Sample records for cell block material

  1. Utility of Cytospin and Cell block Technology in Evaluation of Body Fluids and Urine Samples: A Comparative Study

    PubMed Central

    Qamar, Irmeen; Rehman, Suhailur; Mehdi, Ghazala; Maheshwari, Veena; Ansari, Hena A.; Chauhan, Sunanda

    2018-01-01

    Background: Cytologic examination of body fluids commonly involves the use of direct or sediment smears, cytocentrifuge preparations, membrane filter preparations, or cell block sections. Cytospin and cell block techniques are extremely useful in improving cell yield of thin serous effusions and urine samples, and ensure high diagnostic efficacy. Materials and Methods: We studied cytospin preparations and cell block sections prepared from 180 samples of body fluids and urine samples to compare the relative efficiency of cell retrieval, preservation of cell morphology, ease of application of special stains, and diagnostic efficacy. Samples were collected and processed to prepare cytospin smears and cell block sections. Results: We observed that overall, cell yield and preservation of individual cell morphology were better in cytospin preparations as compared to cell blocks, while preservation of architectural pattern was better in cell block sections. The number of suspicious cases also decreased on cell block sections, with increased detection of malignancy. It was difficult to prepare cell blocks from urine samples due to low cellularity. Conclusions: Cytospin technology is a quick, efficient, and cost-effective method of increasing cell yield in hypocellular samples, with better preservation of cell morphology. Cell blocks are better prepared from high cellularity fluids; however, tissue architecture is better studied, with improved rate of diagnosis and decrease in ambiguous results. Numerous sections can be prepared from a small amount of material. Special stains and immunochemical stains can be easily applied to cell blocks. It also provides a source of archival material. PMID:29643653

  2. Heat Shield Employing Cured Thermal Protection Material Blocks Bonded in a Large-Cell Honeycomb Matrix

    NASA Technical Reports Server (NTRS)

    Zell, Peter

    2012-01-01

    A document describes a new way to integrate thermal protection materials on external surfaces of vehicles that experience the severe heating environments of atmospheric entry from space. Cured blocks of thermal protection materials are bonded into a compatible, large-cell honeycomb matrix that can be applied on the external surfaces of the vehicles. The honeycomb matrix cell size, and corresponding thermal protection material block size, is envisioned to be between 1 and 4 in. (.2.5 and 10 cm) on a side, with a depth required to protect the vehicle. The cell wall thickness is thin, between 0.01 and 0.10 in. (.0.025 and 0.25 cm). A key feature is that the honeycomb matrix is attached to the vehicle fs unprotected external surface prior to insertion of the thermal protection material blocks. The attachment integrity of the honeycomb can then be confirmed over the full range of temperature and loads that the vehicle will experience. Another key feature of the innovation is the use of uniform-sized thermal protection material blocks. This feature allows for the mass production of these blocks at a size that is convenient for quality control inspection. The honeycomb that receives the blocks must have cells with a compatible set of internal dimensions. The innovation involves the use of a faceted subsurface under the honeycomb. This provides a predictable surface with perpendicular cell walls for the majority of the blocks. Some cells will have positive tapers to accommodate mitered joints between honeycomb panels on each facet of the subsurface. These tapered cells have dimensions that may fall within the boundaries of the uniform-sized blocks.

  3. High-quality cell block preparation from scraping of conventional cytology slide: a technical report on a modified cytoscrape cell block technique.

    PubMed

    Choi, Y I; Jakhongir, M; Choi, S J; Kim, L; Park, I S; Han, J Y; Kim, J M; Chu, Y C

    2016-12-01

    Immunocytochemistry (ICC) on formalin-fixed paraffin embedded cell blocks is an ancillary tool commonly recruited for differential diagnoses of fine needle aspiration cytology (FNAC) samples. However, the quality of conventional cell blocks in terms of adequate cellularity and evenness of distribution of cytologic material is not always satisfactory for ICC. We introduce a modified agarose-based cytoscrape cell block (CCB) technique that can be effectively used for the preparation of cell blocks from scrapings of conventional FNAC slides. A decoverslipped FNAC slide was mounted with a small amount of water. The cytological material was scraped off the slide into a tissue mold by scraping with a cell scraper. The cytoscrape material was pelleted by centrifugation and pre-embedded in ultra-low gelling temperature agarose and then re-embedded in conventional agarose. The final agarose gel disk was processed and embedded in paraffin. The quality of the ICC on the CCB sections was identical to that of the immunohistochemical stains on histological sections. By scrapping and harvesting the entirety of the cytological material off the cytology slide into a compact agarose cell button, we could avoid the risk of losing diagnostic material during the CCB preparation. This modified CCB technique enables concentration and focusing of minute material while maintaining the entire amount of the cytoscrape material on the viewing spot of the CCB sections. We believe this technique can be effectively used to improve the level of confidence in diagnosis of FNAC especially when the FNAC slides are the only sample available.

  4. Organic photosensitive cells having a reciprocal-carrier exciton blocking layer

    DOEpatents

    Rand, Barry P [Princeton, NJ; Forrest, Stephen R [Princeton, NJ; Thompson, Mark E [Anaheim Hills, CA

    2007-06-12

    A photosensitive cell includes an anode and a cathode; a donor-type organic material and an acceptor-type organic material forming a donor-acceptor junction connected between the anode and the cathode; and an exciton blocking layer connected between the acceptor-type organic material of the donor-acceptor junction and the cathode, the blocking layer consisting essentially of a material that has a hole mobility of at least 10.sup.-7 cm.sup.2/V-sec or higher, where a HOMO of the blocking layer is higher than or equal to a HOMO of the acceptor-type material.

  5. Utility of Cytospin and Cell block Technology in Evaluation of Body Fluids and Urine Samples: A Comparative Study.

    PubMed

    Qamar, Irmeen; Rehman, Suhailur; Mehdi, Ghazala; Maheshwari, Veena; Ansari, Hena A; Chauhan, Sunanda

    2018-01-01

    Cytologic examination of body fluids commonly involves the use of direct or sediment smears, cytocentrifuge preparations, membrane filter preparations, or cell block sections. Cytospin and cell block techniques are extremely useful in improving cell yield of thin serous effusions and urine samples, and ensure high diagnostic efficacy. We studied cytospin preparations and cell block sections prepared from 180 samples of body fluids and urine samples to compare the relative efficiency of cell retrieval, preservation of cell morphology, ease of application of special stains, and diagnostic efficacy. Samples were collected and processed to prepare cytospin smears and cell block sections. We observed that overall, cell yield and preservation of individual cell morphology were better in cytospin preparations as compared to cell blocks, while preservation of architectural pattern was better in cell block sections. The number of suspicious cases also decreased on cell block sections, with increased detection of malignancy. It was difficult to prepare cell blocks from urine samples due to low cellularity. Cytospin technology is a quick, efficient, and cost-effective method of increasing cell yield in hypocellular samples, with better preservation of cell morphology. Cell blocks are better prepared from high cellularity fluids; however, tissue architecture is better studied, with improved rate of diagnosis and decrease in ambiguous results. Numerous sections can be prepared from a small amount of material. Special stains and immunochemical stains can be easily applied to cell blocks. It also provides a source of archival material.

  6. Organic photovoltaic cell incorporating electron conducting exciton blocking layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Stephen R.; Lassiter, Brian E.

    2014-08-26

    The present disclosure relates to photosensitive optoelectronic devices including a compound blocking layer located between an acceptor material and a cathode, the compound blocking layer including: at least one electron conducting material, and at least one wide-gap electron conducting exciton blocking layer. For example, 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure increased power conversion efficiency is achieved, compared to anmore » analogous device using a conventional blocking layers shown to conduct electrons via damage-induced midgap states.« less

  7. High-Performance Polymer Solar Cell with Single Active Material of Fully Conjugated Block Copolymer Composed of Wide-Band gap Donor and Narrow-Band gap Acceptor Blocks.

    PubMed

    Lee, Ji Hyung; Park, Chang Geun; Kim, Aesun; Kim, Hyung Jong; Kim, Youngseo; Park, Sungnam; Cho, Min Ju; Choi, Dong Hoon

    2018-06-06

    We synthesized a novel fully conjugated block copolymer, P3, in which a wide-band gap donor block (P1) was connected to a narrow-band gap acceptor block (P2). As P3 contains P1 block with a wide bandgap and P2 block with a narrow bandgap, it exhibits a very wide complementary absorption. Transient photoluminescence measurement using P3 dilute solution demonstrated intramolecular charge transfer between the P1 block and the P2 block, which was not observed in a P1/P2 blend solution. A P3 thin film showed complete PL quenching because the photoinduced inter-/intramolecular charge transfer states were effectively formed. This phenomenon can play an important role in the photovoltaic properties of P3-based polymer solar cells. A single active material polymer solar cell (SAMPSC) fabricated from P3 alone exhibited a high power conversion efficiency (PCE) of 3.87% with a high open-circuit voltage of 0.93 V and a short-circuit current of 8.26 mA/cm 2 , demonstrating a much better performance than a binary P1-/P2-based polymer solar cell (PCE = 1.14%). This result facilitates the possible improvement of the photovoltaic performance of SAMPSCs by inducing favorable nanophase segregation between p- and n blocks. In addition, owing to the high morphological stability of the block copolymer, excellent shelf-life was observed in a P3-based SAMPSC compared with a P1/P2-based PSC.

  8. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells.

    PubMed

    Orilall, M Christopher; Wiesner, Ulrich

    2011-02-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices.

  9. High temperature lithium cells with solid polymer electrolytes

    DOEpatents

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2017-03-07

    Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.

  10. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Fan, Zben; Taft, Charles; Wang, Yi-Qing; Maaref, Shahin; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    In man's mission to the outer space or a remote site, the most abundant, renewable, nonpolluting, and unlimited external energy source is light. Photovoltaic (PV) materials can convert light into electrical power. In order to generate appreciable electrical power in space or on the Earth, it is necessary to collect sunlight from large areas due to the low density of sunlight, and this would be very costly using current commercially available inorganic solar cells. Future organic or polymer based solar cells seemed very attractive due to several reasons. These include lightweight, flexible shape, ultra-fast optoelectronic response time (this also makes organic PV materials attractive for developing ultra-fast photo detectors), tunability of energy band-gaps via molecular design, versatile materials synthesis and device fabrication schemes, and much lower cost on large-scale industrial production. It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks will facilitate the charge separation and migration due to improved electronic ultrastructure and morphology in comparison to current polymer composite photovoltaic system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel donor-bridge-acceptor block copolymer system for potential high-efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene, the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene, and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes the holes, the acceptor block stabilizes the electrons. The bridge block is designed to hinder the electron-hole recombination. Thus, improved charge separation is expected. In addition, charge migration will also be facilitated due to the expected nano-phase separated and highly ordered block copolymer ultrastructural. The combination of all these factors will result in significant overall enhancement of photovoltaic power conversion efficiency.

  11. Comparison of the Cellient(™) automated cell block system and agar cell block method.

    PubMed

    Kruger, A M; Stevens, M W; Kerley, K J; Carter, C D

    2014-12-01

    To compare the Cellient(TM) automated cell block system with the agar cell block method in terms of quantity and quality of diagnostic material and morphological, histochemical and immunocytochemical features. Cell blocks were prepared from 100 effusion samples using the agar method and Cellient system, and routinely sectioned and stained for haematoxylin and eosin and periodic acid-Schiff with diastase (PASD). A preliminary immunocytochemical study was performed on selected cases (27/100 cases). Sections were evaluated using a three-point grading system to compare a set of morphological parameters. Statistical analysis was performed using Fisher's exact test. Parameters assessing cellularity, presence of single cells and definition of nuclear membrane, nucleoli, chromatin and cytoplasm showed a statistically significant improvement on Cellient cell blocks compared with agar cell blocks (P < 0.05). No significant difference was seen for definition of cell groups, PASD staining or the intensity or clarity of immunocytochemical staining. A discrepant immunocytochemistry (ICC) result was seen in 21% (13/63) of immunostains. The Cellient technique is comparable with the agar method, with statistically significant results achieved for important morphological features. It demonstrates potential as an alternative cell block preparation method which is relevant for the rapid processing of fine needle aspiration samples, malignant effusions and low-cellularity specimens, where optimal cell morphology and architecture are essential. Further investigation is required to optimize immunocytochemical staining using the Cellient method. © 2014 John Wiley & Sons Ltd.

  12. Miniature solid-state gas compressor

    DOEpatents

    Lawless, W.N.; Cross, L.E.; Steyert, W.A.

    1985-05-07

    A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described. 9 figs.

  13. Miniature solid-state gas compressor

    DOEpatents

    Lawless, William N.; Cross, Leslie E.; Steyert, William A.

    1985-01-01

    A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described.

  14. The contribution of cell blocks in the diagnosis of mediastinal masses and hilar adenopathy samples from echobronchoscopy.

    PubMed

    Lourido-Cebreiro, Tamara; Leiro-Fernández, Virginia; Tardio-Baiges, Antoni; Botana-Rial, Maribel; Núñez-Delgado, Manuel; Álvarez-Martín, M Jesús; Fernández-Villar, Alberto

    2014-07-01

    Cell block material from puncture can be obtained with endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in many cases. The aim of this study was to analyse the value of additional information from cell blocks obtained with EBUS-TBNA samples from mediastinal and hilar lymph nodes and masses. Review of pathology reports with a specific diagnosis obtained from EBUS-TBNA samples of mediastinal or hilar lesions, prospectively obtained over a two-year period. The generation of cell blocks from cytology needle samples, the contribution to morphological diagnosis, and the possible use of samples for immunohistochemistry were analysed. One hundred and twenty-nine samples corresponding to 110 patients were reviewed. The diagnosis was lung cancer in 81% of cases, extrapulmonary carcinoma in 10%, sarcoidosis in 4%, lymphoma in 2.7%, and tuberculosis in 0.9%. Cell blocks could be obtained in 72% of cases. Immunohistochemistry studies on the cell blocks were significantly easier to perform than on conventional smears (52.6% vs. 14%, P<.0001). In 4cases, the cell block provided an exclusive morphological diagnosis (3sarcoidosis and one metastasis from prostatic carcinoma) and in 3carcinomas, subtype and origin could be identified. Exclusive diagnoses from the cell block were significantly more frequent in benign disease than in malignant disease (25% vs 0.9%, P=.002). Cell blocks were obtained from 72% of EBUS-TBNA diagnostic procedures. The main contributions of cell blocks to pathology examinations were the possibility of carrying out immunohistochemical staining for the better classification of neoplasms, especially extrapulmonary metastatic tumours, and the improved diagnosis of benign lesions. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  15. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  16. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  17. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  18. Biomimetic surface coatings from modular amphiphilic proteins

    NASA Astrophysics Data System (ADS)

    Harden, James; Wan, Fan; Fischer, Stephen; Dick, Scott

    2010-03-01

    Recombinant DNA methods have been used to develop a library of diblock protein polymers for creating designer biofunctional interfaces. These proteins are composed of a surface-active, amphiphilic block joined to a disordered, water soluble block with an end terminal bioactive domain. The amphiphilic block has a strong affinity for many synthetic polymer surfaces, providing a facile means of imparting biological functionality to otherwise bio-neutral materials through physical self-assembly. We have incorporated a series of bioactive end domains into this diblock motif, including sequences that encode specific cell binding and signaling functions of extracellular matrix constituents (e.g. RGD and YIGSR). In this talk, we show that these diblock constructs self-assemble into biofunctional surface coatings on several model synthetic polymer materials. We demonstrate that surface adsorption of the proteins has minimal impacts on the presentation of the bioactive domains in the soluble block, and through the use of microscopic and cell proliferation assays, we show that the resulting biofunctional interfaces are capable of inducing appropriate cellular responses in a variety of human cell types.

  19. Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries

    NASA Astrophysics Data System (ADS)

    Ye, Youngjin; Jo, Changshin; Jeong, Inyoung; Lee, Jinwoo

    2013-05-01

    This feature article presents recent progress made in the synthesis of functional ordered mesoporous materials and their application as high performance electrodes in dye-sensitized solar cells (DSCs) and quantum dot-sensitized solar cells (QDSCs), fuel cells, and Li-ion batteries. Ordered mesoporous materials have been mainly synthesized using two representative synthetic methods: the soft template and hard template methods. To overcome the limitations of these two methods, a new method called CASH was suggested. The CASH method combines the advantages of the soft and hard template methods by employing a diblock copolymer, PI-b-PEO, which contains a hydrophilic block and an sp2-hybridized-carbon-containing hydrophobic block as a structure-directing agent. After discussing general techniques used in the synthesis of mesoporous materials, this article presents recent applications of mesoporous materials as electrodes in DSCs and QDSCs, fuel cells, and Li-ion batteries. The role of material properties and mesostructures in device performance is discussed in each case. The developed soft and hard template methods, along with the CASH method, allow control of the pore size, wall composition, and pore structure, providing insight into material design and optimization for better electrode performances in these types of energy conversion devices. This paper concludes with an outlook on future research directions to enable breakthroughs and overcome current limitations in this field.

  20. Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries.

    PubMed

    Ye, Youngjin; Jo, Changshin; Jeong, Inyoung; Lee, Jinwoo

    2013-06-07

    This feature article presents recent progress made in the synthesis of functional ordered mesoporous materials and their application as high performance electrodes in dye-sensitized solar cells (DSCs) and quantum dot-sensitized solar cells (QDSCs), fuel cells, and Li-ion batteries. Ordered mesoporous materials have been mainly synthesized using two representative synthetic methods: the soft template and hard template methods. To overcome the limitations of these two methods, a new method called CASH was suggested. The CASH method combines the advantages of the soft and hard template methods by employing a diblock copolymer, PI-b-PEO, which contains a hydrophilic block and an sp(2)-hybridized-carbon-containing hydrophobic block as a structure-directing agent. After discussing general techniques used in the synthesis of mesoporous materials, this article presents recent applications of mesoporous materials as electrodes in DSCs and QDSCs, fuel cells, and Li-ion batteries. The role of material properties and mesostructures in device performance is discussed in each case. The developed soft and hard template methods, along with the CASH method, allow control of the pore size, wall composition, and pore structure, providing insight into material design and optimization for better electrode performances in these types of energy conversion devices. This paper concludes with an outlook on future research directions to enable breakthroughs and overcome current limitations in this field.

  1. Small domain-size multiblock copolymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistorino, Jonathan; Eitouni, Hany Basam

    2016-09-20

    New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.

  2. Chondrocyte Culture in Three Dimensional Alginate Sulfate Hydrogels Promotes Proliferation While Maintaining Expression of Chondrogenic Markers

    PubMed Central

    Mhanna, Rami; Kashyap, Aditya; Palazzolo, Gemma; Vallmajo-Martin, Queralt; Becher, Jana; Möller, Stephanie; Schnabelrauch, Matthias

    2014-01-01

    The loss of expression of chondrogenic markers during monolayer expansion remains a stumbling block for cell-based treatment of cartilage lesions. Here, we introduce sulfated alginate hydrogels as a cartilage biomimetic biomaterial that induces cell proliferation while maintaining the chondrogenic phenotype of encapsulated chondrocytes. Hydroxyl groups of alginate were converted to sulfates by incubation with sulfur trioxide–pyridine complex (SO3/pyridine), yielding a sulfated material cross-linkable with calcium chloride. Passage 3 bovine chondrocytes were encapsulated in alginate and alginate sulfate hydrogels for up to 35 days. Cell proliferation was five-fold higher in alginate sulfate compared with alginate (p=0.038). Blocking beta1 integrins in chondrocytes within alginate sulfate hydrogels significantly inhibited proliferation (p=0.002). Sulfated alginate increased the RhoA activity of chondrocytes compared with unmodified alginate, an increase that was blocked by β1 blocking antibodies (p=0.017). Expression and synthesis of type II collagen, type I collagen, and proteoglycan was not significantly affected by the encapsulation material evidenced by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. Alginate sulfate constructs showed an opaque appearance in culture, whereas the unmodified alginate samples remained translucent. In conclusion, alginate sulfate provides a three dimensional microenvironment that promotes both chondrocyte proliferation and maintenance of the chondrogenic phenotype and represents an important advance for chondrocyte-based cartilage repair therapies providing a material in which cell expansion can be done in situ. PMID:24320935

  3. Validation of 31 of the most commonly used immunohistochemical antibodies in cytology prepared using the Cellient(®) automated cell block system.

    PubMed

    Montgomery, Eric; Gao, Chen; de Luca, Julie; Bower, Jessie; Attwood, Kristropher; Ylagan, Lourdes

    2014-12-01

    The Cellient(®) cell block system has become available as an alternative, partially automated method to create cell blocks in cytology. We sought to show a validation method for immunohistochemical (IHC) staining on the Cellient cell block system (CCB) in comparison with the formalin fixed paraffin embedded traditional cell block (TCB). Immunohistochemical staining was performed using 31 antibodies on 38 patient samples for a total of 326 slides. Split samples were processed using both methods by following the Cellient(®) manufacturer's recommendations for the Cellient cell block (CCB) and the Histogel method for preparing the traditional cell block (TCB). Interpretation was performed by three pathologists and two cytotechnologists. Immunohistochemical stains were scored as: 0/1+ (negative) and 2/3+ (positive). Inter-rater agreement for each antibody was evaluated for CCB and TCB, as well as the intra-rater agreement between TCB and CCB between observers. Interobserver staining concordance for the TCB was obtained with statistical significance (P < 0.05) in 24 of 31 antibodies. Interobserver staining concordance for the CCB was obtained with statistical significance in 27 of 31 antibodies. Intra-observer staining concordance between TCB and CCB was obtained with statistical significance in 24 of 31 antibodies tested. In conclusions, immunohistochemical stains on cytologic specimens processed by the Cellient system are reliable and concordant with stains performed on the same split samples processed via a formalin fixed-paraffin embedded (FFPE) block. The Cellient system is a welcome adjunct to cytology work-flow by producing cell block material of sufficient quality to allow the use of routine IHC. © 2014 Wiley Periodicals, Inc.

  4. Polymerase chain reaction-based detection of B-cell monoclonality in cytologic specimens.

    PubMed

    Chen, Y T; Mercer, G O; Chen, Y

    1993-11-01

    Thirty-seven cytologic cell blocks were evaluated for B-cell monoclonality by polymerase chain reaction (PCR), 16 of them cytologically positive for lymphoma, and 21 suspicious for lymphoma but morphologically nondiagnostic. Of 37 specimens, 13 (35%) showed B-cell monoclonality, including six of 16 cytologically positive samples and seven of 21 cytologically suspicious ones. Of these 13 positive samples, seven were positive using crude lysates as substrates, and six additional positive samples were identified only when DNAs were purified and concentrated. Analysis of the DNAs further revealed poor polymerase chain reaction amplifiability and low DNA yield in many samples, indicating that cell block materials are suboptimal for this assay. We concluded that B-cell monoclonality can be detected in ethanol-fixed cytologic samples, and usage of unembedded material will likely improve the sensitivity. In specimens cytologically suspicious for lymphoma, polymerase chain reaction-based identification of monoclonal B-cell population supports the diagnosis of B-cell lymphoma and is a potentially useful test in solving this diagnostic dilemma.

  5. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    NASA Technical Reports Server (NTRS)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  6. Detection of EGFR and KRAS mutations in fine-needle aspirates stored on Whatman FTA cards: is this the tool for biobanking cytological samples in the molecular era?

    PubMed

    da Cunha Santos, Gilda; Liu, Ni; Tsao, Ming-Sound; Kamel-Reid, Suzanne; Chin, Kayu; Geddie, William R

    2010-12-25

    The aims of this study were to compare the quality of DNA recovered from fine-needle aspirates (FNAs) stored on Whatman FTA cards with that retrieved from corresponding cell blocks and to determine whether the DNA extracted from the cards is suitable for multiple mutation analyses. FNAs collected from 18 resected lung tumors and cell suspensions from 4 lung cancer cell lines were placed on FTA Indicating Micro Cards and further processed to produce paired formalin-fixed paraffin-embedded (FFPE) cell blocks. Fragment analysis was used for the detection of EGFR exon 19 deletion, and direct sequencing for detection of EGFR exon 21 L858R mutation and exon 2 deletion of KRAS. Corresponding FFPE tissue sections from 2 resection specimens were also tested. Analyses were successful with all FNAs and lung cancer-derived cell lines collected on cards. Polymerase chain reaction failed in 2 cell blocks. For FNAs collected on cards, 5 cases showed EGFR and 3 showed KRAS mutations. Eleven cases were wild type. With cell blocks, 4 cases were found to harbor KRAS and 4 harbored EGFR mutations. All lung cancer-derived cell lines tested positive for their respective mutations, and there was complete agreement between card and cell block FNA samples for EGFR exon 21. For EGFR exon 19, 1 of 18 cases showed discordant results between the card and cell block, and for KRAS 1 of 17. The two resection specimens tested gave concordant results with the FTA card. Storage of cytologic material on FTA cards can maximize and simplify sample procurement for multiple mutational analyses with results similar to those from cell blocks.

  7. The hierarchical structure and mechanics of plant materials.

    PubMed

    Gibson, Lorna J

    2012-11-07

    The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies in different types of plants, broadly speaking, cellulose fibres reinforce a matrix of hemicellulose and either pectin or lignin. The cellular structure of plants varies too, from the largely honeycomb-like cells of wood to the closed-cell, liquid-filled foam-like parenchyma cells of apples and potatoes and to composites of these two cellular structures, as in arborescent palm stems. The arrangement of the four basic building blocks in plant cell walls and the variations in cellular structure give rise to a remarkably wide range of mechanical properties: Young's modulus varies from 0.3 MPa in parenchyma to 30 GPa in the densest palm, while the compressive strength varies from 0.3 MPa in parenchyma to over 300 MPa in dense palm. The moduli and compressive strength of plant materials span this entire range. This study reviews the composition and microstructure of the cell wall as well as the cellular structure in three plant materials (wood, parenchyma and arborescent palm stems) to explain the wide range in mechanical properties in plants as well as their remarkable mechanical efficiency.

  8. The hierarchical structure and mechanics of plant materials

    PubMed Central

    Gibson, Lorna J.

    2012-01-01

    The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies in different types of plants, broadly speaking, cellulose fibres reinforce a matrix of hemicellulose and either pectin or lignin. The cellular structure of plants varies too, from the largely honeycomb-like cells of wood to the closed-cell, liquid-filled foam-like parenchyma cells of apples and potatoes and to composites of these two cellular structures, as in arborescent palm stems. The arrangement of the four basic building blocks in plant cell walls and the variations in cellular structure give rise to a remarkably wide range of mechanical properties: Young's modulus varies from 0.3 MPa in parenchyma to 30 GPa in the densest palm, while the compressive strength varies from 0.3 MPa in parenchyma to over 300 MPa in dense palm. The moduli and compressive strength of plant materials span this entire range. This study reviews the composition and microstructure of the cell wall as well as the cellular structure in three plant materials (wood, parenchyma and arborescent palm stems) to explain the wide range in mechanical properties in plants as well as their remarkable mechanical efficiency. PMID:22874093

  9. Engineering multifunctional protein nanoparticles by in vitro disassembling and reassembling of heterologous building blocks

    NASA Astrophysics Data System (ADS)

    Unzueta, Ugutz; Serna, Naroa; Sánchez-García, Laura; Roldán, Mónica; Sánchez-Chardi, Alejandro; Mangues, Ramón; Villaverde, Antonio; Vázquez, Esther

    2017-12-01

    The engineering of protein self-assembling at the nanoscale allows the generation of functional and biocompatible materials, which can be produced by easy biological fabrication. The combination of cationic and histidine-rich stretches in fusion proteins promotes oligomerization as stable protein-only regular nanoparticles that are composed by a moderate number of building blocks. Among other applications, these materials are highly appealing as tools in targeted drug delivery once empowered with peptidic ligands of cell surface receptors. In this context, we have dissected here this simple technological platform regarding the controlled disassembling and reassembling of the composing building blocks. By applying high salt and imidazole in combination, nanoparticles are disassembled in a process that is fully reversible upon removal of the disrupting agents. By taking this approach, we accomplish here the in vitro generation of hybrid nanoparticles formed by heterologous building blocks. This fact demonstrates the capability to generate multifunctional and/or multiparatopic or multispecific materials usable in nanomedical applications.

  10. Bioregenerative technologies for waste processing and resource recovery in advanced space life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.

  11. An alternative method for sampling and petrographically characterizing an Eocene coal bed, southeast Kalimantan, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, T.A.

    1990-01-01

    A study undertaken on an Eocene age coal bed in southeast Kalimantan, Indonesia determined that there was a relationship between megascopically determined coal types and kinds and sizes of organic components. The study also concluded that the most efficient way to characterize the seam was from collection of two 3 cm blocks from each layer or bench defined by megascopic character and that a maximum of 125 point counts was needed on each block. Microscopic examination of uncrushed block samples showed the coal to be composed of plant parts and tissues set in a matrix of both fine-grained and amorphousmore » material. The particulate matrix is composed of cell wall and liptinite fragments, resins, spores, algae, and fungal material. The amorphous matrix consists of unstructured (at 400x) huminite and liptinite. Size measurements showed that each particulate component possessed its own size distribution which approached normality when transformed to a log{sub 2} or phi scale. Degradation of the plant material during peat accumulation probably controlled grain size in the coal types. This notion is further supported by the increased concentration of decay resistant resin and cell fillings in the nonbanded and dull coal types. In the sampling design experiment, two blocks from each layer and two layers from each coal type were collected. On each block, 2 to 4 traverses totaling 500 point counts per block were performed to test the minimum number of points needed to characterize a block. A hierarchical analysis of variance showed that most of the petrographic variation occurred between coal types. The results from these analyses also indicated that, within a coal type, sampling should concentrate on the layer level and that only 250 point counts, split between two blocks, were needed to characterize a layer.« less

  12. Nanocellulose as Material Building Block for Energy and Flexible Electronics

    NASA Astrophysics Data System (ADS)

    Hu, Liangbing

    2014-03-01

    In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.

  13. Two-color immunostaining of liver fine needle aspiration biopsies with CD34 and carcinoembryonic antigen. Potential utilization in the diagnosis of primary hepatocellular carcinoma vs. metastatic tumor.

    PubMed

    Yoder, Michael; Zimmerman, Robert L; Bibbo, Marluce

    2004-04-01

    To examine immunohistochemical staining of cell block material with antibodies against vascular marker CD34 and polyclonal carcinoembryonic antigen (pCEA) for their clinical utility as part of a 2-color staining protocol in fine needle aspiration (FNA) biopsy of liver masses to distinguish metastases from primary hepatocellular carcinoma (HCC). The authors obtained cell block material from 96 liver FNAs and performed simultaneous (i.e., "dual-color") immunohistochemical staining utilizing antibodies against vascular marker CD34 and pCEA. Cases were blinded and evaluated by the authors for staining pattern and intensity. A consensus was obtained, the results were unblinded, and the diagnoses were correlated. After staining, 89 cases had sufficient tissue for evaluation. Of the 19 HCC cases, 16 (84%) showed peripheral staining with CD34, and 13 (68%) showed a canalicular or mixed canalicular-cytoplasmic staining pattern for pCEA. Thirteen cases (68%) showed staining for both antigens. All HCC exhibited immunostaining for at least 1 antibody in an appropriate staining pattern. Of the 67 cases of metastatic malignancy, 5 (7%) showed a predominantly transgressing pattern of CD34 staining, 43 (64%) showed a predominantly cytoplasmic or mixed cytoplasmic-canalicular pattern of pCEA staining, and 2 cases (3%) showed staining for both antigens in a transgressing CD34 pattern and cytoplasmic pCEA pattern. None of the 3 normal liver tissue blocks showed staining with either antigen. Two-color immunohistochemical staining of liver cell block material obtained by FNA with antibodies to CD34 and pCEA can be helpful in differentiating metastatic tumors vs. primary HCC.

  14. Block Copolymers for Alkaline Fuel Cell Membrane Materials

    DTIC Science & Technology

    2014-07-30

    temperature fuel cells including proton exchange membrane fuel cell ( PEMFC ) and alkaline fuel cell (AFC) with operation temperature usually lower than 120...advantages over proton exchange membrane fuel cells ( PEMFCs ) resulting in the popularity of AFCs in the US space program.[8-11] The primary benefit AFC...offered over PEMFC is better electrochemical kinetics on the anode and cathode under the alkaline environment, which results in the ability to use

  15. Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Tao, Hong; Ma, Zhibin; Yang, Guang; Wang, Haoning; Long, Hao; Zhao, Hongyang; Qin, Pingli; Fang, Guojia

    2018-03-01

    Tin oxide (SnO2) film with high mobility and good transmittance has been reported as a promising semiconductor material for high performance perovskite solar cells (PSCs). In this study, ultrathin SnO2 film synthesized by radio frequency magnetron sputtering (RFMS) method at room temperature was employed as hole blocking layer for planar PSCs. The room-temperature sputtered SnO2 film not only shows favourable energy band structure but also improves the surface topography of fluorine doped SnO2 (FTO) substrate and perovskite (CH3NH3PbI3) layer. Thus, this SnO2 hole blocking layer can efficiently promote electron transport and suppress carrier recombination. Furthermore, the best efficiency of 13.68% was obtained for planar PSC with SnO2 hole blocking layer prepared at room temperature. This research highlights the room-temperature preparation process of hole blocking layer in PSC and has a certain reference significance for the usage of flexible and low-cost substrates.

  16. 49 CFR 587.14 - Deformable face component dimensions and material specifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tolerance of ±2.5 mm (0.1 in) unless otherwise specified. (a) Main honeycomb block. (1) Dimensions. The main honeycomb block has a height of 650 mm (25.6 in) (in the direction of honeycomb ribbon axis), a width of 1,000 mm (39.4 in), and a depth of 450 mm (17.7 in)(in the direction of honeycomb cell axis). (2...

  17. 49 CFR 587.14 - Deformable face component dimensions and material specifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tolerance of ±2.5 mm (0.1 in) unless otherwise specified. (a) Main honeycomb block. (1) Dimensions. The main honeycomb block has a height of 650 mm (25.6 in) (in the direction of honeycomb ribbon axis), a width of 1,000 mm (39.4 in), and a depth of 450 mm (17.7 in)(in the direction of honeycomb cell axis). (2...

  18. 49 CFR 587.14 - Deformable face component dimensions and material specifications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tolerance of ±2.5 mm (0.1 in) unless otherwise specified. (a) Main honeycomb block. (1) Dimensions. The main honeycomb block has a height of 650 mm (25.6 in) (in the direction of honeycomb ribbon axis), a width of 1,000 mm (39.4 in), and a depth of 450 mm (17.7 in)(in the direction of honeycomb cell axis). (2...

  19. 49 CFR 587.14 - Deformable face component dimensions and material specifications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tolerance of ±2.5 mm (0.1 in) unless otherwise specified. (a) Main honeycomb block. (1) Dimensions. The main honeycomb block has a height of 650 mm (25.6 in) (in the direction of honeycomb ribbon axis), a width of 1,000 mm (39.4 in), and a depth of 450 mm (17.7 in)(in the direction of honeycomb cell axis). (2...

  20. 49 CFR 587.14 - Deformable face component dimensions and material specifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tolerance of ±2.5 mm (0.1 in) unless otherwise specified. (a) Main honeycomb block. (1) Dimensions. The main honeycomb block has a height of 650 mm (25.6 in) (in the direction of honeycomb ribbon axis), a width of 1,000 mm (39.4 in), and a depth of 450 mm (17.7 in)(in the direction of honeycomb cell axis). (2...

  1. 2014 Defects in Semiconductors Gordon Research Conference & Gordon Research Seminar. Research Area 1: Materials Science, 1.3 Physical Properties of Materials

    DTIC Science & Technology

    2014-08-01

    transistors, solar cells , and light emitting diodes. Be they highest voltage blocking normally-off switches for hybrid cars, ultralow cost solar ...Albertus (U.S. Department of Energy) "Introduction" 9:20 am - 9:50 am Yanfa Yan (University of Toledo) "Fundamental Limits to CdTe Solar Cell ...Efficiency" 9:50 am - 10:00 am Discussion 10:00 am Coffee Break 10:30 am - 11:00 am Steve Ringel (Ohio State University) "Defects in Solar Cells " 11

  2. Dilute group III-V nitride intermediate band solar cells with contact blocking layers

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man

    2015-02-24

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  3. Dilute Group III-V nitride intermediate band solar cells with contact blocking layers

    DOEpatents

    Walukiewicz, Wladyslaw [Kensington, CA; Yu, Kin Man [Lafayette, CA

    2012-07-31

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  4. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells

    PubMed Central

    2015-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance. PMID:24684494

  5. Micro/nano-particles and Cells: Manipulation, Transport, and Self-assembly

    DTIC Science & Technology

    2014-10-23

    SECURITY CLASSIFICATION OF: Technologies that control nano- and micron- sized inert as well as biological materials are crucial to realizing engineered...that control nano- and micron- sized inert as well as biological materials are crucial to realizing engineered systems that can assemble, transport, and...nano-scale particles offer several advantages as building blocks of artificial materials . The relative ease of modifying their charge states

  6. Fully automated three-dimensional microscopy system

    NASA Astrophysics Data System (ADS)

    Kerschmann, Russell L.

    2000-04-01

    Tissue-scale structures such as vessel networks are imaged at micron resolution with the Virtual Tissue System (VT System). VT System imaging of cubic millimeters of tissue and other material extends the capabilities of conventional volumetric techniques such as confocal microscopy, and allows for the first time the integrated 2D and 3D analysis of important tissue structural relationships. The VT System eliminates the need for glass slide-mounted tissue sections and instead captures images directly from the surface of a block containing a sample. Tissues are en bloc stained with fluorochrome compounds, embedded in an optically conditioned polymer that suppresses image signals form dep within the block , and serially sectioned for imaging. Thousands of fully registered 2D images are automatically captured digitally to completely convert tissue samples into blocks of high-resolution information. The resulting multi gigabyte data sets constitute the raw material for precision visualization and analysis. Cellular function may be seen in a larger anatomical context. VT System technology makes tissue metrics, accurate cell enumeration and cell cycle analyses possible while preserving full histologic setting.

  7. Self-assembly of silk-elastinlike protein polymers into three-dimensional scaffolds for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zeng, Like

    Production of brand new protein-based materials with precise control over the amino acid sequences at single residue level has been made possible by genetic engineering, through which artificial genes can be developed that encode protein-based materials with desired features. As an example, silk-elastinlike protein polymers (SELPs), composed of tandem repeats of amino acid sequence motifs from Bombyx mori (silkworm) silk and mammalian elastin, have been produced in this approach. SELPs have been studied extensively in the past two decades, however, the fundamental mechanism governing the self-assembly process to date still remains largely unresolved. Further, regardless of the unprecedented success when exploited in areas including drug delivery, gene therapy, and tissue augmentation, SELPs scaffolds as a three-dimensional cell culture model system are complicated by the inability of SELPs to provide the embedded tissue cells with appropriate biochemical stimuli essential for cell survival and function. In this dissertation, it is reported that the self-assembly of silk-elastinlike protein polymers (SELPs) into nanofibers in aqueous solutions can be modulated by tuning the curing temperature, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model was proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores -- affected by the size of the silk blocks and the charge of the elastin blocks -- plays a critical role in the assembly of silk-elastin nanofibers. The assembled nanofibers further form nanofiber clusters on the microscale, and the nanofiber clusters then coalesce into nanofiber micro-assemblies, interconnection of which eventually leads to the formation of three-dimensional scaffolds with distinct nanoscale and microscale features. SELP-Collagen hybrid scaffolds were also fabricated to enable independent control over the scaffolds' biochemical input and matrix stiffness. It is reported herein that in the hybrid scaffolds, collagen provides essential biochemical cues needed to promote cell attachment and function while SELP imparts matrix stiffness tunability. To obtain tissue-specificity in matrix stiffness that spans over several orders of magnitude covering from soft brain to stiff cartilage, the hybrid SELP-Collagen scaffolds were crosslinked by transglutaminase at physiological conditions compatible for simultaneous cell encapsulation. The effect of the increase in matrix stiffness induced by such enzymatic crosslinking on cellular viability and proliferation was also evaluated using in vitro cell assays.

  8. Superalloy Lattice Block Developed for Use in Lightweight, High-Temperature Structures

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Whittenberger, J. Daniel; Krause, David L.

    2003-01-01

    Successful development of advanced gas turbine engines for aircraft will require lightweight, high-temperature components. Currently titanium-aluminum- (TiAl) based alloys are envisioned for such applications because of their lower density (4 g/cm3) in comparison to superalloys (8.5 g/cm3), which have been utilized for hot turbine engine parts for over 50 years. However, a recently developed concept (lattice block) by JAMCORP, Inc., of Willmington, Massachusetts, would allow lightweight, high-temperature structures to be directly fabricated from superalloys and, thus, take advantage of their well-known, characterized properties. In its simplest state, lattice block is composed of thin ligaments arranged in a three dimensional triangulated trusslike configuration that forms a structurally rigid panel. Because lattice block can be fabricated by casting, correctly sized hardware is produced with little or no machining; thus very low cost manufacturing is possible. Together, the NASA Glenn Research Center and JAMCORP have extended their lattice block methodology for lower melting materials, such as Al alloys, to demonstrate that investment casting of superalloy lattice block is possible. This effort required advances in lattice block pattern design and assembly, higher temperature mold materials and mold fabrication technology, and foundry practice suitable for superalloys (ref. 1). Lattice block panels have been cast from two different Ni-base superalloys: IN 718, which is the most commonly utilized superalloy and retains its strength up to 650 C; and MAR M247, which possesses excellent mechanical properties to at least 1100 C. In addition to the open-cell lattice block geometry, same-sized lattice block panels containing a thin (1-mm-thick) solid face on one side have also been cast from both superalloys. The elevated-temperature mechanical properties of the open cell and face-sheeted superalloy lattice block panels are currently being examined, and the microstructure is being characterized in terms of casting defects. In addition, a small study (ref. 3) is being undertaken with GE Aircraft Engines to determine the suitability of superalloy lattice block for engine components.

  9. Self-assembly strategies for the synthesis of functional nanostructured materials

    NASA Astrophysics Data System (ADS)

    Perego, M.; Seguini, G.

    2016-06-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer self-assembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process. Moreover the capability to precisely organize these nano-objects on appropriate substrates is the key point to support the technological development of new device concepts with predictable characteristics based on these nano-materials. In the next coming years this area of research, at the intersection between fundamental science and technology, is expected to disclose additional insights in the physics of the self-assembly process and to delineate unforeseen applications for these exciting materials.

  10. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Determan, Michael Duane

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated.more » This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi-responsive properties of the pentablock copolymer. Demonstrate potential biomedical applications of these materials with in vitro drug release studies from pentablock copolymer hydrogels. The intent of this work is to contribute to the knowledge necessary for further tailoring of these, and other functional block copolymer materials for biomedical applications.« less

  11. Solar cell array design handbook, volume 1

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1976-01-01

    Twelve chapters discuss the following: historical developments, the environment and its effects, solar cells, solar cell filters and covers, solar cell and other electrical interconnections, blocking and shunt diodes, substrates and deployment mechanisms, material properties, design synthesis and optimization, design analysis, procurement, production and cost aspects, evaluation and test, orbital performance, and illustrative design examples. A comprehensive index permits rapid locating of desired topics. The handbook consists of two volumes: Volume 1 is of an expository nature while Volume 2 contains detailed design data in an appendix-like fashion. Volume 2 includes solar cell performance data, applicable unit conversion factors and physical constants, and mechanical, electrical, thermal optical, magnetic, and outgassing material properties. Extensive references are provided.

  12. Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials.

    PubMed

    Li, Guangyao; Li, Dandan; Niu, Yuqing; He, Tao; Chen, Kevin C; Xu, Kaitian

    2014-03-01

    Polyurethanes with regular and controlled block arrangement, i.e., alternating block polyurethanes (abbreviated as PUCL-alt-PEG) based on poly(ε-caprolactone) (PCL-diol) and poly(ethylene glycol) (PEG) was prepared via selectively coupling reaction between PCL-diol and diisocyanate end-capped PEG. Chemical structure, molecular weight, distribution, and thermal properties were systematically characterized by FTIR, (1)H NMR, GPC, DSC, and TGA. Hydrophilicity was studied by static contact angle of H2O and CH2I2. Film surface was observed by scanning electron microscope (SEM) and atomic force microscopy, and mechanical properties were assessed by universal test machine. Results show that alternating block polyurethanes give higher crystal degree, higher mechanical properties, and more hydrophilic and rougher (deep ravine) surface than their random counterpart, due to regular and controlled structure. Platelet adhesion illustrated that PUCL-alt-PEG has better hemocompatibility and the hemacompatibility was affected significantly by PEG content. Excellent hemocompatibility was obtained with high PEG content. CCK-8 assay and SEM observation revealed much better cell compatibility of fibroblast L929 and rat glial cells on the alternating block polyurethanes than that on random counterpart. Alternating block polyurethane PUC20-a-E4 with optimized composition, mechanical, surface properties, hemacompatibility, and highest cell growth and proliferation was achieved for potential use in nerve regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  13. Detection of alveolar rhabdomyosarcoma in pleural fluid with immunocytochemistry on cell block and determination of PAX/FKHR fusion mRNA by reverse transcription-polymerase chain reaction.

    PubMed

    Sawangpanich, Ruchchadol; Larbcharoensub, Noppadol; Jinawath, Artit; Pongtippan, Atcharaporn; Anurathapan, Usanarat; Hongeng, Suradej

    2011-11-01

    Alveolar rhabdomyosarcoma is a primitive malignant round cell neoplasm, which shows skeletal muscle differentiation. Although their histopathologic and immunohistochemical findings are well known, the cytology, immunocytochemistry and molecular study on pleural effusion have not been well documented. To apply molecular method in the diagnosis and monitoring of alveolar rhabdomyosarcoma. The case of a 14-year-old Thai male, who presented with dyspnea and left pleural effusion. Computed tomography of the chest and abdomen showed a huge heterogeneous enhancing mass at the left retroperitoneum. Pleural fluid cytology showed malignant small round blue cells. Immunocytochemical stains on cell block material showed positive reactivity to vimentin, sarcomeric actin, desmin, MyoD1, myogenin, and CD56 in round cell tumor Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated PAX/FKHR fusion transcript. The patient received chemotherapeutic regimen for advanced-stage rhabdomyosarcoma. Finally, he succumbed to the disease, thirteen months after the diagnosis. Immunocytochemistry on cell block in conjunction with determination of PAX/FKHR fusion mRNA by RT-PCR is a molecular method in the diagnosis and monitoring of alveolar rhabdomyosarcoma inpleural fluid.

  14. Block copolymers for alkaline fuel cell membrane materials

    NASA Astrophysics Data System (ADS)

    Li, Yifan

    Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC-b-PS. The incorporation of the hydrophilic polymer allows for an investigation of the effect of hydration on ionic conductivity, resulting in the increase in membrane water affinity, enhancement of conductivity and reduced dependence of conductivity on relative humidity. A study of crosslinking of block copolymers was done wherein the crosslinking occurs in the non-matrix phase in order to maintain mechanical properties. The formation of a cationic crosslinked structure improves the mechanical integrity of the membrane in water while showing little deleterious effect on ionic conductivity and mechanical properties.

  15. Multiscale assembly for tissue engineering and regenerative medicine

    PubMed Central

    Inci, Fatih; Tasoglu, Savas; Erkmen, Burcu; Demirci, Utkan

    2015-01-01

    Our understanding of cell biology and its integration with materials science has led to technological innovations in the bioengineering of tissue-mimicking grafts that can be utilized in clinical and pharmaceutical applications. Bio-engineering of native-like multiscale building blocks provides refined control over the cellular microenvironment, thus enabling functional tissues. In this review, we focus on assembling building blocks from the biomolecular level to the millimeter scale. We also provide an overview of techniques for assembling molecules, cells, spheroids, and microgels and achieving bottom-up tissue engineering. Additionally, we discuss driving mechanisms for self- and guided assembly to create micro-to-macro scale tissue structures. PMID:25796488

  16. Adsorption of oils, heavy metals and dyes by recovered carbon powder from spent pot liner of aluminum smelter plant.

    PubMed

    Mazumder, B; Devi, Sasmita Rani

    2008-07-01

    Aluminum smelter plants employ Hall-Heroult electrolysis cells for electrolysis of molten cryolite to recover aluminum metal by electrolysis. These cells use carbon cathode blocks as a lining material inside. At the end of service life of the cells, pot lines are discarded and new carbon blocks are laid for fresh charging. These used carbon cathode blocks, known as spent pot liners, are heavily infested with toxic elements such as fluoride, cyanide, alkali, etc. Therefore, their disposal in open field poses great environmental risk. A simple process has been developed for decontamination of these spent pot liners and to recover its carbon value. The experiments indicated that this carbon, in the form of fine powder (around 20 micron in size) can absorb toxic elements like heavy metals, dyes, oils, etc. to a great extent and thus can be used for mitigating environmental pollution occuring due to various toxic wastes.

  17. Carrier-selective interlayer materials for silicon solar cell contacts

    NASA Astrophysics Data System (ADS)

    Xue, Muyu; Islam, Raisul; Chen, Yusi; Chen, Junyan; Lu, Ching-Ying; Mitchell Pleus, A.; Tae, Christian; Xu, Ke; Liu, Yi; Kamins, Theodore I.; Saraswat, Krishna C.; Harris, James S.

    2018-04-01

    This work presents titanium oxide (TiOx) and nickel oxide (NiOx) as promising carrier-selective interlayer materials for metal-interlayer-semiconductor contacts for silicon solar cells. The electron-conducting, hole-blocking behavior of TiOx and the opposite carrier-selective behavior of NiOx are investigated using the transmission-line-method. The Fermi level depinning effect and the tunneling resistance are demonstrated to be dependent on the interlayer oxide thickness and annealing temperature. NiOx is furthermore experimentally demonstrated to be capable of improving the effective minority carrier lifetime by quasi-steady-state photoconductance method. Our study demonstrates that TiOx and NiOx can be effective carrier-selective materials for Si solar cells and provides a framework for characterizing carrier-selective contacts.

  18. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks) based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model

    PubMed Central

    Dau, Michael; Ganz, Cornelia; Zaage, Franziska; Frerich, Bernhard; Gerber, Thomas

    2017-01-01

    Purpose The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block) for the use in surgery. Materials and methods Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects – one per animal – were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18) or a cross-linked hydrogel carrier (elastic block [EB], n=18) based on polyvinylpyrrolidone (PVP) and silica sol, respectively. The animals were killed after 12 (n=12), 21 (n=12) and 63 days (n=12). The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP]), antibody-based examinations (CD68) and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. Results A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher in EB (21 and 63 days). Furthermore, no significant differences regarding the level of TRAP-positive marked cells in each group were observed. Conclusion The bone substitute (EB) with the cross-linked PVP-based hydrogel carrier leads at the beginning to a higher amount of remaining carrier material and remaining bone substitute. This delayed degradation is supposed to be the reason for the observed lower level of bone remodeling and is caused by the irradiation changes (cross links) in the structure in PVP. PMID:29066890

  19. 4P-NPD ultra-thin films as efficient exciton blocking layers in DBP/C70 based organic solar cells

    NASA Astrophysics Data System (ADS)

    Patil, Bhushan R.; Liu, Yiming; Qamar, Talha; Rubahn, Horst-Günter; Madsen, Morten

    2017-09-01

    Exciton blocking effects from ultra-thin layers of N,N‧-di-1-naphthalenyl-N,N‧-diphenyl [1,1‧:4‧,1″:4″,1‴-quaterphenyl]-4,4‴-diamine (4P-NPD) were investigated in small molecule-based inverted organic solar cells (OSCs) using tetraphenyldibenzoperiflanthene as the electron donor material and fullerene (C70) as the electron acceptor material. The short-circuit current density (J SC) and power conversion efficiency (PCE) of the optimized OSCs with 0.7 nm thick 4P-NPD were approximately 16% and 24% higher, respectively, compared to reference devices without exciton blocking layers (EBLs). Drift diffusion-based device modeling was conducted to model the full current density-voltage (JV) characteristics and external quantum efficiency spectrum of the OSCs, and photoluminescence measurements were conducted to investigate the exciton blocking effects with increasing thicknesses of the 4P-NPD layer. Importantly, coupled optical and electrical modeling studies of the device behaviors and exciton generation rates and densities in the active layer for different 4P-NPD layer thicknesses were conducted, in order to gain a complete understanding of the observed increase in PCE for 4P-NPD layer thicknesses up to 1 nm, and the observed decrease in PCE for layer thicknesses beyond 1 nm. This work demonstrates a route for guiding the integration of EBLs in OSC devices.

  20. Thermoacoustic refrigerator

    DOEpatents

    Moss, W.C.

    1997-10-07

    A thermoacoustic device is described having a thermal stack made from a piece of porous material which provides a desirable ratio of thermoacoustic area to viscous area, which has a low resistance to flow, which minimizes acoustic streaming and which has a high specific heat and low thermal conductivity. The thermal stack is easy and cheap to form and it can be formed in small sizes. Specifically, in one embodiment, a thermal stack which is formed by the natural structure of a porous material such as reticulated vitreous carbon is disclosed. The thermal stack is formed by machining a block of reticulated vitreous carbon into the required shape of the thermal stack. In a second embodiment, a micro-thermoacoustic device is disclosed which includes a thermal stack made of a piece of porous material such as reticulated vitreous carbon. In another embodiment, a heat exchanger is disclosed which is formed of a block of heat conductive open cell foam material. 13 figs.

  1. Thermoacoustic refrigerator

    DOEpatents

    Moss, William C.

    1997-01-01

    A thermoacoustic device having a thermal stack made from a piece of porous material which provides a desirable ratio of thermoacoustic area to viscous area, which has a low resistance to flow, which minimizes acoustic streaming and which has a high specific heat and low thermal conductivity is disclosed. The thermal stack is easy and cheap to form and it can be formed in small sizes. Specifically, in one embodiment, a thermal stack which is formed by the natural structure of a porous material such as reticulated vitreous carbon is disclosed. The thermal stack is formed by machining a block of reticulated vitreous carbon into the required shape of the thermal stack. In a second embodiment, a micro-thermoacoustic device is disclosed which includes a thermal stack made of a piece of porous material such as reticulated vitreous carbon. In another embodiment, a heat exchanger is disclosed which is formed of a block of heat conductive open cell foam material.

  2. Phenotypic characterization of mononuclear inflammatory cells following equine hydroxyapatite/collagen block grafting in rats.

    PubMed

    Alsuwaiyan, Asim; Wang, Bing-Yan; Cohen, Robert E

    2012-12-01

    To measure the inflammatory changes associated with the implantation of an equine hydroxyapatite and collagen-containing block graft (eHAC block) in a rodent model system, an eHAC block graft was implanted subcutaneously in rats. Control groups included saline, turpentine oil, and human mineralized particulate allograft (hMPA). Animals were sacrificed and tissue samples obtained after three days, as well as after 1, 2, 4 and 8 weeks. A panel of immunologic probes was used to identify circulatory monocytic cells (ED1), resident mononuclear phagocytes (ED2), mononuclear phagocytes of lymphoid origin (ED3), expression of Ia antigen (OX6), T-cells (OX19), and B-cells (OX33). Immunocytochemical localization was performed and mononuclear cells localized with each immunologic probe counted. Rat sera obtained after eight weeks were used for nitrocellulose dot-blotting to assess circulating anti-equine immunoglobulins. Statistical analysis was performed using two-way analysis of variance, in conjunction with the Bonferroni correction to account for multiple comparisons. A transient increase in monocytes at 3 days and 1 week was observed in all groups, but was significantly higher in the turpentine control (P < 0.0001). A significant increase in the numbers of mononuclear cells detected with clones ED2 and ED3 was observed in specimens from the turpentine group, in contrast to the other groups in the 3 day to 4 week interval (P < 0.0001), as well as within all time periods (P < 0.0001). A statistically significant difference in numbers of ED3-positive cells was observed in the hMPA group compared to the saline and the eHAC block groups after one week (P < 0.0001). Significantly more OX6-positive cells were observed in the turpentine group, compared to other groups (3 days to 1 week; P < 0.0001). T-lymphocytes were essentially absent except for rats given turpentine (after 1 week). No B-lymphocyte response was found and none of the rats developed systemic anti-equine antibodies. These data indicate that a cellular immune response is not elicited following implantation with the eHAC block graft, which might serve as an alternative material for regenerative therapy.

  3. Chloroquine Engages the Immune System to Eradicate Irradiated Breast Tumors in Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratikan, Josephine Anna; Sayre, James William; Schaue, Dörthe, E-mail: dschaue@mednet.ucla.edu

    2013-11-15

    Purpose: This study used chloroquine to direct radiation-induced tumor cell death pathways to harness the antitumor activity of the immune system. Methods and Materials: Chloroquine given immediately after tumor irradiation increased the cure rate of MCaK breast cancer in C3H mice. Chloroquine blocked radiation-induced autophagy and drove MCaK cells into a more rapid apoptotic and more immunogenic form of cell death. Results: Chloroquine treatment made irradiated tumor vaccines superior at inducing strong interferon gamma-associated immune responses in vivo and protecting mice from further tumor challenge. In vitro, chloroquine slowed antigen uptake and degradation by dendritic cells, although T-cell stimulation wasmore » unaffected. Conclusions: This study illustrates a novel approach to improve the efficacy of breast cancer radiation therapy by blocking endosomal pathways, which enhances radiation-induced cell death within the field and drives antitumor immunity to assist therapeutic cure. The study illuminates and merges seemingly disparate concepts regarding the importance of autophagy in cancer therapy.« less

  4. An electrostatic Particle-In-Cell code on multi-block structured meshes

    NASA Astrophysics Data System (ADS)

    Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca; Vernon, Louis J.; Moulton, J. David

    2017-12-01

    We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. Despite the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where an arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma-material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. Compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.

  5. An electrostatic Particle-In-Cell code on multi-block structured meshes

    DOE PAGES

    Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca; ...

    2017-09-14

    We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. In spite of the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where anmore » arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma–material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. And compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.« less

  6. An electrostatic Particle-In-Cell code on multi-block structured meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca

    We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. In spite of the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where anmore » arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma–material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. And compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.« less

  7. Conjugated block copolymers as model materials to examine charge transfer in donor-acceptor systems

    NASA Astrophysics Data System (ADS)

    Gomez, Enrique; Aplan, Melissa; Lee, Youngmin

    Weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. The lack of control of interfacial structure has also prevented studies of how driving forces promote charge photogeneration, leading to conflicting hypotheses in the organic photovoltaic literature. Our approach has focused on utilizing block copolymer architectures -where critical interfaces are controlled and stabilized by covalent bonds- to provide the hierarchical structure needed for high-performance organic electronics from self-assembled soft materials. For example, we have demonstrated control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers to achieve 3% power conversion efficiencies in non-fullerene photovoltaics. Furthermore, incorporating the donor-acceptor interface within the molecular structure facilitates studies of charge transfer processes. Conjugated block copolymers enable studies of the driving force needed for exciton dissociation to charge transfer states, which must be large to maximize charge photogeneration but must be minimized to prevent losses in photovoltage in solar cell devices. Our work has systematically varied the chemical structure, energetics, and dielectric constant to perturb charge transfer. As a consequence, we predict a minimum dielectric constant needed to minimize the driving force and therefore simultaneously maximize photocurrent and photovoltage in organic photovoltaic devices.

  8. Main-chain supramolecular block copolymers.

    PubMed

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  9. View of cell block eight (left), cell block seven, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of cell block eight (left), cell block seven, and southwest guard tower, looking from cell block eight roof - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  10. Cell block eleven (left) and cell block fifteen, looking from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cell block eleven (left) and cell block fifteen, looking from cell block two into the "Death Row" exercise yard - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  11. Invitations to Cells: Life's Building Blocks. Teacher-Friendly Science Activities with Reproducible Handouts in English and Spanish. Grades 3-5. Living Things Science Series.

    ERIC Educational Resources Information Center

    Camp, Carole Ann, Ed.

    This booklet, one of six in the Living Things Science series, presents activities about cells which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish), materials, procedures,…

  12. Engineering synthetic vaccines using cues from natural immunity

    PubMed Central

    Irvine, Darrell J.; Swartz, Melody A.; Szeto, Gregory L.

    2014-01-01

    Vaccines aim to protect against or treat diseases through manipulation of the immune response, promoting either immunity or tolerance. The former generate antibodies and T-cells poised to protect against future pathogen encounter or attack diseased cells such as tumors; the latter, which are far less developed, block pathogenic autoreactive T-cells and autoantibodies that target self tissue. Enormous challenges remain, however, as a consequence of our incomplete understanding of human immunity. A rapidly growing field of research is the design of synthetic materials in vaccines to 1) target organs, tissues, cells, or intracellular compartments; 2) co-deliver immunomodulatory signals that control the quality of the immune response; or 3) directly act as immune regulators, and there exists great potential for well-defined materials to further our understanding of immunity. Here we describe recent advances in the design of synthetic materials to direct immune responses, highlighting successes and challenges in prophylactic, therapeutic, and tolerance-inducing vaccines. PMID:24150416

  13. Effects of High-Temperature-Pressure Polymerized Resin-Infiltrated Ceramic Networks on Oral Stem Cells

    PubMed Central

    Nassif, Ali; Berbar, Tsouria; Le Goff, Stéphane; Berdal, Ariane; Sadoun, Michael; Fournier, Benjamin P. J.

    2016-01-01

    Objectives The development of CAD—CAM techniques called for new materials suited to this technique and offering a safe and sustainable clinical implementation. The infiltration of resin in a ceramic network under high pressure and high temperature defines a new class of hybrid materials, namely polymer infiltrated ceramics network (PICN), for this purpose which requires to be evaluated biologically. We used oral stem cells (gingival and pulpal) as an in vitro experimental model. Methods Four biomaterials were grinded, immersed in a culture medium and deposed on stem cells from dental pulp (DPSC) and gingiva (GSC): Enamic (VITA®), Experimental Hybrid Material (EHM), EHM with initiator (EHMi) and polymerized Z100™ composite material (3M®). After 7 days of incubation; viability, apoptosis, proliferation, cytoskeleton, inflammatory response and morphology were evaluated in vitro. Results Proliferation was insignificantly delayed by all the tested materials. Significant cytotoxicity was observed in presence of resin based composites (MTT assay), however no detectable apoptosis and some dead cells were detected like in PICN materials. Cell morphology, major cytoskeleton and extracellular matrix components were not altered. An intimate contact appeared between the materials and cells. Clinical Significance The three new tested biomaterials did not exhibit adverse effects on oral stem cells in our experimental conditions and may be an interesting alternative to ceramics or composite based CAD—CAM blocks. PMID:27196425

  14. Adenosine Triphosphate (ATP) Inhibits Voltage-Sensitive Potassium Currents in Isolated Hensen's Cells and Nifedipine Protects Against Noise-Induced Hearing Loss in Guinea Pigs.

    PubMed

    Ye, Rui; Liu, Jun; Jia, Zhiying; Wang, Hongyang; Wang, YongAn; Sun, Wei; Wu, Xuan; Zhao, Zhifei; Niu, Baolong; Li, Xingqi; Dai, Guanghai; Li, Jianxiong

    2016-06-13

    BACKGROUND There is increasing evidence that adenosine triphosphate (ATP), a well-known neurotransmitter and neuromodulator in the central nervous system, plays an important role as an extracellular chemical messenger in the cochlea. MATERIAL AND METHODS Using a whole-cell recording technique, we studied the effects of ATP on isolated Hensen's cells, which are supporting cells in the cochlea, to determine if they are involved in the transduction of ions with hair cells. RESULTS ATP (0.1-10 µM) reduced the potassium current (IK+) in the majority of the recorded Hensen's cells (21 out of 25 cells). An inward current was also induced by high concentrations of ATP (100 µM to 10 mM), which was reversibly blocked by 100 µM suramin (a purinergic antagonist) and blocked by nifedipine (an L-type calcium channel blocker). After the cochleas were perfused with artificial perilymph solutions containing nifedipine and exposed to noise, the amplitude increase in the compound action potential (CAP) threshold and the reduction in cochlear microphonics was lower than when they were exposed to noise alone. CONCLUSIONS Our results suggest that ATP can block IK+ channels at a low concentration and induce an inward Ca2+ current at high concentrations, which is reversed by purinergic receptors. Nifedipine may have a partially protective effect on noise-induced hearing loss (NIHL).

  15. Effects of Structural Variations on the Cellular Response and Mechanical Properties of Biocompatible, Biodegradable, and Porous Smectic Liquid Crystal Elastomers.

    PubMed

    Sharma, Anshul; Mori, Taizo; Mahnen, Cory J; Everson, Heather R; Leslie, Michelle T; Nielsen, Alek D; Lussier, Laurent; Zhu, Chenhui; Malcuit, Christopher; Hegmann, Torsten; McDonough, Jennifer A; Freeman, Ernest J; Korley, LaShanda T J; Clements, Robert J; Hegmann, Elda

    2017-02-01

    The authors report on series of side-chain smectic liquid crystal elastomer (LCE) cell scaffolds based on star block-copolymers featuring 3-arm, 4-arm, and 6-arm central nodes. A particular focus of these studies is placed on the mechanical properties of these LCEs and their impact on cell response. The introduction of diverse central nodes allows to alter and custom-modify the mechanical properties of LCE scaffolds to values on the same order of magnitude of various tissues of interest. In addition, it is continued to vary the position of the LC pendant group. The central node and the position of cholesterol pendants in the backbone of ε-CL blocks (alpha and gamma series) affect the mechanical properties as well as cell proliferation and particularly cell alignment. Cell directionality tests are presented demonstrating that several LCE scaffolds show cell attachment, proliferation, narrow orientational dispersion of cells, and highly anisotropic cell growth on the as-synthesized LCE materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Modular and Orthogonal Synthesis of Hybrid Polymers and Networks

    PubMed Central

    Liu, Shuang; Dicker, Kevin T.; Jia, Xinqiao

    2015-01-01

    Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions. PMID:25572255

  17. Energy resolution in semiconductor gamma radiation detectors using heterojunctions and methods of use and preparation thereof

    DOEpatents

    Nikolic, Rebecca J.; Conway, Adam M.; Nelson, Art J.; Payne, Stephen A.

    2012-09-04

    In one embodiment, a system comprises a semiconductor gamma detector material and a hole blocking layer adjacent the gamma detector material, the hole blocking layer resisting passage of holes therethrough. In another embodiment, a system comprises a semiconductor gamma detector material, and an electron blocking layer adjacent the gamma detector material, the electron blocking layer resisting passage of electrons therethrough, wherein the electron blocking layer comprises undoped HgCdTe. In another embodiment, a method comprises forming a hole blocking layer adjacent a semiconductor gamma detector material, the hole blocking layer resisting passage of holes therethrough. Additional systems and methods are also presented.

  18. General view of east yard, facing south (note from right ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of east yard, facing south (note from right to left: cell block fourteen, cell block eleven, cell block fifteen, cell block two, greenhouse, and cell block ten) - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  19. The evolution of cyclopropenium ions into functional polyelectrolytes

    PubMed Central

    Jiang, Yivan; Freyer, Jessica L.; Cotanda, Pepa; Brucks, Spencer D.; Killops, Kato L.; Bandar, Jeffrey S.; Torsitano, Christopher; Balsara, Nitash P.; Lambert, Tristan H.; Campos, Luis M.

    2015-01-01

    Versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion. We demonstrate the facile synthesis of a series of polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. The materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes. PMID:25575214

  20. The evolution of cyclopropenium ions into functional polyelectrolytes

    DOE PAGES

    Jiang, Yivan; Freyer, Jessica L.; Cotanda, Pepa; ...

    2015-01-09

    We report that versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion.We demonstrate the facile synthesis of a series ofmore » polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. In conclusion, the materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes.« less

  1. Thin Robust Anion Exchange Membranes for Fuel Cell Applications

    DTIC Science & Technology

    2014-01-01

    water diffsuion. Here we use a Polyphenylene Oxide dibock polymer co-polymerized with polyvinyl benzyl trimethyl ammonium blocks ( PPO -b-PVBTMA[F...in PPO -b-PVBTMA[F-] AEM under saturated humidity environment ECS Transactions, 64 (3) 1185-1194 (2014) 1191 Conductivity of this membrane was...makes it a promising material for applications in anion exchange membrane fuel cells. Figure 5: Conductivity of PPO -b-PVBTMA[F-] under 95% Relative

  2. Roadmap on semiconductor-cell biointerfaces

    NASA Astrophysics Data System (ADS)

    Tian, Bozhi; Xu, Shuai; Rogers, John A.; Cestellos-Blanco, Stefano; Yang, Peidong; Carvalho-de-Souza, João L.; Bezanilla, Francisco; Liu, Jia; Bao, Zhenan; Hjort, Martin; Cao, Yuhong; Melosh, Nicholas; Lanzani, Guglielmo; Benfenati, Fabio; Galli, Giulia; Gygi, Francois; Kautz, Rylan; Gorodetsky, Alon A.; Kim, Samuel S.; Lu, Timothy K.; Anikeeva, Polina; Cifra, Michal; Krivosudský, Ondrej; Havelka, Daniel; Jiang, Yuanwen

    2018-05-01

    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.

  3. HOT CELL BUILDING, TRA632, INTERIOR. WINDOWED ROOM IS OFFICE; NEXT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632, INTERIOR. WINDOWED ROOM IS OFFICE; NEXT DOOR WAS DARKROOM, AND THIRD DOOR LED TO ANOTHER OFFICE. ALL ARE ALONG NORTH WALL OF BUILDING (ETR EXTENSION OF 1958). CAMERA FACES NORTHEAST. PUMICE BLOCK WALLS. INL NEGATIVE NO. HD46-29-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Protein extraction from methanol fixed paraffin embedded tissue blocks: A new possibility using cell blocks

    PubMed Central

    Kokkat, Theresa J.; McGarvey, Diane; Patel, Miral S.; Tieniber, Andrew D.; LiVolsi, Virginia A.; Baloch, Zubair W.

    2013-01-01

    Background: Methanol fixed and paraffin embedded (MFPE) cellblocks are an essential cytology preparation. However, MFPE cellblocks often contain limited material and their relatively small size has caused them to be overlooked in biomarker discovery. Advances in the field of molecular biotechnology have made it possible to extract proteins from formalin fixed and paraffin embedded (FFPE) tissue blocks. In contrast, there are no established methods for extracting proteins from MFPE cellblocks. We investigated commonly available CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate) buffer, as well as two commercially available Qiagen® kits and compared their effectiveness on MFPE tissue for protein yields. Materials and Methods: MFPE blocks were made by Cellient™ automated system using human tissue specimens from normal and malignant specimens collected in ThinPrep™ Vials. Protein was extracted from Cellient-methanol fixed and paraffin embedded blocks with CHAPS buffer method as well as FFPE and Mammalian Qiagen® kits. Results: Comparison of protein yields demonstrated the effectiveness of various protein extraction methods on MFPE cellblocks. Conclusion: In the current era of minimally invasive techniques to obtain minimal amount of tissue for diagnostic and prognostic purposes, the use of commercial and lab made buffer on low weight MFPE scrapings obtained by Cellient® processor opens new possibilities for protein biomarker research. PMID:24403950

  5. Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation

    PubMed Central

    Moussa, Mira; Carrel, Jean-Pierre; Scherrer, Susanne; Cattani-Lorente, Maria; Wiskott, Anselm; Durual, Stéphane

    2015-01-01

    Introduction: A 3D-printed construct made of orthogonally layered strands of tricalcium phosphate (TCP) and hydroxyapatite has recently become available. The material provides excellent osteoconductivity. We simulated a medium-term experiment in a sheep calvarial model by priming the blocks with BMP-2. Vertical bone growth/maturation and material resorption were evaluated. Materials and methods: Titanium hemispherical caps were filled with either bare- or BMP-2 primed constructs and placed onto the calvaria of adult sheep (n = 8). Histomorphometry was performed after 8 and 16 weeks. Results: After 8 weeks, relative to bare constructs, BMP-2 stimulation led to a two-fold increase in bone volume (Bare: 22% ± 2.1%; BMP-2 primed: 50% ± 3%) and a 3-fold decrease in substitute volume (Bare: 47% ± 5%; BMP-2 primed: 18% ± 2%). These rates were still observed at 16 weeks. The new bone grew and matured to a haversian-like structure while the substitute material resorbed via cell- and chemical-mediation. Conclusion: By priming the 3D construct with BMP-2, bone metabolism was physiologically accelerated, that is, enhancing vertical bone growth and maturation as well as material bioresorption. The scaffolding function of the block was maintained, leaving time for the bone to grow and mature to a haversian-like structure. In parallel, the material resorbed via cell-mediated and chemical processes. These promising results must be confirmed in clinical tests.

  6. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block.

    PubMed

    Siriwardana, Gamini; Seligman, Paul A

    2013-12-01

    Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points.

  7. [THE TECHNOLOGY "CELL BLOCK" IN CYTOLOGICAL PRACTICE].

    PubMed

    Volchenko, N N; Borisova, O V; Baranova, I B

    2015-08-01

    The article presents summary information concerning application of "cell block" technology in cytological practice. The possibilities of implementation of various modern techniques (immune cytochemnical analysis. FISH, CISH, polymerase chain reaction) with application of "cell block" method are demonstrated. The original results of study of "cell block" technology made with gelatin, AgarCyto and Shadon Cyoblock set are presented. The diagnostic effectiveness of "cell block" technology and common cytological smear and also immune cytochemical analysis on samples of "cell block" technology and fluid cytology were compared. Actually application of "cell block" technology is necessary for ensuring preservation of cell elements for subsequent immune cytochemical and molecular genetic analysis.

  8. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments

    NASA Astrophysics Data System (ADS)

    Huber, Matthias C.; Schreiber, Andreas; von Olshausen, Philipp; Varga, Balázs R.; Kretz, Oliver; Joch, Barbara; Barnert, Sabine; Schubert, Rolf; Eimer, Stefan; Kele, Péter; Schiller, Stefan M.

    2015-01-01

    Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally ‘program’ the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.

  9. Tunable Surface Repellency Maintains Stemness and Redox Capacity of Human Mesenchymal Stem Cells.

    PubMed

    Balikov, Daniel A; Crowder, Spencer W; Boire, Timothy C; Lee, Jung Bok; Gupta, Mukesh K; Fenix, Aidan M; Lewis, Holley N; Ambrose, Caitlyn M; Short, Philip A; Kim, Chang Soo; Burnette, Dylan T; Reilly, Matthew A; Murthy, N Sanjeeva; Kang, Mi-Lan; Kim, Won Shik; Sung, Hak-Joon

    2017-07-12

    Human bone marrow derived mesenchymal stem cells (hMSCs) hold great promise for regenerative medicine due to their multipotent differentiation capacity and immunomodulatory capabilities. Substantial research has elucidated mechanisms by which extracellular cues regulate hMSC fate decisions, but considerably less work has addressed how material properties can be leveraged to maintain undifferentiated stem cells. Here, we show that synthetic culture substrates designed to exhibit moderate cell-repellency promote high stemness and low oxidative stress-two indicators of naïve, healthy stem cells-in commercial and patient-derived hMSCs. Furthermore, the material-mediated effect on cell behavior can be tuned by altering the molar percentage (mol %) and/or chain length of poly(ethylene glycol) (PEG), the repellant block linked to hydrophobic poly(ε-caprolactone) (PCL) in the copolymer backbone. Nano- and angstrom-scale characterization of the cell-material interface reveals that PEG interrupts the adhesive PCL domains in a chain-length-dependent manner; this prevents hMSCs from forming mature focal adhesions and subsequently promotes cell-cell adhesions that require connexin-43. This study is the first to demonstrate that intrinsic properties of synthetic materials can be tuned to regulate the stemness and redox capacity of hMSCs and provides new insight for designing highly scalable, programmable culture platforms for clinical translation.

  10. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks) based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model.

    PubMed

    Dau, Michael; Ganz, Cornelia; Zaage, Franziska; Frerich, Bernhard; Gerber, Thomas

    2017-01-01

    The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block) for the use in surgery. Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects - one per animal - were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18) or a cross-linked hydrogel carrier (elastic block [EB], n=18) based on polyvinylpyrrolidone (PVP) and silica sol, respectively. The animals were killed after 12 (n=12), 21 (n=12) and 63 days (n=12). The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP]), antibody-based examinations (CD68) and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher in EB (21 and 63 days). Furthermore, no significant differences regarding the level of TRAP-positive marked cells in each group were observed. The bone substitute (EB) with the cross-linked PVP-based hydrogel carrier leads at the beginning to a higher amount of remaining carrier material and remaining bone substitute. This delayed degradation is supposed to be the reason for the observed lower level of bone remodeling and is caused by the irradiation changes (cross links) in the structure in PVP.

  11. Design, Synthesis, and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy Storage

    DTIC Science & Technology

    2016-03-31

    release. 2 energy conversion and storage devices – including supercapacitors, lithium ion batteries , and fuel cells – that power portable electronics...main innovations were the development of ion gels, materials that combine an ionic liquid with a gelating block copolymer to give mechanical strength...resulted in the training of 3 graduate students and two postdoctoral fellows. The main innovations were the development of ion gels, materials that

  12. Block-Cell-Printing for live single-cell printing

    PubMed Central

    Zhang, Kai; Chou, Chao-Kai; Xia, Xiaofeng; Hung, Mien-Chie; Qin, Lidong

    2014-01-01

    A unique live-cell printing technique, termed “Block-Cell-Printing” (BloC-Printing), allows for convenient, precise, multiplexed, and high-throughput printing of functional single-cell arrays. Adapted from woodblock printing techniques, the approach employs microfluidic arrays of hook-shaped traps to hold cells at designated positions and directly transfer the anchored cells onto various substrates. BloC-Printing has a minimum turnaround time of 0.5 h, a maximum resolution of 5 µm, close to 100% cell viability, the ability to handle multiple cell types, and efficiently construct protrusion-connected single-cell arrays. The approach enables the large-scale formation of heterotypic cell pairs with controlled morphology and allows for material transport through gap junction intercellular communication. When six types of breast cancer cells are allowed to extend membrane protrusions in the BloC-Printing device for 3 h, multiple biophysical characteristics of cells—including the protrusion percentage, extension rate, and cell length—are easily quantified and found to correlate well with their migration levels. In light of this discovery, BloC-Printing may serve as a rapid and high-throughput cell protrusion characterization tool to measure the invasion and migration capability of cancer cells. Furthermore, primary neurons are also compatible with BloC-Printing. PMID:24516129

  13. Active matter at the interface between materials science and cell biology

    NASA Astrophysics Data System (ADS)

    Needleman, Daniel; Dogic, Zvonimir

    2017-09-01

    The remarkable processes that characterize living organisms, such as motility, self-healing and reproduction, are fuelled by a continuous injection of energy at the microscale. The field of active matter focuses on understanding how the collective behaviours of internally driven components can give rise to these biological phenomena, while also striving to produce synthetic materials composed of active energy-consuming components. The synergistic approach of studying active matter in both living cells and reconstituted systems assembled from biochemical building blocks has the potential to transform our understanding of both cell biology and materials science. This methodology can provide insight into the fundamental principles that govern the dynamical behaviours of self-organizing subcellular structures, and can lead to the design of artificial materials and machines that operate away from equilibrium and can thus attain life-like properties. In this Review, we focus on active materials made of cytoskeletal components, highlighting the role of active stresses and how they drive self-organization of both cellular structures and macroscale materials, which are machines powered by nanomachines.

  14. Organic-Inorganic Hybrid Interfacial Layer for High-Performance Planar Perovskite Solar Cells.

    PubMed

    Yang, Hao; Cong, Shan; Lou, Yanhui; Han, Liang; Zhao, Jie; Sun, Yinghui; Zou, Guifu

    2017-09-20

    4,7-Diphenyl-1,10-phenanthroline (Bphen) is an efficient electron transport and hole blocking material in organic photoelectric devices. Here, we report cesium carbonate (Cs 2 CO 3 ) doped Bphen as cathode interfacial layer in CH 3 NH 3 PbI 3-x Cl x based planar perovskite solar cells (PSCs). Investigation finds that introducing Cs 2 CO 3 suppresses the crystallization of Bphen and benefits a smooth interface contact between the perovskite and electrode, resulting in the decrease in carrier recombination and the perovskite degradation. In addition, the matching energy level of Bphen film in the PSCs effectively blocks the holes diffusion to cathode. The resultant power conversion efficiency (PCE) achieves as high as 17.03% in comparison with 12.67% of reference device without doping. Besides, experiments also demonstrate the stability of PSCs have large improvement because the suppressed crystallization of Bphen by doping Cs 2 CO 3 as a superior barrier layer blocks the Ag atom and surrounding moisture access to the vulnerable perovskite layer.

  15. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block

    PubMed Central

    Siriwardana, Gamini; Seligman, Paul A.

    2013-01-01

    Abstract Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid‐G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid‐G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points. PMID:24744856

  16. Protein nanoparticles are nontoxic, tuneable cell stressors.

    PubMed

    de Pinho Favaro, Marianna Teixeira; Sánchez-García, Laura; Sánchez-Chardi, Alejandro; Roldán, Mónica; Unzueta, Ugutz; Serna, Naroa; Cano-Garrido, Olivia; Azzoni, Adriano Rodrigues; Ferrer-Miralles, Neus; Villaverde, Antonio; Vázquez, Esther

    2018-02-01

    Nanoparticle-cell interactions can promote cell toxicity and stimulate particular behavioral patterns, but cell responses to protein nanomaterials have been poorly studied. By repositioning oligomerization domains in a simple, modular self-assembling protein platform, we have generated closely related but distinguishable homomeric nanoparticles. Composed by building blocks with modular domains arranged in different order, they share amino acid composition. These materials, once exposed to cultured cells, are differentially internalized in absence of toxicity and trigger distinctive cell adaptive responses, monitored by the emission of tubular filopodia and enhanced drug sensitivity. The capability to rapidly modulate such cell responses by conventional protein engineering reveals protein nanoparticles as tuneable, versatile and potent cell stressors for cell-targeted conditioning.

  17. Cellient™ automated cell block versus traditional cell block preparation: a comparison of morphologic features and immunohistochemical staining.

    PubMed

    Wagner, David G; Russell, Donna K; Benson, Jenna M; Schneider, Ashley E; Hoda, Rana S; Bonfiglio, Thomas A

    2011-10-01

    Traditional cell block (TCB) sections serve as an important diagnostic adjunct to cytologic smears but are also used today as a reliable preparation for immunohistochemical (IHC) studies. There are many ways to prepare a cell block and the methods continue to be revised. In this study, we compare the TCB with the Cellient™ automated cell block system. Thirty-five cell blocks were obtained from 16 benign and 19 malignant nongynecologic cytology specimens at a large university teaching hospital and prepared according to TCB and Cellient protocols. Cell block sections from both methods were compared for possible differences in various morphologic features and immunohistochemical staining patterns. In the 16 benign cases, no significant morphologic differences were found between the TCB and Cellient cell block sections. For the 19 malignant cases, some noticeable differences in the nuclear chromatin and cellularity were identified, although statistical significance was not attained. Immunohistochemical or special stains were performed on 89% of the malignant cases (17/19). Inadequate cellularity precluded full evaluation in 23% of Cellient cell block IHC preparations (4/17). Of the malignant cases with adequate cellularity (13/17), the immunohistochemical staining patterns from the different methods were identical in 53% of cases. The traditional and Cellient cell block sections showed similar morphologic and immunohistochemical staining patterns. The only significant difference between the two methods concerned the lower overall cell block cellularity identified during immunohistochemical staining in the Cellient cell block sections. Copyright © 2010 Wiley-Liss, Inc.

  18. Synthesis, characterization, and biocompatibility of alternating block polyurethanes based on PLA and PEG.

    PubMed

    Mei, Tingzhen; Zhu, Yonghe; Ma, Tongcui; He, Tao; Li, Linjing; Wei, Chiju; Xu, Kaitian

    2014-09-01

    A series of alternating block polyurethanes (abbreviated as PULA-alt-PEG) and random block polyurethanes (abbreviated as PULA-ran-PEG) based on poly(L-lactic acid) (PLA) and poly(ethylene glycol) (PEG) were synthesized. The differences of PULA-alt/ran-PEG chemical structure, molecular weight, distribution, thermal properties, mechanical properties and static contact angle were systematically investigated. The PULA-alt/ran-PEG polyurethanes exhibited low T(g) (-47.3 ∼ -34.4°C), wide mechanical properties (stress σ(t): 4.6-32.6 MPa, modulus E: 11.4-323.9 MPa and strain ε: 468-1530%) and low water contact angle (35.4-51.4°). Scanning electron microscope (SEM) observation showed that PULA-alt-PEG film displays rougher and more patterned surface morphology than PULA-ran-PEG does, due to more regular structures of PULA-alt-PEG. Hydrolytic degradation shows that degradation rate of random block polyurethane series PULA-ran-PEG is higher than the alternating counterpart PULA-alt-PEG. PLA segment degradation is faster than urethane linkage and PEG segment almost does not degrade in the buffer solution. Platelet adhesion study showed that all the polyurethanes possess excellent hemocompatibility. The cell culture assay revealed that PULA-alt/ran-PEG polyurethanes were cell inert and unfavorable for the attachment of rat glial cell due to the hydrophilic characters of the materials. © 2013 Wiley Periodicals, Inc.

  19. A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer

    PubMed Central

    Park, Daewon; Wu, Wei; Wang, Yadong

    2010-01-01

    Injectable reverse thermal gels have great potentials as biomaterials for tissue engineering and drug delivery. However, most existing gels lack functional groups that can be modified with biomolecules that can guide cell/material interactions. We created an amine-functionalized ABA block copolymer, poly(ethylene glycol)-poly(serinol hexamethylene urethane), or ESHU. This reverse thermal gel consists of a hydrophobic block (B): poly(serinol hexamethylene urethane) and a hydrophilic block (A): poly(ethylene glycol). The polymer was characterized by GPC, FTIR and 1H FTNMR. Rheological study demonstrated that ESHU solution in phosphate-buffered saline initiated phase transition at 32°C and reached maximum elastic modulus at 37°C. The in vitro degradation tests performed in PBS and cholesterol esterase solutions revealed that the polymer was hydrolyzable and the presence of cholesterol esterase greatly accelerated the hydrolysis. The in vitro cytotoxicity tests carried out using baboon smooth muscle cells demonstrated that ESHU had good cytocompatibility with cell viability indistinguishable from tissue culture treated polystyrene. Subcutaneous implantation in rats revealed well tolerated accurate inflammatory response with moderate ED-1 positive macrophages in the early stages, which largely resolved 4 weeks post-implantation. We functionalized ESHU with a hexapeptide, Ile-Lys-Val-Ala-Val-Ser (IKVAVS), which gelled rapidly at body temperature. We expect this new platform of functionalizable reverse thermal gels to provide versatile biomaterials in tissue engineering and regenerative medicine. PMID:20937526

  20. Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.

    PubMed

    Reiss, Peter; Couderc, Elsa; De Girolamo, Julia; Pron, Adam

    2011-02-01

    This critical review discusses specific preparation and characterization methods applied to hybrid materials consisting of π-conjugated polymers (or oligomers) and semiconductor nanocrystals. These materials are of great importance in the quickly growing field of hybrid organic/inorganic electronics since they can serve as active components of photovoltaic cells, light emitting diodes, photodetectors and other devices. The electronic energy levels of the organic and inorganic components of the hybrid can be tuned individually and thin hybrid films can be processed using low cost solution based techniques. However, the interface between the hybrid components and the morphology of the hybrid directly influences the generation, separation and transport of charge carriers and those parameters are not easy to control. Therefore a large variety of different approaches for assembling the building blocks--conjugated polymers and semiconductor nanocrystals--has been developed. They range from their simple blending through various grafting procedures to methods exploiting specific non-covalent interactions between both components, induced by their tailor-made functionalization. In the first part of this review, we discuss the preparation of the building blocks (nanocrystals and polymers) and the strategies for their assembly into hybrid materials' thin films. In the second part, we focus on the charge carriers' generation and their transport within the hybrids. Finally, we summarize the performances of solar cells using conjugated polymer/semiconductor nanocrystals hybrids and give perspectives for future developments.

  1. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.

    PubMed

    Lee, Sung-Min; Biswas, Roshni; Li, Weigu; Kang, Dongseok; Chan, Lesley; Yoon, Jongseung

    2014-10-28

    Nanostructured forms of crystalline silicon represent an attractive materials building block for photovoltaics due to their potential benefits to significantly reduce the consumption of active materials, relax the requirement of materials purity for high performance, and hence achieve greatly improved levelized cost of energy. Despite successful demonstrations for their concepts over the past decade, however, the practical application of nanostructured silicon solar cells for large-scale implementation has been hampered by many existing challenges associated with the consumption of the entire wafer or expensive source materials, difficulties to precisely control materials properties and doping characteristics, or restrictions on substrate materials and scalability. Here we present a highly integrable materials platform of nanostructured silicon solar cells that can overcome these limitations. Ultrathin silicon solar microcells integrated with engineered photonic nanostructures are fabricated directly from wafer-based source materials in configurations that can lower the materials cost and can be compatible with deterministic assembly procedures to allow programmable, large-scale distribution, unlimited choices of module substrates, as well as lightweight, mechanically compliant constructions. Systematic studies on optical and electrical properties, photovoltaic performance in experiments, as well as numerical modeling elucidate important design rules for nanoscale photon management with ultrathin, nanostructured silicon solar cells and their interconnected, mechanically flexible modules, where we demonstrate 12.4% solar-to-electric energy conversion efficiency for printed ultrathin (∼ 8 μm) nanostructured silicon solar cells when configured with near-optimal designs of rear-surface nanoposts, antireflection coating, and back-surface reflector.

  2. Engineering synthetic vaccines using cues from natural immunity.

    PubMed

    Irvine, Darrell J; Swartz, Melody A; Szeto, Gregory L

    2013-11-01

    Vaccines aim to protect against or treat diseases through manipulation of the immune response, promoting either immunity or tolerance. In the former case, vaccines generate antibodies and T cells poised to protect against future pathogen encounter or attack diseased cells such as tumours; in the latter case, which is far less developed, vaccines block pathogenic autoreactive T cells and autoantibodies that target self tissue. Enormous challenges remain, however, as a consequence of our incomplete understanding of human immunity. A rapidly growing field of research is the design of vaccines based on synthetic materials to target organs, tissues, cells or intracellular compartments; to co-deliver immunomodulatory signals that control the quality of the immune response; or to act directly as immune regulators. There exists great potential for well-defined materials to further our understanding of immunity. Here we describe recent advances in the design of synthetic materials to direct immune responses, highlighting successes and challenges in prophylactic, therapeutic and tolerance-inducing vaccines.

  3. Engineering synthetic vaccines using cues from natural immunity

    NASA Astrophysics Data System (ADS)

    Irvine, Darrell J.; Swartz, Melody A.; Szeto, Gregory L.

    2013-11-01

    Vaccines aim to protect against or treat diseases through manipulation of the immune response, promoting either immunity or tolerance. In the former case, vaccines generate antibodies and T cells poised to protect against future pathogen encounter or attack diseased cells such as tumours; in the latter case, which is far less developed, vaccines block pathogenic autoreactive T cells and autoantibodies that target self tissue. Enormous challenges remain, however, as a consequence of our incomplete understanding of human immunity. A rapidly growing field of research is the design of vaccines based on synthetic materials to target organs, tissues, cells or intracellular compartments; to co-deliver immunomodulatory signals that control the quality of the immune response; or to act directly as immune regulators. There exists great potential for well-defined materials to further our understanding of immunity. Here we describe recent advances in the design of synthetic materials to direct immune responses, highlighting successes and challenges in prophylactic, therapeutic and tolerance-inducing vaccines.

  4. Patterning by area selective oxidation

    DOEpatents

    Nam, Chang-Yong; Kamcev, Jovan; Black, Charles T.; Grubbs, Robert

    2015-12-29

    Technologies are described for methods for producing a pattern of a material on a substrate. The methods may comprise receiving a patterned block copolymer on a substrate. The patterned block copolymer may include a first polymer block domain and a second polymer block domain. The method may comprise exposing the patterned block copolymer to a light effective to oxidize the first polymer block domain in the patterned block copolymer. The method may comprise applying a precursor to the block copolymer. The precursor may infuse into the oxidized first polymer block domain and generate the material. The method may comprise applying a removal agent to the block copolymer. The removal agent may be effective to remove the first polymer block domain and the second polymer block domain from the substrate, and may not be effective to remove the material in the oxidized first polymer block domain.

  5. A block in lineage differentiation of immortal human mammary stem / progenitor cells by ectopically-expressed oncogenes

    PubMed Central

    Zhao, Xiangshan; Malhotra, Gautam K.; Band, Hamid; Band, Vimla

    2011-01-01

    Introduction: Emerging evidence suggests a direct role of cancer stem cells (CSCs) in the development of breast cancer. In vitro cellular models that recapitulate properties of CSCs are therefore highly desirable. We have previously shown that normal human mammary epithelial cells (hMECs) immortalized with human telomerase reverse transcriptase (hTERT) possess properties of mammary stem / progenitor cells. Materials and Methods: In the present study, we used this cell system to test the idea that other known hMEC-immortalizing oncogenes (RhoA, HPVE6, HPVE7, p53 mutant, and treatment with γ-radiation), share with hTERT, the ability to maintain mammary stem / progenitor cells. Results: The results presented here demonstrate that similar to hMECs immortalized with hTERT, all hMEC cell lines immortalized using various oncogenic strategies express stem / progenitor cell markers. Furthermore, analyses using 2D and 3D culture assays demonstrate that all the immortal cell lines retain their ability to self-renew and to differentiate along the luminal lineage. Remarkably, the stem / progenitor cell lines generated using various oncogenic strategies exhibit a block in differentiation along the myoepithelial lineage, a trait that is retained on hTERT-immortalized stem / progenitors. The inability to differentiate along the myoepithelial lineage could be induced by ectopic mutant p53 expression in hTERT-immortalized hMEC. Conclusions: Our studies demonstrate that stem / progenitor cell characteristics of hMECs are maintained upon immortalization by using various cancer-relevant oncogenic strategies. Oncogene-immortalized hMECs show a block in their ability to differentiate along the myoepithelial lineage. Abrogation of the myoepithelial differentiation potential by a number of distinct oncogenic insults suggests a potential explanation for the predominance of luminal and rarity of myoepithelial breast cancers. PMID:22279424

  6. The Chemistry of Health

    ERIC Educational Resources Information Center

    Davis, Alison

    2009-01-01

    Do people realize that chemistry plays a key role in helping solve some of the most serious problems facing the world today? Chemists want to find the building blocks of the chemical universe--the molecules that form materials, living cells and whole organisms. Many chemists are medical explorers looking for new ways to maintain and improve…

  7. Cell block eleven, looking from the "Death Row" exercise yard, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cell block eleven, looking from the "Death Row" exercise yard, facing north (note cell block fifteen to the right and cell block fourteen in the distance_ - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  8. DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda

    PubMed Central

    Vítová, Milada; Bišová, Kateřina; Zachleder, Vilém

    2011-01-01

    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605

  9. Diagnostic utility of the cell block method versus the conventional smear study in pleural fluid cytology

    PubMed Central

    Shivakumarswamy, Udasimath; Arakeri, Surekha U; Karigowdar, Mahesh H; Yelikar, BR

    2012-01-01

    Background: The cytological examinations of serous effusions have been well-accepted, and a positive diagnosis is often considered as a definitive diagnosis. It helps in staging, prognosis and management of the patients in malignancies and also gives information about various inflammatory and non-inflammatory lesions. Diagnostic problems arise in everyday practice to differentiate reactive atypical mesothelial cells and malignant cells by the routine conventional smear (CS) method. Aims: To compare the morphological features of the CS method with those of the cell block (CB) method and also to assess the utility and sensitivity of the CB method in the cytodiagnosis of pleural effusions. Materials and Methods: The study was conducted in the cytology section of the Department of Pathology. Sixty pleural fluid samples were subjected to diagnostic evaluation for over a period of 20 months. Along with the conventional smears, cell blocks were prepared by using 10% alcohol–formalin as a fixative agent. Statistical analysis with the ‘z test’ was performed to identify the cellularity, using the CS and CB methods. Mc. Naemer's χ2test was used to identify the additional yield for malignancy by the CB method. Results: Cellularity and additional yield for malignancy was 15% more by the CB method. Conclusions: The CB method provides high cellularity, better architectural patterns, morphological features and an additional yield of malignant cells, and thereby, increases the sensitivity of the cytodiagnosis when compared with the CS method. PMID:22438610

  10. Cell block one and southeast guard tower, looking from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cell block one and southeast guard tower, looking from the central guard tower, facing southeast (note view also includes cell block ten (left) and cell block nine (right)) - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  11. Inverse design of bulk morphologies in block copolymers using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Khadilkar, Mihir; Delaney, Kris; Fredrickson, Glenn

    Multiblock polymers are a versatile platform for creating a large range of nanostructured materials with novel morphologies and properties. However, achieving desired structures or property combinations is difficult due to a vast design space comprised of parameters including monomer species, block sequence, block molecular weights and dispersity, copolymer architecture, and binary interaction parameters. Navigating through such vast design spaces to achieve an optimal formulation for a target structure or property set requires an efficient global optimization tool wrapped around a forward simulation technique such as self-consistent field theory (SCFT). We report on such an inverse design strategy utilizing particle swarm optimization (PSO) as the global optimizer and SCFT as the forward prediction engine. To avoid metastable states in forward prediction, we utilize pseudo-spectral variable cell SCFT initiated from a library of defect free seeds of known block copolymer morphologies. We demonstrate that our approach allows for robust identification of block copolymers and copolymer alloys that self-assemble into a targeted structure, optimizing parameters such as block fractions, blend fractions, and Flory chi parameters.

  12. Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles.

    PubMed

    Kim, Dong-Hyun; Vitol, Elina A; Liu, Jing; Balasubramanian, Shankar; Gosztola, David J; Cohen, Ezra E; Novosad, Valentyn; Rozhkova, Elena A

    2013-06-18

    Hybrid nanoarchitectures are among the most promising nanotechnology-enabled materials for biomedical applications. Interfacing of nanoparticles with active materials gives rise to the structures with unique multiple functionality. Superparamagnetic iron oxide nanoparticles particles SPION are widely employed in the biology and in developing of advanced medical technologies. Polymeric micelles offer the advantage of multifunctional carriers which can serve as delivery vehicles carrying nanoparticles, hydrophobic chemotherapeutics and other functional materials and molecules. Stimuli-responsive polymers are especially attractive since their properties can be modulated in a controlled manner. Here we report on multifunctional thermo-responsive poly(N-isopropylacrylamide-co-acrylamide)-block-poly(ε-caprolactone) random block copolymer micelles as magnetic hyperthermia-mediated payload release and imaging agents. The combination of copolymers, nanoparticles and doxorubicin drug was tailored the way that the loaded micelles were cable to respond to magnetic heating at physiologically-relevant temperatures. A surface functionalization of the micelles with the integrin β4 antibody and consequent interfacing of the resulting nanobio hybrid with squamous head and neck carcinoma cells which is known to specifically over-express the A9 antigen resulted in concentration of the micelles on the surface of cells. No inherent cytotoxicity was detected for the magnetic micelles without external stimuli application. Furthermore, SPION-loaded micelles demonstrate significant MRI contrast enhancement abilities.

  13. Comparing blends and blocks: Synthesis of partially fluorinated diblock polythiophene copolymers to investigate the thermal stability of optical and morphological properties

    PubMed Central

    Boufflet, Pierre; Wood, Sebastian; Wade, Jessica; Fei, Zhuping; Kim, Ji-Seon

    2016-01-01

    Summary The microstructure of the active blend layer has been shown to be a critically important factor in the performance of organic solar devices. Block copolymers provide a potentially interesting avenue for controlling this active layer microstructure in solar cell blends. Here we explore the impact of backbone fluorination in block copolymers of poly(3-octyl-4-fluorothiophene)s and poly(3-octylthiophene) (F-P3OT-b-P3OT). Two block co-polymers with varying block lengths were prepared via sequential monomer addition under Kumada catalyst transfer polymerisation (KCTP) conditions. We compare the behavior of the block copolymer to that of the corresponding homopolymer blends. In both types of system, we find the fluorinated segments tend to dominate the UV–visible absorption and molecular vibrational spectral features, as well as the thermal behavior. In the block copolymer case, non-fluorinated segments appear to slightly frustrate the aggregation of the more fluorinated block. However, in situ temperature dependent Raman spectroscopy shows that the intramolecular order is more thermally stable in the block copolymer than in the corresponding blend, suggesting that such materials may be interesting for enhanced thermal stability of organic photovoltaic active layers based on similar systems. PMID:27829922

  14. Cytomorphology of cervicovaginal melanoma: ThinPrep versus conventional Papanicolaou tests

    PubMed Central

    Setia, Namrata; Goulart, Robert A; Leiman, Gladywn; Otis, Christopher N; Modem, Rukmini; Pantanowtiz, Liron

    2010-01-01

    Background: Primary cervicovaginal melanoma is a rare malignancy associated with a high risk of recurrence. Prior studies discussing the cytomorphology of cervicovaginal melanoma have been based primarily on review of conventional Papanicolaou (Pap) smears. The aim of this study was to evaluate cervicovaginal melanomas identified in liquid-based Pap tests, in comparison with features seen on conventional Pap smear preparation. Materials and Methods: Cases of cervicovaginal melanoma identified on Pap tests with concurrent or subsequent histopathologic confirmation were collected from the Baystate Medical Center cytopathology files and personal archives of the authors over a total period of 34 years. All cytopathology (n = 6) and the available histology slides (n = 5) were reviewed. Cases were analyzed regarding clinical, histopathologic and cytomorphological findings. Results: A total of six cases with invasive cervicovaginal melanoma diagnosed on Pap tests were identified. Most patients were postmenopausal with contact bleeding, correlating with surface ulceration (identified in biopsy/excision material in 5/5 cases). Most cases had deeply invasive tumors (5/5: modified Breslow's thickness > 5 mm and Chung's level of invasion IV/V). Pap tests included four ThinPrep and two conventional smears. Overall, ThinPrep Pap tests exhibited a higher ratio of tumor cells to background squamous cells. While all Pap tests were bloodstained, tumor diathesis was prominent only within conventional smears. Melanoma cells were present both as clusters and scattered single cells in each Pap test type. Both the preparations contained epithelioid tumor cells, whereas spindled tumor cells were seen in only two ThinPrep cases. Prominent nucleoli and binucleation of tumor cells were seen in both the preparations. Melanin pigment was identified in only ThinPrep (3/4) cases and nuclear pseudo-inclusions in one conventional Pap smear. Cell blocks were made in three ThinPrep cases and immunocytochemistry (S-100, HMB45, Melan-A) performed on additional vial material (one ThinPrep slide and one cell block) was immunoreactive in melanoma cells. Conclusion: Primary cervicovaginal melanoma, a rare malignancy seen predominantly in postmenopausal women, may be successfully diagnosed in either ThinPrep Pap tests or conventional Pap smears. While ThinPrep Pap tests did not demonstrate morphological advantage over conventional smears, liquid-based cytology specimens did provide additional material for cellblock preparation and immunocytochemical evaluation in a subset of cases. PMID:21298024

  15. Periodic nanostructures from self assembled wedge-type block-copolymers

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Weitekamp, Raymond; Miyake, Garret M.; Piunova, Victoria; Daeffler, Christopher Scot

    2015-06-02

    The invention provides a class of wedge-type block copolymers having a plurality of chemically different blocks, at least a portion of which incorporates a wedge group-containing block providing useful properties. For example, use of one or more wedge group-containing blocks in some block copolymers of the invention significantly inhibits chain entanglement and, thus, the present block copolymers materials provide a class of polymer materials capable of efficient molecular self-assembly to generate a range of structures, such as periodic nanostructures and microstructures. Materials of the present invention include copolymers having one or more wedge group-containing blocks, and optionally for some applications copolymers also incorporating one or more polymer side group-containing blocks. The present invention also provides useful methods of making and using wedge-type block copolymers.

  16. Determining the Mechanical Properties of Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Wilmoth, Nathan

    2013-01-01

    Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.

  17. HOT CELL BUILDING, TRA632, INTERIOR. HOT CELL NO. 1 (THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632, INTERIOR. HOT CELL NO. 1 (THE FIRST BUILT) IN LABORATORY 101. CAMERA FACES SOUTHEAST. SHIELDED OPERATING WINDOWS ARE ON LEFT (NORTH) SIDE. OBSERVATION WINDOW IS AT LEFT OF VIEW (ON WEST SIDE). PLASTIC COVERS SHROUD MASTER/SLAVE MANIPULATORS AT WINDOWS IN LEFT OF VIEW. NOTE MINERAL OIL RESERVOIR ABOVE "CELL 1" SIGN, INDICATING LEVEL OF THE FLUID INSIDE THE THICK WINDOWS. HOT CELL HAS BEVELED CORNER BECAUSE A SQUARED CORNER WOULD HAVE SUPPLIED UNNECESSARY SHIELDING. NOTE PUMICE BLOCK WALL AT LEFT OF VIEW. INL NEGATIVE NO. HD46-28-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Using cell structures to develop functional nanomaterials and nanostructures--case studies of actin filaments and microtubules.

    PubMed

    Wu, Kevin Chia-Wen; Yang, Chung-Yao; Cheng, Chao-Min

    2014-04-25

    This article is based on the continued development of biologically relevant elements (i.e., actin filaments and microtubules in living cells) as building blocks to create functional nanomaterials and nanostructures that can then be used to manufacture nature-inspired small-scale devices or systems. Here, we summarize current progress in the field and focus specifically on processes characterized by (1) robustness and ease of use, (2) inexpensiveness, and (3) potential expandability to mass production. This article, we believe, will provide scientists and engineers with a more comprehensive understanding of how to mine biological materials and natural design features to construct functional materials and devices.

  19. Effective Light Directed Assembly of Building Blocks with Microscale Control.

    PubMed

    Dinh, Ngoc-Duy; Luo, Rongcong; Christine, Maria Tankeh Asuncion; Lin, Weikang Nicholas; Shih, Wei-Chuan; Goh, James Cho-Hong; Chen, Chia-Hung

    2017-06-01

    Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cell block samples from malignant pleural effusion might be valid alternative samples for anaplastic lymphoma kinase detection in patients with advanced non-small-cell lung cancer.

    PubMed

    Zhou, Jianya; Yao, Hongtian; Zhao, Jing; Zhang, Shumeng; You, Qihan; Sun, Ke; Zou, Yinying; Zhou, Caicun; Zhou, Jianying

    2015-06-01

    To evaluate the clinical value of cell block samples from malignant pleural effusion (MPE) as alternative samples to tumour tissue for anaplastic lymphoma kinase (ALK) detection in patients with advanced non-small-cell lung cancer (NSCLC). Fifty-two matched samples were eligible for analysis. ALK status was detected by Ventana immunohistochemistry (IHC) (with the D5F3 clone), reverse transcription polymerase chain reaction (RT-PCR) and fluorescence in-situ hybridization (FISH) in MPE cell block samples, and by FISH in tumour tissue block samples. In total, ALK FISH results were obtained for 52 tumour tissue samples and 41 MPE cell block samples. Eight cases (15.4%) were ALK-positive in tumour tissue samples by FISH, and among matched MPE cell block samples, five were ALK-positive by FISH, seven were ALK-positive by RT-PCR, and eight were ALK-positive by Ventana IHC. The ALK status concordance rates between tumour tissue and MPE cell block samples were 78.9% by FISH, 98.1% by RT-PCR, and 100% by Ventana IHC. In MPE cell block samples, the sensitivity and specificity of Ventana IHC (100% and 100%) and RT-PCR (87.5% and 100%) were higher than those of FISH (62.5% and 100%). Malignant pleural effusion cell block samples had a diagnostic performance for ALK detection in advanced NSCLC that was comparable to that of tumour tissue samples. MPE cell block samples might be valid alternative samples for ALK detection when tissue is not available. Ventana IHC could be the most suitable method for ALK detection in MPE cell block samples. © 2014 John Wiley & Sons Ltd.

  1. Effects of Polymer Structure and Relaxations on Ionic Conductivity in Anion Exchange Membranes with Quaternary Ammonium Functional Groups

    NASA Astrophysics Data System (ADS)

    Maes, Ashley M.

    Anion exchange membranes (AEMs) are of considerable interest to developers and researchers of electrochemical conversion and storage devices such as anion exchange membrane fuel cells (AAEMFCs), alkaline polymer electrolyte electrolysers, redox flow batteries and bioelectrochemical devices. AEMs are generally in competition with more established proton exchange membranes (PEMs), but offer the potential for reduction of materials costs and greater fuel flexibility across these applications. This work includes an introduction to AEMs in the context of fuel cell technologies and some key techniques for AEM characterization. There are many synthetic strategies to incorporate cationic functional groups, which promote anion transport, into a polymer matrix. Two membrane chemistries are investigated in the following chapters. The first is based on a simple synthesis procedure that produced a membrane consisting of random, crosslinked polypropylene- ran-polyethyleneimine with quaternary ammonium functional groups. This membrane had moderate chloride ionic conductivity of 0.03 S cm -1 at 95 °C and high water uptake with minimal dimensional swelling. However, the lack of control of crosslink location and density during synthesis produced a material with a very random nature, making it a poor candidate for more fundamental transport studies. The second membrane chemistry is a block copolymer with a hydrophobic and hydrophilic block. The hydrophobic block was selected to provide favorable mechanical and barrier characteristics while a hydrophilic block was selected to provide water uptake and anion conducting functionalities. Poly(vinyl benzyl trimethyl ammonium bromide)-b-poly(methylbutylene) ([PVBTMA][Br]- b-PMB) was synthesized by partners at the University of Massachusetts-Amherst with varied degrees of functionalization (DF) along the hydrophilic block, resulting in ion exchange capacities ranging from 0.77 to 2.20 mmol g -1. Water uptake, in-plane ionic conductivity and membrane morphology were measured across a series of membranes with the original bromide (Br -) counter-ion. These bulk materials characterization experiments demonstrated that this polymer structure produces well-ordered lamellar morphology with moderate water uptake and competitive ionic conductivity (ca. 40 mS cm-1 at 90 °C and 95% relative humidity). These characteristics make it an appropriate candidate for the following more fundamental investigations of ionic conductivity mechanisms. Broadband electrical spectroscopy (BES) was conducted on one [PVBTMA][Br]- b-PMB sample in the Br- form and analyzed in conjunction with thermal stability and relaxation experiments in Chapter 4. We were able to propose two separate ionic conductivity mechanisms and relate each to physical attributes of the polymer structure. A significant thermal transition was observed at Tdelta , which resulted in a dramatic drop in conductivity. In a continued effort to characterize the ionic conductivity of these block-copolymer membranes, another BES study was conducted on three samples with varying DFs. Samples were converted to hydroxide (OH- ) form so we could contrast the Br- conductivity mechanisms to those in a more relevant counter-ion form. After analysis of the electric response of the material, combined with the thermal analysis by TGA, MDSC and DMA, conductivity mechanisms were described. As in the Br- study, conductivity involves two distinct conduction pathways, sigmaEP and sigmaIP,1. Importantly, we again observed a drop in conductivity at Tdelta in each of these samples, with Tdelta decreasing as the density of functional groups along the hydrophilic block increased. It is undesirable for this transition to occur during operation in a fuel cell or other electrochemical device, so future work to investigate strategies for inhibition are recommended.

  2. Young Investigator Challenge: A novel, simple method for cell block preparation, implementation, and use over 2 years.

    PubMed

    Lindsey, Kathryn G; Houser, Patricia M; Shotsberger-Gray, Wanda; Chajewski, Olga S; Yang, Jack

    2016-12-01

    The cell block is an essential adjunct to conventional cytopreparatory techniques. The need for molecular analysis and immunostains will increase the need for successful cell block preparation. Even with this need, to the authors' knowledge very little has changed regarding the way in which cell blocks are produced. The authors developed A Formalin-Fixed, paraffin Embedded Cytology cell block Technique (AFFECT) that uses a cytospin centrifuge and funnel to deposit a cell pellet into a well on a piece of open-cell, absorbent foam. The foam and the pellet are then sent through normal processing. Herein, the authors present the implementation of this method and some of their experience with its performance over the course of 2 years. Although a comparison of the methods indicated good correlation for the production of a cell block between AFFECT and the agarose method, the AFFECT blocks demonstrated markedly improved cellular morphology. Over the first 6 months of use, AFFECT produced a successful cell block in 74% of cases overall, and in 65% of cases with a cell pellet measuring ≤0.1 mL. The year preceding the implementation of AFFECT and its first year of use were compared for endoscopic and bronchoscopic ultrasound-guided fine-needle aspiration specimens, and demonstrated an improved success rate. The authors developed a novel method of cell block preparation that demonstrates improved histology and has increased the success rate of cell block production compared with the agarose method. Cancer Cytopathol 2016;124:885-892. © 2016 American Cancer Society. © 2016 American Cancer Society.

  3. Macroscale and Nanoscale Morphology Evolution during in Situ Spray Coating of Titania Films for Perovskite Solar Cells.

    PubMed

    Su, Bo; Caller-Guzman, Herbert A; Körstgens, Volker; Rui, Yichuan; Yao, Yuan; Saxena, Nitin; Santoro, Gonzalo; Roth, Stephan V; Müller-Buschbaum, Peter

    2017-12-20

    Mesoporous titania is a cheap and widely used material for photovoltaic applications. To enable a large-scale fabrication and a controllable pore size, we combined a block copolymer-assisted sol-gel route with spray coating to fabricate titania films, in which the block copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) is used as a structure-directing template. Both the macroscale and nanoscale are studied. The kinetics and thermodynamics of the spray deposition processes are simulated on a macroscale, which shows a good agreement with the large-scale morphology of the spray-coated films obtained in practice. On the nanoscale, the structure evolution of the titania films is probed with in situ grazing incidence small-angle X-ray scattering (GISAXS) during the spray process. The changes of the PS domain size depend not only on micellization but also on solvent evaporation during the spray coating. Perovskite (CH 3 NH 3 PbI 3 ) solar cells (PSCs) based on sprayed titania film are fabricated, which showcases the suitability of spray-deposited titania films for PSCs.

  4. A Solution-Processable Molecule using Thieno[3,2-b]thiophene as Building Block for Efficient Organic Solar Cells.

    PubMed

    Wei, Huan; Chen, Weichao; Han, Liangliang; Wang, Ting; Bao, Xichang; Li, Xiaoyun; Liu, Jie; Zhou, Yuanhang; Yang, Renqiang

    2015-08-01

    A solution-processed acceptor-π-donor-π-acceptor (A-π-D-π-A) type small molecule, namely DCATT, has been designed and synthesized for the application as donor material in organic solar cells. The fused aromatic unit thieno[3,2-b]thiophene (TT) flanked with thiophene is applied as π bridge, while 4,8-bisthienyl substituted benzodithiophene (BDT) and 2-ethylhexyl cyanoacetate are chosen as the central building block and end group, respectively. Introduction of fused ring to the small molecule enhances the conjugation length of the main chain, and gives a strong tendency to form π-π stacking with a large overlapping area which favors to high charge carrier transport. Small-molecule organic solar cells based on blends of DCATT and fullerene acceptor exhibit power conversion efficiencies as high as 5.20 % under the illumination of AM 1.5G, 100 mW cm(-2) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Can We Confidently Diagnose Pilomatricoma with Fine Needle Aspiration Cytology?

    PubMed Central

    WONG, Yin-Ping; MASIR, Noraidah; SHARIFAH, Noor Akmal

    2015-01-01

    Pilomatricomas can be confidently diagnosed cytologically due to their characteristic cytomorphological features. However, these lesions are rarely encountered by cytopathologists and thus pose a diagnostic dilemma to even experienced individuals, especially when the lesions are focally sampled. We describe two cases of histologically confirmed pilomatricoma. The first case is of a 13-year-old boy with posterior cervical ‘lymphadenopathy’, and the second one is of a 12-year-old girl with a lower cheek swelling. Both aspirates comprised predominantly atypical basal-like cells, with prominent nucleoli. ‘Ghost cells’ were readily identified by cell block in case two, but cell block in case one yielded no diagnostic material. In case two, pilomatricoma was accurately diagnosed pre-operatively. A cytological suspicion of a neoplastic process was raised in case one. Despite being diagnostically challenging, pilomatricoma can be diagnosed with careful observation of two unique cytological features of the lesions: (1) pathognomonic ‘ghost cells’ and (2) irregular, saw-toothed, loosely cohesive basaloid cells, with prominent nucleoli. The role of thorough sampling of the lesion, with multiple passes of various sites, cannot be overemphasized. PMID:25892955

  6. An in situ carbonization-replication method to synthesize mesostructured WO3/C composite as nonprecious-metal anode catalyst in PEMFC.

    PubMed

    Cui, Xiangzhi; Hua, Zile; Wei, Chenyang; Shu, Zhu; Zhang, Liangxia; Chen, Hangrong; Shi, Jianlin

    2013-02-01

    A meostructured WO(3)/C composite with crystalline framework and high electric conductivity has been synthesized by a new in situ carbonization-replication route using the block copolymer (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) present in situ in the pore channels of mesoporous silica template as carbon source. X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, thermogravimetry differential thermal analysis, and N(2) adsorption techniques were adopted for the structural characterization. Cyclic voltammetry, chronoamperometry, and single-cell test for hydrogen electrochemical oxidation were adopted to characterize the electrochemical activities of the mesoporous WO(3)/C composite. The carbon content and consequent electric conductivity of these high-surface-area (108-130 m(2) g(-1)) mesostructured WO(3)/C composite materials can be tuned by variation of the duration of heat treatment, and the composites exhibited high and stable electrochemical catalytic activity. The single-cell test results indicated that the mesostructured WO(3)/C composites showed clear electrochemical catalytic activity toward hydrogen oxidation at 25 °C, which makes them potential non-precious-metal anode catalysts in proton exchange membrane fuel cell. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Diagnostic efficacy of cell block method for vitreoretinal lymphoma.

    PubMed

    Kase, Satoru; Namba, Kenichi; Iwata, Daiju; Mizuuchi, Kazuomi; Kitaichi, Nobuyoshi; Tagawa, Yoshiaki; Okada-Kanno, Hiromi; Matsuno, Yoshihiro; Ishida, Susumu

    2016-03-17

    Vitreoretinal lymphoma (VRL) is a life- and sight-threatening disorder. The aim of this study was to analyze the usefulness of the cell block method for diagnosis of VRL. Sixteen eyes in 12 patients with VRL, and 4 eyes in 4 patients with idiopathic uveitis presenting with vitreous opacity were enrolled in this study. Both undiluted vitreous and diluted fluids were isolated during micro-incision vitrectomy. Cell block specimens were prepared in 19 eyes from diluted fluid containing shredding vitreous. These specimens were then submitted for HE staining as well as immunocytological analyses with antibodies against the B-cell marker CD20, the T-cell marker CD3, and cell proliferation marker Ki67. Conventional smear cytology was applied in 14 eyes with VRL using undiluted vitreous samples. The diagnosis of VRL was made based on the results of cytology, concentrations of interleukin (IL)-10 and IL-6 in undiluted vitreous, and immunoglobulin heavy chain gene rearrangement analysis. Atypical lymphoid cells were identified in 14 out of 15 cell block specimens of VRL (positive rate: 93.3 %), but in 5 out of 14 eyes in conventional smear cytology (positive rate: 35.7 %). Atypical lymphoid cells showed immunoreactivity for CD20 and Ki67. Seven cell block specimens were smear cytology-negative and cell block-positive. The cell block method showed no atypical lymphoid cells in any patient with idiopathic uveitis. Cell block specimens using diluted vitreous fluid demonstrated a high diagnostic sensitivity and a low pseudo-positive rate for the cytological diagnosis of VRL. The cell block method contributed to clear differentiation between VRL and idiopathic uveitis with vitreous opacity.

  8. Application of laser driven fast high density plasma blocks for ion implantation

    NASA Astrophysics Data System (ADS)

    Sari, Amir H.; Osman, F.; Doolan, K. R.; Ghoranneviss, M.; Hora, H.; Höpfl, R.; Benstetter, G.; Hantehzadeh, M. H.

    2005-10-01

    The measurement of very narrow high density plasma blocks of high ion energy from targets irradiated with ps-TW laser pulses based on a new skin depth interaction process is an ideal tool for application of ion implantation in materials, especially of silicon, GaAs, or conducting polymers, for micro-electronics as well as for low cost solar cells. A further application is for ion sources in accelerators with most specifications of many orders of magnitudes advances against classical ion sources. We report on near band gap generation of defects by implantation of ions as measured by optical absorption spectra. A further connection is given for studying the particle beam transforming of n-type semiconductors into p-type and vice versa as known from sub-threshold particle beams. The advantage consists in the use of avoiding aggressive or rare chemical materials when using the beam techniques for industrial applications.

  9. Resilient self-assembling hydrogels from block copolypeptide amphiphiles

    NASA Astrophysics Data System (ADS)

    Nowak, Andrew Paul

    The ability to produce well defined synthetic polypeptides has been greatly improved by the discovery of transition metal species that mediate the controlled polymerization of N-carboxyanhydrides (NCAs). These metal species create a living polymerization system by producing control over chain length, low polydispersities, and the ability to form complex block architectures. We have applied this system to the synthesis of block copolypeptide amphiphiles. Initial block copolymers synthesized were composed of hydrophilic, cationic poly(L-Lysine) combined with hydrophobic, alpha-helical poly(L-Leucine). These Lysine- block-Leucine copolypeptides were found to form stiff, clear hydrogels at low concentration (˜1 wt%) in low ionic strength water. Based on this unexpected result we used the flexibility of our transition metal polymerization chemistry to better understand the nature and mechanisms of gel formation in these materials. Systematic changes to the original Lysine-block-Leucine copolypeptides were made by altering overall chain size, relative block length, polyelectrolyte charge, and hydrophobic secondary structure. Rheological characterization revealed that the strength of these hydrogels was primarily dependent on degree of polymerization, relative block length, and a well ordered secondary structure in the hydrophobic segment. The Lysine-block-Leucine hydrogels were formed by direct addition of water to dry polypeptide material which swelled to homogeneously fill the entire volume of liquid with no special processing. CryoTEM showed a percolating cellular network at ˜100nm that appears to be comprised of both membranes and fibers. Larger length scales studied with Laser Scanning Confocal Microscopy revealed a spontaneously formed microporous network with large (˜10mum) water rich voids. These hydrogels also displayed interesting mechanical properties including rapid recovery of solid like behavior after being sheared to a liquid and mechanical stability with increased temperature (˜90°C). The behavior of the Lysine- block-Leucine system with salt was also thoroughly investigated. With proper tuning of the relative block composition it was found that hydrogels could be optimized to possess good solubility and mechanical strength in many useful ionic solutions (˜100--200mM) such as pH buffers and cell culture media.

  10. Self-assembly 2D zinc-phthalocyanine heterojunction: An ideal platform for high efficiency solar cell

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Jiang, Zhou; Zhao, Jijun

    2017-12-01

    As an alternative to silicon-based solar cells, organic photovoltaic cells emerge for their easy manufacture, low cost, and light weight but are limited by their less stability, low power conversion efficiencies, and low charge carrier mobilities. Here, we design a series of two-dimensional (2D) organic materials incorporating zinc-phthalocyanine (ZnPc) based building blocks which can inherit their excellent intrinsic properties but overcome those shortcomings. Our first-principles calculation shows that such 2D ZnPc-based materials exhibit excellent thermal stabilities, suitable bandgaps, small effective masses, and good absorption properties. The additional benzene rings and nitrogen atoms incorporated between ZnPc molecules are mainly responsible for the modifications of electronic and optical properties. Moreover, some heterojunction solar cells constructed using those 2D ZnPc monolayers as the donor and acceptor have an appropriate absorber gap and interface band alignment. Among them, a power conversion efficiency up to 14.04% is achieved, which is very promising for the next-generation organic solar cells.

  11. Associative list processing unit

    DOEpatents

    Hemmert, Karl Scott; Underwood, Keith D.

    2013-01-29

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full. Also, an associative list processing unit and method comprising employing a plurality of prioritized cell blocks and using a tree of prioritized multiplexers descending from the plurality of cell blocks.

  12. Acoustic Behavior of Hollow Blocks and Bricks Made of Concrete Doped with Waste-Tire Rubber.

    PubMed

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; Defez, Beatriz; Peris-Fajanes, Guillermo

    2016-11-26

    In this paper, we investigate the acoustic behaviour of building elements made of concrete doped with waste-tire rubber. Three different mixtures were created, with 0%, 10%, and 20% rubber in their composition. Bricks, lattice joists, and hollow blocks were manufactured with each mixture, and three different cells were built and tested against aerial and impact noise. The values of the global acoustic isolation and the reduction of the sound pressure level of impacts were measured. Results proved that highly doped elements are an excellent option to isolate low frequency sounds, whereas intermediate and standard elements constitute a most interesting option to block middle and high frequency sounds. In both cases, the considerable amount of waste-tire rubber recycled could justify the employment of the doped materials for the sake of the environment.

  13. Fabrication of high-density In3Sb1Te2 phase change nanoarray on glass-fabric reinforced flexible substrate

    NASA Astrophysics Data System (ADS)

    Yoon, Jong Moon; Shin, Dong Ok; Yin, You; Seo, Hyeon Kook; Kim, Daewoon; In Kim, Yong; Jin, Jung Ho; Kim, Yong Tae; Bae, Byeong-Soo; Ouk Kim, Sang; Lee, Jeong Yong

    2012-06-01

    Mushroom-shaped phase change memory (PCM) consisting of a Cr/In3Sb1Te2 (IST)/TiN (bottom electrode) nanoarray was fabricated via block copolymer lithography and single-step dry etching with a gas mixture of Ar/Cl2. The process was performed on a high performance transparent glass-fabric reinforced composite film (GFR Hybrimer) suitable for use as a novel substrate for flexible devices. The use of GFR Hybrimer with low thermal expansion and flat surfaces enabled successful nanoscale patterning of functional phase change materials on flexible substrates. Block copolymer lithography employing asymmetrical block copolymer blends with hexagonal cylindrical self-assembled morphologies resulted in the creation of hexagonal nanoscale PCM cell arrays with an areal density of approximately 176 Gb/in2.

  14. Acoustic Behavior of Hollow Blocks and Bricks Made of Concrete Doped with Waste-Tire Rubber

    PubMed Central

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; Defez, Beatriz; Peris-Fajanes, Guillermo

    2016-01-01

    In this paper, we investigate the acoustic behaviour of building elements made of concrete doped with waste-tire rubber. Three different mixtures were created, with 0%, 10%, and 20% rubber in their composition. Bricks, lattice joists, and hollow blocks were manufactured with each mixture, and three different cells were built and tested against aerial and impact noise. The values of the global acoustic isolation and the reduction of the sound pressure level of impacts were measured. Results proved that highly doped elements are an excellent option to isolate low frequency sounds, whereas intermediate and standard elements constitute a most interesting option to block middle and high frequency sounds. In both cases, the considerable amount of waste-tire rubber recycled could justify the employment of the doped materials for the sake of the environment. PMID:28774084

  15. Vinblastine and diethylstilboestrol tested in the in vitro mammalian cell micronucleus test (MNvit) at Swansea University UK in support of OECD draft Test Guideline 487.

    PubMed

    Johnson, George E; Jenkins, Gareth J; Thomas, Adam D; Doak, Shareen H

    2010-10-29

    The known aneugens vinblastine and diethylstilboestrol (DES) were tested in the in vitro micronucleus assay, with and without cytokinesis block in Chinese hamster CHO cells, at the laboratories of Swansea University, Swansea, UK. These experiments were carried out to determine the suitability of the cell death and cytostasis measures used in the assay, as recommended in the draft OECD Test Guideline 487, 2007. Both compounds were positive in the assay without cytokinesis block at concentrations giving approximately 50% or less cell death and cytostasis, using relative population doublings and relative increase in cell counts. Moreover, both compounds were positive in the assay with cytokinesis block at concentrations giving approximately 50% cell death and cytostasis, using replicative index. Vinblastine was also positive for mitotic slippage, causing micronuclei in mononucleate cells with cytokinesis block. Relative population doublings and relative increase in cell counts were appropriate measures of cell death and cytostasis for the non-cytokinesis block in vitro micronucleus assay. In the cytokinesis blocked micronucleus assay, replicative index and cytokinesis block proliferation index were suitable cell death and cytostasis measures. Copyright © 2009 Elsevier B.V. All rights reserved.

  16. In Vitro Model for Predicting the Protective Effect of Ultraviolet-Blocking Contact Lens in Human Corneal Epithelial Cells.

    PubMed

    Abengózar-Vela, Antonio; Arroyo, Cristina; Reinoso, Roberto; Enríquez-de-Salamanca, Amalia; Corell, Alfredo; González-García, María Jesús

    2015-01-01

    To develop an in vitro method to determine the protective effect of UV-blocking contact lenses (CLs) in human corneal epithelial (HCE) cells exposed to UV-B radiation. SV-40-transformed HCE cells were covered with non-UV-blocking CL, UV-blocking CL or not covered, and exposed to UV-B radiation. As control, HCE cells were covered with both types of CLs or not covered, but not exposed to UV-B radiation. Cell viability at 24, 48 and 72 h, after UV-B exposure and removing CLs, was determined by alamarBlue(®) assay. Percentage of live, dead and apoptotic cells was also assessed by flow cytometry after 24 h of UV-B exposure. Intracellular reactive oxygen species (ROS) production after 1 h of exposure was assessed using the dye H(2)DCF-DA. Cell viability significantly decreased, apoptotic cells and intracellular ROS production significantly increased when UVB-exposed cells were covered with non-UV-blocking CL or not covered compared to non-irradiated cells. When cells were covered with UV-blocking CL, cell viability significantly increased and apoptotic cells and intracellular ROS production did not increase compared to exposed cells. UV-B radiation induces cell death by apoptosis, increases ROS production and decreases viable cells. UV-blocking CL is able to avoid these effects increasing cell viability and protecting HCE cells from apoptosis and ROS production induced by UV-B radiation. This in vitro model is an alternative to in vivo methods to determine the protective effect of UV-blocking ophthalmic biomaterials because it is a quicker, cheaper and reliable model that avoids the use of animals.

  17. Zirconia-hydroxyapatite composite material with micro porous structure.

    PubMed

    Matsumoto, Takuya Junior; An, Sang-Hyun; Ishimoto, Takuya; Nakano, Takayoshi; Matsumoto, Takuya; Imazato, Satoshi

    2011-11-01

    Titanium plates and apatite blocks are commonly used for restoring large osseous defects in dental and orthopedic surgery. However, several cases of allergies against titanium have been recently reported. Also, sintered apatite block does not possess sufficient mechanical strength. In this study, we attempted to fabricate a composite material that has mechanical properties similar to biocortical bone and high bioaffinity by compounding hydroxyapatite (HAp) with the base material zirconia (ZrO(2)), which possesses high mechanical properties and low toxicity toward living organisms. After mixing the raw material powders at several different ZrO(2)/HAp mixing ratios, the material was compressed in a metal mold (8 mm in diameter) at 5 MPa. Subsequently, it was sintered for 5 h at 1500°C to obtain the ZrO(2)/HAp composite. The mechanical property and biocompatibility of materials were investigated. Furthermore, osteoconductivity of materials was investigated by animal studies. A composite material with a minute porous structure was successfully created using ZrO(2)/HAp powders, having different particle sizes, as the starting material. The material also showed high protein adsorption and a favorable cellular affinity. When the mixing ratio was ZrO(2)/HAp=70/30, the strength was equal to cortical bone. Furthermore, in vivo experiments confirmed its high osteoconductivity. The composite material had strength similar to biocortical bones with high cell and tissue affinities by compounding ZrO(2) and HAp. The ZrO(2)/HAp composite material having micro porous structure would be a promising bone restorative material. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Solvent mediated hybrid 2D materials: black phosphorus - graphene heterostructured building blocks assembled for sodium ion batteries.

    PubMed

    Li, Mengya; Muralidharan, Nitin; Moyer, Kathleen; Pint, Cary L

    2018-06-07

    Here we demonstrate the broad capability to exploit interactions at different length scales in 2D materials to prepare macroscopic functional materials containing hybrid black phosphorus/graphene (BP/G) heterostructured building blocks. First, heterostructured 2D building blocks are self-assembled during co-exfoliation in the solution phase based on electrostatic attraction of different 2D materials. Second, electrophoretic deposition is used as a tool to assemble these building blocks into macroscopic films containing these self-assembled 2D heterostructures. Characterization of deposits formed using this technique elucidates the presence of stacked and sandwiched 2D heterostructures, and zeta potential measurements confirm the mechanistic interactions driving this assembly. Building on the exceptional sodium alloying capacity of BP, these materials were demonstrated as superior binder-free and additive-free anodes for sodium batteries with specific discharge capacity of 2365 mA h gP-1 and long stable cycling duration. This study demonstrates how controllable co-processing of 2D materials can enable material control for stacking and building block assembly relevant to broad future applications of 2D materials.

  19. Digital Alchemy for Materials Design: Colloids and Beyond

    NASA Astrophysics Data System (ADS)

    van Anders, Greg; Klotsa, Daphne; Karas, Andrew; Dodd, Paul; Glotzer, Sharon

    Starting with the early alchemists, a holy grail of science has been to make desired materials by manipulating basic building blocks. Building blocks that show promise for assembling new complex materials can be synthesized at the nanoscale with attributes that would astonish the ancient alchemists in their versatility. However, this versatility means that connecting building-block attributes to bulk structure is both necessary for rationally engineering materials and difficult because building block attributes can be altered in many ways. We show how to exploit the malleability of colloidal nanoparticle ``elements'' to quantitatively link building-block attributes to bulk structure through a statistical thermodynamic framework we term ``digital alchemy''. We use this framework to optimize building blocks for a given target structure and to determine which building-block attributes are most important to control for self-assembly, through a set of novel thermodynamic response functions. We thereby establish direct links between the attributes of colloidal building blocks and the bulk structures they form. Moreover, our results give concrete solutions to the more general conceptual challenge of optimizing emergent behaviors in nature and can be applied to other types of matter.

  20. (PECASE 08) - ION-Conducting Network Membranes Using Tapered Block Copolymers

    DTIC Science & Technology

    2015-07-08

    iron phosphate ( LiFePO4 ) as an active material for the cathode. The composite cathode was prepared by mixing P(S-EO) with carbon black and LiFePO4 ...salt- doping ratio of [EO]:[Li] = 12:1. Example cycle-life data for the Li/P(S-EO)/ LiFePO4 cell is shown in Figure 1. The specific discharge...rates, indicating good cycling stability. This investigation currently is in progress. 1 Figure 1: Cycle-life data for the Li/P(S-EO)/ LiFePO4 cell

  1. [Clinical Value of Cell Block in the Diagnosis of Malignant Pleural Effusion].

    PubMed

    Wang, Xintong; Cheng, Fangyuan; Zhong, Diansheng; Zhang, Lisha; Meng, Fanlu; Shao, Yi; Yu, Tao

    2017-06-20

    Malignant pleural effusion (MPE) is due tumor which arises from the mesothelium or metastases from tumor origniating other sites. Generally, the prognosis of MPE is poor, in the premise of reducing the pain of patients, as soon as possible make clear the property of pleural effusion and cause of the disesease, rightly and quickly, providing effective information for subsequent treatment. The cell block of 103 patients by using natural sedimentation or plasma coagulation method combined with HE staining and immunohistochemical staining method maked clear diagnosis and compared with other methods. 90 patients were diagnosed by cell block section from 103 patients who had MPE (diagnostic rate 87.4%); 32 cases were diagnosed by cell block section only, 74 cases pointed out that the pathological type , 23 cases even pointed out the primary lesions; 71 cases examined other invasive methods at the same time, the diagnostic rate was 87.3% and 81.7%; the detection rate of cell block section and cytological smear in detecting malignant tumor cells was 86.7%and 44.0% respectively. Cell block can not only increase the diagnosis, in contrast to cytological smear, and own the same diagnostic rate compared with other invasive methods, but also can confirm pathological type and primary lesion; especially, for other invasive methods, cell block method is a preferable complementary method, and that cell block method maybe the only way for some patients.

  2. Determination of Protein Expression Level in Cultured Cells by Immunocytochemistry on Paraffin-embedded Cell Blocks.

    PubMed

    Poojan, Shiv; Kim, Han-Seong; Yoon, Ji-Woon; Sim, Hye Won; Hong, Kyeong-Man

    2018-05-20

    Immunofluorescent staining is currently the method of choice for determination of protein expression levels in cell-culture systems when morphological information is also necessary. The protocol of immunocytochemical staining on paraffin-embedded cell blocks, presented herein, is an excellent alternative to immunofluorescent staining on non-paraffin-embedded fixed cells. In this protocol, a paraffin cell block from HeLa cells was prepared using the thromboplastin-plasma method, and immunocytochemistry was performed for the evaluation of two proliferation markers, CKAP2 and Ki-67. The nuclei and cytoplasmic morphology of the HeLa cells were well preserved in the cell-block slides. At the same time, the CKAP2 and Ki-67 staining patterns in the immunocytochemistry were quite similar to those in immunohistochemical staining in paraffin cancer tissues. With modified cell-culture conditions, including pre-incubation of HeLa cells under serum-free conditions, the effect could be evaluated while preserving architectural information. In conclusion, immunocytochemistry on paraffin-embedded cell blocks is an excellent alternative to immunofluorescent staining.

  3. Superconducting magnet and fabrication method

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1994-01-01

    A method of trapping a field in a block of superconductor material, includes providing (i) a block of material defining a bore, (ii) a high permeability core within the bore that defines a low reluctance path through the bore, (iii) a high permeability external structure on the exterior of the block of material that defines a low reluctance path between opposite ends of the core, and (iv) an electromagnet configured to apply a magnetic field around the high permeability core. The method proceeds by energizing the electromagnet to produce an applied magnetic field around the high permeability core, cooling the block of material sufficiently to render the block of material superconducting, de-energizing the electromagnet to result in a trapped magnetic field, and at least partially removing the low reluctance path defined by the core and the external structure in order to increase the magnetic flux density of the trapped magnetic field.

  4. Material and Device Stability in Perovskite Solar Cells.

    PubMed

    Kim, Hui-Seon; Seo, Ja-Young; Park, Nam-Gyu

    2016-09-22

    Organic-inorganic halide perovskite solar cells have attracted great attention because of their superb efficiency reaching 22 % and low-cost, facile fabrication processing. Nevertheless, stability issues in perovskite solar cells seem to block further advancements toward commercialization. Thus, device stability is one of the important topics in perovskite solar cell research. In the beginning, the poor moisture resistivity of the perovskite layer was considered as a main problem that hindered further development of perovskite solar cells, which encouraged engineering of the perovskite or protection of the perovskite by a buffer layer. Soon after, other parameters affecting long-term stability were sequentially found and various attempts have been made to enhance intrinsic and extrinsic stability. Here we review the recent progresses addressing stability issues in perovskite solar cells. In this report, we investigated factors affecting stability from material and device points of view. To gain a better understanding of the stability of the bulk perovskite material, decomposition mechanisms were investigated in relation to moisture, photons, and heat. Stability of full device should also be carefully examined because its stability is dependent not only on bulk perovskite but also on the interfaces and selective contacts. In addition, ion migration and current-voltage hysteresis were found to be closely related to stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. [Construction of porous hydroxyapatite (HA) block loaded with cultured chondrocytes].

    PubMed

    Yan, M; Dang, G

    1999-07-01

    To construct a kind of bone healing enhancing implant with cultured chondrocytes bound to hydroxyapatite (HA). Chondrocytes were obtained from the costicartilage of rat and were cultured on the porous HA blocks, 3 mm x 3 mm x 4 mm size, for three and seven days. Scanning electron micrograph was taken to show whether the cells grew outside and inside the pore of HA block. The cells cultured on tiny glass sheet for 2 days were used to prove where the cells come from by in situ hybridization technique with alpha1 (II) cDNA probe. Scanning electron micrographs showed that the pores of the HA surface and inside of the blocks are filled with cultured cells, especially the longer cultured block. The cells were chondrocytes confirmed by in situ hybridization. The porous HA can be used as cell cultured substrate and chondrocyte can adhere and proliferate inside the porous HA block.

  6. Cytomorphology of cervicovaginal melanoma: ThinPrep versus conventional Papanicolaou tests.

    PubMed

    Setia, Namrata; Goulart, Robert A; Leiman, Gladywn; Otis, Christopher N; Modem, Rukmini; Pantanowtiz, Liron

    2010-12-31

    Primary cervicovaginal melanoma is a rare malignancy associated with a high risk of recurrence. Prior studies discussing the cytomorphology of cervicovaginal melanoma have been based primarily on review of conventional Papanicolaou (Pap) smears. The aim of this study was to evaluate cervicovaginal melanomas identified in liquid-based Pap tests, in comparison with features seen on conventional Pap smear preparation. Cases of cervicovaginal melanoma identified on Pap tests with concurrent or subsequent histopathologic confirmation were collected from the Baystate Medical Center cytopathology files and personal archives of the authors over a total period of 34 years. All cytopathology (n = 6) and the available histology slides (n = 5) were reviewed. Cases were analyzed regarding clinical, histopathologic and cytomorphological findings. A total of six cases with invasive cervicovaginal melanoma diagnosed on Pap tests were identified. Most patients were postmenopausal with contact bleeding, correlating with surface ulceration (identified in biopsy/excision material in 5/5 cases). Most cases had deeply invasive tumors (5/5: modified Breslow's thickness > 5 mm and Chung's level of invasion IV/V). Pap tests included four ThinPrep and two conventional smears. Overall, ThinPrep Pap tests exhibited a higher ratio of tumor cells to background squamous cells. While all Pap tests were bloodstained, tumor diathesis was prominent only within conventional smears. Melanoma cells were present both as clusters and scattered single cells in each Pap test type. Both the preparations contained epithelioid tumor cells, whereas spindled tumor cells were seen in only two ThinPrep cases. Prominent nucleoli and binucleation of tumor cells were seen in both the preparations. Melanin pigment was identified in only ThinPrep (3/4) cases and nuclear pseudo-inclusions in one conventional Pap smear. Cell blocks were made in three ThinPrep cases and immunocytochemistry (S-100, HMB45, Melan-A) performed on additional vial material (one ThinPrep slide and one cell block) was immunoreactive in melanoma cells. Primary cervicovaginal melanoma, a rare malignancy seen predominantly in postmenopausal women, may be successfully diagnosed in either ThinPrep Pap tests or conventional Pap smears. While ThinPrep Pap tests did not demonstrate morphological advantage over conventional smears, liquid-based cytology specimens did provide additional material for cellblock preparation and immunocytochemical evaluation in a subset of cases.

  7. Endocytotic uptake of HPMA-based polymers by different cancer cells: impact of extracellular acidosis and hypoxia

    PubMed Central

    Gündel, Daniel; Allmeroth, Mareli; Reime, Sarah; Zentel, Rudolf; Thews, Oliver

    2017-01-01

    Background Polymeric nanoparticles allow to selectively transport chemotherapeutic drugs to the tumor tissue. These nanocarriers have to be taken up into the cells to release the drug. In addition, tumors often show pathological metabolic characteristics (hypoxia and acidosis) which might affect the polymer endocytosis. Materials and methods Six different N-(2-hydroxypropyl)methacrylamide (HPMA)-based polymer structures (homopolymer as well as random and block copolymers with lauryl methacrylate containing hydrophobic side chains) varying in molecular weight and size were analyzed in two different tumor models. The cellular uptake of fluorescence-labeled polymers was measured under hypoxic (pO2 ≈1.5 mmHg) and acidic (pH 6.6) conditions. By using specific inhibitors, different endocytotic routes (macropinocytosis and clathrin-mediated, dynamin-dependent, cholesterol-dependent endocytosis) were analyzed separately. Results The current results revealed that the polymer uptake depends on the molecular structure, molecular weight and tumor line used. In AT1 cells, the uptake of random copolymer was five times stronger than the homopolymer, whereas in Walker-256 cells, the uptake of all polymers was much stronger, but this was independent of the molecular structure and size. Acidosis increased the uptake of random copolymer in AT1 cells but reduced the intracellular accumulation of homopolymer and block copolymer. Hypoxia reduced the uptake of all polymers in Walker-256 cells. Hydrophilic polymers (homopolymer and block copolymer) were taken up by all endocytotic routes studied, whereas the more lipophilic random copolymer seemed to be taken up preferentially by cholesterol- and dynamin-dependent endocytosis. Conclusion The study indicates that numerous parameters of the polymer (structure, size) and of the tumor (perfusion, vascular permeability, pH, pO2) modulate drug delivery, which makes it difficult to select the appropriate polymer for the individual patient. PMID:28831253

  8. Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chenxi; Luo, Yudan; Chen, Xiaohong; Ou-Yang, Wei; Chen, Yiwei; Sun, Zhuo; Huang, Sumei

    2016-12-01

    Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic (PV) cells. Cell structures based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive and brisk advances, holding great potential to grow into a mature PV technology. High power conversion efficiency (PCE) values have been obtained from the mesoscopic configuration in which a few hundred nano-meter thick mesoporous scaffold (e.g. TiO2 or Al2O3) infiltrated by perovskite absorber was sandwiched between the electron and hole transport layers. A uniform and compact hole-blocking layer is necessary for high efficient perovskite-based thin film solar cells. In this study, we investigated the characteristics of TiO2 compact layer using various methods and its effects on the PV performance of perovskite solar cells. TiO2 compact layer was prepared by a sol-gel method based on titanium isopropoxide and HCl, spin-coating of titanium diisopropoxide bis (acetylacetonate), screen-printing of Dyesol's bocking layer titania paste, and a chemical bath deposition (CBD) technique via hydrolysis of TiCl4, respectively. The morphological and micro-structural properties of the formed compact TiO2 layers were characterized by scanning electronic microscopy and X-ray diffraction. The analyses of devices performance characteristics showed that surface morphologies of TiO2 compact films played a critical role in affecting the efficiencies. The nanocrystalline TiO2 film deposited via the CBD route acts as the most efficient hole-blocking layer and achieves the best performance in perovskite solar cells. The CBD-based TiO2 compact and dense layer offers a small series resistance and a large recombination resistance inside the device, and makes it possible to achieve a high power conversion efficiency of 12.80%.

  9. Masonry Specialist III & IV, 3-20. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of a course description, plan of instruction, study guides, and workbooks for use in training masonry specialists. Covered in the course blocks are laying concrete blocks, stone, and bricks as well as plaster, stucco, and tile. Course block III, on laying concrete blocks, stone, and bricks,…

  10. Manipulation of a quasi-natural cell block for high-efficiency transplantation of adherent somatic cells

    PubMed Central

    Chung, H.J.; Hassan, M.M.; Park, J.O.; Kim, H.J.; Hong, S.T.

    2015-01-01

    Recent advances have raised hope that transplantation of adherent somatic cells could provide dramatic new therapies for various diseases. However, current methods for transplanting adherent somatic cells are not efficient enough for therapeutic applications. Here, we report the development of a novel method to generate quasi-natural cell blocks for high-efficiency transplantation of adherent somatic cells. The blocks were created by providing a unique environment in which cultured cells generated their own extracellular matrix. Initially, stromal cells isolated from mice were expanded in vitro in liquid cell culture medium followed by transferring the cells into a hydrogel shell. After incubation for 1 day with mechanical agitation, the encapsulated cell mass was perforated with a thin needle and then incubated for an additional 6 days to form a quasi-natural cell block. Allograft transplantation of the cell block into C57BL/6 mice resulted in perfect adaptation of the allograft and complete integration into the tissue of the recipient. This method could be widely applied for repairing damaged cells or tissues, stem cell transplantation, ex vivo gene therapy, or plastic surgery. PMID:25742639

  11. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Wang, Yi-Qing; Fan, Zhen; Taft, Charles; Maaref, Shahin; Bailey, Sheila (Technical Monitor)

    2003-01-01

    Solar energy is a renewable, nonpolluting, and most abundant energy source for human exploration of a remote site or outer space. In order to generate appreciable electrical power in space or on the earth, it is necessary to collect sunlight from large areas and with high efficiency due to the low density of sunlight. Future organic or polymer (plastic) solar cells appear very attractive due to their unique features such as light weight, flexible shape, tunability of energy band-gaps via versatile molecular or supramolecular design, synthesis, processing and device fabrication schemes, and much lower cost on large scale industrial production. It has been predicted that supramolecular and nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration due to improved electronic ultrastructure and morphology in comparison to polymer composite system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel block copolymer system containing donor and acceptor blocks covalently attached. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (RO-PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (SF-PPV). The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block has a strong PL emission at around 560 nm, and acceptor block has a strong PL emission at around 520 nm, the PL emissions of final block copolymers are severely quenched. This verifies the expected electron transfer and charge separation due to interfaces of donor and acceptor nano phase separated blocks. The system therefore has potential for variety light harvesting applications, including high efficient photovoltaic applications.

  12. 25th anniversary article: supramolecular materials for regenerative medicine.

    PubMed

    Boekhoven, Job; Stupp, Samuel I

    2014-03-19

    In supramolecular materials, molecular building blocks are designed to interact with one another via non-covalent interactions in order to create function. This offers the opportunity to create structures similar to those found in living systems that combine order and dynamics through the reversibility of intermolecular bonds. For regenerative medicine there is a great need to develop materials that signal cells effectively, deliver or bind bioactive agents in vivo at controlled rates, have highly tunable mechanical properties, but at the same time, can biodegrade safely and rapidly after fulfilling their function. These requirements make supramolecular materials a great platform to develop regenerative therapies. This review illustrates the emerging science of these materials and their use in a number of applications for regenerative medicine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Comparison of Water Diffusion in Polymer Based Fuel Cell and Reverse Osmosis Membrane Materials

    NASA Astrophysics Data System (ADS)

    Soles, Christopher; Frieberg, Bradley; Tarver, Jacob; Tyagi, Madhusudan; Jeong, Cheol; Chan, Edwin; Stafford, Christopher

    Hydrated polymer membranes are critical in both fuel cells and water filtration and desalination. In both of these applications the membrane function (selectively transporting or separating ions) is coupled with the transport of water through the membrane. There is a significant need to understand the nature by which the water and ions distribute and move through these membranes. This presentation compares the transport mechanisms in in an ion containing block copolymer alkaline fuel cell membrane with that of a polyamide membrane that is used as the active layer in a reverse osmosis water desalination membrane. Small angle neutron scattering measurements are used to locally probe how water swells the different materials and quantitatively describe the distribution of water within the membrane microstructures. Quasielastic neutron scattering measurements are then used to separate the polymer dynamics of the host membranes from the dynamics of the water inside the membranes. This reveals that water moves at least an order of magnitude slower through the ion containing fuel cell membrane materials, consistent with a solution-diffusion model, while the water in the polyamide membranes moves faster, consistent with a pore-flow diffusion mechanism. These insights will be discussed in terms of a coupling of the water and polymer dynamics and design cues for high performance membrane materials.

  14. Molecular Building Block-Based Electronic Charges for High-Throughput Screening of Metal-Organic Frameworks for Adsorption Applications.

    PubMed

    Argueta, Edwin; Shaji, Jeena; Gopalan, Arun; Liao, Peilin; Snurr, Randall Q; Gómez-Gualdrón, Diego A

    2018-01-09

    Metal-organic frameworks (MOFs) are porous crystalline materials with attractive properties for gas separation and storage. Their remarkable tunability makes it possible to create millions of MOF variations but creates the need for fast material screening to identify promising structures. Computational high-throughput screening (HTS) is a possible solution, but its usefulness is tied to accurate predictions of MOF adsorption properties. Accurate adsorption simulations often require an accurate description of electrostatic interactions, which depend on the electronic charges of the MOF atoms. HTS-compatible methods to assign charges to MOF atoms need to accurately reproduce electrostatic potentials (ESPs) and be computationally affordable, but current methods present an unsatisfactory trade-off between computational cost and accuracy. We illustrate a method to assign charges to MOF atoms based on ab initio calculations on MOF molecular building blocks. A library of building blocks with built-in charges is thus created and used by an automated MOF construction code to create hundreds of MOFs with charges "inherited" from the constituent building blocks. The molecular building block-based (MBBB) charges are similar to REPEAT charges-which are charges that reproduce ESPs obtained from ab initio calculations on crystallographic unit cells of nanoporous crystals-and thus similar predictions of adsorption loadings, heats of adsorption, and Henry's constants are obtained with either method. The presented results indicate that the MBBB method to assign charges to MOF atoms is suitable for use in computational high-throughput screening of MOFs for applications that involve adsorption of molecules such as carbon dioxide.

  15. Beam deceleration for block-face scanning electron microscopy of embedded biological tissue.

    PubMed

    Ohta, Keisuke; Sadayama, Shoji; Togo, Akinobu; Higashi, Ryuhei; Tanoue, Ryuichiro; Nakamura, Kei-ichiro

    2012-04-01

    The beam deceleration (BD) method for scanning electron microscopes (SEM) also referred to as "retarding" was applied to back-scattered electron (BSE) imaging of the flat block face of a resin embedded biological specimen under low accelerating voltage and low beam current conditions. BSE imaging was performed with 0-4 kV of BD on en bloc stained rat hepatocyte. BD drastically enhanced the compositional contrast of the specimen and also improved the resolution at low landing energy levels (1.5-3 keV) and a low beam current (10 pA). These effects also functioned in long working distance observation, however, stage tilting caused uncorrectable astigmatism in BD observation. Stage tilting is mechanically required for a FIB/SEM, so we designed a novel specimen holder to minimize the unfavorable tilting effect. The FIB/SEM 3D reconstruction using the new holder showed a reasonable contrast and resolution high enough to analyze individual cell organelles and also the mitochondrial cristae structures (~5 nm) of the hepatocyte. These results indicate the advantages of BD for block face imaging of biological materials such as cells and tissues under low-voltage and low beam current conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Ultrasound guided fine needle aspiration biopsy of parathyroid gland and lesions.

    PubMed

    Dimashkieh, Haytham; Krishnamurthy, Savitri

    2006-03-28

    Parathyroid gland and their tumors comprise a small proportion of non-palpable neck masses that are investigated by ultrasound (US) guided fine needle aspiration biopsy. We reviewed our institution's cases of US guided FNAB of parathyroid gland and their lesions to determine the role of cytology for the preoperative diagnosis of parathyroid gland and their lesions. All cases of FNAB of parathyroid gland and lesions in the last 10 years were reviewed in detail with respect to clinical history and correlated with the histopathologic findings in available cases. The cytologic parameters that were evaluated included cellularity assessed semiquantitatively as scant, intermediate or abundant (<50, 51-500 or >500 cells), cellular distribution (loose clusters, single cells/naked nuclei, rounded clusters, two- and three-dimensional clusters, and presence of prominent vascular proliferation), cellular characteristics (cell size, nuclear shape, presence/absence of a nucleolus, degree of mitosis, amount of cytoplasm, and appearance of nuclear chromatin), and background (colloid-like material and macrophages). Immunostaining for parathyroid hormone (PTH) was performed on selected cases using either destained Pap smears or cell block sections. Twenty cases of US-guided FNAB of parathyroid glands and their lesions including 13 in the expected locations in the neck, 3 in intrathyroid region, 3 in thyroid bed, and 1 metastatic to liver were studied. Majority of the cases showed intermediate cellularity (51-500 cells) with round to oval cells that exhibited a stippled nuclear chromatin, without significant pleomorphism or mitotic activity. The cells were arranged in loose two dimensional groups with many single cells/naked nuclei around the groups. Occasionally macrophages and colloid like material was also encountered. There was no significant difference in the cytomorphologic features between normal gland, hyperplasia adenoma, or carcinoma. Immunocytochemical analysis for PHT was performed for 14 cases (6 destained smears and 8 cell blocks) which showed distinct cytoplasmic positivity. US-guided FNAB is a useful test for confirming the diagnosis of not only clinically suspected parathyroid gland and lesions but also for detecting parathyroid glands in unexpected locations such as in thyroid bed or within the thyroid gland. Although there is significant overlap in the cytomorphologic features of cells derived from parathyroid and thyroid gland, the presence of stippled nuclear chromatin, prominent vascular proliferation with attached epithelial cells, and frequent occurrence of single cells/naked nuclei are useful clues that favor parathyroid origin. Distinction of the different parathyroid lesions including hyperplasia, adenoma, and carcinoma cannot be made solely on cytology. Immunostaining for PTH can be performed on destained Pap smears and cell block sections which can be valuable for confirming parathyroid origin of the cells.

  17. Application of EAP materials toward a refreshable Braille display

    NASA Astrophysics Data System (ADS)

    Di Spigna, N.; Chakraborti, P.; Yang, P.; Ghosh, T.; Franzon, P.

    2009-03-01

    The development of a multiline, refreshable Braille display will assist with the full inclusion and integration of blind people into society. The use of both polyvinylidene fluoride (PVDF) film planar bending mode actuators and silicone dielectric elastomer cylindrical tube actuators have been investigated for their potential use in a Braille cell. A liftoff process that allows for aggressive scaling of miniature bimorph actuators has been developed using standard semiconductor lithography techniques. The PVDF bimorphs have been demonstrated to provide enough displacement to raise a Braille dot using biases less than 1000V and operating at 10Hz. In addition, silicone tube actuators have also been demonstrated to achieve the necessary displacement, though requiring higher voltages. The choice of electrodes and prestrain conditions aimed at maximizing axial strain in tube actuators are discussed. Characterization techniques measuring actuation displacement and blocking forces appropriate for standard Braille cell specifications are presented. Finally, the integration of these materials into novel cell designs and the fabrication of a prototype Braille cell are discussed.

  18. Liquid crystalline epoxy nanocomposite material for dental application.

    PubMed

    Tai, Yun-Yuan; Hsu, Sheng-Hao; Chen, Rung-Shu; Su, Wei-Fang; Chen, Min-Huey

    2015-01-01

    Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment. Copyright © 2014. Published by Elsevier B.V.

  19. Advanced Materials for PEM-Based Fuel Cell Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. McGrath; Donald G. Baird; Michael von Spakovsky

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due tomore » their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in herein.« less

  20. Synthesis and studies of polypeptide materials: Self-assembled block copolypeptide amphiphiles, DNA-condensing block copolypeptides and membrane-interactive random copolypeptides

    NASA Astrophysics Data System (ADS)

    Wyrsta, Michael Dmytro

    A new class of transition metal initiators for the controlled polymerization of alpha-aminoacid-N-carboxyanhydrides (alpha-NCAs), has been developed by Deming et al. This discovery has allowed for the synthesis of well-defined "protein-like" polymers. Using this chemistry we have made distinct block/random copolypeptides for biomedical applications. Drug delivery, gene delivery, and antimicrobial polymers were the focus of our research efforts. The motivation for the synthesis and study of synthetic polypeptide based materials comes from proteins. Natural proteins are able to adopt a staggeringly large amount of uniquely well-defined folded structures. These structures account for the diversity in properties of proteins. As catalysts (enzymes) natural proteins perform some of the most difficult chemistry with ease and precision at ambient pressures and temperatures. They also exhibit incredible structural properties that directly result from formation of complex hierarchical assemblies. Self-assembling block copolymers were synthesized with various compositions and architectures. In general, di- and tri-block amphiphiles were studied for their self-assembling properties. Both spherical and tubular vesicles were found to assemble from di- and tri-block amphiphiles, respectively. In addition to self-assembly, pH responsiveness was engineered into these amphiphiles by the incorporation of basic residues (lysine) into the hydrophobic block. Another form of self-assembly studied was the condensation of DNA using cationic block copolymers. It was found that cationic block copolymers could condense DNA into compact, ordered, water-soluble aggregates on the nanoscale. These aggregates sufficiently protected DNA from nucleases and yet were susceptible to proteases. These studies form the basis of a gene delivery platform. The ease with which NCAs are polymerized renders them completely amenable to parallel synthetic methods. We have employed this technique to discover new antimicrobial polypeptides. The polymers studied were themselves the antimicrobial agent, not a self-assembled aggregate that contained antibiotics. It was found that powerful antibacterial polymers could be readily prepared with simple binary compositions. Antibacterial activity was sensitive to copolymer composition, bacterial cell-wall type, and insensitive to chain length (within reason).

  1. Geologic Structures in Crater Walls on Vesta

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Beck, A. W.; Ammannito, E.; Carsenty, U.; DeSanctis, M. C.; LeCorre, L.; McCoy, T. J.; Reddy, V.; Schroeder, S. E.

    2012-01-01

    The Framing Camera (FC) on the Dawn spacecraft has imaged most of the illuminated surface of Vesta with a resolution of apporpx. 20 m/pixel through different wavelength filters that allow for identification of lithologic units. The Visible and Infrared Mapping Spectrometer (VIR) has imaged the surface at lower spatial resolution but high spectral resolution from 0.25 to 5 micron that allows for detailed mineralogical interpretation. The FC has imaged geologic structures in the walls of fresh craters and on scarps on the margin of the Rheasilvia basin that consist of cliff-forming, competent units, either as blocks or semi-continuous layers, hundreds of m to km below the rims. Different units have different albedos, FC color ratios and VIR spectral characteristics, and different units can be juxtaposed in individual craters. We will describe different examples of these competent units and present preliminary interpretations of the structures. A common occurrence is of blocks several hundred m in size of high albedo (bright) and low albedo (dark) materials protruding from crater walls. In many examples, dark material deposits lie below coherent bright material blocks. In FC Clementine color ratios, bright material is green indicating deeper 1 m pyroxene absorption band. VIR spectra show these to have deeper and wider 1 and 2 micron pyroxene absorption bands than the average vestan surface. The associated dark material has subdued pyroxene absorption features compared to the average vestan surface. Some dark material deposits are consistent with mixtures of HED materials with carbonaceous chondrites. This would indicate that some dark material deposits in crater walls are megabreccia blocks. The same would hold for bright material blocks found above them. Thus, these are not intact crustal units. Marcia crater is atypical in that the dark material forms a semi-continuous, thin layer immediately below bright material. Bright material occurs as one or more layers. In one region, there is an apparent angular unconformity between the bright material and the dark material where bright material layers appear to be truncated against the underlying dark layer. One crater within the Rheasilvia basin contains two distinct types of bright materials outcropping on its walls, one like that found elsewhere on Vesta and the other an anomalous block 200 m across. This material has the highest albedo; almost twice that of the vestan average. Unlike all other bright materials, this block has a subdued 1 micron pyroxene absorption band in FC color ratios. These data indicate that this block represents a distinct vestan lithology that is rarely exposed.

  2. High efficient perovskite solar cell material CH3NH3PbI3: Synthesis of films and their characterization

    NASA Astrophysics Data System (ADS)

    Bera, Amrita Mandal; Wargulski, Dan Ralf; Unold, Thomas

    2018-04-01

    Hybrid organometal perovskites have been emerged as promising solar cell material and have exhibited solar cell efficiency more than 20%. Thin films of Methylammonium lead iodide CH3NH3PbI3 perovskite materials have been synthesized by two different (one step and two steps) methods and their morphological properties have been studied by scanning electron microscopy and optical microscope imaging. The morphology of the perovskite layer is one of the most important parameters which affect solar cell efficiency. The morphology of the films revealed that two steps method provides better surface coverage than the one step method. However, the grain sizes were smaller in case of two steps method. The films prepared by two steps methods on different substrates revealed that the grain size also depend on the substrate where an increase of the grain size was found from glass substrate to FTO with TiO2 blocking layer to FTO without any change in the surface coverage area. Present study reveals that an improved quality of films can be obtained by two steps method by an optimization of synthesis processes.

  3. Construction of osteochondral-like tissue graft combining β-tricalcium phosphate block and scaffold-free centrifuged chondrocyte cell sheet.

    PubMed

    Niyama, Kouhei; Ide, Naoto; Onoue, Kaori; Okabe, Takahiro; Wakitani, Shigeyuki; Takagi, Mutsumi

    2011-09-01

    The combination of a β-tricalcium phosphate (βTCP) block with a scaffold-free chondrocyte sheet formed by the centrifugation of chondrocytes in a well was investigated with the aim of constructing an osteochondral-like structure. Human and porcine articular cartilage chondrocytes were respectively centrifuged in a 96-well plate or cell culture insert (0.32 cm(2)) that was set in a 24-well plate, cultivated in the respective vessel for 3 weeks, and the cell sheets were harvested. In some cases, a cylindrical βTCP block (diameter 5 mm, height 3 mm) was placed on the sheet on days 1-7. The sheet size, cell number, and sulfated glycosaminoglycan accumulation were determined. The use of a 96-well plate for not suspension but adhesion culture and the initial centrifugation of a well containing cells were crucial to obtaining a uniformly thick cell sheet. The glycosaminoglycan density of the harvested cell sheet was comparable to that of the pellet culture. An inoculum cell number of more than 31 × 10(5) cells tended to result in a curved cell sheet. Culture involving 18.6 × 10(5) cells and the 96-well plate for adhesion culture showed no curving of the cell sheet (thickness of 0.85 mm), and these were found to be the best of the culture conditions tested. The timing of the addition of a βTCP block to the cell sheet (1-7 days) markedly affected the balance between the thickness of cell sheet parts on and in the βTCP block. Centrifugation and subsequent cultivation of chondrocytes (18.6 × 10(5) cells) in a 96-well plate for adhesion culture led to the production of a scaffold-free cartilage-like cell sheet with a thickness of 0.85 mm. A combined osteochondral-like structure was produced by putting a βTCP block on the cell sheet. The thickness of the cell sheet on the βTCP block and the binding strength between the cell sheet and the βTCP block could be optimized by adjusting the inoculum cell number and timing of βTCP block addition.

  4. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives

    PubMed Central

    Yin, Zhigang; Wei, Jiajun

    2016-01-01

    Organic solar cells (OSCs) have shown great promise as low‐cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single‐junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single‐junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small‐molecules, metals and metal salts/complexes, carbon‐based materials, organic‐inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron‐transporting and hole‐transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure–property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research. PMID:27812480

  5. SU-E-T-424: Feasibility of 3D Printed Radiological Equivalent Customizable Tissue Like Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D; Ferreira, C; Ahmad, S

    Purpose: To investigate the feasibility of 3D printing CT# specific radiological equivalent tissue like materials. Methods: A desktop 3D printer was utilized to create a series of 3 cm x 3 cm x 2 cm PLA plastic blocks of varying fill densities. The fill pattern was selected to be hexagonal (Figure 1). A series of blocks was filled with paraffin and compared to a series filled with air. The blocks were evaluated with a “GE Lightspeed” 16 slice CT scanner and average CT# of the centers of the materials was determined. The attenuation properties of the subsequent blocks were alsomore » evaluated through their isocentric irradiation via “TrueBeam” accelerator under six beam energies. Blocks were placed upon plastic-water slabs of 4 cm in thickness assuring electronic equilibrium and data was collected via Sun Nuclear “Edge” diode detector. Relative changes in dose were compared with those predicted by Varian “Eclipse” TPS. Results: The CT# of 3D printed blocks was found to be a controllable variable. The fill material was able to narrow the range of variability in each sample. The attenuation of the block tracked with the density of the total fill structure. Assigned CT values in the TPS were seen to fall within an expected range predicted by the CT scans of the 3D printed blocks. Conclusion: We have demonstrated that it is possible to 3D print materials of varying tissue equivalencies, and that these materials have radiological properties that are customizable and predictable.« less

  6. Long lifetime near-infrared-emitting quantum dots for time-gated in vivo imaging of rare circulating cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fragola, Alexandra; Bouccara, Sophie; Pezet, Sophie; Lequeux, Nicolas; Loriette, Vincent; Pons, Thomas

    2017-02-01

    The in vivo detection of rare circulating cells using non invasive fluorescence imaging would provide a key tool to study migration of eg. tumoral or immunological cells. Fluorescence detection is however currently limited by a lack of contrast between the small emission of isolated, fast circulating cells and the strong autofluorescence background of the surrounding tissues. We present the development of near infrared emitting quantum dots (NIR-QDs) with long fluorescence lifetime for sensitive time-gated in vivo imaging of circulating cells. These QDs are composed of low toxicity ZnCuInSe/ZnS materials and made biocompatible using a novel multidentate imidazole zwitterionic block copolymer, ensuring their long term intracellular stability. Cells of interest can thus be labeled ex vivo with QDs, injected intravenously and imaged in the near infrared range. Excitation using a pulsed laser coupled to time-gated detection enables the efficient rejection of short lifetime (≈ ns) autofluorescence background and detection of long lifetime (≈ 150 ns) fluorescence from QD-labeled cells. We demonstrate efficient in vivo imaging of single fast-flowing cells, which opens opportunities for future biological studies. [1] M. Tasso et al, "Sulfobetaine-Vinylimidazole block copolymers: a robust quantum dot surface chemistry expanding bioimaging's horizons", ACS Nano, 9(11), 2015 [2] S. Bouccara et al, "Time-gated cell imaging using long lifetime near-infrared-emitting quantum dots for autofluorescence rejection", J Biomed Optc, 19(5), 2014

  7. Semiconductor nanowires: A platform for nanoscience and nanotechnology

    PubMed Central

    Lieber, Charles M.

    2012-01-01

    Advances in nanoscience and nanotechnology critically depend on the development of nanostructures whose properties are controlled during synthesis. We focus on this critical concept using semiconductor nanowires, which provide the capability through design and rational synthesis to realize unprecedented structural and functional complexity in building blocks as a platform material. First, a brief review of the synthesis of complex modulated nanowires in which rational design and synthesis can be used to precisely control composition, structure, and, most recently, structural topology is discussed. Second, the unique functional characteristics emerging from our exquisite control of nanowire materials are illustrated using several selected examples from nanoelectronics and nano-enabled energy. Finally, the remarkable power of nanowire building blocks is further highlighted through their capability to create unprecedented, active electronic interfaces with biological systems. Recent work pushing the limits of both multiplexed extracellular recording at the single-cell level and the first examples of intracellular recording is described, as well as the prospects for truly blurring the distinction between nonliving nanoelectronic and living biological systems. PMID:22707850

  8. Comparison of compressive strength of paving block with a mixture of Sinabung ash and paving block with a mixture of lime

    NASA Astrophysics Data System (ADS)

    Hastuty, I. P.; Sembiringand Nursyamsi, I. S.

    2018-02-01

    Paving block is one of the material used as the top layer of road structure besides asphalt and concrete paving block is usually made of mixed material such as Portland cement or other adhesive material, water, and aggregate. People nowadays prefer paving block compared to other pavement such as concrete or asphalt. Their interest toward the use of paving block increase because paving block is an eco-friendly construction which is very useful in helping soil water conservation, can be done faster, has easier installation and maintenance, has a variety of shades that increase the aesthetic value, also costs cheaper than the other. Preparation of the specimens with a mixture of Sinabung ash and a mixture of Sinabung ash and lime are implemented with a mixture ratio of cement : sand : stone ash is 1: 2 : 3. The mixture is used as a substitute material by reducing the percentage amount of the weight of the cement with the composition ratio variation based on the comparative volume category of the paving block aggregate, i.e. 0%, 5%, 10%, 15%, 20%, and 25%. The result of this research shows that the maximum compressive strength value is 42.27 Mpa, it was obtained from a mixture of 10% lime with curing time 28 days. The maximum compressive strength value which is obtained from the mixture of sinabung ash is 41.60 Mpa, it was obtained from a mixture of 15% sinabung ash. From the use of these two materials, paving blocks produced are classified as paving blocks quality A and B (350 - 400 Mpa) in accordance to specification from SNI 03-0691-1996.

  9. Block Copolymer Electrolytes: Thermodynamics, Ion Transport, and Use in Solid- State Lithium/Sulfur Cells

    NASA Astrophysics Data System (ADS)

    Teran, Alexander Andrew

    Nanostructured block copolymer electrolytes containing an ion-conducting block and a modulus-strengthening block are of interest for applications in solid-state lithium metal batteries. These materials can self-assemble into well-defined microstructures, creating conducting channels that facilitate ion transport. The overall objective of this dissertation is to gain a better understanding of the behavior of salt-containing block copolymers, and evaluate their potential for use in solid-state lithium/sulfur batteries. Anionically synthesized polystyrene-b-poly(ethylene oxide) (SEO) copolymers doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt were used as a model system. This thesis investigates the model system on several levels: from fundamental thermodynamic studies to bulk characterization and finally device assembly and testing. First, the thermodynamics of neat and salt-containing block copolymers was studied. The addition of salt to these materials is necessary to make them conductive, however even small amounts of salt can have significant effects on their phase behavior, and consequently their iontransport and mechanical properties. As a result, the effect of salt addition on block copolymer thermodynamics has been the subject of significant interest over the last decade. A comprehensive study of the thermodynamics of block copolymer/salt mixtures over a wide range of molecular weights, compositions, salt concentrations and temperatures was conducted. Next, the effect of molecular weight on ion transport in both homopolymer and copolymer electrolytes were studied over a wide range of chain lengths. Homopolymer electrolytes show an inverse relationship between conductivity and chain length, with a plateau in the infinite molecular weight limit. This is due to the presence of two mechanisms of ion conduction in homopolymers; the first mechanism is a result of the segmental motion of the chains surrounding the salt ions, 2 creating a liquid-like environment around the ion while the second mechanism of ion conduction is attributed to diffusion of the entire polymer chain with coordinated ions. Equilibrated block copolymer electrolytes exhibit a non-monotonic dependence on molecular weight, decreasing with increasing molecular weight in the small molecular weight limit before increasing when molecular weight exceeds about 10 kg mol-1. Conductivity in annealed electrolytes was shown to be affected by two competing factors: the glass transition temperature of the insulating polystyrene block and the width of the conducting poly(ethylene oxide) (PEO) channel. In the low molecular weight limit, all ions are in contact with both polystyrene (PS) and PEO segments. The intermixing between PS and PEO segments is restricted to an interfacial zone of width of about 5 nm. The fraction of ions affected by the interfacial zone decreases as the conducting channel width increases. Furthermore, the effect of thermal history on the conductivity of the block copolymer electrolytes was examined. Results suggest that long-range order impedes ion transport, and consequently decreases in conductivity of up to 80% were seen upon annealing. The effect of morphology on ion transport was studied by conducting simultaneous impedance and X-ray scattering experiments as the block copolymer electrolyte transitioned from an ordered lamellar structure to a disordered phase. The ionic conductivity increased discontinuously through the transition from order to disorder. A simple framework for quantifying the magnitude of the discontinuity was presented. Finally, block copolymer electrolytes were examined specifically for use in high energy density solid state lithium/sulfur batteries. Such materials have been shown to form a stable interface with lithium metal anodes, maintain intimate contact upon cycling, and have sufficiently high shear moduli to retard dendrite formation. Having previously satisfied the concerns associated with the lithium metal anode, the compatibility of the sulfur cathode was explored. The sulfur cathode presents many unique challenges, including the generation of soluble lithium polysulfides (Li2Sx, 2 ≤ x ≤ 8) during discharge. The solubility of such species in block copolymers and their effect on morphology was examined. The lithium polysulfides were found to exhibit similar solubility in the block copolymers as in typical organic electrolytes, however induced unusual and unexpected phase behavior in the block copolymers. Inspired by successful efforts to physically confine the soluble lithium polysulfides via nanostructured carbon-sulfur composites in the cathode, our nanostructured block copolymer electrolytes were employed in full electrochemical cells with a lithium metal anode and sulfur cathode. Different cathode compositions, electrolyte additives, and cell architectures were tested. Surprisingly, the polysulfides diffused readily from the cathode through the block copolymer electrolyte, and the normally robust SEO|Li metal interface was detrimentally affected their presence during cycling. The polysulfides appeared to change the mechanical properties of the electrolyte such that intimate contact with the lithium metal was lost. Several promising strategies to overcome this problem were investigated and offer exciting avenues for improvement for future researchers. (Abstract shortened by UMI.).

  10. Environmental testing of block 2 solar cell modules

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1979-01-01

    The testing procedures and results of samples of the LSA Project Block 2 procurement of silicon solar cell modules are described. Block 2 was the second large scale procurement of silicon solar cell modules made by the JPL Low-cost Solar Array Project with deliveries in 1977 and early 1978. The results showed that the Block 2 modules were greatly improved over Block 1 modules. In several cases it was shown that design improvements were needed to reduce environmental test degradation. These improvements were incorporated during this production run.

  11. Adjustment of surface chemical and physical properties with functionalized polymers to control cell adhesion

    NASA Astrophysics Data System (ADS)

    Zhou, Zhaoli

    Cell-surface interaction is crucial in many cellular functions such as movement, growth, differentiation, proliferation and survival. In the present work, we have developed several strategies to design and prepare synthetic polymeric materials with selected cues to control cell attachment. To promote neuronal cell adhesion on the surfaces, biocompatible, non-adhesive PEG-based materials were modified with neurotransmitter acetylcholine functionalities to produce hydrogels with a range of porous structures, swollen states, and mechanical strengths. Mice hippocampal cells cultured on the hydrogels showed differences in number, length of processes and exhibited different survival rates, thereby highlighting the importance of chemical composition and structure in biomaterials. Similar strategies were used to prepare polymer brushes to assess how topographical cues influence neuronal cell behaviors. The brushes were prepared using the "grown from" method through surface-initiated atom transfer radical polymerization (SI-ATRP) reactions and further patterned via UV photolithography. Protein absorption tests and hippocampal neuronal cell culture of the brush patterns showed that both protein and neuronal cells can adhere to the patterns and therefore can be guided by the patterns at certain length scales. We also prepared functional polymers to discourage attachment of undesirable cells on the surfaces. For example, we synthesized PEG-perfluorinated alkyl amphiphilic surfactants to modify polystyrene-block-poly(ethylene-ran-butylene)- block-polyisoprene (SEBI or K3) triblock copolymers for marine antifouling/fouling release surface coatings. Initial results showed that the polymer coated surfaces can facilitate removal of Ulva sporelings on the surfaces. In addition, we prepared both bioactive and dual functional biopassive/bioactive antimicrobial coatings based on SEBI polymers. Incubating the polymer coated surfaces with gram-positive bacteria (S. aureus), gram-negative bacteria (E. coli) and marine bacteria (C. marina ) species demonstrated that, unlike biopassive surfaces, the dual functionality polymer coated surfaces can significantly reduce both live and dead cells, without killing the cells in the culture media. The knowledge gained from those studies offers opportunities for further modification and potential applications of those types of polymers in the future.

  12. Self-Repair and Patterning of 2D Membrane-Like Peptoid Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Fang; Chen, Yulin; Jin, Haibao

    2016-08-31

    Two-dimensional materials are of increasing interest for use in filtration, sensing, nanoelectronics, and biomedical devices. Peptoids are a class of biomimetic sequence-defined polymers for which certain amphiphillic sequences self-assemble into 2D crystalline materials with properties that mimic those of cell membranes. Using in situ AFM to both dissect these membrane-like materials and image their subsequent behavior, we explore their ability to self-repair on a range of solid substrates. We show that, in a suitable range of pH, self-repair occurs on both negatively and positively charged substrates and can even occur in the absence of an underlying surface. Following dissection ofmore » pre-assembled peptoid membranes and upon introduction of a peptoid monomer solution, peptoids repair the damage by assembling at the newly created edges. The speed of the advancing edge depends on the edge orientation, reflecting the two-fold symmetry of the underlying peptoid lattice. Moreover, because the membranes are stabilized by hydrophobic interactions, if the solution contains peptoids possessing an identical sequence in the hydrophobic block but a distinct hydrophilic block, filling of the defects creates membranes that are patterned at the nanoscale. Consequently, we can utilize this ability to create nm-sized patterns of distinct functional groups within a single coherent membrane.« less

  13. SN-38 loaded polymeric micelles to enhance cancer therapy

    NASA Astrophysics Data System (ADS)

    Gu, Quanrong; Xing, James Z.; Huang, Min; He, Chuan; Chen, Jie

    2012-05-01

    7-Ethyl-10-hydroxycamptothecin (SN-38) loaded poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (Pluronic F-108) and poly(ethylene glycol)-block-poly(ɛ-caprolactone) (PEG-b-PCL) nanoparticles were successfully prepared by a modified film hydration method and characterized by scanning electric microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and dynamic light scattering (DLS). Satisfactory drug loading of 20.73 ± 0.66% and a high encapsulation efficiency of 83.83 ± 1.32% were achieved. The SN-38 nanoparticles (SN-38 NPs) can completely disperse into a phosphate buffered saline (PBS) medium to produce a clear aqueous suspension that remains stable for up to three days. Total drug releases were 67.91% and 91.09% after 24 h in a PBS or fetal bovine serum (FBS) medium. Half maximal inhibitory concentration (IC50) tests of SN-38 and SN-38 NPs on A549 lung cells produced results of 200.0 ± 14.9 ng ml-1 and 80.0 ± 4.6 ng ml-1, respectively. Similarly, IC50 tests of SN-38 and SN-38 NPs on MCF-7 breast cells yielded results of 16.0 ± 0.7 ng ml-1 and 8.0 ± 0.5 ng ml-1, respectively. These in vitro IC50 studies show significant (p < 0.01) enhancement of the SN-38 NP drug efficiency in killing cancer cells in comparison to the free drug SN-38 control. All the materials used for this nanoformulation are approved by the US FDA, with the virtue of extremely low toxicity to normal cells.

  14. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.

    PubMed

    Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari

    2015-09-14

    Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.

  15. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine

    PubMed Central

    Hacker, Michael C.; Nawaz, Hafiz Awais

    2015-01-01

    Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications. PMID:26610468

  16. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine.

    PubMed

    Hacker, Michael C; Nawaz, Hafiz Awais

    2015-11-19

    Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications.

  17. Mechanical signaling coordinates the embryonic heart

    NASA Astrophysics Data System (ADS)

    Chiou, Kevin; Rocks, Jason; Prosser, Benjamin; Discher, Dennis; Liu, Andrea

    The heart is an active material which relies on robust signaling mechanisms between cells in order to produce well-timed, coordinated beats. Heart tissue is composed primarily of active heart muscle cells (cardiomyocytes) embedded in a passive extracellular matrix. During a heartbeat, cardiomyocyte contractions are coordinated across the heart to form a wavefront that propagates through the tissue to pump blood. In the adult heart, this contractile wave is coordinated via intercellular electrical signaling.Here we present theoretical and experimental evidence for mechanical coordination of embryonic heartbeats. We model cardiomyocytes as mechanically excitable Eshelby inclusions embedded in an overdamped elastic-fluid biphasic medium. For physiological parameters, this model replicates recent experimental measurements of the contractile wavefront which are not captured by electrical signaling models. We additionally challenge our model by pharmacologically blocking gap junctions, inhibiting electrical signaling between myocytes. We find that while adult hearts stop beating almost immediately after gap junctions are blocked, embryonic hearts continue beating even at significantly higher concentrations, providing strong support for a mechanical signaling mechanism.

  18. Cathode buffer composed of fullerene-ethylenediamine adduct for an organic solar cell

    NASA Astrophysics Data System (ADS)

    Kimoto, Yoshinori; Akiyama, Tsuyoshi; Fujita, Katsuhiko

    2017-02-01

    We developed a fullerene-ethylenediamine adduct (C60P-DC) for a cathode buffer material in organic bulk heterojunction solar cells, which enhance the open-circuit voltage (V oc). The evaporative spray deposition using ultra dilute solution (ESDUS) technique was employed to deposit the buffer layer onto the organic active layer to avoid damage during the deposition. By the insertion of a C60P-DC buffer layer, V oc and power conversion efficiency (PCE) were increased from 0.41 to 0.57 V and from 1.65 to 2.10%, respectively. The electron-only device with the C60P-DC buffer showed a much lower current level than that without the buffer, indicating that the V oc increase is caused not by vacuum level shift but by hole blocking. The curve fitting of current density-voltage (J-V) characteristics to the equivalent circuit with a single diode indicated that the decrease in reversed saturation current by hole blocking increased caused the V oc.

  19. Toothbrushing alters the surface roughness and gloss of composite resin CAD/CAM blocks.

    PubMed

    Kamonkhantikul, Krid; Arksornnukit, Mansuang; Lauvahutanon, Sasipin; Takahashi, Hidekazu

    2016-01-01

    This study investigated the surface roughness and gloss of composite resin CAD/CAM blocks after toothbrushing. Five composite resin blocks (Block HC, Cerasmart, Gradia Block, KZR-CAD Hybrid Resin Block, and Lava Ultimate), one hybrid ceramic (Vita Enamic), one feldspar ceramic (Vitablocs Mark II), one PMMA block (Telio CAD), and one conventional composite resin (Filtek Z350 XT) were evaluated. Surface roughness (Ra) and gloss were determined for each group of materials (n=6) after silicon carbide paper (P4000) grinding, 10k, 20k, and 40k toothbrushing cycles. One-way repeated measures ANOVA indicated significant differences in the Ra and gloss of each material except for the Ra of GRA. After 40k toothbrushing cycles, the Ra of BLO and TEL showed significant increases, while CER, KZR, ULT, and Z350 showed significant decreases. GRA, ENA, and VIT maintained their Ra. All of the materials tested, except CER, demonstrated significant decreases in gloss after 40k toothbrushing cycles.

  20. Recognition and Blocking of Innate Immunity Cells by Candida albicans Chitin ▿ †

    PubMed Central

    Mora-Montes, Héctor M.; Netea, Mihai G.; Ferwerda, Gerben; Lenardon, Megan D.; Brown, Gordon D.; Mistry, Anita R.; Kullberg, Bart Jan; O'Callaghan, Chris A.; Sheth, Chirag C.; Odds, Frank C.; Brown, Alistair J. P.; Munro, Carol A.; Gow, Neil A. R.

    2011-01-01

    Chitin is a skeletal cell wall polysaccharide of the inner cell wall of fungal pathogens. As yet, little about its role during fungus-host immune cell interactions is known. We show here that ultrapurified chitin from Candida albicans cell walls did not stimulate cytokine production directly but blocked the recognition of C. albicans by human peripheral blood mononuclear cells (PBMCs) and murine macrophages, leading to significant reductions in cytokine production. Chitin did not affect the induction of cytokines stimulated by bacterial cells or lipopolysaccharide (LPS), indicating that blocking was not due to steric masking of specific receptors. Toll-like receptor 2 (TLR2), TLR4, and Mincle (the macrophage-inducible C-type lectin) were not required for interactions with chitin. Dectin-1 was required for immune blocking but did not bind chitin directly. Cytokine stimulation was significantly reduced upon stimulation of PBMCs with heat-killed chitin-deficient C. albicans cells but not with live cells. Therefore, chitin is normally not exposed to cells of the innate immune system but is capable of influencing immune recognition by blocking dectin-1-mediated engagement with fungal cell walls. PMID:21357722

  1. Studying Spacecraft Charging via Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Delzanno, G. L.; Moulton, D.; Meierbachtol, C.; Svyatskiy, D.; Vernon, L.

    2015-12-01

    The electrical charging of spacecraft due to bombarding charged particles can affect their performance and operation. We study this charging using CPIC; a particle-in-cell code specifically designed for studying plasma-material interactions [1]. CPIC is based on multi-block curvilinear meshes, resulting in near-optimal computational performance while maintaining geometric accuracy. Relevant plasma parameters are imported from the SHIELDS framework (currently under development at LANL), which simulates geomagnetic storms and substorms in the Earth's magnetosphere. Simulated spacecraft charging results of representative Van Allen Probe geometries using these plasma parameters will be presented, along with an overview of the code. [1] G.L. Delzanno, E. Camporeale, J.D. Moulton, J.E. Borovsky, E.A. MacDonald, and M.F. Thomsen, "CPIC: A Curvilinear Particle-In-Cell Code for Plasma-Material Interaction Studies," IEEE Trans. Plas. Sci., 41 (12), 3577 (2013).

  2. Electronic Principles VI, 7-10. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This sixth of 10 blocks of student and teacher materials for a secondary/postsecondary level course in electronic principles comprises one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Prerequisites are the previous blocks. This block on…

  3. Electronic Principles IV, 7-8. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This fourth of 10 blocks of student and teacher materials for a secondary/postsecondary level course in electronic principles comprises one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Prerequisites are the previous blocks. This block on…

  4. Electronic Principles VIII, 7-12. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This eighth of 10 blocks of student and teacher materials for a secondary/postsecondary level course in electronic principles comprises one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Prerequisites are the previous blocks. This block on…

  5. Electronic Principles III, 7-7. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This third of 10 blocks of student and teacher materials for a secondary/postsecondary level course in electronics principles comprises one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Prerequisites are the previous blocks. This block on…

  6. Electronic Principles IX, 7-13. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This ninth of 10 blocks of student and teacher materials for a secondary/postsecondary level course in electronic principles comprises one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Prerequisites are the previous blocks. This block on…

  7. Electronic Principles X, 7-14. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This tenth of 10 blocks of student and teacher materials for a secondary/postsecondary level course in electronic principles comprises one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Prerequisites are the previous blocks. This block on…

  8. Cell block four exercise yard with original passage to cell ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cell block four exercise yard with original passage to cell re-exposed, looking from the baseball field, facing west, with scale - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  9. Metabolic labelling of the carbohydrate core in bacterial peptidoglycan and its applications

    PubMed Central

    Liang, Hai; DeMeester, Kristen E.; Hou, Ching-Wen; Parent, Michelle A.; Caplan, Jeffrey L.; Grimes, Catherine L.

    2017-01-01

    Bacterial cells are surrounded by a polymer known as peptidoglycan (PG), which protects the cell from changes in osmotic pressure and small molecule insults. A component of this material, N-acetyl-muramic acid (NAM), serves as a core structural element for innate immune recognition of PG fragments. We report the synthesis of modifiable NAM carbohydrate derivatives and the installation of these building blocks into the backbone of Gram-positive and Gram-negative bacterial PG utilizing metabolic cell wall recycling and biosynthetic machineries. Whole cells are labelled via click chemistry and visualized using super-resolution microscopy, revealing higher resolution PG structural details and allowing the cell wall biosynthesis, as well as its destruction in immune cells, to be tracked. This study will assist in the future identification of mechanisms that the immune system uses to recognize bacteria, glean information about fundamental cell wall architecture and aid in the design of novel antibiotics. PMID:28425464

  10. Hole-Transporting Materials for Printable Perovskite Solar Cells

    PubMed Central

    Salunke, Jagadish K.; Priimagi, Arri

    2017-01-01

    Perovskite solar cells (PSCs) represent undoubtedly the most significant breakthrough in photovoltaic technology since the 1970s, with an increase in their power conversion efficiency from less than 5% to over 22% in just a few years. Hole-transporting materials (HTMs) are an essential building block of PSC architectures. Currently, 2,2’,7,7’-tetrakis-(N,N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene), better known as spiro-OMeTAD, is the most widely-used HTM to obtain high-efficiency devices. However, it is a tremendously expensive material with mediocre hole carrier mobility. To ensure wide-scale application of PSC-based technologies, alternative HTMs are being proposed. Solution-processable HTMs are crucial to develop inexpensive, high-throughput and printable large-area PSCs. In this review, we present the most recent advances in the design and development of different types of HTMs, with a particular focus on mesoscopic PSCs. Finally, we outline possible future research directions for further optimization of the HTMs to achieve low-cost, stable and large-area PSCs. PMID:28914823

  11. Block copolymers from ionic liquids for the preparation of thin carbonaceous shells

    PubMed Central

    Hanif, Sadaf; Oschmann, Bernd; Spetter, Dmitri; Tahir, Muhammad Nawaz; Tremel, Wolfgang

    2017-01-01

    This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials. PMID:28904612

  12. Block copolymers from ionic liquids for the preparation of thin carbonaceous shells.

    PubMed

    Hanif, Sadaf; Oschmann, Bernd; Spetter, Dmitri; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Zentel, Rudolf

    2017-01-01

    This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO 2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO 2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials.

  13. Leveraging “Raw Materials” as Building Blocks and Bioactive Signals in Regenerative Medicine

    PubMed Central

    Renth, Amanda N.

    2012-01-01

    Components found within the extracellular matrix (ECM) have emerged as an essential subset of biomaterials for tissue engineering scaffolds. Collagen, glycosaminoglycans, bioceramics, and ECM-based matrices are the main categories of “raw materials” used in a wide variety of tissue engineering strategies. The advantages of raw materials include their inherent ability to create a microenvironment that contains physical, chemical, and mechanical cues similar to native tissue, which prove unmatched by synthetic biomaterials alone. Moreover, these raw materials provide a head start in the regeneration of tissues by providing building blocks to be bioresorbed and incorporated into the tissue as opposed to being biodegraded into waste products and removed. This article reviews the strategies and applications of employing raw materials as components of tissue engineering constructs. Utilizing raw materials holds the potential to provide both a scaffold and a signal, perhaps even without the addition of exogenous growth factors or cytokines. Raw materials contain endogenous proteins that may also help to improve the translational success of tissue engineering solutions to progress from laboratory bench to clinical therapies. Traditionally, the tissue engineering triad has included cells, signals, and materials. Whether raw materials represent their own new paradigm or are categorized as a bridge between signals and materials, it is clear that they have emerged as a leading strategy in regenerative medicine. The common use of raw materials in commercial products as well as their growing presence in the research community speak to their potential. However, there has heretofore not been a coordinated or organized effort to classify these approaches, and as such we recommend that the use of raw materials be introduced into the collective consciousness of our field as a recognized classification of regenerative medicine strategies. PMID:22462759

  14. Dual modes of motility at the leading edge of migrating epithelial cell sheets

    PubMed Central

    Klarlund, Jes K.

    2012-01-01

    Purse-string healing is driven by contraction of actin/myosin cables that span cells at wound edges, and it is the predominant mode of closing small round wounds in embryonic and some adult epithelia. Wounds can also heal by cell crawling, and my colleagues and I have shown previously that the presence of unconstrained, straight edges in sheets of epithelial cells is a sufficient signal to induce healing by crawling. Here, it is reported that the presence of highly concave edges, which are free or physically constrained by an inert material (agarose), is sufficient to induce formation of purse strings. It was determined that neither of the two types of healing required cell damage or other potential stimuli by using the particularly gentle procedure of introducing gaps by digesting agarose blocks imbedded in the cell sheets. Movement by crawling depends on signaling by the EGF receptor (EGFR); however, this was not required for purse-string contraction. A migrating epithelial cell sheet usually produces finger-like projections of crawling cells. The cells between fingers contain continuous actin cables, which were also determined to contain myosin IIA and exhibit additional characteristics of purse strings. When crawling was blocked by inhibition of EGFR signaling, the concave regions continued to move, suggesting that both mechanisms contribute to propel the sheets forward. Wounding epithelial cell sheets causes activation of the EGFR, which triggers movement by crawling. The EGFR was found to be activated only at straight and convex edges, which explains how both types of movement can coexist at leading epithelial edges. PMID:23019364

  15. Erythroblast Transformation by the Friend Spleen Focus-Forming Virus Is Associated with a Block in Erythropoietin-Induced STAT1 Phosphorylation and DNA Binding and Correlates with High Expression of the Hematopoietic Phosphatase SHP-1

    PubMed Central

    Nishigaki, Kazuo; Hanson, Charlotte; Ohashi, Takashi; Spadaccini, Angelo; Ruscetti, Sandra

    2006-01-01

    Infection of mice with Friend spleen focus-forming virus (SFFV) results in a multistage erythroleukemia. In the first stage, the SFFV envelope glycoprotein interacts with the erythropoietin receptor and a short form of the receptor tyrosine kinase sf-Stk, resulting in constitutive activation of signal transducing molecules and the development of erythropoietin (Epo)-independent erythroid hyperplasia and polycythemia. The second stage results from the outgrowth of a rare virus-infected erythroid cell that expresses nonphysiological levels of the myeloid transcription factor PU.1. These cells exhibit a differentiation block and can be grown as murine erythroleukemia (MEL) cell lines. In this study, we examined SFFV MEL cells to determine whether their transformed phenotype was associated with a block in the activation of any Epo signal-transducing molecules. Our studies indicate that Epo- or SFFV-induced activation of STAT1/3 DNA binding activity is blocked in SFFV MEL cells. The block is at the level of tyrosine phosphorylation of STAT1, although Jak2 phosphorylation is not blocked in these cells. In contrast to Epo, alpha interferon can induce STAT1 phosphorylation and DNA binding in SFFV MEL cells. The SFFV-transformed cells were shown to express elevated levels of the hematopoietic phosphatase SHP-1, and treatment of the cells with a phosphatase inhibitor restored STAT1 tyrosine phosphorylation. MEL cells derived from Friend murine leukemia virus (MuLV) or ME26 MuLV-infected mice, which do not express PU.1, express lower levels of SHP-1 and are not blocked in STAT1/3 DNA-binding activity. Our studies suggest that SFFV-infected erythroid cells become transformed when differentiation signals activated by STAT1/3 are blocked due to high SHP-1 levels induced by inappropriate expression of the PU.1 protein. PMID:16731906

  16. Synthesis of Thermoresponsive Amphiphilic Polyurethane Gel as a New Cell Printing Material near Body Temperature.

    PubMed

    Tsai, Yi-Chun; Li, Suming; Hu, Shiaw-Guang; Chang, Wen-Chi; Jeng, U-Ser; Hsu, Shan-hui

    2015-12-23

    Waterborne polyurethane (PU) based on poly(ε-caprolactone) (PCL) diol and a second oligodiol containing amphiphilic blocks was synthesized in this study. The microstructure was characterized by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and rheological measurement of the PU dispersion. The surface hydrophilicity measurement, infrared spectroscopy, wide-angle X-ray diffraction, mechanical and thermal analyses were conducted in solid state. It was observed that the presence of a small amount of amphiphilic blocks in the soft segment resulted in significant changes in microstructure. When 90 mol % PCL diol and 10 mol % amphiphilic blocks of poly(l-lactide)-poly(ethylene oxide) (PLLA-PEO) diol were used as the soft segment, the synthesized PU had a water contact angle of ∼24° and degree of crystallinity of ∼14%. The dispersion had a low viscosity below room temperature. As the temperature was raised to body temperature (37 °C), the dispersion rapidly (∼170 s) underwent sol-gel transition with excellent gel modulus (G' ≈ 6.5 kPa) in 20 min. PU dispersions with a solid content of 25-30% could be easily mixed with cells in sol state, extruded by a 3D printer, and deposited layer by layer as a gel. Cells remained alive and proliferating in the printed hydrogel scaffold. We expect that the development of novel thermoresponsive PU system can be used as smart injectable hydrogel and applied as a new type of bio-3D printing ink.

  17. Biological effects of blocking blue and other visible light on the mouse retina.

    PubMed

    Narimatsu, Toshio; Ozawa, Yoko; Miyake, Seiji; Kubota, Shunsuke; Yuki, Kenya; Nagai, Norihiro; Tsubota, Kazuo

    2014-08-01

    To elucidate the biological effects of blocking fluorescent light on the retina using specific blocking materials. Seven- to 8-week-old BALB/c mice were divided into three groups and placed in one of the three boxes: one blocked ultraviolet and violet wavelengths of light (violet blockade), one blocked ultraviolet, violet, blue and some other visible wavelengths (blue-plus blockade), and one allowed most visible light to pass through (control). They were then exposed to a white fluorescent lamp for 1 h at 5.65E-05 mW/cm(2) /s. After treatment, the electroretinogram, retinal outer nuclear layer thickness and retinal outer segment length were measured. In addition, retinal apoptotic cells were quantified by TdT-mediated dUTP nick-end labelling assay and c-Fos messenger RNA, and protein levels were measured by real-time reverse-transcription polymerase chain reaction and immunoblot analyses, respectively. The blue-plus blockade group retained a significantly better electroretinogram response following light exposure than the control or violet blockade groups. The blue-plus blockade group also exhibited greater outer nuclear layer thickness and greater outer-segment length, and fewer apoptotic cells after light exposure than the other groups. The c-Fos messenger RNA and protein levels were substantially reduced in the blue-plus blockade group and reduced to a lesser extent in the violet blockade group. The blockade of blue plus additional visible wavelengths of light was most effective in protecting the retina from light-induced damage. The blockade of violet light alone was also effective in reducing intracellular molecular responses, but these effects were not sufficient for attenuating retinal degeneration. © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  18. Customized Knee Prosthesis in Treatment of Giant Cell Tumors of the Proximal Tibia: Application of 3-Dimensional Printing Technology in Surgical Design.

    PubMed

    Luo, Wenbin; Huang, Lanfeng; Liu, He; Qu, Wenrui; Zhao, Xin; Wang, Chenyu; Li, Chen; Yu, Tao; Han, Qing; Wang, Jincheng; Qin, Yanguo

    2017-04-07

    BACKGROUND We explored the application of 3-dimensional (3D) printing technology in treating giant cell tumors (GCT) of the proximal tibia. A tibia block was designed and produced through 3D printing technology. We expected that this 3D-printed block would fill the bone defect after en-bloc resection. Importantly, the block, combined with a standard knee joint prosthesis, provided attachments for collateral ligaments of the knee, which can maintain knee stability. MATERIAL AND METHODS A computed tomography (CT) scan was taken of both knee joints in 4 patients with GCT of the proximal tibia. We developed a novel technique - the real-size 3D-printed proximal tibia model - to design preoperative treatment plans. Hence, with the application of 3D printing technology, a customized proximal tibia block could be designed for each patient individually, which fixed the bone defect, combined with standard knee prosthesis. RESULTS In all 4 cases, the 3D-printed block fitted the bone defect precisely. The motion range of the affected knee was 90 degrees on average, and the soft tissue balance and stability of the knee were good. After an average 7-month follow-up, the MSTS score was 19 on average. No sign of prosthesis fracture, loosening, or other relevant complications were detected. CONCLUSIONS This technique can be used to treat GCT of the proximal tibia when it is hard to achieve soft tissue balance after tumor resection. 3D printing technology simplified the design and manufacturing progress of custom-made orthopedic medical instruments. This new surgical technique could be much more widely applied because of 3D printing technology.

  19. An inhibitor of polyamine synthesis arrests cells at an earlier stage of G1 than does calcium deprivation.

    PubMed Central

    Cheetham, B F

    1983-01-01

    Methylglyoxal bis(guanylhydrazone) completely inhibits the induction of thymidine kinase after serum stimulation of quiescent fibroblasts only if added within 3 h after serum, whereas calcium deprivation blocks this induction up to 12 h after serum stimulation. Experiments in which one of these blocks was imposed as the other was released confirmed that cells blocked by methylglyoxal bis(guanylhydrazone) are arrested at an earlier stage in G1 than cells blocked by calcium deprivation. PMID:6843551

  20. Protein hydrogels with engineered biomolecular recognition

    NASA Astrophysics Data System (ADS)

    Mi, Lixin

    Extracellular matrices (ECMs) are the hydrated macromolecular gels in which cells migrate and proliferate and organize into tissues in vivo . The development of artificial ECM with the required mechanical, physico-chemical, and biological properties has long been a challenge in the biomaterial research field. In this dissertation, a novel set of bioactive protein hydrogels has been synthesized and characterized at both molecular and materials levels. The self-recognized and self-assembled protein copolymers have the ability to provide engineered biofunctionality through the controlled arrangement of bioactive domains on the nanoscale. Genetic engineering methods have been employed to synthesize these protein copolymers. Plasmid DNA carrying genes to express both di- and tri-block proteins have been constructed using molecular cloning techniques. These genes were expressed in bacterial E. coli to ensure homogeneous protein length and anticipated structure. Three diblock protein sequences having a leucine zipper construct on one end and polyelectrolyte (AGAGAGPEG)10 on the other, have been studied by circular dichroism, size-exclusion chromatography, analytical ultracentrifugation, and static light scattering to characterize their secondary structure, structural stability, and oligomeric state. The results show that ABC diblock mixtures form very stable heterotrimer aggregates via self-recognition and self-assembly of the coiled coil end domains. Tri-block proteins with two leucine zipper motif ends flanking the polyelectrolyte random coil in the middle have been investigated by circular dichroism and fluorescence spectroscopy, and the hydrogels formed by self-assembly of these tri-blocks have been studied using transmission electronic microscopy and diffusing wave spectroscopy. The reversible gelation behavior is the result of heterotrimeric aggregation of helices to form the physical crosslinks in the gel, with the polyelectrolyte region center block retaining water soluble and swelling. The RGD cell adhesion tripeptide has been inserted into the polyelectrolyte region by site-directed mutagenesis. Two dimensional human foreskin fibroblast cultures have shown that the RGD-containing protein surface is bioactive in promoting cell attachment, cell signaling, and cytoskeleton organization. The protein and the cell recognize and interact at molecular level. Collectively, these findings indicate that this bioactive protein hydrogel system is a promising biomaterial for mammalian cell culture. This research may provide insights for the rational development of bioactive ECM for specific cell and tissue engineering applications.

  1. Developmental status and system studies of the monolithic solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Myles, K. M.

    The monolithic solid oxide fuel cell (MSOFC) was invented at the Argonne National Laboratory in 1983 and is currently being developed by a team consisting of Argonne National Laboratory and Allied-Signal Aerospace/AiResearch. The MSOFC is an oxide ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. The electrolyte, which conducts oxygens ions from the air side to the fuel side, is yttria-stabilized zirconia (YSZ). All the other materials, that is, the nickel-YSZ anode, the strontium-doped lanthanum manganite cathode, and the doped lanthanum chromite interconnect (bipolar plate), are electronic conductors. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/l at fuel efficiencies over 50 percent, because of small cell size and low resistive losses in the materials. These performances have been approached in laboratory test fuel cell stacks of nominal 125-W capacities.

  2. Spontaneously Combustible Solids -- A Literature Search

    DTIC Science & Technology

    1975-05-01

    Wasahizeon, D.* C. It. K(EY WORDS (Continue on reviers side It necesary and Identify by block number) Pyrophoric Materials Hazardous Materials...and Identify by block number) Existing information on spontaneously combustible solids including pyrophoric - air hazardous materials and water... pyrophoric -air hazardous and water reactive materials. All available hazard classification systems and test methods releting to spontaneous combustion have

  3. Electronic Principles V, 7-9. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This fifth of 10 blocks of student and teacher materials for a postsecondary level course in electronic principles comprises one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Prerequisites are the previous blocks. This block on solid state…

  4. Electronic Principles II, 7-6. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This second of 10 blocks of student and teacher materials for a secondary/postsecondary level course in electronic principles comprises one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. A prerequisite is the previous block. This block on AC…

  5. Evaluation of Sealing Materials and Techniques for Installing Quoin and Miter Block Backing Grout

    DTIC Science & Technology

    2015-11-01

    being used effectively in the field. The materials currently in use have low viscosities and are typically poured behind the quoin and miter blocks in...tively in the field. The materials now used have low viscosities . They are typ- ically poured behind the quoin and miter blocks in lifts. The perimeter of...colder temperatures. Low viscosity at warmer temperatures. Hilti HIT ICE Epoxy Acrylate It is primarily a cold weather product that had poor

  6. Flexible Fabrication of Shape-Controlled Collagen Building Blocks for Self-Assembly of 3D Microtissues.

    PubMed

    Zhang, Xu; Meng, Zhaoxu; Ma, Jingyun; Shi, Yang; Xu, Hui; Lykkemark, Simon; Qin, Jianhua

    2015-08-12

    Creating artificial tissue-like structures that possess the functionality, specificity, and architecture of native tissues remains a big challenge. A new and straightforward strategy for generating shape-controlled collagen building blocks with a well-defined architecture is presented, which can be used for self-assembly of complex 3D microtissues. Collagen blocks with tunable geometries are controllably produced and released via a membrane-templated microdevice. The formation of functional microtissues by embedding tissue-specific cells into collagen blocks with expression of specific proteins is described. The spontaneous self-assembly of cell-laden collagen blocks into organized tissue constructs with predetermined configurations is demonstrated, which are largely driven by the synergistic effects of cell-cell and cell-matrix interactions. This new strategy would open up new avenues for the study of tissue/organ morphogenesis, and tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A New Material Mapping Procedure for Quantitative Computed Tomography-Based, Continuum Finite Element Analyses of the Vertebra

    PubMed Central

    Unnikrishnan, Ginu U.; Morgan, Elise F.

    2011-01-01

    Inaccuracies in the estimation of material properties and errors in the assignment of these properties into finite element models limit the reliability, accuracy, and precision of quantitative computed tomography (QCT)-based finite element analyses of the vertebra. In this work, a new mesh-independent, material mapping procedure was developed to improve the quality of predictions of vertebral mechanical behavior from QCT-based finite element models. In this procedure, an intermediate step, called the material block model, was introduced to determine the distribution of material properties based on bone mineral density, and these properties were then mapped onto the finite element mesh. A sensitivity study was first conducted on a calibration phantom to understand the influence of the size of the material blocks on the computed bone mineral density. It was observed that varying the material block size produced only marginal changes in the predictions of mineral density. Finite element (FE) analyses were then conducted on a square column-shaped region of the vertebra and also on the entire vertebra in order to study the effect of material block size on the FE-derived outcomes. The predicted values of stiffness for the column and the vertebra decreased with decreasing block size. When these results were compared to those of a mesh convergence analysis, it was found that the influence of element size on vertebral stiffness was less than that of the material block size. This mapping procedure allows the material properties in a finite element study to be determined based on the block size required for an accurate representation of the material field, while the size of the finite elements can be selected independently and based on the required numerical accuracy of the finite element solution. The mesh-independent, material mapping procedure developed in this study could be particularly helpful in improving the accuracy of finite element analyses of vertebroplasty and spine metastases, as these analyses typically require mesh refinement at the interfaces between distinct materials. Moreover, the mapping procedure is not specific to the vertebra and could thus be applied to many other anatomic sites. PMID:21823740

  8. Improving the Sun Drying of Apricots (Prunus armeniaca) with Photo-Selective Dryer Cabinet Materials.

    PubMed

    Milczarek, Rebecca R; Avena-Mascareno, Roberto; Alonzo, Jérôme; Fichot, Mélissa I

    2016-10-01

    Photo-selective materials have been studied for their effects on the preharvest quality of horticultural crops, but little work has been done on potential postharvest processing effects. The aim of this work was to characterize the effects of 5 different photo-selective acrylic materials (used as the lid to a single-layer sun drying cabinet) on the drying rate and quality of apricots (Prunus armeniaca). Photo-selective cabinet materials that transmit light in the visible portion of the solar spectrum accelerate the apricots' drying rate in both the early period of drying and the course of drying as a whole. These materials do not significantly affect the measured quality metrics during the first day of sun drying. However, when drying is taken to completion, some minor but significant quality differences are observed. Infrared-blocking material produces dried apricot with lower red color, compared to clear, opaque black, and ultraviolet-blocking materials. Clear material produced dried apricot with significantly lower antioxidant activity, compared to black and infrared-blocking materials. Using appropriate photo-selective drying cabinet materials can reduce the required sun drying time for apricots by 1 to 2 d, compared with fully shaded drying. Ultraviolet-blocking material is recommended to maximize drying rate and minimize quality degradation. © 2016 Institute of Food Technologists®.

  9. Wrinkle surface instability of an inhomogeneous elastic block with graded stiffness

    NASA Astrophysics Data System (ADS)

    Yang, Shengyou; Chen, Yi-chao

    2017-04-01

    Surface instabilities have been studied extensively for both homogeneous materials and film/substrate structures but relatively less for materials with continuously varying properties. This paper studies wrinkle surface instability of a graded neo-Hookean block with exponentially varying modulus under plane strain by using the linear bifurcation analysis. We derive the first variation condition for minimizing the potential energy functional and solve the linearized equations of equilibrium to find the necessary conditions for surface instability. It is found that for a homogeneous block or an inhomogeneous block with increasing modulus from the surface, the critical stretch for surface instability is 0.544 (0.456 strain), which is independent of the geometry and the elastic modulus on the surface of the block. This critical stretch coincides with that reported by Biot (1963 Appl. Sci. Res. 12, 168-182. (doi:10.1007/BF03184638)) 53 years ago for the onset of wrinkle instabilities in a half-space of homogeneous neo-Hookean materials. On the other hand, for an inhomogeneous block with decreasing modulus from the surface, the critical stretch for surface instability ranges from 0.544 to 1 (0-0.456 strain), depending on the modulus gradient, and the length and height of the block. This sheds light on the effects of the material inhomogeneity and structural geometry on surface instability.

  10. A New Cell Block Method for Multiple Immunohistochemical Analysis of Circulating Tumor Cells in Patients with Liver Cancer.

    PubMed

    Nam, Soo Jeong; Yeo, Hyun Yang; Chang, Hee Jin; Kim, Bo Hyun; Hong, Eun Kyung; Park, Joong-Won

    2016-10-01

    We developed a new method of detecting circulating tumor cells (CTCs) in liver cancer patients by constructing cell blocks from peripheral blood cells, including CTCs, followed by multiple immunohistochemical analysis. Cell blockswere constructed from the nucleated cell pellets of peripheral blood afterremoval of red blood cells. The blood cell blocks were obtained from 29 patients with liver cancer, and from healthy donor blood spikedwith seven cell lines. The cell blocks and corresponding tumor tissues were immunostained with antibodies to seven markers: cytokeratin (CK), epithelial cell adhesion molecule (EpCAM), epithelial membrane antigen (EMA), CK18, α-fetoprotein (AFP), Glypican 3, and HepPar1. The average recovery rate of spiked SW620 cells from blood cell blocks was 91%. CTCs were detected in 14 out of 29 patients (48.3%); 11/23 hepatocellular carcinomas (HCC), 1/2 cholangiocarcinomas (CC), 1/1 combined HCC-CC, and 1/3 metastatic cancers. CTCs from 14 patients were positive for EpCAM (57.1%), EMA (42.9%), AFP (21.4%), CK18 (14.3%), Gypican3 and CK (7.1%, each), and HepPar1 (0%). Patients with HCC expressed EpCAM, EMA, CK18, and AFP in tissue and/or CTCs, whereas CK, HepPar1, and Glypican3 were expressed only in tissue. Only EMA was significantly associated with the expressions in CTC and tissue. CTC detection was associated with higher T stage and portal vein invasion in HCC patients. This cell block method allows cytologic detection and multiple immunohistochemical analysis of CTCs. Our results show that tissue biomarkers of HCC may not be useful for the detection of CTC. EpCAM could be a candidate marker for CTCs in patients with HCC.

  11. Pulmonary metastases of recurrent intracranial hemangiopericytoma diagnosed on fine needle aspiration cytology: a case report.

    PubMed

    Goel, Deepa; Babu, Sasidhara; Prayaga, Aruna K; Sundaram, Challa

    2008-01-01

    Meningeal hemangiopericytoma (HPC) is a rare neoplasm. It is closely related to hemangiopericytomas in systemic tissues, with a tendency to recur and metastasize outside the CNS. Only a few case reports describe the cytomorphologic appearance of these metastasizing lesions, most having primary tumor in deep soft tissues. We report a case of recurrent meningeal HPC metastasizing to lungs. A 48-year-old woman presented with a history of headache. She underwent primary surgery 10 years previously for left parietal tumor. Histopathologic diagnosis was HPC. Radiotherapy was given postoperatively. Brain magnetic resonance imaging (MRI) at admission suggested local recurrence. She also complained of dry cough and shortness of breath. On evaluation, computed tomography (CT) scan lung showed multiple, bilateral, small nodules. Fine needle aspiration cytology (FNAC) of a larger nodule revealed spindle-shaped cells arranged around blood vessels. Immunohistochemistry with CD34 on cell block confirmed metastatic HPC. FNAC is an easy, accurate, relatively noninvasive procedure for diagnosing metastases, especially in patients with a history of recurrent intracranial HPC. Immunohistochemistry on cell block material collected at the time of FNAC may aid in distinguishing HPC from other tumors that are close mimics cytologically.

  12. Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan

    2017-05-01

    Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.

  13. The development and characterization of degradable poly(vinyl ester) and poly(vinyl ester)/PEO block copolymers

    NASA Astrophysics Data System (ADS)

    Lipscomb, Corinne Elizabeth

    The development of biodegradable materials is a challenging and important problem in polymer science. A review of the state of the art in degradable materials is presented, which reveals that current biodegradable materials do not exhibit the thermal or mechanical properties necessary for widespread applications. One strategy for toughening polymeric materials, which has previously been applied to non-degradable thermoplastics and thermoplastic elastomers, is the formation of block copolymers. Poly(vinyl esters) (PVE) homopolymers are known to have a wide range of properties, but PVE block copolymers comprise a class of inexpensive and (bio)degradable materials that were previously unknown. Therefore, the synthesis and properties of these block copolymers were explored in an effort to develop robust degradable materials. This thesis research probes the reaction conditions necessary for the reversible-addition fragmentation chain transfer (RAFT) polymerization and chain extension reactions of vinyl ester monomers. PVE di- and triblock copolymers are synthesized and studied, and the triblock copolymers display extremely poor toughness due to their relatively low molecular weights in light of the high entanglement molecular weight of the poly(vinyl acetate) center block. Attempts to improve the mechanical properties of these materials focus on the incorporation of poly(ethylene oxide) (PEO) as a low entanglement molecular weight and biocompatible center block in PVE-containing triblock copolymers. Depending on the choice of PVE endblocks and the overall polymer composition, crystallization of the PEO block can be controlled, confined, or inhibited. Polymers in which PEO crystallization is completely inhibited exhibit enhanced mechanical properties and behave as weak thermoplastics. In order to understand the relationship between the inhibition of PEO crystallization and the mechanical properties of PVE/PEO materials, these polymers were studied using dynamic mechanical spectroscopy, wide angle X-ray scattering, small angle X-ray scattering, differential scanning calorimetry, and uniaxial tensile tests. By combining insights gained from these techniques, a complex picture emerges that explains the enhanced mechanical properties of these materials based on the type and location of thermal transitions, amorphous PEO entanglements, and the strain-induced crystallization of PEO. This work represents an important step toward developing robust materials with tunable properties containing (bio)degradable components.

  14. Etoposide; colchicine; mitomycin C and cyclophosphamide tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster lung (CHL) cells at Covance laboratories; Harrogate UK in support of OECD draft Test Guideline 487.

    PubMed

    Fowler, Paul; Whitwell, James; Jeffrey, Laura; Young, Jamie; Smith, Katie; Kirkland, David

    2010-10-29

    The following genotoxic chemicals were tested in the in vitro micronucleus assay, at Covance Laboratories, Harrogate, UK in the Chinese hamster lung cell line CHL. Etoposide (a topoisomerase inhibitor), colchicine (an aneugen), mitomycin C (a DNA cross linking agent) and cyclophosphamide (an alkylating agent requiring metabolic activation) were treated with and without cytokinesis block (by addition of cytochalasin B). This work formed part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 for the in vitro micronucleus test. The toxicity measures used, detecting both cytostasis and cell death, were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index or cytokinesis blocked proliferation index in the presence of cytokinesis block. All of the chemicals tested gave significant increases in the percentage of micronucleated cells with and without cytokinesis block at concentrations giving approximately 60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcomes from this series of tests support the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Cadmium chloride, benzo[a]pyrene and cyclophosphamide tested in the in vitro mammalian cell micronucleus test (MNvit) in the human lymphoblastoid cell line TK6 at Covance laboratories, Harrogate UK in support of OECD draft Test Guideline 487.

    PubMed

    Fowler, Paul; Whitwell, James; Jeffrey, Laura; Young, Jamie; Smith, Katie; Kirkland, David

    2010-10-29

    The following genotoxic chemicals were tested in the in vitro micronucleus assay, at Covance Laboratories, Harrogate, UK in the human lymphoblastoid cell line TK6. Cadmium chloride (an inorganic carcinogen), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation) and cyclophosphamide (an alkylating agent requiring metabolic activation) were treated with and without cytokinesis block (by addition of cytochalasin B). This work formed part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 for the in vitro micronucleus test. The toxicity measures used, capable of detecting both cytostasis and cell death, were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index or cytokinesis blocked proliferation index in the presence of cytokinesis block. All of the chemicals tested gave significant increases in the percentage of micronucleated cells with and without cytokinesis block at concentrations giving approximately 60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcomes from this series of tests support the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in the in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. A bioactive film based on cashew gum polysaccharide for wound dressing applications.

    PubMed

    Moreira, Bruna R; Batista, Karla A; Castro, Elisandra G; Lima, Eliana M; Fernandes, Kátia F

    2015-05-20

    This work presents the development of a new bioactive material for wound therapeutics which may play a dual role of modulate metallo proteinases activity while prevents infection blocking out pathogenic microorganisms and foreign materials. A CGP/PVA film was activated by covalent immobilization of trypsin. Results from biocompatibility test revealed that PDL fibroblasts grown on the surface of CGP/PVA and the high amount of viable cells proved absence of cytotoxicity. Trypsin immobilized onto CGP/PVA film remained 100% active after 28 days stored dried at room temperature. In addition, CGP/PVA-trypsin film could be used for 9 cycles of storage/use without loss of activity. After immobilization, trypsin retained its collagenolytic activity, indicating this material as a promising material for wound dressing applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Structural Benchmark Testing of Superalloy Lattice Block Subelements Completed

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Superalloy lattice block panels, which are produced directly by investment casting, are composed of thin ligaments arranged in three-dimensional triangulated trusslike structures (see the preceding figure). Optionally, solid panel face sheets can be formed integrally during casting. In either form, lattice block panels can easily be produced with weights less than 25 percent of the mass of a solid panel. Inconel 718 (IN 718) and MarM-247 superalloy lattice block panels have been developed under NASA's Ultra-Efficient Engine Technology Project and Higher Operating Temperature Propulsion Components Project to take advantage of the superalloys' high strength and elevated temperature capability with the inherent light weight and high stiffness of the lattice architecture (ref. 1). These characteristics are important in the future development of turbine engine components. Casting quality and structural efficiency were evaluated experimentally using small beam specimens machined from the cast and heat treated 140- by 300- by 11-mm panels. The matrix of specimens included samples of each superalloy in both open-celled and single-face-sheet configurations, machined from longitudinal, transverse, and diagonal panel orientations. Thirty-five beam subelements were tested in Glenn's Life Prediction Branch's material test machine at room temperature and 650 C under both static (see the following photograph) and cyclic load conditions. Surprisingly, test results exceeded initial linear elastic analytical predictions. This was likely a result of the formation of plastic hinges and redundancies inherent in lattice block geometry, which was not considered in the finite element models. The value of a single face sheet was demonstrated by increased bending moment capacity, where the face sheet simultaneously increased the gross section modulus and braced the compression ligaments against early buckling as seen in open-cell specimens. Preexisting flaws in specimens were not a discriminator in flexural, shear, or stiffness measurements, again because of redundant load paths available in the lattice block structure. Early test results are available in references 2 and 3; more complete analyses are scheduled for publication in 2004.

  18. Inhalation toxicology. V., Evaluation of relative toxicity to rats of thermal decomposition products from two aircraft seat fire-blocking materials.

    DOT National Transportation Integrated Search

    1985-11-01

    Two fire-blocking layer (FBL) materials, designed to delay the thermal decomposition of polyurethane foam seat cushions during an aircraft cabin fire, were evaluated for the relative toxicity of their gaseous combustion products. Each materials was t...

  19. Self-cooling mono-container fuel cell generators and power plants using an array of such generators

    DOEpatents

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.

    1998-05-12

    A mono-container fuel cell generator contains a layer of interior insulation, a layer of exterior insulation and a single housing between the insulation layers, where fuel cells, containing electrodes and electrolyte, are surrounded by the interior insulation in the interior of the generator, and the generator is capable of operating at temperatures over about 650 C, where the combination of interior and exterior insulation layers have the ability to control the temperature in the housing below the degradation temperature of the housing material. The housing can also contain integral cooling ducts, and a plurality of these generators can be positioned next to each other to provide a power block array with interior cooling. 7 figs.

  20. Multicomponent Nanomaterials with Complex Networked Architectures from Orthogonal Degradation and Binary Metal Backfilling in ABC Triblock Terpolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowman, Christina D.; Padgett, Elliot; Tan, Kwan Wee

    2015-05-13

    Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etchingmore » and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer–inorganic hybrid materials with two distinct metal networks. Multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures.« less

  1. Multicomponent nanomaterials with complex networked architectures from orthogonal degradation and binary metal backfilling in ABC triblock terpolymers

    DOE PAGES

    Cowman, Christina D.; Padgett, Elliot; Tan, Kwan Wee; ...

    2015-04-02

    Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etchingmore » and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer–inorganic hybrid materials with two distinct metal networks. Lastly, multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures.« less

  2. Highly efficient inverted polymer solar cells based on a cross-linkable water-/alcohol-soluble conjugated polymer interlayer.

    PubMed

    Zhang, Kai; Zhong, Chengmei; Liu, Shengjian; Mu, Cheng; Li, Zhengke; Yan, He; Huang, Fei; Cao, Yong

    2014-07-09

    A cross-linkable water/alcohol soluble conjugated polymer (WSCP) material poly[9,9-bis(6'-(N,N-diethylamino)propyl)-fluorene-alt-9,9-bis(3-ethyl(oxetane-3-ethyloxy)-hexyl) fluorene] (PFN-OX) was designed. The cross-linkable nature of PFN-OX is good for fabricating inverted polymer solar cells (PSCs) with well-defined interface and investigating the detailed working mechanism of high-efficiency inverted PSCs based on poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b']dithio-phene-2,6-diyl-alt-ethylhexyl-3-fluorothithieno[3,4-b]thiophene-2-carboxylate-4,6-diyl] (PTB7) and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) blend active layer. The detailed working mechanism of WSCP materials in high-efficiency PSCs were studied and can be summarized into the following three effects: a) PFN-OX tunes cathode work function to enhance open-circuit voltage (Voc); b) PFN-OX dopes PC71BM at interface to facilitate electron extraction; and c) PFN-OX extracts electrons and blocks holes to enhance fill factor (FF). On the basis of this understanding, the hole-blocking function of the PFN-OX interlayer was further improved with addition of a ZnO layer between ITO and PFN-OX, which led to inverted PSCs with a power conversion efficiency of 9.28% and fill factor high up to 74.4%.

  3. Young investigator challenge: Validation and optimization of immunohistochemistry protocols for use on cellient cell block specimens.

    PubMed

    Sauter, Jennifer L; Grogg, Karen L; Vrana, Julie A; Law, Mark E; Halvorson, Jennifer L; Henry, Michael R

    2016-02-01

    The objective of the current study was to establish a process for validating immunohistochemistry (IHC) protocols for use on the Cellient cell block (CCB) system. Thirty antibodies were initially tested on CCBs using IHC protocols previously validated on formalin-fixed, paraffin-embedded tissue (FFPE). Cytology samples were split to generate thrombin cell blocks (TCB) and CCBs. IHC was performed in parallel. Antibody immunoreactivity was scored, and concordance or discordance in immunoreactivity between the TCBs and CCBs for each sample was determined. Criteria for validation of an antibody were defined as concordant staining in expected positive and negative cells, in at least 5 samples each, and concordance in at least 90% of the samples total. Antibodies that failed initial validation were retested after alterations in IHC conditions. Thirteen of the 30 antibodies (43%) did not meet initial validation criteria. Of those, 8 antibodies (calretinin, clusters of differentiation [CD] 3, CD20, CDX2, cytokeratin 20, estrogen receptor, MOC-31, and p16) were optimized for CCBs and subsequently validated. Despite several alterations in conditions, 3 antibodies (Ber-EP4, D2-40, and paired box gene 8 [PAX8]) were not successfully validated. Nearly one-half of the antibodies tested in the current study failed initial validation using IHC conditions that were established in the study laboratory for FFPE material. Although some antibodies subsequently met validation criteria after optimization of conditions, a few continued to demonstrate inadequate immunoreactivity. These findings emphasize the importance of validating IHC protocols for methanol-fixed tissue before clinical use and suggest that optimization for alcohol fixation may be needed to obtain adequate immunoreactivity on CCBs. © 2016 American Cancer Society.

  4. Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wonjong; Cho, Gu Young; Noh, Seungtak

    2015-01-15

    An ultrathin yttria-stabilized zirconia (YSZ) blocking layer deposited by atomic layer deposition (ALD) was utilized for improving the performance and reliability of low-temperature solid oxide fuel cells (SOFCs) supported by an anodic aluminum oxide substrate. Physical vapor-deposited YSZ and gadolinia-doped ceria (GDC) electrolyte layers were deposited by a sputtering method. The ultrathin ALD YSZ blocking layer was inserted between the YSZ and GDC sputtered layers. To investigate the effects of an inserted ultrathin ALD blocking layer, SOFCs with and without an ultrathin ALD blocking layer were electrochemically characterized. The open circuit voltage (1.14 V) of the ALD blocking-layered SOFC was visiblymore » higher than that (1.05 V) of the other cell. Furthermore, the ALD blocking layer augmented the power density and improved the reproducibility.« less

  5. Carbonaceous cathode with enhanced wettability for aluminum production

    DOEpatents

    Keller, Rudolf; Gatty, David G.; Barca, Brian J.

    2003-09-09

    A method of preparing carbonaceous blocks or bodies for use in a cathode in an electrolytic cell for producing aluminum wherein the cell contains an electrolyte and has molten aluminum contacting the cathode, the cathode having improved wettability with molten aluminum. The method comprises the steps of providing a carbonaceous block and a boron oxide containing melt. The carbonaceous block is immersed in the melt and pressure is applied to the melt to impregnate the melt into pores in the block. Thereafter, the carbonaceous block is withdrawn from the melt, the block having boron oxide containing melt intruded into pores therein, the boron oxide capable of reacting with a source of titanium or zirconium or like metal to form titanium or zirconium diboride during heatup or operation of said cell.

  6. Lipid Nanotechnology

    PubMed Central

    Mashaghi, Samaneh; Jadidi, Tayebeh; Koenderink, Gijsje; Mashaghi, Alireza

    2013-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology. PMID:23429269

  7. 20. VIEW LOOKING SOUTH FROM THIRD LEVEL GUARD STATION, CELL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW LOOKING SOUTH FROM THIRD LEVEL GUARD STATION, CELL BLOCK 'B' IS ON THE LEFT AND CELL BLOCK 'C' IN ON THE RIGHT - Alcatraz, Cell House, Alcatraz Island, San Francisco Bay, San Francisco, San Francisco County, CA

  8. MHSS: a material handling system simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomernacki, L.; Hollstien, R.B.

    1976-04-07

    A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can bemore » adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)« less

  9. Highly Ordered Block Copolymer Templates for the Generation of Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Bhoje Gowd, E.; Nandan, Bhanu; Bigall, Nadja C.; Eychmuller, Alexander; Stamm, Manfred

    2009-03-01

    Among many different types of self-assembled materials, block copolymers have attracted immense interest for applications in nanotechnology. Block copolymer thin film can be used as a template for patterning of hard inorganic materials such as metal nanoparticles. In the present work, we demonstrate a new approach to fabricate highly ordered arrays of nanoscopic inorganic dots and wires using switchable block copolymer thin films. Various inorganic nanoparticles from a simple aqueous solution were directly deposited on the surface reconstructed block copolymer templates. The preferential interaction of the nanoparticles with one of the blocks is mainly responsible for the lateral distribution of the nanoparticles in addition to the capillary forces. Subsequent stabilization by UV-irradiation followed by pyrolysis in air at 450 ^oC removes the polymer to produce highly ordered metallic nanostructures. This method is highly versatile as the procedure used here is simple, eco-friendly and provides a facile approach to fabricate a broad range of nanoscaled architectures with tunable lateral spacing.

  10. Design, fabrication and characterization of a double layer solid oxide fuel cell (DLFC)

    NASA Astrophysics Data System (ADS)

    Wang, Guangjun; Wu, Xiangying; Cai, Yixiao; Ji, Yuan; Yaqub, Azra; Zhu, Bin

    2016-11-01

    A double layer solid oxide fuel cell (DLSOFC) without using the electrolyte (layer) has been designed by integrating advantages of positive electrode material of lithium ion battery(LiNi0.8Co0.15Al0.05O2) and oxygen-permeable membranes material (trace amount cobalt incorporated terbium doped ceria, TDC + Co) based on the semiconductor physics principle. Instead of using an electrolyte layer, the depletion layer between the anode and cathode served as an electronic insulator to block the electrons but to maintain the electrolyte function for ionic transport. Thus the device with two layers can realize the function of SOFC and at the same time avoids the electronic short circuiting problem. Such novel DLFC showed good performance at low temperatures, for instance, a maximum power density of 230 mWcm-2 was achieved at 500 °C. The working principle of the new device is presented.

  11. Cork-resin ablative insulation for complex surfaces and method for applying the same

    NASA Technical Reports Server (NTRS)

    Walker, H. M.; Sharpe, M. H.; Simpson, W. G. (Inventor)

    1980-01-01

    A method of applying cork-resin ablative insulation material to complex curved surfaces is disclosed. The material is prepared by mixing finely divided cork with a B-stage curable thermosetting resin, forming the resulting mixture into a block, B-stage curing the resin-containing block, and slicing the block into sheets. The B-stage cured sheet is shaped to conform to the surface being insulated, and further curing is then performed. Curing of the resins only to B-stage before shaping enables application of sheet material to complex curved surfaces and avoids limitations and disadvantages presented in handling of fully cured sheet material.

  12. Replacement of Fine Aggregate by using Recyclable Materials in Paving Blocks

    NASA Astrophysics Data System (ADS)

    Koganti, Shyam Prakash; Hemanthraja, Kommineni; Sajja, Satish

    2017-08-01

    Cement concrete paving blocks are precast hard products complete out of cement concrete. The product is made in various sizes and shapes like square, round and rectangular blocks of different dimensions with designs for interlocking of adjacent tiles blocks. Several Research Works have been carried out in the past to study the possibility of utilizing waste materials and industrial byproducts in the manufacturing of paver blocks. Various industrial waste materials like quarry dust, glass powder, ceramic dust and coal dust are used as partial replacement of fine aggregate and assessed the strength parameters and compared the profit percentages after replacement with waste materials. Quarry dust can be replaced by 20% and beyond that the difference in strength is not much higher but considering cost we can replace upto 40% so that we can get a profit of almost 10%. Similarly we can replace glass powder and ceramic dust by 20% only beyond that there is decrement in strength and even with 20% replacement we can get 1.34 % and 2.42% of profit. Coal dust is not suitable for alternative material as fine aggregate as it reduces the strength.

  13. Immune response to a mammary adenocarcinoma. V. Sera from tumor-bearing rats contain multiple factors blocking cell-mediated cytotoxicity.

    PubMed

    Huber, S A; Lucas, Z J

    1978-12-01

    Sera from Fischer rats 3 to 13 days after i.p. injection of syngeneic 13762A mammary adenocarcinoma contain three factors specifically blocking cell-mediated cytotoxicity (CMC). The major blocking factor is a 160,000-dalton IgG that combines specifically to cytolytic lymphocytes but not to tumor cells or tumor antigen, and that is not dissociated after treatment with 8 M urea. The other factors have been putatively identified as tumor antigen (less than 70,000 daltons) and as soluble antigen-antibody complexes (greater than 200,000 daltons). Injecting the tumor antigen into tumor-free rats induced spleen cells specifically cytotoxic to the 13762A tumor and provided partial protection to challenge with live tumor cells. Treating soluble antigen-antibody complexes with 8 M urea decreased the size of the blocking activity from greater than 200,000 to less than 70,000 daltons. Although the IgG fraction dissociated from the complex did not block CMC, it did recombine with the tumor antigen fraction to transfer activity to the greater than 200,000-dalton fraction. In contrast, mixing tumor antigen with the IgG fraction that did block CMC did not alter the size of the blocking activities.

  14. Discrimination of high-Z materials in concrete-filled containers using muon scattering tomography

    NASA Astrophysics Data System (ADS)

    Frazão, L.; Velthuis, J.; Thomay, C.; Steer, C.

    2016-07-01

    An analysis method of identifying materials using muon scattering tomography is presented, which uses previous knowledge of the position of high-Z objects inside a container and distinguishes them from similar materials. In particular, simulations were performed in order to distinguish a block of Uranium from blocks of Lead and Tungsten of the same size, inside a concrete-filled drum. The results show that, knowing the shape and position from previous analysis, it is possible to distinguish 5 × 5 × 5 cm3 blocks of these materials with about 4h of muon exposure, down to 2 × 2 × 2 cm3 blocks with 70h of data using multivariate analysis (MVA). MVA uses several variables, but it does not benefit the discrimination over a simpler method using only the scatter angles. This indicates that the majority of discrimination is provided by the angular information. Momentum information is shown to provide no benefits in material discrimination.

  15. Application of soil block without burning process and calcium silicate panels as building wall in mountainous area

    NASA Astrophysics Data System (ADS)

    Noerwasito, Vincentius Totok; Nasution, Tanti Satriana Rosary

    2017-11-01

    Utilization of local building materials in a residential location in mountainous area is very important, considering local material as a low-energy building material because of low transport energy. The local building materials used in this study are walls made from soil blocks. The material was made by the surrounding community from compacted soil without burning process. To maximize the potential of soil block to the outdoor temperature in the mountains, it is necessary to add non-local building materials as an insulator from the influence of the outside air. The insulator was calcium silicate panel. The location of the research is Trawas sub-district, Mojokerto regency, which is a mountainous area. The research problem is on applying the composition of local materials and calcium silicate panels that it will be able to meet the requirements as a wall building material and finding to what extent the impact of the wall against indoor temperature. The result from this research was the application of soil block walls insulated by calcium silicate panels in a building model. Besides, because of the utilization of those materials, the building has a specific difference between indoor and outdoor temperature. Thus, this model can be applied in mountainous areas in Indonesia.

  16. An electron-deficient small molecule accessible from sustainable synthesis and building blocks for use as a fullerene alternative in organic photovoltaics.

    PubMed

    McAfee, Seth M; Topple, Jessica M; Payne, Abby-Jo; Sun, Jon-Paul; Hill, Ian G; Welch, Gregory C

    2015-04-27

    An electron-deficient small molecule accessible from sustainable isoindigo and phthalimide building blocks was synthesized via optimized synthetic procedures that incorporate microwave-assisted synthesis and a heterogeneous catalyst for Suzuki coupling, and direct heteroarylation carbon-carbon bond forming reactions. The material was designed as a non-fullerene acceptor with the help of DFT calculations and characterized by optical, electronic, and thermal analysis. Further investigation of the material revealed a differing solid-state morphology with the use of three well-known processing conditions: thermal annealing, solvent vapor annealing and small volume fractions of 1,8-diiodooctane (DIO) additive. These unique morphologies persist in the active layer blends and have demonstrated a distinct influence on device performance. Organic photovoltaic-bulk heterojunction (OPV-BHJ) devices show an inherently high open circuit voltage (Voc ) with the best power conversion efficiency (PCE) cells reaching 1.0 V with 0.4 v/v % DIO as a processing additive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Enhanced bone screw fixation with biodegradable bone cement in osteoporotic bone model.

    PubMed

    Juvonen, Tiina; Koistinen, Arto; Kröger, Heikki; Lappalainen, Reijo

    2012-09-27

    The purpose of this study was to study the potential of novel biodegradable PCL bone cement to improve bone screw fixation strength in osteoporotic bone. The biomechanical properties of bone cement (ε-polycaprolactone, PCL) and fixation strength were studied using biomechanical tests and bone screws fixed in an osteoporotic bone model. Removal torques and pullout strengths were assessed for cortical, self-tapping, and cancellous screws inserted in the osteoporotic bone model (polyurethane foam blocks with polycarbonate plate) with and without PCL bone cement. Open cell and cellular rigid foam blocks with a density of 0.12 g/cm3 were used in this model. Removal torques were significantly (more than six-fold) improved with bone cement for cancellous screws. Furthermore, the bone cement improved pullout strengths three to 12 times over depending on the screw and model material. Biodegradable bone cement turned out to be a very potential material to stabilize screw fixation in osteoporotic bone. The results warrant further research before safe clinical use, especially to clarify clinically relevant factors using real osteoporotic bone under human body conditions and dynamic fatigue testing for long-term performance.

  18. Mechanical Testing of IN718 Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Whittenberger, John D.; Kantzos, Pete T.; Hebsur, Mohan G.

    2002-01-01

    Lattice block construction produces a flat, structurally rigid panel composed of thin ligaments of material arranged in a three-dimensional triangulated truss-like structure. Low-cost methods of producing cast metallic lattice block panels are now available that greatly expand opportunities for using this unique material system in today's high-performance structures. Additional advances are being made in NASA's Ultra Efficient Engine Technology (UEET) program to extend the lattice block concept to superalloy materials. Advantages offered by this combination include high strength, light weight, high stiffness, and elevated temperature capabilities. Recently under UEET, the nickel-based superalloy Inconel 718 (IN718) was investment cast into lattice block panels with great success. To evaluate casting quality and lattice block architecture merit, individual ligaments, and structural subelement specimens were extracted from the panels. Tensile tests, structural compression, and bending strength tests were performed on these specimens. Fatigue testing was also completed for several bend test specimens. This paper first presents metallurgical and optical microscopy analysis of the castings. This is followed by mechanical test results for the tensile ligament tests and the subelement compression and bending strength tests, as well as for the fatigue tests that were performed. These tests generally showed comparable properties to base IN718 with the same heat treatment, and they underscored the benefits offered by lattice block materials. These benefits might be extended with improved architecture such as face sheets.

  19. Merging Bottom-Up with Top-Down: Continuous Lamellar Networks and Block Copolymer Lithography

    NASA Astrophysics Data System (ADS)

    Campbell, Ian Patrick

    Block copolymer lithography is an emerging nanopatterning technology with capabilities that may complement and eventually replace those provided by existing optical lithography techniques. This bottom-up process relies on the parallel self-assembly of macromolecules composed of covalently linked, chemically distinct blocks to generate periodic nanostructures. Among the myriad potential morphologies, lamellar structures formed by diblock copolymers with symmetric volume fractions have attracted the most interest as a patterning tool. When confined to thin films and directed to assemble with interfaces perpendicular to the substrate, two-dimensional domains are formed between the free surface and the substrate, and selective removal of a single block creates a nanostructured polymeric template. The substrate exposed between the polymeric features can subsequently be modified through standard top-down microfabrication processes to generate novel nanostructured materials. Despite tremendous progress in our understanding of block copolymer self-assembly, continuous two-dimensional materials have not yet been fabricated via this robust technique, which may enable nanostructured material combinations that cannot be fabricated through bottom-up methods. This thesis aims to study the effects of block copolymer composition and processing on the lamellar network morphology of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) and utilize this knowledge to fabricate continuous two-dimensional materials through top-down methods. First, block copolymer composition was varied through homopolymer blending to explore the physical phenomena surrounding lamellar network continuity. After establishing a framework for tuning the continuity, the effects of various processing parameters were explored to engineer the network connectivity via defect annihilation processes. Precisely controlling the connectivity and continuity of lamellar networks through defect engineering and optimizing the block copolymer lithography process thus enabled the top-down fabrication of continuous two-dimensional gold networks with nanoscale properties. The lamellar structure of these networks was found to confer unique mechanical properties on the nanowire networks and suggests that materials templated via this method may be excellent candidates for integration into stretchable and flexible devices.

  20. Selective Blockade of Human Natural Killer Cells by a Monoclonal Antibody

    NASA Astrophysics Data System (ADS)

    Newman, Walter

    1982-06-01

    A murine monoclonal antibody, 13.1, which blocks human natural killer (NK) cell-mediated lysis, has been developed. Hybridoma 13.1 was derived by fusion of NS-1 cells with spleen cells from mice immunized with an enriched population of NK cells. Supernatants of growing hybridomas were screened for their ability to block NK cell-mediated lysis of K562 targets. Antibody 13.1 is an IgG1 with a single light chain type and it does not fix complement. The 13.1 antigen is expressed on all peripheral blood mononuclear cells, with an antigen density approximately 1/30th that of HLA antigen heavy chain. Pretreatment and washing experiments revealed that inhibition of cytotoxicity occurred at the effector cell level only. Significant blocking was achieved with nanogram quantities of antibody and was not due to toxic effects on NK cells. Likewise, controls with other antibodies of the same subclass demonstrated that blocking was not a consequence of mere binding to NK cells. When a panel of 17 NK cell-susceptible targets was tested, the lysis of only 5 of these was blocked, namely K562, HL-60, KG-1, Daudi, and HEL, a human erythroleukemic cell line. The lysis of 12 human B cell and T cell line targets was not inhibited. In addition to the demonstration that the 13.1 antigen is a crucial cell surface structure involved in NK lysis, a heterogeneity of target cell recognition has been revealed that argues for the proposition that individual NK cells have multiple recognitive capabilities.

  1. Preparation of W/CuCrZr mono-block test mock-up using vacuum brazing technique

    NASA Astrophysics Data System (ADS)

    Premjit Singh, K.; Khirwadkar, S.; Bhope, Kedar; Patel, Nikunj; Mokaria, Prakash

    2017-04-01

    Development of the joining for W/CuCrZr mono-block PFC test mock-up is an interesting area in Fusion R&D. W/Cu bimetallic material has been prepared using OFHC Copper casting approach on the radial surface of W mono-block tile surface. The W/Cu bimetallic material has been joined with CuCrZr tube (heat sink) material with the vacuum brazing route. Vacuum brazing of W/Cu-CuCrZr has been performed @ 970°C for 10 min using NiCuMn-37 filler material under deep vacuum environment (10-6 mbar). Graphite fixture was used for OFHC Copper casting and vacuum brazing experiments. The joint integrity of W/Cu-CuCrZr mono-block mock-up of W/Cu and Cu-CuCrZr interface has been checked using ultrasonic immersion technique. The result of the experimental work is presented in the paper.

  2. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  3. Saponins from soy bean and mung bean inhibit the antigen specific activation of helper T cells by blocking cell cycle progression.

    PubMed

    Lee, Suk Jun; Bae, Joonbeom; Kim, Sunhee; Jeong, Seonah; Choi, Chang-Yong; Choi, Sang-Pil; Kim, Hyun-Sook; Jung, Woon-Won; Imm, Jee-Young; Kim, Sae Hun; Chun, Taehoon

    2013-02-01

    Treatment of helper T (Th) cells with saponins from soy bean and mung bean prevented their activation by inhibiting cell proliferation and cytokine secretion. However, the saponins did not affect the expression of major histocompatibility complex class II (A(b)) and co-stimulatory molecule (CD86) on professional antigen-presenting cells. Instead, the saponins directly inhibited Th cell proliferation by blocking the G(1) to S phase cell cycle transition. Moreover, blocking of the cell cycle by the saponins was achieved by decreased expression of cyclin D1 and cyclin E, and constitutive expression of p27(KIP1). Saponins also increased stability of p27(KIP1) in Th cells after antigenic stimulation.

  4. Graded bandgap perovskite solar cells.

    PubMed

    Ergen, Onur; Gilbert, S Matt; Pham, Thang; Turner, Sally J; Tan, Mark Tian Zhi; Worsley, Marcus A; Zettl, Alex

    2017-05-01

    Organic-inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of ∼75% and high short-circuit current densities up to 42.1 mA cm -2 . The cells are based on an architecture of two perovskite layers (CH 3 NH 3 SnI 3 and CH 3 NH 3 PbI 3-x Br x ), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.

  5. Tuning Molecular Weights of Bombyx mori (B. mori) Silk Sericin to Modify Its Assembly Structures and Materials Formation

    PubMed Central

    2015-01-01

    Bombyx mori (B. mori) silk sericin is a protein with features desirable as a biomaterial, such as increased hydrophilicity and biodegradation, as well as resistance to oxidation, bacteria, and ultraviolet light. In contrast to other widely studied B. mori silk proteins such as fibroin, sericin is still unexplored as a building block for fabricating biomaterial, and thus a facile technique of processing it into a material is needed. Here, electrospinning technology was used to fabricate it into biomaterials from two forms of B. mori silk sericin with different molecular weights, one is a low (12.0 kDa) molecular sericin (LS) form and another is a high (66.0 kDa) molecular weight sericin (HS) form. Circular dichroism (CD) spectra showed that LS in hexafluoroacetone (HFA) solvent adopted a predominantly random coil conformation, whereas HS tended to form a β-sheet structure along with a large content of random coils. In addition, LS and HS in HFA solvent were found to form cylinder-like smaller nanoparticles and larger irregular aggregates before electrospinning, respectively. As a result, biomaterials based on microparticles and nanofibers were successfully fabricated by electrospinning of LS and HS dissolved in HFA, respectively. The cell viability and differentiation assay indicated that nanofibers and microparticles improved cell adhesion, growth, and differentiation, proving that the scaffolds electrospun from sericin are biocompatible regardless of its molecular weight. The microparticles, not common in electrospinning of silk proteins reported previously, were found to promote the osteogenic differentiation of mesenchymal stem cells in comparison to the nanofibers. This study suggested that molecular weight of sericin mediates its secondary structure and assembly structure, which in turn leads to a control of final morphology of the electrospun materials. The microparticles and nanofibers of sericin can be potentially used as building blocks for fabricating the scaffolds for tissue engineering. PMID:25050697

  6. Tuning molecular weights of Bombyx mori (B. mori) silk sericin to modify its assembly structures and materials formation.

    PubMed

    Yang, Mingying; Shuai, Yajun; Zhou, Guanshan; Mandal, Namita; Zhu, Liangjun; Mao, Chuanbin

    2014-08-27

    Bombyx mori (B. mori) silk sericin is a protein with features desirable as a biomaterial, such as increased hydrophilicity and biodegradation, as well as resistance to oxidation, bacteria, and ultraviolet light. In contrast to other widely studied B. mori silk proteins such as fibroin, sericin is still unexplored as a building block for fabricating biomaterial, and thus a facile technique of processing it into a material is needed. Here, electrospinning technology was used to fabricate it into biomaterials from two forms of B. mori silk sericin with different molecular weights, one is a low (12.0 kDa) molecular sericin (LS) form and another is a high (66.0 kDa) molecular weight sericin (HS) form. Circular dichroism (CD) spectra showed that LS in hexafluoroacetone (HFA) solvent adopted a predominantly random coil conformation, whereas HS tended to form a β-sheet structure along with a large content of random coils. In addition, LS and HS in HFA solvent were found to form cylinder-like smaller nanoparticles and larger irregular aggregates before electrospinning, respectively. As a result, biomaterials based on microparticles and nanofibers were successfully fabricated by electrospinning of LS and HS dissolved in HFA, respectively. The cell viability and differentiation assay indicated that nanofibers and microparticles improved cell adhesion, growth, and differentiation, proving that the scaffolds electrospun from sericin are biocompatible regardless of its molecular weight. The microparticles, not common in electrospinning of silk proteins reported previously, were found to promote the osteogenic differentiation of mesenchymal stem cells in comparison to the nanofibers. This study suggested that molecular weight of sericin mediates its secondary structure and assembly structure, which in turn leads to a control of final morphology of the electrospun materials. The microparticles and nanofibers of sericin can be potentially used as building blocks for fabricating the scaffolds for tissue engineering.

  7. Crank shaft support assembly

    DOEpatents

    Natkin, Robert J.; Oltmans, Bret; Allison, John E.; Heater, Thomas J.; Hines, Joy Adair; Tappen, Grant K.; Peiskammer, Dietmar

    2007-10-23

    A crank shaft support assembly for increasing stiffness and reducing thermal mismatch distortion in a crank shaft bore of an engine comprising different materials. A cylinder block comprises a first material and at least two crank journal inserts are insert-molded into respective crank journal regions of the cylinder block and comprise a second material having greater stiffness and a lower thermal coefficient of expansion that the first material. At least two bearing caps are bolted to the respective crank journal inserts and define, along with the crank journal inserts, at least two crank shaft support rings defining a crank shaft bore coaxially aligned with a crank shaft axis. The bearing caps comprise a material having higher stiffness and a lower thermal coefficient of expansion than the first material and are supported on the respective crank journal inserts independently of any direct connection to the cylinder block.

  8. Progress Towards a Rad-Hydro Code for Modern Computing Architectures LA-UR-10-02825

    NASA Astrophysics Data System (ADS)

    Wohlbier, J. G.; Lowrie, R. B.; Bergen, B.; Calef, M.

    2010-11-01

    We are entering an era of high performance computing where data movement is the overwhelming bottleneck to scalable performance, as opposed to the speed of floating-point operations per processor. All multi-core hardware paradigms, whether heterogeneous or homogeneous, be it the Cell processor, GPGPU, or multi-core x86, share this common trait. In multi-physics applications such as inertial confinement fusion or astrophysics, one may be solving multi-material hydrodynamics with tabular equation of state data lookups, radiation transport, nuclear reactions, and charged particle transport in a single time cycle. The algorithms are intensely data dependent, e.g., EOS, opacity, nuclear data, and multi-core hardware memory restrictions are forcing code developers to rethink code and algorithm design. For the past two years LANL has been funding a small effort referred to as Multi-Physics on Multi-Core to explore ideas for code design as pertaining to inertial confinement fusion and astrophysics applications. The near term goals of this project are to have a multi-material radiation hydrodynamics capability, with tabular equation of state lookups, on cartesian and curvilinear block structured meshes. In the longer term we plan to add fully implicit multi-group radiation diffusion and material heat conduction, and block structured AMR. We will report on our progress to date.

  9. Microstructure synthesis control of biological polyhydroxyalkanoates with mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pederson, Erik Norman

    Polyhydroxyalkanoates (PHA's) are a class of biologically produced polymers, or plastic, that is synthesized by various microorganisms. PHA's are made from biorenewable resources and are fully biodegradable and biocompatible, making them an environmentally friendly green polymer. A method of incorporating polymer microstructure into the PHA synthesized in Ralstonia eutropha was developed. These microstructures were synthesized with polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) as the polymer domains. To synthesize the PHB V copolymer, the additional presence of valerate was required. To control valerate substrate additions to the bioreactor, an off-gas mass spectrometry (MS) feedback control system was developed. Important process information including the cell physiology, growth kinetics, and product formation kinetics in the bioreactor was obtained with MS and used to control microstructure synthesis. The two polymer microstructures synthesized were core-shell granules and block copolymers. Block copolymers control the structure of the individual polymer chains while core-shell granules control the organization of many polymer chains. Both these microstructures result in properties unattainable by blending the two polymers together. The core-shell structures were synthesized with controlled domain thickness based on a developed model. Different block copolymers compositions were synthesized by varying the switching time of the substrate pulses responsible for block copolymer synthesis. The block copolymers were tested to determine their chemical properties and cast into films to determine the materials properties. These block copolymer films possessed new properties not achieved by copolymers or blends of the two polymers.

  10. Wideband Holographic Digital Recording and Reproduction. Phase IV.

    DTIC Science & Technology

    1980-02-01

    array of 128 acousto-optic ele- meats. The electrical energy is converted to acoustic waves within a glass crystal, so that when the light passes through...systems. An AO device is a block of transparent material (various types of glass , for example) through which we pass the laser beam that we want to...Clearance - .60 mm from cell Vignetting None None Glass Type Optional SF6 R ecord Mode Input Aperture 14 mm x 52mm 14mrm x 52rm Field Angle +12. 0

  11. Human Immunodeficiency Virus Type 1 (HIV-1) Integration: a Potential Target for Microbicides To Prevent Cell-Free or Cell-Associated HIV-1 Infection ▿

    PubMed Central

    Terrazas-Aranda, Katty; Van Herrewege, Yven; Hazuda, Daria; Lewi, Paul; Costi, Roberta; Di Santo, Roberto; Cara, Andrea; Vanham, Guido

    2008-01-01

    Conceptually, blocking human immunodeficiency virus type 1 (HIV-1) integration is the last possibility for preventing irreversible cellular infection. Using cocultures of monocyte-derived dendritic cells and CD4+ T cells, which represent primary targets in sexual transmission, we demonstrated that blocking integration with integrase strand transfer inhibitors (InSTIs), particularly L-870812, could consistently block cell-free and cell-associated HIV-1 infection. In a pretreatment setting in which the compound was present before and during infection and was afterwards gradually diluted during the culture period, the naphthyridine carboxamide L-870812 blocked infection with the cell-free and cell-associated HIV-1 Ba-L strain at concentrations of, respectively, 1,000 and 10,000 nM. The potency of L-870812 was similar to that of the nucleotide reverse transcriptase inhibitor R-9-(2-phosphonylmethoxypropyl) adenine (PMPA) but one or two orders of magnitude lower than those of the nonnucleoside reverse transcriptase inhibitors UC781 and TMC120. In contrast, the diketo acid RDS derivative InSTIs showed clear-cut but weaker antiviral activity than L-870812. Moreover, L-870812 completely blocked subtype C and CRFO2_AG primary isolates, which are prevalent in the African heterosexual epidemic. Furthermore, the addition of micromolar concentrations of L-870812 even 24 h after infection could still block both cell-free and cell-associated Ba-L, opening the prospect of postexposure prophylaxis. Finally, an evaluation of the combined activity of L-870812 with either T20, zidovudine, PMPA, UC781, or TMC120 against replication-deficient HIV-1 Ba-L (env) pseudovirus suggested synergistic activity for all combinations. Importantly, compounds selected for the study by using the coculture model were devoid of acute or delayed cytotoxic effects at HIV-blocking concentrations. Therefore, these findings provide evidence supporting consideration of HIV-1 integration as a target for microbicide development. PMID:18474579

  12. A coarse-grained model of microtubule self-assembly

    NASA Astrophysics Data System (ADS)

    Regmi, Chola; Cheng, Shengfeng

    Microtubules play critical roles in cell structures and functions. They also serve as a model system to stimulate the next-generation smart, dynamic materials. A deep understanding of their self-assembly process and biomechanical properties will not only help elucidate how microtubules perform biological functions, but also lead to exciting insight on how microtubule dynamics can be altered or even controlled for specific purposes such as suppressing the division of cancer cells. Combining all-atom molecular dynamics (MD) simulations and the essential dynamics coarse-graining method, we construct a coarse-grained (CG) model of the tubulin protein, which is the building block of microtubules. In the CG model a tubulin dimer is represented as an elastic network of CG sites, the locations of which are determined by examining the protein dynamics of the tubulin and identifying the essential dynamic domains. Atomistic MD modeling is employed to directly compute the tubulin bond energies in the surface lattice of a microtubule, which are used to parameterize the interactions between CG building blocks. The CG model is then used to study the self-assembly pathways, kinetics, dynamics, and nanomechanics of microtubules.

  13. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer

    PubMed Central

    Weiskopf, Kipp; Jahchan, Nadine S.; Schnorr, Peter J.; Ring, Aaron M.; Maute, Roy L.; Volkmer, Anne K.; Volkmer, Jens-Peter; Liu, Jie; Lim, Jing Shan; Yang, Dian; Seitz, Garrett; Nguyen, Thuyen; Wu, Di; Guerston, Heather; Trapani, Francesca; George, Julie; Poirier, John T.; Gardner, Eric E.; Miles, Linde A.; de Stanchina, Elisa; Lofgren, Shane M.; Vogel, Hannes; Winslow, Monte M.; Dive, Caroline; Thomas, Roman K.; Rudin, Charles M.; van de Rijn, Matt; Majeti, Ravindra; Garcia, K. Christopher; Weissman, Irving L.

    2016-01-01

    Small-cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer with limited treatment options. CD47 is a cell-surface molecule that promotes immune evasion by engaging signal-regulatory protein alpha (SIRPα), which serves as an inhibitory receptor on macrophages. Here, we found that CD47 is highly expressed on the surface of human SCLC cells; therefore, we investigated CD47-blocking immunotherapies as a potential approach for SCLC treatment. Disruption of the interaction of CD47 with SIRPα using anti-CD47 antibodies induced macrophage-mediated phagocytosis of human SCLC patient cells in culture. In a murine model, administration of CD47-blocking antibodies or targeted inactivation of the Cd47 gene markedly inhibited SCLC tumor growth. Furthermore, using comprehensive antibody arrays, we identified several possible therapeutic targets on the surface of SCLC cells. Antibodies to these targets, including CD56/neural cell adhesion molecule (NCAM), promoted phagocytosis in human SCLC cell lines that was enhanced when combined with CD47-blocking therapies. In light of recent clinical trials for CD47-blocking therapies in cancer treatment, these findings identify disruption of the CD47/SIRPα axis as a potential immunotherapeutic strategy for SCLC. This approach could enable personalized immunotherapeutic regimens in patients with SCLC and other cancers. PMID:27294525

  14. Hexamethonium sensitivity of the swim musculature of the pteropod mollusc, Clione limacina.

    PubMed

    Satterlie, Richard A; Courtney, Christopher

    2008-12-01

    Swimming in reduced electrophysiological preparations of the pteropod mollusc, Clione limacina, was blocked by bath application of hexamethonium even though pattern generator activity continued with this treatment. Neuromuscular recordings indicated that hexamethonium blocked synaptic input from Pd-3 and Pd-4 motoneurons to slow-twitch muscle cells, while connections from Pd-1A and Pd-2A motoneurons to fast-twitch muscle cells were variable in their response to hexamethonium-synaptic inputs were suppressed in most cases and occasionally blocked, but the latter only with high concentrations and long incubations. Acutely dissociated wing muscle cells showed a concentration-dependency in the percentage of contracted cells with bath application of acetylcholine, and this contractile activity was blocked in preparations that were first bathed in hexamethonium. Intracellular recordings from dissociated slow-twitch muscle cells showed conductance-increase depolarizations of approximately 20 mV following 1 s pressure ejections of 10(-4) M acetylcholine from micropipettes placed immediately adjacent to the muscle cells. These responses were blocked when hexamethonium was bath applied prior to the pressure-applied acetylcholine. The results suggest the Pd-3/Pd-4 motoneuron to slow-twitch muscle cell junctions are cholinergic with nicotinic-like receptors, while the Pd-1A/Pd-2A to fast-twitch muscle cell connections are likely cholinergic, but with a different receptor type.

  15. Ultra-Lightweight Hybrid Thin-Film Solar Cells: A Survey of Enabling Technologies for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; McNatt, Jeremiah S.; Bailey, Sheila G.; Dickman, John E.; Raffaelle, Ryne P.; Landi, Brian J.; Anctil, Annick; DiLeo, Roberta; Jin, Michael H.-C.; Lee, Chung-Young; hide

    2007-01-01

    The development of hybrid inorganic/organic thin-film solar cells on flexible, lightweight, space-qualified, durable substrates provides an attractive solution for fabricating solar arrays with high mass specific power (W/kg). Next generation thin-film technologies may well involve a revolutionary change in materials to organic-based devices. The high-volume, low-cost fabrication potential of organic cells will allow for square miles of solar cell production at one-tenth the cost of conventional inorganic materials. Plastic solar cells take a minimum of storage space and can be inflated or unrolled for deployment. We will explore a cross-section of in-house and sponsored research efforts that aim to provide new hybrid technologies that include both inorganic and polymer materials as active and substrate materials. Research at University of Texas at Arlington focuses on the fabrication and use of poly(isothianaphthene-3,6-diyl) in solar cells. We describe efforts at Norfolk State University to design, synthesize and characterize block copolymers. A collaborative team between EIC Laboratories, Inc. and the University of Florida is investigating multijunction polymer solar cells to more effectively utilize solar radiation. The National Aeronautics and Space Administration (NASA)/Ohio Aerospace Institute (OAI) group has undertaken a thermal analysis of potential metallized substrates as well as production of nanoparticles of CuInS2 and CuInSe2 in good yield at moderate temperatures via decomposition of single-source precursors. Finally, preliminary work at the Rochester Institute of Technology (R.I.T.) to assess the impact on performance of solar cells of temperature and carbon nanotubes is reported. Technologies that must be developed to enable ultra-lightweight solar arrays include: monolithic interconnects, lightweight array structures, and new ultra-light support and deployment mechanisms. For NASA applications, any solar cell or array technology must not only meet weight and AMO efficiency goals, but also must be durable enough to survive launch conditions and space environments.

  16. Analysis of the K1 capsule biosynthesis genes of Escherichia coli: definition of three functional regions for capsule production.

    PubMed

    Boulnois, G J; Roberts, I S; Hodge, R; Hardy, K R; Jann, K B; Timmis, K N

    1987-06-01

    Transposon and deletion analysis of the cloned K1 capsule biosynthesis genes of Escherichia coli revealed that approximately 17 kb of DNA, split into three functional regions, is required for capsule production. One block (region 1) is required for translocation of polysaccharide to the cell surface and mutations in this region result in the intracellular appearance of polymer indistinguishable on immunoelectrophoresis to that found on the surface of K1 encapsulated bacteria. This material was released from the cell by osmotic shock indicating that the polysaccharide was probably present in the periplasmic space. Insertions in a second block (region 2) completely abolished polymer production and this second region is believed to encode the enzymes for the biosynthesis and polymerisation of the K1 antigen. Addition of exogenous N-acetylneuraminic acid to one insertion mutant in this region restored its ability to express surface polymer as judged by K1 phage sensitivity. This insertion probably defines genes involved in biosynthesis of N-acetylneuraminic acid. Insertions in a third block (region 3) result in the intracellular appearance of polysaccharide with a very low electrophoretic mobility. The presence of the cloned K1 capsule biosynthesis genes on a multicopy plasmid in an E. coli K-12 strain did not increase the yields of capsular polysaccharide produced compared to the K1+ isolate from which the genes were cloned.

  17. Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors.

    PubMed

    Xiang, Yan; Lu, Shanfu; Jiang, San Ping

    2012-11-07

    As one of the most effective synthesis tools, layer-by-layer (LbL) self-assembly technology can provide a strong non-covalent integration and accurate assembly between homo- or hetero-phase compounds or oppositely charged polyelectrolytes, resulting in highly-ordered nanoscale structures or patterns with excellent functionalities and activities. It has been widely used in the developments of novel materials and nanostructures or patterns from nanotechnologies to medical fields. However, the application of LbL self-assembly in the development of highly efficient electrocatalysts, specific functionalized membranes for proton exchange membrane fuel cells (PEMFCs) and electrode materials for supercapacitors is a relatively new phenomenon. In this review, the application of LbL self-assembly in the development and synthesis of key materials of PEMFCs including polyelectrolyte multilayered proton-exchange membranes, methanol-blocking Nafion membranes, highly uniform and efficient Pt-based electrocatalysts, self-assembled polyelectrolyte functionalized carbon nanotubes (CNTs) and graphenes will be reviewed. The application of LbL self-assembly for the development of multilayer nanostructured materials for use in electrochemical supercapacitors will also be reviewed and discussed (250 references).

  18. Potential Use of In Situ Material Composites such as Regolith/Polyethylene for Shielding Space Radiation

    NASA Technical Reports Server (NTRS)

    Theriot, Corey A.; Gersey, Buddy; Bacon, Eugene; Johnson, Quincy; Zhang, Ye; Norman, Jullian; Foley, Ijette; Wilkins, Rick; Zhou, Jianren; Wu, Honglu

    2010-01-01

    NASA has an extensive program for studying materials and methods for the shielding of astronauts to reduce the effects of space radiation when on the surfaces of the Moon and Mars, especially in the use of in situ materials native to the destination reducing the expense of materials transport. The most studied material from the Moon is Lunar regolith and has been shown to be as efficient as aluminum for shielding purposes (1). The addition of hydrogenous materials such as polyethylene should increase shielding effectiveness and provide mechanical properties necessary of structural materials (2). The neutron radiation shielding effectiveness of polyethylene/regolith stimulant (JSC-1A) composites were studied using confluent human fibroblast cell cultures exposed to a beam of high-energy spallation neutrons at the 30deg-left beam line (ICE house) at the Los Alamos Neutron Science Center. At this angle, the radiation spectrum mimics the energy spectrum of secondary neutrons generated in the upper atmosphere and encountered when aboard spacecraft and high-altitude aircraft. Cell samples were exposed in series either directly to the neutron beam, within a habitat created using regolith composite blocks, or behind 25 g/sq cm of loose regolith bulk material. In another experiment, cells were also exposed in series directly to the neutron beam in T-25 flasks completely filled with either media or water up to a depth of 20 cm to test shielding effectiveness versus depth and investigate the possible influence of secondary particle generation. All samples were sent directly back to JSC for sub-culturing and micronucleus analysis. This presentation is of work performed in collaboration with the NASA sponsored Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M.

  19. Disruption of canonical TGFβ-signaling in murine coronary progenitor cells by low level arsenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, Patrick; Huang, Tianfang; Broka, Derrick

    2013-10-01

    Exposure to arsenic results in several types of cancers as well as heart disease. A major contributor to ischemic heart pathologies is coronary artery disease, however the influences by environmental arsenic in this disease process are not known. Similarly, the impact of toxicants on blood vessel formation and function during development has not been studied. During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types including smooth muscle cells which contribute to the coronary vessels. The TGFβ family of ligands and receptors is essential for developmental cardiac epithelial to mesenchymal transition (EMT) and differentiation into coronarymore » smooth muscle cells. In this in vitro study, 18 hour exposure to 1.34 μM arsenite disrupted developmental EMT programming in murine epicardial cells causing a deficit in cardiac mesenchyme. The expression of EMT genes including TGFβ2, TGFβ receptor-3, Snail, and Has-2 are decreased in a dose-dependent manner following exposure to arsenite. TGFβ2 cell signaling is abrogated as detected by decreases in phosphorylated Smad2/3 when cells are exposed to 1.34 μM arsenite. There is also loss of nuclear accumulation pSmad due to arsenite exposure. These observations coincide with a decrease in vimentin positive mesenchymal cells invading three-dimensional collagen gels. However, arsenite does not block TGFβ2 mediated smooth muscle cell differentiation by epicardial cells. Overall these results show that arsenic exposure blocks developmental EMT gene programming in murine coronary progenitor cells by disrupting TGFβ2 signals and Smad activation, and that smooth muscle cell differentiation is refractory to this arsenic toxicity. - Highlights: • Arsenic blocks TGFβ2 induced expression of EMT genes. • Arsenic blocks TGFβ2 triggered Smad2/3 phosphorylation and nuclear translocation. • Arsenic blocks epicardial cell differentiation into cardiac mesenchyme. • Arsenic does not block TGFβ2 induced smooth muscle cell differentiation.« less

  20. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    PubMed Central

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Background and objective Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. Materials and methods DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths. Results A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05). Conclusion We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in turn eye damage. PMID:27536083

  1. Amphiphilic block copolymer membrane for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Sylvia, James M.; Jacob, Monsy M.; Peramunage, Dharmasena

    2013-11-01

    An amphiphilic block copolymer comprised of hydrophobic polyaryletherketone (PAEK) and hydrophilic sulfonated polyaryletherketone (SPAEK) blocks has been synthesized and characterized. A membrane prepared from the block copolymer is used as the separator in a single cell vanadium redox flow battery (VRB). The proton conductivity, mechanical property, VO2+ permeability and single VRB cell performance of this block copolymer membrane are investigated and compared to Nafion™ 117. The block copolymer membrane showed significantly improved vanadium ion selectivity, higher mechanical strength and lower conductivity than Nafion™ 117. The VRB containing the block copolymer membrane exhibits higher coulombic efficiency and similar energy efficiency compared to a VRB using Nafion™ 117. The better vanadium ion selectivity of the block copolymer membrane has led to a much smaller capacity loss during 50 charge-discharge cycles for the VRB.

  2. Dendronized Metal Nanoparticles-Self-Organizing Building Blocks for the Design of New Functional Materials

    DTIC Science & Technology

    2016-04-01

    characterization has just started.       The hybrids that we have synthesized are based on plasmonic gold and  silver   nanoparticles  (NPs) but  the concept  is...AFRL-AFOSR-UK-TR-2016-0010 Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials Bertrand...2015 4. TITLE AND SUBTITLE Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials 5a. CONTRACT

  3. Significant Stability Enhancement in High-Efficiency Polymer:Fullerene Bulk Heterojunction Solar Cells by Blocking Ultraviolet Photons from Solar Light.

    PubMed

    Jeong, Jaehoon; Seo, Jooyeok; Nam, Sungho; Han, Hyemi; Kim, Hwajeong; Anthopoulos, Thomas D; Bradley, Donal D C; Kim, Youngkyoo

    2016-04-01

    Achievement of extremely high stability for inverted-type polymer:fullerene solar cells is reported, which have bulk heterojunction (BHJ) layers consisting of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl-C71-butyric acid methyl ester (PC 71 BM), by employing UV-cut filter (UCF) that is mounted on the front of glass substrates. The UCF can block most of UV photons below 403 nm at the expense of ≈20% reduction in the total intensity of solar light. Results show that the PTB7-Th:PC 71 BM solar cell with UCF exhibits extremely slow decay in power conversion efficiency (PCE) but a rapidly decayed PCE is measured for the device without UCF. The poor device stability without UCF is ascribed to the oxidative degradation of constituent materials in the BHJ layers, which give rise to the formation of PC 71 BM aggregates, as measured with high resolution and scanning transmission electron microscopy and X-ray photoelectron spectroscopy. The device stability cannot be improved by simply inserting poly(ethylene imine) (PEI) interfacial layer without UCF, whereas the lifetime of the PEI-inserted PTB7-Th:PC 71 BM solar cells is significantly enhanced when UCF is attached.

  4. Solar-energy conversion and light emission in an atomic monolayer p-n diode.

    PubMed

    Pospischil, Andreas; Furchi, Marco M; Mueller, Thomas

    2014-04-01

    The limitations of the bulk semiconductors currently used in electronic devices-rigidity, heavy weight and high costs--have recently shifted the research efforts to two-dimensional atomic crystals such as graphene and atomically thin transition-metal dichalcogenides. These materials have the potential to be produced at low cost and in large areas, while maintaining high material quality. These properties, as well as their flexibility, make two-dimensional atomic crystals attractive for applications such as solar cells or display panels. The basic building blocks of optoelectronic devices are p-n junction diodes, but they have not yet been demonstrated in a two-dimensional material. Here, we report a p-n junction diode based on an electrostatically doped tungsten diselenide (WSe2) monolayer. We present applications as a photovoltaic solar cell, a photodiode and a light-emitting diode, and obtain light-power conversion and electroluminescence efficiencies of ∼ 0.5% and ∼ 0.1%, respectively. Given recent advances in the large-scale production of two-dimensional crystals, we expect them to profoundly impact future developments in solar, lighting and display technologies.

  5. Self-cooling mono-container fuel cell generators and power plants using an array of such generators

    DOEpatents

    Gillett, James E.; Dederer, Jeffrey T.; Zafred, Paolo R.

    1998-01-01

    A mono-container fuel cell generator (10) contains a layer of interior insulation (14), a layer of exterior insulation (16) and a single housing (20) between the insulation layers, where fuel cells, containing electrodes and electrolyte, are surrounded by the interior insulation (14) in the interior (12) of the generator, and the generator is capable of operating at temperatures over about 650.degree. C., where the combination of interior and exterior insulation layers have the ability to control the temperature in the housing (20) below the degradation temperature of the housing material. The housing can also contain integral cooling ducts, and a plurality of these generators can be positioned next to each other to provide a power block array with interior cooling.

  6. Ordered porous mesostructured materials from nanoparticle-block copolymer self-assembly

    DOEpatents

    Warren, Scott; Wiesner, Ulrich; DiSalvo, Jr., Francis J

    2013-10-29

    The invention provides mesostructured materials and methods of preparing mesostructured materials including metal-rich mesostructured nanoparticle-block copolymer hybrids, porous metal-nonmetal nanocomposite mesostructures, and ordered metal mesostructures with uniform pores. The nanoparticles can be metal, metal alloy, metal mixture, intermetallic, metal-carbon, metal-ceramic, semiconductor-carbon, semiconductor-ceramic, insulator-carbon or insulator-ceramic nanoparticles, or combinations thereof. A block copolymer/ligand-stabilized nanoparticle solution is cast, resulting in the formation of a metal-rich (or semiconductor-rich or insulator-rich) mesostructured nanoparticle-block copolymer hybrid. The hybrid is heated to an elevated temperature, resulting in the formation of an ordered porous nanocomposite mesostructure. A nonmetal component (e.g., carbon or ceramic) is then removed to produce an ordered mesostructure with ordered and large uniform pores.

  7. Population Blocks.

    ERIC Educational Resources Information Center

    Smith, Martin H.

    1992-01-01

    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  8. Strategy to Achieve Highly Porous/Biocompatible Macroscale Cell Blocks, Using a Collagen/Genipin-bioink and an Optimal 3D Printing Process.

    PubMed

    Kim, Yong Bok; Lee, Hyeongjin; Kim, Geun Hyung

    2016-11-30

    Recently, a three-dimensional (3D) bioprinting process for obtaining a cell-laden structure has been widely applied because of its ability to fabricate biomimetic complex structures embedded with and without cells. To successfully obtain a cell-laden porous block, the cell-delivering vehicle, bioink, is one of the significant factors. Until now, various biocompatible hydrogels (synthetic and natural biopolymers) have been utilized in the cell-printing process, but a bioink satisfying both biocompatibility and print-ability requirements to achieve a porous structure with reasonable mechanical strength has not been issued. Here, we propose a printing strategy with optimal conditions including a safe cross-linking procedure for obtaining a 3D porous cell block composed of a biocompatible collagen-bioink and genipin, a cross-linking agent. To obtain the optimal processing conditions, we modified the 3D printing machine and selected an optimal cross-linking condition (∼1 mM and 1 h) of genipin solution. To show the feasibility of the process, 3D pore-interconnected cell-laden constructs were manufactured using osteoblast-like cells (MG63) and human adipose stem cells (hASCs). Under these processing conditions, a macroscale 3D collagen-based cell block of 21 × 21 × 12 mm 3 and over 95% cell viability was obtained. In vitro biological testing of the cell-laden 3D porous structure showed that the embedded cells were sufficiently viable, and their proliferation was significantly higher; the cells also exhibited increased osteogenic activities compared to the conventional alginate-based bioink (control). The results indicated the fabrication process using the collagen-bioink would be an innovative platform to design highly biocompatible and mechanically stable cell blocks.

  9. Method for generating small and ultra small apertures, slits, nozzles and orifices

    DOEpatents

    Khounsary, Ali M [Hinsdale, IL

    2012-05-22

    A method and device for one or more small apertures, slits, nozzles and orifices, preferably having a high aspect ratio. In one embodiment, one or more alternating layers of sacrificial layers and blocking layers are deposited onto a substrate. Each sacrificial layer is made of a material which preferably allows a radiation to substantially pass through. Each blocking layer is made of a material which substantially blocks the radiation.

  10. Advanced Materials for PEM-Based Fuel Cell Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. McGrath

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 °C. However, application of these membranes is limited due to theirmore » high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in this final report.« less

  11. New Techniques for Thermo-electrochemical Analysis of Lithium-ion Batteries for Space Applications

    NASA Technical Reports Server (NTRS)

    Walker, William; Ardebili, H.

    2013-01-01

    The overall goal of this study was achieved: Replicated the numerical assessment performed by Chen et. al. (2005). Displayed the ability of Thermal Desktop to be coupled with thermo-electrochemical analysis techniques. such that the local heat generated on the cells is a function of the model itself using logic blocks and arrays. Differences in the TD temperature vs. depth of discharge profiles and Chen's was most likely due to differences in two primary areas: Contact regions and conductance values. Differences in density and specific heat values. center dot The model results are highly dependent on the accuracy of the material properties with respect to the multiple layers of an individual cell.

  12. Criminal Justice Systems. Block I: Law Enforcement. Block II: The Courts. Block III: Corrections. Block IV: Community Relations. Block V: Proficiency Skills. Block VI: Criminalistics. Instructor Guide.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Vocational, Adult, and Community Education.

    This instructor guide together with a student guide comprise a set of curriculum materials on the criminal justice system. The instructor guide is a resource for planning and managing individualized, competency-based instruction in six major subject areas or blocks, which are further broken down into several units with some units having several…

  13. Amyloidosis diagnosed in cytology specimen of pleural effusion: A case report.

    PubMed

    Manur, Rashmi; Lamzabi, Ihab

    2018-06-01

    Amyloidosis is a rare condition resulting from extracellular deposition of amyloid, a fibrillary material derived from various precursor proteins. Involvement of the pleura by amyloidosis is a rare but serious complication. Pleural amyloidosis is primarily diagnosed by identifying amyloid deposition by histology on pleural biopsy specimens. Hereby, we report a case of systemic amyloidosis where we were able to identify amyloid in a pleural effusion specimen sent for cytopathology evaluation. A 59-year-old male with newly diagnosed multiple myeloma and systemic amyloidosis underwent therapeutic thoracentesis. The H&E stained cell block sections revealed a single, less than one millimeter focus of waxy material surrounded by a rim of reactive mesothelial cells suspicious for amyloid deposit in a background of fibrin, lymphocytes, and reactive mesothelial cells. The focus stained salmon pink with Congo-red special stain and showed apple-green birefringence under polarized light. Our finding suggests that pleural involvement in patients with systemic amyloidosis can be identified on effusion specimens and avert the need for more invasive procedures like pleural or pulmonary parenchymal biopsies. © 2017 Wiley Periodicals, Inc.

  14. Characterizing the Three-Dimensional Structure of Block Copolymers via Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segal-Peretz, Tamar; Winterstein, Jonathan; Doxastakis, Manolis

    Understanding and controlling the three-dimensional structure of block copolymer (BCP) thin films is critical for utilizing these materials for sub-20 nm nanopatterning in semiconductor devices, as well as in membranes and solar cell applications. Combining an atomic layer deposition (ALD) based technique for enhancing the contrast of BCPs in transmission electron microscopy (TEM) together with scanning TEM (STEM) tomography reveals and characterizes the three-dimensional structures of poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films with great clarity. Sequential infiltration synthesis (SIS), a block-selective technique for growing inorganic materials in BCPs films in ALD, and an emerging tool for enhancing the etch contrast ofmore » BCPs, was harnessed to significantly enhance the high-angle scattering from the polar domains of BCP films in the TEM. The power of combining SIS and STEM tomography for three dimensional (3D) characterization of BCPs films was demonstrated with the following cases: self-assembled cylindrical, lamellar, and spherical PS-PMMA thin films. In all cases, STEM tomography has revealed 3D structures that were hidden underneath the surface, including: 1) the 3D structure of defects in cylindrical and lamellar phases, 2) non-perpendicular 3D surface of grain boundaries in the cylindrical phase, and 3) the 3D arrangement of spheres in body centered cubic (BCC) and hexagonal closed pack (HCP) morphologies in the spherical phase. The 3D data of the spherical morphologies was compared to coarse-grained simulations and assisted in validating the simulations’ parameters. STEM tomography of SIS-treated BCP films enables the characterization of the exact structure used for pattern transfer, and can lead to better understating of the physics which is utilized in BCP lithography.« less

  15. Combined Silicon and Gallium Arsenide Solar Cell UV Testing

    NASA Technical Reports Server (NTRS)

    Willowby, Douglas

    2005-01-01

    The near and long-term effect of UV on silicon solar cells is relatively understood. In an effort to learn more about the effects of UV radiation on the performance of GaAs/Ge solar cells, silicon and gallium arsenide on germanium (GaAs/Ge) solar cells were placed in a vacuum chamber and irradiated with ultraviolet light by a Spectrolab XT 10 solar simulator. Seventeen GaAs/Ge and 8 silicon solar cells were mounted on an 8 inch copper block. By having all the cells on the same test plate we were able to do direct comparison of silicon and GaAs/Ge solar cell degradation. The test article was attached to a cold plate in the vacuum chamber to maintain the cells at 25 degrees Celsius. A silicon solar cell standard was used to measure beam uniformity and any degradation of the ST-10 beam. The solar cell coverings tested included cells with AR-0213 coverglass, fused silica coverglass, BRR-0213 coverglass and cells without coverglass. Of interest in the test is the BRR-0213 coverglass material manufactured by OCLI. It has an added Infrared rejection coating to help reduce the solar cell operating temperature. This coverglass is relatively new and of interest to several current and future programs at Marshall. Due to moves of the laboratory equipment and location only 350 hours of UV degradation have been completed. During this testing a significant leveling off in the rate of degradation was reached. Data from the test and comparisons of the UV effect of the bare cells and cells with coverglass material will be presented.

  16. Interfacial engineering of CuO nanorod/ZnO nanowire hybrid nanostructure photoanode in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Gur, Emre; Kocak, Yusuf

    2018-01-01

    Developing efficient and cost-effective photoanode plays a vital role determining the photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Here, we demonstrate DSSCs that achieve relatively high power conversion efficiencies (PCEs) by using one-dimensional (1D) zinc oxide (ZnO) nanowires and copper (II) oxide (CuO) nanorods hybrid nanostructures. CuO nanorod-based thin films were prepared by hydrothermal method and used as a blocking layer on top of the ZnO nanowires' layer. The use of 1D ZnO nanowire/CuO nanorod hybrid nanostructures led to an exceptionally high photovoltaic performance of DSSCs with a remarkably high open-circuit voltage (0.764 V), short current density (14.76 mA/cm2 under AM1.5G conditions), and relatively high solar to power conversion efficiency (6.18%) . The enhancement of the solar to power conversion efficiency can be explained in terms of the lag effect of the interfacial recombination dynamics of CuO nanorod-blocking layer on ZnO nanowires. This work shows more economically feasible method to bring down the cost of the nano-hybrid cells and promises for the growth of other important materials to further enhance the solar to power conversion efficiency.

  17. Swell Gels to Dumbbell Micelles: Construction of Materials and Nanostructure with Self-assembly

    NASA Astrophysics Data System (ADS)

    Pochan, Darrin

    2007-03-01

    Bionanotechnology, the emerging field of using biomolecular and biotechnological tools for nanostructure or nanotecnology development, provides exceptional opportunity in the design of new materials. Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic or charged synthetic polymer molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic interactions; in addition to more traditional self-assembling molecular attributes such as amphiphilicty, to define hierarchical material structure and consequent properties. Several molecular systems will be discussed. Synthetic block copolymers with charged corona blocks can be assembled in dilute solution containing multivalent organic counterions to produce micelle structures such as toroids. These ring-like micelles are similar to the toroidal bundling of charged semiflexible biopolymers like DNA in the presence of multivalent counterions. Micelle structure can be tuned between toroids, cylinders, and disks simply by using different concentrations or molecular volumes of organic counterion. In addition, these charged blocks can consist of amino acids as monomers producing block copolypeptides. In addition to the above attributes, block copolypeptides provide the control of block secondary structure to further control self-assembly. Design strategies based on small (less than 24 amino acids) beta-hairpin peptides will be discussed. Self-assembly of the peptides is predicated on an intramolecular folding event caused by desired solution properties. Importantly, the intramolecular folding event impart a molecular-level mechanism for environmental responsiveness at the material level (e.g. infinite change in viscosity of a solution to a gel with changes in pH, ionic strength, temperature).

  18. Apparatus and Method for Increasing the Diameter of Metal Alloy Wires Within a Molten Metal Pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  19. Apparatus and method for increasing the diameter of metal alloy wires within a molten metal pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  20. Band gap control using electric field of photonic gel cells fabricated with block copolymer and hydrogel.

    PubMed

    Lee, Sung Nam; Baek, Young Bin; Shin, Dong Myung

    2014-08-01

    Optical and electrical characteristics of the devices using photonic gel film and hydrogel electrolyte were studied. Poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) lamellar film with alternating hydrophobic block and hydrophilic polyelectrolyte block polymers (52 kg/mol-b-57 kg/mol) were prepared for the photonic gel. Poly(isobutylene-co-maleic acid) sodium salts were prepared for the hydrogel. This hydrogel fiber is common water swelling material and it owned ions for a device has conductivity. Photonic gel and hydrogel was spin coating onto Indium-tin-oxide (ITO) glass for make electric fields. The reflectance maximum wavelength of photonic crystal device shifted from 538 nm and reached to 557 nm, 585 nm and 604 nm during 30 min voltage applying time. The bandwidth variation was very limited. Loss of electrolyte was much less with hydrogel compared to the pure water. We can control color of hydrogel used photonic device by electric field with reasonable time range under moderate electric field by applying 2 V between two facing electrodes.

  1. In vitro evaluation of poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether copolymer coating effects on cells adhesion and proliferation

    NASA Astrophysics Data System (ADS)

    Rusen, Laurentiu; Neacsu, Patricia; Cimpean, Anisoara; Valentin, Ion; Brajnicov, Simona; Dumitrescu, L. N.; Banita, Janina; Dinca, Valentina; Dinescu, Maria

    2016-06-01

    Understanding and controlling natural and synthetic biointerfaces is known to be the key to a wide variety of application within cell culture and tissue engineering field. As both material characteristics and methods are important in tailoring biointerfaces characteristics, in this work we explore the feasibility of using Matrix Assisted Pulsed Laser Evaporation technique for obtaining synthetic copolymeric biocoatings (i.e. poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether) for evaluating in vitro Vero and MC3T3-E1 pre-osteoblasts cell response. Characterization and evaluation of the coated substrates were carried out using different techniques. The Fourier transform infrared spectroscopy data demonstrated that the main functional groups in the MAPLE-deposited films remained intact. Atomic Force Microscopy images showed the coatings to be continuous, with the surface roughness depending on the deposition parameters. Moreover, the behaviour of the coatings in medium mimicking the pH and temperature of the human body was studied and corelated to degradation. Spectro-ellipsometry (SE) and AFM measurements revealed the degradation trend during immersion time by the changes in coating thickness and roughness. In vitro biocompatibility was studied by indirect contact tests on Vero cells in accordance with ISO 10993-5/2009. The results obtained in terms of cell morphology (phase contrast microscopy) and cytotoxicity (LDH and MTT assays) proved biocompatibility. Furthermore, direct contact assays on MC3T3-E1 pre-osteoblasts demonstrated the capacity of all analyzed specimens to support cell adhesion, normal cellular morphology and growth.

  2. NEUTRON-IRRADIATED STRUCTURES

    DOEpatents

    Ashley, E.L.; Ashley, J.W.; Bowker, H.W.; Hall, R.H.; Kendall, J.W.

    1959-02-01

    A moderator structure is described for a nuclear reactor of the heterogensous type wherein a large mass of moderator is provided with channels therethrough for the introduction of uranium serving as nuclear fuel and for the passage of a cooling fluid. The structure is comprised of blocks of moderator material in superposed horizontal layers, the blocks of each layer being tied together with spaces between them and oriented to have horizontal Wigner growth. The ties are strips of moderator material, the same as the blocks, with transverse Wigner growth, disposed horizontally along lines crossing at vertical axes of the blocks. The blocks are preferably rectangular with a larger or length dimension transverse to the directions of Wiguer growth and are stood on end to provide for horizontal growth.

  3. Antireflective coatings with adjustable refractive index and porosity synthesized by micelle-templated deposition of MgF2 sol particles.

    PubMed

    Bernsmeier, Denis; Polte, Jörg; Ortel, Erik; Krahl, Thoralf; Kemnitz, Erhard; Kraehnert, Ralph

    2014-11-26

    Minimizing efficiency losses caused by unwanted light reflection at the interface between lenses, optical instruments and solar cells with the surrounding medium requires antireflective coatings with adequate refractive index and coating thickness. We describe a new type of antireflective coating material with easily and independently tailorable refractive index and coating thickness based on the deposition of colloidal MgF2 nanoparticles. The material synthesis employs micelles of amphiphilic block copolymers as structure directing agent to introduce controlled mesoporosity into MgF2 film. The coatings thickness can be easily adjusted by the applied coating conditions. The coatings refractive index is determined by the materials porosity, which is controlled by the amount of employed pore template. The refractive index can be precisely tuned between 1.23 and 1.11, i.e., in a range that is not accessible to nonporous inorganic materials. Hence, zero reflectance conditions can be established for a wide range of substrate materials.

  4. Double-hydrophobic elastin-like polypeptides with added functional motifs: Self-assembly and cytocompatibility.

    PubMed

    Le, Duc H T; Tsutsui, Yoko; Sugawara-Narutaki, Ayae; Yukawa, Hiroshi; Baba, Yoshinobu; Ohtsuki, Chikara

    2017-09-01

    We have recently developed a novel double-hydrophobic elastin-like triblock polypeptide called GPG, designed after the uneven distribution of two different hydrophobic domains found in elastin, an extracellular matrix protein providing elasticity and resilience to tissues. Upon temperature trigger, GPG undergoes a sequential self-assembling process to form flexible beaded nanofibers with high homogeneity and excellent dispersibility in water. Given that GPG might be a potential elastin-mimetic material, we sought to explore the biological activities of this block polypeptide. Besides GPG, several functionalized derivatives were also constructed by fusing functional motifs such as KAAK or KAAKGRGDS at the C-terminal of GPG. Although the added motifs affected the kinetics of fiber formation and β-sheet contents, all three GPGs assembled into beaded nanofibers at the physiological temperature. The resulting GPG nanofibers preserved their beaded structures in cell culture medium; therefore, they were coated on polystyrene substrates to study their cytocompatibility toward mouse embryonic fibroblasts, NIH-3T3. Among the three polypeptides, GPG having the cell-binding motif GRGDS derived from fibronectin showed excellent cell adhesion and cell proliferation properties compared to other conventional materials, suggesting its promising applications as extracellular matrices for mammalian cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2475-2484, 2017. © 2017 Wiley Periodicals, Inc.

  5. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian

    2016-05-01

    In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm2, an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm2. Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification.

  6. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells.

    PubMed

    Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian

    2016-05-17

    In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm(2), an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm(2). Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification.

  7. Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells.

    PubMed

    Rahman, Atikur; Ashraf, Ahsan; Xin, Huolin; Tong, Xiao; Sutter, Peter; Eisaman, Matthew D; Black, Charles T

    2015-01-21

    Materials providing broadband light antireflection have applications as highly transparent window coatings, military camouflage, and coatings for efficiently coupling light into solar cells and out of light-emitting diodes. In this work, densely packed silicon nanotextures with feature sizes smaller than 50 nm enhance the broadband antireflection compared with that predicted by their geometry alone. A significant fraction of the nanotexture volume comprises a surface layer whose optical properties differ substantially from those of the bulk, providing the key to improved performance. The nanotexture reflectivity is quantitatively well-modelled after accounting for both its profile and changes in refractive index at the surface. We employ block copolymer self-assembly for precise and tunable nanotexture design in the range of ~10-70 nm across macroscopic solar cell areas. Implementing this efficient antireflection approach in crystalline silicon solar cells significantly betters the performance gain compared with an optimized, planar antireflection coating.

  8. Hidradenocarcinoma presenting as soft tissue mass: Case report with cytomorphologic description, histologic correlation, and differential diagnosis.

    PubMed

    Jinnah, Alexander H; Emory, Cynthia L; Mai, Nicholas H; Bergman, Simon; Salih, Ziyan T

    2016-05-01

    Hidradenocarcinoma (HAC) is a rare adenexal tumor with a propensity for the head and neck region and extremities. We report a case of hidradenocarcinnoma in a 56-year-old woman with a mass on her right palm sampled by fine-needle aspiration and later confirmed on histological examination. Fine-needle aspiration cytology revealed a dual population of cells including polyhedral eosinophilic cells and glycogen containing cells with pale/clear cytoplasm. The nuclei were pleomorphic with prominent nucleoli. Occassional papillary structures were identified on the cell block material. A series of immunohistochemical stains were performed and an adnexal neoplasm was suggested. The mass was resected. On histologic sections, infiltration into the adjacent soft tissue was identified. After an additional series of immunohistochemical stains, the diagnosis was confirmed as a HAC. Herein, we present our findings and discuss the differential diagnoses. © 2016 Wiley Periodicals, Inc.

  9. Protein-gold hybrid nanocubes for cell imaging and drug delivery.

    PubMed

    Ding, Han; Yang, Dongying; Zhao, Chen; Song, Zhuokun; Liu, Pengchang; Wang, Yu; Chen, Zhijun; Shen, Jiacong

    2015-03-04

    Multifunctional biocompatible nanomaterials containing both fluorescent and vehicle functions are highly favored in bioimaging, therapeutic, and drug delivery applications. Nevertheless, the rational design and synthesis of highly biocompatible multifunctional materials remain challenging. We present here the development of novel protein-gold hybrid nanocubes (PGHNs), which were assembled using gold nanoclusters, bovine serum albumin, and tryptophan as building blocks. The green-synthesized PGHNs in this study are blue-emitting under UV exposure and cube-shaped with a size of approximately 100 nm. These hybrid nanomaterials are highly biocompatible as shown by cytotoxicity experiments and can be readily internalized by different types of cells. Moreover, PGHNs can act as nanovehicles that successfully deliver dyes or drugs into the cells. The protein-metal hybrid nanocubes can serve as a new type of dual-purpose tool: a blue-emitting cell marker in bioimaging investigation and a nanocarrier in drug delivery studies.

  10. Production of lunar fragmental material by meteoroid impact.

    NASA Technical Reports Server (NTRS)

    Marcus, A. H.

    1973-01-01

    The rate of production of new fragmental lunar surface material is derived theoretically on the hypothesis that such material is excavated from a bedrock layer by meteoroid impacts. An overlaying regolith effectively shields the bedrock layer from small impacts, reducing the production rate of centimeter-sized and smaller blocks by a large factor. Logarithmic production rate curves for centimeter to motor-sized blocks are nonlinear for any regolith from centimeters to tens of meters in thickness, with small blocks relatively much less frequent for thicker (older) regoliths, suggesting the possibility of a statistical reverse bedding. Modest variations in the exponents of scaling laws for crater depth-diameter ratio and maximum block-diameter to crater diameter ratio are shown to have significant effects on the production rates. The production rate increases slowly with increasing size of the largest crater affecting the region.

  11. Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108-15 cells.

    PubMed

    Tsunoo, A; Yoshii, M; Narahashi, T

    1986-12-01

    Leucine-enkephalin, methionine-enkephalin, and morphine caused a reversible block of Ca2+ channel currents in neuroblastoma-glioma hybrid cells (NG108-15). The long-lasting (type 2) component of the Ca2+ channel current was blocked by leucine-enkephalin, while the transient (type 1) component was not affected. The enkephalin-induced blocking action was antagonized by naloxone and appears to be mediated by delta-opiate receptors. Two different aspects of the blocking effect were detected, a resting block and a recovery from block during prolonged depolarizing pulses. Recovery from block was more complete, and its time course was more rapid, with depolarization to more positive potentials. The dose dependence of the type 2 channel block at rest indicated a one-to-one binding stoichiometry, with an apparent dissociation constant of 8.8 nM. Somatostatin exerted a similar selective blocking action on the type 2 Ca2+ channel. The time- and voltage-dependent block of type 2 Ca2+ channels may provide a mechanism underlying the enkephalinergic presynaptic inhibition of transmitter release and the somatostatin block of pituitary growth hormone release.

  12. Antiretroviral Agents Effectively Block HIV Replication after Cell-to-Cell Transfer

    PubMed Central

    Permanyer, Marc; Ballana, Ester; Ruiz, Alba; Badia, Roger; Riveira-Munoz, Eva; Gonzalo, Encarna; Clotet, Bonaventura

    2012-01-01

    Cell-to-cell transmission of HIV has been proposed as a mechanism contributing to virus escape to the action of antiretrovirals and a mode of HIV persistence during antiretroviral therapy. Here, cocultures of infected HIV-1 cells with primary CD4+ T cells or lymphoid cells were used to evaluate virus transmission and the effect of known antiretrovirals. Transfer of HIV antigen from infected to uninfected cells was resistant to the reverse transcriptase inhibitors (RTIs) zidovudine (AZT) and tenofovir, but was blocked by the attachment inhibitor IgGb12. However, quantitative measurement of viral DNA production demonstrated that all anti-HIV agents blocked virus replication with similar potency to cell-free virus infections. Cell-free and cell-associated infections were equally sensitive to inhibition of viral replication when HIV-1 long terminal repeat (LTR)-driven green fluorescent protein (GFP) expression in target cells was measured. However, detection of GFP by flow cytometry may incorrectly estimate the efficacy of antiretrovirals in cell-associated virus transmission, due to replication-independent Tat-mediated LTR transactivation as a consequence of cell-to-cell events that did not occur in short-term (48-h) cell-free virus infections. In conclusion, common markers of virus replication may not accurately correlate and measure infectivity or drug efficacy in cell-to-cell virus transmission. When accurately quantified, active drugs blocked proviral DNA and virus replication in cell-to-cell transmission, recapitulating the efficacy of antiretrovirals in cell-free virus infections and in vivo. PMID:22696642

  13. The Bioactivity of Cartilage Extracellular Matrix in Articular Cartilage Regeneration

    PubMed Central

    Sutherland, Amanda J.; Converse, Gabriel L.; Hopkins, Richard A.; Detamore, Michael S.

    2014-01-01

    Cartilage matrix is a particularly promising acellular material for cartilage regeneration given the evidence supporting its chondroinductive character. The ‘raw materials’ of cartilage matrix can serve as building blocks and signals for enhanced tissue regeneration. These matrices can be created by chemical or physical methods: physical methods disrupt cellular membranes and nuclei but may not fully remove all cell components and DNA, whereas chemical methods when combined with physical methods are particularly effective in fully decellularizing such materials. Critical endpoints include no detectable residual DNA or immunogenic antigens. It is important to first delineate between the sources of the cartilage matrix, i.e., derived from matrix produced by cells in vitro or from native tissue, and then to further characterize the cartilage matrix based on the processing method, i.e., decellularization or devitalization. With these distinctions, four types of cartilage matrices exist: decellularized native cartilage (DCC), devitalized native cartilage (DVC), decellularized cell derived matrix (DCCM), and devitalized cell derived matrix (DVCM). Delivery of cartilage matrix may be a straightforward approach without the need for additional cells or growth factors. Without additional biological additives, cartilage matrix may be attractive from a regulatory and commercialization standpoint. Source and delivery method are important considerations for clinical translation. Only one currently marketed cartilage matrix medical device is decellularized, although trends in filed patents suggest additional decellularized products may be available in the future. To choose the most relevant source and processing for cartilage matrix, qualifying testing needs to include targeting the desired application, optimizing delivery of the material, identify relevant FDA regulations, assess availability of raw materials, and immunogenic properties of the product. PMID:25044502

  14. Mechanical characterization at material interfaces through dark field Brillouin microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fiore, Antonio; Scarcelli, Giuliano

    2017-02-01

    Brillouin microscopy allows high-resolution mapping of the mechanical properties of a sample by measuring the spectra of acoustically induced light scattering therein, and thus has been widely investigated for biomedical application. Measuring the Brillouin spectral shift is challenging when the light is focused onto the interfaces between two materials of different refractive index, because a sizeable portion of the incident light is Fresnel-reflected into the Brillouin spectrometer. To address this need, here, we designed a Brillouin confocal microscope in which the specular reflection at the interface between two materials is physically rejected without significant loss to the Brillouin signal. To achieve this goal, we illuminate the sample with a small-diameter Gaussian beam focused by a high numerical aperture objective lens. In the collection path, the beam reflected from the sample has the same diameter as the incident beam, while the scattered light beam is as large as the clear aperture of the microscope objective. Therefore, using a small blocking filter allows to efficiently reject the reflected light. We calculated the tradeoff between extinction improvement and signal loss when the diameter of the blocking filter is changed. Experimentally, we demonstrated extinction improvement of over 60dB with only 30% signal loss while achieving submicron resolutions. This innovation can be useful for in vivo measurements of the cornea to avoid artifacts in the epithelium and anterior portions of the stroma, as well as to investigate cells cultured on glass coverslips without necessity of index-matching materials.

  15. Naming Block Structures: A Multimodal Approach

    ERIC Educational Resources Information Center

    Cohen, Lynn; Uhry, Joanna

    2011-01-01

    This study describes symbolic representation in block play in a culturally diverse suburban preschool classroom. Block play is "multimodal" and can allow children to experiment with materials to represent the world in many forms of literacy. Combined qualitative and quantitative data from seventy-seven block structures were collected and analyzed.…

  16. 2016 Summer Series - Kenneth Cheung: Building Blocks for Aerospace Structures

    NASA Image and Video Library

    2016-06-16

    Strong, ultra-lightweight materials are expected to play a key role in the design of future aircraft and space vehicles. Lower structural mass leads to improved performance, maneuverability, efficiency, range and payload capacity. Dr. Kenneth Cheung is developing cellular composite building blocks, or digital materials, to create transformable aerostructures. In his presentation, Dr. Cheung will discuss the implications of the digital materials and morphing structures.

  17. Associative list processing unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemmert, Karl Scott; Underwood, Keith D

    2014-04-01

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full.

  18. Polypeptide-Based Gold Nanoshells for Photothermal Therapy.

    PubMed

    Mayle, Kristine M; Dern, Kathryn R; Wong, Vincent K; Sung, Shijun; Ding, Ke; Rodriguez, April R; Taylor, Zachary; Zhou, Z Hong; Grundfest, Warren S; Deming, Timothy J; Kamei, Daniel T

    2017-02-01

    Targeted killing of cancer cells by engineered nanoparticles holds great promise for noninvasive photothermal therapy applications. We present the design and generation of a novel class of gold nanoshells with cores composed of self-assembled block copolypeptide vesicles with photothermal properties. Specifically, poly(L-lysine) 60 - block-poly(L-leucine) 20 (K 60 L 20 ) block copolypeptide vesicles coated with a thin layer of gold demonstrate enhanced absorption of light due to surface plasmon resonance (SPR) in the near-infrared range. We show that the polypeptide-based K 60 L 20 gold nanoshells have low toxicity in the absence of laser exposure, significant heat generation upon exposure to near-infrared light, and, as a result, localized cytotoxicity within the region of laser irradiation in vitro. To gain a better understanding of our gold nanoshells in the context of photothermal therapy, we developed a comprehensive mathematical model for heat transfer and experimentally validated this model by predicting the temperature as a function of time and position in our experimental setup. This model can be used to predict which parameters of our gold nanoshells can be manipulated to improve heat generation for tumor destruction. To our knowledge, our results represent the first ever use of block copolypeptide vesicles as the core material of gold nanoshells.

  19. Diagnostic Utility of Pleural Fluid Cell Block versus Pleural Biopsy Collected by Flex-Rigid Pleuroscopy for Malignant Pleural Disease: A Single Center Retrospective Analysis

    PubMed Central

    Sasada, Shinji; Izumo, Takehiro; Matsumoto, Yuji; Tsuchida, Takaaki

    2016-01-01

    Background Some trials recently demonstrated the benefit of targeted treatment for malignant disease; therefore, adequate tissues are needed to detect the targeted gene. Pleural biopsy using flex-rigid pleuroscopy and pleural effusion cell block analysis are both useful for diagnosis of malignancy and obtaining adequate samples. The purpose of our study was to compare the diagnostic utility between the two methods among patients with malignant pleural disease with effusion. Methods Data from patients who underwent flex-rigid pleuroscopy for diagnosis of pleural effusion suspicious for malignancy at the National Cancer Center Hospital, Japan between April 2011 and June 2014 were retrospectively reviewed. All procedures were performed under local anesthesia. At least 150 mL of pleural fluid was collected by pleuroscopy, followed by pleural biopsies from the abnormal site. Results Thirty-five patients who were finally diagnosed as malignant pleural disease were included in this study. Final diagnoses of malignancy were 24 adenocarcinoma, 1 combined adeno-small cell carcinoma, and 7 malignant pleural mesothelioma (MPM), and 3 metastatic breast cancer. The diagnostic yield was significantly higher by pleural biopsy than by cell block [94.2% (33/35) vs. 71.4% (25/35); p = 0.008]. All patients with positive results on cell block also had positive results on pleural biopsy. Eight patients with negative results on cell block had positive results on pleural biopsy (lung adenocarcinoma in 4, sarcomatoid MPM in 3, and metastatic breast cancer in 1). Two patients with negative results on both cell block and pleural biopsy were diagnosed was sarcomatoid MPM by computed tomography-guided needle biopsy and epithelioid MPM by autopsy. Conclusion Pleural biopsy using flex-rigid pleuroscopy was efficient in the diagnosis of malignant pleural diseases. Flex-rigid pleuroscopy with pleural biopsy and pleural effusion cell block analysis should be considered as the initial diagnostic approach for malignant pleural diseases presenting with effusion. PMID:27880851

  20. Multimodal Hierarchical Imaging of Serial Sections for Finding Specific Cellular Targets within Large Volumes

    PubMed Central

    Wacker, Irene U.; Veith, Lisa; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R.

    2018-01-01

    Targeting specific cells at ultrastructural resolution within a mixed cell population or a tissue can be achieved by hierarchical imaging using a combination of light and electron microscopy. Samples embedded in resin are sectioned into arrays consisting of ribbons of hundreds of ultrathin sections and deposited on pieces of silicon wafer or conductively coated coverslips. Arrays are imaged at low resolution using a digital consumer like smartphone camera or light microscope (LM) for a rapid large area overview, or a wide field fluorescence microscope (fluorescence light microscopy (FLM)) after labeling with fluorophores. After post-staining with heavy metals, arrays are imaged in a scanning electron microscope (SEM). Selection of targets is possible from 3D reconstructions generated by FLM or from 3D reconstructions made from the SEM image stacks at intermediate resolution if no fluorescent markers are available. For ultrastructural analysis, selected targets are finally recorded in the SEM at high-resolution (a few nanometer image pixels). A ribbon-handling tool that can be retrofitted to any ultramicrotome is demonstrated. It helps with array production and substrate removal from the sectioning knife boat. A software platform that allows automated imaging of arrays in the SEM is discussed. Compared to other methods generating large volume EM data, such as serial block-face SEM (SBF-SEM) or focused ion beam SEM (FIB-SEM), this approach has two major advantages: (1) The resin-embedded sample is conserved, albeit in a sliced-up version. It can be stained in different ways and imaged with different resolutions. (2) As the sections can be post-stained, it is not necessary to use samples strongly block-stained with heavy metals to introduce contrast for SEM imaging or render the tissue blocks conductive. This makes the method applicable to a wide variety of materials and biological questions. Particularly prefixed materials e.g., from biopsy banks and pathology labs, can directly be embedded and reconstructed in 3D. PMID:29630046

  1. Updated optical read/write memory system components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The fabrication of an updated block data composer and holographic storage array for a breadboard holographic read/write memory system is described. System considerations such as transform optics and controlled aberration lens design are described along with the block data composer, photoplastic recording materials, and material development.

  2. Optimization of Organic Solar Cells: Materials, Devices and Interfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Nanjia

    Due to the increasing demand for sustainable clean energy, photovoltaic cells have received intensified attention in the past decade in both academia and industry. Among the types of cells, organic photovoltaic (OPV) cells offer promise as alternatives to conventional inorganic-type solar cells owning to several unique advantages such as low material and fabrication cost. To maximize power conversion efficiencies (PCEs), extensive research efforts focus on frontier molecular orbital (FMO) energy engineering of photoactive materials. Towards this objective, a series of novel donor polymers incorporating a new building block, bithiophene imide (BTI) group are developed, with narrow bandgap and low-lying highest occupied molecular orbital (HOMO) energies to increase short circuit current density, Jsc, and open circuit voltage, Voc.. Compared to other PV technologies, OPVs often suffer from large internal recombination loss and relatively low fill factors (FFs) <70%. Through a combination of materials design and device architecture optimization strategies to improve both microscopic and macroscopic thin film morphology, OPVs with PCEs up to 8.7% and unprecedented FF approaching 80% are obtained. Such high FF are close to those typically achieved in amorphous Si solar cells. Systematic variations of polymer chemical structures lead to understanding of structure-property relationships between polymer geometry and the resulting blend film morphology characteristics which are crucial for achieving high local mobilities and long carrier lifetimes. Instead of using fullerene as the acceptors, an alternative type of OPV is developed employing a high electron mobility polymer, P(NDI2OD-T2), as the acceptor. To improve the all-polymer blend film morphology, the influence of basic solvent properties such as solvent boiling point and solubility on polymer phase separation and charge transport properties is investigated, yielding to a high PCE of 2.7% for all-polymer solar cells. To take advantages of the inherent mechanical flexibility associated with organic materials, the development of transparent, flexible substrates to replace the conventionally used polycrystalline ITO electrodes is highly desirable. Employing an ultraflexible amorphous zinc indium tin oxide (a-ZITO) transparent conducting oxide (TCO), highly efficient OPVs with similar PCEs to rigid ones are obtained. Furthermore, these cells show no significant PCE reduction under controlled bending test.

  3. Fab antibodies capable of blocking T cells by competitive binding have the identical specificity but a higher affinity to the MHC-peptide-complex than the T cell receptor.

    PubMed

    Neumann, Frank; Sturm, Christine; Hülsmeyer, Martin; Dauth, Nina; Guillaume, Philippe; Luescher, Immanuel F; Pfreundschuh, Michael; Held, Gerhard

    2009-08-15

    In transplant rejection, graft versus host or autoimmune diseases T cells are mediating the pathophysiological processes. Compared to unspecific pharmacological immune suppression specific inhibition of those T cells, that are involved in the disease, would be an alternative and attractive approach. T cells are activated after their T cell receptor (TCR) recognizes an antigenic peptide displayed by the Major Histocompatibility Complex (MHC). Molecules that interact with MHC-peptide-complexes in a specific fashion should block T cells with identical specificity. Using the model of the SSX2 (103-111)/HLA-A*0201 complex we investigated a panel of MHC-peptide-specific Fab antibodies for their capacity blocking specific T cell clones. Like TCRs all Fab antibodies reacted with the MHC complex only when the SSX2 (103-111) peptide was displayed. By introducing single amino acid mutations in the HLA-A*0201 heavy chain we identified the K66 residue as the most critical binding similar to that of TCRs. However, some Fab antibodies did not inhibit the reactivity of a specific T cell clone against peptide pulsed, artificial targets, nor cells displaying the peptide after endogenous processing. Measurements of binding kinetics revealed that only those Fab antibodies were capable of blocking T cells that interacted with an affinity in the nanomolar range. Fab antibodies binding like TCRs with affinities on the lower micromolar range did not inhibit T cell reactivity. These results indicate that molecules that block T cells by competitive binding with the TCR must have the same specificity but higher affinity for the MHC-peptide-complex than the TCR.

  4. PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy.

    PubMed

    Kleinovink, Jan Willem; Marijt, Koen A; Schoonderwoerd, Mark J A; van Hall, Thorbald; Ossendorp, Ferry; Fransen, Marieke F

    2017-01-01

    Immunotherapy with PD-1/PD-L1-blocking antibodies is clinically effective for several tumor types, but the mechanism is not fully understood. PD-L1 expression on tumor biopsies is generally regarded as an inclusion criterion for this cancer therapy. Here, we describe the PD-L1-blocking therapeutic responses of preclinical tumors in which PD-L1 expression was removed from cancer cells, but not from immune infiltrate. Lack of PD-L1 expression on malignant cells delayed tumor outgrowth in a CD8 + T cell-mediated fashion, showing the importance of this molecule in immune suppression. PD-L1 expression was evident on myeloid-infiltrating cells in the microenvironment of these tumors and targeting stromal PD-L1 with blocking antibody therapy had additional antitumor effect, demonstrating that PD-L1 on both malignant cells and immune cells is involved in the mechanism of immunotherapeutic antibodies. Importantly, comparable results were obtained with PD-1-blocking therapy. These findings have implications for inclusion of cancer patients in PD-1/PD-L1 blockade immunotherapies.

  5. PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy

    PubMed Central

    Marijt, Koen A.; Schoonderwoerd, Mark J. A.; Ossendorp, Ferry; Fransen, Marieke F.

    2017-01-01

    ABSTRACT Immunotherapy with PD-1/PD-L1-blocking antibodies is clinically effective for several tumor types, but the mechanism is not fully understood. PD-L1 expression on tumor biopsies is generally regarded as an inclusion criterion for this cancer therapy. Here, we describe the PD-L1-blocking therapeutic responses of preclinical tumors in which PD-L1 expression was removed from cancer cells, but not from immune infiltrate. Lack of PD-L1 expression on malignant cells delayed tumor outgrowth in a CD8+ T cell-mediated fashion, showing the importance of this molecule in immune suppression. PD-L1 expression was evident on myeloid-infiltrating cells in the microenvironment of these tumors and targeting stromal PD-L1 with blocking antibody therapy had additional antitumor effect, demonstrating that PD-L1 on both malignant cells and immune cells is involved in the mechanism of immunotherapeutic antibodies. Importantly, comparable results were obtained with PD-1-blocking therapy. These findings have implications for inclusion of cancer patients in PD-1/PD-L1 blockade immunotherapies. PMID:28507803

  6. Effects of polycaprolactone-tricalcium phosphate, recombinant human bone morphogenetic protein-2 and dog mesenchymal stem cells on bone formation: pilot study in dogs.

    PubMed

    Kim, Sun-Jong; Kim, Myung-Rae; Oh, Jin-Sub; Han, Inho; Shin, Sang-Wan

    2009-12-31

    The aim of this study was to evaluate the survival, proliferation, and bone formation of dog mesenchymal stem cells (dMSCs) in the graft material by using Polycaprolactone-tricalcium phosphate (PCL-TCP), auto-fibrin glue (AFG), recombinant human bone morphogenetic protein-2 (rhBMP-2), and dMSCs after a transplantation to the scapula of adult beagle dogs. The subjects were two beagle dogs. Total dose of rhBMP-2 on each block was 10 microg with 50 microg/mg concentration. The cortical bone of the scapula of the dog was removed which was the same size of PCL-TCP block (Osteopore International Pte, Singapore; 5.0x5.0x8.0 mm in size), and the following graft material then was fixed with orthodontic mini-implant, Dual-top (Titanium alloy, Jeil Co. Seoul, Korea). Four experimental groups were prepared for this study, Group 1: PCL-TCP + aFG; Group 2: PCL-TCP + aFG + dMSCs; Group 3: PCL-TCP + aFG + dMSCs + rhBMP-2; Group 4: PCL-TCP + aFG + dMSCs + rhBMP-2 + PCL membrane. The survival or proliferation of dMSCs cells was identified with an extracted tissue through a fluorescence microscope, H-E staining and Von-Kossa staining in two weeks and four weeks after the transplantation. The survival and proliferation of dMSCs were identified through a fluorescence microscope from both Group 1 and Group 2 in two weeks and four weeks after the transplantation. Histological observation also found that the injected cells were proliferating well in the G2, G3, and G4 scaffolds. This study concluded that bone ingrowth occurred in PCL-TCP scaffold which was transplanted with rhBMP-2, and MSCs did not affect bone growth. More sufficient healing time would be needed to recognize effects of dMSCs on bone formation.

  7. Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes

    DOEpatents

    Fujimoto, Cy H [Albuquerque, NM; Hibbs, Michael [Albuquerque, NM; Ambrosini, Andrea [Albuquerque, NM

    2012-02-07

    Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

  8. Tandem Repeat Proteins Inspired By Squid Ring Teeth

    NASA Astrophysics Data System (ADS)

    Pena-Francesch, Abdon

    Proteins are large biomolecules consisting of long chains of amino acids that hierarchically assemble into complex structures, and provide a variety of building blocks for biological materials. The repetition of structural building blocks is a natural evolutionary strategy for increasing the complexity and stability of protein structures. However, the relationship between amino acid sequence, structure, and material properties of protein systems remains unclear due to the lack of control over the protein sequence and the intricacies of the assembly process. In order to investigate the repetition of protein building blocks, a recently discovered protein from squids is examined as an ideal protein system. Squid ring teeth are predatory appendages located inside the suction cups that provide a strong grasp of prey, and are solely composed of a group of proteins with tandem repetition of building blocks. The objective of this thesis is the understanding of sequence, structure and property relationship in repetitive protein materials inspired in squid ring teeth for the first time. Specifically, this work focuses on squid-inspired structural proteins with tandem repeat units in their sequence (i.e., repetition of alternating building blocks) that are physically cross-linked via beta-sheet structures. The research work presented here tests the hypothesis that, in these systems, increasing the number of building blocks in the polypeptide chain decreases the protein network defects and improves the material properties. Hence, the sequence, nanostructure, and properties (thermal, mechanical, and conducting) of tandem repeat squid-inspired protein materials are examined. Spectroscopic structural analysis, advanced materials characterization, and entropic elasticity theory are combined to elucidate the structure and material properties of these repetitive proteins. This approach is applied not only to native squid proteins but also to squid-inspired synthetic polypeptides that allow for a fine control of the sequence and network morphology. The results provided in this work establish a clear dependence between the repetitive building blocks, the network morphology, and the properties of squid-inspired repetitive protein materials. Increasing the number of tandem repeat units in SRT-inspired proteins led to more effective protein networks with superior properties. Through increasing tandem repetition and optimization of network morphology, highly efficient protein materials capable of withstanding deformations up to 400% of their original length, with MPa-GPa modulus, high energy absorption (50 MJ m-3), peak proton conductivity of 3.7 mS cm-1 (at pH 7, highest reported to date for biological materials), and peak thermal conductivity of 1.4 W m-1 K -1 (which exceeds that of most polymer materials) were developed. These findings introduce new design rules in the engineering of proteins based on tandem repetition and morphology control, and provide a novel framework for tailoring and optimizing the properties of protein-based materials.

  9. Novel High Efficient Organic Photovoltaic Materials: Final Summary of Research

    NASA Technical Reports Server (NTRS)

    Sun, Sam

    2002-01-01

    The objectives and goals of this project were to investigate and develop high efficient, lightweight, and cost effective materials for potential photovoltaic applications, such as solar energy conversion or photo detector devices. Specifically, as described in the original project proposal, the target material to be developed was a block copolymer system containing an electron donating (or p-type) conjugated polymer block coupled to an electron withdrawing (or n-type) conjugated polymer block through a non-conjugated bridge unit. Due to several special requirements of the targeted block copolymer systems, such as electron donating and withdrawing substituents, conjugated block structures, processing requirement, stability requirement, size controllability, phase separation and self ordering requirement, etc., many traditional or commonly used block copolymer synthetic schemes are not suitable for this system. Therefore, the investigation and development of applicable and effective synthetic protocols became the most critical and challenging part of this project. During the entire project period, and despite the lack of a proposed synthetic polymer postdoctoral research associate due to severe shortage of qualified personnel in the field, several important accomplishments were achieved in this project and are briefly listed and elaborated. A more detailed research and experimental data is listed in the Appendix.

  10. Detection of ALK rearrangements in malignant pleural effusion cell blocks from patients with advanced non-small cell lung cancer: a comparison of Ventana immunohistochemistry and fluorescence in situ hybridization.

    PubMed

    Wang, Weiya; Tang, Yuan; Li, Jinnan; Jiang, Lili; Jiang, Yong; Su, Xueying

    2015-02-01

    Surgical resections or tumor biopsies are often not available for patients with late-stage non-small cell lung cancer (NSCLC). Cytological specimens, such as malignant pleural effusion (MPE) cell blocks, are critical for molecular testing. Currently, diagnostic methods to identify anaplastic lymphoma kinase (ALK) rearrangements include fluorescence in situ hybridization (FISH), real-time reverse transcriptase-polymerase chain reaction (RT-PCR), and immunohistochemistry (IHC). In the current study, the authors compared Ventana ALK IHC assays and ALK FISH to detect ALK rearrangements in MPE cell blocks from patients with advanced NSCLC. The ALK IHC assay and ALK FISH were performed on 63 MPE cell blocks. RT-PCR analysis was performed as additional validation in cases in which a discrepancy was observed between the IHC assay and FISH results. The Ventana ALK IHC assay was found to be informative for all 63 samples, and 8 cases were positive. Fifty-eight cases were interpretable for FISH detection, and 6 were positive. The concordance between IHC and FISH was 100% among the 58 cases. Of the 5 uninterpretable ALK FISH cases, 2 cases and 3 cases, respectively, were ALK IHC positive and negative. One of the 2 ALK IHC-positive cases also demonstrated a positive result in the RT-PCR assay and the patient benefited from crizotinib treatment. MPE cell blocks can be used successfully for the detection of ALK rearrangement when tumor tissue is not available. The Ventana ALK IHC assay is an effective screening method for ALK rearrangement in MPE cell blocks from patients with advanced NSCLC, demonstrating high agreement with FISH results. © 2014 American Cancer Society.

  11. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebi, Masahide; Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp; Shimura, Takaya

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cellmore » growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGF{beta} enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells. Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGF{beta} might be an important pathway of gastric cancer cell proliferation by TGF{beta}.« less

  12. Selective blockade of microRNA processing by Lin-28

    PubMed Central

    Viswanathan, Srinivas R.; Daley, George Q.; Gregory, Richard I.

    2012-01-01

    MicroRNAs (miRNAs) play critical roles in development, and dysregulation of miRNA expression has been observed in human malignancies. Recent evidence suggests that the processing of several primary miRNA transcripts (pri-miRNAs) is blocked post-transcriptionally in embryonic stem (ES) cells, embryonal carcinoma (EC) cells, and primary tumors. Here we show that Lin-28, a developmentally regulated RNA-binding protein, selectively blocks the processing of pri-let-7 miRNAs in embryonic cells. Using in vitro and in vivo studies, we demonstrate that Lin-28 is necessary and sufficient for blocking Microprocessor-mediated cleavage of pri-let-7 miRNAs. Our results identify Lin-28 as a negative regulator of miRNA biogenesis and suggest that Lin-28 may play a central role in blocking miRNA-mediated differentiation in stem cells and certain cancers. PMID:18292307

  13. Methotrexate-Loaded Four-Arm Star Amphiphilic Block Copolymer Elicits CD8+ T Cell Response against a Highly Aggressive and Metastatic Experimental Lymphoma.

    PubMed

    Hira, Sumit Kumar; Ramesh, Kalyan; Gupta, Uttam; Mitra, Kheyanath; Misra, Nira; Ray, Biswajit; Manna, Partha Pratim

    2015-09-16

    We have synthesized a well-defined four-arm star amphiphilic block copolymer [poly(DLLA)-b-poly(NVP)]4 [star-(PDLLA-b-PNVP)4] that consists of D,L-lactide (DLLA) and N-vinylpyrrolidone (NVP) via the combination of ring-opening polymerization (ROP) and xanthate-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization. Synthesis of the polymer was verified by 1H NMR spectroscopy and gel permeation chromatography (GPC). The amphiphilic four-arm star block copolymer forms spherical micelles in water as demonstrated by transmission electron microscopy (TEM) and 1H NMR spectroscopy. Pyrene acts as a probe to ascertain the critical micellar concentration (cmc) by using fluorescence spectroscopy. Methotrexate (MTX)-loaded polymeric micelles of star-(PDLLA15-b-PNVP10)4 amphiphilic block copolymer were prepared and characterized by fluorescence and TEM studies. Star-(PDLLA15-b-PNVP10)4 copolymer was found to be significantly effective with respect to inhibition of proliferation and lysis of human and murine lymphoma cells. The amphiphilic block copolymer causes cell death in parental and MTX-resistant Dalton lymphoma (DL) and Raji cells. The formulation does not cause hemolysis in red blood cells and is tolerant to lymphocytes compared to free MTX. Therapy with MTX-loaded star-(PDLLA15-b-PNVP10)4 amphiphilic block copolymer micelles prolongs the life span of animals with neoplasia by reducing the tumor load, preventing metastasis and augmenting CD8+ T cell-mediated adaptive immune responses.

  14. 11. VIEW OF INTERIOR OF BUILDING 220 FIRST FLOOR, CELL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF INTERIOR OF BUILDING 220 FIRST FLOOR, CELL BLOCK 'A' (SOLITARY CONFINEMENT CELL BLOCK), TYPICAL SOLITARY CONFINEMENT CELL. THE CELL SHOWN IN CENTER OF PHOTO, HAS A 2-1/2' THICK STEEL DOOR. THE CELL SHOWN IN THE LEFT OF PHOTO, HAS A 3/4' DIAMETER IRON GRILLE DOOR. - U.S. Naval Base, Pearl Harbor, Brig, Neville Way near Ninth Street at Marine Barracks, Pearl City, Honolulu County, HI

  15. Proton-Mediated Block of Ca2+ Channels during Multivesicular Release Regulates Short-Term Plasticity at an Auditory Hair Cell Synapse

    PubMed Central

    Cho, Soyoun

    2014-01-01

    Synaptic vesicles release both neurotransmitter and protons during exocytosis, which may result in a transient acidification of the synaptic cleft that can block Ca2+ channels located close to the sites of exocytosis. Evidence for this effect has been reported for retinal ribbon-type synapses, but not for hair cell ribbon synapses. Here, we report evidence for proton release from bullfrog auditory hair cells when they are held at more physiological, in vivo–like holding potentials (Vh = −60 mV) that facilitate multivesicular release. During paired recordings of hair cells and afferent fibers, L-type voltage-gated Ca2+ currents showed a transient block, which was highly correlated with the EPSC amplitude (or the amount of glutamate release). This effect was masked at Vh = −90 mV due to the presence of a T-type Ca2+ current and blocked by strong pH buffering with HEPES or TABS. Increasing vesicular pH with internal methylamine in hair cells also abolished the transient block. High concentrations of intracellular Ca2+ buffer (10 mm BAPTA) greatly reduced exocytosis and abolished the transient block of the Ca2+ current. We estimate that this transient block is due to the rapid multivesicular release of ∼600–1300 H+ ions per synaptic ribbon. Finally, during a train of depolarizing pulses, paired pulse plasticity was significantly changed by using 40 mm HEPES in addition to bicarbonate buffer. We propose that this transient block of Ca2+ current leads to more efficient exocytosis per Ca2+ ion influx and it may contribute to spike adaptation at the auditory nerve. PMID:25429130

  16. The state of cell block variation and satisfaction in the era of molecular diagnostics and personalized medicine

    PubMed Central

    Crapanzano, John P.; Heymann, Jonas J.; Monaco, Sara; Nassar, Aziza; Saqi, Anjali

    2014-01-01

    Background: In the recent past, algorithms and recommendations to standardize the morphological, immunohistochemical and molecular classification of lung cancers on cytology specimens have been proposed, and several organizations have recommended cell blocks (CBs) as the preferred modality for molecular testing. Based on the literature, there are several different techniques available for CB preparation-suggesting that there is no standard. The aim of this study was to conduct a survey of CB preparation techniques utilized in various practice settings and analyze current issues, if any. Materials and Methods: A single E-mail with a link to an electronic survey was distributed to members of the American Society of Cytopathology and other pathologists. Questions pertaining to the participants’ practice setting and CBs-volume, method, quality and satisfaction-were included. Results: Of 95 respondents, 90/95 (94%) completed the survey and comprise the study group. Most participants practice in a community hospital/private practice (44%) or academic center (41%). On average, 14 CBs (range 0-50; median 10) are prepared by a laboratory daily. Over 10 methods are utilized: Plasma thrombin (33%), HistoGel (27%), Cellient automated cell block system (8%) and others (31%) respectively. Forty of 90 (44%) respondents are either unsatisfied or sometimes satisfied with their CB quality, with low-cellular yield being the leading cause of dissatisfaction. There was no statistical significance between the three most common CB preparation methods and satisfaction with quality. Discussion: Many are dissatisfied with their current method of CB preparation, and there is no consistent method to prepare CBs. In today's era of personalized medicine with an increasing array of molecular tests being applied to cytological specimens, there is a need for a standardized protocol for CB optimization to enhance cellularity. PMID:24799951

  17. Suitability of the CellientTM cell block method for diagnosing soft tissue and bone tumors

    PubMed Central

    Song, W.; van Hemel, B. M.

    2018-01-01

    BACKGROUND The diagnosis of tumors of soft tissue and bone (STB) heavily relies on histological biopsies, whereas cytology is not widely used. CellientTM cell blocks often contain small tissue fragments. In addition to Hematoxylin and Eosin (H&E) interpretation of histological features, immunohistochemistry (IHC) can be applied after optimization of protocols. The objective of this retrospective study was to see whether this cytological technique allowed us to make a precise diagnosis of STB tumors. METHODS Our study cohort consisted of 20 consecutive STB tumors, 9 fine‐needle aspiration (FNAC) samples, and 11 endoscopic ultrasonography (EUS) FNACs and included 8 primary tumors and 12 recurrences or metastases of known STB tumors. RESULTS In all 20 cases, H&E stained sections revealed that diagnostically relevant histological and cytological features could be examined properly. In the group of 8 primary tumors, IHC performed on CellientTM material provided clinically important information in all cases. For instance, gastrointestinal stromal tumor (GIST) was positive for CD117 and DOG‐1 and a PEComa showed positive IHC for actin, desmin, and HMB‐45. In the group of 12 secondary tumors, SATB2 was visualized in metastatic osteosarcoma, whereas expression of S‐100 was present in 2 secondary chondrosarcomas. Metastatic chordoma could be confirmed by brachyury expression. Two metastatic alveolar rhabdomyosarcomas were myf4 positive, a metastasis of a gynecologic leiomyosarcoma was positive for actin and estrogen receptor (ER) and a recurrent dermatofibrosarcoma protuberans expressed CD34. CONCLUSION In the proper clinical context, including clinical presentation with imaging studies, the CellientTM cell block technique has great potential for the diagnosis of STB tumors. PMID:29318761

  18. Arginase Inhibition Suppresses Native Low-Density Lipoprotein-Stimulated Vascular Smooth Muscle Cell Proliferation by NADPH Oxidase Inactivation

    PubMed Central

    Wang, Wi-Kwang; Ko, In-Young; Hoe, Kwang-Lae; Kwon, Young-Guen; Won, Moo-Ho; Kim, Young-Myeong

    2018-01-01

    Purpose Vascular smooth muscle cell (VSMC) proliferation induced by native low-density lipoprotein (nLDL) stimulation is dependent on superoxide production from activated NADPH oxidase. The present study aimed to investigate whether the novel arginase inhibitor limonin could suppress nLDL-induced VSMC proliferation and to examine related mechanisms. Materials and Methods Isolated VSMCs from rat aortas were treated with nLDL, and cell proliferation was measured by WST-1 and BrdU assays. NADPH oxidase activation was evaluated by lucigenin-induced chemiluminescence, and phosphorylation of protein kinase C (PKC) βII and extracellular signal-regulated kinase (ERK) 1/2 was determined by western blot analysis. Mitochondrial reactive oxygen species (ROS) generation was assessed using MitoSOX-red, and intracellular L-arginine concentrations were determined by high-performance liquid chromatography (HPLC) in the presence or absence of limonin. Results Limonin inhibited arginase I and II activity in the uncompetitive mode, and prevented nLDL-induced VSMC proliferation in a p21Waf1/Cip1-dependent manner without affecting arginase protein levels. Limonin blocked PKCβII phosphorylation, but not ERK1/2 phosphorylation, and translocation of p47phox to the membrane was decreased, as was superoxide production in nLDL-stimulated VSMCs. Moreover, mitochondrial ROS generation was increased by nLDL stimulation and blocked by preincubation with limonin. Mitochondrial ROS production was responsible for the phosphorylation of PKCβII. HPLC analysis showed that arginase inhibition with limonin increases intracellular L-arginine concentrations, but decreases polyamine concentrations. L-Arginine treatment prevented PKCβII phosphorylation without affecting ERK1/2 phosphorylation. Conclusion Increased L-arginine levels following limonin-dependent arginase inhibition prohibited NADPH oxidase activation in a PKCβII-dependent manner, and blocked nLDL-stimulated VSMC proliferation. PMID:29611398

  19. Organic photosensitive devices using subphthalocyanine compounds

    DOEpatents

    Rand, Barry [Princeton, NJ; Forrest, Stephen R [Ann Arbor, MI; Mutolo, Kristin L [Hollywood, CA; Mayo, Elizabeth [Alhambra, CA; Thompson, Mark E [Anaheim Hills, CA

    2011-07-05

    An organic photosensitive optoelectronic device, having a donor-acceptor heterojunction of a donor-like material and an acceptor-like material and methods of making such devices is provided. At least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound; and/or the device optionally has at least one of a blocking layer or a charge transport layer, where the blocking layer and/or the charge transport layer includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound.

  20. GaAsPN-based PIN solar cells MBE-grown on GaP substrates: toward the III-V/Si tandem solar cell

    NASA Astrophysics Data System (ADS)

    Da Silva, M.; Almosni, S.; Cornet, C.; Létoublon, A.; Levallois, C.; Rale, P.; Lombez, L.; Guillemoles, J.-F.; Durand, O.

    2015-03-01

    GaAsPN semiconductors are promising material for the elaboration of high efficiencies tandem solar cells on silicon substrates. GaAsPN diluted nitride alloy is studied as the top junction material due to its perfect lattice matching with the Si substrate and its ideal bandgap energy allowing a perfect current matching with the Si bottom cell. We review our recent progress in materials development of the GaAsPN alloy and our recent studies of some of the different building blocks toward the elaboration of a PIN solar cell. A lattice matched (with a GaP(001) substrate, as a first step toward the elaboration on a Si substrate) 1μm-thick GaAsPN alloy has been grown by MBE. After a post-growth annealing step, this alloy displays a strong absorption around 1.8-1.9 eV, and efficient photoluminescence at room temperature suitable for the elaboration of the targeted solar cell top junction. Early stage GaAsPN PIN solar cells prototypes have been grown on GaP (001) substrates, with 2 different absorber thicknesses (1μm and 0.3μm). The external quantum efficiencies and the I-V curves show that carriers have been extracted from the GaAsPN alloy absorbers, with an open-circuit voltage of 1.18 V, while displaying low short circuit currents meaning that the GaAsPN structural properties needs a further optimization. A better carrier extraction has been observed with the absorber displaying the smallest thickness, which is coherent with a low carriers diffusion length in our GaAsPN compound. Considering all the pathways for improvement, the efficiency obtained under AM1.5G is however promising.

  1. Preparation and development of block copolypeptide vesicles and hydrogels for biological and medical applications.

    PubMed

    Deming, Timothy J

    2014-01-01

    There have been many recent advances in the controlled polymerization of α-amino acid-N-carboxyanhydride (NCA) monomers into well-defined block copolypeptides. Transition metal initiating systems allow block copolypeptide synthesis with excellent control over number and lengths of block segments, chain length distribution, and chain-end functionality. Using this and other methods, block copolypeptides of controlled dimensions have been prepared and their self-assembly into organized structures studied by many research groups. The ability of well-defined block copolypeptides to assemble into supramolecular copolypeptide vesicles and hydrogels has led to the development of these materials for use in biological and medical applications. These assemblies have been found to possess unique properties that are derived from the amino acid building blocks and ordered conformations of the polypeptide segments. Recent work on the incorporation of active and stimulus-responsive functionality in these materials has tremendously increased their potential for use in biological and medical studies. © 2014 Wiley Periodicals, Inc.

  2. Finishes for Wood Bowls, Butcher Blocks, Other Items Used for Food, and Children's Toys

    Treesearch

    Mark T. Knaebe

    2013-01-01

    The durability and beauty of wood make it an attractive material for bowls, butcher blocks, and other items used to serve or prepare food. Wood also tends to be less prone to harbor bacteria than are some other materials such as plastic.

  3. Release-rate calorimetry of multilayered materials for aircraft seats

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Duskin, F. E.; Spieth, H.; Trabold, E.; Parker, J. A.

    1979-01-01

    Multilayered samples of contemporary and improved fire resistant aircraft seat materials (foam cushion, decorative fabric, slip sheet, fire blocking layer, and cushion reinforcement layer) were evaluated for their rates of heat release and smoke generation. Top layers (decorative fabric, slip sheet, fire blocking, and cushion reinforcement) with glass fiber block cushion were evaluated to determine which materials based on their minimum contributions to the total heat release of the multilayered assembly may be added or deleted. Top layers exhibiting desirable burning profiles were combined with foam cushion materials. The smoke and heat release rates of multilayered seat materials were then measured at heat fluxes of 1.5 and 3.5 W/sq cm. Choices of contact and silicone adhesives for bonding multilayered assemblies were based on flammability, burn and smoke generation, animal toxicity tests, and thermal gravimetric analysis. Abrasion tests were conducted on the decorative fabric covering and slip sheet to ascertain service life and compatibility of layers.

  4. Radiation attenuation on labyrinth design bunker using Iridium-192 source

    NASA Astrophysics Data System (ADS)

    Ismail, Mohamad Pauzi bin; Sani, Suhairy bin; Masenwat, Noor Azreen bin; Mohd, Shukri; Sayuti, Shaharudin; Ahmad, Mohamad Ridzuan Bin; Mahmud, Mohamad Haniza bin; Isa, Nasharuddin bin

    2017-01-01

    Gamma rays are better absorbed by materials with high atomic numbers and high density. Steel, lead, depleted uranium, concrete, water or sand can be used as gamma shielding. Lead and steel are normally used for making doors of the bunker and to reduce radiation scatter. Depleted uranium is used for gamma container. Water is used in nuclear reactor as neutron and gamma absorber. Sand is used for mobile hot cell. However concrete is the most common and cheap material for gamma radiation bunker. In this research, concrete made from hematite aggregates was used to make chevron blocks for a temporary construction of labyrinth bunker. This paper explains and discusses the gamma attenuation around labyrinth bunker with concrete containing hematite aggregates.

  5. Graphene-based vertical-junction diodes and applications

    NASA Astrophysics Data System (ADS)

    Choi, Suk-Ho

    2017-09-01

    In the last decade, graphene has received extreme attention as an intriguing building block for electronic and photonic device applications. This paper provides an overview of recent progress in the study of vertical-junction diodes based on graphene and its hybrid systems by combination of graphene and other materials. The review is especially focused on tunnelling and Schottky diodes produced by chemical doping of graphene or combination of graphene with various semiconducting/ insulating materials such as hexagonal boron nitrides, Si-quantum-dots-embedded SiO2 multilayers, Si wafers, compound semiconductors, Si nanowires, and porous Si. The uniqueness of graphene enables the application of these convergence structures in high-efficient devices including photodetectors, solar cells, resonant tunnelling diodes, and molecular/DNA sensors.

  6. 5-Fluorouracil, colchicine, benzo[a]pyrene and cytosine arabinoside tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster V79 cells at Covance Laboratories, Harrogate, UK in support of OECD draft Test Guideline 487.

    PubMed

    Whitwell, James; Fowler, Paul; Allars, Sarah; Jenner, Karen; Lloyd, Melvyn; Wood, Debbie; Smith, Katie; Young, Jamie; Jeffrey, Laura; Kirkland, David

    2010-10-29

    The reference genotoxic agents 5-fluorouracil (a nucleoside analogue, characterised by a steep dose response profile), colchicine (an aneugen that inhibits tubulin polymerisation), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation) and cytosine arabinoside (a nucleoside analogue that inhibits the gap-filling step of excision repair) were tested in the in vitro micronucleus assay using the Chinese hamster V79 cell line at Covance Laboratories, Harrogate, UK. All chemicals were treated in the absence and presence of cytokinesis block (via addition of cytochalasin B) with this work forming part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 on the In Vitro Mammalian Cell Micronucleus Test (MNvit). The toxicity measures used, detecting a possible combination of both cytostasis and cell death (though not cell death directly), were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index in the presence of cytokinesis block. All of the chemicals tested either gave marked increases in the percentage of micronucleated cells with and without cytokinesis block, or did not induce micronuclei at concentrations giving approximately 50-60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcome from this series of tests supports the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Block Play: Practical Suggestions for Common Dilemmas

    ERIC Educational Resources Information Center

    Tunks, Karyn Wellhousen

    2009-01-01

    Learning materials and teaching methods used in early childhood classrooms have fluctuated greatly over the past century. However, one learning tool has stood the test of time: Wood building blocks, often called unit blocks, continue to be a source of pleasure and learning for young children at play. Wood blocks have the unique capacity to engage…

  8. 25th anniversary article: progress in chemistry and applications of functional indigos for organic electronics.

    PubMed

    Głowacki, Eric Daniel; Voss, Gundula; Sariciftci, Niyazi Serdar

    2013-12-17

    Indigo and its derivatives are dyes and pigments with a long and distinguished history in organic chemistry. Recently, applications of this 'old' structure as a functional organic building block for organic electronics applications have renewed interest in these molecules and their remarkable chemical and physical properties. Natural-origin indigos have been processed in fully bio-compatible field effect transistors, operating with ambipolar mobilities up to 0.5 cm(2) /Vs and air-stability. The synthetic derivative isoindigo has emerged as one of the most successful building-blocks for semiconducting polymers for plastic solar cells with efficiencies > 5%. Another isomer of indigo, epindolidione, has also been shown to be one of the best reported organic transistor materials in terms of mobility (∼2 cm(2) /Vs) and stability. This progress report aims to review very recent applications of indigoids in organic electronics, but especially to logically bridge together the hereto independent research directions on indigo, isoindigo, and other materials inspired by historical dye chemistry: a field which was the root of the development of modern chemistry in the first place. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Abnormal Septation and Inhibition of Sporulation by Accumulation of l-α-Glycerophosphate in Bacillus subtilis Mutants

    PubMed Central

    Oh, Yong K.; Freese, Elisabeth B.; Freese, Ernst

    1973-01-01

    Accumulation of l-α-glycerophosphate, in cells of Bacillus subtilis mutants lacking the nicotinamide adenine dinucleotide-independent glycerophosphate dehydrogenase activity, suppresses both growth and sporulation. After growth has stopped, the cells slowly develop one and later more asymmetric septa that are thicker than normal prespore septa and apparently contain too much cell wall material to allow further membrane development into forespores or spores. l-Malate prevents accumulation of glycerophosphate and restores sporulation of the mutant. Glucose or gluconate cannot resotre sporulation, because they still effect glycerophosphate accumulation via de novo synthesis. If that accumulation is blocked in a double mutant, which is unable to make glycerophosphate from or to metabolize it into Embden-Meyerhof compounds, then nonsuppressing amounts of glucose or gluconate can restore sporulation. Images PMID:4632310

  10. Low temperature biosynthesis of Li2O-MgO-P2O5-TiO2 nanocrystalline glass with mesoporous structure exhibiting fast lithium ion conduction.

    PubMed

    Du, Xiaoyong; He, Wen; Zhang, Xudong; Ma, Jinyun; Wang, Chonghai; Li, Chuanshan; Yue, Yuanzheng

    2013-04-01

    We demonstrate a biomimetic synthesis methodology that allows us to create Li2O-MgO-P2O5-TiO2 nanocrystalline glass with mesoporous structure at lower temperature. We design a 'nanocrystal-glass' configuration to build a nanoarchitecture by means of yeast cell templates self-assembly followed by the controlled in-situ biomineralization of materials on the cell wall. Electrochemically active nanocrystals are used as the lamellar building blocks of mesopores, and the semiconductive glass phase can act both as the 'glue' between nanocrystals and functionalized component. The Li2O-MgO-P2O5-TiO2 nanocrystalline glass exhibits outstanding thermal stability, high conductivity and wide potential window. This approach could be applied to many other multicomponent glass-ceramics to fabricate mesoporous conducting materials for solid-state lithium batteries. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Regulation of DNA synthesis and the cell cycle in human prostate cancer cells and lymphocytes by ovine uterine serpin

    PubMed Central

    Padua, Maria B; Hansen, Peter J

    2008-01-01

    Background Uterine serpins are members of the serine proteinase inhibitor superfamily. Like some other serpins, these proteins do not appear to be functional proteinase inhibitors. The most studied member of the group, ovine uterine serpin (OvUS), inhibits proliferation of several cell types including activated lymphocytes, bovine preimplantation embryos, and cell lines for lymphoma, canine primary osteosarcoma and human prostate cancer (PC-3) cells. The goal for the present study was to evaluate the mechanism by which OvUS inhibits cell proliferation. In particular, it was tested whether inhibition of DNA synthesis in PC-3 cells involves cytotoxic actions of OvUS or the induction of apoptosis. The effect of OvUS in the production of the autocrine and angiogenic cytokine interleukin (IL)-8 by PC-3 cells was also determined. Finally, it was tested whether OvUS blocks specific steps in the cell cycle using both PC-3 cells and lymphocytes. Results Recombinant OvUS blocked proliferation of PC-3 cells at concentrations as low as 8 μg/ml as determined by measurements of [3H]thymidine incorporation or ATP content per well. Treatment of PC-3 cells with OvUS did not cause cytotoxicity or apoptosis or alter interleukin-8 secretion into medium. Results from flow cytometry experiments showed that OvUS blocked the entry of PC-3 cells into S phase and the exit from G2/M phase. In addition, OvUS blocked entry of lymphocytes into S phase following activation of proliferation with phytohemagglutinin. Conclusion Results indicate that OvUS acts to block cell proliferation through disruption of the cell cycle dynamics rather than induction of cytotoxicity or apoptosis. The finding that OvUS can regulate cell proliferation makes this one of only a few serpins that function to inhibit cell growth. PMID:18218135

  12. Self-aligned block technology: a step toward further scaling

    NASA Astrophysics Data System (ADS)

    Lazzarino, Frédéric; Mohanty, Nihar; Feurprier, Yannick; Huli, Lior; Luong, Vinh; Demand, Marc; Decoster, Stefan; Vega Gonzalez, Victor; Ryckaert, Julien; Kim, Ryan Ryoung Han; Mallik, Arindam; Leray, Philippe; Wilson, Chris; Boemmels, Jürgen; Kumar, Kaushik; Nafus, Kathleen; deVilliers, Anton; Smith, Jeffrey; Fonseca, Carlos; Bannister, Julie; Scheer, Steven; Tokei, Zsolt; Piumi, Daniele; Barla, Kathy

    2017-04-01

    In this work, we present and compare two integration approaches to enable self-alignment of the block suitable for the 5- nm technology node. The first approach is exploring the insertion of a spin-on metal-based material to memorize the first block and act as an etch stop layer in the overall integration. The second approach is evaluating the self-aligned block technology employing widely used organic materials and well-known processes. The concept and the motivation are discussed considering the effects on design and mask count as well as the impact on process complexity and EPE budget. We show the integration schemes and discuss the requirements to enable self-alignment. We present the details of materials and processes selection to allow optimal selective etches and we demonstrate the proof of concept using a 16- nm half-pitch BEOL vehicle. Finally, a study on technology insertion and cost estimation is presented.

  13. Engineering topochemical polymerizations using block copolymer templates.

    PubMed

    Zhu, Liangliang; Tran, Helen; Beyer, Frederick L; Walck, Scott D; Li, Xin; Agren, Hans; Killops, Kato L; Campos, Luis M

    2014-09-24

    With the aim to achieve rapid and efficient topochemical polymerizations in the solid state, via solution-based processing of thin films, we report the integration of a diphenyldiacetylene monomer and a poly(styrene-b-acrylic acid) block copolymer template for the generation of supramolecular architectural photopolymerizable materials. This strategy takes advantage of non-covalent interactions to template a topochemical photopolymerization that yields a polydiphenyldiacetylene (PDPDA) derivative. In thin films, it was found that hierarchical self-assembly of the diacetylene monomers by microphase segregation of the block copolymer template enhances the topochemical photopolymerization, which is complete within a 20 s exposure to UV light. Moreover, UV-active cross-linkable groups were incorporated within the block copolymer template to create micropatterns of PDPDA by photolithography, in the same step as the polymerization reaction. The materials design and processing may find potential uses in the microfabrication of sensors and other important areas that benefit from solution-based processing of flexible conjugated materials.

  14. Block Copolymer Micellization as a Protection Strategy for DNA Origami.

    PubMed

    Agarwal, Nayan P; Matthies, Michael; Gür, Fatih N; Osada, Kensuke; Schmidt, Thorsten L

    2017-05-08

    DNA nanotechnology enables the synthesis of nanometer-sized objects that can be site-specifically functionalized with a large variety of materials. For these reasons, DNA-based devices such as DNA origami are being considered for applications in molecular biology and nanomedicine. However, many DNA structures need a higher ionic strength than that of common cell culture buffers or bodily fluids to maintain their integrity and can be degraded quickly by nucleases. To overcome these deficiencies, we coated several different DNA origami structures with a cationic poly(ethylene glycol)-polylysine block copolymer, which electrostatically covered the DNA nanostructures to form DNA origami polyplex micelles (DOPMs). This straightforward, cost-effective, and robust route to protect DNA-based structures could therefore enable applications in biology and nanomedicine where unprotected DNA origami would be degraded. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Periodic nanoscale patterning of polyelectrolytes over square centimeter areas using block copolymer templates

    DOE PAGES

    Oded, Meirav; Kelly, Stephen T.; Gilles, Mary K.; ...

    2016-04-07

    Nano-patterned materials are beneficial for applications such as solar cells, opto-electronics, and sensing owing to their periodic structure and high interfacial area. We present a non-lithographic approach for assembling polyelectrolytes into periodic nanoscale patterns over cm 2 -scale areas. We used chemically modified block copolymer thin films featuring alternating charged and neutral domains as patterned substrates for electrostatic self-assembly. In-depth characterization of the deposition process using spectroscopy and microscopy techniques, including the state-of-the-art scanning transmission X-ray microscopy (STXM), reveals both the selective deposition of the polyelectrolyte on the charged copolymer domains as well as gradual changes in the film topographymore » that arise from further penetration of the solvent molecules and possibly also the polyelectrolyte into these domains. Our results demonstrate the feasibility of creating nano-patterned polyelectrolyte layers, which opens up new opportunities for structured functional coating fabrication.« less

  16. New naphtho[1,2-b:5,6-b‧]difuran based two-dimensional conjugated small molecules for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Peng, Hongjian; Luan, Xiangfeng; Qiu, Lixia; Li, Hang; Liu, Ye; Zou, Yingping

    2017-10-01

    Two new A-D-A small molecules with alkoxyphenyl and alkylthiophenyl-substituted naphtho[1,2-b:5,6-b‧]difuran (NDF) as the central building block named NDFPO-DPP and NDFPS-DPP were synthesized and firstly used as donor materials in organic solar cells (OSCs). The effects of the alkoxyphenyl and alkylthiophenyl side chains on the NDF unit have been investigated. With a single atom variation from O to S, NDFPS-DPP exhibited lower HOMO energy levels than its counterpart NDFPO-DPP, which resulted in enhanced Voc. The device based on NDFPO-DPP with thermal annealing exhibited a better PCE of 3.10% due to the higher and more balanced hole and electron mobilities. The investigations show that NDF could be a promising building block in OSCs via rational molecular structure design and device optimizations.

  17. Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method

    NASA Astrophysics Data System (ADS)

    Qiu, T.; Wu, X. L.; Mei, Y. F.; Chu, P. K.; Siu, G. G.

    2005-09-01

    Unique silver dendritic nanostructures, with stems, branches, and leaves, were synthesized with self-organization via a simple electroless metal deposition method in a conventional autoclave containing aqueous HF and AgNO3 solution. Their growth mechanisms are discussed in detail on the basis of a self-assembled localized microscopic electrochemical cell model. A process of diffusion-limited aggregation is suggested for the formation of the silver dendritic nanostructures. This nanostructured material is of great potential to be building blocks for assembling mini-functional devices of the next generation.

  18. Cell Penetrating Polymers Containing Guanidinium Trigger Apoptosis in Human Hepatocellular Carcinoma Cells unless Conjugated to a Targeting N-Acetyl-Galactosamine Block.

    PubMed

    Tan, Zhe; Dhande, Yogesh K; Reineke, Theresa M

    2017-12-20

    A series of 3-guanidinopropyl methacrylamide (GPMA)-based polymeric gene delivery vehicles were developed via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers have been evaluated for their cellular internalization ability, transfection efficiency, and cytotoxicity. Two homopolymers: P(GPMA 20 ), P(GPMA 34 ), were synthesized to study the effect of guanidium polymer length on delivery efficiency and toxicity. In addition, an N-acetyl-d-galactosamine (GalNAc)-based hydrophilic block was incorporated to produce diblock polymers, which provides a neutral hydrophilic block that sterically protects plasmid-polymer complexes (polyplexes) from colloidal aggregation and aids polyplex targeting to hepatocytes via binding to asialoglycoprotein receptors (ASGPRs). Polyplexes formed with P(GPMA x ) (x = 20, 34) homopolymers were shown to be internalized via both energy-dependent and independent pathways, whereas polyplexes formed with block polymers were internalized through endocytosis. Notably, P(GPMA x ) polyplexes enter cells very efficiently but are also very toxic to human hepatocellular carcinoma (HepG2) cells and triggered cell apoptosis. In comparison, the presence of a carbohydrate block in the polymer structures reduced the cytotoxicity of the polyplex formulations and increased gene delivery efficiency with HepG2 cells. Transfection efficiency and toxicity studies were also carried out with HEK 293T (human embryonic kidney) cells for comparison. Results showed that polyplexes formed with the P(GPMA x ) homopolymers exhibit much higher transfection efficiency and lower toxicity with HEK 293T cells. The presence of the carbohydrate block did not further increase transfection efficiency in comparison to the homopolymers with HEK 293T cells, likely due to the lack of ASGPRs on the HEK 293T cell line. This study revealed that although guanidinium-based polymers have high membrane permeability, their application as plasmid delivery vehicles may be limited by their high cytotoxicity to certain cell types. Thus, the use of cell penetrating structures in polyplex formulations should be used with caution and carefully tailored toward individual cell/tissue types.

  19. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis.

    PubMed

    Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M; Concepcion, Erlinda; David, Chella S; Kastrinsky, David B; Ohlmeyer, Michael; Tomer, Yaron

    2016-02-19

    We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.

    PubMed

    Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue

    2014-03-01

    One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

  1. Apollo CSM Power Generation System Design Considerations, Failure Modes and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    The objectives of this slide presentation are to: review the basic design criteria for fuel cells (FC's), review design considerations during developmental phase that affected Block I and Block II vehicles, summarize the conditions that led to the failure of components in the FC's, and state the solution implemented for each failure. It reviews the location of the fuel cells, the fuel cell theory the design criteria going into development phase and coming from the development phase, failures and solutions of Block I and II, and the lessons learned.

  2. Suppression of Eosinophil Integrins Prevents Remodeling of Airway Smooth Muscle in Asthma

    PubMed Central

    Januskevicius, Andrius; Gosens, Reinoud; Sakalauskas, Raimundas; Vaitkiene, Simona; Janulaityte, Ieva; Halayko, Andrew J.; Hoppenot, Deimante; Malakauskas, Kestutis

    2017-01-01

    Background: Airway smooth muscle (ASM) remodeling is an important component of the structural changes to airways seen in asthma. Eosinophils are the prominent inflammatory cells in asthma, and there is some evidence that they contribute to ASM remodeling via released mediators and direct contact through integrin–ligand interactions. Eosinophils express several types of outer membrane integrin, which are responsible for cell–cell and cell–extracellular matrix interactions. In our previous study we demonstrated that asthmatic eosinophils show increased adhesion to ASM cells and it may be important factor contributing to ASM remodeling in asthma. According to these findings, in the present study we investigated the effects of suppression of eosinophil integrin on eosinophil-induced ASM remodeling in asthma. Materials and Methods: Individual combined cell cultures of immortalized human ASM cells and eosinophils from peripheral blood of 22 asthmatic patients and 17 healthy controls were prepared. Eosinophil adhesion was evaluated using eosinophil peroxidase activity assay. Genes expression levels in ASM cells and eosinophils were measured using quantitative real-time PCR. ASM cell proliferation was measured using alamarBlue® solution. Eosinophil integrins were blocked by incubating with Arg-Gly-Asp-Ser peptide. Results: Eosinophils from the asthma group showed increased outer membrane α4β1 and αMβ2 integrin expression, increased adhesion to ASM cells, and overexpression of TGF-β1 compared with eosinophils from the healthy control group. Blockade of eosinophil RGD-binding integrins by Arg-Gly-Asp-Ser peptide significantly reduced adhesion of eosinophils to ASM cells in both groups. Integrin-blocking decreased the effects of eosinophils on TGF-β1, WNT-5a, and extracellular matrix protein gene expression in ASM cells and ASM cell proliferation in both groups. These effects were more pronounced in the asthma group compared with the control group. Conclusion: Suppression of eosinophil-ASM interaction via RGD-binding integrins attenuates eosinophil-induced ASM remodeling in asthma. Trial Registration: ClinicalTrials.gov Identifier: NCT02648074. PMID:28119625

  3. Determining Possible Building Blocks of the Earth and Mars

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; OBrien, K. M.

    2004-01-01

    One of the fundamental questions concerning planetary formation is exactly what material did the planets form from? All the planets in our solar system are believed to have formed out of material from the solar nebula. Chondritic meteorites appear to sample this primitive material. Chondritic meteorites are generally classified into 13 major groups, which have a variety of compositions. Detailed studies of possible building blocks of the terrestrial planets require samples that can be used to estimate the bulk chemistry of these bodies. This study will focus on trying to determine possible building blocks of Earth and Mars since samples of these two planets can be studied in detail in the laboratory.

  4. Multiphase transport in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Gauthier, Eric D.

    Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the flow channel. We have compared the role of GDL materials in liquid drop and gas bubble formation and movement within fuel cells.

  5. Gas block mechanism for water removal in fuel cells

    DOEpatents

    Issacci, Farrokh; Rehg, Timothy J.

    2004-02-03

    The present invention is directed to apparatus and method for cathode-side disposal of water in an electrochemical fuel cell. There is a cathode plate. Within a surface of the plate is a flow field comprised of interdigitated channels. During operation of the fuel cell, cathode gas flows by convection through a gas diffusion layer above the flow field. Positioned at points adjacent to the flow field are one or more porous gas block mediums that have pores sized such that water is sipped off to the outside of the flow field by capillary flow and cathode gas is blocked from flowing through the medium. On the other surface of the plate is a channel in fluid communication with each porous gas block mediums. The method for water disposal in a fuel cell comprises installing the cathode plate assemblies at the cathode sides of the stack of fuel cells and manifolding the single water channel of each of the cathode plate assemblies to the coolant flow that feeds coolant plates in the stack.

  6. Cytomegalovirus Virions Shed in Urine Have a Reversible Block to Epithelial Cell Entry and Are Highly Resistant to Antibody Neutralization

    PubMed Central

    Cui, Xiaohong; Adler, Stuart P.; Schleiss, Mark R.; Demmler Harrison, Gail J.

    2017-01-01

    ABSTRACT Cytomegalovirus (CMV) causes sensorineural hearing loss and developmental disabilities in newborns when infections are acquired in utero. Pregnant women may acquire CMV from oral exposure to CMV in urine or saliva from young children. Neutralizing antibodies in maternal saliva have the potential to prevent maternal infection and, in turn, fetal infection. As CMV uses different viral glycoprotein complexes to enter different cell types, the first cells to be infected in the oral cavity could determine the type of antibodies needed to disrupt oral transmission. Antibodies targeting the pentameric complex (PC) should block CMV entry into epithelial cells but not into fibroblasts or Langerhans cells (which do not require the PC for entry), while antibodies targeting glycoprotein complexes gB or gH/gL would be needed to block entry into fibroblasts, Langerhans cells, or other cell types. To assess the potential for antibodies to disrupt oral acquisition, CMV from culture-positive urine samples (uCMV) was used to study cell tropisms and sensitivity to antibody neutralization. uCMV entered epithelial cells poorly compared with the entry into fibroblasts. CMV-hyperimmune globulin or monoclonal antibodies targeting gB, gH/gL, or the PC were incapable of blocking the entry of uCMV into either fibroblasts or epithelial cells. Both phenotypes were lost after one passage in cultured fibroblasts, suggestive of a nongenetic mechanism. These results suggest that uCMV virions have a reversible block to epithelial cell entry. Antibodies may be ineffective in preventing maternal oral CMV acquisition but may limit viral spread in blood or tissues, thereby reducing or preventing fetal infection and disease. PMID:28404573

  7. Genetically engineered silk-collagen-like copolymer for biomedical applications: production, characterization and evaluation of cellular response.

    PubMed

    Włodarczyk-Biegun, Małgorzata K; Werten, Marc W T; de Wolf, Frits A; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander C G; Kamperman, Marleen; Cohen Stuart, Martien A

    2014-08-01

    Genetically engineered protein polymers (GEPP) are a class of multifunctional materials with precisely controlled molecular structure and property profile. Representing a promising alternative for currently used materials in biomedical applications, GEPP offer multiple benefits over natural and chemically synthesized polymers. However, producing them in sufficient quantities for preclinical research remains challenging. Here, we present results from an in vitro cellular response study of a recombinant protein polymer that is soluble at low pH but self-organizes into supramolecular fibers and physical hydrogels at neutral pH. It has a triblock structure denoted as C2S(H)48C2, which consists of hydrophilic collagen-inspired and histidine-rich silk-inspired blocks. The protein was successfully produced by the yeast Pichia pastoris in laboratory-scale bioreactors, and it was purified by selective precipitation. This efficient and inexpensive production method provided material of sufficient quantities, purity and sterility for cell culture study. Rheology and erosion studies showed that it forms hydrogels exhibiting long-term stability, self-healing behavior and tunable mechanical properties. Primary rat bone marrow cells cultured in direct contact with these hydrogels remained fully viable; however, proliferation and mineralization were relatively low compared to collagen hydrogel controls, probably because of the absence of cell-adhesive motifs. As biofunctional factors can be readily incorporated to improve material performance, our approach provides a promising route towards biomedical applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Thermal Performance of Aircraft Polyurethane Seat Cushions

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1982-01-01

    Aircraft seat materials were evaluated in terms of their thermal performance. The materials were evaluated using (a) thermogravimetric analysis, (b) differential scanning calorimetry, (c) a modified NBS smoke chamber to determine the rate of mass loss and (d) the NASA T-3 apparatus to determine the thermal efficiency. In this paper, the modified NBS smoke chamber will be described in detail since it provided the most conclusive results. The NBS smoke chamber was modified to measure the weight loss of material when exposed to a radiant heat source over the range of 2.5 to 7.5 W/sq cm. This chamber has been utilized to evaluate the thermal performance of various heat blocking layers utilized to protect the polyurethane cushioning foam used in aircraft seats. Various kinds of heat blocking layers were evaluated by monitoring the weight loss of miniature seat cushions when exposed to the radiant heat. The effectiveness of aluminized heat blocking systems was demonstrated when compared to conventional heat blocking layers such as neoprene. All heat blocking systems showed good fire protection capabilities when compared to the state-of-the-art, i.e., wool-nylon over polyurethane foam.

  9. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  10. User handbook for block IV silicon solar cell modules

    NASA Technical Reports Server (NTRS)

    Smokler, M. I.

    1982-01-01

    The essential electrical and mechanical characteristics of block 4 photovoltaic solar cell modules are described. Such module characteristics as power output, nominal operating voltage, current-voltage characteristics, nominal operating cell temperature, and dimensions are tabulated. The limits of the environmental and other stress tests to which the modules are subjected are briefly described.

  11. Extracranial glioblastoma diagnosed by examination of pleural effusion using the cell block technique: case report.

    PubMed

    Hori, Yusuke S; Fukuhara, Toru; Aoi, Mizuho; Oda, Kazunori; Shinno, Yoko

    2018-06-01

    Metastatic glioblastoma is a rare condition, and several studies have reported the involvement of multiple organs including the lymph nodes, liver, and lung. The lung and pleura are reportedly the most frequent sites of metastasis, and diagnosis using less invasive tools such as cytological analysis with fine needle aspiration biopsy is challenging. Cytological analysis of fluid specimens tends to be negative because of the small number of cells obtained, whereas the cell block technique reportedly has higher sensitivity because of a decrease in cellular dispersion. Herein, the authors describe a patient with a history of diffuse astrocytoma who developed intractable, progressive accumulation of pleural fluid. Initial cytological analysis of the pleural effusion obtained by thoracocentesis was negative, but reanalysis using the cell block technique revealed the presence of glioblastoma cells. This is the first report to suggest the effectiveness of the cell block technique in the diagnosis of extracranial glioblastoma using pleural effusion. In patients with a history of glioma, the presence of extremely intractable pleural effusion warrants cytological analysis of the fluid using this technique in order to initiate appropriate chemotherapy.

  12. On the Limiting Markov Process of Energy Exchanges in a Rarely Interacting Ball-Piston Gas

    NASA Astrophysics Data System (ADS)

    Bálint, Péter; Gilbert, Thomas; Nándori, Péter; Szász, Domokos; Tóth, Imre Péter

    2017-02-01

    We analyse the process of energy exchanges generated by the elastic collisions between a point-particle, confined to a two-dimensional cell with convex boundaries, and a `piston', i.e. a line-segment, which moves back and forth along a one-dimensional interval partially intersecting the cell. This model can be considered as the elementary building block of a spatially extended high-dimensional billiard modeling heat transport in a class of hybrid materials exhibiting the kinetics of gases and spatial structure of solids. Using heuristic arguments and numerical analysis, we argue that, in a regime of rare interactions, the billiard process converges to a Markov jump process for the energy exchanges and obtain the expression of its generator.

  13. View of the southwest guard tower, cell blocks seven and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the southwest guard tower, cell blocks seven and eight, administration building west tower, and Fairmount Avenue, looking from the administration building facing west - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  14. Masonry Specialist I & II, 3-19. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of a course description, plan of instruction, study guides, and workbooks for use in training masonry specialists. Covered in the course blocks are an introduction to masonry and rigid concrete structures. The introduction to masonry, course block I, deals with safety, mathematics and…

  15. Refrigeration and Air Conditioning Equipment, 11-9. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This military-developed text consists of three blocks of instructional materials for use by those studying to become refrigeration and air conditioning specialists. Covered in the individual course blocks are the following topics: refrigeration and trouble analysis, thermodynamics, and principles of refrigeration; major components and domestic and…

  16. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Vernon Cole; Abhra Roy; Ashok Damle

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion pathsmore » for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.« less

  17. High Resolution Image From Viking Lander 1

    NASA Image and Video Library

    1996-12-12

    NASA's Viking 1 took this high-resolution picture today, its third day on Mars. Distance from the camera to the nearfield (bottom) is about 4 meters (13 feet); to the horizon, about 3 kilometers (1.8 miles). The photo shows numerous angular blocks ranging in size from a few centimeters to several meters. The surface between the blocks is composed of fine-grained material. Accumulation of some fine-grained material behind blocks indicates wind deposition of dust and sand downwind of obstacles. The large block on the horizon is about 4 meters (13 feet) wide. Distance across the horizon is about 34 meters (110 feet). http://photojournal.jpl.nasa.gov/catalog/PIA00385

  18. Chimeric Plastics : a new class of thermoplastic

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Mark

    A new class of thermoplastics (dubbed ``Chimerics'') is described that exhibits a high temperature glass transition followed by high performance elastomer properties, prior to melting. These transparent materials are comprised of co-continuous phase-separated block copolymers. One block is an amorphous glass with a high glass transition temperature, and the second is a higher temperature phase transition block creating virtual thermoreversible crosslinks. The material properties are highly influenced by phase separation on the order of 10-30 nanometers. At lower temperatures the polymer reflects the sum of the block copolymer properties. As the amorphous phase glass transition is exceeded, the virtual crosslinks of the higher temperature second phase dominate the plastic properties, resulting in rubber-like elasticity.

  19. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    NASA Astrophysics Data System (ADS)

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-12-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.

  20. Management of thyroid cytological material, pre-analytical procedures and bio-banking.

    PubMed

    Bode-Lesniewska, Beata; Cochand-Priollet, Beatrix; Straccia, Patrizia; Fadda, Guido; Bongiovanni, Massimo

    2018-06-09

    Thyroid nodules are common and increasingly detected due to recent advances in imaging techniques. However, clinically relevant thyroid cancer is rare and the mortality from aggressive thyroid cancer remains constant. FNAC (Fine Needle Aspiration Cytology) is a standard method for diagnosing thyroid malignancy and the discrimination of malignant nodules from goiter. As the examined nodules on thyroid FNAC are often small incidental findings, it is important to maintain a low rate of undetermined diagnoses requiring further clinical work up or surgery. The most important factors determining the accuracy of the cytological diagnosis and suitability for biobanking of thyroid FNACs are the quality of the sample and availability of adequate tissue for auxiliary studies. This article analyses technical aspects (pre-analytics) of performing thyroid FNACs, including image guidance and rapid on slide evaluation (ROSE), sample collection methods (conventional slides, liquid based methods (LBC), cell blocks) and storage (bio-banking). The spectrum of the special studies (immunocytochemistry on direct slides or LBC, immunohistochemistry on cell blocks and molecular methods) required for improving the precision of the cytological diagnosis of the thyroid nodules is discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Biopolymers and supramolecular polymers as biomaterials for biomedical applications

    PubMed Central

    Freeman, Ronit; Boekhoven, Job; Dickerson, Matthew B.; Naik, Rajesh R.

    2015-01-01

    Protein- and peptide-based structural biopolymers are abundant building blocks of biological systems. Either in their natural forms, such as collagen, silk or fibronectin, or as related synthetic materials they can be used in various technologies. An emerging area is that of biomimetic materials inspired by protein-based biopolymers, which are made up of small molecules rather than macromolecules and can therefore be described as supramolecular polymers. These materials are very useful in biomedical applications because of their ability to imitate the extracellular matrix both in architecture and their capacity to signal cells. This article describes important features of the natural extracellular matrix and highlight how these features are being incorporated into biomaterials composed of biopolymers and supramolecular polymers. We particularly focus on the structures, properties, and functions of collagen, fibronectin, silk, and the supramolecular polymers inspired by them as biomaterials for regenerative medicine. PMID:26989295

  2. Spiral-Based Phononic Plates: From Wave Beaming to Topological Insulators

    NASA Astrophysics Data System (ADS)

    Foehr, André; Bilal, Osama R.; Huber, Sebastian D.; Daraio, Chiara

    2018-05-01

    Phononic crystals and metamaterials can sculpt elastic waves, controlling their dispersion using different mechanisms. These mechanisms are mostly Bragg scattering, local resonances, and inertial amplification, derived from ad hoc, often problem-specific geometries of the materials' building blocks. Here, we present a platform that ultilizes a lattice of spiraling unit cells to create phononic materials encompassing Bragg scattering, local resonances, and inertial amplification. We present two examples of phononic materials that can control waves with wavelengths much larger than the lattice's periodicity. (1) A wave beaming plate, which can beam waves at arbitrary angles, independent of the lattice vectors. We show that the beaming trajectory can be continuously tuned, by varying the driving frequency or the spirals' orientation. (2) A topological insulator plate, which derives its properties from a resonance-based Dirac cone below the Bragg limit of the structured lattice of spirals.

  3. Dye-sensitized PS-b-P2VP-templated nickel oxide films for photoelectrochemical applications

    PubMed Central

    Massin, Julien; Bräutigam, Maximilian; Kaeffer, Nicolas; Queyriaux, Nicolas; Field, Martin J.; Schacher, Felix H.; Popp, Jürgen; Chavarot-Kerlidou, Murielle; Dietzek, Benjamin; Artero, Vincent

    2015-01-01

    Moving from homogeneous water-splitting photocatalytic systems to photoelectrochemical devices requires the preparation and evaluation of novel p-type transparent conductive photoelectrode substrates. We report here on the sensitization of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) diblock copolymer-templated NiO films with an organic push–pull dye. The potential of these new templated NiO film preparations for photoelectrochemical applications is compared with NiO material templated by F108 triblock copolymers. We conclude that NiO films are promising materials for the construction of dye-sensitized photocathodes to be inserted into photoelectrochemical (PEC) cells. However, a combined effort at the interface between materials science and molecular chemistry, ideally funded within a Global Artificial Photosynthesis Project, is still needed to improve the overall performance of the photoelectrodes and progress towards economically viable PEC devices. PMID:26052420

  4. Dye-sensitized PS-b-P2VP-templated nickel oxide films for photoelectrochemical applications.

    PubMed

    Massin, Julien; Bräutigam, Maximilian; Kaeffer, Nicolas; Queyriaux, Nicolas; Field, Martin J; Schacher, Felix H; Popp, Jürgen; Chavarot-Kerlidou, Murielle; Dietzek, Benjamin; Artero, Vincent

    2015-06-06

    Moving from homogeneous water-splitting photocatalytic systems to photoelectrochemical devices requires the preparation and evaluation of novel p-type transparent conductive photoelectrode substrates. We report here on the sensitization of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) diblock copolymer-templated NiO films with an organic push-pull dye. The potential of these new templated NiO film preparations for photoelectrochemical applications is compared with NiO material templated by F108 triblock copolymers. We conclude that NiO films are promising materials for the construction of dye-sensitized photocathodes to be inserted into photoelectrochemical (PEC) cells. However, a combined effort at the interface between materials science and molecular chemistry, ideally funded within a Global Artificial Photosynthesis Project, is still needed to improve the overall performance of the photoelectrodes and progress towards economically viable PEC devices.

  5. Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds

    DOE PAGES

    Rios, Orlando; Chen, Jihua; Li, Yuzhan; ...

    2016-06-01

    Functional polymers are intelligent materials that can respond to a variety of external stimuli. However, these materials have not yet found widespread real world applications because of the difficulties in fabrication and the limited number of functional building blocks that can be incorporated into a material. Here, we demonstrate a simple route to incorporate three functional building blocks (azobenzene chromophores, liquid crystals, and dynamic covalent bonds) into an epoxy-based liquid crystalline network (LCN), in which an azobenzene-based epoxy monomer is polymerized with an aliphatic dicarboxylic acid to create exchangeable ester bonds that can be thermally activated. Lastly, all three functionalmore » building blocks exhibited good compatibility, and the resulting materials exhibits various photomechanical, shape memory, and self-healing properties because of the azobenzene molecules, liquid crystals, and dynamic ester bonds, respectively.« less

  6. Cardiac tissue geometry as a determinant of unidirectional conduction block: assessment of microscopic excitation spread by optical mapping in patterned cell cultures and in a computer model.

    PubMed

    Fast, V G; Kléber, A G

    1995-05-01

    Unidirectional conduction block (UCB) and reentry may occur as a consequence of an abrupt tissue expansion and a related change in the electrical load. The aim of this study was to evaluate critical dimensions of the tissue necessary for establishing UCB in heart cell culture. Neonatal rat heart cell cultures with cell strands of variable width emerging into a large cell area were grown using a technique of patterned cell growth. Action potential upstrokes were measured using a voltage sensitive dye (RH-237) and a linear array of 10 photodiodes with a 15 microns resolution. A mathematical model was used to relate action potential wave shapes to underlying ionic currents. UCB (block of a single impulse in anterograde direction - from a strand to a large area - and conduction in the retrograde direction) occurred in narrow cell strands with a width of 15(SD 4) microns (1-2 cells in width, n = 7) and there was no conduction block in strands with a width of 31(8) microns (n = 9, P < 0.001) or larger. The analysis of action potential waveshapes indicated that conduction block was either due to geometrical expansion alone (n = 5) or to additional local depression of conduction (n = 2). In wide strands, action potential upstrokes during anterograde conduction were characterised by multiple rising phases. Mathematical modelling showed that two rising phases were caused by electronic current flow, whereas local ionic current did not coincide with the rising portions of the upstrokes. (1) High resolution optical mapping shows multiphasic action potential upstrokes at the region of abrupt expansion. At the site of the maximum decrement in conduction, these peaks were largely determined by the electrotonus and not by the local ionic current. (2) Unidirectional conduction block occurred in strands with a width of 15(4) microns (1-2 cells).

  7. Cation depletion by the sodium pump in red cells with pathologic cation leaks. Sickle cells and xerocytes.

    PubMed Central

    Joiner, C H; Platt, O S; Lux, S E

    1986-01-01

    The mechanism by which sickle cells and xerocytic red cells become depleted of cations in vivo has not been identified previously. Both types of cells exhibit elevated permeabilities to sodium and potassium, in the case of sickle cells, when deoxygenated. The ouabain-insensitive fluxes of sodium and potassium were equivalent, however, in both cell types under these conditions. When incubated 18 hours in vitro, sickle cells lost cations but only when deoxygenated. This cation depletion was blocked by ouabain, removal of external potassium, or pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonate, which blocks the increase in cation permeability induced by deoxygenation. The loss of cation exhibited by oxygenated xerocytes similarly incubated was also blocked by ouabain. These data support the hypothesis that the elevated "passive" cation fluxes of xerocytes and deoxygenated sickle cells are not directly responsible for cation depletion of these cells; rather, these pathologic leaks interact with the sodium pump to produce a net loss of cellular cation. PMID:2430999

  8. Cation depletion by the sodium pump in red cells with pathologic cation leaks. Sickle cells and xerocytes.

    PubMed

    Joiner, C H; Platt, O S; Lux, S E

    1986-12-01

    The mechanism by which sickle cells and xerocytic red cells become depleted of cations in vivo has not been identified previously. Both types of cells exhibit elevated permeabilities to sodium and potassium, in the case of sickle cells, when deoxygenated. The ouabain-insensitive fluxes of sodium and potassium were equivalent, however, in both cell types under these conditions. When incubated 18 hours in vitro, sickle cells lost cations but only when deoxygenated. This cation depletion was blocked by ouabain, removal of external potassium, or pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonate, which blocks the increase in cation permeability induced by deoxygenation. The loss of cation exhibited by oxygenated xerocytes similarly incubated was also blocked by ouabain. These data support the hypothesis that the elevated "passive" cation fluxes of xerocytes and deoxygenated sickle cells are not directly responsible for cation depletion of these cells; rather, these pathologic leaks interact with the sodium pump to produce a net loss of cellular cation.

  9. Stain susceptibility of composite and ceramic CAD/CAM blocks versus direct resin composites with different resinous matrices.

    PubMed

    Alharbi, Amal; Ardu, Stefano; Bortolotto, Tissiana; Krejci, Ivo

    2017-04-01

    To evaluate the stain susceptibility of CAD/CAM blocks and direct composite after long term exposure to various staining agents. 40 disk-shaped samples were fabricated from each of nine materials; six CAD/CAM (Vitablocs Mark II, Paradigm MZ100, Experimental Vita Hybrid Ceramic, Vita Enamic, Experimental Kerr and Lava Ultimate) and three direct composites (Filtek Supreme, Venus Diamond and Filtek Silorane). Samples were randomly divided into five groups (n = 8) according to different staining solutions (distilled water, tea, red wine, coffee and artificial saliva). Initial L*a*b* values were assessed using a calibrated digital spectrophotometer. Specimens were immersed in staining solutions and stored in an incubator at 37 °C for 120 days. L*a*b* values were assessed again and color change (∆E) was calculated as difference between recorded L*a*b* values. ANOVA, and Duncan test were used to identify differences between groups (α = 0.05). Significant differences in ∆E values were detected between materials (p = 0.000). Among all staining solutions, the highest ∆E value was observed with red wine. The new CAD/CAM blocks (Vita Enamic, Vita Hybrid Ceramic and Lava Ultimate) showed the highest resistance to staining compared to the MZ100 composite resin blocks. Filtek Silorane, a direct composite, showed high stain resistance values compared to CAD/CAM materials and other direct composites. Ceramic and composite CAD/CAM blocks had lower staining susceptibility than methacrylate based direct composite. Staining susceptibility of the new resin based CAD/CAM materials Vita Enamic and Lava Ultimate was comparable to feldspathic ceramic blocks (Vitablocs Mark II). Filtek Silorane showed promising results that were comparable to some CAD/CAM blocks.

  10. Fluvial entrainment of low density peat blocks (block carbon)

    NASA Astrophysics Data System (ADS)

    Warburton, Jeff

    2014-05-01

    In many fluvial environments low density materials are transported in significant quantities and these form an important part of the stream load and /or have a distinct impact on sedimentation in these environments. However, there are significant gaps in understanding of how these materials are entrained and transported by streams and rivers. Eroding upland peatland environments in particular, frequently have fluvial systems in which large eroded peat blocks, often exceeding 1 m in length; form an important component of the stream material flux. Transport of this material is significant in determining rates of erosion but also has important impacts in terms of damage to infrastructure and carbon loss. This paper describes a field experiment designed to establish for the first time the conditions under which large peat blocks (c. > 0.1 m b axis) are initially entrained from a rough gravel bed. The field site is Trout Beck, in the North Pennines, Northern England which is an upland wandering river channel with occasional lateral and mid channel bars. Mean low flow stage is typically 0.2 m but during flood can rapidly rise, in one to two hours, to over 1.5 m. To study peat block entrainment a bespoke data acquisition system consisting of two pressure transducers, four release triggers and time lapse camera was set up. The pressure transducers provided a record of local depth and the release triggers were embedded in peat blocks to record initial motion and arranged on the rough stream bed. The time lapse camera provided verification of timing of block entrainment (during daylight hours) and also provided information on the mechanism of initial movement. Peat blocks were cut from a local source and were equidimensional, ranging in size from 0.1 to 0.7 m. The derived entrainment function is related to a critical depth of entrainment. Results demonstrate that peat blocks are entrained when the local depth approximates the height of the peat block. Blocks frequently shift position prior to entrainment but once entrained are rapidly transported downstream. Because of the rough stream bed local depth, measured on the four sides of the block varies markedly and needs to be considered in developing an appropriate entrainment function and; is useful in explaining initial movement prior to entrainment. In some experiments a small accelerometer (HOBO Pendant G data logger) was used to investigate transport dynamics following entrainment. Further work will seek to improve the entrainment function by extending the size range of tests, developing a shear stress related function and investigating the importance of block shape (rounding) on entrainment.

  11. Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Whittenberger, J. Daniel

    2002-01-01

    The first mechanical tests of superalloy lattice block structures produced promising results for this exciting new lightweight material system. The testing was performed in-house at NASA Glenn Research Center's Structural Benchmark Test Facility, where small subelement-sized compression and beam specimens were loaded to observe elastic and plastic behavior, component strength levels, and fatigue resistance for hundreds of thousands of load cycles. Current lattice block construction produces a flat panel composed of thin ligaments arranged in a three-dimensional triangulated trusslike structure. Investment casting of lattice block panels has been developed and greatly expands opportunities for using this unique architecture in today's high-performance structures. In addition, advances made in NASA's Ultra-Efficient Engine Technology Program have extended the lattice block concept to superalloy materials. After a series of casting iterations, the nickel-based superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV) was successfully cast into lattice block panels; this combination offers light weight combined with high strength, high stiffness, and elevated-temperature durability. For tests to evaluate casting quality and configuration merit, small structural compression and bend test specimens were machined from the 5- by 12- by 0.5-in. panels. Linear elastic finite element analyses were completed for several specimen layouts to predict material stresses and deflections under proposed test conditions. The structural specimens were then subjected to room-temperature static and cyclic loads in Glenn's Life Prediction Branch's material test machine. Surprisingly, the test results exceeded analytical predictions: plastic strains greater than 5 percent were obtained, and fatigue lives did not depreciate relative to the base material. These assets were due to the formation of plastic hinges and the redundancies inherent in lattice block construction, which were not considered in the simplified computer models. The fatigue testing proved the value of redundancies since specimen strength was maintained even after the fracture of one or two ligaments. This ongoing test program is planned to continue through high-temperature testing. Also scheduled for testing are IN 718 lattice block panels with integral face sheets, as well as specimens cast from a higher temperature alloy. The initial testing suggests the value of this technology for large panels under low and moderate pressure loadings and for high-risk, damage-tolerant structures. Potential aeropropulsion uses for lattice blocks include turbine-engine actuated panels, exhaust nozzle flaps, and side panel structures.

  12. Self-doped microphase separated block copolymer electrolyte

    DOEpatents

    Mayes, Anne M.; Sadoway, Donald R.; Banerjee, Pallab; Soo, Philip; Huang, Biying

    2002-01-01

    A polymer electrolyte includes a self-doped microphase separated block copolymer including at least one ionically conductive block and at least one second block that is immiscible in the ionically conductive block, an anion immobilized on the polymer electrolyte and a cationic species. The ionically conductive block provides a continuous ionically conductive pathway through the electrolyte. The electrolyte may be used as an electrolyte in an electrochemical cell.

  13. Decellularized Cartilage May Be a Chondroinductive Material for Osteochondral Tissue Engineering

    PubMed Central

    Sutherland, Amanda J.; Beck, Emily C.; Dennis, S. Connor; Converse, Gabriel L.; Hopkins, Richard A.; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Extracellular matrix (ECM)-based materials are attractive for regenerative medicine in their ability to potentially aid in stem cell recruitment, infiltration, and differentiation without added biological factors. In musculoskeletal tissue engineering, demineralized bone matrix is widely used, but recently cartilage matrix has been attracting attention as a potentially chondroinductive material. The aim of this study was thus to establish a chemical decellularization method for use with articular cartilage to quantify removal of cells and analyze the cartilage biochemical content at various stages during the decellularization process, which included a physically devitalization step. To study the cellular response to the cartilage matrix, rat bone marrow-derived mesenchymal stem cells (rBMSCs) were cultured in cell pellets containing cells only (control), chondrogenic differentiation medium (TGF-β), chemically decellularized cartilage particles (DCC), or physically devitalized cartilage particles (DVC). The chemical decellularization process removed the vast majority of DNA and about half of the glycosaminoglycans (GAG) within the matrix, but had no significant effect on the amount of hydroxyproline. Most notably, the DCC group significantly outperformed TGF-β in chondroinduction of rBMSCs, with collagen II gene expression an order of magnitude or more higher. While DVC did not exhibit a chondrogenic response to the extent that DCC did, DVC had a greater down regulation of collagen I, collagen X and Runx2. A new protocol has been introduced for cartilage devitalization and decellularization in the current study, with evidence of chondroinductivity. Such bioactivity along with providing the ‘raw material’ building blocks of regenerating cartilage may suggest a promising role for DCC in biomaterials that rely on recruiting endogenous cell recruitment and differentiation for cartilage regeneration. PMID:25965981

  14. Tunable PhoXonic Band Gap Materials from Self-Assembly of Block Copoliymers and Colloidal Nanocrystals (NBIT Phase II)

    DTIC Science & Technology

    2011-05-06

    electric fields. For that, we are going to use PS - b - P2VP block copolymers as a model system, utilizing the quite versatile chemistry of the P2VP ...displays. Our efforts at Hanyang have focused on tunable PBG materials self-assembled from polystyrene- b -poly(2-vinyl pyridine) ( PS - b - P2VP ) block...small angle x-ray scattering measurements during swelling of low molecular weight PS - P2VP polymers at the Cornell High Energy Synchrotron Source

  15. Monolithic LTCC seal frame and lid

    DOEpatents

    Krueger, Daniel S.; Peterson, Kenneth A.; Stockdale, Dave; Duncan, James Brent; Riggs, Bristen

    2016-06-21

    A method for forming a monolithic seal frame and lid for use with a substrate and electronic circuitry comprises the steps of forming a mandrel from a ceramic and glass based material, forming a seal frame and lid block from a ceramic and glass based material, creating a seal frame and lid by forming a compartment and a plurality of sidewalls in the seal frame and lid block, placing the seal frame and lid on the mandrel such that the mandrel fits within the compartment, and cofiring the seal frame and lid block.

  16. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F. J.; Noufi, R.

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. Themore » best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of BZO layers on CIGS cell pieces was observed that was not seen on BZO/glass, and a CdS/CIGS sample displayed a small darkening and then flaking feature. Additionally, standard AlNi grid contact was less stable than thin Ni grid contact at T/RH ≥ 70/70. The edge sealant and moisture-blocking films were effective to block moisture ingress, as evidenced by the good stability of most CIGS solar cells and device components at T/RH = 85/70 for 704 h, and by preservation of the initial blue color on the RH indicator strips. The SSADT experiment is ongoing to be completed at T/RH = 85/85.« less

  17. Reduction of radiation-induced cell cycle blocks by caffeine does not necessarily lead to increased cell killing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musk, S.R.

    1991-03-01

    The effect of caffeine upon the radiosensitivities of three human tumor lines was examined and correlated with its action upon the radiation-induced S-phase and G2-phase blocks. Caffeine was found to reduce at least partially the S-phase and G2-phase blocks in all the cell lines examined but potentiated cytotoxicity in only one of the three tumor lines. That reductions have been demonstrated to occur in the absence of increased cell killing provides supporting evidence for the hypothesis that reductions may not be causal in those cases when potentiation of radiation-induced cytotoxicity is observed in the presence of caffeine.

  18. The Effect of Coloring and Compacting Pressure Paving Block by Adding 5 Wt.% Fly Ash in The Compressive Strength

    NASA Astrophysics Data System (ADS)

    Nurzal; Nursyuhada, Aries

    2017-12-01

    This research aims based on SNI 03-0691-1996 to investigate the effect of coloring and compacting pressure with the addition of 5 wt.% fly ash (Fa) on compressive strength. Fa derived from waste material coal-fired Sijantang Sawahlunto thermal power plant. The growing production of Fa caused negative environmental impact. So, one of the solutions to overcome that effects is to use the Fa as a raw material for paving block mixture that can reduce the cost of raw material and increase its strength. Paving blocks are gray and red with 0 wt.%, 5 wt.% Fa + Pb composition. Compaction pressure variations 55, 65, 75, 85 and 95 Kg/cm2. The drying time for 35 days. Specimens were produced in the form of rectangular bar (length, L = 20 cm, width, B = 10 cm, thickness, W = 6 cm). The test results showed that the addition of 5 wt% FA has a compressive strength value higher than 0 wt%. The red color has a compressive strength lower than the gray color paving block caused the red color (Iron Oxide) is less binding at the time of mixing the material. Gray and red Paving blocks both increase in each additional compaction pressure, because the higher the compaction pressure will increase the bond between the particles so porosity is reduced increased compressive strength. The overall data, the gray paving block with the composition of 5 wt% FA at compaction pressure 95 kg/cm2 with the optimal compressive strength value of 36.1 MPa and the lowest value is found in the red color paving block at 0 wt% FA at a pressure of 55 kg/cm2 with a value of 6.5 MPa. Gray and red Color paving blocks has a compressive strength quality based on SNI 03-0691-1996.

  19. MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Donglin, E-mail: caodlgz@sina.com; Hu, Liangshan; Lei, Da

    Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partiallymore » blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation.« less

  20. Integrin-directed modulation of macrophage responses to biomaterials.

    PubMed

    Zaveri, Toral D; Lewis, Jamal S; Dolgova, Natalia V; Clare-Salzler, Michael J; Keselowsky, Benjamin G

    2014-04-01

    Macrophages are the primary mediator of chronic inflammatory responses to implanted biomaterials, in cases when the material is either in particulate or bulk form. Chronic inflammation limits the performance and functional life of numerous implanted medical devices, and modulating macrophage interactions with biomaterials to mitigate this response would be beneficial. The integrin family of cell surface receptors mediates cell adhesion through binding to adhesive proteins nonspecifically adsorbed onto biomaterial surfaces. In this work, the roles of integrin Mac-1 (αMβ2) and RGD-binding integrins were investigated using model systems for both particulate and bulk biomaterials. Specifically, the macrophage functions of phagocytosis and inflammatory cytokine secretion in response to a model particulate material, polystyrene microparticles were investigated. Opsonizing proteins modulated microparticle uptake, and integrin Mac-1 and RGD-binding integrins were found to control microparticle uptake in an opsonin-dependent manner. The presence of adsorbed endotoxin did not affect microparticle uptake levels, but was required for the production of inflammatory cytokines in response to microparticles. Furthermore, it was demonstrated that integrin Mac-1 and RGD-binding integrins influence the in vivo foreign body response to a bulk biomaterial, subcutaneously implanted polyethylene terephthalate. A thinner foreign body capsule was formed when integrin Mac-1 was absent (~30% thinner) or when RGD-binding integrins were blocked by controlled release of a blocking peptide (~45% thinner). These findings indicate integrin Mac-1 and RGD-binding integrins are involved and may serve as therapeutic targets to mitigate macrophage inflammatory responses to both particulate and bulk biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Integrity of the Pericentriolar Material Is Essential for Maintaining Centriole Association during M Phase

    PubMed Central

    Rhee, Kunsoo

    2015-01-01

    A procentriole is assembled next to the mother centriole during S phase and remains associated until M phase. After functioning as a spindle pole during mitosis, the mother centriole and procentriole are separated at the end of mitosis. A close association of the centriole pair is regarded as an intrinsic block to the centriole reduplication. Therefore, deregulation of this process may cause a problem in the centriole number control, resulting in increased genomic instability. Despite its importance for faithful centriole duplication, the mechanism of centriole separation is not fully understood yet. Here, we report that centriole pairs are prematurely separated in cells whose cell cycle is arrested at M phase by STLC. Dispersal of the pericentriolar material (PCM) was accompanied. This phenomenon was independent of the separase activity but needed the PLK1 activity. Nocodazole effectively inhibited centriole scattering in STLC-treated cells, possibly by reducing the microtubule pulling force around centrosomes. Inhibition of PLK1 also reduced the premature separation of centrioles and the PCM dispersal as well. These results revealed the importance of PCM integrity in centriole association. Therefore, we propose that PCM disassembly is one of the driving forces for centriole separation during mitotic exit. PMID:26407333

  2. The Building Blocks of Digital Media Literacy: Socio-Material Participation and the Production of Media Knowledge

    ERIC Educational Resources Information Center

    Dezuanni, Michael

    2015-01-01

    This article outlines the knowledge and skills students develop when they engage in digital media production and analysis in school settings. The metaphor of "digital building blocks" is used to describe the material practices, conceptual understandings and production of knowledge that lead to the development of digital media literacy.…

  3. Plumbing Specialist II & III, 3-22. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of a course description, course chart, plan of instruction, lesson plans, study guides, and workbooks for use in training plumbing specialists II and III. Covered in the course blocks are building waste systems and exterior and interior supply systems. Course block II, on building waste…

  4. Plumbing Specialist IV & V, 3-23. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of a course description, course chart, plan of instruction, lesson plans, study guides, and workbooks for use in training plumbing specialists IV and V. Covered in the course blocks are fixtures and appurtenances and utility equipment. Block IV on fixtures and appurtenances deals with…

  5. Electronic Principles I, 7-5. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This first of 10 blocks of student and teacher materials for a secondary/postsecondary level course in electronic principles comprises one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. This block on DC circuits contains nine modules covering…

  6. Block Play: It's Not Just for Boys Anymore--Strategies for Encouraging Girls' Block Play

    ERIC Educational Resources Information Center

    Tokarz, Barb

    2008-01-01

    While block play is essential for both boys' and girls' social, cognitive, language, and motor development, girls do not engage in block play as frequently as boys. This situation can be attributed to the socialization process--children learn societal expectations for behavior and materials for both boys and girls--lack of experience for girls…

  7. Systems Biology of Industrial Microorganisms

    NASA Astrophysics Data System (ADS)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  8. Systems biology of industrial microorganisms.

    PubMed

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    2010-01-01

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  9. PSC-RANTES Blocks R5 Human Immunodeficiency Virus Infection of Langerhans Cells Isolated from Individuals with a Variety of CCR5 Diplotypes

    PubMed Central

    Kawamura, Tatsuyoshi; Bruce, Shannon E.; Abraha, Awet; Sugaya, Makoto; Hartley, Oliver; Offord, Robin E.; Arts, Eric J.; Zimmerman, Peter A.; Blauvelt, Andrew

    2004-01-01

    Topical microbicides that effectively block interactions between CCR5+ immature Langerhans cells (LC) residing within genital epithelia and R5 human immunodeficiency virus (HIV) may decrease sexual transmission of HIV. Here, we investigated the ability of synthetic RANTES analogues (AOP-, NNY-, and PSC-RANTES) to block R5 HIV infection of human immature LC by using a skin explant model. In initial experiments using activated peripheral blood mononuclear cells, each analogue compound demonstrated marked antiviral activity against two R5 HIV isolates. Next, we found that 20-min preincubation of skin explants with each RANTES analogue blocked R5 HIV infection of LC in a dose-dependent manner (1 to 100 nM) and that PSC-RANTES was the most potent of these compounds. Similarly, preincubation of LC with each analogue was able to block LC-mediated infection of cocultured CD4+ T cells. Competition experiments between primary R5 and X4 HIV isolates showed blocking of R5 HIV by PSC-RANTES and no evidence of increased propagation of X4 HIV, data that are consistent with the specificity of PSC-RANTES for CCR5 and the CCR5+ CXCR4− phenotype of immature LC. Finally, when CCR5 genetic polymorphism data were integrated with results from the in vitro LC infection studies, PSC-RANTES was found to be equally effective in inhibiting R5 HIV in LC isolated from individuals with CCR5 diplotypes known to be associated with low, intermediate, and high cell surface levels of CCR5. In summary, PSC-RANTES is a potent inhibitor of R5 HIV infection in immature LC, suggesting that it may be useful as a topical microbicide to block sexual transmission of HIV. PMID:15220435

  10. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells

    PubMed Central

    Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian

    2016-01-01

    In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm2, an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm2. Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification. PMID:27185635

  11. Development and Evaluation of Elastomeric Materials for Geothermal Applications

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Kalfayan, S. H.; Reilly, W. W.; Yavrouian, A. H.; Mosesman, I. D.; Ingham, J. D.

    1979-01-01

    A material was formulated having about 250-350 psi tensile strength and 30-80 percent elongation at 260 C for at least 24 hours in simulated brine. The relationship between these laboratory test results and sealing performance in actual or simulated test conditions is not entirely clear; however, it is believed that no conventional formation or casing packer design is likely to perform well using these materials. The synthetic effort focused on high temperature block copolymers and development of curable polystyrene. Procedures were worked out for synthesizing these new materials. Initial results with heat-cured unfilled polystyrene 'gum' at 260 C indicate a tensile strength of about 50 psi. Cast films of the first sample of polyphenyl quinoxaline-polystyrene block copolymer, which has 'graft-block' structure consisting of a polystyrene chain with pendant polyphenyl quinoxaline groups, show elastomeric behavior in the required temperature range. Its tensile strength and elongation at 260 C were 220-350 psi and 18-36 percent, respectively. All of these materials also showed satisfactory hydrolytic stability.

  12. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results:more » IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.« less

  13. Unraveling the Driving Forces in the Self-Assembly of Monodisperse Naphthalenediimide-Oligodimethylsiloxane Block Molecules

    PubMed Central

    2017-01-01

    Block molecules belong to a rapidly growing research field in materials chemistry in which discrete macromolecular architectures bridge the gap between block copolymers (BCP) and liquid crystals (LCs). The merging of characteristics from both BCP and LCs is expected to result in exciting breakthroughs, such as the discovery of unexpected morphologies or significant shrinking of domain spacings in materials that possess the high definition of organic molecules and the processability of polymers. Here we report the bulk self-assembly of two families of monodisperse block molecules comprised of naphthalenediimides (NDIs) and oligodimethylsiloxanes (ODMS). These materials are characterized by waxy texture, strong long-range order, and very low mobility, typical properties of conformationally disordered crystals. Our investigation unambiguously reveals that thermodynamic immiscibility and crystallization direct the self-assembly of ODMS-based block molecules. We show that a synergy of high incompatibility between the blocks and crystallization of the NDIs causes nanophase separation, giving access to hexagonally packed columnar (Colh) and lamellar (LAM) morphologies with sub-10 nm periodicities. The domain spacings can be tuned by mixing molecules with different ODMS lengths and the same number of NDIs, introducing an additional layer of control. X-ray scattering experiments reveal macrophase separation whenever this constitutional bias is not observed. Finally, we highlight our “ingredient approach” to obtain perfect order in sub-10 nm structured materials with a simple strategy built on a crystalline “hard” moiety and an incompatible “soft” ODMS partner. Following this simple rule, our recipe can be extended to a number of systems. PMID:28380290

  14. Design and Synthesis of Network-Forming Triblock Copolymers Using Tapered Block Interfaces

    PubMed Central

    Kuan, Wei-Fan; Roy, Raghunath; Rong, Lixia; Hsiao, Benjamin S.; Epps, Thomas H.

    2012-01-01

    We report a strategy for generating novel dual-tapered poly(isoprene-b-isoprene/styrene-b-styrene-b-styrene/methyl methacrylate-b-methyl methacrylate) [P(I-IS-S-SM-M)] triblock copolymers that combines anionic polymerization, atom transfer radical polymerization (ATRP), and Huisgen 1,3-dipolar cycloaddition click chemistry. The tapered interfaces between blocks were synthesized via a semi-batch feed using programmable syringe pumps. This strategy allows us to manipulate the transition region between copolymer blocks in triblock copolymers providing control over the interfacial interactions in our nanoscale phase-separated materials independent of molecular weight and block constituents. Additionally, we show the ability to retain a desirous and complex multiply-continuous network structure (alternating gyroid) in our dual-tapered triblock material. PMID:23066522

  15. PD-1 blocks lytic granule polarization with concomitant impairment of integrin outside-in signaling in the natural killer cell immunological synapse.

    PubMed

    Huang, Yu; Chen, Zhiying; Jang, Joon Hee; Baig, Mirza S; Bertolet, Grant; Schroeder, Casey; Huang, Shengjian; Hu, Qian; Zhao, Yong; Lewis, Dorothy E; Qin, Lidong; Zhu, Michael Xi; Liu, Dongfang

    2018-04-18

    The inhibitory receptor programmed cell death protein 1 (PD-1) is upregulated on a variety of immune cells, including natural killer (NK) cells, during chronic viral infection and tumorigenesis. Blockade of PD-1 or its ligands produces durable clinical responses with tolerable side effects in patients with a broad spectrum of cancers. However, the underlying molecular mechanisms of how PD-1 regulates NK cell function remain poorly characterized. We sought to determine the effect of PD-1 signaling on NK cells. PD-1 was overexpressed in CD16-KHYG-1 (a human NK cell line with both antibody-dependent cellular cytotoxicity through CD16 and natural cytotoxicity through NKG2D) cells and stimulated by exposing the cells to NK-sensitive target cells expressing programmed death ligand 1 (PD-L1). PD-1 engagement by PD-L1 specifically blocked NK cell-mediated cytotoxicity without interfering with the conjugation between NK cells and target cells. Further examination showed that PD-1 signaling blocked lytic granule polarization in NK cells, which was accompanied by failure of integrin-linked kinase, a key molecule in the integrin outside-in signaling pathway, to accumulate in the immunological synapse after NK-target cell conjugation. Our results suggest that NK cell cytotoxicity is inhibited by PD-1 engagement, which blocks lytic granule polarization to the NK cell immunological synapse with concomitant impairment of integrin outside-in signaling. This study provides novel mechanistic insights into how PD-1 inhibition disrupts NK cell function. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... configuration. (a) Concrete blocks. Installation instructions for concrete block piers must be developed in...-bearing (not decorative) concrete blocks must have nominal dimensions of at least 8 inches × 8 inches × 16 inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3) When...

  17. 2-Aminoanthracene, 5-fluorouracil, colchicine, benzo[a]pyrene, cadmium chloride and cytosine arabinoside tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster ovary (CHO) cells at Covance Laboratories, Harrogate UK in support of OECD draft Test Guideline 487.

    PubMed

    Whitwell, James; Fowler, Paul; Allars, Sarah; Jenner, Karen; Lloyd, Melvyn; Wood, Debbie; Smith, Katie; Young, Jamie; Jeffrey, Laura; Kirkland, David

    2010-10-29

    The reference genotoxic agents 2-aminoanthracene (a metabolism dependent weak clastogen), 5-fluorouracil (a nucleoside analogue, characterised by a steep dose response profile), colchicine (an aneugen that inhibits tubulin polymerisation), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation), cadmium chloride (an inorganic carcinogen), and cytosine arabinoside (a nucleoside analogue that inhibits the gap-filling step of excision repair) were tested in the in vitro micronucleus assay using the Chinese hamster ovary (CHO) cell line at Covance Laboratories, Harrogate, UK. All chemicals were treated in the absence and presence of cytokinesis block (via addition of cytochalasin B) with this work forming part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 on the In vitro Mammalian Cell Micronucleus Test (MNvit). The toxicity measures used, detecting a possible combination of both cytostasis and cell death (though not cell death directly), were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index in the presence of cytokinesis block. All of the chemicals tested either gave marked positive increases in the percentage of micronucleated cells with and without cytokinesis block, or did not induce micronuclei at concentrations giving approximately 50-60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcome from this series of tests supports the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. APPARATUS FOR PRODUCING IONS OF VAPORIZABLE MATERIALS

    DOEpatents

    Starr, C.

    1957-11-19

    This patent relates to electronic discharge devices used as ion sources, and in particular describes an ion source for application in a calutron. The source utilizes two cathodes disposed at opposite ends of a longitudinal opening in an arc block fed with vaporized material. A magnetic field is provided parallel to the length of the arc block opening. The electrons from the cathodes are directed through slits in collimating electrodes into the arc block parallel to the magnetic field and cause an arc discharge to occur between the cathodes, as the arc block and collimating electrodes are at a positive potential with respect to the cathode. The ions are withdrawn by suitable electrodes disposed opposite the arc block opening. When such an ion source is used in a calutron, an arc discharge of increased length may be utilized, thereby increasing the efficiency and economy of operation.

  19. Responsive linear-dendritic block copolymers.

    PubMed

    Blasco, Eva; Piñol, Milagros; Oriol, Luis

    2014-06-01

    The combination of dendritic and linear polymeric structures in the same macromolecule opens up new possibilities for the design of block copolymers and for applications of functional polymers that have self-assembly properties. There are three main strategies for the synthesis of linear-dendritic block copolymers (LDBCs) and, in particular, the emergence of click chemistry has made the coupling of preformed blocks one of the most efficient ways of obtaining libraries of LDBCs. In these materials, the periphery of the dendron can be precisely functionalised to obtain functional LDBCs with self-assembly properties of interest in different technological areas. The incorporation of stimuli-responsive moieties gives rise to smart materials that are generally processed as self-assemblies of amphiphilic LDBCs with a morphology that can be controlled by an external stimulus. Particular emphasis is placed on light-responsive LDBCs. Furthermore, a brief review of the biomedical or materials science applications of LDBCs is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fibroblast Growth Factor-based Signaling through Synthetic Heparan Sulfate Blocks Copolymers Studied Using High Cell Density Three-dimensional Cell Printing*

    PubMed Central

    Sterner, Eric; Masuko, Sayaka; Li, Guoyun; Li, Lingyun; Green, Dixy E.; Otto, Nigel J.; Xu, Yongmei; DeAngelis, Paul L.; Liu, Jian; Dordick, Jonathan S.; Linhardt, Robert J.

    2014-01-01

    Four well-defined heparan sulfate (HS) block copolymers containing S-domains (high sulfo group content) placed adjacent to N-domains (low sulfo group content) were chemoenzymatically synthesized and characterized. The domain lengths in these HS block co-polymers were ∼40 saccharide units. Microtiter 96-well and three-dimensional cell-based microarray assays utilizing murine immortalized bone marrow (BaF3) cells were developed to evaluate the activity of these HS block co-polymers. Each recombinant BaF3 cell line expresses only a single type of fibroblast growth factor receptor (FGFR) but produces neither HS nor fibroblast growth factors (FGFs). In the presence of different FGFs, BaF3 cell proliferation showed clear differences for the four HS block co-polymers examined. These data were used to examine the two proposed signaling models, the symmetric FGF2-HS2-FGFR2 ternary complex model and the asymmetric FGF2-HS1-FGFR2 ternary complex model. In the symmetric FGF2-HS2-FGFR2 model, two acidic HS chains bind in a basic canyon located on the top face of the FGF2-FGFR2 protein complex. In this model the S-domains at the non-reducing ends of the two HS proteoglycan chains are proposed to interact with the FGF2-FGFR2 protein complex. In contrast, in the asymmetric FGF2-HS1-FGFR2 model, a single HS chain interacts with the FGF2-FGFR2 protein complex through a single S-domain that can be located at any position within an HS chain. Our data comparing a series of synthetically prepared HS block copolymers support a preference for the symmetric FGF2-HS2-FGFR2 ternary complex model. PMID:24563485

  1. Interlocking wettable ceramic tiles

    DOEpatents

    Tabereaux, Jr., Alton T.; Fredrickson, Guy L.; Groat, Eric; Mroz, Thomas; Ulicny, Alan; Walker, Mark F.

    2005-03-08

    An electrolytic cell for the reduction of aluminum having a layer of interlocking cathode tiles positioned on a cathode block. Each tile includes a main body and a vertical restraining member to prevent movement of the tiles away from the cathode block during operation of the cell. The anode of the electrolytic cell may be positioned about 1 inch from the interlocking cathode tiles.

  2. Single cell HaloChip assay on paper for point-of-care diagnosis.

    PubMed

    Ma, Liyuan; Qiao, Yong; Jones, Ross; Singh, Narendra; Su, Ming

    2016-11-01

    This article describes a paper-based low cost single cell HaloChip assay that can be used to assess drug- and radiation-induced DNA damage at point-of-care. Printing ink on paper effectively blocks fluorescence of paper materials, provides high affinity to charged polyelectrolytes, and prevents penetration of water in paper. After exposure to drug or ionizing radiation, cells are patterned on paper to create discrete and ordered single cell arrays, embedded inside an agarose gel, lysed with alkaline solution to allow damaged DNA fragments to diffuse out of nucleus cores, and form diffusing halos in the gel matrix. After staining DNA with a fluorescent dye, characteristic halos formed around cells, and the level of DNA damage can be quantified by determining sizes of halos and nucleus with an image processing program based on MATLAB. With its low fabrication cost and easy operation, this HaloChip on paper platform will be attractive to rapidly and accurately determine DNA damage for point-of-care evaluation of drug efficacy and radiation condition. Graphical Abstract Single cell HaloChip on paper.

  3. Amplifying (Im)perfection: The Impact of Crystallinity in Discrete and Disperse Block Co-oligomers

    PubMed Central

    2017-01-01

    Crystallinity is seldomly utilized as part of the microphase segregation process in ultralow-molecular-weight block copolymers. Here, we show the preparation of two types of discrete, semicrystalline block co-oligomers, comprising an amorphous oligodimethylsiloxane block and a crystalline oligo-l-lactic acid or oligomethylene block. The self-assembly of these discrete materials results in lamellar structures with unforeseen uniformity in the domain spacing. A systematic introduction of dispersity reveals the extreme sensitivity of the microphase segregation process toward chain length dispersity in the crystalline block. PMID:28994585

  4. Amplifying (Im)perfection: The Impact of Crystallinity in Discrete and Disperse Block Co-oligomers.

    PubMed

    van Genabeek, Bas; Lamers, Brigitte A G; de Waal, Bas F M; van Son, Martin H C; Palmans, Anja R A; Meijer, E W

    2017-10-25

    Crystallinity is seldomly utilized as part of the microphase segregation process in ultralow-molecular-weight block copolymers. Here, we show the preparation of two types of discrete, semicrystalline block co-oligomers, comprising an amorphous oligodimethylsiloxane block and a crystalline oligo-l-lactic acid or oligomethylene block. The self-assembly of these discrete materials results in lamellar structures with unforeseen uniformity in the domain spacing. A systematic introduction of dispersity reveals the extreme sensitivity of the microphase segregation process toward chain length dispersity in the crystalline block.

  5. Nanoparticle optical notch filters

    NASA Astrophysics Data System (ADS)

    Kasinadhuni, Pradeep Kumar

    Developing novel light blocking products involves the design of a nanoparticle optical notch filter, working on the principle of localized surface plasmon resonance (LSPR). These light blocking products can be used in many applications. One such application is to naturally reduce migraine headaches and light sensitivity. Melanopsin ganglion cells present in the retina of the human eye, connect to the suprachiasmatic nucleus (SCN-the body's clock) in the brain, where they participate in the entrainment of the circadian rhythms. As the Melanopsin ganglion cells are involved in triggering the migraine headaches in photophobic patients, it is necessary to block the part of visible spectrum that activates these cells. It is observed from the action potential spectrum of the ganglion cells that they absorb light ranging from 450-500nm (blue-green part) of the visible spectrum with a λmax (peak sensitivity) of around 480nm (blue line). Currently prescribed for migraine patients is the FL-41 coating, which blocks a broad range of wavelengths, including wavelengths associated with melanopsin absorption. The nanoparticle optical notch filter is designed to block light only at 480nm, hence offering an effective prescription for the treatment of migraine headaches.

  6. An emerging pore-making strategy: confined swelling-induced pore generation in block copolymer materials.

    PubMed

    Wang, Yong; Li, Fengbin

    2011-05-17

    Block copolymers (BCPs) composed of two or more thermodynamically incompatible homopolymers self-assemble into periodic microdomains. Exposing self-assembled BCPs with solvents selective to one block causes a swelling of the domains composed of this block. Strong swelling in the confinement imposed by the matrix of the other glassy block leads to well-defined porous structures via morphology reconstruction. This confined swelling-induced pore-making process has emerged recently as a new strategy to produce porous materials due to synergic advantages that include extreme simplicity, high pore regularity, involvement of no chemical reactions, no weight loss, reversibility of the pore forming process, etc. The mechanism, kinetics, morphology, and governing parameters of the confined swelling-induced pore-making process in BCP thin films are discussed, and the main applications of nanoporous thin films in the fields of template synthesis, surface patterning, and guidance for the areal arrangements of nanomaterials and biomolecules are summarized. Recent, promising results of extending this mechanism to produce BCP nanofibers or nanotubes and bulk materials with well-defined porosity, which makes this strategy also attractive to researchers outside the nanocommunity, are also presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Tough and Sustainable Graft Block Copolymer Thermoplastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiuyang; Li, Tuoqi; Mannion, Alexander M.

    Fully sustainable poly[HPMC-g-(PMVL-b-PLLA)] graft block copolymer thermoplastics were prepared from hydroxypropyl methylcellulose (HPMC), β-methyl-δ-valerolactone (MVL), and l-lactide (LLA) using a facile two-step sequential addition approach. In these materials, rubbery PMVL functions as a bridge between the semirigid HPMC backbone and the hard PLLA end blocks. This specific arrangement facilitates PLLA crystallization, which induces microphase separation and physical cross-linking. By changing the backbone molar mass or side chain composition, these thermoplastic materials can be easily tailored to access either plastic or elastomeric behavior. Moreover, the graft block architecture can be utilized to overcome the processing limitations inherent to linear block polymers.more » Good control over molar mass and composition enables the deliberate design of HPMC-g-(PMVL-b-PLLA) samples that are incapable of microphase separation in the melt state. These materials are characterized by relatively low zero shear viscosities in the melt state, an indication of easy processability. The simple and scalable synthetic procedure, use of inexpensive and renewable precursors, and exceptional rheological and mechanical properties make HPMC-g-(PMVL-b-PLLA) polymers attractive for a broad range of applications.« less

  8. Depolarizing Effects of Daikenchuto on Interstitial Cells of Cajal from Mouse Small Intestine

    PubMed Central

    Kim, Hyungwoo; Kim, Hyun Jung; Yang, Dongki; Jung, Myeong Ho; Kim, Byung Joo

    2017-01-01

    Background: Daikenchuto (DKT; TJ-100, TU-100), a traditional herbal medicineis used in modern medicine to treat gastrointestinal (GI) functional disorders. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and play important roles in the regulation of GI motility. Objective: The objective of this study was to investigate the effects of DKT on the pacemaker potentials (PPs) of cultured ICCs from murine small intestine. Materials and Methods: Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed after 12 h of culture. The whole-cell patch-clamp configuration was used to record ICC PPs (current clamp mode). All experiments were performed at 30-32°C. Results: In current-clamp modeDKT depolarized and concentration-dependently decreased the amplitudes of PPs. Y25130 (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT4 receptor antagonist) did. Methoctramine (a muscarinic M2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-diphenylacetoxy-N-methylpiperidine methiodide (a muscarinic M3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Pretreatment with an external Ca2+-free solution or thapsigargin abolished PPsand under these conditions, DKT did not induce PP depolarization. Furthermore Ginseng radix and Zingiberis rhizomes depolarized PPs, whereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. Conclusion: These results suggest that DKT depolarizes ICC PPs in an internal or external Ca2+-dependent manner by stimulating 5-HT4 and M3 receptors. Furthermore, the authors suspect that the component in DKT largely responsible for depolarization is probably also a component of Ginseng radix and Zingiberis rhizomes. SUMMARY Daikenchuto (DKT) depolarized and concentration-dependently decreased the amplitudes of pacemaker potentials (PPs)Y25130 (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT4 receptor antagonist) didMethoctramine (a muscarinic M2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-DAMP (a muscarinic M3 receptor antagonist) facilitated blockade of DKT-induced PP depolarizationGinseng radix and Zingiberis rhizomes depolarized PPswhereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. Abbreviation used: DKT: Daikenchuto, GI: Gastrointestinal, ICCs: Interstitial cells of Cajal, PPs: Pacemaker Potentials. PMID:28216898

  9. Block Play and Mathematics Learning in Preschool: The Effects of Building Complexity, Peer and Teacher Interactions in the Block Area, and Replica Play Materials

    ERIC Educational Resources Information Center

    Trawick-Smith, Jeffrey; Swaminathan, Sudha; Baton, Brooke; Danieluk, Courtney; Marsh, Samantha; Szarwacki, Monika

    2017-01-01

    Block play has been included in early childhood classrooms for over a century, yet few studies have examined its effects on learning. Several previous investigations indicate that the complexity of block building is associated with math ability, but these studies were often conducted in adult-guided, laboratory settings. In the present…

  10. TPA induces a block of differentiation and increases the susceptibility to neoplastic transformation of a rat thyroid epithelial cell line.

    PubMed

    Portella, G; Vitagliano, D; Li, Z; Sferratore, F; Santoro, M; Vecchio, G; Fusco, A

    1998-01-01

    The PC Cl 3 cell line is a well-characterized epithelial cell line of rat thyroid origin. This cell line retains in vitro the typical markers of thyroid differentiation: thyroglobulin (TG) synthesis and secretion, iodide uptake, thyroperoxidase (TPO) expression, and dependency on TSH for growth. Although the differentiated phenotype of thyroid cells has been relatively well described, the molecular mechanisms that regulate both differentiation and neoplastic transformation of thyroid cells still need to be investigated in detail. Protein kinase C (PKC), the target of tetradecanoylphorbol acetate (TPA), regulates growth and differentiation of several cell types. Here we show that treatment of PC Cl 3 cells with TPA induces an acute block of thyroid differentiation. TPA-treated PC Cl 3 cells are unable to trap iodide and the expression levels of thyroglobulin, TSH receptor, and TPO genes are drastically reduced by TPA treatment. This differentiation block is not caused by a reduced expression of one of the master genes of thyroid differentiation, the thyroid transcription factor 1 (TTF-1). TPA-treated PC Cl 3 cells display an increased growth rate indicating that, in addition to the differentiation block, TPA also significantly affects the growth regulation of thyroid cells. Finally, TPA treatment dramatically increases the number of transformation foci induced in PC Cl 3 cells by retroviruses carrying v-Ki-ras, v-Ha-ras, and v-mos oncogenes. These findings support the notion that the PKC pathway can influence proliferation, differentiation, and neoplastic transformation of thyroid cells in culture.

  11. Relationships between the morphology and thermoresponsive behavior in micro/nanostructured thermosetting matrixes containing a 4'-(hexyloxy)-4-biphenylcarbonitrile liquid crystal.

    PubMed

    Tercjak, Agnieszka; Mondragon, Iñaki

    2008-10-07

    Meso/nanostructured thermoresponsive thermosetting materials based on an epoxy resin modified with two different molecular weight amphiphilic poly(styrene- block-ethylene oxide) block copolymers (PSEO) and a low molecular weight liquid crystal, 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC), were investigated. A strong influence of the addition of PSEO on the morphology generated in HOBC--(diglicydyl ether of bisphenol A epoxy resin/ m-xylylenediamine) was detected, especially in the case of the addition of PSEO block copolymers with a higher PEO-block content and a lower molecular weight. The morphologies generated in the ternary systems also influenced the thermoresponsive behavior of the HOBC separated phase provoked by applying an external field, such as a temperature gradient and an electrical field. Thermal analysis of the investigated materials allowed for a better understanding of the relationships between generated morphology/thermo-optical properties/PSEO:HOBC ratio, and HOBC content. Controlling the relationship between the morphology and thermoresponsive behavior in micro/nanostructured thermosetting materials based on a 4'-(hexyloxy)-4-biphenylcarbonitrile liquid crystal allows the development of materials which can find application in thermo- and in some cases electroresponsive devices, with a high contrast ratio between transparent and opaque states.

  12. Damage sensitivity investigations of EMI technique on different materials through coupled field analysis

    NASA Astrophysics Data System (ADS)

    Joshi, Bhrigu; Adhikari, Sailesh; Bhalla, Suresh

    2016-04-01

    This paper presents a comparative study through the piezoelectric coupled field analysis mode of finite element method (FEM) on detection of damages of varying magnitude, encompassing three different types of structural materials, using piezo impedance transducers. An aluminum block, a concrete block and a steel block of dimensions 48×48×10 mm were modelled in finite element software ANSYS. A PZT patch of 10×10×0.3 mm was also included in the model as surface bonded on the block. Coupled field analysis (CFA) was performed to obtain the admittance signatures of the piezo sensor in the frequency range of 0-250 kHz. The root mean square deviation (RMSD) index was employed to quantify the degree of variation of the signatures. It was found that concrete exhibited deviation in the signatures only with the change of damping values. However, the other two materials showed variation in the signatures even with changes in density and elasticity values in a small portion of the specimen. The comparative study shows that the PZT patches are more sensitive to damage detection in materials with low damping and the sensitivity typically decreases with increase in the damping.

  13. Automotive Electricity: Automotive Mechanics Instructional Program. Block 3.

    ERIC Educational Resources Information Center

    O'Brien, Ralph D.

    The third of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in automotive electricity at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each…

  14. Engine Fundamentals: Automotive Mechanics Instructional Program. Block 2.

    ERIC Educational Resources Information Center

    O'Brien, Ralph D.

    The second of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in engine fundamentals at the secondary and postsecondary level. The material, as organized, is a suggested sequence of instruction within each block. Each lesson…

  15. Vascular Cell Adhesion Molecule-1 Expression and Signaling During Disease: Regulation by Reactive Oxygen Species and Antioxidants

    PubMed Central

    Marchese, Michelle E.; Abdala-Valencia, Hiam

    2011-01-01

    Abstract The endothelium is immunoregulatory in that inhibiting the function of vascular adhesion molecules blocks leukocyte recruitment and thus tissue inflammation. The function of endothelial cells during leukocyte recruitment is regulated by reactive oxygen species (ROS) and antioxidants. In inflammatory sites and lymph nodes, the endothelium is stimulated to express adhesion molecules that mediate leukocyte binding. Upon leukocyte binding, these adhesion molecules activate endothelial cell signal transduction that then alters endothelial cell shape for the opening of passageways through which leukocytes can migrate. If the stimulation of this opening is blocked, inflammation is blocked. In this review, we focus on the endothelial cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1). Expression of VCAM-1 is induced on endothelial cells during inflammatory diseases by several mediators, including ROS. Then, VCAM-1 on the endothelium functions as both a scaffold for leukocyte migration and a trigger of endothelial signaling through NADPH oxidase-generated ROS. These ROS induce signals for the opening of intercellular passageways through which leukocytes migrate. In several inflammatory diseases, inflammation is blocked by inhibition of leukocyte binding to VCAM-1 or by inhibition of VCAM-1 signal transduction. VCAM-1 signal transduction and VCAM-1-dependent inflammation are blocked by antioxidants. Thus, VCAM-1 signaling is a target for intervention by pharmacological agents and by antioxidants during inflammatory diseases. This review discusses ROS and antioxidant functions during activation of VCAM-1 expression and VCAM-1 signaling in inflammatory diseases. Antioxid. Redox Signal. 15, 1607–1638. PMID:21050132

  16. Novel mechanism of antibodies to hepatitis B virus in blocking viral particle release from cells.

    PubMed

    Neumann, Avidan U; Phillips, Sandra; Levine, Idit; Ijaz, Samreen; Dahari, Harel; Eren, Rachel; Dagan, Shlomo; Naoumov, Nikolai V

    2010-09-01

    Antibodies are thought to exert antiviral activities by blocking viral entry into cells and/or accelerating viral clearance from circulation. In particular, antibodies to hepatitis B virus (HBV) surface antigen (HBsAg) confer protection, by binding circulating virus. Here, we used mathematical modeling to gain information about viral dynamics during and after single or multiple infusions of a combination of two human monoclonal anti-HBs (HepeX-B) antibodies in patients with chronic hepatitis B. The antibody HBV-17 recognizes a conformational epitope, whereas antibody HBV-19 recognizes a linear epitope on the HBsAg. The kinetic profiles of the decline of serum HBV DNA and HBsAg revealed partial blocking of virion release from infected cells as a new antiviral mechanism, in addition to acceleration of HBV clearance from the circulation. We then replicated this approach in vitro, using cells secreting HBsAg, and compared the prediction of the mathematical modeling obtained from the in vivo kinetics. In vitro, HepeX-B treatment of HBsAg-producing cells showed cellular uptake of antibodies, resulting in intracellular accumulation of viral particles. Blocking of HBsAg secretion also continued after HepeX-B was removed from the cell culture supernatants. These results identify a novel antiviral mechanism of antibodies to HBsAg (anti-HBs) involving prolonged blocking of the HBV and HBsAg subviral particles release from infected cells. This may have implications in designing new therapies for patients with chronic HBV infection and may also be relevant in other viral infections.

  17. Chemical Modification and Structure-property Relationships of Acrylic and Ionomeric Thermoplastic Elastomer Gels

    NASA Astrophysics Data System (ADS)

    Vargantwar, Pruthesh Hariharrao

    Block copolymers (BCs) have remained at the forefront of materials research due to their versatility in applications ranging from hot-melt/pressure-sensitive adhesives and impact modifiers to compatibilizing agents and vibration-dampening/nanotemplating media. Of particular interest are macromolecules composed of two or more chemically dissimilar blocks covalently linked together to form triblock or pentablock copolymers. If the blocks are sufficiently incompatible and the copolymer behaves as a thermoplastic elastomer, the molecules can spontaneously self-assemble to form nanostructured materials that exhibit shape memory due to the formation of a supramolecular network. The BCs of these types are termed as conventional. When BCs contain blocks having ionic moieties such as sulfonic acid groups, they are termed as block ionomers. Designing new systems based on either conventional or ionic BCs, characterizing their structure-property relationships and later using them as electroacive polymers form the essential objectives of this work. Electroactive polymers (EAPs) exhibit electromechanical actuation when stimulated by an external electric field. In the first part of this work, it is shown that BCs resolve some of the outstanding problems presently encountered in the design of two different classes of EAP actuators: dielectric elastomers (DEs) and ionic polymer metal composites (IPMCs). All-acrylic triblock copolymer gels used as DEs actuate with high efficacy without any requirement of mechanical prestrain and, thus, eliminate the need for bulky and heavy hardware essential with prestrained dielectric actuators, as well as material problems associated with stress relaxation. The dependence of actuation behavior on gel morphology as evaluated from mechanical and microstructure studies is observed. In the case of IPMCs, ionic BCs employed in this study greatly facilitate processing compared to other contenders such as NafionRTM, which is commonly used in this class of EAPs. The unique copolymer investigated here (i) retains its mechanical integrity when highly solvated by polar solvents, (ii) demonstrates a high degree of actuation when tested in a cantilever configuration, and (iii) avoids the shortcomings of back-relaxation/overshoot within the testing conditions when used in combination with an appropriate solvent. In the second part of this work, two chemical strategies to design midblock sulfonated block ionomers are explored. In one case, selective sulfonation of the midblocks in triblock copolymers is achieved via a dioxane:sulfur trioxide chemistry, while in the other acetyl sulfate is used for the same purpose. Excellent control on the degree of sulfonation (DOS) is achieved. The block ionomers swell in different solvents while retaining their mechanical integrity. They show disorder-order, order-order, and order-reduced order morphological transitions as DOS varies. These transitions in morphologies are reflected in their thermal behavior as well. The microstructures show periodicity, which is, again, a function of DOS. The transitions are explained in terms of the molar volume expansion and volume densification of the blocks on sulfonation. The ionic levels, morphology and periodicity in microstructure are important for applications such as actuators, sensors and fuel cell membranes. The ability to tune these aspects in the ionomers designed in this work make them potential candidates for these applications.

  18. Choline Kinase, A Novel Drug Target for the Inhibition of Streptococcus pneumoniae.

    PubMed

    Zimmerman, Tahl; Ibrahim, Salam

    2017-09-25

    Gram-positive pathogens, such as S treptococcus pneumoniae , can have deleterious effects on both human and animal health. Antibiotics and antimicrobials have been developed to treat infections caused by such pathogens and to prevent food contamination. However, these strategies have been increasingly thwarted by the emergence of resistant bacteria strains. Thus, new methods for controlling Gram-positive pathogen growth need to be continuously developed. Choline analogs, such as Hemicholinium-3 (HC-3), have been shown to be useful in blocking cell division in eukaryotic cells through the inhibition of choline kinase, an enzyme which catalyzes the production of phosphocholine from choline and ATP. In some Gram-positive pathogens, choline kinase is an important enzyme in the production of the cell wall element, lipoteichoic acid. However, it is not known if inhibiting this enzyme has any effect on cell division in Gram-positive bacteria. Using the R6 strain as a model, we tested the ability of HC-3 to block the activity of choline kinase in S. pneumoniae and inhibit cell growth. Mass-spectrometry measurements of crude extracts revealed that HC-3 blocked choline kinase activity. Turbidity measurements and population counts showed that HC-3 inhibited cell growth. Competition assays with choline suggested that HC-3 also blocked choline transporters. Western blots showed that lipoteichoic acid production was blocked in the presence of HC-3, and autolytic assays showed that this decrease in lipoteichoic acids caused cells to be more resistant to autolysis. Scanning electron microscopy revealed that HC-3 distorted the cell wall. This study thus establishes choline kinase as a novel drug target for S. pneumoniae .

  19. Blocking of PDL-1 interaction enhances primary and secondary CD8 T cell response to herpes simplex virus-1 infection.

    PubMed

    Channappanavar, Rudragouda; Twardy, Brandon S; Suvas, Susmit

    2012-01-01

    The blocking of programmed death ligand-1 (PDL-1) has been shown to enhance virus-specific CD8 T cell function during chronic viral infections. Though, how PDL-1 blocking at the time of priming affects the quality of CD8 T cell response to acute infections is not well understood and remains controversial. This report demonstrates that the magnitude of the primary and secondary CD8 T cell responses to herpes simplex virus-1 (HSV-1) infection is subject to control by PDL-1. Our results showed that after footpad HSV-1 infection, PD-1 expression increases on immunodominant SSIEFARL peptide specific CD8 T cells. Additionally, post-infection, the level of PDL-1 expression also increases on CD11c+ dendritic cells. Intraperitoneal administration of anti-PDL-1 monoclonal antibody given one day prior to and three days after cutaneous HSV-1 infection, resulted in a marked increase in effector and memory CD8 T cell response to SSIEFARL peptide. This was shown by measuring the quantity and quality of SSIEFARL-specific CD8 T cells by making use of ex-vivo assays that determine antigen specific CD8 T cell function, such as intracellular cytokine assay, degranulation assay to measure cytotoxicity and viral clearance. Our results are discussed in terms of the beneficial effects of blocking PDL-1 interactions, while giving prophylactic vaccines, to generate a more effective CD8 T cell response to viral infection.

  20. Characterization of a small Terfenol-D transducer in mechanically blocked configuration

    NASA Astrophysics Data System (ADS)

    Faidley, LeAnn E.; Dapino, Marcelo J.; Flatau, Alison B.

    2001-08-01

    In numerous applications, smart material transducers are employed to actuate upon virtually immovable structures, that is, structures whose stiffness approaches infinity in comparison with that of the transducer itself. Such mechanically blocked transducer configurations can be found in applications ranging from seismic testing and isolation of civil structures, to clamping mechanisms in linear or rotational inchworm motors. In addition to providing high blocking forces, smart materials for this type of applications must often be small in size and lightweight in order for design constraints to be met. This paper provides a characterization of the force produced by a 0.9 cm (0.35 in) diameter, 2.0 cm (0.79i in) long Terfenol-D operated under mechanically blocked conditions. Experimental results are shown for several mechanical preloads as well as various magnetic field intensities, waveforms, and frequencies. Optimal levels are deduced and discussed and the results are compared to published data for a PZT transducer of similar size operated in mechanically blocked configuration. The comparison reveals that the Terfenol-D rod provides higher blocking forces than its PZT counterpart. It is thus feasible to employ small magnetostrictive drivers in applications involving zero or near-zero displacement, particularly those based on hybrid magnetostrictive/piezoelectric designs in which high efficiencies are achieved by driving the two electrically complementary transducer materials at electrical resonance.

  1. Block Copolymer Adhesion Measured by Contact Mechanics Methods

    NASA Astrophysics Data System (ADS)

    Falsafi, A.; Bates, S.; Tirrell, M.; Pocius, A. V.

    1997-03-01

    Adhesion measurements for a series of polyolefin diblocks and triblocks are presented. These materials have poly(ethylene-propylene) or poly(ethyl-ethylene) rubbery block, and semicrystalline polyethylene block as physical crosslinker. The experiments consist of compression and decompression profiles of contact area between the samples as a function of normal load, analyzed by the JKR Theory. The samples are prepared either by formation of caps from the bulk material in melting and subsequent cooling, and/or coating them in thin films on surface modified elastic foundations of polydimethylsiloxane caps. The latter minimizes the viscoelastic losses which are dominant in the bulk of material. The effect of molecular architecture and microstructure on adhesion energy and dynamics of separation, obtained from decompression experiments, is discussed in view of their influence on molecular arrangements at the contacting surfaces.

  2. Broadband sound blocking in phononic crystals with rotationally symmetric inclusions.

    PubMed

    Lee, Joong Seok; Yoo, Sungmin; Ahn, Young Kwan; Kim, Yoon Young

    2015-09-01

    This paper investigates the feasibility of broadband sound blocking with rotationally symmetric extensible inclusions introduced in phononic crystals. By varying the size of four equally shaped inclusions gradually, the phononic crystal experiences remarkable changes in its band-stop properties, such as shifting/widening of multiple Bragg bandgaps and evolution to resonance gaps. Necessary extensions of the inclusions to block sound effectively can be determined for given incident frequencies by evaluating power transmission characteristics. By arraying finite dissimilar unit cells, the resulting phononic crystal exhibits broadband sound blocking from combinational effects of multiple Bragg scattering and local resonances even with small-numbered cells.

  3. The TEL-AML1 fusion protein of acute lymphoblastic leukemia modulates IRF3 activity during early B-cell differentiation.

    PubMed

    de Laurentiis, A; Hiscott, J; Alcalay, M

    2015-12-03

    The t(12;21) translocation is the most common genetic rearrangement in childhood acute lymphoblastic leukemia (ALL) and gives rise to the TEL-AML1 fusion gene. Many studies on TEL-AML1 describe specific properties of the fusion protein, but a thorough understanding of its function is lacking. We exploited a pluripotent hematopoietic stem/progenitor cell line, EML1, and generated a cell line (EML-TA) stably expressing the TEL-AML1 fusion protein. EML1 cells differentiate to mature B-cells following treatment with IL7; whereas EML-TA display an impaired differentiation capacity and remain blocked at an early stage of maturation. Global gene expression profiling of EML1 cells at different stages of B-lymphoid differentiation, compared with EML-TA, identified the interferon (IFN)α/β pathway as a primary target of repression by TEL-AML1. In particular, expression and phosphorylation of interferon-regulatory factor 3 (IRF3) was decreased in EML-TA cells; strikingly, stable expression of IRF3 restored the capacity of EML-TA cells to differentiate into mature B-cells. Similarly, IRF3 silencing in EML1 cells by siRNA was sufficient to block B-lymphoid differentiation. The ability of TEL-AML1 to block B-cell differentiation and downregulate the IRF3-IFNα/β pathway was confirmed in mouse and human primary hematopoietic precursor cells (Lin- and CD34+ cells, respectively), and in a patient-derived cell line expressing TEL-AML1 (REH). Furthermore, treatment of TEL-AML1 expressing cells with IFNα/β was sufficient to overcome the maturation block. Our data provide new insight on TEL-AML1 function and may offer a new therapeutic opportunity for B-ALL.

  4. Phosphorylation status modulates Bcl-2 function during glucocorticoid-induced apoptosis in T lymphocytes.

    PubMed

    Huang, Se-Te J; Cidlowski, John A

    2002-06-01

    Glucocorticoids are known to induce apoptosis in lymphoid cells, and Bcl-2 overexpression can block the apoptosis-inducing action of glucocorticoids. Since phosphorylation of Bcl-2 is implicated in regulating Bcl-2 function, we considered the role of Bcl-2 phosphorylation in protecting lymphoid cells from glucocorticoid-induced cell death. Five stably transfected cell lines of WEHI 7.1 cells expressing either wild-type Bcl-2 or alanine mutants of Bcl-2 at amino acids threonine 56, serine 70, threonine 74, or serine 87 were created. Expression of the mutant Bcl-2 proteins was documented by flow cytometry and Western blot analysis. Mutation of Bcl-2 on T56 and S87 eliminated the ability of Bcl-2 to inhibit glucocorticoid-induced cell shrinkage, mitochondrial depolarization, DNA fragmentation, and cell death. Mutation of T74 only partially impaired the ability of Bcl-2 to block glucocorticoid-induced apoptosis whereas mutation of S70 in Bcl-2 did not alter its ability to block glucocorticoid-induced apoptosis.

  5. Rapid relief of block by mecamylamine of neuronal nicotinic acetylcholine receptors of rat chromaffin cells in vitro: an electrophysiological and modeling study.

    PubMed

    Giniatullin, R A; Sokolova, E M; Di Angelantonio, S; Skorinkin, A; Talantova, M V; Nistri, A

    2000-10-01

    The mechanism responsible for the blocking action of mecamylamine on neuronal nicotinic acetylcholine receptors (nAChRs) was studied on rat isolated chromaffin cells recorded under whole-cell patch clamp. Mecamylamine strongly depressed (IC(50) = 0.34 microM) inward currents elicited by short pulses of nicotine, an effect slowly reversible on wash. The mecamylamine block was voltage-dependent and promptly relieved by a protocol combining membrane depolarization with a nicotine pulse. Either depolarization or nicotine pulses were insufficient per se to elicit block relief. Block relief was transient; response depression returned in a use-dependent manner. Exposure to mecamylamine failed to block nAChRs if they were not activated by nicotine or if they were activated at positive membrane potentials. These data suggest that mecamylamine could not interact with receptors either at rest or at depolarized level. Other nicotinic antagonists like dihydro-beta-erythroidine or tubocurarine did not share this action of mecamylamine although proadifen partly mimicked it. Mecamylamine is suggested to penetrate and block open nAChRs that would subsequently close and trap this antagonist. Computer modeling indicated that the mechanism of mecamylamine blocking action could be described by assuming that 1) mecamylamine-blocked receptors possessed a much slower, voltage-dependent isomerization rate, 2) the rate constant for mecamylamine unbinding was large and poorly voltage dependent. Hence, channel reopening plus depolarization allowed mecamylamine escape and block relief. In the presence of mecamylamine, therefore, nAChRs acquire the new property of operating as coincidence detectors for concomitant changes in membrane potential and receptor occupancy.

  6. Monolithic Solid Oxide Fuel Cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The Monolithic Solid Oxide Fuel Cell (MSOFC) is an oxide-ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/L, at fuel efficienceis over 50 percent, because of small cell size and low resistive losses in the materials. The MSOFC operates in the range of 700 to 1000 C, at which temperatures rapid reform of hydrocarbon fuels is expected within the nickel-YSZ fuel channels. Tape casting and hot roll calendering are used to fabricate the MSOFC structure. The performance of the MSOFC has improved significantly during the course of development. The limitation of this system, based on materials resistance alone without interfacial resistances, is 0.093 ohm-sq cm area-specific resistance (ASR). The current typical performance of MSOFC single cells is characterized by ASRs of about 0.4 to 0.5 ohm-sq cm. With further development the ASR is expected to be reduced below 0.2 ohm-sq cm, which will result in power levels greater than 1.4 W/sq cm. The feasibility of the MSOFC concept was proven, and the performance was dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials were minimized. As a result of good matching of these properties, the MSOFC structure was successfully fabricated with few defects, and the system shows excellent promise for development into a practical power source.

  7. Materiomics: biological protein materials, from nano to macro.

    PubMed

    Cranford, Steven; Buehler, Markus J

    2010-11-12

    Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics - discovering Nature's complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents) such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and replicate Nature's materials have been hindered by our lack of fundamental understanding of these materials' intricate hierarchical structures, scale-bridging mechanisms, and complex material components that bestow protein-based materials their unique properties. Recent advances in analytical tools and experimental methods allow a holistic view of such a hierarchical biological material system. The integration of these approaches and amalgamation of material properties at all scale levels to develop a complete description of a material system falls within the emerging field of materiomics. Materiomics is the result of the convergence of engineering and materials science with experimental and computational biology in the context of natural and synthetic materials. Through materiomics, fundamental advances in our understanding of structure-property-process relations of biological systems contribute to the mechanistic understanding of certain diseases and facilitate the development of novel biological, biologically inspired, and completely synthetic materials for applications in medicine (biomaterials), nanotechnology, and engineering.

  8. Development and evaluation of elastomeric materials for geothermal applications. Annual report, October 1977-December 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, W.A.; Kalfayan, S.H.; Reilly, W.W.

    1979-05-15

    The research involved formulation of commercially available materials and synthesis of new elastomers. Formulation studies at JPL and elsewhere produced a material having about 250-350 psi tensile strength and 30 to 80% elongation at 260/sup 0/C for at least 24 hours in simulated brine. The relationship between these laboratory test results and sealing performance in actual or simulated test conditions is not entirely clear; however, it is believed that no conventional formation or casing packer design is likely to perform well using these materials. The synthetic effort focused on high temperature block copolymers and development of curable polystyrene. Procedures weremore » worked out for synthesizing these new materials. Initial results with heat-cured unfilled polystyrene gum at 260/sup 0/C indicated a tensile strength of about 50 psi. Cast films of the first sample of polyphenyl quinoxaline-polystyrene block copolymer, which has a graft-block structure consisting of a polystyrene chain with pendant polyphenyl quinoxaline groups, showed elastomeric behavior in the required temperature range. Its tensile strength and elongation at 260/sup 0/C were 220 to 350 psi and 18 to 36%, respectively. All of these materials also showed satisfactory hydrolytic stability. A procedure for the synthesis of a linear block copolymer of this type has been devised, and the required new intermediates have been synthesized and characterized. A description of the previous year's work is included in an appendix.« less

  9. High-Performance Polymer Solar Cells Based on a Wide-Bandgap Polymer Containing Pyrrolo[3,4-f]benzotriazole-5,7-dione with a Power Conversion Efficiency of 8.63.

    PubMed

    Lan, Liuyuan; Chen, Zhiming; Hu, Qin; Ying, Lei; Zhu, Rui; Liu, Feng; Russell, Thomas P; Huang, Fei; Cao, Yong

    2016-09-01

    A novel donor-acceptor type conjugated polymer based on a building block of 4,8-di(thien-2-yl) - 6-octyl-2-octyl-5 H- pyrrolo[3,4- f ]benzotriazole-5,7(6 H )-dione (TZBI) as the acceptor unit and 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo-[1,2- b :4,5- b' ]dithiophene as the donor unit, named as PTZBIBDT, is developed and used as an electron-donating material in bulk-heterojunction polymer solar cells. The resulting copolymer exhibits a wide bandgap of 1.81 eV along with relatively deep highest occupied molecular orbital energy level of -5.34 eV. Based on the optimized processing conditions, including thermal annealing, and the use of a water/alcohol cathode interlayer, the single-junction polymer solar cell based on PTZBIBDT:PC 71 BM ([6,6]-phenyl-C 71 -butyric acid methyl ester) blend film affords a power conversion efficiency of 8.63% with an open-circuit voltage of 0.87 V, a short circuit current of 13.50 mA cm -2 , and a fill factor of 73.95%, which is among the highest values reported for wide-bandgap polymers-based single-junction organic solar cells. The morphology studies on the PTZBIBDT:PC 71 BM blend film indicate that a fibrillar network can be formed and the extent of phase separation can be mani-pulated by thermal annealing. These results indicate that the TZBI unit is a very promising building block for the synthesis of wide-bandgap polymers for high-performance single-junction and tandem (or multijunction) organic solar cells.

  10. Role of Interleukin-6 in the Radiation Response of Liver Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Miao-Fen, E-mail: miaofen@adm.cgmh.org.tw; College of Medicine, Chang Gung University, Taiwan; Hsieh, Ching-Chuan

    2012-12-01

    Purpose: To investigate the role of interleukin (IL)-6 in biological sequelae and tumor regrowth after irradiation for hepatic malignancy, which are critical for the clinical radiation response of liver tumors. Methods and Materials: The Hepa 1-6 murine hepatocellular cancer cell line was used to examine the radiation response by clonogenic assays and tumor growth delay in vivo. After irradiation in a single dose of 6 Gy in vitro or 15 Gy in vivo, biological changes including cell death and tumor regrowth were examined by experimental manipulation of IL-6 signaling. The effects of blocking IL-6 were assessed by cells preincubated inmore » the presence of IL-6-neutralizing antibody for 24 hours or stably transfected with IL-6-silencing vectors. The correlations among tumor responses, IL-6 levels, and myeloid-derived suppressor cells (MDSC) recruitment were examined using animal experiments. Results: Interleukin-6 expression was positively linked to irradiation and radiation resistance, as demonstrated by in vitro and in vivo experiments. Interleukin-6-silencing vectors induced more tumor inhibition and DNA damage after irradiation. When subjects were irradiated with a sublethal dose, the regrowth of irradiated tumors significantly correlated with IL-6 levels and MDSC recruitment in vivo. Furthermore, blocking of IL-6 could overcome irradiation-induced MDSC recruitment and tumor regrowth after treatment. Conclusion: These data demonstrate that IL-6 is important in determining the radiation response of liver tumor cells. Irradiation-induced IL-6 and the subsequent recruitment of MDSC could be responsible for tumor regrowth. Therefore, treatment with concurrent IL-6 inhibition could be a potential therapeutic strategy for increasing the radiation response of tumors.« less

  11. Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration

    PubMed Central

    Kohn-Polster, Caroline; Bhatnagar, Divya; Woloszyn, Derek J.; Richtmyer, Matthew; Starke, Annett; Springwald, Alexandra H.; Franz, Sandra; Schulz-Siegmund, Michaela; Kaplan, Hilton M.; Kohn, Joachim; Hacker, Michael C.

    2017-01-01

    Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR. PMID:28531139

  12. Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration.

    PubMed

    Kohn-Polster, Caroline; Bhatnagar, Divya; Woloszyn, Derek J; Richtmyer, Matthew; Starke, Annett; Springwald, Alexandra H; Franz, Sandra; Schulz-Siegmund, Michaela; Kaplan, Hilton M; Kohn, Joachim; Hacker, Michael C

    2017-05-21

    Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR.

  13. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability.

    PubMed

    Billiet, Thomas; Gevaert, Elien; De Schryver, Thomas; Cornelissen, Maria; Dubruel, Peter

    2014-01-01

    In the present study, we report on the combined efforts of material chemistry, engineering and biology as a systemic approach for the fabrication of high viability 3D printed macroporous gelatin methacrylamide constructs. First, we propose the use and optimization of VA-086 as a photo-initiator with enhanced biocompatibility compared to the conventional Irgacure 2959. Second, a parametric study on the printing of gelatins was performed in order to characterize and compare construct architectures. Hereby, the influence of the hydrogel building block concentration, the printing temperature, the printing pressure, the printing speed, and the cell density were analyzed in depth. As a result, scaffolds could be designed having a 100% interconnected pore network in the gelatin concentration range of 10-20 w/v%. In the last part, the fabrication of cell-laden scaffolds was studied, whereby the application for tissue engineering was tested by encapsulation of the hepatocarcinoma cell line (HepG2). Printing pressure and needle shape was revealed to impact the overall cell viability. Mechanically stable cell-laden gelatin methacrylamide scaffolds with high cell viability (>97%) could be printed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. RGD-conjugated rod-like viral nanoparticles on 2D scaffold improved bone differentiation of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Pongkwan, Sitasuwan; Lee, L.; Li, Kai; Nguyen, Huong

    2014-05-01

    Viral nanoparticles have uniform and well-defined nano-structures and can be produced in large quantities. Several plant viral nanoparticles have been tested in biomedical applications due to the lack of mammalian cell infectivity. We are particularly interested in using Tobacco mosaic virus (TMV), which has been demonstrated to enhance bone tissue regeneration, as a tuneable nanoscale building block for biomaterials development. Unmodified TMV particles have been shown to accelerate osteogenic differentiation of adult stem cells by synergistically upregulating BMP2 and IBSP expression with dexamethasone. However, the lack of affinity to mammalian cell surface resulted in low initial cell adhesion. In this study, to increase cell binding capacity of TMV based material the chemical functionalization of TMV with arginine-glycine-aspartic acid (RGD) peptide was explored. An azide-derivatized RGD peptide was “clicked” to tyrosine residues on TMV outer surface via an efficient copper(I) catalysed azide-alkyne cycloaddition reaction. The ligand spacing is calculated to be 2-4 nm, which could offer a polyvalent ligand clustering effect for enhanced cell receptor signalling, further promoting the proliferation and osteogenic differentiation of bone marrow derived mesenchymal stem cells.

  15. Light irradiance through novel CAD-CAM block materials and degree of conversion of composite cements.

    PubMed

    Lise, Diogo Pedrollo; Van Ende, Annelies; De Munck, Jan; Yoshihara, Kumiko; Nagaoka, Noriyuki; Cardoso Vieira, Luiz Clovis; Van Meerbeek, Bart

    2018-02-01

    To assess light irradiance (LI) delivered by two light-curing units (LCU's) and to measure the degree of conversion (DC) of three composite cements, when cured through different thicknesses of two novel CAD-CAM block materials. 100-μm-thick films of a dual-curable composite cement (G-CEM LinkAce, GC), a light-curable flowable resin-based composite (RBC) (G-ænial Universal Flo, GC) and a micro-hybrid RBC (G-ænial Posterior, GC) were investigated as luting agents. Two 'polymer-ceramic' CAD-CAM blocks (Cerasmart, GC; Enamic, Vita Zahnfabrik) were sectioned in slabs with different thicknesses (1, 3 and 5mm). LI at the bottom of the specimens was measured using a calibrated spectrometer, while being light-cured through the CAD-CAM block slabs for 40s with a low- (±500mW/cm 2 ) or high- (±1,600mW/cm 2 ) irradiance LCU (n=5). After light-curing, micro-Raman spectra of the composite films were acquired to determine DC at 5min, 10min, 1h and 24h. LI data were statistically analyzed by Kruskal-Wallis followed by post-hoc comparisons, while a linear mixed-effect model was applied for the DC analysis. In addition, the CAD-CAM blocks ultrastructure was characterized upon argon-ion slicing using scanning transmission electron microscopy (STEM). Finally, light transmission (LT) through each CAD-CAM block material was assessed using a spectrophotometer. Curing-light attenuation and DC were significantly influenced by thickness and type of the overlying material. LCU only had a significant effect on DC of the micro-hybrid RBC. DC significantly increased over time for all composite cements. CAD-CAM block structural analysis revealed a relatively small and homogenous filler configuration (mean filler size of 0.2-0.5μm) for Cerasmart, while Enamic contained ceramic grains varying in shape and size (1-10μm), which were interconnected by the polymer-based network. LT was much higher at a wavelength range of 300-800nm for Cerasmart than for Enamic. Light-curable composite cements can be cured through a restoration up to 2.7-mm thickness, depending on the kind of CAD-CAM material. A high-irradiance LCU only has a limited effect on the maximum thickness of the polymer-ceramic CAD-CAM material that can be cured through. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Heat insulating device for low temperature liquefied gas storage tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, T.; Nishimoto, T.; Sawada, K.

    1978-05-02

    Hitachi Shipbuilding and Engineering Co., Ltd.'s insulation method for spherical LNG containers solves various problems associated with insulating a sphere's three-dimensional curved surface; equalizing the thickness of the insulation, insulating the junctions between insulation blocks, and preventing seawater or LNG from penetrating the insulation barrier in the event of a rupture in the tank and ship's hull. The design incorporates a number of blocks or plates of rigid foam-insulating material bonded to the outer wall; seats for receiving pressing jigs for the bonding operation are secured to the outer wall in the joints between the insulating blocks. The joints aremore » filled with soft synthetic foam (embedding the seats), a moistureproof layer covers the insulating blocks and joints, and a waterproof material covers the moistureproof layer.« less

  17. Liquid cooling applications on automotive exterior LED lighting

    NASA Astrophysics Data System (ADS)

    Aktaş, Mehmet; Şenyüz, Tunç; Şenyıldız, Teoman; Kılıç, Muhsin

    2018-02-01

    In this study cooling of a LED unit with heatsink and liquid cooling block which is used in automotive head lamp applications has been investigated numerically and experimentally. Junction temperature of a LED which is cooled with heatsink and liquid cooling block obtained in the experiment. 23°C is used both in the simulation and the experiment phase. Liquid cooling block material is choosed aluminium (Al) and polyamide. All tests and simulation are performed with three different flow rate. Temperature distribution of the designed product is investigated by doing the numerical simulations with a commercially software. In the simulations, fluid flow is assumed to be steady, incompressible and laminar and 3 dimensional (3D) Navier-Stokes equations are used. According to the calculations it is obtained that junction temperature is higher in the heatsink design compared to block cooled one. By changing the block material, it is desired to investigate the variation on the LED junction temperature. It is found that more efficient cooling can be obtained in block cooling by using less volume and weight. With block cooling lifetime of LED can be increased and flux loss can be decreased with the result of decreased junction temperature.

  18. Materiomics: biological protein materials, from nano to macro

    PubMed Central

    Cranford, Steven; Buehler, Markus J

    2010-01-01

    Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics – discovering Nature’s complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents) such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and replicate Nature’s materials have been hindered by our lack of fundamental understanding of these materials’ intricate hierarchical structures, scale-bridging mechanisms, and complex material components that bestow protein-based materials their unique properties. Recent advances in analytical tools and experimental methods allow a holistic view of such a hierarchical biological material system. The integration of these approaches and amalgamation of material properties at all scale levels to develop a complete description of a material system falls within the emerging field of materiomics. Materiomics is the result of the convergence of engineering and materials science with experimental and computational biology in the context of natural and synthetic materials. Through materiomics, fundamental advances in our understanding of structure–property–process relations of biological systems contribute to the mechanistic understanding of certain diseases and facilitate the development of novel biological, biologically inspired, and completely synthetic materials for applications in medicine (biomaterials), nanotechnology, and engineering. PMID:24198478

  19. Pinoresinol-4,4'-di-O-beta-D-glucoside from Valeriana officinalis root stimulates calcium mobilization and chemotactic migration of mouse embryo fibroblasts.

    PubMed

    Do, Kee Hun; Choi, Young Whan; Kim, Eun Kyoung; Yun, Sung Ji; Kim, Min Sung; Lee, Sun Young; Ha, Jung Min; Kim, Jae Ho; Kim, Chi Dae; Son, Beung Gu; Kang, Jum Soon; Khan, Ikhlas A; Bae, Sun Sik

    2009-06-01

    Lignans are major constituents of plant extracts and have important pharmacological effects on mammalian cells. Here we showed that pinoresinol-4,4'-di-O-beta-D-glucoside (PDG) from Valeriana officinalis induced calcium mobilization and cell migration through the activation of lysophosphatidic acid (LPA) receptor subtypes. Stimulation of mouse embryo fibroblast (MEF) cells with 10 microM PDG resulted in strong stimulation of MEF cell migration and the EC(50) was about 2 microM. Pretreatment with pertussis toxin (PTX), an inhibitor of G(i) protein, completely blocked PDG-induced cell migration demonstrating that PDG evokes MEF cell migration through the activation of the G(i)-coupled receptor. Furthermore, pretreatment of MEF cells with Ki16425 (10 microM), which is a selective antagonist for LPA(1) and LPA(3) receptors, completely blocked PDG-induced cell migration. Likewise, PDG strongly induced calcium mobilization, which was also blocked by Ki16425 in a dose-dependent manner. Prior occupation of the LPA receptor with LPA itself completely blocked PDG-induced calcium mobilization. Finally, PDG-induced MEF cell migration was attenuated by pretreatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor such as LY294002. Cells lacking downstream mediator of PI3K such as Akt1 and Akt2 (DKO cells) showed loss of PDG-induced migration. Re-expression of Akt1 (but not Akt2) completely restored PDG-induced DKO cell migration. Given these results, we conclude that PDG is a strong inducer of cell migration. We suggest that the pharmacological action of PDG may occur through the activation of an LPA receptor whereby activation of PI3K/Akt signaling pathway mediates PDG-induced MEF cell migration.

  20. Solid oxide fuel cell matrix and modules

    DOEpatents

    Riley, Brian

    1990-01-01

    Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). Each of the blocks includes a square center channel which forms a vertical shaft when the blocks are arranged in a stacked array. Positioned within the channel is a SOFC unit cell such that a plurality of such SOFC units disposed within a vertical shaft form a string of SOFC units coupled in series. A first pair of facing inner walls of each of the blocks each include an interconnecting channel hole cut horizontally and vertically into the block walls to form gas exit channels. A second pair of facing lateral walls of each block further include a pair of inner half circular grooves which form sleeves to accommodate anode fuel and cathode air tubes. The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs.

  1. Termites live in a material world: exploration of their ability to differentiate between food sources.

    PubMed

    Inta, Ra; Lai, Joseph C S; Fu, Eugene W; Evans, Theodore A

    2007-08-22

    Drywood termites are able to assess wood size using vibratory signals, although the exact mechanism behind this assessment ability is not known. Important vibratory characteristics such as the modal frequencies of a wooden block depend on its geometry and boundary conditions; however, they are also dependent on the material characteristics of the block, such as mass, density and internal damping. We report here on choice experiments that tested the ability of the drywood termite Cryptotermes secundus to assess wooden block size using a solid wooden block paired with a composite block, the latter made of either wood and aluminium or wood and rubber. Each composite block was constructed to match mass or low-frequency vibratory modes (i.e. fundamental frequency) of the solid wooden block. The termites always chose the blocks with more wood; they moved to the solid wooden blocks usually within a day and then tunnelled further into the solid wooden block by the end of the experiment. Termites offered composite blocks of wood and rubber matched for mass were the slowest to show a preference for the solid wooden block and this preference was the least definitive of any treatment, which indicated that mass and/or damping may play a role in food assessment. This result clearly shows that the termites were not fooled by composite blocks matched for mass or frequency, which implies that they probably employ more than a single simple measure in their food assessment strategy. This implies a degree of sophistication in their ability to assess their environment hitherto unknown. The potential importance of alternative features in the vibrational signals is discussed.

  2. [Damage of modern building materials by microscopic fungi].

    PubMed

    Chuenko, A I; Karpenko, Iu V

    2011-01-01

    Resistance of three materials, produced on the basis of concrete compounds to the action of microscopic fungi, isolated from damaged living buildings, has been first investigated. It has been shown that samples of froth-block and thermoeffective block had low fungal resistance, in contrast to samples of cellular polystyrene concrete, which were resistant to fungal action, that can be associated with peculiarities of their component composition.

  3. Effect of professional dental prophylaxis on the surface gloss and roughness of CAD/CAM restorative materials

    PubMed Central

    Sugiyama, Toshiko; Enokuchi, Tomoka; Haruyama, Akiko; Chiba, Aoi; Sugiyama, Setsuko; Hosaka, Makoto; Takahashi, Toshiyuki

    2017-01-01

    Background This study aimed to evaluate the effect of dental prophylaxis on the surface gloss and roughness of different indirect restorative materials for computer-aided design/computer-aided manufacturing (CAD/CAM): two types of CAD/CAM composite resin blocks (Shofu Block HC and Estelite Block) and two types of CAD/CAM ceramic blocks (IPS Empress CAD and Celtra DUO). Material and Methods After polishing the CAD/CAM blocks and applying prophylaxis pastes, professional dental prophylaxis was performed using four different experimental protocols (n = 5 each): mechanical cleaning with Merssage Regular for 10 s four times (Group 1); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 10 s (Group 2); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 30 s (Group 3); and mechanical cleaning with Merssage Fine for 10 s four times (Group 4). A glossmeter was used to measure surface gloss before and after mechanical cleaning, and a contact stylus profilometer was used to measure surface roughness (Ra). Results Polishing with prophylactic paste led to a significant reduction in surface gloss and increase in surface roughness among resin composite blocks, whereas the polishing-related change in surface gloss or roughness was smaller in Celtra DUO, a zirconia-reinforced lithium silicate block. Conclusions Changes in surface gloss and roughness due to polishing with a prophylactic paste containing large particles were not improved by subsequent polishing with a prophylactic paste containing fine particles. Key words:CAD/CAM, professional dental prophylaxis, prophylactic paste, surface gloss, surface roughness. PMID:28638554

  4. Polythiophene-block-poly(γ-benzyl L-glutamate): Synthesis and study of a new rod-rod block copolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zong-Quan; Ono, Robert J.; Chen, Zheng

    2011-01-01

    Coupling of ethynyl terminated poly(3-hexylthiophene) with azide terminated poly(γ-benzyl L-glutamate) afforded the respective block copolymer in good yield and high purity; this material was found to self assemble into hierarchal structures in solution and in the solid state.

  5. Tune Up: Automotive Mechanics Instructional Program. Block 5.

    ERIC Educational Resources Information Center

    O'Brien, Ralph D.

    The fifth of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in automotive tune-ups at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each lesson…

  6. Fuel System: Automotive Mechanics Instructional Program. Block 4.

    ERIC Educational Resources Information Center

    O'Brien, Ralph D.

    The fourth of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in automotive fuel systems at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each…

  7. Cooling System: Automotive Mechanics Instructional Program. Block 6.

    ERIC Educational Resources Information Center

    O'Brien, Ralph D.

    The last of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in the automotive cooling system at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each…

  8. A water-processable organic electron-selective layer for solution-processed inverted organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dongcheng; Zhou, Hu; Cai, Ping

    2014-02-03

    A triazine- and pyridinium-containing water-soluble material of 1,1′,1″-(4,4′,4″-(1,3,5-triazine-2,4,6-triyl)tris(benzene-4,1-diyl)) tris(methylene)tripyridinium bromide (TzPyBr) was developed as an organic electron-selective layer in solution-processed inverted organic solar cells due to its strong anti-erosion capacity against non-polar organic solvents commonly used for the active layer. Ohmic-like contact with the adjacent active materials like fullerene derivatives is speculated to be formed, as confirmed by the work-function measurements with scanning Kelvin probe and ultraviolet photoelectron spectroscopy techniques. Besides, considering the deep highest occupied molecular orbital energy level of TzPyBr, excellent hole-blocking property of the electron-selective layer is also anticipated. The inverted organic photovoltaic devices based on themore » TzPyBr/ITO (indium tin oxide) bilayer cathode exhibit dramatically enhanced performance compared to the control devices with bare ITO as the cathode and even higher efficiency than the conventional type devices with ITO and Al as the electrodes.« less

  9. Comparison of effects of glass fibre and glass powder on guinea-pig lungs

    PubMed Central

    Botham, Susan K.; Holt, P. F.

    1973-01-01

    Botham, Susan K., and Holt, P. F. (1973).British Journal of Industrial Medicine,30, 232-236. Comparison of effects of glass fibre and glass powder on guinea-pig lungs. Following 24 hours inhalation by guinea-pigs of powdered glass dust, the pulmonary effects over the succeeding month differed from those previously observed to follow inhalation of glass fibre in that (1) fewer erythrocytes escaped from the capillaries, (2) very few giant cells were produced, (3) erythrocytes and intracellular glass particles were cleared more readily because junctions between respiratory and terminal bronchioles were not blocked by giant cells, (4) intracellular granules containing Perls-positive material did not appreciably increase in number or intensity of staining during the month, and (5) particles were not coated with Perls-positive material during the time that pseudo-asbestos bodies would be formed from glass fibres. The difference between the effects of chemically similar glass powder and fibre during a month in a guinea-pig lung is considered to be due to the morphology of the inhaled particle. Images PMID:4124978

  10. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    PubMed Central

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J.; Chang, Robert P. H.; Facchetti, Antonio; Marks, Tobin J.

    2015-01-01

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor–inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance. PMID:26080437

  11. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    DOE PAGES

    Zhou, Nanjia; Kim, Myung -Gil; Loser, Stephen; ...

    2015-06-15

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor– inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactivemore » materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Lastly, continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.« less

  12. g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Wang, Guanxi; Fan, Jiajie; Liu, Baoshun; Cao, Shaowen; Yu, Jiaguo

    2015-01-01

    Dye-sensitized solar cells (DSSCs) were fabricated by using g-C3N4 modified TiO2 nanosheets (CTS) as photoanode materials in this research. A thin layer of g-C3N4 was coated on the surface of TiO2 nanosheets by simply heating the mixture of TiO2 nanosheets and urea, which led to the formation of TiO2@g-C3N4 nanosheet heterostructure. The experimental results showed that the photoelectric conversion efficiency of DSSCs was obviously improved after modified by g-C3N4. The measurements of I-V characteristic indicated that the introduction of g-C3N4 could increase both the open circuit voltage and short-circuit photocurrent density. Along with the analysis of electrochemical impedance spectroscopy, it is considered that the thin layer of g-C3N4 can act as the blocking layer for electron backward recombination with electrolyte, which can be used as the functional material to increase the DSSC performance.

  13. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    PubMed

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  14. Centriole distribution during tripolar mitosis in Chinese hamster ovary cells

    PubMed Central

    1984-01-01

    During bipolar mitosis a pair of centrioles is distributed to each cell but the activities of the two centrioles within the pair are not equivalent. The parent is normally surrounded by a cloud of pericentriolar material that serves as a microtubule-organizing center. The daughter does not become associated with pericentriolar material until it becomes a parent in the next cell cycle (Rieder, C.L., and G. G. Borisy , 1982, Biol. Cell., 44:117-132). We asked whether the microtubule-organizing activity associated with a centriole was dependent on its becoming a parent. We induced multipolar mitosis in Chinese hamster ovary cells by treatment with 0.04 micrograms/ml colcemid for 4 h. After recovery from this colcemid block, the majority of cells divided into two, but 40% divided into three and 2% divided into four. The tripolar mitotic cells were examined by antitubulin immunofluorescence and by high voltage electron microscopy of serial thick (0.25-micron) sections. The electron microscope analysis showed that centriole number was conserved and that the centrioles were distributed among the three spindle poles, generally in a 2:1:1 or 2:2:0 pattern. The first pattern shows that centriole parenting is not prerequisite for association with pole function; the second pattern indicates that centrioles per se are not required at all. However, the frequency of midbody formation and successful division was higher when centrioles were present in the 2:1:1 pattern. We suggest that the centrioles may help the proper distribution and organization of the pericentriolar cloud, which is needed for the formation of a functional spindle pole. PMID:6373793

  15. Neurotoxicity of dental amalgam is mediated by zinc.

    PubMed

    Lobner, D; Asrari, M

    2003-03-01

    The use of dental amalgam is controversial largely because it contains mercury. We tested whether amalgam caused toxicity in neuronal cultures and whether that toxicity was caused by mercury. In this study, we used cortical cell cultures to show for the first time that amalgam causes nerve cell toxicity in culture. However, the toxicity was not blocked by the mercury chelator, 2,3-dimercaptopropane-1-sulphonate (DMPS), but was blocked by the metal chelator, calcium disodium ethylenediaminetetraacetate (CaEDTA). DMPS was an effective mercury chelator in this system, since it blocked mercury toxicity. Of the components that comprise amalgam (mercury, zinc, tin, copper, and silver), only zinc neurotoxicity was blocked by CaEDTA. These results indicate that amalgam is toxic to nerve cells in culture by releasing zinc. While zinc is known to be neurotoxic, ingestion of zinc is not a major concern because zinc levels in the body are tightly regulated.

  16. Effects of TiO2 electron blocking layer on photovoltaic performance of photo-electrochemical cell

    NASA Astrophysics Data System (ADS)

    Bin, Jae-Wook; Kim, Doo-Hwan; Sung, Youl-Moon; Park, Min-Woo

    2014-06-01

    Dye-sensitized solar cells (DSCs) have used transparent conductive Fluorine-doped SnO2 (FTO) glass/porous TiO2 layer attached using dye molecules/electrolytes (I-/I3-)/Platinium-coated FTO glass configuration. In this work, prior to the coating of nanoporous TiO2 layer on FTO glass, a dense layer of TiO2 film with a thickness of less than ∼100 nm was deposited directly onto the FTO as an electron blocking layer by radio frequency (RF) magnetron sputtering. Under 100 mW/cm2 illumination at AM 1.5, the energy conversion efficiency (η) of the prepared DSC with electron blocking layer of 80 nm thickness was 6.9% (Voc = 0.67 V, Jsc = 12.18 mA/cm2, ff = 0.63), which is increased by 1.3% compared to the typical cell without electron blocking layer.

  17. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI(3-x)Cl(x) perovskite solar cells.

    PubMed

    Edri, Eran; Kirmayer, Saar; Mukhopadhyay, Sabyasachi; Gartsman, Konstantin; Hodes, Gary; Cahen, David

    2014-03-11

    Developments in organic-inorganic lead halide-based perovskite solar cells have been meteoric over the last 2 years, with small-area efficiencies surpassing 15%. We address the fundamental issue of how these cells work by applying a scanning electron microscopy-based technique to cell cross-sections. By mapping the variation in efficiency of charge separation and collection in the cross-sections, we show the presence of two prime high efficiency locations, one at/near the absorber/hole-blocking-layer, and the second at/near the absorber/electron-blocking-layer interfaces, with the former more pronounced. This 'twin-peaks' profile is characteristic of a p-i-n solar cell, with a layer of low-doped, high electronic quality semiconductor, between a p- and an n-layer. If the electron blocker is replaced by a gold contact, only a heterojunction at the absorber/hole-blocking interface remains.

  18. Combining Biomimetic Block Copolymer Worms with an Ice-Inhibiting Polymer for the Solvent-Free Cryopreservation of Red Blood Cells.

    PubMed

    Mitchell, Daniel E; Lovett, Joseph R; Armes, Steven P; Gibson, Matthew I

    2016-02-18

    The first fully synthetic polymer-based approach for red-blood-cell cryopreservation without the need for any (toxic) organic solvents is reported. Highly hydroxylated block copolymer worms are shown to be a suitable replacement for hydroxyethyl starch as a extracellular matrix for red blood cells. When used alone, the worms are not a particularly effective preservative. However, when combined with poly(vinyl alcohol), a known ice-recrystallization inhibitor, a remarkable additive cryopreservative effect is observed that matches the performance of hydroxyethyl starch. Moreover, these block copolymer worms enable post-thaw gelation by simply warming to 20 °C. This approach offers a new solution for both the storage and transport of red blood cells and also a convenient matrix for subsequent 3D cell cultures. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Clinical trial uses combination therapy for certain types of non-Hodgkin lymphoma | Center for Cancer Research

    Cancer.gov

    Researchers are testing the safety of the combination of an experimental drug with rituximab, a standard treatment, for patients with indolent or diffuse large B-cell lymphoma. The antibody is designed to target and block a protein that is present on cancer cells and is used by those cells to protect themselves from your body’s immune system. Blocking the protein may enable your body’s immune system to find and destroy the cancer cells. Read more…

  20. Line-frequency doubling of directed self-assembly patterns for single-digit bit pattern media lithography

    NASA Astrophysics Data System (ADS)

    Patel, K. C.; Ruiz, R.; Lille, J.; Wan, L.; Dobiz, E.; Gao, H.; Robertson, N.; Albrecht, T. R.

    2012-03-01

    Directed self-assembly is emerging as a promising technology to define sub-20nm features. However, a straightforward path to scale block copolymer lithography to single-digit fabrication remains challenging given the diverse material properties found in the wide spectrum of self-assembling materials. A vast amount of block copolymer research for industrial applications has been dedicated to polystyrene-b-methyl methacrylate (PS-b-PMMA), a model system that displays multiple properties making it ideal for lithography, but that is limited by a weak interaction parameter that prevents it from scaling to single-digit lithography. Other block copolymer materials have shown scalability to much smaller dimensions, but at the expense of other material properties that could delay their insertion into industrial lithographic processes. We report on a line doubling process applied to block copolymer patterns to double the frequency of PS-b-PMMA line/space features, demonstrating the potential of this technique to reach single-digit lithography. We demonstrate a line-doubling process that starts with directed self-assembly of PS-b-PMMA to define line/space features. This pattern is transferred into an underlying sacrificial hard-mask layer followed by a growth of self-aligned spacers which subsequently serve as hard-masks for transferring the 2x frequency doubled pattern to the underlying substrate. We applied this process to two different block copolymer materials to demonstrate line-space patterns with a half pitch of 11nm and 7nm underscoring the potential to reach single-digit critical dimensions. A subsequent patterning step with perpendicular lines can be used to cut the fine line patterns into a 2-D array of islands suitable for bit patterned media. Several integration challenges such as line width control and line roughness are addressed.

  1. Clinical trial uses combination therapy for certain types of non-Hodgkin lymphoma | Center for Cancer Research

    Cancer.gov

    Researchers are testing the safety of the combination of an experimental drug with rituximab, a standard treatment, for patients with indolent or diffuse large B-cell lymphoma. The antibody is designed to target and block a protein that is present on cancer cells and is used by those cells to protect themselves from your body’s immune system. Blocking the protein may enable

  2. Inhibition of CD1 antigen presentation by human cytomegalovirus.

    PubMed

    Raftery, Martin J; Hitzler, Manuel; Winau, Florian; Giese, Thomas; Plachter, Bodo; Kaufmann, Stefan H E; Schönrich, Günther

    2008-05-01

    The betaherpesvirus human cytomegalovirus (HCMV) encodes several molecules that block antigen presentation by the major histocompatibility complex (MHC) proteins. Humans also possess one other family of antigen-presenting molecules, the CD1 family; however, the effect of HCMV on CD1 expression is unknown. The majority of CD1 molecules are classified on the basis of homology as group 1 CD1 and are present almost exclusively on professional antigen-presenting cells such as dendritic cells, which are a major target for HCMV infection and latency. We have determined that HCMV encodes multiple blocking strategies targeting group 1 CD1 molecules. CD1 transcription is strongly inhibited by the HCMV interleukin-10 homologue cmvIL-10. HCMV also blocks CD1 antigen presentation posttranscriptionally by the inhibition of CD1 localization to the cell surface. This function is not performed by a known HCMV MHC class I-blocking molecule and is substantially stronger than the blockage induced by herpes simplex virus type 1. Antigen presentation by CD1 is important for the development of the antiviral immune response and the generation of mature antigen-presenting cells. HCMV present in antigen-presenting cells thus blunts the immune response by the blockage of CD1 molecules.

  3. 3D printing facilitated scaffold-free tissue unit fabrication.

    PubMed

    Tan, Yu; Richards, Dylan J; Trusk, Thomas C; Visconti, Richard P; Yost, Michael J; Kindy, Mark S; Drake, Christopher J; Argraves, William Scott; Markwald, Roger R; Mei, Ying

    2014-06-01

    Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing microdroplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit microdroplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell-cell adhesion, tissue formation and maturation.

  4. Performance enhancement of perovskite solar cells with Mg-doped TiO{sub 2} compact film as the hole-blocking layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Qin, Minchao; Tao, Hong

    2015-03-23

    In this letter, we report perovskite solar cells with thin dense Mg-doped TiO{sub 2} as hole-blocking layers (HBLs), which outperform cells using TiO{sub 2} HBLs in several ways: higher open-circuit voltage (V{sub oc}) (1.08 V), power conversion efficiency (12.28%), short-circuit current, and fill factor. These properties improvements are attributed to the better properties of Mg-modulated TiO{sub 2} as compared to TiO{sub 2} such as better optical transmission properties, upshifted conduction band minimum (CBM) and downshifted valence band maximum (VBM), better hole-blocking effect, and higher electron life time. The higher-lying CBM due to the modulation with wider band gap MgO and themore » formation of magnesium oxide and magnesium hydroxides together resulted in an increment of V{sub oc}. In addition, the Mg-modulated TiO{sub 2} with lower VBM played a better role in the hole-blocking. The HBL with modulated band position provided better electron transport and hole blocking effects within the device.« less

  5. Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages.

    PubMed

    Khorsand, Behnoush; Lapointe, Gabriel; Brett, Christopher; Oh, Jung Kwon

    2013-06-10

    Self-assembled micelles of amphiphilic block copolymers (ABPs) with stimuli-responsive degradation (SRD) properties have a great promise as nanotherapeutics exhibiting enhanced release of encapsulated therapeutics into targeted cells. Here, thiol-responsive degradable micelles based on a new ABP consisting of a pendant disulfide-labeled methacrylate polymer block (PHMssEt) and a hydrophilic poly(ethylene oxide) (PEO) block were investigated as effective intracellular nanocarriers of anticancer drugs. In response to glutathione (GSH) as a cellular trigger, the cleavage of pendant disulfide linkages in hydrophobic PHMssEt blocks of micellar cores caused the destabilization of self-assembled micelles due to change in hydrophobic/hydrophilic balance. Such GSH-triggered micellar destabilization changed their size distribution with an appearance of large aggregates and led to enhanced release of encapsulated anticancer drugs. Cell culture results from flow cytometry and confocal laser scanning microscopy for cellular uptake as well as cell viability measurements for high anticancer efficacy suggest that new GSH-responsive degradable PEO-b-PHMssEt micelles offer versatility in multifunctional drug delivery applications.

  6. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    NASA Astrophysics Data System (ADS)

    Yao, Bingjian; Zhu, Qingzeng; Yao, Linli; Hao, Jingcheng

    2015-03-01

    A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 103:3.0 × 104. The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth.

  7. White organic light-emitting diodes with Zn-complexes.

    PubMed

    Kim, Dong-Eun; Shin, Hoon-Kyu; Kim, Nam-Kyu; Lee, Burm-Jong; Kwon, Young-Soo

    2014-02-01

    This paper reviews OLEDs fabricated using Zn-complexes. Zn(HPB)2, Zn(HPB)q, and Zn(phen)q were synthesized as new electroluminescence materials. The electron affinity (EA) and ionization potential (IP) of Zn complexes were also determined and devices were characterized. Zn complexes such as Zn(HPB)2, Zn(HPB)q, and Zn(phen)q were found to exhibit blue and yellow emissions with wavelengths of 455, 532, and 535 nm, respectively. On the other hand, Zn(HPB)2 and Zn(HPB)q were applied as hole-blocking materials. As a result, the OLED efficiency by using Zn(HPB)2 as a hole-blocking material was improved. In particular, the OLED property of Zn(HPB)2 was found to be better than that of Zn(HPB)q. Moreover, Zn(phen)q was used as an electron-transporting material and compared with Alq3. The performance of the device with Zn(phen)q as an electron-transporting material was improved compared with Alq3-based devices. The Zn complexes can possibly be used as hole-blocking and electron-transporting materials in OLED devices. A white emission was ultimately realized from the OLED devices using Zn-complexes as inter-layer components.

  8. Experimental and Analytical Evaluation of a Composite Honeycomb Deployable Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Horta, Lucas G.; Annett, Martin S.; Polanco, Michael A.; Littell, Justin D.; Fasanella, Edwin L.

    2011-01-01

    In 2006, the NASA Subsonic Rotary Wing Aeronautics Program sponsored the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, which is designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar honeycomb structure to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed flat until needed for deployment. A variety of deployment options such as linear, radial, and/or hybrid methods can be used. Experimental evaluation of the DEA utilized a building block approach that included material characterization testing of its constituent, Kevlar -129 fabric/epoxy, and flexural testing of single hexagonal cells. In addition, the energy attenuation capabilities of the DEA were demonstrated through multi-cell component dynamic crush tests, and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto concrete, water, and soft soil. During each stage of the DEA evaluation process, finite element models of the test articles were developed and simulations were performed using the explicit, nonlinear transient dynamic finite element code, LS-DYNA. This report documents the results of the experimental evaluation that was conducted to assess the energy absorption capabilities of the DEA.

  9. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    PubMed Central

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  10. Chemical copatterning strategies using azlactone-based block copolymers

    DOE PAGES

    Masigol, Mohammadali; Barua, Niloy; Retterer, Scott T.; ...

    2017-09-01

    Interfaces can be modified with azlactone-functional polymers in order to manipulate the chemical surface reactivity. Azlactone groups are highly reactive toward amine, thiol, and alcohol nucleophiles, providing a versatile coupling chemistry for secondary surface modification. Azlactone-based surface polymers have been explored in numerous applications, including chemical and biological capture, sensing, and cell culture. These applications often require that the polymer is copatterned within a chemically or biologically inert background; however, common fabrication methods degrade azlactone groups during processing steps or result in polymer films with poorly controlled thicknesses. Here, the authors develop fabrication strategies using parylene lift-off and interface-directed assemblymore » methods to generate microscale patterns of azlactone-based block copolymer in chemically or biologically inert backgrounds. The functionality of azlactone groups was preserved during fabrication, and patterned films appeared as uniform, 80–120nm brushlike films. The authors also develop a patterning approach that uses a novel microcontact stamping method to generate cross-linked, three-dimensional structures of azlactone-based polymers with controllable, microscale thicknesses. The authors identify the benefits of each approach and expect these polymers and patterning strategies to provide a versatile toolbox for developing synthetic interfaces with tuned chemical and physical features for sensing, cell culture, or material capture applications.« less

  11. Chemical copatterning strategies using azlactone-based block copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masigol, Mohammadali; Barua, Niloy; Retterer, Scott T.

    Interfaces can be modified with azlactone-functional polymers in order to manipulate the chemical surface reactivity. Azlactone groups are highly reactive toward amine, thiol, and alcohol nucleophiles, providing a versatile coupling chemistry for secondary surface modification. Azlactone-based surface polymers have been explored in numerous applications, including chemical and biological capture, sensing, and cell culture. These applications often require that the polymer is copatterned within a chemically or biologically inert background; however, common fabrication methods degrade azlactone groups during processing steps or result in polymer films with poorly controlled thicknesses. Here, the authors develop fabrication strategies using parylene lift-off and interface-directed assemblymore » methods to generate microscale patterns of azlactone-based block copolymer in chemically or biologically inert backgrounds. The functionality of azlactone groups was preserved during fabrication, and patterned films appeared as uniform, 80–120nm brushlike films. The authors also develop a patterning approach that uses a novel microcontact stamping method to generate cross-linked, three-dimensional structures of azlactone-based polymers with controllable, microscale thicknesses. The authors identify the benefits of each approach and expect these polymers and patterning strategies to provide a versatile toolbox for developing synthetic interfaces with tuned chemical and physical features for sensing, cell culture, or material capture applications.« less

  12. Characterization of biomolecular nanoconjugates by high-throughput delivery and spectroscopic difference

    PubMed Central

    DeLong, Robert K; Risor, Azure; Kanomata, Masaaki; Laymon, Amanda; Jones, Brooke; Zimmerman, Scott D; Williams, Joseph; Witkowski, Colette; Warner, Mathew; Ruff, Michael; Garrad, Richard; Fallon, John K; Hickey, Anthony J; Sedaghat-Herati, Reza

    2013-01-01

    Aims Nanoparticle conjugates have the potential for delivering siRNA, splice-shifting oligomers or nucleic acid vaccines, and can be applicable to anticancer therapeutics. This article compares tripartite conjugates with gold nanoparticles or synthetic methoxypoly(ethylene glycol)-block-polyamidoamine dendrimers. Materials & methods Interactions with model liposomes of a 1:1 molar ratio of tripalmitin:cholesterol or phospholipid:cholesterol were investigated by high-throughput absorbance, as well as fluorescence difference and cellular luminescence assays. Results Spectral differences and dynamic light-scattering spectroscopy shifts demonstrated the interaction of conjugates with liposomes. Biological activity was demonstrated by upregulation of gene expression via splice-shifting oligomers, delivery of anti-B-Raf siRNA in cultured human cancer cells or tuberculosis antigen 85B plasmid expression vector in a coculture model of antigen presentation. Conclusion The data suggests that gold nanoparticles and methoxypoly(ethylene glycol)-block-polyamidoamine dendrimer nanoconjugates may have potential for binding, stabilization and delivery of splice-shifting oligomers, siRNA and nucleic acid vaccines for preclinical trials. PMID:22943129

  13. Molecular and morphological characterization of midblock-sulfonated styrenic triblock copolymers

    DOE PAGES

    Mineart, Kenneth P.; Ryan, Justin J.; Lee, Byeongdu; ...

    2017-01-11

    Midblock-sulfonated triblock copolymers afford a desirable opportunity to generate network-forming amphiphilic materials that are suitable for use in a wide range of emerging technologies as fuel-cell, water-desalination, ion-exchange, photovoltaic, or electroactive membranes. Employing a previously reported synthetic strategy wherein poly( p- tert-butylstyrene) remains unreactive, we have selectively sulfonated the styrenic midblock of a poly( p- tert-butylstyrene- b-styrene- b- p- tert- butylstyrene) (TST) triblock copolymer to different extents. Comparison of the resulting sulfonated copolymers with results from our prior study provides favorable quantitative agreement and suggests that a shortened reaction time is advantageous. An ongoing challenge regarding the morphological development ofmore » charged block copolymers is the competition between microphase separation of the incompatible blocks and physical cross-linking of ionic clusters, with the latter often hindering the former. Here, we expose the sulfonated TST copolymers to solvent-vapor annealing to promote nanostructural refinement. Furthermore, the effect of such annealing on morphological characteristics, as well as on molecular free volume, is explored.« less

  14. Effects of Cetuximab and Erlotinib on the behaviour of cancer stem cells in head and neck squamous cell carcinoma.

    PubMed

    Setúbal Destro Rodrigues, Maria Fernanda; Gammon, Luke; Rahman, Muhammad M; Biddle, Adrian; Nunes, Fabio Daumas; Mackenzie, Ian C

    2018-03-02

    The therapeutic responses of many solid tumours to chemo- and radio-therapies are far from fully effective but therapies targeting malignancy-related cellular changes show promise for further control. In head and neck squamous cell carcinoma, the epidermal growth factor receptor (EGFR) is commonly overexpressed and investigation of agents that block this receptor indicate a limited response when used alone but an ability to enhance the actions of other drugs. The hierarchical stem cell patterns present in tumours generate cellular heterogeneity and this is further complicated by cancer stem cells (CSC) shifting between epithelial (Epi-CSC) and mesenchymal (EMT-CSC) states. To clarify how such heterogeneity influences responses to EGFR blocking, we examined the effects of Cetuximab and Erlotinib on the cell sub-populations in HNSCC cell lines. These agents reduced cell proliferation for all subpopulations but induced little cell death. They did however induce large shifts of cells between the EMT-CSC, Epi-CSC and differentiating cell compartments. Loss of EMT-CSCs reduced cell motility and is expected to reduce invasion and metastasis. EGFR blocking also induced shifts of Epi-CSCs into the differentiating cell compartment which typically has greater sensitivity to chemo/radiation, an effect expected to enhance the overall response of tumour cell populations to adjunctive therapies.

  15. Effects of Cetuximab and Erlotinib on the behaviour of cancer stem cells in head and neck squamous cell carcinoma

    PubMed Central

    Setúbal Destro Rodrigues, Maria Fernanda; Gammon, Luke; Rahman, Muhammad M.; Biddle, Adrian; Nunes, Fabio Daumas; Mackenzie, Ian C.

    2018-01-01

    The therapeutic responses of many solid tumours to chemo- and radio-therapies are far from fully effective but therapies targeting malignancy-related cellular changes show promise for further control. In head and neck squamous cell carcinoma, the epidermal growth factor receptor (EGFR) is commonly overexpressed and investigation of agents that block this receptor indicate a limited response when used alone but an ability to enhance the actions of other drugs. The hierarchical stem cell patterns present in tumours generate cellular heterogeneity and this is further complicated by cancer stem cells (CSC) shifting between epithelial (Epi-CSC) and mesenchymal (EMT-CSC) states. To clarify how such heterogeneity influences responses to EGFR blocking, we examined the effects of Cetuximab and Erlotinib on the cell sub-populations in HNSCC cell lines. These agents reduced cell proliferation for all subpopulations but induced little cell death. They did however induce large shifts of cells between the EMT-CSC, Epi-CSC and differentiating cell compartments. Loss of EMT-CSCs reduced cell motility and is expected to reduce invasion and metastasis. EGFR blocking also induced shifts of Epi-CSCs into the differentiating cell compartment which typically has greater sensitivity to chemo/radiation, an effect expected to enhance the overall response of tumour cell populations to adjunctive therapies. PMID:29568372

  16. APPARATUS FOR PRODUCING IONS OF VAPORIZABLE MATERIALS

    DOEpatents

    Wright, B.T.

    1958-01-28

    a uniform and copious supply of ions. The source comprises a hollow arc- block and means for establishing a magnetic field through the arc-block. Vaporization of the material to be ionized is produced by an electric heated filament. The arc producing structure within the arc-block consists of a cathode disposed between a pair of collimating electrodes along with an anode adjacent each collimating electrode on the side opposite the cathode. A positive potential applied to the anodes and collimating electrodes, with respect to the cathode, and the magnetic field act to accelerate the electrons from the cathode through a slit in each collimating clectrode towards the respective anode. In this manner a pair of collinear arc discharges are produced in the gas region which can be tapped for an abundant supply of ions of the material being analyzed.

  17. Hybrid Silicon-Based Organic/Inorganic Block Copolymers with Sol-Gel Active Moieties: Synthetic Advances, Self-Assembly and Applications in Biomedicine and Materials Science.

    PubMed

    Czarnecki, Sebastian; Bertin, Annabelle

    2018-03-07

    Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol-gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in biomedicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, photonic crystals or coatings/films with antibiofouling, antibacterial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synergetic effect of double-step blocking layer for the perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Kim, Jinhyun; Hwang, Taehyun; Lee, Sangheon; Lee, Byungho; Kim, Jaewon; Kim, Jaewook; Gil, Bumjin; Park, Byungwoo

    2017-10-01

    In an organometallic CH3NH3PbI3 (MAPbI3) perovskite solar cell, we have demonstrated a vastly compact TiO2 layer synthesized by double-step deposition, through a combination of sputter and solution deposition to minimize the electron-hole recombination and boost the power conversion efficiency. As a result, the double-step strategy allowed outstanding transmittance of blocking layer. Additionally, crystallinity and morphology of the perovskite film were significantly modified, provoking enhanced photon absorption and solar cell performance with the reduced recombination rate. Thereby, this straightforward double-step strategy for the blocking layer exhibited 12.31% conversion efficiency through morphological improvements of each layer.

  19. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1982-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons and methods for making such materials. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  20. Self-assembly: Misfits unite

    NASA Astrophysics Data System (ADS)

    Grason, Gregory M.

    2017-12-01

    The spontaneous assembly of particulate or molecular 'building blocks' into larger architectures underlies structure formation in many biological and synthetic materials. Shape frustration of ill-fitting blocks holds a surprising key to more regular assemblies.

  1. Examining the Self-Assembly of Rod-Coil Block Copolymers via Physics Based Polymer Models and Polarized X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Hannon, Adam; Sunday, Daniel; Windover, Donald; Liman, Christopher; Bowen, Alec; Khaira, Gurdaman; de Pablo, Juan; Delongchamp, Dean; Kline, R. Joseph

    Photovoltaics, flexible electronics, and stimuli-responsive materials all require enhanced methodology to examine their nanoscale molecular orientation. The mechanical, electronic, optical, and transport properties of devices made from these materials are all a function of this orientation. The polymer chains in these materials are best modeled as semi-flexible to rigid rods. Characterizing the rigidity and molecular orientation of these polymers non-invasively is currently being pursued by using polarized resonant soft X-ray scattering (P-RSoXS). In this presentation, we show recent work on implementing such a characterization process using a rod-coil block copolymer system in the rigid-rod limit. We first demonstrate how we have used physics based models such as self-consistent field theory (SCFT) in non-polarized RSoXS work to fit scattering profiles for thin film coil-coil PS- b-PMMA block copolymer systems. We then show by using a wormlike chain partition function in the SCFT formulism to model the rigid-rod block, the methodology can be used there as well to extract the molecular orientation of the rod block from a simulated P-RSoXS experiment. The results from the work show the potential of the technique to extract thermodynamic and morphological sample information.

  2. Nanostructured Block Copolymer Solutions and Composites: Mechanical and Structural Properties

    NASA Astrophysics Data System (ADS)

    Walker, Lynn

    2015-03-01

    Self-assembled block copolymer templates are used to control the nanoscale structure of materials that would not otherwise order in solution. In this work, we have developed a technique to use close-packed cubic and cylindrical mesophases of a thermoreversible block copolymer (PEO-PPO-PEO) to impart spatial order on dispersed nanoparticles. The thermoreversible nature of the template allows for the dispersion of particles synthesized outside the template. This feature extends the applicability of this templating method to many particle-polymer systems, including proteins, and also permits a systematic evaluation of the impact of design parameters on the structure and mechanical properties of the nanocomposites. The criteria for forming co-crystals have been characterized using small-angle scatting and the mechanical properties of these soft crystals determined. Numerous crystal structures have been reported for the block copolymer system and we have taken advantage of several to generate soft co-crystals. The result of this templating is spatially ordered nanoparticle arrays embedded within the block copolymer nanostructure. These soft materials can be shear aligned into crystals with long range order and this shear alignment is discussed. Finally, the dynamics of nanoparticles within the nanostructured material are characterized with fluorescence recovery after photobleaching (FRAP). The applications and general behavior of these nanostructured hydrogels are outlined.

  3. Floating cultivation of marine cyanobacteria using coal fly ash.

    PubMed

    Matsumoto, M; Yoshida, E; Takeyama, H; Matsunaga, T

    2000-01-01

    The aim of this study was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. We have investigated the viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine micro-algae. The marine cyanobacterium Synechococcus sp. NKBG 040607 was found to adhere to floating CFA blocks in liquid culture medium. Maximum density of attached cells of 2.0 x 10(8) cells/cm2 was achieved using seawater. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.

  4. High-flexibility combinatorial peptide synthesis with laser-based transfer of monomers in solid matrix material.

    PubMed

    Loeffler, Felix F; Foertsch, Tobias C; Popov, Roman; Mattes, Daniela S; Schlageter, Martin; Sedlmayr, Martyna; Ridder, Barbara; Dang, Florian-Xuan; von Bojničić-Kninski, Clemens; Weber, Laura K; Fischer, Andrea; Greifenstein, Juliane; Bykovskaya, Valentina; Buliev, Ivan; Bischoff, F Ralf; Hahn, Lothar; Meier, Michael A R; Bräse, Stefan; Powell, Annie K; Balaban, Teodor Silviu; Breitling, Frank; Nesterov-Mueller, Alexander

    2016-06-14

    Laser writing is used to structure surfaces in many different ways in materials and life sciences. However, combinatorial patterning applications are still limited. Here we present a method for cost-efficient combinatorial synthesis of very-high-density peptide arrays with natural and synthetic monomers. A laser automatically transfers nanometre-thin solid material spots from different donor slides to an acceptor. Each donor bears a thin polymer film, embedding one type of monomer. Coupling occurs in a separate heating step, where the matrix becomes viscous and building blocks diffuse and couple to the acceptor surface. Furthermore, we can consecutively deposit two material layers of activation reagents and amino acids. Subsequent heat-induced mixing facilitates an in situ activation and coupling of the monomers. This allows us to incorporate building blocks with click chemistry compatibility or a large variety of commercially available non-activated, for example, posttranslationally modified building blocks into the array's peptides with >17,000 spots per cm(2).

  5. Functional Hybrid Biomaterials based on Peptide-Polymer Conjugates for Nanomedicine

    NASA Astrophysics Data System (ADS)

    Shu, Jessica Yo

    The focus of this dissertation is the design, synthesis and characterization of hybrid functional biomaterials based on peptide-polymer conjugates for nanomedicine. Generating synthetic materials with properties comparable to or superior than those found in nature has been a "holy grail" for the materials community. Man-made materials are still rather simplistic when compared to the chemical and structural complexity of a cell. Peptide-polymer conjugates have the potential to combine the advantages of the biological and synthetic worlds---that is they can combine the precise chemical structure and diverse functionality of biomolecules with the stability and processibility of synthetic polymers. As a new family of soft matter, they may lead to materials with novel properties that have yet to be realized with either of the components alone. In order for peptide-polymer conjugates to reach their full potential as useful materials, the structure and function of the peptide should be maintained upon polymer conjugation. The success in achieving desirable, functional assemblies relies on fundamentally understanding the interactions between each building block and delicately balancing and manipulating these interactions to achieve targeted assemblies without interfering with designed structures and functionalities. Such fundamental studies of peptide-polymer interactions were investigated as the nature of the polymer (hydrophilic vs. hydrophobic) and the site of its conjugation (end-conjugation vs. side-conjugation) were varied. The fundamental knowledge gained was then applied to the design of amphiphiles that self-assemble to form stable functional micelles. The micelles exhibited exceptional monodispersity and long-term stability, which is atypical of self-assembled systems. Thus such micelles based on amphiphilic peptide-polymer conjugates may meet many current demands in nanomedicine, in particular for drug delivery of hydrophobic anti-cancer therapeutics. Lastly, biological evaluations were performed to investigate the potential of micelles as drug delivery vehicles. In vitro cell studies demonstrated that the micelles can be used as a delivery vehicle to tailor the cellular uptake, time release, and intracellular trafficking of drugs. In vivo biodistribution and pharmacokinetic experiments showed long blood circulation. This work demonstrates that peptide-polymer conjugates can be used as building blocks to generate hierarchical functional nanostructures with a wide range of applications, only one of which is drug delivery.

  6. Paris Saponin I Sensitizes Gastric Cancer Cell Lines to Cisplatin via Cell Cycle Arrest and Apoptosis.

    PubMed

    Song, Shuichuan; Du, Leiwen; Jiang, Hao; Zhu, Xinhai; Li, Jinhui; Xu, Ji

    2016-10-18

    BACKGROUND Dose-related toxicity is the major restriction of cisplatin and cisplatin-combination chemotherapy, and is a challenge for advanced gastric cancer treatment. We explored the possibility of using Paris saponin I as an agent to sensitize gastric cancer cells to cisplatin, and examined the underlying mechanism. MATERIAL AND METHODS Growth inhibition was detected by MTT assay. The cell cycle and apoptosis were detected using flow cytometry and Annexin V/PI staining. The P21waf1/cip1, Bcl-2, Bax, and caspase-3 protein expression were detected using Western blot analysis. RESULTS The results revealed that PSI sensitized gastric cancer cells to cisplatin, with low toxicity. The IC50 value of cisplatin in SGC-7901 cell lines was decreased when combined with PSI. PSI promoted cisplatin-induced G2/M phase arrest and apoptosis in a cisplatin concentration-dependent manner. Bcl-2 protein expression decreased, but Bax, caspase-3, and P21waf1/cip1 protein expression increased with PSI treatment. CONCLUSIONS The underlying mechanism of Paris saponin I may be related to targeting the apoptosis pathway and cell cycle blocking, which suggests that PSI is a potential therapeutic sensitizer for cisplatin in treating gastric cancer.

  7. Drug Modulators of B Cell Signaling Pathways and Epstein-Barr Virus Lytic Activation.

    PubMed

    Kosowicz, John G; Lee, Jaeyeun; Peiffer, Brandon; Guo, Zufeng; Chen, Jianmeng; Liao, Gangling; Hayward, S Diane; Liu, Jun O; Ambinder, Richard F

    2017-08-15

    Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus that establishes a latency reservoir in B cells. In this work, we show that ibrutinib, idelalisib, and dasatinib, drugs that block B cell receptor (BCR) signaling and are used in the treatment of hematologic malignancies, block BCR-mediated lytic induction at clinically relevant doses. We confirm that the immunosuppressive drugs cyclosporine and tacrolimus also inhibit BCR-mediated lytic induction but find that rapamycin does not inhibit BCR-mediated lytic induction. Further investigation shows that mammalian target of rapamycin complex 2 (mTORC2) contributes to BCR-mediated lytic induction and that FK506-binding protein 12 (FKBP12) binding alone is not adequate to block activation. Finally, we show that BCR signaling can activate EBV lytic induction in freshly isolated B cells from peripheral blood mononuclear cells (PBMCs) and that activation can be inhibited by ibrutinib or idelalisib. IMPORTANCE EBV establishes viral latency in B cells. Activation of the B cell receptor pathway activates lytic viral expression in cell lines. Here we show that drugs that inhibit important kinases in the BCR signaling pathway inhibit activation of lytic viral expression but do not inhibit several other lytic activation pathways. Immunosuppressant drugs such as cyclosporine and tacrolimus but not rapamycin also inhibit BCR-mediated EBV activation. Finally, we show that BCR activation of lytic infection occurs not only in tumor cell lines but also in freshly isolated B cells from patients and that this activation can be blocked by BCR inhibitors. Copyright © 2017 American Society for Microbiology.

  8. Return on Investment (ROI) Framework Case Study: CTH.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corro, Janna L.

    CTH is a Eulerian code developed at Sandia National Laboratories capable of modeling the hydrodynamic response of explosives, liquids, gases, and solids. The code solves complex multi-dimensional problems characterized by large deformations and strong shocks that are composed of various material configurations. CTH includes models for material strength, fracture, porosity, and high explosive detonation and initiation. The code is an acronym for a complex series of names relating to its origin. A full explanation can be seen in Appendix A. The software breaks penetration simulations into millions of grid-like “cells”. As a modeled projectile impacts and penetrates a target, progressivelymore » smaller blocks of cells are placed around the projectile, which show in detail deformations and breakups. Additionally, the code is uniquely suited to modeling blunt impact and blast loading leading to human body injury.« less

  9. Review of silicon photonics: history and recent advances

    NASA Astrophysics Data System (ADS)

    Ye, Winnie N.; Xiong, Yule

    2013-09-01

    Silicon photonics has attracted tremendous attention and research effort as a promising technology in optoelectronic integration for computing, communications, sensing, and solar harvesting. Mainly due to the combination of its excellent material properties and the complementary metal-oxide semiconductor (CMOS) fabrication processing technology, silicon has becoming the material choice for photonic and optoelectronic circuits with low cost, ultra-compact device footprint, and high-density integration. This review paper provides an overview on silicon photonics, by highlighting the early work from the mid-1980s on the fundamental building blocks such as silicon platforms and waveguides, and the main milestones that have been achieved so far in the field. A summary of reported work on functional elements in both passive and active devices, as well as the applications of the technology in interconnect, sensing, and solar cells, is identified.

  10. Directed self-assembly of block copolymers for nanolithography: fabrication of isolated features and essential integrated circuit geometries.

    PubMed

    Stoykovich, Mark P; Kang, Huiman; Daoulas, Kostas Ch; Liu, Guoliang; Liu, Chi-Chun; de Pablo, Juan J; Müller, Marcus; Nealey, Paul F

    2007-10-01

    Self-assembling block copolymers are of interest for nanomanufacturing due to the ability to realize sub-100 nm dimensions, thermodynamic control over the size and uniformity and density of features, and inexpensive processing. The insertion point of these materials in the production of integrated circuits, however, is often conceptualized in the short term for niche applications using the dense periodic arrays of spots or lines that characterize bulk block copolymer morphologies, or in the long term for device layouts completely redesigned into periodic arrays. Here we show that the domain structure of block copolymers in thin films can be directed to assemble into nearly the complete set of essential dense and isolated patterns as currently defined by the semiconductor industry. These results suggest that block copolymer materials, with their intrinsically advantageous self-assembling properties, may be amenable for broad application in advanced lithography, including device layouts used in existing nanomanufacturing processes.

  11. Curcumin and omega-3 fatty acids enhance NK cell-induced apoptosis of pancreatic cancer cells but curcumin inhibits interferon-γ production: benefits of omega-3 with curcumin against cancer.

    PubMed

    Fiala, Milan

    2015-02-12

    STAT-3 and STAT-1 signaling have opposite effects in oncogenesis with STAT-3 acting as an oncogene and STAT-1 exerting anti-oncogenic activities through interferon-γ and interferon-α. The cytokine IL-6 promotes oncogenesis by stimulation of NFκB and STAT-3 signaling. Curcuminoids have bi-functional effects by blocking NFκB anti-apoptotic signaling but also blocking anti-oncogenic STAT-1 signaling and interferon-γ production. In our recent study (unpublished work [1]) in pancreatic cancer cell cultures, curcuminoids enhanced cancer cell apoptosis both directly and by potentiating natural killer (NK) cell cytotoxic function. The cytotoxic effects of curcuminoids were increased by incubation of cancer cells and NK cells in an emulsion with omega-3 fatty acids and antioxidants (Smartfish), which enhanced cancer cell apoptosis and protected NK cells against degradation. However, as also shown by others, curcuminoids blocked interferon-γ production by NK cells. The combined use of curcuminoids and omega-3 in cancer immunotherapy will require deeper understanding of their in vivo interactions with the immune system.

  12. NASA Tech Briefs, July 2012

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics covered include: Instrument Suite for Vertical Characterization of the Ionosphere-Thermosphere System; Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure; Pattern Recognition Algorithm for High-Sensitivity Odorant Detection in Unknown Environments; Determining Performance Acceptability of Electrochemical Oxygen Sensors; Versatile Controller for Infrared Lamp and Heater Arrays; High-Speed Scanning Interferometer Using CMOS Image Sensor and FPGA Based on Multifrequency Phase-Tracking Detection; Ultra-Low-Power MEMS Selective Gas Sensors; Compact Receiver Front Ends for Submillimeter-Wave Applications; Dynamically Reconfigurable Systolic Array Accelerator; Blocking Losses With a Photon Counter; Motion-Capture-Enabled Software for Gestural Control of 3D Mod; Orbit Software Suite; CoNNeCT Baseband Processor Module Boot Code SoftWare (BCSW); Trajectory Software With Upper Atmosphere Model; ALSSAT Version 6.0; Employing a Grinding Technology to Assess the Microbial Density for Encapsulated Organisms; Demonstration of Minimally Machined Honeycomb Silicon Carbide Mirrors; Polyimide Aerogel Thin Films; Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites; Composite Laminate With Coefficient of Thermal Expansion Matching D263 Glass; Robust Tensioned Kevlar Suspension Design; Focal Plane Alignment Utilizing Optical CMM; Purifying, Separating, and Concentrating Cells From a Sample Low in Biomass; Virtual Ultrasound Guidance for Inexperienced Operators; Beat-to-Beat Blood Pressure Monitor; Non-Contact Conductivity Measurement for Automated Sample Processing Systems; An MSK Radar Waveform; Telescope Alignment From Sparsely Sampled Wavefront Measurements Over Pupil Subapertures; Method to Remove Particulate Matter from Dusty Gases at Low Pressures; Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile; Measurement Via Optical Near-Nulling and Subaperture Stitching; 885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System; Airborne Hyperspectral Imaging System; Heat Shield Employing Cured Thermal Protection Material Blocks Bonded in a Large-Cell Honeycomb Matrix; and Asymmetric Supercapacitor for Long-Duration Power Storage.

  13. An endogenous inhibitor of angiogenesis derived from a transitional cell carcinoma: clipped beta2-glycoprotein-I.

    PubMed

    Beecken, Wolf-Dietrich C; Engl, Tobias; Ringel, Eva M; Camphausen, Kevin; Michaelis, Martin; Jonas, Dietger; Folkman, Judah; Shing, Yuen; Blaheta, Roman A

    2006-09-01

    Invasive cell carcinoma of the bladder often develops after complete transurethral excision of superficial transitional cell carcinoma. It has been postulated that primary tumors release angiogenesis-blocking proteins which suppress distant metastases. We have identified an endogenous protein which might be responsible for tumor dormancy. A transitional cell carcinoma cell line was developed (UMUC-3i) which inhibits the growth of a tumor implant at a distant site in SCID mice. Conditioned media of UMUC-3i cultured cells was first pooled and then fractioned, and the capacity of individual components to block endothelial cell growth was tested. The protein fraction responsible for blocking endothelial cell growth was identified by N-terminal amino acid sequencing as well as by mass-spectrometry. The effects of the purified protein in preventing endothelial cell proliferation and tube formation in an in vitro angiogenesis assay was investigated. The plasma protein beta(2)-glycoprotein-I (beta(2)gpI) was isolated and identified from conditioned medium of UMUC-3i cultured cells. Based on the in vitro angiogenesis assay, beta(2)gpI strongly inhibited endothelial cell growth and tube formation, whereby the inhibitory activity corresponded to the clipped version of beta(2)gpI (cbeta(2)gpI). Clipping was induced by adding plasmin at a molar ratio 1:15 (plasmin:substrate). Further analysis indicated that cbeta(2)gpI effects were mediated by annexin II surface receptors expressed on endothelial cells. cbeta2gpI may be involved in blocking angiogenic processes and bladder cancer progression. In this case, cbeta2gpI may be a promising tool in bladder cancer therapy.

  14. Reducing leakage current in semiconductor devices

    DOEpatents

    Lu, Bin; Matioli, Elison de Nazareth; Palacios, Tomas Apostol

    2018-03-06

    A semiconductor device includes a first region having a first semiconductor material and a second region having a second semiconductor material. The second region is formed over the first region. The semiconductor device also includes a current blocking structure formed in the first region between first and second terminals of the semiconductor device. The current blocking structure is configured to reduce current flow in the first region between the first and second terminals.

  15. Polymer compositions based on PXE

    DOEpatents

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2015-09-15

    New polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers.

  16. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model.

    PubMed

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000-1,800 nm wavelengths and excluded 1,400-1,500 nm wavelengths. A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm(2) irradiation (P<0.05). We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in turn eye damage.

  17. Mesoporous Polymer Frameworks from End-Reactive Bottlebrush Copolymers

    DOE PAGES

    Altay, Esra; Nykypanchuk, Dmytro; Rzayev, Javid

    2017-08-07

    Reticulated nanoporous materials generated by versatile molecular framework approaches are limited to pore dimensions on the scale of the utilized rigid molecular building blocks (<5 nm). The inherent flexibility of linear polymers precludes their utilization as long framework connectors for the extension of this strategy to larger length scales. We report a method for the fabrication of mesoporous frameworks by using bottlebrush copolymers with reactive end blocks serving as rigid macromolecular interconnectors with directional reactivity. End-reactive bottlebrush copolymers with pendant alkene functionalities were synthesized by a combination of controlled radical polymerization and polymer modification protocols. Ru-catalyzed cross-metathesis cross-linking of bottlebrushmore » copolymers with two reactive end blocks resulted in the formation of polymer frameworks where isolated cross-linked domains were interconnected with bottlebrush copolymer bridges. The resulting materials were characterized by a continuous network pore structure with average pore sizes of 9–50 nm, conveniently tunable by the length of the utilized bottlebrush copolymer building blocks. As a result, the materials fabrication strategy described in this work expands the length scale of molecular framework materials and provides access to mesoporous polymers with a molecularly tunable reticulated pore structure without the need for templating, sacrificial component etching, or supercritical fluid drying.« less

  18. Charon's Smooth Plains

    NASA Astrophysics Data System (ADS)

    Beyer, R. A.; Spencer, J. R.; Nimmo, F.; Beddingfield, C.; Grundy, W. M.; McKinnon, W. B.; Moore, J.; Robbins, S.; Runyon, K.; Schenk, P.; Singer, K.; Weaver, H.; Young, L. A.; Ennico, K.; Olkin, C.; Stern, S. A.; New Horizons Science Team

    2018-06-01

    We hypothesize that Charon's smooth plains result from its global extension that caused crustal blocks to founder. Then, a viscous cryoflow composed of ammonia-rich mantle material rose up, enveloped the sinking blocks, and produced the plains.

  19. The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1 {yields} S transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay

    2011-07-01

    Highlights: {yields} TCP4 is a class II TCP transcription factor, that represses cell division in Arabidopsis. {yields} TCP4 expression in yeast retards cell division by blocking G1 {yields} S transition. {yields} Genome-wide expression studies and Western analysis reveals stabilization of cell cycle inhibitor Sic1, as possible mechanism. -- Abstract: The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, theirmore » exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 {yields} S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 {yields} S arrest is discussed.« less

  20. A new and standardized method to sample and analyse vitreous samples by the Cellient automated cell block system.

    PubMed

    Van Ginderdeuren, Rita; Van Calster, Joachim; Stalmans, Peter; Van den Oord, Joost

    2014-08-01

    In this prospective study, a universal protocol for sampling and analysing vitreous material was investigated. Vitreous biopsies are difficult to handle because of the paucity of cells and the gelatinous structure of the vitreous. Histopathological analysis of the vitreous is useful in difficult uveitis cases to differentiate uveitis from lymphoma or infection and to define the type of cellular reaction. Hundred consecutive vitreous samples were analysed with the Cellient tissue processor (Hologic). This machine is a fully automated processor starting from a specified container with PreservCyt (fixative fluid) with cells to paraffin. Cytology was compared with fixatives Cytolyt (contains a mucolyticum) and PreservCyt. Routine histochemical and immunostainings were evaluated. In 92% of the cases, sufficient material was found for diagnosis. In 14%, a Cytolyt wash was necessary to prevent clotting of the tubes in the Cellient due to the viscosity of the sample. In 23%, the diagnosis was an acute inflammation (presence of granulocytes); in 33%, chronic active inflammation (presence of T lymphocytes); in 33%, low-grade inflammation (presence of CD68 cells, without T lymphocytes); and in 3%, a malignant process. A standardized protocol for sampling and handling vitreous biopsies, fixing in PreservCyt and processing by the Cellient gives a satisfactory result in morphology, number of cells and possibility of immuno-histochemical stainings. The diagnosis can be established or confirmed in more than 90% of cases. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

Top