASC-treated rats consistently exhibited better cardiac function, by all measures, than control rats 1 month following LAD occlusion. Left ventricular (LV) ejection fraction and fractional shortening were improved in the ASC group, whereas LV remodeling and dilation were limited in the ASC group compared with the saline control group. Anterior wall thinning was also attenuated by ASC treatment, and post-mortem histological analysis demonstrated reduced fibrosis in ASC-treated hearts, as well as increased peri-infarct density of both arterioles and nerve sprouts. Human ASCs were persistent at 1 month in the peri-infarct region, but they were not observed to exhibit significant cardiomyocyte differentiation. Human ASCs preserve heart function and augment local angiogenesis and cardiac nerve sprouting following myocardial infarction predominantly by the provision of beneficial trophic factors. PMID:18772313

  11. CMTM3 (CKLF-Like Marvel Transmembrane Domain 3) Mediates Angiogenesis by Regulating Cell Surface Availability of VE-Cadherin in Endothelial Adherens Junctions.

    PubMed

    Chrifi, Ihsan; Louzao-Martinez, Laura; Brandt, Maarten; van Dijk, Christian G M; Burgisser, Petra; Zhu, Changbin; Kros, Johan M; Duncker, Dirk J; Cheng, Caroline

    2017-06-01

    Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1 + endothelial progenitor cells during embryonic development. Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin + vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin + , EEA1 + , Rab11 + , Rab5 + , and Rab7 + vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore, CMTM3 mediates cell-cell adhesion at adherens junctions and contributes to the control of vascular sprouting. © 2017 American Heart Association, Inc.

  12. Explaining intermediate filament accumulation in giant axonal neuropathy

    PubMed Central

    Opal, Puneet; Goldman, Robert D.

    2013-01-01

    Giant axonal neuropathy (GAN)1 is a rare autosomal recessive neurological disorder caused by mutations in the GAN gene that encodes gigaxonin, a member of the BTB/Kelch family of E3 ligase adaptor proteins.1 This disease is characterized by the aggregation of Intermediate Filaments (IF)—cytoskeletal elements that play important roles in cell physiology including the regulation of cell shape, motility, mechanics and intra-cellular signaling. Although a range of cell types are affected in GAN, neurons display the most severe pathology, with neuronal intermediate filament accumulation and aggregation; this in turn causes axonal swellings or “giant axons.” A mechanistic understanding of GAN IF pathology has eluded researchers for many years. In a recent study1 we demonstrate that the normal function of gigaxonin is to regulate the degradation of IF proteins via the proteasome. Our findings present the first direct link between GAN mutations and IF pathology; moreover, given the importance of IF aggregations in a wide range of disease conditions, our findings could have wider ramifications. PMID:25003002

  13. Buckwheat (Fagopyrum esculentum M.) Sprout Treated with Methyl Jasmonate (MeJA) Improved Anti-Adipogenic Activity Associated with the Oxidative Stress System in 3T3-L1 Adipocytes

    PubMed Central

    Lee, Young-Jun; Kim, Kui-Jin; Park, Kee-Jai; Yoon, Bo-Ra; Lim, Jeong-Ho; Lee, Ok-Hwan

    2013-01-01

    Buckwheat sprouts contain various bioactive compounds including rutin which have a number of biological activities. We have previously shown that buckwheat sprouts (TBWE) treated with methyl jasmonate (MeJA) significantly increased the amount of phenolics and the antioxidant activity. The aim of this study was to demonstrate the effect of TBWE on anti-adipogenesis and pro-oxidant enzyme in 3T3-L1 adipocytes. We also evaluated the anti-oxidative activity of TBWE in adipocytes by using the nitroblue tetrazolium assay. Our data showed that TBWE markedly inhibited adipocyte differentiation and ROS production in 3T3-L1 cells compared with control groups. Moreover, TBWE has strongly shown the inhibition of adipogenic transcription factor as well as pro-oxidant enzymes. Together, we demonstrate that the MeJA treatment significantly increased the amount of phenolic compound, resulting in the suppression of adipogenesis and ROS production in the 3T3-L1 cells. These findings indicate that TBWE has the potential for anti-adipogenesis activity with anti-oxidative properties. PMID:23344050

  14. Off-target effects of sulforaphane include the derepression of long terminal repeats through histone acetylation events.

    PubMed

    Baier, Scott R; Zbasnik, Richard; Schlegel, Vicki; Zempleni, Janos

    2014-06-01

    Sulforaphane is a naturally occurring isothiocyanate in cruciferous vegetables. Sulforaphane inhibits histone deacetylases, leading to the transcriptional activation of genes including tumor suppressor genes. The compound has attracted considerable attention in the chemoprevention of prostate cancer. Here we tested the hypothesis that sulforaphane is not specific for tumor suppressor genes but also activates loci such as long terminal repeats (LTRs), which might impair genome stability. Studies were conducted using chemically pure sulforaphane in primary human IMR-90 fibroblasts and in broccoli sprout feeding studies in healthy adults. Sulforaphane (2.0 μM) caused an increase in LTR transcriptional activity in cultured cells. Consumption of broccoli sprouts (34, 68 or 102 g) by human volunteers caused a dose dependent elevation in LTR mRNA in circulating leukocytes, peaking at more than a 10-fold increase. This increase in transcript levels was associated with an increase in histone H3 K9 acetylation marks in LTR 15 in peripheral blood mononuclear cells from subjects consuming sprouts. Collectively, this study suggests that sulforaphane has off-target effects that warrant further investigation when recommending high levels of sulforaphane intake, despite its promising activities in chemoprevention. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Spinal cord neuron classes in embryos of the smooth newt Triturus vulgaris: a horseradish peroxidase and immunocytochemical study.

    PubMed

    Harper, C E; Roberts, A

    1993-04-29

    Spinal cord neurons were investigated in embryos of Triturus vulgaris, the smooth newt, just prior to hatching. These embryos can swim if freed from their egg membranes. Horseradish peroxidase (HRP) labelling, together with GABA and glycine immunocytochemistry (ICC), revealed nine distinct anatomical classes of neuron. 1. Ventrolateral motoneurons with mainly dorsal dendrites, sometimes a descending central axon and peripheral axon innervating the trunk muscles. 2. Dorsal primary sensory Rohon-Beard neurons innervating skin and with dorsal ascending and descending axons in spinal cord. 3. Commissural interneurons with mid-cord unipolar soma, glycine-like immunoreactivity, dendrites on initial segment of ventral axon which crosses cord to ascend or branch. 4. Dorsolateral commissural interneurons with multipolar soma in dorsolateral position with dorsal dendrites and ventral axon which crosses and ascends or branches. 5. Giant dorsolateral commissural interneurons with large dorsolateral somata widely spaced (130-250 microns spacing) with process projecting dorsally to other side, dorsolateral dendrites and ventral axon which crosses to ascend and branch. 6. Dorsolateral ascending interneurons in dorsolateral position with multipolar soma and ascending axon on same side. 7. Ascending interneurons with unipolar soma, GABA-like immunoreactivity and ascending axon on same side. 8. Descending interneurons with bi- or multi-polar soma, extensive dorsal and ventral dendrites, and descending axon on same side. They may also have ascending axons. 9. Kolmer-Agduhr cerebrospinal fluid contacting neurons with cilia and microvilli in lateral corners of neural canal. GABA-like immunoreactivity, no dendrites and ascending axon. Eight of the nine cells classes were found to bear a marked resemblance to neurons previously described in zebrafish and Xenopus embryos in terms of their anatomy, distribution and immunoreactivity to GABA and glycine. Homologies and possible functions are discussed. Giant dorsolateral commissural neurons, were not found in Xenopus or teleosts but were present in Ambystoma mexicanum and Neoceratodus. The regular, possibly segmental longitudinal distribution pattern of these cells within the cord is unusual among amphibian spinal neurons.

  16. Sonic Hedgehog Guides Axons via Zipcode Binding Protein 1-Mediated Local Translation.

    PubMed

    Lepelletier, Léa; Langlois, Sébastien D; Kent, Christopher B; Welshhans, Kristy; Morin, Steves; Bassell, Gary J; Yam, Patricia T; Charron, Frédéric

    2017-02-15

    Sonic hedgehog (Shh) attracts spinal cord commissural axons toward the floorplate. How Shh elicits changes in the growth cone cytoskeleton that drive growth cone turning is unknown. We find that the turning of rat commissural axons up a Shh gradient requires protein synthesis. In particular, Shh stimulation increases β-actin protein at the growth cone even when the cell bodies have been removed. Therefore, Shh induces the local translation of β-actin at the growth cone. We hypothesized that this requires zipcode binding protein 1 (ZBP1), an mRNA-binding protein that transports β-actin mRNA and releases it for local translation upon phosphorylation. We found that Shh stimulation increases phospho-ZBP1 levels in the growth cone. Disruption of ZBP1 phosphorylation in vitro abolished the turning of commissural axons toward a Shh gradient. Disruption of ZBP1 function in vivo in mouse and chick resulted in commissural axon guidance errors. Therefore, ZBP1 is required for Shh to guide commissural axons. This identifies ZBP1 as a new mediator of noncanonical Shh signaling in axon guidance. SIGNIFICANCE STATEMENT Sonic hedgehog (Shh) guides axons via a noncanonical signaling pathway that is distinct from the canonical Hedgehog signaling pathway that specifies cell fate and morphogenesis. Axon guidance is driven by changes in the growth cone in response to gradients of guidance molecules. Little is known about the molecular mechanism of how Shh orchestrates changes in the growth cone cytoskeleton that are required for growth cone turning. Here, we show that the guidance of axons by Shh requires protein synthesis. Zipcode binding protein 1 (ZBP1) is an mRNA-binding protein that regulates the local translation of proteins, including actin, in the growth cone. We demonstrate that ZBP1 is required for Shh-mediated axon guidance, identifying a new member of the noncanonical Shh signaling pathway. Copyright © 2017 the authors 0270-6474/17/371685-11$15.00/0.

  17. Appropriate Bmp7 levels are required for the differentiation of midline guidepost cells involved in corpus callosum formation.

    PubMed

    Sánchez-Camacho, Cristina; Ortega, Juan Alberto; Ocaña, Inmaculada; Alcántara, Soledad; Bovolenta, Paola

    2011-05-01

    Guidepost cells are essential structures for the establishment of major axonal tracts. How these structures are specified and acquire their axon guidance properties is still poorly understood. Here, we show that in mouse embryos appropriate levels of Bone Morphogenetic Protein 7 (Bmp7), a member of the TGF-β superfamily of secreted proteins, are required for the correct development of the glial wedge, the indusium griseum, and the subcallosal sling, three groups of cells that act as guidepost cells for growing callosal axons. Bmp7 is expressed in the region occupied by these structures and its genetic inactivation in mouse embryos caused a marked reduction and disorganization of these cell populations. On the contrary, infusion of recombinant Bmp7 in the developing forebrain induced their premature differentiation. In both cases, changes were associated with the disruption of callosal axon growth and, in most animals fibers did not cross the midline forming typical Probst bundles. Addition of Bmp7 to cortical explants did not modify the extent of their outgrowth nor their directionality, when explants were exposed to a focalized source of the protein. Together, these results indicate that Bmp7 is indirectly required for corpus callosum formation by controlling the timely differentiation of its guidepost cells. Copyright © 2010 Wiley Periodicals, Inc.

  18. Use of polysialic acid in repair of the central nervous system

    PubMed Central

    El Maarouf, Abderrahman; Petridis, Athanasios K.; Rutishauser, Urs

    2006-01-01

    Polysialic acid (PSA), a large cell-surface carbohydrate that regulates cell interactions, is used during vertebrate development to promote precursor cell migration and axon path-finding. The induction of PSA expression in damaged adult CNS tissues could help them to rebuild by creating conditions permissive for architectural remodeling. This possibility has been explored in two contexts, the regeneration of axons and the recruitment of endogenous neural precursors to a lesion. Glial scars that form at CNS injury sites block axon regeneration. It has been found that transfection of scar astrocytes by a viral vector encoding polysialyltransferase leads to sustained expression of high levels of PSA. With this treatment, a substantial portion of severed corticospinal tract axon processes were able to grow through a spinal injury site. In the studies of precursor cell migration to a cortical lesion, it was found that induced PSA expression in a path extending from the subventricular zone to a lesion near the cortical surface increased recruitment of BrdU/nestin-positive cells along the path and into the injury site. These displaced precursors were able to differentiate in a regionally appropriate manner. These findings suggest that induced PSA expression can be used as a strategy for promoting tissue repair involving both replacement of cells and rebuilding of neural connections. PMID:17075041

  19. Formation of compact myelin is required for maturation of the axonal cytoskeleton

    NASA Technical Reports Server (NTRS)

    Brady, S. T.; Witt, A. S.; Kirkpatrick, L. L.; de Waegh, S. M.; Readhead, C.; Tu, P. H.; Lee, V. M.

    1999-01-01

    Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.

  20. Opposite rheological properties of neuronal microcompartments predict axonal vulnerability in brain injury.

    PubMed

    Grevesse, Thomas; Dabiri, Borna E; Parker, Kevin Kit; Gabriele, Sylvain

    2015-03-30

    Although pathological changes in axonal morphology have emerged as important features of traumatic brain injury (TBI), the mechanical vulnerability of the axonal microcompartment relative to the cell body is not well understood. We hypothesized that soma and neurite microcompartments exhibit distinct mechanical behaviors, rendering axons more sensitive to a mechanical injury. In order to test this assumption, we combined protein micropatterns with magnetic tweezer rheology to probe the viscoelastic properties of neuronal microcompartments. Creep experiments revealed two opposite rheological behaviors within cortical neurons: the cell body was soft and characterized by a solid-like response, whereas the neurite compartment was stiffer and viscous-like. By using pharmacological agents, we demonstrated that the nucleus is responsible for the solid-like behavior and the stress-stiffening response of the soma, whereas neurofilaments have a predominant contribution in the viscous behavior of the neurite. Furthermore, we found that the neurite is a mechanosensitive compartment that becomes softer and adopts a pronounced viscous state on soft matrices. Together, these findings highlight the importance of the regionalization of mechanical and rigidity-sensing properties within neuron microcompartments in the preferential damage of axons during traumatic brain injury and into potential mechanisms of axonal outgrowth after injury.

  1. Opposite rheological properties of neuronal microcompartments predict axonal vulnerability in brain injury

    NASA Astrophysics Data System (ADS)

    Grevesse, Thomas; Dabiri, Borna E.; Parker, Kevin Kit; Gabriele, Sylvain

    2015-03-01

    Although pathological changes in axonal morphology have emerged as important features of traumatic brain injury (TBI), the mechanical vulnerability of the axonal microcompartment relative to the cell body is not well understood. We hypothesized that soma and neurite microcompartments exhibit distinct mechanical behaviors, rendering axons more sensitive to a mechanical injury. In order to test this assumption, we combined protein micropatterns with magnetic tweezer rheology to probe the viscoelastic properties of neuronal microcompartments. Creep experiments revealed two opposite rheological behaviors within cortical neurons: the cell body was soft and characterized by a solid-like response, whereas the neurite compartment was stiffer and viscous-like. By using pharmacological agents, we demonstrated that the nucleus is responsible for the solid-like behavior and the stress-stiffening response of the soma, whereas neurofilaments have a predominant contribution in the viscous behavior of the neurite. Furthermore, we found that the neurite is a mechanosensitive compartment that becomes softer and adopts a pronounced viscous state on soft matrices. Together, these findings highlight the importance of the regionalization of mechanical and rigidity-sensing properties within neuron microcompartments in the preferential damage of axons during traumatic brain injury and into potential mechanisms of axonal outgrowth after injury.

  2. Rab5 and its effector FHF contribute to neuronal polarity through dynein-dependent retrieval of somatodendritic proteins from the axon

    PubMed Central

    Guo, Xiaoli; Farías, Ginny G.; Mattera, Rafael; Bonifacino, Juan S.

    2016-01-01

    An open question in cell biology is how the general intracellular transport machinery is adapted to perform specialized functions in polarized cells such as neurons. Here we illustrate this adaptation by elucidating a role for the ubiquitous small GTPase Ras-related protein in brain 5 (Rab5) in neuronal polarity. We show that inactivation or depletion of Rab5 in rat hippocampal neurons abrogates the somatodendritic polarity of the transferrin receptor and several glutamate receptor types, resulting in their appearance in the axon. This loss of polarity is not caused primarily by increased transport from the soma to the axon but rather by decreased retrieval from the axon to the soma. Retrieval is also dependent on the Rab5 effector Fused Toes (FTS)–Hook–FTS and Hook-interacting protein (FHIP) (FHF) complex, which interacts with the minus-end–directed microtubule motor dynein and its activator dynactin to drive a population of axonal retrograde carriers containing somatodendritic proteins toward the soma. These findings emphasize the importance of both biosynthetic sorting and axonal retrieval for the polarized distribution of somatodendritic receptors at steady state. PMID:27559088

  3. TNFa/TNFR2 signaling is required for glial ensheathment at the dorsal root entry zone

    PubMed Central

    Smith, Cody J.; Bagnat, Michel; Deppmann, Christopher D.

    2017-01-01

    Somatosensory information from the periphery is routed to the spinal cord through centrally-projecting sensory axons that cross into the central nervous system (CNS) via the dorsal root entry zone (DREZ). The glial cells that ensheath these axons ensure rapid propagation of this information. Despite the importance of this glial-axon arrangement, how this afferent nerve is assembled during development is unknown. Using in vivo, time-lapse imaging we show that as centrally-projecting pioneer axons from dorsal root ganglia (DRG) enter the spinal cord, they initiate expression of the cytokine TNFalpha. This induction coincides with ensheathment of these axons by associated glia via a TNF receptor 2 (TNFR2)-mediated process. This work identifies a signaling cascade that mediates peripheral glial-axon interactions and it functions to ensure that DRG afferent projections are ensheathed after pioneer axons complete their navigation, which promotes efficient somatosensory neural function. PMID:28379965

  4. A photon-driven micromotor can direct nerve fibre growth

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Nieminen, Timo A.; Mohanty, Samarendra; Miotke, Jill; Meyer, Ronald L.; Rubinsztein-Dunlop, Halina; Berns, Michael W.

    2012-01-01

    Axonal path-finding is important in the development of the nervous system, nerve repair and nerve regeneration. The behaviour of the growth cone at the tip of the growing axon determines the direction of axonal growth and migration. We have developed an optical-based system to control the direction of growth of individual axons (nerve fibres) using laser-driven spinning birefringent spheres. One or two optical traps position birefringent beads adjacent to growth cones of cultured goldfish retinal ganglion cell axons. Circularly polarized light with angular momentum causes the trapped bead to spin. This creates a localized microfluidic flow generating an estimated 0.17 pN shear force against the growth cone that turns in response to the shear. The direction of axonal growth can be precisely manipulated by changing the rotation direction and position of this optically driven micromotor. A physical model estimating the shear force density on the axon is described.

  5. Genetic analysis of an overlapping functional requirement for L1- and NCAM-type proteins during sensory axon guidance in Drosophila.

    PubMed

    Kristiansen, Lars V; Velasquez, Emma; Romani, Susana; Baars, Sigrid; Berezin, Vladimir; Bock, Elisabeth; Hortsch, Michael; Garcia-Alonso, Luis

    2005-01-01

    L1- and NCAM-type cell adhesion molecules represent distinct protein families that function as specific receptors for different axon guidance cues. However, both L1 and NCAM proteins promote axonal growth by inducing neuronal tyrosine kinase activity and are coexpressed in subsets of axon tracts in arthropods and vertebrates. We have studied the functional requirements for the Drosophila L1- and NCAM-type proteins, Neuroglian (Nrg) and Fasciclin II (FasII), during postembryonic sensory axon guidance. The rescue of the Neuroglian loss-of-function (LOF) phenotype by transgenically expressed L1- and NCAM-type proteins demonstrates a functional interchangeability between these proteins in Drosophila photoreceptor pioneer axons, where both proteins are normally coexpressed. In contrast, the ectopic expression of Fasciclin II in mechanosensory neurons causes a strong enhancement of the axonal misguidance phenotype. Moreover, our findings demonstrate that this functionally redundant specificity to mediate axon guidance has been conserved in their vertebrate homologs, L1-CAM and NCAM.

  6. Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts.

    PubMed

    Vale, A P; Santos, J; Brito, N V; Fernandes, D; Rosa, E; Oliveira, M Beatriz P P

    2015-07-01

    The glucosinolates content of brassica plants is a distinctive characteristic, representing a healthy advantage as many of these compounds are associated to antioxidant and anti-carcinogenic properties. Brassica sprouts are still an underutilized source of these bioactive compounds. In this work, four varieties of brassica sprouts (red cabbage, broccoli, Galega kale and Penca cabbage), including two local varieties from the North of Portugal, were grown to evaluate the glucosinolate profile and myrosinase activity during the sprouting. Also the influence of light/darkness exposure during sprouting on the glucosinolate content was assessed. Glucosinolate content and myrosinase activity of the sprouts was evaluated by HPLC methods. All sprouts revealed a higher content of aliphatic glucosinolates than of indole glucosinolates, contrary to the profile described for most of brassica mature plants. Galega kale sprouts had the highest glucosinolate content, mainly sinigrin and glucoiberin, which are recognized for their beneficial health effects. Penca cabbage sprouts were particularly richer in glucoraphanin, who was also one of the major compounds in broccoli sprouts. Red cabbage showed a higher content of progoitrin. Regarding myrosinase activity, Galega kale sprouts showed the highest values, revealing that the use of light/dark cycles and a sprouting phase of 7-9 days could be beneficial to preserve the glucosinolate content of this variety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Factors influencing the growth of Salmonella during sprouting of naturally contaminated alfalfa seeds.

    PubMed

    Fu, Tong-Jen; Reineke, Karl F; Chirtel, Stuart; VanPelt, Olif M

    2008-05-01

    In this study, the factors that affect Salmonella growth during sprouting of naturally contaminated alfalfa seeds associated with two previous outbreaks of salmonellosis were examined. A minidrum sprouter equipped with automatic irrigation and rotation systems was built to allow sprouting to be conducted under conditions similar to those used commercially. The growth of Salmonella during sprouting in the minidrum was compared with that observed in sprouts grown in glass jars under conditions commonly used at home. The level of Salmonella increased by as much as 4 log units after 48 h of sprouting in jars but remained constant during the entire sprouting period in the minidrum. The effect of temperature and irrigation frequency on Salmonella growth was examined. Increasing the sprouting temperature from 20 to 30 degrees C increased the Salmonella counts by as much as 2 log units on sprouts grown both in the minidrum and in the glass jars. Decreasing the irrigation frequency from every 20 min to every 2 h during sprouting in the minidrum or from every 4 h to every 24 h during sprouting in the glass jars resulted in an approximately 2-log increase in Salmonella counts. The levels of total aerobic mesophilic bacteria, coliforms, and Salmonella in spent irrigation water closely reflected those found in sprouts, confirming that monitoring of spent irrigation water is a good way to monitor pathogen levels during sprouting.

  8. Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates.

    PubMed

    Wang, Gou-Jen; Lin, Yan-Cheng; Li, Ching-Wen; Hsueh, Cheng-Chih; Hsu, Shan-Hui; Hung, Huey-Shan

    2009-08-01

    In this research, two simple fabrication methods to fabricate orderly nanostructured PLGA scaffolds using anodic aluminum oxide (AAO) template were conducted. In the vacuum air-extraction approach, the PLGA solution was cast on an AAO template first. The vacuum air-extraction process was then applied to suck the semi-congealed PLGA into the nanopores of the AAO template to form a bamboo sprouts array of PLGA. The surface roughness of the nanostructured scaffolds, ranging from 20 nm to 76 nm, can be controlled by the sucking time of the vacuum air-extraction process. In the replica molding approach, the PLGA solution was cast on the orderly scraggy barrier-layer surface of an AAO membrane to fabricate a PLGA scaffold of concave nanostructure. Cell culture experiments using the bovine endothelial cells (BEC) demonstrated that the nanostructured PLGA membrane can increase the cell growing rate, especially for the bamboo sprouts array scaffolds with smaller surface roughness.

  9. Mechanisms of Polarized Organelle Distribution in Neurons

    PubMed Central

    Britt, Dylan J.; Farías, Ginny G.; Guardia, Carlos M.; Bonifacino, Juan S.

    2016-01-01

    Neurons are highly polarized cells exhibiting axonal and somatodendritic domains with distinct complements of cytoplasmic organelles. Although some organelles are widely distributed throughout the neuronal cytoplasm, others are segregated to either the axonal or somatodendritic domains. Recent findings show that organelle segregation is largely established at a pre-axonal exclusion zone (PAEZ) within the axon hillock. Polarized sorting of cytoplasmic organelles at the PAEZ is proposed to depend mainly on their selective association with different microtubule motors and, in turn, with distinct microtubule arrays. Somatodendritic organelles that escape sorting at the PAEZ can be subsequently retrieved at the axon initial segment (AIS) by a microtubule- and/or actin-based mechanism. Dynamic sorting along the PAEZ-AIS continuum can thus explain the polarized distribution of cytoplasmic organelles between the axonal and somatodendritic domains. PMID:27065809

  10. Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites.

    PubMed

    Burton, Shawn D; LaRocca, Greg; Liu, Annie; Cheetham, Claire E J; Urban, Nathaniel N

    2017-02-01

    In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input. The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory input to modulate principal cell activity selectively. Copyright © 2017 the authors 0270-6474/17/371117-22$15.00/0.

  11. Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration

    PubMed Central

    Misko, Albert; Sasaki, Yo; Tuck, Elizabeth; Milbrandt, Jeffrey; Baloh, Robert H.

    2012-01-01

    Summary Alterations in mitochondrial dynamics (fission, fusion and movement) are implicated in many neurodegenerative diseases, from rare genetic disorders such as Charcot-Marie-Tooth disease, to common conditions including Alzheimer’s disease. However, the relationship between altered mitochondrial dynamics and neurodegeneration is incompletely understood. Here we show that disease associated MFN2 proteins suppressed both mitochondrial fusion and transport, and produced classic features of segmental axonal degeneration without cell body death, including neurofilament filled swellings, loss of calcium homeostasis, and accumulation of reactive oxygen species. By contrast, depletion of Opa1 suppressed mitochondrial fusion while sparing transport, and did not induce axonal degeneration. Axon degeneration induced by mutant MFN2 proteins correlated with the disruption of the proper mitochondrial positioning within axons, rather than loss of overall mitochondrial movement, or global mitochondrial dysfunction. We also found that augmenting expression of MFN1 rescued the axonal degeneration caused by MFN2 mutants, suggesting a possible therapeutic strategy for Charcot-Marie-Tooth disease. These experiments provide evidence that the ability of mitochondria to sense energy requirements and localize properly within axons is key to maintaining axonal integrity, and may be a common pathway by which disruptions in axonal transport contribute to neurodegeneration. PMID:22442078

  12. Annexin A1 Complex Mediates Oxytocin Vesicle Transport

    PubMed Central

    Makani, Vishruti; Sultana, Rukhsana; Sie, Khin Sander; Orjiako, Doris; Tatangelo, Marco; Dowling, Abigail; Cai, Jian; Pierce, William; Butterfield, D. Allan; Hill, Jennifer; Park, Joshua

    2013-01-01

    Oxytocin is a major neuropeptide that modulates the brain functions involved in social behavior and interaction. Despite of the importance of oxytocin for neural control of social behavior, little is known about the molecular mechanism(s) by which oxytocin secretion in the brain is regulated. Pro-oxytocin is synthesized in the cell bodies of hypothalamic neurons in the supraoptic and paraventricular nuclei and processed to a 9-amino-acid mature form during post-Golgi transport to the secretion sites at the axon terminals and somatodendritic regions. Oxytocin secreted from the somatodendritic regions diffuses throughout the hypothalamus and its neighboring brain regions. Some oxytocin-positive axons innervate and secrete oxytocin to the brain regions distal to the hypothalamus. Brain oxytocin binds to its receptors in the brain regions involved in social behavior. Oxytocin is also secreted from the axon terminal at the posterior pituitary gland into the blood circulation. We have discovered a new molecular complex consisting of annexin A1 (ANXA1), A-kinase anchor protein 150 (AKAP150), and microtubule motor, that controls the distribution of oxytocin vesicles between the axon and the cell body in a protein kinase A (PKA)- and protein kinase C (PKC)-sensitive manner. ANXA1 showed significant co-localization with oxytocin vesicles. Activation of PKA enhanced the association of kinesin-2 with ANXA1, thus increasing the axon-localization of oxytocin vesicles. Conversely, activation of PKC decreased the binding of kinesin-2 to ANXA1, thus attenuating the axon-localization of oxytocin vesicles. Our study suggests that ANXA1 complex coordinates the actions of PKA and PKC to control the distribution of oxytocin vesicles between the axon and the cell body. PMID:24118254

  13. The water factor in harvest-sprouting of hard red spring wheat

    NASA Technical Reports Server (NTRS)

    Bauer, A.; Black, A. L. (Principal Investigator)

    1983-01-01

    Sprouting in unthreshed, ripe, hard red spring wheat (Triticum aestivum L.) is induced by rain, but sprouting does not necessarily occur because the crop is wetted. The spike and grain water conditions conducive to sprouting were determined in a series of laboratory experiments. Sprouting did not occur in field growing wheat wetted to 110% water concentration until the spike water concentration was reduced to 12% and maintained at this concentration for 2 days before wetting. When cut at growth stage 11.3, Feekes scale, Saratovskaya 20 (USSR) sprouted after 4 days drying, Olaf and Alex between 7 and 15 days drying and Columbus, recognized for its resistance to harvest time sprouting, after more than 15 days drying. Sprouting potential was enhanced after 4 wetting drying cycles in which any wetted interval was too brief to permit sufficient water imbibition to initiate sprouting. At harvest ripeness, grain water concentration exceeded spike water concentration by 0.7 percentage units. Following 6 months storage, 20% of the kernels in 300 spike bundles (simulating windrows) sprouted within 28 hrs after initiation of wetting to saturation (150% water concentration). Ninety percent sprouting occurred within 8 days in bundles maintained at 75% water concentration and higher, but less sprouting occurred in bundles dried to 50% water concentration before resaturation.

  14. Regional Retinal Ganglion Cell Axon Loss in a Murine Glaucoma Model

    PubMed Central

    Schaub, Julie A.; Kimball, Elizabeth C.; Steinhart, Matthew R.; Nguyen, Cathy; Pease, Mary E.; Oglesby, Ericka N.; Jefferys, Joan L.; Quigley, Harry A.

    2017-01-01

    Purpose To determine if retinal ganglion cell (RGC) axon loss in experimental mouse glaucoma is uniform in the optic nerve. Methods Experimental glaucoma was induced for 6 weeks with a microbead injection model in CD1 (n = 78) and C57BL/6 (B6, n = 68) mice. From epoxy-embedded sections of optic nerve 1 to 2 mm posterior to the globe, total nerve area and regional axon density (axons/1600 μm2) were measured in superior, inferior, nasal, and temporal zones. Results Control eyes of CD1 mice have higher axon density and more total RGCs than control B6 mice eyes. There were no significant differences in control regional axon density in all mice or by strain (all P > 0.2, mixed model). Exposure to elevated IOP caused loss of RGC in both strains. In CD1 mice, axon density declined without significant loss of nerve area, while B6 mice had less density loss, but greater decrease in nerve area. Axon density loss in glaucoma eyes was not significantly greater in any region in either mouse strain (both P > 0.2, mixed model). In moderately damaged CD1 glaucoma eyes, and CD1 eyes with the greatest IOP elevation exposure, density loss differed by region (P = 0.05, P = 0.03, mixed model) with the greatest loss in the temporal and superior regions, while in severely injured B6 nerves superior loss was greater than inferior loss (P = 0.01, mixed model, Bonferroni corrected). Conclusions There was selectively greater loss of superior and temporal optic nerve axons of RGCs in mouse glaucoma at certain stages of damage. Differences in nerve area change suggest non-RGC responses differ between mouse strains. PMID:28549091

  15. Identification of a Peripheral Nerve Neurite Growth-Promoting Activity by Development and Use of an in vitro Bioassay

    NASA Astrophysics Data System (ADS)

    Sandrock, Alfred W.; Matthew, William D.

    1987-10-01

    The effective regeneration of severed neuronal axons in the peripheral nerves of adult mammals may be explained by the presence of molecules in situ that promote the effective elongation of neurites. The absence of such molecules in the central nervous system of these animals may underlie the relative inability of axons to regenerate in this tissue after injury. In an effort to identify neurite growth-promoting molecules in tissues that support effective axonal regeneration, we have developed an in vitro bioassay that is sensitive to substrate-bound factors of peripheral nerve that influence the growth of neurites. In this assay, neonatal rat superior cervical ganglion explants are placed on longitudinal cryostat sections of fresh-frozen sciatic nerve, and the regrowing axons are visualized by catecholamine histofluorescence. Axons are found to regenerate effectively over sciatic nerve tissue sections. When ganglia are similarly explanted onto cryostat sections of adult rat central nervous system tissue, however, axonal regeneration is virtually absent. We have begun to identify the molecules in peripheral nerve that promote effective axonal regeneration by examining the effect of antibodies that interfere with the activity of previously described neurite growth-promoting factors. Axonal elongation over sciatic nerve tissue was found to be sensitive to the inhibitory effects of INO (for inhibitor of neurite outgrowth), a monoclonal antibody that recognizes and inhibits a neurite growth-promoting activity from PC-12 cell-conditioned medium. The INO antigen appears to be a molecular complex of laminin and heparan sulfate proteoglycan. In contrast, a rabbit antiserum that recognizes laminin purified from mouse Engelbreth-Holm-Swarm (EHS) sarcoma, stains the Schwann cell basal lamina of peripheral nerve, and inhibits neurite growth over purified laminin substrata has no detectable effect on the rate of axonal regeneration in our assay.

  16. Premyelinated central axons express neurotoxic NMDA receptors: relevance to early developing white-matter injury

    PubMed Central

    Huria, Tahani; Beeraka, Narasimha Murthy; Al-Ghamdi, Badrah; Fern, Robert

    2015-01-01

    Ischemic-type injury to developing white matter is associated with the significant clinical condition cerebral palsy and with the cognitive deficits associated with premature birth. Premyelinated axons are the major cellular component of fetal white matter and loss of axon function underlies the disability, but the cellular mechanisms producing ischemic injury to premyelinated axons have not previously been described. Injury was found to require longer periods of modelled ischemia than at latter developmental points. Ischemia produced initial hyperexcitability in axons followed by loss of function after Na+ and Ca2+ influx. N-methyl-D-aspartate- (NMDA) type glutamate receptor (GluR) agonists potentiated axon injury while antagonists were protective. The NMDA GluR obligatory Nr1 subunit colocalized with markers of small premyelinated axons and expression was found at focal regions of axon injury. Ischemic injury of glial cells present in early developing white matter was NMDA GluR independent. Axons in human postconception week 18 to 23 white matter had a uniform prediameter expansion phenotype and postembedded immuno-gold labelling showed Nr1 subunit expression on the membrane of these axons, demonstrating a shared key neuropathologic feature with the rodent model. Premyelinated central axons therefore express high levels of functional NMDA GluRs that confer sensitivity to ischemic injury. PMID:25515212

  17. Lymphatic endothelium stimulates melanoma metastasis and invasion via MMP14-dependent Notch3 and β1-integrin activation

    PubMed Central

    Balistreri, Giuseppe; Gramolelli, Silvia; Tatti-Bugaeva, Olga; Paatero, Ilkka; Niiranen, Otso; Tuohinto, Krista; Perälä, Nina; Taiwo, Adewale; Zinovkina, Nadezhda; Repo, Pauliina; Icay, Katherine; Ivaska, Johanna; Saharinen, Pipsa; Hautaniemi, Sampsa; Lehti, Kaisa

    2018-01-01

    Lymphatic invasion and lymph node metastasis correlate with poor clinical outcome in melanoma. However, the mechanisms of lymphatic dissemination in distant metastasis remain incompletely understood. We show here that exposure of expansively growing human WM852 melanoma cells, but not singly invasive Bowes cells, to lymphatic endothelial cells (LEC) in 3D co-culture facilitates melanoma distant organ metastasis in mice. To dissect the underlying molecular mechanisms, we established LEC co-cultures with different melanoma cells originating from primary tumors or metastases. Notably, the expansively growing metastatic melanoma cells adopted an invasively sprouting phenotype in 3D matrix that was dependent on MMP14, Notch3 and β1-integrin. Unexpectedly, MMP14 was necessary for LEC-induced Notch3 induction and coincident β1-integrin activation. Moreover, MMP14 and Notch3 were required for LEC-mediated metastasis of zebrafish xenografts. This study uncovers a unique mechanism whereby LEC contact promotes melanoma metastasis by inducing a reversible switch from 3D growth to invasively sprouting cell phenotype. PMID:29712618

  18. Inhibition of the Rho/ROCK pathway prevents neuronal degeneration in vitro and in vivo following methylmercury exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako; Kawamura, Miwako

    Methylmercury (MeHg) is an environmental neurotoxicant which induces neuropathological changes in both the central nervous and peripheral sensory nervous systems. Our recent study demonstrated that down-regulation of Ras-related C3 botulinum toxin substrate 1 (Rac1), which is known to promote neuritic extension, preceded MeHg-induced damage in cultured cortical neurons, suggesting that MeHg-mediated axonal degeneration is due to the disturbance of neuritic extension. Therefore we hypothesized that MeHg-induced axonal degeneration might be caused by neuritic extension/retraction incoordination. This idea brought our attention to the Ras homolog gene (Rho)/Rho-associated coiled coil-forming protein kinase (ROCK) pathway because it has been known to be associatedmore » with the development of axon and apoptotic neuronal cell death. Here we show that inhibition of the Rho/ROCK pathway prevents MeHg-intoxication both in vitro and in vivo. A Rho inhibitor, C3 toxin, and 2 ROCK inhibitors, Fasudil and Y-27632, significantly protected against MeHg-induced axonal degeneration and apoptotic neuronal cell death in cultured cortical neuronal cells exposed to 100 nM MeHg for 3 days. Furthermore, Fasudil partially prevented the loss of large pale neurons in dorsal root ganglia, axonal degeneration in dorsal spinal root nerves, and vacuolar degeneration in the dorsal columns of the spinal cord in MeHg-intoxicated model rats (20 ppm MeHg in drinking water for 28 days). Hind limb crossing sign, a characteristic MeHg-intoxicated sign, was significantly suppressed in this model. The results suggest that inhibition of the Rho/ROCK pathway rescues MeHg-mediated neuritic extension/retraction incoordination and is effective for the prevention of MeHg-induced axonal degeneration and apoptotic neuronal cell death.« less

  19. Genesis of interictal spikes in the CA1: a computational investigation.

    PubMed

    Ratnadurai-Giridharan, Shivakeshavan; Stefanescu, Roxana A; Khargonekar, Pramod P; Carney, Paul R; Talathi, Sachin S

    2014-01-01

    Interictal spikes (IISs) are spontaneous high amplitude, short time duration <400 ms events often observed in electroencephalographs (EEG) of epileptic patients. In vitro analysis of resected mesial temporal lobe tissue from patients with refractory temporal lobe epilepsy has revealed the presence of IIS in the CA1 subfield. In this paper, we develop a biophysically relevant network model of the CA1 subfield and investigate how changes in the network properties influence the susceptibility of CA1 to exhibit an IIS. We present a novel template based approach to identify conditions under which synchronization of paroxysmal depolarization shift (PDS) events evoked in CA1 pyramidal (Py) cells can trigger an IIS. The results from this analysis are used to identify the synaptic parameters of a minimal network model that is capable of generating PDS in response to afferent synaptic input. The minimal network model parameters are then incorporated into a detailed network model of the CA1 subfield in order to address the following questions: (1) How does the formation of an IIS in the CA1 depend on the degree of sprouting (recurrent connections) between the CA1 Py cells and the fraction of CA3 Shaffer collateral (SC) connections onto the CA1 Py cells? and (2) Is synchronous afferent input from the SC essential for the CA1 to exhibit IIS? Our results suggest that the CA1 subfield with low recurrent connectivity (absence of sprouting), mimicking the topology of a normal brain, has a very low probability of producing an IIS except when a large fraction of CA1 neurons (>80%) receives a barrage of quasi-synchronous afferent input (input occurring within a temporal window of ≤24 ms) via the SC. However, as we increase the recurrent connectivity of the CA1 (P sprout > 40); mimicking sprouting in a pathological CA1 network, the CA1 can exhibit IIS even in the absence of a barrage of quasi-synchronous afferents from the SC (input occurring within temporal window >80 ms) and a low fraction of CA1 Py cells (≈30%) receiving SC input. Furthermore, we find that in the presence of Poisson distributed random input via SC, the CA1 network is able to generate spontaneous periodic IISs (≈3 Hz) for high degrees of recurrent Py connectivity (P sprout > 70). We investigate the conditions necessary for this phenomenon and find that spontaneous IISs closely depend on the degree of the network's intrinsic excitability.

  20. A C-terminal fragment of fibulin-7 interacts with endothelial cells and inhibits their tube formation in culture.

    PubMed

    de Vega, Susana; Suzuki, Nobuharu; Nonaka, Risa; Sasaki, Takako; Forcinito, Patricia; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko

    2014-03-01

    We have previously demonstrated that fibulin-7 (Fbln7) is expressed in teeth by pre-odontoblast and odontoblast cells, localized in the basement membrane and dentin matrices, and is an adhesion molecule for dental mesenchyme cells and odontoblasts. Fbln7 is also expressed in blood vessels by endothelial cells. In this report, we show that a recombinant C-terminal Fbln7 fragment (Fbln7-C) bound to Human Umbilical Vein Endothelial Cells (HUVECs) but did not promote cell spreading and actin stress fiber formation. Fbln7-C binding to HUVECs induced integrin clustering at cell adhesion sites with other focal adhesion molecules, and sustained activation of FAK, p130Cas, and Rac1. In addition, RhoA activation was inhibited, thereby preventing HUVEC spreading. As endothelial cell spreading is an important step for angiogenesis, we examined the effect of Fbln7-C on angiogenesis using in vitro assays for endothelial cell tube formation and vessel sprouting from aortic rings. We found that Fbln7-C inhibited the HUVEC tube formation and the vessel sprouting in aortic ring assays. Our findings suggest potential anti-angiogenic activity of the Fbln7 C-terminal region. Published by Elsevier Inc.

  1. Predicting oak stump sprouting and sprout development in the Missouri Ozarks.

    Treesearch

    Paul S. Johnson

    1977-01-01

    An application section provides tables for easy prediction of the proportion of oak stumps of various species having codominant-or-larger sprouts 5 years after clearcutting. A documentation section gives details of sprout development and equations for estimating sprouting of white, black, scarlet, post, and blackjack oaks.

  2. Unusual decline of tanoak sprouts

    Treesearch

    Philip M. McDonald; Detlev R. Vogler; Dennis Mayhew

    1988-01-01

    Comparisons between abnormal and normal sprout clumps of tanoak (Lithocarpus densiflorus [Hook. & Am.] Rehd.) in northern California indicated that sprouts in abnormal clumps had about five times the number of sprouts per dump, were three times as wide, and only one-fifth as tall. Stunted and chlorotic sprouts were examined for virus and disease...

  3. The new heterologous fibrin sealant in combination with low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve.

    PubMed

    Buchaim, Daniela Vieira; Rodrigues, Antonio de Castro; Buchaim, Rogerio Leone; Barraviera, Benedito; Junior, Rui Seabra Ferreira; Junior, Geraldo Marco Rosa; Bueno, Cleuber Rodrigo de Souza; Roque, Domingos Donizeti; Dias, Daniel Ventura; Dare, Leticia Rossi; Andreo, Jesus Carlos

    2016-07-01

    This study aimed to evaluate the effects of low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve with two surgical techniques: end-to-end epineural suture and coaptation with heterologous fibrin sealant. Forty-two male Wistar rats were randomly divided into five groups: control group (CG) in which the buccal branch of the facial nerve was collected without injury; (2) experimental group with suture (EGS) and experimental group with fibrin (EGF): The buccal branch of the facial nerve was transected on both sides of the face. End-to-end suture was performed on the right side and fibrin sealant on the left side; (3) Experimental group with suture and laser (EGSL) and experimental group with fibrin and laser (EGFL). All animals underwent the same surgical procedures in the EGS and EGF groups, in combination with the application of LLLT (wavelength of 830 nm, 30 mW optical power output of potency, and energy density of 6 J/cm(2)). The animals of the five groups were euthanized at 5 weeks post-surgery and 10 weeks post-surgery. Axonal sprouting was observed in the distal stump of the facial nerve in all experimental groups. The observed morphology was similar to the fibers of the control group, with a predominance of myelinated fibers. In the final period of the experiment, the EGSL presented the closest results to the CG, in all variables measured, except in the axon area. Both surgical techniques analyzed were effective in the treatment of peripheral nerve injuries, where the use of fibrin sealant allowed the manipulation of the nerve stumps without trauma. LLLT exhibited satisfactory results on facial nerve regeneration, being therefore a useful technique to stimulate axonal regeneration process.

  4. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  5. Either brain-derived neurotrophic factor or neurotrophin-3 only neurotrophin-producing grafts promote locomotor recovery in untrained spinalized cats.

    PubMed

    Ollivier-Lanvin, Karen; Fischer, Itzhak; Tom, Veronica; Houlé, John D; Lemay, Michel A

    2015-01-01

    Background. Transplants of cellular grafts expressing a combination of 2 neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been shown to promote and enhance locomotor recovery in untrained spinalized cats. Based on the time course of recovery and the absence of axonal growth through the transplants, we hypothesized that recovery was due to neurotrophin-mediated plasticity within the existing locomotor circuitry of the lumbar cord. Since BDNF and NT-3 have different effects on axonal sprouting and synaptic connectivity/strengthening, it becomes important to ascertain the contribution of each individual neurotrophins to recovery. Objective. We studied whether BDNF or NT-3 only producing cellular grafts would be equally effective at restoring locomotion in untrained spinal cats. Methods. Rat fibroblasts secreting one of the 2 neurotrophins were grafted into the T12 spinal transection site of adult cats. Four cats in each group (BDNF alone or NT-3 alone) were evaluated. Locomotor recovery was tested on a treadmill at 3 and 5 weeks post-transection/grafting. Results. Animals in both groups were capable of plantar weight-bearing stepping at speed up to 0.8 m/s as early as 3 weeks and locomotor capabilities were similar at 3 and 5 weeks for both types of graft. Conclusions. Even without locomotor training, either BDNF or NT-3 only producing grafts promote locomotor recovery in complete spinal animals. More clinically applicable delivery methods need to be developed. © The Author(s) 2014.

  6. Spinal cord magnetic resonance imaging demonstrates sensory neuronal involvement and clinical severity in neuronopathy associated with Sjögren's syndrome

    PubMed Central

    Mori, K; Koike, H; Misu, K; Hattori, N; Ichimura, M; Sobue, G

    2001-01-01

    OBJECTIVES—To determine spinal cord MRI findings in neuronopathy associated with Sjögren's syndrome and their correlation with severity of sensory impairment.
METHODS—Clinical and electrophysiological features, pathological findings in the sural nerve, and hyperintensity on T2* weighted MRI in the spinal dorsal columns were evaluated in 14 patients with neuronopathy associated with Sjögren's syndrome.
RESULTS—Of 14 patients, 12 showed high intensity by T2* weighted MRI in the posterior columns of the cervical cord. High intensity areas were seen in both the fasciculus cuneatus and gracilis in nine patients, who showed severe and widespread sensory deficits in the limbs and trunk; these patients also had a high frequency of autonomic symptoms. Somatosensory evoked potentials often could not be elicited. Hyperintensity restricted to the fasciculus gracilis was seen in three patients, who showed sensory deficits restricted to lower limbs without trunk involvement, or with only partial limb involvement; no autonomic symptoms were noted. The two patients who did not show high intensity areas in the dorsal columns showed restricted sensory involvement in the limbs. All patients showed axonal loss predominantly affecting large fibres, without axonal sprouting.
CONCLUSIONS—High intensity areas on T2* weighted MRI in the spinal dorsal columns reflect the degree of sensory neuronal involvement in neuronopathy associated with Sjögren's syndrome; this finding could also be a helpful marker for estimating severity of this neuronopathy.

 PMID:11561032

  7. Compartmentalized Regulation of Parkin-Mediated Mitochondrial Quality Control in the Drosophila Nervous System In Vivo.

    PubMed

    Sung, Hyun; Tandarich, Lauren C; Nguyen, Kenny; Hollenbeck, Peter J

    2016-07-13

    In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell bodies in vivo and reduces the number of axonal mitochondria without producing any defects in their axonal transport, morphology, or metabolic state. Furthermore, while cultured neurons display Parkin-dependent axonal mitophagy, we find this is vanishingly rare in vivo under normal physiological conditions. Thus, both the spatial distribution and mechanism of mitochondrial quality control in vivo differ substantially from those observed in vitro. Copyright © 2016 the authors 0270-6474/16/367375-17$15.00/0.

  8. Compartmentalized Regulation of Parkin-Mediated Mitochondrial Quality Control in the Drosophila Nervous System In Vivo

    PubMed Central

    Sung, Hyun; Tandarich, Lauren C.; Nguyen, Kenny

    2016-01-01

    In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. SIGNIFICANCE STATEMENT Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo. Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell bodies in vivo and reduces the number of axonal mitochondria without producing any defects in their axonal transport, morphology, or metabolic state. Furthermore, while cultured neurons display Parkin-dependent axonal mitophagy, we find this is vanishingly rare in vivo under normal physiological conditions. Thus, both the spatial distribution and mechanism of mitochondrial quality control in vivo differ substantially from those observed in vitro. PMID:27413149

  9. Matrix density alters zyxin phosphorylation, which limits peripheral process formation and extension in endothelial cells invading 3D collagen matrices.

    PubMed

    Abbey, Colette A; Bayless, Kayla J

    2014-09-01

    This study was designed to determine the optimal conditions required for known pro-angiogenic stimuli to elicit successful endothelial sprouting responses. We used an established, quantifiable model of endothelial cell (EC) sprout initiation where ECs were tested for invasion in low (1 mg/mL) and high density (5 mg/mL) 3D collagen matrices. Sphingosine 1-phosphate (S1P) alone, or S1P combined with stromal derived factor-1α (SDF) and phorbol ester (TPA), elicited robust sprouting responses. The ability of these factors to stimulate sprouting was more effective in higher density collagen matrices. S1P stimulation resulted in a significant increase in invasion distance, and with the exception of treatment groups containing phorbol ester, invasion distance was longer in 1mg/mL compared to 5mg/mL collagen matrices. Closer examination of cell morphology revealed that increasing matrix density and supplementing with SDF and TPA enhanced the formation of multicellular structures more closely resembling capillaries. TPA enhanced the frequency and size of lumen formation and correlated with a robust increase in phosphorylation of p42/p44 Erk kinase, while S1P and SDF did not. Also, a higher number of significantly longer extended processes formed in 5mg/mL compared to 1mg/mL collagen matrices. Because collagen matrices at higher density have been reported to be stiffer, we tested for changes in the mechanosensitive protein, zyxin. Interestingly, zyxin phosphorylation levels inversely correlated with matrix density, while levels of total zyxin did not change significantly. Immunofluorescence and localization studies revealed that total zyxin was distributed evenly throughout invading structures, while phosphorylated zyxin was slightly more intense in extended peripheral processes. Silencing zyxin expression increased extended process length and number of processes, while increasing zyxin levels decreased extended process length. Altogether these data indicate that ECs integrate signals from multiple exogenous factors, including changes in matrix density, to accomplish successful sprouting responses. We show here for the first time that zyxin limited the formation and extension of fine peripheral processes used by ECs for matrix interrogation, providing a molecular explanation for altered EC responses to high and low density collagen matrices. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  10. Fast inactivation of delayed rectifier K conductance in squid giant axon and its cell bodies.

    PubMed

    Mathes, C; Rosenthal, J J; Armstrong, G M; Gilly, W F

    1997-04-01

    Inactivation of delayed rectifier K conductance (gk) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (approximately -10 mV in 50-70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12-18 degrees C, 4 mM internal MgATP) a large fraction of gK inactivates within 250 ms at -10 mV in both cell bodies and axons, although inactivation tends to be more complete in cell bodies. Inactivation in both preparations shows two kinetic components. The faster component is more temperature-sensitive and becomes very prominent above 12 degrees C. Contribution of the fast component to inactivation shows a similar voltage dependence to that of gK, suggesting a strong coupling of this inactivation path to the open state. Omission of internal MgATP or application of internal protease reduces the amount of fast inactivation. High external K decreases the amount of rapidly inactivating IK but does not greatly alter inactivation kinetics. Neither external nor internal tetraethylammonium has a marked effect on inactivation kinetics. Squid delayed rectifier K channels in GFL cell bodies and giant axons thus share complex fast inactivation properties that do not closely resemble those associated with either C-type or N-type inactivation of cloned Kvl channels studied in heterologous expression systems.

  11. Fast Inactivation of Delayed Rectifier K Conductance in Squid Giant Axon and Its Cell Bodies

    PubMed Central

    Mathes, Chris; Rosenthal, Joshua J.C.; Armstrong, Clay M.; Gilly, William F.

    1997-01-01

    Inactivation of delayed rectifier K conductance (gK) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (∼−10 mV in 50–70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12–18°C, 4 mM internal MgATP) a large fraction of gK inactivates within 250 ms at −10 mV in both cell bodies and axons, although inactivation tends to be more complete in cell bodies. Inactivation in both preparations shows two kinetic components. The faster component is more temperature-sensitive and becomes very prominent above 12°C. Contribution of the fast component to inactivation shows a similar voltage dependence to that of gK, suggesting a strong coupling of this inactivation path to the open state. Omission of internal MgATP or application of internal protease reduces the amount of fast inactivation. High external K decreases the amount of rapidly inactivating IK but does not greatly alter inactivation kinetics. Neither external nor internal tetraethylammonium has a marked effect on inactivation kinetics. Squid delayed rectifier K channels in GFL cell bodies and giant axons thus share complex fast inactivation properties that do not closely resemble those associated with either C-type or N-type inactivation of cloned Kv1 channels studied in heterologous expression systems. PMID:9101403

  12. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy.

    PubMed

    Sasaki, Yo; Araki, Toshiyuki; Milbrandt, Jeffrey

    2006-08-16

    Axonal degeneration occurs in many neurodegenerative diseases and after traumatic injury and is a self-destructive program independent from programmed cell death. Previous studies demonstrated that overexpression of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) or exogenous application of nicotinamide adenine dinucleotide (NAD) can protect axons of cultured dorsal root ganglion (DRG) neurons from degeneration caused by mechanical or neurotoxic injury. In mammalian cells, NAD can be synthesized from multiple precursors, including tryptophan, nicotinic acid, nicotinamide, and nicotinamide riboside (NmR), via multiple enzymatic steps. To determine whether other components of these NAD biosynthetic pathways are capable of delaying axonal degeneration, we overexpressed each of the enzymes involved in each pathway and/or exogenously administered their respective substrates in DRG cultures and assessed their capacity to protect axons after axotomy. Among the enzymes tested, Nmnat1 had the strongest protective effects, whereas nicotinamide phosphoribosyl transferase and nicotinic acid phosphoribosyl transferase showed moderate protective activity in the presence of their substrates. Strong axonal protection was also provided by Nmnat3, which is predominantly located in mitochondria, and an Nmnat1 mutant localized to the cytoplasm, indicating that the subcellular location of NAD production is not crucial for protective activity. In addition, we showed that exogenous application of the NAD precursors that are the substrates of these enzymes, including nicotinic acid mononucleotide, nicotinamide mononucleotide, and NmR, can also delay axonal degeneration. These results indicate that stimulation of NAD biosynthetic pathways via a variety of interventions may be useful in preventing or delaying axonal degeneration.

  13. Differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.

    PubMed

    Tong, Ling-Ling; Ding, You-Quan; Jing, Hong-Bo; Li, Xuan-Yang; Qi, Jian-Guo

    2015-05-06

    Peripheral nerve functional recovery after injuries relies on both axon regeneration and remyelination. Both axon regeneration and remyelination require intimate interactions between regenerating neurons and their accompanying Schwann cells. Previous studies have shown that motor and sensory neurons are intrinsically different in their regeneration potentials. Moreover, denervated Schwann cells accompanying myelinated motor and sensory axons have distinct gene expression profiles for regeneration-associated growth factors. However, it is unknown whether differential motor and sensory functional recovery exists. If so, the particular one among axon regeneration and remyelination responsible for this difference remains unclear. Here, we aimed to establish an adult rat sciatic nerve crush model with the nonserrated microneedle holders and measured rat motor and sensory functions during regeneration. Furthermore, axon regeneration and remyelination was evaluated by morphometric analysis of electron microscopic images on the basis of nerve fiber classification. Our results showed that Aα fiber-mediated motor function was successfully recovered in both male and female rats. Aδ fiber-mediated sensory function was partially restored in male rats, but completely recovered in female littermates. For both male and female rats, the numbers of regenerated motor and sensory axons were quite comparable. However, remyelination was diverse among myelinated motor and sensory nerve fibers. In detail, Aβ and Aδ fibers incompletely remyelinated in male, but not female rats, whereas Aα fibers fully remyelinated in both sexes. Our result indicated that differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.

  14. The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization.

    PubMed

    Hummel, T; Leifker, K; Klämbt, C

    2000-04-01

    In Drosophila, the correct formation of the segmental commissures depends on neuron-glial interactions at the midline. The VUM midline neurons extend axons along which glial cells migrate in between anterior and posterior commissures. Here, we show that the gene kette is required for the normal projection of the VUM axons and subsequently disrupts glial migration. Axonal projection defects are also found for many other moto- and interneurons. In addition, kette affects the cell morphology of mesodermal and epidermal derivatives, which show an abnormal actin cytoskeleton. The KETTE protein is homologous to the transmembrane protein HEM-2/NAP1 evolutionary conserved from worms to vertebrates. In vitro analysis has shown a specific interaction of the vertebrate HEM-2/NAP1 with the SH2-SH3 adapter protein NCK and the small GTPase RAC1, which both have been implicated in regulating cytoskeleton organization and axonal growth. Hypomorphic kette mutations lead to axonal defects similar to mutations in the Drosophila NCK homolog dreadlocks. Furthermore, we show that kette and dock mutants genetically interact. NCK is thought to interact with the small G proteins RAC1 and CDC42, which play a role in axonal growth. In line with these observations, a kette phenocopy can be obtained following directed expression of mutant DCDC42 or DRAC1 in the CNS midline. In addition, the kette mutant phenotype can be partially rescued by expression of an activated DRAC1 transgene. Our data suggest an important role of the HEM-2 protein in cytoskeletal organization during axonal pathfinding.

  15. The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization

    PubMed Central

    Hummel, Thomas; Leifker, Karin; Klämbt, Christian

    2000-01-01

    In Drosophila, the correct formation of the segmental commissures depends on neuron–glial interactions at the midline. The VUM midline neurons extend axons along which glial cells migrate in between anterior and posterior commissures. Here, we show that the gene kette is required for the normal projection of the VUM axons and subsequently disrupts glial migration. Axonal projection defects are also found for many other moto- and interneurons. In addition, kette affects the cell morphology of mesodermal and epidermal derivatives, which show an abnormal actin cytoskeleton. The KETTE protein is homologous to the transmembrane protein HEM-2/NAP1 evolutionary conserved from worms to vertebrates. In vitro analysis has shown a specific interaction of the vertebrate HEM-2/NAP1 with the SH2–SH3 adapter protein NCK and the small GTPase RAC1, which both have been implicated in regulating cytoskeleton organization and axonal growth. Hypomorphic kette mutations lead to axonal defects similar to mutations in the Drosophila NCK homolog dreadlocks. Furthermore, we show that kette and dock mutants genetically interact. NCK is thought to interact with the small G proteins RAC1 and CDC42, which play a role in axonal growth. In line with these observations, a kette phenocopy can be obtained following directed expression of mutant DCDC42 or DRAC1 in the CNS midline. In addition, the kette mutant phenotype can be partially rescued by expression of an activated DRAC1 transgene. Our data suggest an important role of the HEM-2 protein in cytoskeletal organization during axonal pathfinding. PMID:10766742

  16. Regulation of axonal development by the nuclear protein hindsight (pebbled) in the Drosophila visual system.

    PubMed

    Oliva, Carlos; Sierralta, Jimena

    2010-08-15

    The molecules and networks involved in the process of acquisition and maintenance of the form of a mature neuron are not completely known. Using a misexpression screen we identified the gene hindsight as a gene involved in the process of acquisition of the neuronal morphogenesis in the Drosophila adult nervous system. hindsight encodes a transcription factor known for its role in early developmental processes such as embryonic germ band retraction and dorsal closure, as well as in the establishment of cell morphology, planar cell polarity, and epithelial integrity during retinal development. We describe here a novel function for HNT by showing that both loss and gain of function of HNT affects the pathfinding of the photoreceptors axons. By manipulating the timing and level of HNT expression, together with the number of cells manipulated we show here that the function of HNT in axonal guidance is independent of the HNT functions previously reported in retinal cells. Based on genetic interaction experiments we show that part of HNT function in axonal development is exerted through the regulation of genes involved in the dynamics of the actin cytoskeleton. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Axonal synapse sorting in medial entorhinal cortex

    NASA Astrophysics Data System (ADS)

    Schmidt, Helene; Gour, Anjali; Straehle, Jakob; Boergens, Kevin M.; Brecht, Michael; Helmstaedter, Moritz

    2017-09-01

    Research on neuronal connectivity in the cerebral cortex has focused on the existence and strength of synapses between neurons, and their location on the cell bodies and dendrites of postsynaptic neurons. The synaptic architecture of individual presynaptic axonal trees, however, remains largely unknown. Here we used dense reconstructions from three-dimensional electron microscopy in rats to study the synaptic organization of local presynaptic axons in layer 2 of the medial entorhinal cortex, the site of grid-like spatial representations. We observe path-length-dependent axonal synapse sorting, such that axons of excitatory neurons sequentially target inhibitory neurons followed by excitatory neurons. Connectivity analysis revealed a cellular feedforward inhibition circuit involving wide, myelinated inhibitory axons and dendritic synapse clustering. Simulations show that this high-precision circuit can control the propagation of synchronized activity in the medial entorhinal cortex, which is known for temporally precise discharges.

  18. Assessment of the anticancer compounds Se-methylselenocysteine and glucosinolates in Se-biofortified broccoli (Brassica oleracea L. var. italica) sprouts and florets.

    PubMed

    Ávila, Fabricio William; Faquin, Valdemar; Yang, Yong; Ramos, Silvio Junio; Guilherme, Luiz Roberto G; Thannhauser, Theodore W; Li, Li

    2013-07-03

    Broccoli (Brassica oleracea L. var. italica) is a rich source of chemopreventive compounds. Here, we evaluated and compared the effect of selenium (Se) treatment on the accumulation of anticancer compounds Se-methylselenocysteine (SeMSCys) and glucosinolates in broccoli sprouts and florets. Total Se and SeMSCys content in sprouts increased concomitantly with increasing Se doses. Selenate was superior to selenite in inducing total Se accumulation, but selenite is equally effective as selenate in promoting SeMSCys synthesis in sprouts. Increasing sulfur doses reduced total Se and SeMSCys content in sprouts treated with selenate, but not in those with selenite. Examination of five broccoli cultivars reveals that sprouts generally have better fractional ability than florets to convert inorganic Se into SeMSCys. Distinctive glucosinolate profiles between sprouts and florets were observed, and sprouts contained approximately 6-fold more glucoraphanin than florets. In contrast to florets, glucosinolate content was not affected by Se treatment in sprouts. Thus, Se-enriched broccoli sprouts are excellent for simultaneous accumulation of chemopreventive compounds SeMSCys and glucoraphanin.

  19. Roles of Specific Membrane Lipid Domains in EGF Receptor Activation and Cell Adhesion Molecule Stabilization in a Developing Olfactory System

    PubMed Central

    Gibson, Nicholas J.; Tolbert, Leslie P.; Oland, Lynne A.

    2009-01-01

    Background Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. Methodology/Principal Findings We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-β-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. Conclusions/Significance We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons. PMID:19787046

  20. Oral Sulforaphane increases Phase II antioxidant enzymes in the human upper airway

    PubMed Central

    Riedl, Marc A.; Saxon, Andrew; Diaz-Sanchez, David

    2009-01-01

    Background Cellular oxidative stress is an important factor in asthma and is thought to be the principle mechanism by which oxidant pollutants such as ozone and particulates mediate their pro-inflammatory effects. Endogenous Phase II enzymes abrogate oxidative stress through the scavenging of reactive oxygen species and metabolism of reactive chemicals. Objective We conducted a placebo-controlled dose escalation trial to investigate the in vivo effects of sulforaphane, a naturally occurring potent inducer of Phase II enzymes, on the expression of glutathione-s-transferase M1 (GSTM1), glutathione-s-transferase P1 (GSTP1), NADPH quinone oxidoreductase (NQO1), and hemoxygenase-1 (HO-1) in the upper airway of human subjects. Methods Study subjects consumed oral sulforaphane doses contained in a standardized broccoli sprout homogenate (BSH). RNA expression for selected Phase II enzymes was measured in nasal lavage cells by RT-PCR before and after sulforaphane dosing. Results All subjects tolerated oral sulforaphane dosing without significant adverse events. Increased Phase II enzyme expression in nasal lavage cells occurred in a dose-dependent manner with maximal enzyme induction observed at the highest dose of 200 grams broccoli sprouts prepared as BSH. Significant increases were seen in all sentinel Phase II enzymes RNA expression compared to baseline. Phase II enzyme induction was not seen with ingestion of non-sulforaphane containing alfalfa sprouts. Conclusion Oral sulforaphane safely and effectively induces mucosal Phase II enzyme expression in the upper airway of human subjects. This study demonstrates the potential of antioxidant Phase II enzymes induction in the human airway as a strategy to reduce the inflammatory effects of oxidative stress. Clinical Implications This study demonstrates the potential of enhancement of Phase II enzyme expression as a novel therapeutic strategy for oxidant induced airway disease. Capsule Summary A placebo-controlled dose escalation trial demonstrated that naturally occurring sulforaphane from broccoli sprouts can induce a potent increase in antioxidant Phase II enzymes in airway cells. PMID:19028145

  1. Structural and functional characteristics of commissural neurons in the superior colliculus of the hamster.

    PubMed

    Rhoades, R W; Mooney, R D; Szczepanik, A M; Klein, B G

    1986-11-08

    Intracellular recording and horseradish peroxidase (HRP) injection techniques were employed to delineate the structural and functional properties of superior collicular (SC) neurons in the hamster that were antidromically activated by electrical stimulation of the contralateral tectum. A total of 39 such cells were completely characterized, injected, and recovered. In ten of these, the axonal filling allowed us to reconstruct at least a portion of the terminal arborization in the SC contralateral to the labelled cell. Two of the recovered neurons were located in the stratum griseum superficiale (SGS), three were in the stratum opticum (SO), ten were in the stratum griseum intermediale (SGI), 11 were in the stratum album intermedium (SAI), 11 were in the stratum griseum profundum (SGP) and two were located in the stratum album profundum (SAP). The recovered cells were highly varied in both their morphological and their physiological characteristics. Somal areas ranged between 74 microns2 and 364 microns2, and the sample of recovered neurons included horizontal cells, narrow field vertical cells, and a variety of other multipolar neurons. Over one-third (38.5%) of the recovered cells were unresponsive, 2.6% were exclusively visual, 33.3% responded only to innocuous cutaneous stimuli, 10.2% were bimodal, 7.7% were specifically nociceptive, and 7.7% had complex (Rhoades, Mooney, and Jacquin: J. Neurosci. 3:1342-1354, '83) somatosensory receptive fields. We observed no clear-cut correlations between the structural and functional characteristics of these neurons. The conduction latencies of the commissural SC neurons ranged between 0.8 and 14.0 ms. The most rapidly conducting cells were located in the SGP and SAP. Conduction latency had a significant negative correlation with soma area. Labelled axons, in many cases, had at least one terminal arbor in a portion of the SC that was mirror symmetric with the location of the cell from which it originated. In several cases, however, commissural axons gave off a number of collaterals across the mediolateral extent of the tectum. commissural axonal terminations were visible only in the laminae ventral to the SO. Several commissural SC neurons also had extensive ipsilateral axon collaterals. Both the ipsilateral and commissural axon branches of these cells gave off en passant and terminal swellings.

  2. Aβ1-42 triggers the generation of a retrograde signaling complex from sentinel mRNAs in axons.

    PubMed

    Walker, Chandler A; Randolph, Lisa K; Matute, Carlos; Alberdi, Elena; Baleriola, Jimena; Hengst, Ulrich

    2018-05-14

    Neurons frequently encounter neurodegenerative signals first in their periphery. For example, exposure of axons to oligomeric Aβ 1-42 is sufficient to induce changes in the neuronal cell body that ultimately lead to degeneration. Currently, it is unclear how the information about the neurodegenerative insult is transmitted to the soma. Here, we find that the translation of pre-localized but normally silenced sentinel mRNAs in axons is induced within minutes of Aβ 1-42 addition in a Ca 2+ -dependent manner. This immediate protein synthesis following Aβ 1-42 exposure generates a retrograde signaling complex including vimentin. Inhibition of the immediate protein synthesis, knock-down of axonal vimentin synthesis, or inhibition of dynein-dependent transport to the soma prevented the normal cell body response to Aβ 1-42 These results establish that CNS axons react to neurodegenerative insults via the local translation of sentinel mRNAs encoding components of a retrograde signaling complex that transmit the information about the event to the neuronal soma. © 2018 The Authors.

  3. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    PubMed Central

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  4. Germination under Moderate Salinity Increases Phenolic Content and Antioxidant Activity in Rapeseed (Brassica napus var oleifera Del.) Sprouts.

    PubMed

    Falcinelli, Beatrice; Sileoni, Valeria; Marconi, Ombretta; Perretti, Giuseppe; Quinet, Muriel; Lutts, Stanley; Benincasa, Paolo

    2017-08-19

    The use of sprouts in the human diet is becoming more and more widespread because they are tasty and high in bioactive compounds and antioxidants, with related health benefits. In this work, we sprouted rapeseed under increasing salinity to investigate the effect on free and bound total phenolics (TP), non-flavonoids (NF), tannins (TAN), phenolic acids (PAs), and antioxidant activity. Seeds were incubated at 0, 25, 50, 100, 200 mM NaCl until early or late sprout stage, i.e., before or after cotyledon expansion, respectively. Sprouting and increasing salinity slightly decreased the bound fractions of TP, NF, TAN, PAs, while it increased markedly the free ones and their antioxidant activity. Further increases were observed in late sprouts. Moderate salinity (25-50 mM NaCl) caused the highest relative increase in phenolic concentration while it slightly affected sprout growth. On the contrary, at higher NaCl concentrations, sprouts grew slowly (100 mM NaCl) or even died before reaching the late sprout stage (200 mM). Overall, moderate salinity was the best compromise to increase phenolic content of rapeseed sprouts. The technique may be evaluated for transfer to other species as a cheap and feasible way to increase the nutritional value of sprouts.

  5. Exogenous ethylene inhibits sprout growth in onion bulbs

    PubMed Central

    Bufler, Gebhard

    2009-01-01

    Background and Aims Exogenous ethylene has recently gained commercial interest as a sprouting inhibitor of onion bulbs. The role of ethylene in dormancy and sprouting of onions, however, is not known. Methods A cultivar (Allium cepa ‘Copra’) with a true period of dormancy was used. Dormant and sprouting states of onion bulbs were treated with supposedly saturating doses of ethylene or with the ethylene-action inhibitor 1-methylcyclopropene (1-MCP). Initial sprouting was determined during storage at 18 °C by monitoring leaf blade elongation in a specific size class of leaf sheaths. Changes in ATP content and sucrose synthase activity in the sprout leaves, indicators of the sprouting state, were determined. CO2 and ethylene production of onion bulbs during storage were recorded. Key results Exogenous ethylene suppressed sprout growth of both dormant and already sprouting onion bulbs by inhibiting leaf blade elongation. In contrast to this growth-inhibiting effect, ethylene stimulated CO2 production by the bulbs about 2-fold. The duration of dormancy was not significantly affected by exogenous ethylene. However, treatment of dormant bulbs with 1-MCP caused premature sprouting. Conclusions Exogenous ethylene proved to be a powerful inhibitor of sprout growth in onion bulbs. The dormancy breaking effect of 1-MCP indicates a regulatory role of endogenous ethylene in onion bulb dormancy. PMID:18940850

  6. Exogenous ethylene inhibits sprout growth in onion bulbs.

    PubMed

    Bufler, Gebhard

    2009-01-01

    Exogenous ethylene has recently gained commercial interest as a sprouting inhibitor of onion bulbs. The role of ethylene in dormancy and sprouting of onions, however, is not known. A cultivar (Allium cepa 'Copra') with a true period of dormancy was used. Dormant and sprouting states of onion bulbs were treated with supposedly saturating doses of ethylene or with the ethylene-action inhibitor 1-methylcyclopropene (1-MCP). Initial sprouting was determined during storage at 18 degrees C by monitoring leaf blade elongation in a specific size class of leaf sheaths. Changes in ATP content and sucrose synthase activity in the sprout leaves, indicators of the sprouting state, were determined. CO(2) and ethylene production of onion bulbs during storage were recorded. Exogenous ethylene suppressed sprout growth of both dormant and already sprouting onion bulbs by inhibiting leaf blade elongation. In contrast to this growth-inhibiting effect, ethylene stimulated CO(2) production by the bulbs about 2-fold. The duration of dormancy was not significantly affected by exogenous ethylene. However, treatment of dormant bulbs with 1-MCP caused premature sprouting. Exogenous ethylene proved to be a powerful inhibitor of sprout growth in onion bulbs. The dormancy breaking effect of 1-MCP indicates a regulatory role of endogenous ethylene in onion bulb dormancy.

  7. Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells.

    PubMed

    Bonner, Joseph F; Steward, Oswald

    2015-09-04

    Spinal cord injury (SCI) disrupts the long axonal tracts of the spinal cord leading to devastating loss of function. Cell transplantation in the injured spinal cord has the potential to lead to recovery after SCI via a variety of mechanisms. One such strategy is the formation of neuronal relays between injured long tract axons and denervated neurons. The idea of creating a neuronal relay was first proposed over 25 years ago when fetal tissue was first successfully transplanted into the injured rodent spinal cord. Advances in labeling of grafted cells and the development of neural stem cell culturing techniques have improved the ability to create and refine such relays. Several recent studies have examined the ability to create a novel neuronal circuit between injured axons and denervated targets. This approach is an alternative to long-distance regeneration of damaged axons that may provide a meaningful degree of recovery without direct recreation of lost pathways. This brief review will examine the contribution of fetal grafting to current advances in neuronal grafting. Of particular interest will be the ability of transplanted neurons derived from fetal grafts, neural precursor cells and neural stem cells to reconnect long distance motor and sensory pathways of the injured spinal cord. This article is part of a Special Issue entitled SI: Spinal cord injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Study of the Peripheral Nerve Fibers Myelin Structure Changes during Activation of Schwann Cell Acetylcholine Receptors

    PubMed Central

    Verdiyan, Ekaterina E.; Allakhverdiev, Elvin S.; Maksimov, Georgy V.

    2016-01-01

    In the present paper we consider a new type of mechanism by which neurotransmitter acetylcholine (ACh) regulates the properties of peripheral nerve fibers myelin. Our data show the importance of the relationship between the changes in the number of Schwann cell (SC) acetylcholine receptors (AChRs) and the axon excitation (different intervals between action potentials (APs)). Using Raman spectroscopy, an effect of activation of SC AChRs on the myelin membrane fluidity was investigated. It was found, that ACh stimulates an increase in lipid ordering degree of the myelin lipids, thus providing evidence for specific role of the “axon-SC” interactions at the axon excitation. It was proposed, that during the axon excitation, the SC membrane K+- depolarization and the Ca2+—influx led to phospholipase activation or exocytosis of intracellular membrane vesicles and myelin structure reorganization. PMID:27455410

  9. Dendrites of cerebellar granule cells correctly recognize their target axons for synaptogenesis in vitro.

    PubMed

    Ito, Shoko; Takeichi, Masatoshi

    2009-08-04

    Neural circuits are generated by precisely ordered synaptic connections among neurons, and this process is thought to rely on the ability of neurons to recognize specific partners. However, it is also known that neurons promiscuously form synapses with nonspecific partners, in particular when cultured in vitro, causing controversies about neural recognition mechanisms. Here we reexamined whether neurons can or cannot select particular partners in vitro. In the cerebellum, granule cell (GC) dendrites form synaptic connections specifically with mossy fibers, but not with climbing fibers. We cocultured GC neurons with pontine or inferior olivary axons, the major sources for mossy and climbing fibers, respectively, as well as with hippocampal axons as a control. The GC neurons formed synapses with pontine axons predominantly at the distal ends of their dendrites, reproducing the characteristic morphology of their synapses observed in vivo, whereas they failed to do so when combined with other axons. In the latter case, synaptic proteins could accumulate between axons and dendrites, but these synapses were randomly distributed throughout the contact sites, and also their synaptic vesicle recycling was anomalous. These observations suggest that GC dendrites can select their authentic partners for synaptogenesis even in vitro, forming the synapses with a GC-specific nature only with them.

  10. Functional binding interaction identified between the axonal CAM L1 and members of the ERM family

    PubMed Central

    Dickson, Tracey C.; Mintz, C. David; Benson, Deanna L.; Salton, Stephen R.J.

    2002-01-01

    Ayeast two-hybrid library was screened using the cytoplasmic domain of the axonal cell adhesion molecule L1 to identify binding partners that may be involved in the regulation of L1 function. The intracellular domain of L1 bound to ezrin, a member of the ezrin, radixin, and moesin (ERM) family of membrane–cytoskeleton linking proteins, at a site overlapping that for AP2, a clathrin adaptor. Binding of bacterial fusion proteins confirmed this interaction. To determine whether ERM proteins interact with L1 in vivo, extracellular antibodies to L1 were used to force cluster the protein on cultured hippocampal neurons and PC12 cells, which were then immunolabeled for ERM proteins. Confocal analysis revealed a precise pattern of codistribution between ERMs and L1 clusters in axons and PC12 neurites, whereas ERMs in dendrites and spectrin labeling remained evenly distributed. Transfection of hippocampal neurons grown on an L1 substrate with a dominant negative ERM construct resulted in extensive and abnormal elaboration of membrane protrusions and an increase in axon branching, highlighting the importance of the ERM–actin interaction in axon development. Together, our data indicate that L1 binds directly to members of the ERM family and suggest this association may coordinate aspects of axonal morphogenesis. PMID:12070130

  11. Functional binding interaction identified between the axonal CAM L1 and members of the ERM family.

    PubMed

    Dickson, Tracey C; Mintz, C David; Benson, Deanna L; Salton, Stephen R J

    2002-06-24

    A yeast two-hybrid library was screened using the cytoplasmic domain of the axonal cell adhesion molecule L1 to identify binding partners that may be involved in the regulation of L1 function. The intracellular domain of L1 bound to ezrin, a member of the ezrin, radixin, and moesin (ERM) family of membrane-cytoskeleton linking proteins, at a site overlapping that for AP2, a clathrin adaptor. Binding of bacterial fusion proteins confirmed this interaction. To determine whether ERM proteins interact with L1 in vivo, extracellular antibodies to L1 were used to force cluster the protein on cultured hippocampal neurons and PC12 cells, which were then immunolabeled for ERM proteins. Confocal analysis revealed a precise pattern of codistribution between ERMs and L1 clusters in axons and PC12 neurites, whereas ERMs in dendrites and spectrin labeling remained evenly distributed. Transfection of hippocampal neurons grown on an L1 substrate with a dominant negative ERM construct resulted in extensive and abnormal elaboration of membrane protrusions and an increase in axon branching, highlighting the importance of the ERM-actin interaction in axon development. Together, our data indicate that L1 binds directly to members of the ERM family and suggest this association may coordinate aspects of axonal morphogenesis.

  12. Terminal Schwann Cells Participate in Neuromuscular Synapse Remodeling during Reinnervation following Nerve Injury

    PubMed Central

    Kang, Hyuno; Tian, Le; Mikesh, Michelle; Lichtman, Jeff W.

    2014-01-01

    Schwann cells (SCs) at neuromuscular junctions (NMJs) play active roles in synaptic homeostasis and repair. We have studied how SCs contribute to reinnervation of NMJs using vital imaging of mice whose motor axons and SCs are transgenically labeled with different colors of fluorescent proteins. Motor axons most commonly regenerate to the original synaptic site by following SC-filled endoneurial tubes. During the period of denervation, SCs at the NMJ extend elaborate processes from the junction, as shown previously, but they also retract some processes from territory they previously occupied within the endplate. The degree of this retraction depends on the length of the period of denervation. We show that the topology of the remaining SC processes influences the branching pattern of regenerating axon terminals and the redistribution of acetylcholine receptors (AChRs). Upon arriving at the junction, regenerating axons follow existing SC processes within the old synaptic site. Some of the AChR loss that follows denervation is correlated with failure of portions of the old synaptic site that lack SC coverage to be reinnervated. New AChR clustering is also induced by axon terminals that follow SC processes extended during denervation. These observations show that SCs participate actively in the remodeling of neuromuscular synapses following nerve injury by their guidance of axonal reinnervation. PMID:24790203

  13. Antioxidants: Protecting Healthy Cells

    MedlinePlus

    ... spinach, Brussels sprouts, sweet potatoes, winter squash and broccoli. Vitamin E Research has demonstrated the broad role ... oranges, grapefruits and tangerines), strawberries, sweet peppers, tomatoes, broccoli and potatoes. Challenges to Healthful Eating The best ...

  14. The Changing Roles of Neurons in the Cortical Subplate

    PubMed Central

    Friedlander, Michael J.; Torres-Reveron, Juan

    2009-01-01

    Neurons may serve different functions over the course of an organism's life. Recent evidence suggests that cortical subplate (SP) neurons including those that reside in the white matter may perform longitudinal multi-tasking at different stages of development. These cells play a key role in early cortical development in coordinating thalamocortical reciprocal innervation. At later stages of development, they become integrated within the cortical microcircuitry. This type of longitudinal multi-tasking can enhance the capacity for information processing by populations of cells serving different functions over the lifespan. Subplate cells are initially derived when cells from the ventricular zone underlying the cortex migrate to the cortical preplate that is subsequently split by the differentiating neurons of the cortical plate with some neurons locating in the marginal zone and others settling below in the SP. While the cortical plate neurons form most of the cortical layers (layers 2–6), the marginal zone neurons form layer 1 and the SP neurons become interstitial cells of the white matter as well as forming a compact sublayer along the bottom of layer 6. After serving as transient innervation targets for thalamocortical axons, most of these cells die and layer 4 neurons become innervated by thalamic axons. However, 10–20% survives, remaining into adulthood along the bottom of layer 6 and as a scattered population of interstitial neurons in the white matter. Surviving SP cells' axons project throughout the overlying laminae, reaching layer 1 and issuing axon collaterals within white matter and in lower layer 6. This suggests that they participate in local synaptic networks, as well. Moreover, they receive excitatory and inhibitory synaptic inputs, potentially monitoring outputs from axon collaterals of cortical efferents, from cortical afferents and/or from each other. We explore our understanding of the functional connectivity of these cells at different stages of development. PMID:19688111

  15. A supercritical density of fast Na+ channels ensures rapid propagation of action potentials in GABAergic interneuron axons

    PubMed Central

    Hu, Hua; Jonas, Peter

    2014-01-01

    Fast-spiking, parvalbumin-expressing GABAergic interneurons/basket cells (BCs) play a key role in feedforward and feedback inhibition, gamma oscillations, and complex information processing. For these functions, fast propagation of action potentials (APs) from the soma to the presynaptic terminals is important. However, the functional properties of interneuron axons remain elusive. Here, we examined interneuron axons by confocally targeted subcellular patch-clamp recording in rat hippocampal slices. APs were initiated in the proximal axon ~20 μm from the soma, and propagated to the distal axon with high reliability and speed. Subcellular mapping revealed a stepwise increase of Na+ conductance density from the soma to the proximal axon, followed by a further gradual increase in the distal axon. Active cable modeling and experiments with partial channel block indicated that low axonal Na+ conductance density was sufficient for reliability, but high Na+ density was necessary for both speed of propagation and fast-spiking AP phenotype. Our results suggest that a supercritical density of Na+ channels compensates for the morphological properties of interneuron axons (small segmental diameter, extensive branching, and high bouton density), ensuring fast AP propagation and high-frequency repetitive firing. PMID:24657965

  16. Trunk and root sprouting on residual trees after thinning a Quercus chrysolepis stand

    Treesearch

    Timothy E. Paysen; Marcia G. Narog; Robert G. Tissell; Melody A. Lardner

    1991-01-01

    Canyon live oak (Quercus chrysolepis Liebm.) showed sprouting patterns on root and trunk zones foUowing forest thinning. Root sprouting was heaviest on north and east (downhill) sides of residual trees; bole sprouts were concentrated on the south and west (uphill). Root and bole sprouting appeared to be responding to different stimuli, or...

  17. An ex vivo laser-induced spinal cord injury model to assess mechanisms of axonal degeneration in real-time.

    PubMed

    Okada, Starlyn L M; Stivers, Nicole S; Stys, Peter K; Stirling, David P

    2014-11-25

    Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular structures. Here, we describe how to isolate and image the living spinal cord from mice to capture dynamics of acute axonal injury.

  18. Sequential Axon-derived Signals Couple Target Survival and Layer Specificity in the Drosophila Visual System

    PubMed Central

    Pecot, Matthew Y.; Chen, Yi; Akin, Orkun; Chen, Zhenqing; Tsui, C.Y. Kimberly; Zipursky, S. Lawrence

    2015-01-01

    SUMMARY Neural circuit formation relies on interactions between axons and cells within the target field. While it is well established that target-derived signals act on axons to regulate circuit assembly, the extent to which axon-derived signals control circuit formation is not known. In the Drosophila visual system, anterograde signals numerically match R1–R6 photoreceptors with their targets by controlling target proliferation and neuronal differentiation. Here we demonstrate that additional axon-derived signals selectively couple target survival with layer-specificity. We show that Jelly belly (Jeb) produced by R1–R6 axons interacts with its receptor, anaplastic lymphoma kinase (Alk), on budding dendrites to control survival of L3 neurons, one of three postsynaptic targets. L3 axons then produce Netrin, which regulates the layer-specific targeting of another neuron within the same circuit. We propose that a cascade of axon-derived signals, regulating diverse cellular processes, provides a strategy for coordinating circuit assembly across different regions of the nervous system. PMID:24742459

  19. Glia initiate brain assembly through non-canonical Chimaerin/Furin axon guidance in C. elegans

    PubMed Central

    Rapti, Georgia; Li, Chang; Shan, Alan; Lu, Yun; Shaham, Shai

    2017-01-01

    Brain assembly is hypothesized to begin when pioneer axons extend over non-neuronal cells, forming tracts guiding follower axons. Yet pioneer-neuron identities, their guidance substrates, and their interactions, are not well understood. Here, using time-lapse embryonic imaging, genetics, protein-interaction, and functional studies, we uncover the early events of C. elegans brain assembly. We demonstrate that C. elegans glia are key for assembly initiation, guiding pioneer and follower axons using distinct signals. Pioneer sublateral neurons, with unique growth properties, anatomy, and innervation, cooperate with glia to mediate follower-axon guidance. We further identify a CHIN-1/Chimaerin-KPC-1/Furin double mutant that severely disrupts assembly. CHIN-1/Chimaerin and KPC-1/Furin function non-canonically in glia and pioneer neurons for guidance-cue trafficking. We exploit this bottleneck to define roles for glial Netrin and Semaphorin in pioneer- and follower-axon guidance, respectively, and for glial and pioneer-neuron Flamingo/CELSR in follower-axon navigation. Altogether, our studies reveal previously-unknown glial roles in pioneer-axon guidance, suggesting conserved brain-assembly principles. PMID:28846083

  20. Axonal Degeneration Is Regulated by a Transcriptional Program that Coordinates Expression of Pro- and Anti-degenerative Factors.

    PubMed

    Maor-Nof, Maya; Romi, Erez; Sar Shalom, Hadas; Ulisse, Valeria; Raanan, Calanit; Nof, Aviv; Leshkowitz, Dena; Lang, Roland; Yaron, Avraham

    2016-12-07

    Developmental neuronal cell death and axonal elimination are controlled by transcriptional programs, of which their nature and the function of their components remain elusive. Here, we identified the dual specificity phosphatase Dusp16 as part of trophic deprivation-induced transcriptome in sensory neurons. Ablation of Dusp16 enhanced axonal degeneration in response to trophic withdrawal, suggesting that it has a protective function. Moreover, axonal skin innervation was severely reduced while neuronal elimination was increased in the Dusp16 knockout. Mechanistically, Dusp16 negatively regulates the transcription factor p53 and antagonizes the expression of the pro-degenerative factor, Puma (p53 upregulated modulator of apoptosis). Co-ablation of Puma with Dusp16 protected axons from rapid degeneration and specifically reversed axonal innervation loss early in development with no effect on neuronal deficits. Overall, these results reveal that physiological axonal elimination is regulated by a transcriptional program that integrates regressive and progressive elements and identify Dusp16 as a new axonal preserving factor. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Activation of epidermal growth factor receptor mediates receptor axon sorting and extension in the developing olfactory system of the moth Manduca sexta.

    PubMed

    Gibson, Nicholas J; Tolbert, Leslie P

    2006-04-10

    During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies indicating that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs, with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. Copyright 2006 Wiley-Liss, Inc.

  2. Activation of EGF Receptor Mediates Receptor Axon Sorting and Extension in the Developing Olfactory System of the Moth Manduca sexta

    PubMed Central

    Gibson, Nicholas J.; Tolbert, Leslie P.

    2008-01-01

    During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally-derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies that indicate that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer, as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. PMID:16498681

  3. Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation.

    PubMed

    Grill, Warren M; Cantrell, Meredith B; Robertson, Matthew S

    2008-02-01

    Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents-sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as "re-orthodromically" into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.

  4. By Different Cellular Mechanisms, Lymphatic Vessels Sprout by Endothelial Cell Recruitment Whereas Blood Vessels Grow by Vascular Expansion

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; McKay, Terri L.; Leontiev, Dmitry; Condrich, Terence K.; DiCorleto, Paul E.

    2005-01-01

    The development of effective vascular therapies requires the understanding of all modes of vessel formation contributing to vasculogenesis, angiogenesis (here termed hemangiogenesis) and lymphangiogenesis. We show that lymphangiogenesis proceeds by blind-ended vessel sprouting via recruitment of isolated endothelial progenitor cells to the tips of growing vessels, whereas hemangiogenesis occurs by non-sprouting vessel expansion from the capillary network, during middevelopment in the quail chorioallantoic membrane (CAM). Blood vessels expanded out of capillaries that displayed transient expression of alpha smooth muscle actin (alphaSMA), accompanied by mural recruitment of migratory progenitor cells expressing SMA. Lymphatics and blood vessels were identified by confocal/fluorescence microscopy of vascular endothelial growth factor (VEGF) receptors VEGFR-1 and VEGFR-2, alphaSMA (expressed on CAM blood vessels but not on lymphatics), homeobox transcription factor Prox-1 (specific to CAM lymphatic endothelium), and the quail hematopoetic/vascular marker, QH-1. Expression of VEGFR-1 was highly restricted to blood vessels (primarily capillaries). VEGFR-2 was expressed intensely in isolated hematopoietic cells, lymphatic vessels and moderately in blood vessels. Prox-1 was absent from endothelial progenitor cells prior to lymphatic recruitment. Although vascular endothelial growth factor-165 (VEGF(sub 165)) is a key regulator of numerous cellular processes in hemangiogenesis and vasculogenesis, the role of VEGF(sub 165) in lymphangiogenesis is less clear. Exogenous VEGF(sub 165) increased blood vessel density without changing endogenous modes of vascular/lymphatic vessel formation or marker expression patterns. However, VEGF(sub 165) did increase the frequency of blood vascular anastomoses and strongly induced the antimaturational dissociation of lymphatics from blood vessels, with frequent formation of homogeneous lymphatic networks.

  5. Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts.

    PubMed

    Avila, Fabricio William; Yang, Yong; Faquin, Valdemar; Ramos, Silvio Junio; Guilherme, Luiz Roberto G; Thannhauser, Theodore W; Li, Li

    2014-12-15

    Brassica sprouts are widely marketed as functional foods. Here we examined the effects of Se treatment on the accumulation of anticancer compound Se-methylselenocysteine (SeMSCys) and glucosinolates in Brassica sprouts. Cultivars from the six most extensively consumed Brassica vegetables (broccoli, cauliflower, green cabbage, Chinese cabbage, kale, and Brussels sprouts) were used. We found that Se-biofortified Brassica sprouts all were able to synthesize significant amounts of SeMSCys. Analysis of glucosinolate profiles revealed that each Brassica crop accumulated different types and amounts of glucosinolates. Cauliflower sprouts had high total glucosinolate content. Broccoli sprouts contained high levels of glucoraphanin, a precursor for potent anticancer compound. Although studies have reported an inverse relationship between accumulation of Se and glucosinolates in mature Brassica plants, Se supply generally did not affect glucosinolate accumulation in Brassica sprouts. Thus, Brassica vegetable sprouts can be biofortified with Se for the accumulation of SeMSCys without negative effects on chemopreventive glucosinolate contents. Published by Elsevier Ltd.

  6. Microbiological Safety and Food Handling Practices of Seed Sprout Products in the Australian State of Victoria.

    PubMed

    Symes, Sally; Goldsmith, Paul; Haines, Heather

    2015-07-01

    Seed sprouts have been implicated as vehicles for numerous foodborne outbreaks worldwide. Seed sprouts pose a unique food safety concern because of the ease of microbiological seed contamination, the inherent ability of the sprouting process to support microbial growth, and their consumption either raw or lightly cooked. To examine seed sprout safety in the Australian state of Victoria, a survey was conducted to detect specific microbes in seed sprout samples and to investigate food handling practices relating to seed sprouts. A total of 298 seed sprout samples were collected from across 33 local council areas. Escherichia coli was detected in 14.8%, Listeria spp. in 12.3%, and Listeria monocytogenes in 1.3% of samples analyzed. Salmonella spp. were not detected in any of the samples. A range of seed sprout handling practices were identified as potential food safety issues in some food businesses, including temperature control, washing practices, length of storage, and storage in proximity to unpackaged ready-to-eat potentially hazardous foods.

  7. Growth and quality of soybean sprouts (Glycine max L. Merrill) as affected by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Yun, Juan; Li, Xihong; Fan, Xuetong; Li, Weili; Jiang, Yuqian

    2013-01-01

    In this study, soybean seeds and sprouts (Glycine max L. Merrill) were exposed to radiation doses up to 3.0 kGy. The irradiated and non-irradiated seeds were germinated, and then germination rate, sprouts length, vitamin C content, antioxidants and visual and olfactory quality were determined after irradiation. Results indicated that there was no significant difference in the germination rate and sprouts length between the control and 0.3 kGy treated soybeans, however, the reductions in sprouts length of the 1.0 kGy and 3.0 kGy treated samples were quite significant with reductions of 20.4% and 58.8%, respectively. Irradiated sprouts had similar visual and olfactory quality as the non-irradiated one. Therefore, irradiation of seeds alone would have limited value in terms of commercial use due to reduced germination and length of sprouts. However, irradiation of sprouts at doses up to 3.0 kGy was feasible to enhance microbial safety of sprouts.

  8. Effects of cerebrolysin on motor-neuron-like NSC-34 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keilhoff, Gerburg, E-mail: Gerburg.keilhoff@med.ovgu.de; Lucas, Benjamin; Pinkernelle, Josephine

    Although the peripheral nervous system is capable of regeneration, this capability is limited. As a potential means of augmenting nerve regeneration, the effects of cerebrolysin (CL) – a proteolytic peptide fraction – were tested in vitro on the motor-neuron-like NSC-34 cell line and organotypic spinal cord cultures. Therefore, NSC-34 cells were subjected to mechanical stress by changing media and metabolic stress by oxygen glucose deprivation. Afterwards, cell survival/proliferation using MTT and BrdU-labeling (FACS) and neurite sprouting using ImageJ analysis were evaluated. Calpain-1, Src and α-spectrin protein expression were analyzed by Western blot. In organotypic cultures, the effect of CL onmore » motor neuron survival and neurite sprouting was tested by immunohistochemistry. CL had a temporary anti-proliferative but initially neuroprotective effect on OGD-stressed NSC-34 cells. High-dosed or repeatedly applied CL was deleterious for cell survival. CL amplified neurite reconstruction to limited extent, affected calpain-1 protein expression and influenced calpain-mediated spectrin cleavage as a function of Src expression. In organotypic spinal cord slice cultures, CL was not able to support motor neuron survival/neurite sprouting. Moreover, it hampered astroglia and microglia activities. The data suggest that CL may have only isolated positive effects on injured spinal motor neurons. High-dosed or accumulated CL seemed to have adverse effects in treatment of spinal cord injury. Further experiments are required to optimize the conditions for a safe clinical administration of CL in spinal cord injuries. - Highlights: • Cerebrolysin (CL) is anti-proliferative but initially neuroprotective in OGD-stressed NSC-34 cells. • CL amplified neurite reconstruction of NSC-34 cells. • CL affected calpain-1 expression and calpain-mediated spectrin cleavage as function of Src expression. • In organotypic spinal cord cultures, CL hampered motor neuron survival and glia activity. • Findings pose a contraindication for unchallenged use of CL in spinal cord injuries.« less

  9. Endothelial Ca2+ oscillations reflect VEGFR signaling-regulated angiogenic capacity in vivo

    PubMed Central

    Yokota, Yasuhiro; Nakajima, Hiroyuki; Wakayama, Yuki; Muto, Akira; Kawakami, Koichi; Fukuhara, Shigetomo; Mochizuki, Naoki

    2015-01-01

    Sprouting angiogenesis is a well-coordinated process controlled by multiple extracellular inputs, including vascular endothelial growth factor (VEGF). However, little is known about when and how individual endothelial cell (EC) responds to angiogenic inputs in vivo. Here, we visualized endothelial Ca2+ dynamics in zebrafish and found that intracellular Ca2+ oscillations occurred in ECs exhibiting angiogenic behavior. Ca2+ oscillations depended upon VEGF receptor-2 (Vegfr2) and Vegfr3 in ECs budding from the dorsal aorta (DA) and posterior cardinal vein, respectively. Thus, visualizing Ca2+ oscillations allowed us to monitor EC responses to angiogenic cues. Vegfr-dependent Ca2+ oscillations occurred in migrating tip cells as well as stalk cells budding from the DA. We investigated how Dll4/Notch signaling regulates endothelial Ca2+ oscillations and found that it was required for the selection of single stalk cell as well as tip cell. Thus, we captured spatio-temporal Ca2+ dynamics during sprouting angiogenesis, as a result of cellular responses to angiogenic inputs. DOI: http://dx.doi.org/10.7554/eLife.08817.001 PMID:26588168

  10. Wnt3 and Gata4 regulate axon regeneration in adult mouse DRG neurons.

    PubMed

    Duan, Run-Shan; Liu, Pei-Pei; Xi, Feng; Wang, Wei-Hua; Tang, Gang-Bin; Wang, Rui-Ying; Saijilafu; Liu, Chang-Mei

    2018-05-05

    Neurons in the adult central nervous system (CNS) have a poor intrinsic axon growth potential after injury, but the underlying mechanisms are largely unknown. Wingless-related mouse mammary tumor virus integration site (WNT) family members regulate neural stem cell proliferation, axon tract and forebrain development in the nervous system. Here we report that Wnt3 is an important modulator of axon regeneration. Downregulation or overexpression of Wnt3 in adult dorsal root ganglion (DRG) neurons enhances or inhibits their axon regeneration ability respectively in vitro and in vivo. Especially, we show that Wnt3 modulates axon regeneration by repressing mRNA translation of the important transcription factor Gata4 via binding to the three prime untranslated region (3'UTR). Downregulation of Gata4 could restore the phenotype exhibited by Wnt3 downregulation in DRG neurons. Taken together, these data indicate that Wnt3 is a key intrinsic regulator of axon growth ability of the nervous system. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Oligodendroglia: metabolic supporters of axons.

    PubMed

    Morrison, Brett M; Lee, Youngjin; Rothstein, Jeffrey D

    2013-12-01

    Axons are specialized extensions of neurons that are critical for the organization of the nervous system. To maintain function in axons that often extend some distance from the cell body, specialized mechanisms of energy delivery are likely to be necessary. Over the past decade, greater understanding of human demyelinating diseases and the development of animal models have suggested that oligodendroglia are critical for maintaining the function of axons. In this review, we discuss evidence for the vulnerability of neurons to energy deprivation, the importance of oligodendrocytes for axon function and survival, and recent data suggesting that transfer of energy metabolites from oligodendroglia to axons through monocarboxylate transporter 1 (MCT1) may be critical for the survival of axons. This pathway has important implications both for the basic biology of the nervous system and for human neurological disease. New insights into the role of oligodendroglial biology provide an exciting opportunity for revisions in nervous system biology, understanding myelin-based disorders, and therapeutics development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Odorant receptors can mediate axonal identity and gene choice via cAMP-independent mechanisms

    PubMed Central

    Grosmaitre, Xavier; Feinstein, Paul

    2016-01-01

    Odorant receptors (ORs) control several aspects of cell fate in olfactory sensory neurons (OSNs), including singular gene choice and axonal identity. The mechanisms of OR-induced axon guidance have been suggested to principally rely on G-protein signalling. Here, we report that for a subset of OSNs, deleting G proteins or altering their levels of signalling does not affect axonal identity. Signalling-deficient ORs or surrogate receptors that are unable to couple to Gs/Golf still provide axons with distinct identities and the anterior–posterior targeting of axons does not correlate with the levels of cAMP produced by genetic modifications. In addition, we refine the models of negative feedback by showing that ectopic ORs can be robustly expressed without suppressing endogenous gene choice. In conclusion, our results uncover a new feature of ORs, showing that they can instruct axonal identity and regulate olfactory map formation independent of canonical G-protein signalling and cAMP production. PMID:27466441

  13. Metabolic Vulnerability in the Neurodegenerative Disease Glaucoma

    PubMed Central

    Inman, Denise M.; Harun-Or-Rashid, Mohammad

    2017-01-01

    Axons can be several orders of magnitude longer than neural somas, presenting logistical difficulties in cargo trafficking and structural maintenance. Keeping the axon compartment well supplied with energy also presents a considerable challenge; even seemingly subtle modifications of metabolism can result in functional deficits and degeneration. Axons require a great deal of energy, up to 70% of all energy used by a neuron, just to maintain the resting membrane potential. Axonal energy, in the form of ATP, is generated primarily through oxidative phosphorylation in the mitochondria. In addition, glial cells contribute metabolic intermediates to axons at moments of high activity or according to need. Recent evidence suggests energy disruption is an early contributor to pathology in a wide variety of neurodegenerative disorders characterized by axonopathy. However, the degree to which the energy disruption is intrinsic to the axon vs. associated glia is not clear. This paper will review the role of energy availability and utilization in axon degeneration in glaucoma, a chronic axonopathy of the retinal projection. PMID:28424571

  14. P7C3 neuroprotective chemicals block axonal degeneration and preserve function after traumatic brain injury.

    PubMed

    Yin, Terry C; Britt, Jeremiah K; De Jesús-Cortés, Héctor; Lu, Yuan; Genova, Rachel M; Khan, Michael Z; Voorhees, Jaymie R; Shao, Jianqiang; Katzman, Aaron C; Huntington, Paula J; Wassink, Cassie; McDaniel, Latisha; Newell, Elizabeth A; Dutca, Laura M; Naidoo, Jacinth; Cui, Huxing; Bassuk, Alexander G; Harper, Matthew M; McKnight, Steven L; Ready, Joseph M; Pieper, Andrew A

    2014-09-25

    The P7C3 class of neuroprotective aminopropyl carbazoles has been shown to block neuronal cell death in models of neurodegeneration. We now show that P7C3 molecules additionally preserve axonal integrity after injury, before neuronal cell death occurs, in a rodent model of blast-mediated traumatic brain injury (TBI). This protective quality may be linked to the ability of P7C3 molecules to activate nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in nicotinamide adenine dinucleotide salvage. Initiation of daily treatment with our recently reported lead agent, P7C3-S243, 1 day after blast-mediated TBI blocks axonal degeneration and preserves normal synaptic activity, learning and memory, and motor coordination in mice. We additionally report persistent neurologic deficits and acquisition of an anxiety-like phenotype in untreated animals 8 months after blast exposure. Optimized variants of P7C3 thus offer hope for identifying neuroprotective agents for conditions involving axonal damage, neuronal cell death, or both, such as occurs in TBI. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Mechanosensilla in the adult abdomen of Drosophila: engrailed and slit help to corral the peripheral sensory axons into segmental bundles.

    PubMed

    Fabre, Caroline C G; Casal, José; Lawrence, Peter A

    2010-09-01

    The abdomen of adult Drosophila bears mechanosensory bristles with axons that connect directly to the CNS, each hemisegment contributing a separate nerve bundle. Here, we alter the amount of Engrailed protein and manipulate the Hedgehog signalling pathway in clones of cells to study their effects on nerve pathfinding within the peripheral nervous system. We find that high levels of Engrailed make the epidermal cells inhospitable to bristle neurons; sensory axons that are too near these cells are either deflected or fail to extend properly or at all. We then searched for the engrailed-dependent agent responsible for these repellent properties. We found slit to be expressed in the P compartment and, using genetic mosaics, present evidence that Slit is the responsible molecule. Blocking the activity of the three Robo genes (putative receptors for Slit) with RNAi supported this hypothesis. We conclude that, during normal development, gradients of Slit protein repel axons away from compartment boundaries - in consequence, the bristles from each segment send their nerves to the CNS in separated sets.

  16. Effects of Polysaccharide Elicitors from Endophytic Fusarium oxysporum Fat9 on the Growth, Flavonoid Accumulation and Antioxidant Property of Fagopyrum tataricum Sprout Cultures.

    PubMed

    Zhong, Lingyun; Niu, Bei; Tang, Lin; Chen, Fang; Zhao, Gang; Zhao, Jianglin

    2016-11-25

    The purpose of this study was to evaluate the effects of four different fungal polysaccharides, named water-extracted mycelia polysaccharide (WPS), sodium hydroxide-extracted mycelia polysaccharide (SPS), hydrochloric-extracted mycelia polysaccharide (APS), and exo-polysaccharide (EPS) obtained from the endophytic Fusarium oxysporum Fat9 on the sprout growth, flavonoid accumulation, and antioxidant capacity of tartary buckwheat. Without visible changes in the appearance of the sprouts, the exogenous polysaccharide elicitors strongly stimulated sprout growth and flavonoid production, and the stimulation effect was closely related with the polysaccharide (PS) species and its treatment dosage. With application of 200 mg/L of EPS, 200 mg/L of APS, 150 mg/L of WPS, or 100 mg/L of SPS, the total rutin and quercetin yields of buckwheat sprouts were significantly increased to 41.70 mg/(100 sprouts), 41.52 mg/(100 sprouts), 35.88 mg/(100 sprouts), and 32.95 mg/(100 sprouts), respectively. This was about 1.11 to 1.40-fold compared to the control culture of 31.40 mg/(100 sprouts). Moreover, the antioxidant capacity of tartary buckwheat sprouts was also enhanced after treatment with the four PS elicitors. Furthermore, the present study revealed the polysaccharide elicitation that caused the accumulation of functional flavonoid by stimulating the phenylpropanoid pathway. The application of beneficial fungal polysaccharide elicitors may be an effective approach to improve the nutritional and functional characteristics of tartary buckwheat sprouts.

  17. Early postnatal development of vasoactive intestinal polypeptide- and peptide histidine isoleucine-immunoreactive structures in the cat visual cortex.

    PubMed

    Wahle, P; Meyer, G

    1989-04-08

    The early postnatal development of neurons containing vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) has been analyzed in visual areas 17 and 18 of cats aged from postnatal day (P) 0 to adulthood. Neuronal types are established mainly by axonal criteria. Both peptides occur in the same neuronal types and display the same postnatal chronology of appearance. Several cell types are transient, which means that they are present in the cortex only for a limited period of development. According to their chronology of appearance the VIP/PHI-immunoreactive (ir) cell types are grouped into three neuronal populations. The first population comprises six cell types which appear early in postnatal life. The pseudohorsetail cells of layer I possess a vertically descending axon which initially gives rise to recurrent collaterals, then forms a bundle passing layers III to V, and finally, horizontal terminal fibers in layer VI. The neurons differentiate at P 4 and disappear by degeneration around P 30. The neurons with columnar dendritic fields of layers IV/V are characterized by a vertical arrangement of long dendrites ascending or descending parallel to each other, thus forming an up to 600 microns long dendritic column. Their axons always descend and terminate in broad fields in layer VI. The neurons appear at P 7 and are present until P 20. The multipolar neurons of layer VI occur in isolated positions and have broad axonal territories. The neurons differentiate at P 7 and persist into adulthood. Bitufted to multipolar neurons of layers II/III have axons descending as a single fiber to layer VI, where they terminate. The neurons appear at P 12 and persist into adulthood. The four cell types described above issue a vertically oriented fiber architecture in layers II-V and a horizontal terminal plexus in layer VI which is dense during the second, third and fourth week. Concurrent with the disappearance of the two transient types the number of descending axonal bundles and the density of the layer VI plexus is reduced, but the latter is maintained during adulthood by the two persisting cell types. Two further cell types belong to the first population: The transient bipolar cells of layers IV, V, and VI have long dendrites which extend through the entire cortical width. Their axons always descend, leave the gray matter, and apparently terminate in the upper white matter. The neurons differentiate concurrently with the pseudohorsetail cells at P 4, are very frequent during the following weeks, and eventually disappear at P 30.(ABSTRACT TRUNCATED AT 400 WORDS)

  18. GABA Signaling Promotes Synapse Elimination and Axon Pruning in Developing Cortical Inhibitory Interneurons

    PubMed Central

    Wu, Xiaoyun; Fu, Yu; Knott, Graham; Lu, Jiangteng; Di Cristo, Graziella

    2012-01-01

    Accumulating evidence indicates that GABA acts beyond inhibitory synaptic transmission and regulates the development of inhibitory synapses in the vertebrate brain, but the underlying cellular mechanism is not well understood. We have combined live imaging of cortical GABAergic axons across time scales from minutes to days with single-cell genetic manipulation of GABA release to examine its role in distinct steps of inhibitory synapse formation in the mouse neocortex. We have shown previously, by genetic knockdown of GABA synthesis in developing interneurons, that GABA signaling promotes the maturation of inhibitory synapses and axons. Here we found that a complete blockade of GABA release in basket interneurons resulted in an opposite effect, a cell-autonomous increase in axon and bouton density with apparently normal synapse structures. These results not only demonstrate that GABA is unnecessary for synapse formation per se but also uncover a novel facet of GABA in regulating synapse elimination and axon pruning. Live imaging revealed that developing GABAergic axons form a large number of transient boutons, but only a subset was stabilized. Release blockade led to significantly increased bouton stability and filopodia density, increased axon branch extension, and decreased branch retraction. Our results suggest that a major component of GABA function in synapse development is transmission-mediated elimination of subsets of nascent contacts. Therefore, GABA may regulate activity-dependent inhibitory synapse formation by coordinately eliminating certain nascent contacts while promoting the maturation of other nascent synapses. PMID:22219294

  19. BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: Implications for Hereditary Hemorrhagic Telangiectasia Type II

    PubMed Central

    Kim, Jai-Hyun; Peacock, Matthew R.; George, Steven C.; Hughes, Christopher C.W.

    2012-01-01

    ALK1 (ACVRL1) is a member of the TGFβ receptor family and is expressed predominantly by arterial endothelial cells (EC). Mutations in ACVRL1 are responsible for Hereditary Hemorrhagic Telangiectasia Type 2 (HHT2), a disease manifesting as fragile vessels, capillary overgrowth, and numerous arterio-venous malformations (AVMs). Arterial EC also express EphrinB2, which has multiple roles in vascular development and angiogenesis and is known to be reduced in ACVRL1 knockout mice. Using an in vitro angiogenesis model we find that the Alk1 ligand BMP9 induces EphrinB2 in EC, and this is entirely dependent on expression of Alk1 and at least one of the co-receptors BMPRII or ActRII. BMP9 induces both ID1 and ID3, and both are necessary for full induction of EphrinB2. Loss of Alk1 or EphrinB2 results in increased arterial-venous anastomosis, while loss of Alk1 but not EphrinB2 results in increased VEGFR2 expression and enhanced capillary sprouting. Conversely, BMP9 blocks EC sprouting and this is dependent on Alk1, BMPRII/ActRII and ID1/ID3. Finally, notch signaling overcomes the loss of Alk1 – restoring EphrinB2 expression in EC, and curbing excess sprouting. Thus, in an in vitro model of HHT2, loss of Alk1 blocks BMP9 signaling, resulting in reduced EphrinB2 expression, enhanced VEGFR2 expression, and misregulated EC sprouting and anastomosis. PMID:22622516

  20. Release of Apical Dominance in Potato Tuber Is Accompanied by Programmed Cell Death in the Apical Bud Meristem[C][W

    PubMed Central

    Teper-Bamnolker, Paula; Buskila, Yossi; Lopesco, Yael; Ben-Dor, Shifra; Saad, Inbal; Holdengreber, Vered; Belausov, Eduard; Zemach, Hanita; Ori, Naomi; Lers, Amnon; Eshel, Dani

    2012-01-01

    Potato (Solanum tuberosum) tuber, a swollen underground stem, is used as a model system for the study of dormancy release and sprouting. Natural dormancy release, at room temperature, is initiated by tuber apical bud meristem (TAB-meristem) sprouting characterized by apical dominance (AD). Dormancy is shortened by treatments such as bromoethane (BE), which mimics the phenotype of dormancy release in cold storage by inducing early sprouting of several buds simultaneously. We studied the mechanisms governing TAB-meristem dominance release. TAB-meristem decapitation resulted in the development of increasing numbers of axillary buds with time in storage, suggesting the need for autonomous dormancy release of each bud prior to control by the apical bud. Hallmarks of programmed cell death (PCD) were identified in the TAB-meristems during normal growth, and these were more extensive when AD was lost following either extended cold storage or BE treatment. Hallmarks included DNA fragmentation, induced gene expression of vacuolar processing enzyme1 (VPE1), and elevated VPE activity. VPE1 protein was semipurified from BE-treated apical buds, and its endogenous activity was fully inhibited by a cysteinyl aspartate-specific protease-1-specific inhibitor N-Acetyl-Tyr-Val-Ala-Asp-CHO (Ac-YVAD-CHO). Transmission electron microscopy further revealed PCD-related structural alterations in the TAB-meristem of BE-treated tubers: a knob-like body in the vacuole, development of cytoplasmic vesicles, and budding-like nuclear segmentations. Treatment of tubers with BE and then VPE inhibitor induced faster growth and recovered AD in detached and nondetached apical buds, respectively. We hypothesize that PCD occurrence is associated with the weakening of tuber AD, allowing early sprouting of mature lateral buds. PMID:22362870

Top