Science.gov

Sample records for cell carcinoma gene

  1. Expression and function of FERMT genes in colon carcinoma cells.

    PubMed

    Kiriyama, Kenji; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Kubo, Terufumi; Tamura, Yasuaki; Kanaseki, Takayuki; Takahashi, Akari; Nakazawa, Emiri; Saka, Eri; Ragnarsson, Charlotte; Nakatsugawa, Munehide; Inoda, Satoko; Asanuma, Hiroko; Takasu, Hideo; Hasegawa, Tadashi; Yasoshima, Takahiro; Hirata, Koichi; Sato, Noriyuki

    2013-01-01

    Invasion into the matrix is one of hallmarks of malignant diseases and is the first step for tumor metastasis. Thus, analysis of the molecular mechanisms of invasion is essential to overcome tumor cell invasion. In the present study, we screened for colon carcinoma-specific genes using a cDNA microarray database of colon carcinoma tissues and normal colon tissues, and we found that fermitin family member-1 (FERMT1) is overexpressed in colon carcinoma cells. FRRMT1, FERMT2 and FERMT3 expression was investigated in colon carcinoma cells. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that only FERMT1 had cancer cell-specific expression. Protein expression of FERMT1 was confirmed by western blotting and immunohistochemical staining. To address the molecular functions of FERMT genes in colon carcinoma cells, we established FERMT1-, FERMT2- and FERMT3-overexpressing colon carcinoma cells. FERMT1-overexpressing cells exhibited greater invasive ability than did FERMT2- and FERMT3-overexpressing cells. On the other hand, FERMT1-, FERMT2- and FERMT3-overexpressing cells exhibited enhancement of cell growth. Taken together, the results of this study indicate that FERMT1 is expressed specifically in colon carcinoma cells, and has roles in matrix invasion and cell growth. These findings indicate that FERMT1 is a potential molecular target for cancer therapy.

  2. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate.

    PubMed

    Guo, Charles C; Dancer, Jane Y; Wang, Yan; Aparicio, Ana; Navone, Nora M; Troncoso, Patricia; Czerniak, Bogdan A

    2011-01-01

    Recent studies have shown that most prostate cancers carry the TMPRSS2-ERG gene fusion. Here we evaluated the TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate (n = 12) in comparison with small cell carcinoma of the urinary bladder (n = 12) and lung (n = 11). Fluorescence in situ hybridization demonstrated rearrangement of the ERG gene in 8 cases of prostatic small cell carcinoma (67%), and the rearrangement was associated with deletion of the 5' ERG gene in 7 cases, but rearrangement of the ERG gene was not present in any small cell carcinoma of the urinary bladder or lung. Next we evaluated the TMPRSS2-ERG gene fusion in nude mouse xenografts that were derived from 2 prostatic small cell carcinomas carrying the TMPRSS2-ERG gene fusion. Two transcripts encoded by the TMPRSS2-ERG gene fusion were detected by reverse transcriptase polymerase chain reaction, and DNA sequencing demonstrated that the 2 transcripts were composed of fusions of exon 1 of the TMPRSS2 gene to exon 4 or 5 of the ERG gene. Our study demonstrates the specific presence of TMPRSS2-ERG gene fusion in prostatic small cell carcinoma, which may be helpful in distinguishing small cell carcinoma of prostatic origin from nonprostatic origins. The high prevalence of the TMPRSS2-ERG gene fusion in prostatic small cell carcinoma as well as adenocarcinoma implies that small cell carcinoma may share a common pathogenic pathway with adenocarcinoma in the prostate.

  3. Deregulation of lipid metabolism pathway genes in nasopharyngeal carcinoma cells

    PubMed Central

    DAKER, MAELINDA; BHUVANENDRAN, SAATHEEYAVAANE; AHMAD, MUNIRAH; TAKADA, KENZO; KHOO, ALAN SOO-BENG

    2012-01-01

    Nasopharyngeal carcinoma (NPC) is a unique tumour of epithelial origin with a distinct geographical distribution, closely associated with the Epstein-Barr virus (EBV). EBV-encoded RNAs (EBERs) are small non-polyadenylated RNAs that are abundantly expressed in latent EBV-infected NPC cells. To study the role of EBERs in NPC, we established stable expression of EBERs in HK1, an EBV-negative NPC cell line. Cells expressing EBERs consistently exhibited an increased growth rate. However, EBERs did not confer resistance towards cisplatin-induced apoptosis or promote migration or invasion ability in the cells tested. Using microarray gene expression profiling, we identified potential candidate genes that were deregulated in NPC cells expressing EBERs. Gene Ontology analysis of the data set revealed that EBERs upregulate the cellular lipid metabolic process. Upregulation of low-density lipoprotein receptor (LDLR) and fatty acid synthase (FASN) was observed in EBER-expressing cells. NPC cells exhibited LDL-dependent cell proliferation. In addition, a polyphenolic flavonoid compound, quercetin, known to inhibit FASN, was found to inhibit proliferation of NPC cells. PMID:23292678

  4. Identification and Characterization of Renal Cell Carcinoma Gene Markers

    PubMed Central

    Dalgin, Gul S.; Holloway, Dustin T.; Liou, Louis S.; DeLisi, Charles

    2007-01-01

    Microarray gene expression profiling has been used to distinguish histological subtypes of renal cell carcinoma (RCC), and consequently to identify specific tumor markers. The analytical procedures currently in use find sets of genes whose average differential expression across the two categories differ significantly. In general each of the markers thus identified does not distinguish tumor from normal with 100% accuracy, although the group as a whole might be able to do so. For the purpose of developing a widely used economically viable diagnostic signature, however, large groups of genes are not likely to be useful. Here we use two different methods, one a support vector machine variant, and the other an exhaustive search, to reanalyze data previously generated in our Lab (Lenburg et al. 2003). We identify 158 genes, each having an expression level that is higher (lower) in every tumor sample than in any normal sample, and each having a minimum differential expression across the two categories at a significance of 0.01. The set is highly enriched in cancer related genes (p = 1.6 × 10−12), containing 43 genes previously associated with either RCC or other types of cancer. Many of the biomarkers appear to be associated with the central alterations known to be required for cancer transformation. These include the oncogenes JAZF1, AXL, ABL2; tumor suppressors RASD1, PTPRO, TFAP2A, CDKN1C; and genes involved in proteolysis or cell-adhesion such as WASF2, and PAPPA. PMID:19455236

  5. p16 gene expression in basal cell carcinoma.

    PubMed

    Eshkoor, Sima Ataollahi; Ismail, Patimah; Rahman, Sabariah Abdul; Oshkour, Soraya Ataollahi

    2008-10-01

    Basal cell carcinoma (BCC) develops predominantly in sun-exposed skin in fair-skinned individuals prone to sunburn. BCC typically occurs in adults. High exposure to ultraviolet (UV) radiation increases rate of developing BCC, a slowly growing tumor that occurs in hair-growing squamous epithelium and rarely metastasizes. In genetic studies, BCC patients have cell-cycle abnormalities of different parts of the signaling pathway. Retinoblastoma regulatory pathway is important in cell cycle arrest. In this pathway, p16INK4a, an inhibitor of Rb pathway, binds to CDK4 and CDK6 competitively with cyclin D1 to prevent phosphorylation of tumor suppressor pRB gene. Alteration of this pathway contributes to development of human cancers and also is effective in skin cancers. In this study, we analyzed mRNA expression using in situ RT-PCR and the role of immunohistochemical expression of p16INK4a in BCC. Expression of p16 in ten samples of Iranian paraffin-embedded skin BCC were studied using in situ RT-PCR and immunohistochemistry on p16INK4a gene. Nuclear and cytoplasmic staining intensity of samples within tumor cells and normal skin tissue illustrates different mRNA and protein expression of p16 gene. mRNA of p16 gene and the expressed protein induce cell cycle proliferation and involve both tumor tissue as well as normal skin tissue. However, in this study it was found that there is significant protein and mRNA expression in BCC cells when compared to normal skin tissue (p<0.05). p16 gene is involved in the pathogenesis of human skin BCC in view of increased p16 mRNA and expressed protein within tumor cells.

  6. Genetic alterations of HER genes in chromophobe renal cell carcinoma

    PubMed Central

    WENG, WEN HUI; CHEN, YING TZU; YU, KAI JIE; CHANG, YING HSU; CHUANG, CHENG KENG; PANG, SEE TONG

    2016-01-01

    Chromophobe (ch) renal cell carcinoma (RCC) is the 3rd most common subtype of RCC and occurs in 5% of all RCCs. Although chRCC generally demonstrates more favorable outcomes compared with other subtypes of RCC, there is a 6–7% probability of tumor progression and metastasis in this disease. The subclassification of a more aggressive subtype of chRCC may be useful for the management of this cancer. The Erb-B2 receptor tyrosine kinase 2 [also known as human epidermal growth factor receptor (HER) 2] gene has been reported to be important in chRCC. The present study aimed to further investigate the abnormalities of the HER family genes and their potential association with chRCC. Fluorescence in situ hybridization was performed on 11 chRCC tissue specimens, and the Spearman's rank correlation coefficient analysis was used to assess the results. The loss of one copy of the HER2 and HER4 genes was observed to be the major alteration of the tumor cells in all chRCC cases. Statistical data indicated that loss of the HER2 gene was strongly correlated with loss of the HER4 gene (P=0.019). The findings of previous studies were also combined for analysis, and were consistent with those of the present study. In addition, the amplification of HER1 was also strongly correlated with the amplification of HER4 (P=0.004). Furthermore, a high percentage of genetic structural rearrangements was observed in HER3 genes, which was significantly associated with amplification of HER2 (P=0.005). Certain alterations in the HER gene family were also noted as a phenomenom in chRCC. Therefore, the characterization of the underlying aberrant functions of HER genes may be of interest for additional studies in the context of using HER genes to distinguish between RCC subtypes in order to establish improved treatment guidelines. PMID:26998131

  7. Gene profiling analysis for patients with oral verrucous carcinoma and oral squamous cell carcinoma

    PubMed Central

    Wang, Yue-Hong; Tian, Xin; Liu, Ou-Sheng; Fang, Xiao-Dan; Quan, Hong-Zhi; Xie, Shang; Gao, Shan; Tang, Zhan-Gui

    2014-01-01

    Oral verrucous carcinoma (OVC) is one malignant tumor which was carved out from the oral squamous cell carcinoma (OSCC). However, the clinical and pathological features as well as the treatment strategies of OVC are different from OSCC. Here, global transcript abundance of tumor tissues from five patients with primary OVC and six patients with primary OSCC including their matched adjacently normal oral mucosa were profiled using the Affymetrix HGU133 Plus 2.0. Ingenuity Systems IPA software was used to analyse the gene function and biological pathways. There were 109 differentially expressed genes (more than 2-fold) between OVC and the adjacently normal tissue, among them 66 were up-regulated and 43 were down-regulated; 1172 differentially expressed genes (more than 2-fold) between OSCC and the adjacently normal tissue, among them 608 were up-regulated and 564 were down-regulated. There were 39 common differentially expressed genes in OVC and OSCC compared with their matched normal oral mucosa, among them 22 up-regulated and 17 down-regulated, and 8 of them different between OVC and OSCC. In addition, the gene expression profile was further validated by quantitative real-time PCR (Q-RT-PCR) analysis for four of those 39 selected genes. PMID:25126189

  8. New mutation of the PTCH gene in nevoid basal-cell carcinoma syndrome with West syndrome.

    PubMed

    Tachi, Nobutada; Fujii, Katsunori; Kimura, Mitsugu; Seki, Kouhei; Hirakai, Masahisa; Miyashita, Toshiyuki

    2007-11-01

    Neurologic involvement in nevoid basal-cell carcinoma syndrome includes intracranial calcification, congenital hydrocephalus, intracranial neoplasms, and mental retardation. A few cases of epilepsy with nevoid basal-cell carcinoma syndrome were reported. We report on a patient with nevoid basal-cell carcinoma syndrome and West syndrome. The patient had a heterozygous mutation (insertion of TGGC) in the PTCH gene. This mutation causes a shift of the reading frame, and creates a stop codon predicting the truncation of the PTCH protein. This mutation was not found in previously described patients with nevoid basal-cell carcinoma syndrome.

  9. New approaches to pathogenic gene function discovery with human squamous cell cervical carcinoma by gene ontology.

    PubMed

    Seo, Min-Jae; Bae, Su Mi; Kim, Yong-Wan; Kim, Yong Wook; Hur, Soo Young; Ro, Duck Young; Lee, Joon Mo; Namkoong, Sung Eun; Kim, Chong Kook; Ahn, Woong Shick

    2005-03-01

    This study utilized mRNA differential display and the Gene Ontology (GO) analysis to characterize the multiple interactions of a number of genes with gene expression profile involved in squamous cell cervical carcinoma. mRNA differential displays were used to identify potential transcripts that were differentially expressed between cervix cancers of 13 patients (invasive cancer stages Ib-IIb) and universal reference RNAs comprised of 17 different normal cervixes. Aberrant bands were excised and used to make cDNA, which was sequenced. DNA sequences were compared to other nucleic acids in the NCBR database for homology. Transcript expression was verified in select samples using RT-PCR and North blotting. The specific functions were correlated with gene expression patterns via gene ontology. Fifty-eight genes were up- or down-regulated above 2-fold and organized into reciprocally dependent sub-function sets depending on the cervical cancer pathway. The GO analysis showed that squamous cell cervical carcinogenesis underwent complete up-regulation of cell cycle, transport, epidermal differentiation, protein biosynthesis, and RNA metabolism. Also, genes belonging to protein metabolism and catabolism activity were significantly up-regulated. In contrast, significant down-regulation was shown in muscle development, cell adhesion, and damaged DNA binding activity. The GO analysis can overcome the complexity of the gene expression profile of the squamous cell cervical carcinoma-associated pathway and identify several cancer-specific cellular processes as well as genes of unknown function. Also, GO analysis can serve as a powerful basis for a molecular classification of carcinogenesis.

  10. Nevoid basal cell carcinoma syndrome

    MedlinePlus

    NBCC syndrome; Gorlin-Goltz syndrome; Basal cell nevus syndrome; BCNS; Basal cell cancer - nevoid basal cell carcinoma syndrome ... Nevoid basal cell carcinoma nevus syndrome is a rare genetic condition. The gene linked to the syndrome is known as PTCH (" ...

  11. Expression and Regulatory Effects of Murine Schlafen (Slfn) Genes in Malignant Melanoma and Renal Cell Carcinoma*

    PubMed Central

    Mavrommatis, Evangelos; Arslan, Ahmet Dirim; Sassano, Antonella; Hua, Youjia; Kroczynska, Barbara; Platanias, Leonidas C.

    2013-01-01

    There is emerging evidence that the IFN-inducible family of Slfn genes and proteins play important roles in cell cycle progression and control of cellular proliferation, but the precise functional roles of different Slfn members in the regulation of tumorigenesis remain unclear. In the present study, we undertook a systematic analysis on the expression and functional relevance of different mouse Slfn genes in malignant melanoma and renal cell carcinoma cells. Our studies demonstrate that several mouse Slfn genes are up-regulated in response to IFN treatment of mouse melanoma and renal cell carcinoma cells, including Slfn1, Slfn2, Slfn4, Slfn5, and Slfn8. Our data show that Slfn2 and Slfn3 play essential roles in the control of mouse malignant melanoma cell proliferation and/or anchorage-independent growth, suggesting key and non-overlapping roles for these genes in the control of malignant melanoma tumorigenesis. In renal cell carcinoma cells, in addition to Slfn2 and Slfn3, Slfn5 also exhibits important antineoplastic effects. Altogether, our findings indicate important functions for distinct mouse Slfn genes in the control of tumorigenesis and provide evidence for differential involvement of distinct members of this gene family in controlling tumorigenesis. They also raise the potential of future therapeutic approaches involving modulation of expression of members of this family of genes in malignant melanoma and renal cell carcinoma. PMID:24089532

  12. Expression and regulatory effects of murine Schlafen (Slfn) genes in malignant melanoma and renal cell carcinoma.

    PubMed

    Mavrommatis, Evangelos; Arslan, Ahmet Dirim; Sassano, Antonella; Hua, Youjia; Kroczynska, Barbara; Platanias, Leonidas C

    2013-11-15

    There is emerging evidence that the IFN-inducible family of Slfn genes and proteins play important roles in cell cycle progression and control of cellular proliferation, but the precise functional roles of different Slfn members in the regulation of tumorigenesis remain unclear. In the present study, we undertook a systematic analysis on the expression and functional relevance of different mouse Slfn genes in malignant melanoma and renal cell carcinoma cells. Our studies demonstrate that several mouse Slfn genes are up-regulated in response to IFN treatment of mouse melanoma and renal cell carcinoma cells, including Slfn1, Slfn2, Slfn4, Slfn5, and Slfn8. Our data show that Slfn2 and Slfn3 play essential roles in the control of mouse malignant melanoma cell proliferation and/or anchorage-independent growth, suggesting key and non-overlapping roles for these genes in the control of malignant melanoma tumorigenesis. In renal cell carcinoma cells, in addition to Slfn2 and Slfn3, Slfn5 also exhibits important antineoplastic effects. Altogether, our findings indicate important functions for distinct mouse Slfn genes in the control of tumorigenesis and provide evidence for differential involvement of distinct members of this gene family in controlling tumorigenesis. They also raise the potential of future therapeutic approaches involving modulation of expression of members of this family of genes in malignant melanoma and renal cell carcinoma.

  13. Estrogen-Responsive Genes Overlap with Triiodothyronine-Responsive Genes in a Breast Carcinoma Cell Line

    PubMed Central

    Cestari, Sílvia Helena; Conde, Sandro José; Luvizotto, Renata Azevedo Melo; De Sibio, Maria Teresa; Perone, Denise; Katayama, Maria Lúcia Hirata; Carraro, Dirce Maria; Brentani, Helena Paula; Brentani, Maria Mitzi; Nogueira, Célia Regina

    2014-01-01

    It has been well established that estrogen plays an important role in the progression and treatment of breast cancer. However, the role of triiodothyronine (T3) remains controversial. We have previously shown its capacity to stimulate the development of positive estrogen receptor breast carcinoma, induce the expression of genes (PR, TGF-alpha) normally stimulated by estradiol (E2), and suppress genes (TGF-beta) normally inhibited by E2. Since T3 regulates growth hormones, metabolism, and differentiation, it is important to verify its action on other genes normally induced by E2. Therefore, we used DNA microarrays to compare gene expression patterns in MCF-7 breast adenocarcinoma cells treated with E2 and T3. Several genes were modulated by both E2 and T3 in MCF-7 cells (Student's t-test, P < 0.05). Specifically, we found eight genes that were differentially expressed after treatment with both E2 and T3, including amphiregulin, fibulin 1, claudin 6, pericentriolar material 1, premature ovarian failure 1B, factor for adipocyte differentiation-104, sterile alpha motif domain containing 9, and likely ortholog of rat vacuole membrane protein 1 (fold change > 2.0, pFDR < 0.05). We confirmed our microarray results by real-time PCR. Our findings reveal that certain genes in MCF-7 cells can be regulated by both E2 and T3. PMID:24587767

  14. Evaluating hepatocellular carcinoma cell lines for tumour samples using within-sample relative expression orderings of genes.

    PubMed

    Ao, Lu; Guo, You; Song, Xuekun; Guan, Qingzhou; Zheng, Weicheng; Zhang, Jiahui; Huang, Haiyan; Zou, Yi; Guo, Zheng; Wang, Xianlong

    2017-05-08

    Concerns are raised about the representativeness of cell lines for tumours due to the culture environment and misidentification. Liver is a major metastatic destination of many cancers, which might further confuse the origin of hepatocellular carcinoma cell lines. Therefore, it is of crucial importance to understand how well they can represent hepatocellular carcinoma. The HCC-specific gene pairs with highly stable relative expression orderings in more than 99% of hepatocellular carcinoma but with reversed relative expression orderings in at least 99% of one of the six types of cancer, colorectal carcinoma, breast carcinoma, non-small-cell lung cancer, gastric carcinoma, pancreatic carcinoma and ovarian carcinoma, were identified. With the simple majority rule, the HCC-specific relative expression orderings from comparisons with colorectal carcinoma and breast carcinoma could exactly discriminate primary hepatocellular carcinoma samples from both primary colorectal carcinoma and breast carcinoma samples. Especially, they correctly classified more than 90% of liver metastatic samples from colorectal carcinoma and breast carcinoma to their original tumours. Finally, using these HCC-specific relative expression orderings from comparisons with six cancer types, we identified eight of 24 hepatocellular carcinoma cell lines in the Cancer Cell Line Encyclopedia (Huh-7, Huh-1, HepG2, Hep3B, JHH-5, JHH-7, C3A and Alexander cells) that are highly representative of hepatocellular carcinoma. Evaluated with a REOs-based prognostic signature for hepatocellular carcinoma, all these eight cell lines showed the same metastatic properties of the high-risk metastatic hepatocellular carcinoma tissues. Caution should be taken for using hepatocellular carcinoma cell lines. Our results should be helpful to select proper hepatocellular carcinoma cell lines for biological experiments. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism.

    PubMed

    Gatto, Francesco; Miess, Heike; Schulze, Almut; Nielsen, Jens

    2015-06-04

    Flux balance analysis is the only modelling approach that is capable of producing genome-wide predictions of gene essentiality that may aid to unveil metabolic liabilities in cancer. Nevertheless, a systemic validation of gene essentiality predictions by flux balance analysis is currently missing. Here, we critically evaluated the accuracy of flux balance analysis in two cancer types, clear cell renal cell carcinoma (ccRCC) and prostate adenocarcinoma, by comparison with large-scale experiments of gene essentiality in vitro. We found that in ccRCC, but not in prostate adenocarcinoma, flux balance analysis could predict essential metabolic genes beyond random expectation. Five of the identified metabolic genes, AGPAT6, GALT, GCLC, GSS, and RRM2B, were predicted to be dispensable in normal cell metabolism. Hence, targeting these genes may selectively prevent ccRCC growth. Based on our analysis, we discuss the benefits and limitations of flux balance analysis for gene essentiality predictions in cancer metabolism, and its use for exposing metabolic liabilities in ccRCC, whose emergent metabolic network enforces outstanding anabolic requirements for cellular proliferation.

  16. Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism

    PubMed Central

    Gatto, Francesco; Miess, Heike; Schulze, Almut; Nielsen, Jens

    2015-01-01

    Flux balance analysis is the only modelling approach that is capable of producing genome-wide predictions of gene essentiality that may aid to unveil metabolic liabilities in cancer. Nevertheless, a systemic validation of gene essentiality predictions by flux balance analysis is currently missing. Here, we critically evaluated the accuracy of flux balance analysis in two cancer types, clear cell renal cell carcinoma (ccRCC) and prostate adenocarcinoma, by comparison with large-scale experiments of gene essentiality in vitro. We found that in ccRCC, but not in prostate adenocarcinoma, flux balance analysis could predict essential metabolic genes beyond random expectation. Five of the identified metabolic genes, AGPAT6, GALT, GCLC, GSS, and RRM2B, were predicted to be dispensable in normal cell metabolism. Hence, targeting these genes may selectively prevent ccRCC growth. Based on our analysis, we discuss the benefits and limitations of flux balance analysis for gene essentiality predictions in cancer metabolism, and its use for exposing metabolic liabilities in ccRCC, whose emergent metabolic network enforces outstanding anabolic requirements for cellular proliferation. PMID:26040780

  17. Expression of insulin-like growth factor family genes in clear cell renal cell carcinoma

    PubMed Central

    Białożyt, Michał; Plato, Marta; Mazurek, Urszula; Braczkowska, Bogumiła

    2016-01-01

    Aim of the study Despite significant progress in the pathology of clear cell renal cell carcinoma (ccRCC), diagnostic and predictive factors of major importance have not been discovered. Some hopes are associated with insulin-like growth factors. The aim of the study was to compare the expression of genes for insulin-like growth factor family in tumours and in tissue of kidneys without cancer. Material and methods Fifty-two patients years with clear cell renal cell cancer were qualified to the study group; patients nephrectomised because of hydronephrosis were included in the control group. Expression of genes were evaluated by RT-PCR. Results Expression of IGFR-1 gene in tumour accounts for about 60% of cases. The incidence is higher than in corresponding adjacent non-cancerous kidney tissues and higher (but with no statistical significance) than in kidney without cancer. Expression of IGFR-2 gene in tumours has not been established. The incidence of the expression in corresponding adjacent non-cancerous kidney tissues is small. Expression of this gene has been present in all specimens from kidneys without cancer. Expression of IGFBP-3 gene ascertained in all (except four) cases of ccRCC and in the majority of clippings from adjacent tissue. It was not found in kidneys from the control group. IGF-1, IGF-2, and IGFR-1 mRNA copy numbers in ccRCC were higher than in the material from the control group PMID:27358591

  18. Identification of genes associated with renal cell carcinoma using gene expression profiling analysis.

    PubMed

    Yao, Ting; Wang, Qinfu; Zhang, Wenyong; Bian, Aihong; Zhang, Jinping

    2016-07-01

    Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults and accounts for ~80% of all kidney cancer cases. However, the pathogenesis of RCC has not yet been fully elucidated. To interpret the pathogenesis of RCC at the molecular level, gene expression data and bio-informatics methods were used to identify RCC associated genes. Gene expression data was downloaded from Gene Expression Omnibus (GEO) database and identified differentially coexpressed genes (DCGs) and dysfunctional pathways in RCC patients compared with controls. In addition, a regulatory network was constructed using the known regulatory data between transcription factors (TFs) and target genes in the University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) and the regulatory impact factor of each TF was calculated. A total of 258,0427 pairs of DCGs were identified. The regulatory network contained 1,525 pairs of regulatory associations between 126 TFs and 1,259 target genes and these genes were mainly enriched in cancer pathways, ErbB and MAPK. In the regulatory network, the 10 most strongly associated TFs were FOXC1, GATA3, ESR1, FOXL1, PATZ1, MYB, STAT5A, EGR2, EGR3 and PELP1. GATA3, ERG and MYB serve important roles in RCC while FOXC1, ESR1, FOXL1, PATZ1, STAT5A and PELP1 may be potential genes associated with RCC. In conclusion, the present study constructed a regulatory network and screened out several TFs that may be used as molecular biomarkers of RCC. However, future studies are needed to confirm the findings of the present study.

  19. Identification of genes associated with renal cell carcinoma using gene expression profiling analysis

    PubMed Central

    YAO, TING; WANG, QINFU; ZHANG, WENYONG; BIAN, AIHONG; ZHANG, JINPING

    2016-01-01

    Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults and accounts for ~80% of all kidney cancer cases. However, the pathogenesis of RCC has not yet been fully elucidated. To interpret the pathogenesis of RCC at the molecular level, gene expression data and bio-informatics methods were used to identify RCC associated genes. Gene expression data was downloaded from Gene Expression Omnibus (GEO) database and identified differentially coexpressed genes (DCGs) and dysfunctional pathways in RCC patients compared with controls. In addition, a regulatory network was constructed using the known regulatory data between transcription factors (TFs) and target genes in the University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) and the regulatory impact factor of each TF was calculated. A total of 258,0427 pairs of DCGs were identified. The regulatory network contained 1,525 pairs of regulatory associations between 126 TFs and 1,259 target genes and these genes were mainly enriched in cancer pathways, ErbB and MAPK. In the regulatory network, the 10 most strongly associated TFs were FOXC1, GATA3, ESR1, FOXL1, PATZ1, MYB, STAT5A, EGR2, EGR3 and PELP1. GATA3, ERG and MYB serve important roles in RCC while FOXC1, ESR1, FOXL1, PATZ1, STAT5A and PELP1 may be potential genes associated with RCC. In conclusion, the present study constructed a regulatory network and screened out several TFs that may be used as molecular biomarkers of RCC. However, future studies are needed to confirm the findings of the present study. PMID:27347102

  20. Gene expression profiling identifies genes predictive of oral squamous cell carcinoma.

    PubMed

    Chen, Chu; Méndez, Eduardo; Houck, John; Fan, Wenhong; Lohavanichbutr, Pawadee; Doody, Dave; Yueh, Bevan; Futran, Neal D; Upton, Melissa; Farwell, D Gregory; Schwartz, Stephen M; Zhao, Lue Ping

    2008-08-01

    Oral squamous cell carcinoma (OSCC) is associated with substantial mortality and morbidity. To identify potential biomarkers for the early detection of invasive OSCC, we compared the gene expressions of incident primary OSCC, oral dysplasia, and clinically normal oral tissue from surgical patients without head and neck cancer or preneoplastic oral lesions (controls), using Affymetrix U133 2.0 Plus arrays. We identified 131 differentially expressed probe sets using a training set of 119 OSCC patients and 35 controls. Forward and stepwise logistic regression analyses identified 10 successive combinations of genes which expression differentiated OSCC from controls. The best model included LAMC2, encoding laminin-gamma2 chain, and COL4A1, encoding collagen, type IV alpha1 chain. Subsequent modeling without these two markers showed that COL1A1, encoding collagen, type I alpha1 chain, and PADI1, encoding peptidyl arginine deiminase, type 1, could also distinguish OSCC from controls. We validated these two models using an internal independent testing set of 48 invasive OSCC and 10 controls and an external testing set of 42 head and neck squamous cell carcinoma cases and 14 controls (GEO GSE6791), with sensitivity and specificity above 95%. These two models were also able to distinguish dysplasia (n = 17) from control (n = 35) tissue. Differential expression of these four genes was confirmed by quantitative reverse transcription-PCR. If confirmed in larger studies, the proposed models may hold promise for monitoring local recurrence at surgical margins and the development of second primary oral cancer in patients with OSCC.

  1. Suicide gene therapy using adenovirus vector for human oral squamous carcinoma cell line in vitro.

    PubMed

    Yamamoto, Noriyuki; Hayashi, Yasushi; Kagami, Hideaki; Fukui, Takafumi; Fukuhara, Hirokazu; Tohnai, Iwai; Ueda, Minoru; Mizuno, Masaaki; Yoshida, Jun

    2005-06-01

    Recently, suicide gene therapy using the herpes simplex virus thymidine kinase (HSVtk) gene followed by ganciclovir (GCV) administration was evaluated for the treatment of cancer. The purpose of this study was to investigate the effectiveness of suicide gene therapy using the replication-deficient recombinant adenovirus vector for human oral squamous carcinoma cell lines. To evaluate transduction efficiency, each cell line was transduced in vitro with an adenovirus vector containing the beta-galactosidase gene. By 24 hours after transduction, nearly 100% of the cells were transduced at a multiplicity of infection (MOI) of 10, and from 30 to 10% at an MOI of 1. Next, each cell line was transduced with an adenovirus vector containing the HSVtk gene, and a subsequent administration of GCV for the assessment of suicide gene therapy. A subsequent administration of GCV resulted in complete tumor cell death. In addition, we conducted a morphological analysis of that cell death using video-enhanced contrast differential interference contrast microscopy, and we observed that it included both apoptosis and necrosis after HSVtk gene and GCV treatment. These results suggest that adenovirus-mediated suicide gene therapy induced remarkable cytotoxicity with a bystander effect in human oral squamous cell carcinoma thus suggesting an effective treatment strategy for that tumor.

  2. Profiling of Hepatocellular Carcinoma Cell Cycle Regulating Genes Targeted by Calycosin

    PubMed Central

    Zhang, Dongqing; Wang, Shufang; Zhu, Liguo; Tian, Yaping; Wang, Haibao; Zhuang, Yuan; Li, Yu; Wang, Deqing

    2013-01-01

    We cocultured calycosin with human hepatocellular carcinoma cell line (BEL-7402) to investigate the effect on cell proliferation. Calycosin can markedly block the cell growth in G1 phase (P < 0.01) on the IC50 concentration. There were seventeen genes involved in cell-cycle regulation showing differentially expressed in treated cells detected by gene chip. Eight genes were upregulated and nine genes were downregulated. Downregulated TFDP-1, CDKN2D, and SPK2 and upregulated CDC2 and CCNB1 might affect cell cycle of tumor cells. Furthermore, we checked the transcription pattern using 2D gel method to find different expression of proteins in human hepatocellular carcinoma cells after exposure to calycosin. Fourteen proteins were identified by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Twelve proteins expression were increased such as transgelin 2, pyridoxine 5′-phosphate, stress-induced-phosphoprotein 1, peroxiredoxin 1, endoplasmic reticulum protein 29, and phosphoglycerate mutase 1. Only thioredoxin peroxidase and high-mobility group box1 proteins' expression decreased. Both genes and proteins changes might be relate to the mechanism of antitumor effect under treatment of calycosin. In conclusion, calycosin has a potential effect to inhibit the BEL-7402 cell growth by inhibiting some oncogene expression and increasing anticancer genes expression, what is more, by blocking cell cycle. PMID:24455688

  3. Retinoid-mediated transcriptional regulaton of keratin genes in human epidermal and squamous cell carcinoma cells

    SciTech Connect

    Stellmach, V.; Leask, A.; Fuchs, E. )

    1991-06-01

    Vitamin A and other retinoids profoundly inhibit morphological and biochemical heatures of epidermal differentiation in vivo and in vitro. To elucidate the molecular mechanisms underlying the differential expression of epidermal keratins and their regulation by retinoids, the authors retinoid-mediated changes in total protein expression, protein synthesis, mRNA expression, and transcription in cultured human keratinocytes and in squamous cell carcinoma (SCC-13) cells of epidermal origin. The studies revealed that the epidermal keratins, K5, K6, K14, and K16, their mRNAs, and their transcripts were diminished relative to actin as a consequence of retinoic acid (RA) treatment. The effects were most pronounced in SCC-13 and were detected as early as 6 hr post-RA treatment, with enhancement over an additional 24-48 hr. Repression was also observed when 5{prime} upstream sequences of K14 or K5 genes were used to drive expression of a chloramphenicol acetyltransferase reporter gene in SCC-13 keratinocytes. Both cell types were found to express mRNAs for the RA receptors {alpha} and {gamma}, which may be involved in the RA-mediated transcriptional changes in these cells. The rapid transcriptional changes in epidermal keratin genes were in striking contrast to the previously reported slow transcriptional changes in simple epithelial keratin genes.

  4. Germline mutations of the PTCH gene in Japanese patients with nevoid basal cell carcinoma syndrome.

    PubMed

    Minami, M; Urano, Y; Ishigami, T; Tsuda, H; Kusaka, J; Arase, S

    2001-09-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterized by developmental and skeletal anomalies, palmo-plantar pits, odontogenic keratocysts, ectopic calcification, and occurrence of various types of tumors including basal cell carcinoma. Recent evidence has indicated that the human homologue of a Drosophila segment polarity gene, PTCH, is a NBCCS susceptibility gene. In the study presented here, we detected two novel mutations of the PTCH gene, I805X/2395delC and Y93X/C297A, in two unrelated Japanese patients. Early protection of the skin from the sunlight is important to the prevention of BCC development in NBCCS patients. Genetic analysis of the PTCH gene is essential for the early, definitive diagnosis of NBCCS, especially before the expression of clinical manifestations is complete.

  5. Expression of Von Hippel – Lindau (VHL) gene mutation in diagnosed cases of renal cell carcinoma

    PubMed Central

    Shahzad, Humera; Kehar, Shahnaz Imdad; Ali, Shahzad; Tariq, Naila

    2014-01-01

    Objective: To evaluate the expression of Von Hippel Lindau (VHL) gene in diagnosed cases of renal cell carcinoma. Methods: This cross sectional study was conducted in department of Pathology, Basic Medical Sciences Institute, JPMC, Karachi, from January 2007 to December 2012. Paraffin embedded blocks of 30 cases of radical nephrectomy specimens diagnosed as renal cell carcinoma including CCRCC 21 (70%) CCPRCC, 3 (10%), PRCC 2 (6.79%), hybrid tumor 4 (13.3%), chromophobe tumor (0%) processed for VHL gene expression on Polymerase Chain Reaction. Results: All the 30 cases previously diagnosed as renal cell carcinoma were processed on PCR, VHL gene mutations were seen in 20 (95.23%) of CCRCC while a single case was negative for VHL mutations. All CCPRCC were negative for VHL mutation. Among the hybrid tumor 03 cases with foci of clear cells show VHL mutation while a single case showing combination of clear cells and chromophobe cells was negative for mutation. Both the cases of PRCC were positive for mutation. Exon 3 mutation at base pair 194 seen in 8 (32%) cases and Exon 2 mutation at base pair 150-159 seen in 17 (68%) cases. None of the cases showed Exon 1 mutation. Conclusion: The present study shows that majority of CCRCC showed VHL mutation including the hybrid tumor with clear cell component in our population. PMID:25097537

  6. Genes associated with genotype-specific DNA methylation in squamous cell carcinoma as candidate drug targets

    PubMed Central

    2014-01-01

    Background Aberrant DNA methylation is often associated with cancers. Thus, screening genes with cancer-associated aberrant DNA methylation is a useful method to identify candidate cancer-causing genes. Aberrant DNA methylation is also genotype dependent. Thus, the selection of genes with genotype-specific aberrant DNA methylation in cancers is potentially important for tailor-made medicine. The selected genes are important candidate drug targets. Results The recently proposed principal component analysis based selection of genes with aberrant DNA methylation was applied to genotype and DNA methylation patterns in squamous cell carcinoma measured using single nucleotide polymorphism (SNP) arrays. SNPs that are frequently found in cancers are usually highly methylated, and the genes that were selected using this method were reported previously to be related to cancers. Thus, genes with genotype-specific DNA methylation patterns will be good therapeutic candidates. The tertiary structures of the proteins encoded by the selected genes were successfully inferred using two profile-based protein structure servers, FAMS and Phyre2. Candidate drugs for three of these proteins, tyrosine kinase receptor (ALK), EGLN3 protein, and NUAK family SNF1-like kinase 1 (NUAK1), were identified by ChooseLD. Conclusions We detected genes with genotype-specific DNA methylation in squamous cell carcinoma that are candidate drug targets. Using in silico drug discovery, we successfully identified several candidate drugs for the ALK, EGLN3 and NUAK1 genes that displayed genotype-specific DNA methylation. PMID:24565165

  7. HNdb: an integrated database of gene and protein information on head and neck squamous cell carcinoma

    PubMed Central

    Henrique, Tiago; José Freitas da Silveira, Nelson; Henrique Cunha Volpato, Arthur; Mioto, Mayra Mataruco; Carolina Buzzo Stefanini, Ana; Bachir Fares, Adil; Gustavo da Silva Castro Andrade, João; Masson, Carolina; Verónica Mendoza López, Rossana; Daumas Nunes, Fabio; Paulo Kowalski, Luis; Severino, Patricia; Tajara, Eloiza Helena

    2016-01-01

    The total amount of scientific literature has grown rapidly in recent years. Specifically, there are several million citations in the field of cancer. This makes it difficult, if not impossible, to manually retrieve relevant information on the mechanisms that govern tumor behavior or the neoplastic process. Furthermore, cancer is a complex disease or, more accurately, a set of diseases. The heterogeneity that permeates many tumors is particularly evident in head and neck (HN) cancer, one of the most common types of cancer worldwide. In this study, we present HNdb, a free database that aims to provide a unified and comprehensive resource of information on genes and proteins involved in HN squamous cell carcinoma, covering data on genomics, transcriptomics, proteomics, literature citations and also cross-references of external databases. Different literature searches of MEDLINE abstracts were performed using specific Medical Subject Headings (MeSH terms) for oral, oropharyngeal, hypopharyngeal and laryngeal squamous cell carcinomas. A curated gene-to-publication assignment yielded a total of 1370 genes related to HN cancer. The diversity of results allowed identifying novel and mostly unexplored gene associations, revealing, for example, that processes linked to response to steroid hormone stimulus are significantly enriched in genes related to HN carcinomas. Thus, our database expands the possibilities for gene networks investigation, providing potential hypothesis to be tested. Database URL: http://www.gencapo.famerp.br/hndb PMID:27013077

  8. Gene expression profiling allows distinction between primary and metastatic squamous cell carcinomas in the lung.

    PubMed

    Talbot, Simon G; Estilo, Cherry; Maghami, Ellie; Sarkaria, Inderpal S; Pham, Duy Khanh; O-charoenrat, Pornchai; Socci, Nicholas D; Ngai, Ivan; Carlson, Diane; Ghossein, Ronald; Viale, Agnes; Park, Bernard J; Rusch, Valerie W; Singh, Bhuvanesh

    2005-04-15

    Lung neoplasms commonly develop in patients previously treated for head and neck carcinomas. The derivation of these tumors, either as new primary lung cancers or as metastatic head and neck cancers, is difficult to establish based on clinical or histopathologic criteria since both are squamous cell carcinomas and have identical features under light microscopy. However, this distinction has significant treatment and prognostic implications. Gene expression profiling was performed on a panel of 52 sequentially collected patients with either primary lung (n = 21) or primary head and neck (n = 31) carcinomas using the Affymetrix HG_U95Av2 high-density oligonucleotide microarray. Unsupervised hierarchical clustering with Ward linkage and the Pearson correlation metric was performed. To assess robustness, bootstrap resampling was performed with 1,000 iterations. A t test of the normalized values for each gene was used to determine the genes responsible for segregating head and neck from lung primary carcinomas, and those with the most differential expression were used for later analyses. In the absence of a large "test" set of tumors, we used a supervised leave-one-out cross-validation to test how well we could predict the tumor origin. Once a gene expression profile was established, 12 lung lesions taken from patients with previously treated head and neck cancers were similarly analyzed by gene expression profiling to determine their sites of origin. Unsupervised clustering analysis separated the study cohort into two distinct groups which reliably remained segregated with bootstrap resampling. Group 1 consisted of 30 tongue carcinomas. Group 2 consisted of 21 lung cancers and 1 tongue carcinoma. The clustering was not changed even when normal lung or tongue profiles were subtracted from the corresponding carcinomatous lesions, and a leave-one-out cross-validation showed a 98% correct prediction (see Supplementary Data 1). A minimum set of 500 genes required to

  9. SOX18 Is a Novel Target Gene of Hedgehog Signaling in Cervical Carcinoma Cell Lines

    PubMed Central

    Popovic, Jelena; Schwirtlich, Marija; Rankovic, Branislava; Stevanovic, Milena

    2015-01-01

    Although there is much evidence showing functional relationship between Hedgehog pathway, in particular Sonic hedgehog, and SOX transcription factors during embryonic development, scarce data are available regarding their crosstalk in cancer cells. SOX18 protein plays an important role in promoting tumor angiogenesis and therefore emerged as a promising potential target in antiangiogenic tumor therapy. Recently it became evident that expression of SOX18 gene in tumors is not restricted to endothelium of accompanying blood and lymphatic vessels, but in tumor cells as well.In this paper we have identified human SOX18 gene as a novel target gene of Hedgehog signaling in cervical carcinoma cell lines. We have presented data showing that expression of SOX18 gene is regulated by GLI1 and GLI2 transcription factors, final effectors of Hedgehog signaling, and that modulation of Hedgehog signaling activity in considerably influence SOX18 expression. We consider important that Hedgehog pathway inhibitors reduced SOX18 expression, thus showing, for the first time, possibility for manipulationwith SOX18 gene expression. In addition, we analyzed the role of SOX18 in malignant potential of cervical carcinoma cell line, and showed that its overexpression has no influence on cells proliferation and viability, but substantially promotes migration and invasion of cells in vitro. Pro-migratory effect of SOX18 suggests its role in promoting malignant spreading, possibly in response to Hedgehog activation. PMID:26588701

  10. Adenovirus with p16 gene exerts antitumor effect on laryngeal carcinoma Hep2 cells.

    PubMed

    Yang, Zhengang; Hu, Jingxia; Li, Dajun; Pan, Xinliang

    2016-08-01

    Laryngeal cancer is an uncommon form of cancer. The tumor suppressor P16, known to be mutated or deleted in various types of human tumor, including laryngeal carcinoma, is involved in the formation and development of laryngeal carcinoma. It has been previously reported that the inactivation or loss of P16 is associated with the acquisition of malignant characteristics. The current study hypothesized that restoring wild‑type P16 activity into P16‑null malignant Hep2 cells may exert an antitumor effect. A recombinant adenovirus carrying the P16 gene (Ad‑P16) was used to infect and express high levels of P16 protein in P16‑null Hep2 cells. Cell proliferation and invasion assays and polymerase chain reaction were performed to evaluate the effects of the P16 gene on cell proliferation and the antitumor effect on Hep2 cells. The results demonstrated that the Hep2 cells infected with Ad‑P16 exhibited significantly reduced cell proliferation, invasion and tumor volume compared with untreated or control adenovirus cells. Furthermore, the expression of laryngeal carcinoma‑associated genes, EGFR, survivin and cyclin D1, were measured in Ad‑P16‑infected cells and were significantly reduced compared with control groups. The results of the current study demonstrate that restoring wild‑type P16 activity into P16-null Hep2 cells exerts an antitumor effect.

  11. HOX genes: potential candidates for the progression of laryngeal squamous cell carcinoma.

    PubMed

    de Barros E Lima Bueno, Rafaela; Ramão, Anelisa; Pinheiro, Daniel Guariz; Alves, Cleidson Padua; Kannen, Vinicius; Jungbluth, Achim A; de Araújo, Luiza Ferreira; Muys, Bruna Rodrigues; Fonseca, Aline Simoneti; Plaça, Jessica Rodrigues; Panepucci, Rodrigo Alexandre; Neder, Luciano; Saggioro, Fabiano P; Mamede, Rui Celso M; Figueiredo, David Livingstone Alves; Silva, Wilson Araújo

    2016-11-01

    Laryngeal squamous cell carcinoma (LSCC) is a very aggressive cancer, considered to be a subtype of the head and neck squamous cell carcinoma (HNSCC). Despite significant advances in the understanding and treatment of cancer, prognosis of patients with LSCC has not improved recently. In the present study, we sought to understand better the genetic mechanisms underlying LSCC development. Thirty-two tumor samples were collected from patients undergoing surgical resection of LSCC. The samples were submitted to whole-genome cDNA microarray analysis aiming to identify genetic targets in LSCC. We also employed bioinformatic approaches to expand our findings using the TCGA database and further performed functional assays, using human HNSCC cell lines, to evaluate viability, cell proliferation, and cell migration after silencing of selected genes. Eight members of the homeobox gene family (HOX) were identified to be overexpressed in LSCC samples when compared to normal larynx tissue. Quantitative RT-PCR analysis validated the overexpression of HOX gene family members in LSCC. Receiver operating characteristic (ROC) statistical method curve showed that the expression level of seven members of HOX gene family can distinguish tumor from nontumor tissue. Correlation analysis of clinical and gene expression data revealed that HOXC8 and HOXD11 genes were associated with the differentiation degree of tumors and regional lymph node metastases, respectively. Additionally, siRNA assays confirmed that HOXC8, HOXD10, and HOXD11 genes might be critical for cell colony proliferation and cell migration. According to our findings, several members of the HOX genes were overexpressed in LSCC samples and seem to be required in biological processes involved in tumor development. This suggests that HOX genes might play a critical role in the physiopathology of LSCC tumors.

  12. Multiple promoter elements govern expression of the human ornithine decarboxylase gene in colon carcinoma cells.

    PubMed Central

    Moshier, J A; Osborne, D L; Skunca, M; Dosescu, J; Gilbert, J D; Fitzgerald, M C; Polidori, G; Wagner, R L; Friezner Degen, S J; Luk, G D

    1992-01-01

    Overexpression of the ornithine decarboxylase (ODC) gene may be important to the development and maintenance of colonic neoplasms, as well as tumors in general. In this study, we examined the promoter elements governing constitutive expression of the human ODC gene in HCT 116 human colon carcinoma cells and, for comparison, K562 human erythro-leukemia cells. It was determined by functional analysis that the promoter elements responsible reside within the 378 bp immediately upstream from the transcription start site. Within this sequence, there are at least three regions that modulate the efficiency of the ODC promoter cooperatively. Both DNA bandshift and footprint assays demonstrated all three regions to be rich in sites that bind to nuclear proteins isolated from HCT 116 and K562 cells; the protein binding pattern of non-transformed, diploid fibroblasts was found to be much less complex. Several of the protein binding sequences have little or no homology to common regulatory elements. We suggest that the constitutive activity of the ODC gene in HCT 116 colon carcinoma cells, and perhaps transformed cells in general, involves a complex interaction of multiple regulatory sequences and their associated nuclear proteins. Finally, the saturation of the promoter in these transformed cell lines suggests that high levels of protein binding in the ODC promoter may contribute to elevated constitutive expression of this gene. Images PMID:1598217

  13. Differential gene expression identified in Uigur women cervical squamous cell carcinoma by suppression subtractive hybridization.

    PubMed

    Pan, Z; Chen, S; Pan, X; Wang, Z; Han, H; Zheng, W; Wang, X; Li, F; Qu, S; Shao, R

    2010-01-01

    Cervical cancer is one of the most common gynecological cancers worldwide. Over the past decade, much progress has been made in understanding the genetic changes associated with the development and progression of cervical cancer. However, the precise mechanisms of cervical carcinogenesis in Uigur women remain unclear. To screen differential gene expression in squamous cell carcinoma (SCC) of the cervix in Uigur women, suppressive subtractive hybridization (SSH) was performed on the cervical squamous cell carcinoma and corresponding normal cervical tissues of a Uigur patient. Thus we were be able to find the genes that are related with cervical tumors of Uigur women. A total of 300 samples were subject to DNA sequencing analysis and 46 genes were found to express differentially in tumors compared with normal tissues. Of the 46 genes, 24 genes were up-regulated whereas 22 genes were down-regulated in cervical tumors. The expression profiles of 5 of the 46 genes were further confirmed in 15 other Uigur patients by semi-quantitative reverse-transcription polymerase chain reaction. Our results revealed that ACADVL, CEBPB, IFITM1 and DNAJC9 are involved in cervical carcinogenesis.

  14. Association between FBP1 and hypoxia-related gene expression in clear cell renal cell carcinoma

    PubMed Central

    NING, XIANG-HUI; LI, TENG; GONG, YAN-QING; HE, QUN; SHEN, QI; PENG, SHUANG-HE; WANG, JIANG-YI; CHEN, JIN-CHAO; GUO, YING-LU; GONG, KAN

    2016-01-01

    Fructose-1,6-bisphosphatase 1 (FBP1) is a rate-limiting enzyme in gluconeogenesis. Recently, the catalytic activity-independent function of FBP1, hypoxia-induced factor (HIF) repression in the nucleus, was identified. The aim of the present study was to investigate the association between FBP1 and hypoxia-related gene expression in clear cell renal cell carcinoma (ccRCC). The protein expression levels of FBP1, HIF-1α, HIF-2α, erythropoietin (EPO) and carbonic anhydrase IX (CA9) were assessed by immunohistochemical staining of ccRCC paraffin blocks from 123 patients using the tissue microarray technique. The expression level of FBP1 was then correlated with various clinicopathological factors, and the protein expression levels of HIF-1α, HIF-2α, EPO and CA9. Clinicopathological factors, including age, gender, T stage and Fuhrman grade, were not significantly different between patients with low and high FBP1 expression in ccRCC (P>0.05). FBP1 protein expression level was significantly correlated with the expression levels of HIF-1α (P=0.005) and EPO (P=0.010), but not significantly correlated with the expression levels of HIF-2α (P=0.123) and CA9 (P=0.513) in ccRCC tissues. The current findings confirm the association between FBP1 and hypoxia-related gene expression, and may facilitate understanding of the mechanisms of ccRCC tumorigenesis. PMID:27313747

  15. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells.

    PubMed

    Khan, Mohammed I; Czarnecka, Anna M; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells-stem cell-like cancer cells (SCLCCs)-which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers-CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent's human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have

  16. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells

    PubMed Central

    Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor

  17. EBNA1 binding and epigenetic regulation of gastrokine tumor suppressor genes in gastric carcinoma cells.

    PubMed

    Lu, Fang; Tempera, Italo; Lee, Hyunna T; Dewispelaere, Karen; Lieberman, Paul M

    2014-01-24

    Epstein-Barr Virus (EBV) latently infects ~10% of gastric carcinomas (GC). Epstein-Barr Nuclear Antigen 1 (EBNA1) is expressed in EBV-associated GC, and can bind host DNA, where it may impact cellular gene regulation. Here, we show that EBNA1 binds directly to DNA upstream of the divergently transcribed GC-specific tumor suppressor genes gastrokine 1 (GKN1) and gastrokine 2 (GKN2). We use ChIP-Seq, ChIP-qPCR, and EMSA to demonstrate that EBNA1 binds directly to the GKN1 and GKN2 promoter locus. We generate AGS-EBV, and AGS-EBNA1 cell lines to study the effects of EBNA1 on GKN1 and GKN2 mRNA expression with or without 5' azacytidine treatment. We show that gastrokine genes are transcriptionally silenced by DNA methylation. We also show that latent EBV infection further reduces GKN1 and GKN2 expression in AGS gastric carcinoma cells, and that siRNA depletion of EBNA1 partially alleviates this repression. However, ectopic expression of EBNA1 slightly increased GKN1 and GKN2 basal mRNA levels, but reduced their responsiveness to demethylating agent. These findings demonstrate that EBNA1 binds to the divergent promoter of the GKN1 and GKN2 genes in GC cells, and suggest that EBNA1 contributes to the complex transcriptional and epigenetic deregulation of the GKN1 and GKN2 tumor suppressor genes in EBV positive GC.

  18. Genome-wide detection of allelic gene expression in hepatocellular carcinoma cells using a human exome SNP chip.

    PubMed

    Park, Yon Mi; Cheong, Hyun Sub; Lee, Jong-Keuk

    2014-11-10

    Allelic variations in gene expression influence many biological responses and cause phenotypic variations in humans. In this study, Illumina Human Exome BeadChips containing more than 240,000 single nucleotide polymorphisms (SNPs) were used to identify changes in allelic gene expression in hepatocellular carcinoma cells following lipopolysaccharide (LPS) stimulation. We found 17 monoallelically expressed genes, 58 allelic imbalanced genes, and 7 genes showing allele substitution. In addition, we also detected 33 differentially expressed genes following LPS treatment in vitro using these human exome SNP chips. However, alterations in allelic gene expression following LPS treatment were detected in only three genes (MLXIPL, TNC, and MX2), which were observed in one cell line sample only, indicating that changes in allelic gene expression following LPS stimulation of liver cells are rare events. Among a total of 75 genes showing allelic expression in hepatocellular carcinoma cells, either monoallelic or imbalanced, 43 genes (57.33%) had expression quantitative trait loci (eQTL) data, indicating that high-density exome SNP chips are useful and reliable for studying allelic gene expression. Furthermore, most genes showing allelic expression were regulated by cis-acting mechanisms and were also significantly associated with several human diseases. Overall, our study provides a better understanding of allele-specific gene expression in hepatocellular carcinoma cells with and without LPS stimulation and potential clues for the cause of human disease due to alterations in allelic gene expression.

  19. Gene expression analysis of head and neck squamous cell carcinoma survival and recurrence.

    PubMed

    Zhi, Xu; Lamperska, Katarzyna; Golusinski, Paweł; Schork, Nicholas J; Luczewski, Lukasz; Kolenda, Tomasz; Golusinski, Wojciech; Masternak, Michal M

    2015-01-01

    The squamous cell carcinomas represent about 90 % of all head and neck cancers, ranking the sixth most common human cancer. Approximately 450,000 of new cases of head and neck squamous cell carcinoma (HNSCC) are diagnosed every year. Unfortunately, because of diagnosis at the advanced stages and early metastasis to the lymph nodes, the HNSCC is associated with very high death rate. Identification of signature biomarkers and molecularly targeted therapies could provide more effective and specific cancer treatment, prevent recurrence, and increase survival rate. We used paired tumor and adjacent normal tissue samples to screen with RT² Profiler™ PCR Array Human Cancer PathwayFinderTM . Total of 20 up-regulated genes and two down-regulated genes were screened out. Out of 22 genes, 12 genes were subsequently validated to be significantly altered in the HNSCC; the samples were from all 41 patients. Five year survival and recurrence selected genes that could represent the biomarkers of survival and recurrence of the disease. We believe that comprehensive understanding of the unique genetic characteristics of HNSCC could provide novel diagnostic biomarkers and meet the requirement for molecular-targeted therapy for the HNSCC.

  20. Gene expression analysis of head and neck squamous cell carcinoma survival and recurrence

    PubMed Central

    Zhi, Xu; Lamperska, Katarzyna; Golusinski, Paweł; Schork, Nicholas J.; Luczewski, Lukasz; Kolenda, Tomasz; Golusinski, Wojciech; Masternak, Michal M.

    2015-01-01

    The squamous cell carcinomas represent about 90 % of all head and neck cancers, ranking the sixth most common human cancer. Approximately 450,000 of new cases of head and neck squamous cell carcinoma (HNSCC) are diagnosed every year. Unfortunately, because of diagnosis at the advanced stages and early metastasis to the lymph nodes, the HNSCC is associated with very high death rate. Identification of signature biomarkers and molecularly targeted therapies could provide more effective and specific cancer treatment, prevent recurrence, and increase survival rate. We used paired tumor and adjacent normal tissue samples to screen with RT² Profiler™ PCR Array Human Cancer PathwayFinderTM. Total of 20 up-regulated genes and two down-regulated genes were screened out. Out of 22 genes, 12 genes were subsequently validated to be significantly altered in the HNSCC; the samples were from all 41 patients. Five year survival and recurrence selected genes that could represent the biomarkers of survival and recurrence of the disease. We believe that comprehensive understanding of the unique genetic characteristics of HNSCC could provide novel diagnostic biomarkers and meet the requirement for molecular-targeted therapy for the HNSCC. PMID:25575813

  1. MicroRNAs and their target gene networks in renal cell carcinoma

    SciTech Connect

    Redova, Martina; Svoboda, Marek; Slaby, Ondrej

    2011-02-11

    Research highlights: {yields} MiRNAs are related to the processes of cell proliferation, apoptosis, angiogenesis, invasion, and metastasis in RCC. {yields} MiRNAs expression profiles are associated with several RCC-specific genetic alterations. {yields} It has been well documented that several miRNAs are downstream effector molecules of the HIF-induced hypoxia response. {yields} MiR-200 family is linked to epithelial-mesenchymal transition which is one of the most significant pathogenetic mechanism in RCC. {yields} Mechanistic studies in RCC have provided the rationale of using miRNAs as potential therapeutic targets. -- Abstract: MicroRNAs (miRNAs) are non-protein-coding short single stranded RNAs in the size range 19-25 nucleotides that are associated with gene regulation at the transcriptional and translational level. Recent studies have proved that miRNAs play important roles in a large number of biological processes, including cellular differentiation, proliferation, apoptosis, etc. Changes in their expression were found in a variety of human cancers, including renal cell carcinoma pathogenesis. Specific miRNA alterations were associated with key pathogenetic mechanisms of renal cell carcinoma like hypoxia or epithelial-mesenchymal transition. In this review, we summarize the current knowledge of miRNA functions in renal cell carcinoma with an emphasis on miRNAs potential to serve as a powerful biomarker of disease and a novel therapeutic target in oncology.

  2. Gene expression profiles of epithelial cells microscopically isolated from a breast-invasive ductal carcinoma and a nodal metastasis

    PubMed Central

    Zucchi, I.; Mento, E.; Kuznetsov, V. A.; Scotti, M.; Valsecchi, V.; Simionati, B.; Vicinanza, E.; Valle, G.; Pilotti, S.; Reinbold, R.; Vezzoni, P.; Albertini, A.; Dulbecco, R.

    2004-01-01

    Expression profiles of breast carcinomas are difficult to interpret when they are obtained from tissue in toto, which may contain a large proportion of non-cancer cells. To avoid this problem, we microscopically isolated cells from a primary invasive ductal carcinoma of the breast and from an axillary node harboring a metastatic breast carcinoma, to obtain pure populations of carcinoma cells (≈500) and used them for serial analysis of gene expression. The expression profiles generated from both populations of cells were compared with the profile of a disease-free mammary epithelium. We showed that the expression profiles obtained are exclusive of carcinoma cells with no contribution of non-epithelial cells. From a total of 16,939 unique tags analyzed, we detected 559 statistically significant changes in gene expression; some of these genes have not been previously associated with breast cancer. We observed that many of the down-regulated genes are the same in both cancers, whereas the up-regulated genes are completely different, suggesting that the down-regulation of a set of genes may be the basic mechanism of cancer formation, while the up-regulation may characterize and possibly control the state of evolution of individual cancers. The results obtained may help in characterizing the neoplastic process of breast cancer. PMID:15608061

  3. Relation between sonic hedgehog pathway gene polymorphisms and basal cell carcinoma development in the Polish population.

    PubMed

    Lesiak, Aleksandra; Sobolewska-Sztychny, Dorota; Majak, Paweł; Sobjanek, Michał; Wodz, Karolina; Sygut, Karolina Przybyłowska-; Majsterek, Ireneusz; Wozniacka, Anna; Narbutt, Joanna

    2016-01-01

    In recent decades, increases have been observed in the incidence of nonmelanoma skin cancers, including basal cell carcinoma (BCC) and squamous cell carcinoma. BCC is the most common neoplasm in Caucasian populations. Sonic hedgehog (Shh) pathway impairment plays a key role in BCC pathogenesis, and there is evidence that Shh pathway genetic variations may predispose to BCC development. We genotyped 22 single-nucleotide polymorphisms (SNPs) in 4 Shh pathway genes: SHH, GLI, SMO, and PTCH. The study group consisted of 142 BCC patients and 142 age-matched, sex-matched healthy subjects (controls). SNPs were assessed using the PCR-RFLP method. The genotype distribution for the polymorphisms in the rs104894049 331 A/T SHH, rs104894040 349 T/C SHH, and rs41303402 385 G/A SMO genes differed significantly between the BCC patients and the controls. The presence of CC genotype in the SHH rs104894040 349 T/C polymorphism was linked to the highest risk of BCC development (OR 87.9, p < 0.001). Other genotypes, such as the TT in SHH rs104894049 331 A/T and the GG in SMO rs41303402 385 G/A also statistically raised the risk of BCC, but these associations were weaker. Other investigated polymorphisms showed no statistical differences between patients and controls. The results obtained testify to the importance of the SHH and SMO gene polymorphisms in skin cancerogenesis. These results mainly underline the potential role of SHH3 rs104894040 349 T/C gene polymorphism in the development of skin basal cell carcinomas in patients of Polish origin.

  4. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder

    PubMed Central

    Gui, Yaoting; Guo, Guangwu; Huang, Yi; Hu, Xueda; Tang, Aifa; Gao, Shengjie; Wu, Renhua; Chen, Chao; Li, Xianxin; Zhou, Liang; He, Minghui; Li, Zesong; Sun, Xiaojuan; Jia, Wenlong; Chen, Jinnong; Yang, Shangming; Zhou, Fangjian; Zhao, Xiaokun; Wan, Shengqing; Ye, Rui; Liang, Chaozhao; Liu, Zhisheng; Huang, Peide; Liu, Chunxiao; Jiang, Hui; Wang, Yong; Zheng, Hancheng; Sun, Liang; Liu, Xingwang; Jiang, Zhimao; Feng, Dafei; Chen, Jing; Wu, Song; Zou, Jing; Zhang, Zhongfu; Yang, Ruilin; Zhao, Jun; Xu, Congjie; Yin, Weihua; Guan, Zhichen; Ye, Jiongxian; Zhang, Hong; Li, Jingxiang; Kristiansen, Karsten; Nickerson, Michael L; Theodorescu, Dan; Li, Yingrui; Zhang, Xiuqing; Li, Songgang; Wang, Jian; Yang, Huanming; Wang, Jun; Cai, Zhiming

    2017-01-01

    Transitional cell carcinoma (TCC) is the most common type of bladder cancer. Here we sequenced the exomes of nine individuals with TCC and screened all the somatically mutated genes in a prevalence set of 88 additional individuals with TCC with different tumor stages and grades. In our study, we discovered a variety of genes previously unknown to be mutated in TCC. Notably, we identified genetic aberrations of the chromatin remodeling genes (UTX, MLL-MLL3, CREBBP-EP300, NCOR1, ARID1A and CHD6) in 59% of our 97 subjects with TCC. Of these genes, we showed UTX to be altered substantially more frequently in tumors of low stages and grades, highlighting its potential role in the classification and diagnosis of bladder cancer. Our results provide an overview of the genetic basis of TCC and suggest that aberration of chromatin regulation might be a hallmark of bladder cancer. PMID:21822268

  5. The retinoblastoma gene functions as a growth and tumor suppressor in human bladder carcinoma cells

    SciTech Connect

    Takahashi, Rei; Hashimoto, Tomoko; Hongji Xu; Shixu Hu; Bigo-Marshall, H.; Benedict, W.F. ); Matsui, Toshimitsu Kobe Univ. School of Medicine ); Miki, Toru; Aaronson, S.A. )

    1991-06-15

    The product of the human retinoblastoma gene (RB) is a nuclear phosphoprotein that is thought to function as a tumor suppressor. Mutations of RB frequently occur in human bladder carcinoma. To investigate the significance of the functional loss of this gene in bladder cancer, an RB expression plasmid (pBARB) under control of the human {beta}-actin promoter was transfected into the bladder carcinoma cell line HTB9, which lacks RB expression. Marker-selected transfectants that expressed RB protein were identified by immunoblotting and immunohistochemical staining. In selected clones, stable RB expression has persisted over 1 yr under standard culture conditions with 10% serum. However, RB expression caused major alterations of HTB9 growth properties both in vitro and in vivo. RB{sup +} tranfectants lacked the ability to form colonies in semi-solid medium, and their growth rate was significantly decreased in 3% serum. In addition, the tumorigenicity of these transfectants was markedly decreased. Tumors that formed in nude mice were much smaller and had a longer latency period but were indistinguishable microscopically from those produced by parental cells. Slower growing tumors were RB{sup +}, as measured by nuclear staining of their RB protein and by a normal RB protein pattern on immunoblots. These findings support the concept that the RB gene acts as both a growth and tumor suppressor in bladder cancer cells.

  6. Antitumor effects and radiosensitization of cytosine deaminase and thymidine kinase fusion suicide gene on colorectal carcinoma cells

    PubMed Central

    Wu, De-Hua; Liu, Li; Chen, Long-Hua

    2005-01-01

    AIM: To investigate the killing effect and radiosensitization of double suicide gene mediated by adenovirus on colorectal carcinoma cells. METHODS: Colorectal carcinoma cell line SW480 was transfected with adenovirus expression vector containing cytosine deaminase (CD) and thymidine kinase (TK) fusion gene. The expression of CD-TK fusion gene was detected by reverse transcriptase-polymerase chain reaction. The toxic effect of ganciclovir (GCV) and 5-fluorocytosine (5-FC) on infected cells was determined by MTT assay. The radiosensitization of double suicide gene was evaluated by clonogenic assay. RESULTS: After prodrugs were used, the survival rate of colorectal carcinoma cells was markedly decreased. When GCV and 5-FC were used in combination, the cytotoxicity and bystander effect were markedly superior to a single prodrug (χ2 = 30.371, P<0.01). Both GCV and 5-FC could sensitize colorectal carcinoma cells to the toxic effect of radiation, and greater radiosensitization was achieved when both prodrug were used in combination. CONCLUSION: CD-TK double suicide gene can kill and radiosensitize colorectal carcinoma cells. PMID:15918188

  7. Expression of c-myc gene in human ovary carcinoma cells treated with vanadate

    SciTech Connect

    Itkes, A.V.; Imamova, L.R.; Alexandrova, N.M.; Favorova, O.O.; Kisselev, L.L. )

    1990-05-01

    The widely accepted hypothesis of vanadate action on cells postulates that this ion inhibits protein phosphatase(s) that dephosphorylates protein phosphotyrosine residues. This inhibition causes tyrosine hyperphosphorylation of cell proteins followed by changes in physiological action of phosphoproteins resulting in stimulation of cell proliferation, expression of protooncogenes, and transient cell transformation. The authors have found that treatment of human ovary carcinoma (CaOv) cells with vanadate causes the increase in total protein phosphorylation from 1.5- to 2.0-fold whereas the ratio between phosphoserine, phosphothreonine, and phosphotyrosine content remains unchanged. At the same time, enhancement of c-myc gene expression (not c-fos) was observed. Hence, the increase in the ratio of phosphotyrosine to phosphoserine and phosphothreonine is not an obligatory intermediate stage before vanadate-dependent activation of c-myc expression.

  8. Melanotic Translocation Renal Cell Carcinoma With a Novel ARID1B-TFE3 Gene Fusion.

    PubMed

    Antic, Tatjana; Taxy, Jerome B; Alikhan, Mir; Segal, Jeremy

    2017-09-04

    A 36-year-old male was found to have a 7.0 cm left upper pole renal mass on renal ultrasound. Following nephrectomy, the mass was grossly ill-demarcated, friable and red-brown, invading renal parenchyma, hilar fat and the renal vein. Microscopically, the tumor had a nested and papillary architecture. The cells demonstrated abundant clear and eosinophilic cytoplasm and focal intracytoplasmic melanin pigment. Nucleoli were prominent. By immunohistochemistry, the tumor was positive for TFE3; HMB-45 stained approximately 5% of tumor cells corresponding to the histologic melanin pigment, which was confirmed with Fontana-Masson stain with bleach. Immunostains for PAX8, CD10, MiTF, and CAIX were negative; keratins Cam 5.2 and AE1/AE3 were focally positive. Targeted next-generation sequencing revealed an ARID1B-TFE3 gene fusion. Melanotic Xp11 renal cell carcinoma is a rare, pigment containing translocation variant demonstrating overlapping features with melanoma and is usually associated with an SFPQ-TFE3 gene fusion. The patient is alive and without evidence of disease 7 years after his diagnosis. The combination of high grade histopathology, the presence of melanin, absent PAX8, keratin positivity, and relatively indolent clinical behavior with a unique translocation may warrant recognition as a distinct renal cell carcinoma translocation subtype.

  9. Specific CEA-producing colorectal carcinoma cell killing with recombinant adenoviral vector containing cytosine deaminase gene

    PubMed Central

    Shen, Li-Zong; Wu, Wen-Xi; Xu, De-Hua; Zheng, Zhong-Cheng; Liu, Xin-Yuan; Ding, Qiang; Hua, Yi-Bing; Yao, Kun

    2002-01-01

    AIM: To kill CEA positive colorectal carcinoma cells specifically using the E coli cytosine deaminase (CD) suicide gene, a new replication-deficient recombinant adenoviral vector was constructed in which CD gene was controlled under CEA promoter and its in vitro cytotoxic effects were evaluated. METHODS: Shuttle plasmid containing CD gene and regulatory sequence of the CEA gene was constructed and recombined with the right arm of adenovirus genome DNA in 293 cell strain. Dot blotting and PCR were used to identify positive plaques. The purification of adenovirus was performed with ultra-concentration in CsCl step gradients and the titration was measured with plaque formation assay. Cytotoxic effects were assayed with MTT method, The fifty percent inhibition concentration (IC50) of 5-FC was calculated using a curve-fitting parameter. The human colorectal carcinoma cell line, which was CEA-producing, and the CEA-nonproducing Hela cell line were applied in cytological tests. An established recombinant adenovirus vector AdCMVCD, in which the CD gene was controlled under CMV promoter, was used as virus control. Quantitative results were expressed as the mean ± SD of the mean. Statistical analysis was performed using ANOVA test. RESULTS: The desired recombinant adenovirus vector was named AdCEACD. The results of dot blotting and PCR showed that the recombinant adenovirus contained CEA promoter and CD gene. Virus titer was about 5.0 × 1014 pfu/L-1 after purification. The CEA-producing Lovo cells were sensitive to 5-FC and had the same cytotoxic effect after infection with AdCEACD and AdCMVCD (The IC50 values of 5-FC in parent Lovo cells, Lovo cells infected with 100 M.O.I AdCEACD and Lovo cells infected with 10 M.O.I AdCMVCD were > 15000, 216.5 ± 38.1 and 128.8 ± 25.4 μmol•L⁻¹, P < 0.001, respectively), and the cytotoxicity of 5-FC increased accordingly when the M.O.I of adenoviruses were enhanced (The value of IC50 of 5-FC was reduced to 27.9 ± 4.2 μmol•L-1

  10. Expression of the WT1 gene -KTS domain isoforms suppresses the invasive ability of human lung squamous cell carcinoma cells.

    PubMed

    Moriya, Shogo; Takiguchi, Masaki; Seki, Naohiko

    2008-02-01

    Although the WT1 gene was originally isolated as a tumor suppressor gene from Wilms' tumor, oncogenic roles for WT1 have been reported in several tumors. Here, we present new findings of high levels of WT1 expression associated with the suppression of lymph node metastasis in patients with human lung squamous cell carcinoma (SCC). We investigated the effect of down-regulated WT1 gene expression on the invasive phenotype of the SCC cell line RERF-LC-AI. Invasive ability was enhanced in WT1-specific siRNA-transfected cells, and a WT1 target gene p21(Waf1/Cip1) was isolated by comprehensive gene expression analysis. As several isoforms are produced from the WT1 gene, we isolated eight major WT1 isoforms from a cDNA library and cloned each variant into an expression vector. Luciferase reporter assays revealed that p21(Waf1/Cip1) expression was enhanced only by the WT1 cDNA variants that included a three-amino acid deletion (-KTS). Our results suggested that the -KTS-containing variants of WT1 are directly involved in the regulation of p21(Waf1/Cip1) expression and the subsequent suppression of lymph node metastasis in human lung squamous cell carcinoma.

  11. Oral Rigosertib for Squamous Cell Carcinoma

    ClinicalTrials.gov

    2016-05-18

    Head and Neck Squamous Cell Carcinoma; Anal Squamous Cell Carcinoma; Lung Squamous Cell Carcinoma; Cervical Squamous Cell Carcinoma; Esophageal Squamous Cell Carcinoma; Skin Squamous Cell Carcinoma; Penile Squamous Cell Carcinoma

  12. Molecular classification of basal cell carcinoma of skin by gene expression profiling.

    PubMed

    Jee, Byul A; Lim, Hyoseob; Kwon, So Mee; Jo, Yuna; Park, Myong Chul; Lee, Il Jae; Woo, Hyun Goo

    2015-12-01

    Non-melanoma skin cancers (NMSC) including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are more common kinds of skin cancer. Although these tumors share common pathological and clinical features, their similarity and heterogeneity at molecular levels are not fully elaborated yet. Here, by performing comparative analysis of gene expression profiling of BCC, SCC, and normal skin tissues, we could classify the BCC into three subtypes of classical, SCC-like, and normal-like BCCs. Functional enrichment and pathway analyses revealed the molecular characteristics of each subtype. The classical BCC showed the enriched expression and transcription signature with the activation of Wnt and Hedgehog signaling pathways, which were well known key features of BCC. By contrast, the SCC-like BCC was enriched with immune-response genes and oxidative stress-related genes. Network analysis revealed the PLAU/PLAUR as a key regulator of SCC-like BCC. The normal-like BCC showed prominent activation of metabolic processes particularly the fatty acid metabolism. The existence of these molecular subtypes could be validated in an independent dataset, which demonstrated the three subgroups of BCC with distinct functional enrichment. In conclusion, we suggest a novel molecular classification of BCC providing insights on the heterogeneous progression of BCC.

  13. [Study of testicular cancer gene expression in samples of oral leukoplakia and squamous cell carcinoma of the mouth].

    PubMed

    Skorodumova, L O; Muraev, A A; Zakharova, E S; Shepelev, M V; Korobko, I V; Zaderenko, I A; Ivanov, S Iu; Gnuchev, N V; Georgiev, G P; Larin, S S

    2012-01-01

    Cancer-testis (CT) antigens are normally expressed mostly in human germ cells, there is also an aberrant expression in some tumor cells. This expression profile makes them potential tumor growth biomarkers and a promising target for tumor immunotherapy. Specificity of CT genes expression in oral malignant and potentially malignant diseases, e.g. oral leukoplakia, is not yet studied. Data on CT genes expression profile in leukoplakia would allow developing new diagnostic methods with potential value for immunotherapy and prophylaxis of leukoplakia malignization. In our study we compared CT genes expression in normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma. We are the first to describe CT genes expression in oral leukoplakia without dysplasia. This findings make impossible differential diagnosis of oral leukoplakia and squamous cell carcinoma on the basis of CT genes expression. The prognostic value of CT genes expression is still unclear, therefore the longitudinal studies are necessary.

  14. ING Genes Work as Tumor Suppressor Genes in the Carcinogenesis of Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Li, Xiaohan; Kikuchi, Keiji; Takano, Yasuo

    2011-01-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer in the world. The evolution and progression of HNSCC are considered to result from multiple stepwise alterations of cellular and molecular pathways in squamous epithelium. Recently, inhibitor of growth gene (ING) family consisting of five genes, ING1 to ING5, was identified as a new tumor suppressor gene family that was implicated in the downregulation of cell cycle and chromatin remodeling. In contrast, it has been shown that ING1 and ING2 play an oncogenic role in some cancers, this situation being similar to TGF-β. In HNSCC, the ING family has been reported to be downregulated, and ING translocation from the nucleus to the cytoplasm may be a critical event for carcinogenesis. In this paper, we describe our recent results and briefly summarize current knowledge regarding the biologic functions of ING in HNSCC. PMID:21052543

  15. Functional genomics identifies novel genes essential for clear cell renal cell carcinoma tumor cell proliferation and migration

    PubMed Central

    von Roemeling, Christina A.; Marlow, Laura A.; Radisky, Derek C.; Rohl, Austin; Larsen, Hege E.; Wei, Johnny; Sasinowska, Heather; Zhu, Heng; Drake, Richard; Sasinowski, Maciek; Tun, Han W.; Copland, John A.

    2014-01-01

    Currently there is a lack of targeted therapies that lead to long-term attenuation or regression of disease in patients with advanced clear cell renal cell carcinoma (ccRCC). Our group has implemented a high-throughput genetic analysis coupled with a high-throughput proliferative screen in order to investigate the genetic contributions of a large cohort of overexpressed genes at the functional level in an effort to better understand factors involved in tumor initiation and progression. Patient gene array analysis identified transcripts that are consistently elevated in patient ccRCC as compared to matched normal renal tissues. This was followed by a high-throughput lentivirus screen, independently targeting 195 overexpressed transcripts identified in the gene array in four ccRCC cell lines. This revealed 31 ‘hits’ that contribute to ccRCC cell proliferation. Many of the hits identified are not only presented in the context of ccRCC for the first time, but several have not been previously linked to cancer. We further characterize the function of a group of hits in tumor cell invasion. Taken together these findings reveal pathways that may be critical in ccRCC tumorigenicity, and identifies novel candidate factors that could serve as targets for therapeutic intervention or diagnostic/prognostic biomarkers for patients with advanced ccRCC. PMID:24979721

  16. EBNA1 binding and epigenetic regulation of gastrokine tumor suppressor genes in gastric carcinoma cells

    PubMed Central

    2014-01-01

    Background Epstein-Barr Virus (EBV) latently infects ~10% of gastric carcinomas (GC). Epstein-Barr Nuclear Antigen 1 (EBNA1) is expressed in EBV-associated GC, and can bind host DNA, where it may impact cellular gene regulation. Here, we show that EBNA1 binds directly to DNA upstream of the divergently transcribed GC-specific tumor suppressor genes gastrokine 1 (GKN1) and gastrokine 2 (GKN2). Methods We use ChIP-Seq, ChIP-qPCR, and EMSA to demonstrate that EBNA1 binds directly to the GKN1 and GKN2 promoter locus. We generate AGS-EBV, and AGS-EBNA1 cell lines to study the effects of EBNA1 on GKN1 and GKN2 mRNA expression with or without 5′ azacytidine treatment. Results We show that gastrokine genes are transcriptionally silenced by DNA methylation. We also show that latent EBV infection further reduces GKN1 and GKN2 expression in AGS gastric carcinoma cells, and that siRNA depletion of EBNA1 partially alleviates this repression. However, ectopic expression of EBNA1 slightly increased GKN1 and GKN2 basal mRNA levels, but reduced their responsiveness to demethylating agent. Conclusions These findings demonstrate that EBNA1 binds to the divergent promoter of the GKN1 and GKN2 genes in GC cells, and suggest that EBNA1 contributes to the complex transcriptional and epigenetic deregulation of the GKN1 and GKN2 tumor suppressor genes in EBV positive GC. PMID:24460791

  17. Identification of differentially expressed genes in cutaneous squamous cell carcinoma by microarray expression profiling

    PubMed Central

    Nindl, Ingo; Dang, Chantip; Forschner, Tobias; Kuban, Ralf J; Meyer, Thomas; Sterry, Wolfram; Stockfleth, Eggert

    2006-01-01

    Background Carcinogenesis is a multi-step process indicated by several genes up- or down-regulated during tumor progression. This study examined and identified differentially expressed genes in cutaneous squamous cell carcinoma (SCC). Results Three different biopsies of 5 immunosuppressed organ-transplanted recipients each normal skin (all were pooled), actinic keratosis (AK) (two were pooled), and invasive SCC and additionally 5 normal skin tissues from immunocompetent patients were analyzed. Thus, total RNA of 15 specimens were used for hybridization with Affymetrix HG-U133A microarray technology containing 22,283 genes. Data analyses were performed by prediction analysis of microarrays using nearest shrunken centroids with the threshold 3.5 and ANOVA analysis was independently performed in order to identify differentially expressed genes (p < 0.05). Verification of 13 up- or down-regulated genes was performed by quantitative real-time reverse transcription (RT)-PCR and genes were additionally confirmed by sequencing. Broad coherent patterns in normal skin vs. AK and SCC were observed for 118 genes. Conclusion The majority of identified differentially expressed genes in cutaneous SCC were previously not described. PMID:16893473

  18. ARID1A gene silencing reduces the sensitivity of ovarian clear cell carcinoma to cisplatin

    PubMed Central

    Lyu, Changshuai; Zhang, Yinglan; Zhou, Xingnan; Lang, Jinghe

    2016-01-01

    In ovarian clear cell carcinoma (OCCC), the mutation rate of the AT-rich interaction domain 1A (ARID1A) gene is 46–57%. However, the effects of ARID1A gene silencing by small interfering RNA (siRNA) on the sensitivity of OCCC to cisplatin have not been investigated. Thus, this study aimed to elucidate the association between ARID1A gene silencing and drug resistance in OCCC. Three pairs of ARID1A gene siRNA fragments (siRNA-1, siRNA-2 and siRNA-3) were designed and transiently transfected into ES2 OCCC cells using RNAi Max reagent. Western blotting results demonstrated that the transfection reduced ARID1A protein expression levels, with the siRNA-3 group having the lowest levels. The IC50 value, determined using a Cell Counting kit-8 assay, was significantly increased by siRNA-3 transfection compared with that in blank control and negative control groups. The cell survival rate following treatment with 50 µM cisplatin for 48 h was significantly increased in the siRNA-3 group compared with the blank control and negative control groups. Flow cytometric analysis revealed that the apoptosis rate for cisplatin-treated cells was significantly lower in cells with siRNA-3 transfection than in those without, and the apoptosis rate in siRNA-3-transfected cells was lower than that in the negative control group. Western blot analysis showed that the expression level of AKT in cisplatin-treated cells was significantly decreased compared with that in the negative control group, and the AKT expression level in cisplatin-treated cells was significantly higher with siRNA-3 transfection than without. Therefore, the results demonstrated that ARID1A siRNA efficiently decreased ARID1A expression, which reduced cisplatin chemosensitivity and cell apoptosis in ES2 OCCC cells via the regulation of AKT expression. PMID:28105136

  19. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line

    SciTech Connect

    Hatta, Mitsutoki; Naganuma, Kaori; Kato, Kenichi; Yamazaki, Jun

    2015-12-04

    In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histone H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.

  20. Identification of Primary Gene Targets of TFAP2C in Hormone Responsive Breast Carcinoma Cells

    PubMed Central

    Woodfield, George W.; Chen, Yizhen; Bair, Thomas B.; Domann, Frederick E.; Weigel, Ronald J.

    2010-01-01

    The TFAP2C transcription factor is involved in mammary development, differentiation and oncogenesis. Previous studies established a role for TFAP2C in the regulation of ESR1 (ERα) and ERBB2 (Her2) in breast carcinomas. However, the role of TFAP2C in different breast cancer phenotypes has not been examined in detail. To develop a more complete characterization of TFAP2C target genes, ChIP-seq with anti-TFAP2C antibody and expression arrays with TFAP2C knock down were analyzed in MCF-7 breast carcinoma cells. Genomic sequences common to the ChIP-seq data set defined the consensus sequence for TFAP2C chromatin binding as the nine base sequence SCCTSRGGS (S=G/C, R=A/G), which closely matches the previously defined optimal in vitro binding site. Comparing expression arrays before and after knock down of TFAP2C with ChIP-seq data demonstrated a conservative estimate that 8% of genes altered by TFAP2C expression are primary target genes and includes genes that are both induced and repressed by TFAP2C. A set of 447 primary target genes of TFAP2C was identified, which included ESR1 (ERα), FREM2, RET, FOXA1, WWOX, GREB1, MYC and members of the retinoic acid response pathway. The identification of ESR1, WWOX, GREB1 and FOXA1 as primary targets confirmed the role of TFAP2C in hormone response. TFAP2C plays a critical role in gene regulation in hormone responsive breast cancer and its target genes are different than for the Her2 breast cancer phenotype. PMID:20629094

  1. Lung Adenocarcinoma and Squamous Cell Carcinoma Gene Expression Subtypes Demonstrate Significant Differences in Tumor Immune Landscape.

    PubMed

    Faruki, Hawazin; Mayhew, Gregory M; Serody, Jonathan S; Hayes, D Neil; Perou, Charles M; Lai-Goldman, Myla

    2017-06-01

    Molecular subtyping of lung adenocarcinoma (AD) and lung squamous cell carcinoma (SCC) reveal biologically diverse tumors that vary in their genomic and clinical attributes. Published immune cell signatures and several lung AD and SCC gene expression data sets, including The Cancer Genome Atlas, were used to examine immune response in relation to AD and SCC expression subtypes. Expression of immune cell populations and other immune related genes, including CD274 molecule gene (CD274) (programmed death ligand 1), was investigated in the tumor microenvironment relative to the expression subtypes of the AD (terminal respiratory unit, proximal proliferative, and proximal inflammatory) and SCC (primitive, classical, secretory, and basal) subtypes. Lung AD and SCC expression subtypes demonstrated significant differences in tumor immune landscape. The proximal proliferative subtype of AD demonstrated low immune cell expression among ADs whereas the secretory subtype showed elevated immune cell expression among SCCs. Tumor expression subtype was a better predictor of immune cell expression than CD274 (programmed death ligand 1) in SCC tumors but was a comparable predictor in AD tumors. Nonsilent mutation burden was not correlated with immune cell expression across subtypes; however, major histocompatibility complex class II gene expression was highly correlated with immune cell expression. Increased immune and major histocompatibility complex II gene expression was associated with improved survival in the terminal respiratory unit and proximal inflammatory subtypes of AD and in the primitive subtype of SCC. Molecular expression subtypes of lung AD and SCC demonstrate key and reproducible differences in immune host response. Evaluation of tumor expression subtypes as potential biomarkers for immunotherapy should be investigated. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  2. Analysis of the TSC1and TSC2genes in sporadic renal cell carcinomas

    PubMed Central

    Parry, L; Maynard, J H; Patel, A; Clifford, S C; Morrissey, C; Maher, E R; Cheadle, J P; Sampson, J R

    2001-01-01

    The genetic events involved in the aetiology of non-clear-cell renal cell carcinoma (RCC) and a proportion of clear cell RCC remain to be defined. Germline mutations of the TSC1and TSC2genes cause tuberous sclerosis (TSC), a multi-system hamartoma syndrome that is also associated with RCC. We assessed 17 sporadic clear cell RCCs with a previously identified VHLmutation, 15 clear-cell RCCs without an identified VHLmutation and 15 non-clear-cell RCCs for loss of heterozygosity (LOH) at chromosomes 9q34 and 16p13.3, the chromosomal locations of TSC1and TSC2. LOH was detected in 4/9, 1/11 and 3/13 cases informative at both loci. SSCP analysis of the whole coding region of the retained allele did not reveal any cases with a detectable intragenic second somatic mutation. Furthermore, RT-PCR analysis of TSC1and TSC2on total RNA from 8 clear-cell RCC cell lines confirmed expression of both TSC genes. These data indicate that biallelic inactivation of TSC1or TSC2is not frequent in sporadic RCC and suggests that the molecular mechanisms of renal carcinogenesis in TSC are likely to be distinct. © 2001 Cancer Research Campaignhttp://www.bjcancer.com  http://www.bjcancer.com PMID:11710839

  3. Effects of AFP gene silencing on apoptosis and proliferation of a hepatocellular carcinoma cell line.

    PubMed

    Zhang, Ling; He, Tao; Cui, Hong; Wang, Yunjian; Huang, Changshan; Han, Feng

    2012-08-01

    Alpha fetoprotein (AFP) is an oncoembryonal protein that is highly expressed in the majority of hepatocellular carcinomas. Previous studies have shown that AFP may be involved in multiple cell growth regulating, differentiating, and immunosuppressive activities. We investigated the effects of AFP gene silencing by siRNA on apoptosis and proliferation of hepatocellular carcinoma cell line EGHC-9901, which highly expresses AFP and may serve as an ideal model for investigation of AFP functions. siRNA expressing plasmid targeting the AFP gene was first established and subsequently transfected into hepatocellular carcinoma cell line EGHC-9901; cells were then divided into three groups: siRNA-afp, transfected with AFP-siRNA; siRNA-beta-actin, transfected with siRNA-beta-actin as the positive group; and vector control, transfected with empty vector as the blank control group. After G418 positive clone selection for a couple of weeks, Western blot and RT (reverse transcription)-PCR assay demonstrated that AFP expression was almost completely inhibited by siRNA-afp, which indicates that siRNA expressing plasmid targeting the AFP gene has been successfully established. Furthermore, MTT (methyl thiazolyl tetrazelium) assay showed that cells transfected with siRNA-afp proliferated at a significantly lower speed than the other two groups and flat plate clone formation assay also witnessed less clones with diameters of more than 75 μm in siRNA-afp immunofluorescence indicating that the apoptosis rate of cells transfected with siRNA-afp was significantly higher than the other two groups. Furthermore, flow cytometry manifested approximately 20% more cells of siRNA-afp within G1 phase than those of the negative group, indicating that inhibition of AFP expression may cause G1 phase arrest. Finally, Western blot and RT-PCR assay demonstrated that siRNA-afp induced a higher expression of caspase-3 than the other two groups whereas there was no difference in expression of caspase-8

  4. Identification of genes associated with tumorigenesis of meibomian cell carcinoma by microarray analysis.

    PubMed

    Kumar, Arun; Kumar Dorairaj, Syril; Prabhakaran, Venkatesh C; Prakash, D Ravi; Chakraborty, Sanjukta

    2007-11-01

    Meibomian cell carcinoma (MCC) is a malignant tumor of the meibomian glands located in the eyelids. No information exists on the cytogenetic and genetic aspects of MCC. There is no report on the gene expression profile of MCC. Thus there is a need, for both scientific and clinical reasons, to identify genes and pathways that are involved in the development and progression of MCC. We analyzed the gene expression profile of MCC by the microarray technique. Forty-four genes were upregulated and 149 genes were downregulated in MCC. Differential expression data were confirmed for 5 genes by semiquantitative RT-PCR in MCC tumors: GTF2H4, RBM12, UBE2D3, DDX17, and LZTS1. We found dysregulation of two major pathways in MCC: MAPK and JAK/STAT. Clusters of genes on chromosomes 1, 12, and 19 were dysregulated in MCC. The data presented here will facilitate the identification of specific markers and therapeutic targets for the treatment of MCC patients.

  5. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines

    SciTech Connect

    Scheffner, M.; Muenger, K.; Byrne, J.C.; Howley, P.M. )

    1991-07-01

    Human cervical carcinoma cell lines that were either positive or negative for human papillomavirus (HPV) DNA sequences were analyzed for evidence of mutation of the p53 and retinoblastoma genes. Each of five HPV-positive cervical cancer cell lines expressed normal pRB and low levels of wild-type p53 proteins, which are presumed to be altered in function as a consequence of association with HPV E7 and E6 oncoproteins, respectively. In contrast, mutations were identified in the p53 and RB genes expressed in the C-33A and HT-3 cervical cancer cell lines, which lack HPV DNA sequences. Mutations in the p53 genes mapped to codon 273 and codon 245 in the C33-A and HT-3 cell lines, respectively, located in the highly conserved regions of p53, where mutations appear in a variety of human cancers. Mutations in RB occurred at splice junctions, resulting in in-frame deletions, affecting exons 13 and 20 in the HT-3 and C-33A cell lines, respectively. These mutations resulted in aberrant proteins that were not phosphorylated and were unable to complex with the adenovirus E1A oncoprotein. These results support the hypothesis that the inactivation of the normal functions of the tumor-suppressor proteins pRB and p53 are important steps in human cervical carcinogenesis, either by mutation or from complex formation with the HPV E6 and E7 oncoproteins.

  6. TERT promoter mutations and gene amplification: Promoting TERT expression in Merkel cell carcinoma

    PubMed Central

    Wang, Na; Björnhagen, Viveca; Höög, Anders; Larsson, Catharina; Lui, Weng-Onn; Xu, Dawei

    2014-01-01

    Telomerase activation through the induction of its catalytic component TERT is essential in carcinogenesis. The regulatory mechanism and clinical significance underlying cancer-specific TERT expression have been extensively investigated in various human malignancies, but little is known about these in Merkel cell carcinoma (MCC), an aggressive neuroendocrine skin tumor. Here we addressed these issues by determining TERT promoter mutations, gene amplification, mRNA expression and association with clinical variables in MCC. TERT mRNA was expressed in 6/6 MCC cell lines and 41 of 43 tumors derived from 35 MCC patients. Telomerase activity was detectable in all 6 cell lines and 11 tumors analyzed. TERT promoter mutations were identified in 1/6 cell lines and 4/35 (11.4%) MCC cases. The mutation exhibited UV signature and occurred in sun-exposed areas. Increased TERT gene copy numbers were observed in 1/6 cell lines and 11/14 (79%) tumors, and highly correlated with its mRNA expression (r = 0.7419, P = 0.0024). Shorter overall survival was significantly associated with higher TERT mRNA levels in MCC patients (P = 0.032). Collectively, TERT expression and telomerase activity is widespread in MCC, and may be attributable to TERT promoter mutations and gene amplification. Higher TERT expression predicts poor patient outcomes. PMID:25301727

  7. Keap1/Nrf2 pathway in kidney cancer: frequent methylation of KEAP1 gene promoter in clear renal cell carcinoma

    PubMed Central

    Copetti, Massimiliano; la Torre, Annamaria; Sparaneo, Angelo; Fontana, Andrea; Poeta, Luana; Gallucci, Michele; Sentinelli, Steno; Graziano, Paolo; Parente, Paola; Pompeo, Vincenzo; Salvo, Laura De; Simone, Giuseppe; Papalia, Rocco; Picardo, Francesco; Balsamo, Teresa; Flammia, Gerardo Paolo; Trombetta, Domenico; Pantalone, Angela; Kok, Klaas; Paranita, Ferronika

    2017-01-01

    The Keap1/Nrf2 pathway is a master regulator of the cellular redox state through the induction of several antioxidant defence genes implicated in chemotherapeutic drugs resistance of tumor cells. An increasing body of evidence supports a key role for Keap1/Nrf2 pathway in kidney diseases and renal cell carcinoma (RCC), but data concerning the molecular basis and the clinical effect of its deregulation remain incomplete. Here we present a molecular profiling of the KEAP1 and NFE2L2 genes in five different Renal Cell Carcinoma histotypes by analysing 89 tumor/normal paired tissues (clear cell Renal Carcinoma, ccRCCs; Oncocytomas; Papillary Renal Cell Carcinoma Type 1, PRCC1; Papillary Renal Cell Carcinoma Type 2, PRCC2; and Chromophobe Cell Carcinoma). A tumor-specific DNA methylation of the KEAP1 gene promoter region was found as a specific feature of the ccRCC subtype (18/37, 48.6%) and a direct correlation with mRNA levels was confirmed by in vitro 5-azacytidine treatment. Analysis of an independent data set of 481 ccRCC and 265 PRCC tumors corroborates our results and multivariate analysis reveals a significant correlation among ccRCCs epigenetic KEAP1 silencing and staging, grading and overall survival. Our molecular results show for the the first time the epigenetic silencing of KEAP1 promoter as the leading mechanism for modulation of KEAP1 expression in ccRCCs and corroborate the driver role of Keap1/Nrf2 axis deregulation with potential new function as independent epigenetic prognostic marker in renal cell carcinoma. PMID:28061437

  8. Keap1/Nrf2 pathway in kidney cancer: frequent methylation of KEAP1 gene promoter in clear renal cell carcinoma.

    PubMed

    Fabrizio, Federico Pio; Costantini, Manuela; Copetti, Massimiliano; la Torre, Annamaria; Sparaneo, Angelo; Fontana, Andrea; Poeta, Luana; Gallucci, Michele; Sentinelli, Steno; Graziano, Paolo; Parente, Paola; Pompeo, Vincenzo; De Salvo, Laura; Simone, Giuseppe; Papalia, Rocco; Picardo, Francesco; Balsamo, Teresa; Flammia, Gerardo Paolo; Trombetta, Domenico; Pantalone, Angela; Kok, Klaas; Paranita, Ferronika; Muscarella, Lucia Anna; Fazio, Vito Michele

    2017-02-14

    The Keap1/Nrf2 pathway is a master regulator of the cellular redox state through the induction of several antioxidant defence genes implicated in chemotherapeutic drugs resistance of tumor cells. An increasing body of evidence supports a key role for Keap1/Nrf2 pathway in kidney diseases and renal cell carcinoma (RCC), but data concerning the molecular basis and the clinical effect of its deregulation remain incomplete.Here we present a molecular profiling of the KEAP1 and NFE2L2 genes in five different Renal Cell Carcinoma histotypes by analysing 89 tumor/normal paired tissues (clear cell Renal Carcinoma, ccRCCs; Oncocytomas; Papillary Renal Cell Carcinoma Type 1, PRCC1; Papillary Renal Cell Carcinoma Type 2, PRCC2; and Chromophobe Cell Carcinoma).A tumor-specific DNA methylation of the KEAP1 gene promoter region was found as a specific feature of the ccRCC subtype (18/37, 48.6%) and a direct correlation with mRNA levels was confirmed by in vitro 5-azacytidine treatment. Analysis of an independent data set of 481 ccRCC and 265 PRCC tumors corroborates our results and multivariate analysis reveals a significant correlation among ccRCCs epigenetic KEAP1 silencing and staging, grading and overall survival.Our molecular results show for the the first time the epigenetic silencing of KEAP1 promoter as the leading mechanism for modulation of KEAP1 expression in ccRCCs and corroborate the driver role of Keap1/Nrf2 axis deregulation with potential new function as independent epigenetic prognostic marker in renal cell carcinoma.

  9. PBRM1 Regulates the Expression of Genes Involved in Metabolism and Cell Adhesion in Renal Clear Cell Carcinoma

    PubMed Central

    Chowdhury, Basudev; Porter, Elizabeth G.; Stewart, Jane C.; Ferreira, Christina R.; Schipma, Matthew J.; Dykhuizen, Emily C.

    2016-01-01

    Polybromo-1 (PBRM1) is a component of the PBAF (Polybromo-associated-BRG1- or BRM-associated factors) chromatin remodeling complex and is the second most frequently mutated gene in clear-cell renal cell Carcinoma (ccRCC). Mutation of PBRM1 is believed to be an early event in carcinogenesis, however its function as a tumor suppressor is not understood. In this study, we have employed Next Generation Sequencing to profile the differentially expressed genes upon PBRM1 re-expression in a cellular model of ccRCC. PBRM1 re-expression led to upregulation of genes involved in cellular adhesion, carbohydrate metabolism, apoptotic process and response to hypoxia, and a downregulation of genes involved in different stages of cell division. The decrease in cellular proliferation upon PBRM1 re-expression was confirmed, validating the functional role of PBRM1 as a tumor suppressor in a cell-based model. In addition, we identified a role for PBRM1 in regulating metabolic pathways known to be important for driving ccRCC, including the regulation of hypoxia response genes, PI3K signaling, glucose uptake, and cholesterol homeostasis. Of particular novelty is the identification of cell adhesion as a major downstream process uniquely regulated by PBRM1 expression. Cytoskeletal reorganization was induced upon PBRM1 reexpression as evidenced from the increase in the number of cells displaying cortical actin, a hallmark of epithelial cells. Genes involved in cell adhesion featured prominently in our transcriptional dataset and overlapped with genes uniquely regulated by PBRM1 in clinical specimens of ccRCC. Genes involved in cell adhesion serve as tumor suppressor and maybe involved in inhibiting cell migration. Here we report for the first time genes linked to cell adhesion serve as downstream targets of PBRM1, and hope to lay the foundation of future studies focusing on the role of chromatin remodelers in bringing about these alterations during malignancies. PMID:27100670

  10. Rat hepatic stellate cells alter the gene expression profile and promote the growth, migration and invasion of hepatocellular carcinoma cells.

    PubMed

    Wang, Zhi-Ming; Zhou, Le-Yuan; Liu, Bin-Bin; Jia, Qin-An; Dong, Yin-Ying; Xia, Yun-Hong; Ye, Sheng-Long

    2014-10-01

    The aim of the present study was to examine the effects of activated hepatic stellate cells (HSCs) and their paracrine secretions, on hepatocellular cancer cell growth and gene expression in vitro and in vivo. Differentially expressed genes in McA-RH7777 hepatocellular carcinoma (HCC) cells following non-contact co-culture with activated stellate cells, were identified by a cDNA microarray. The effect of the co-injection of HCC cells and activated HSCs on tumor size in rats was also investigated. Non-contact co-culture altered the expression of 573 HCC genes by >2-fold of the control levels. Among the six selected genes, ELISA revealed increased protein levels of hepatic growth factor, matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9). Incubation of HCC cells with medium conditioned by activated HSCs significantly increased the proliferation rate (P<0.001), migration rate and the number of invasive HCC cells (P=0.001). Co-injection of HCC cells and activated HSCs into rats significantly increased the weight of the resulting HCC tumors (P<0.01). The paracrine activity of activated HSCs markedly altered the gene expression profile of HCC cells and affected their growth, migration and invasiveness. The results from the present study indicate that the interaction between the activated HSCs and HCC has an important role in the development of HCC.

  11. Identification of prognostic genes in kidney renal clear cell carcinoma by RNA‑seq data analysis.

    PubMed

    Gu, Yanqin; Lu, Linfeng; Wu, Lingfeng; Chen, Hao; Zhu, Wei; He, Yi

    2017-04-01

    The present study aimed to analyze RNA-seq data of kidney renal clear cell carcinoma (KIRC) to identify prognostic genes. RNA‑seq data were downloaded from The Cancer Genome Atlas. Feature genes with a coefficient of variation (CV) >0.5 were selected using the genefilter package in R. Gene co‑expression networks were constructed with the WGCNA package. Cox regression analysis was performed using the survive package. Furthermore, a functional enrichment analysis was conducted using Database for Annotation, Visualization and Integrated Discovery tools. A total of 533 KIRC samples were collected, from which 6,758 feature genes with a CV >0.5 were obtained for further analysis. The KIRC samples were divided into two sets: The training set (n=319 samples) and the validation set (n=214 samples). Subsequently, gene co‑expression networks were constructed for the two sets. A total of 12 modules were identified, and the green module was significantly associated with survival time. Genes from the green module were revealed to be implicated in the cell cycle and p53 signaling pathway. In addition, a total of 11 hub genes were revealed, and 10 of them (CCNA2, CDC20, CDCA8, GTSE1, KIF23, KIF2C, KIF4A, MELK, TOP2A and TPX2) were validated as possessing prognostic value, as determined by conducting a survival analysis on another gene expression dataset. In conclusion, a total of 10 prognostic genes were identified in KIRC. These findings may help to advance the understanding of this disease, and may also provide potential biomarkers for therapeutic development.

  12. DLC-1 operates as a tumor suppressor gene in human non-small cell lung carcinomas.

    PubMed

    Yuan, Bao-Zhu; Jefferson, Amy M; Baldwin, Kimberly T; Thorgeirsson, Snorri S; Popescu, Nicholas C; Reynolds, Steven H

    2004-02-19

    The deleted in liver cancer (DLC-1) gene at chromosome 8p21-22 is altered mainly by genomic deletion or aberrant promoter methylation in a large number of human cancers such as breast, liver, colon and prostate and is known to have an inhibitory effect on breast and liver tumor cell growth. Given the high frequency of deletion involving region 8p21-22 in human non-small cell lung carcinoma (NSCLC), we examined alterations of DLC-1 in a series of primary tumors and tumor cell lines and tested effects of DLC-1 on tumor cell growth. A significant decrease or absence of the DLC-1 mRNA expression was found in 95% of primary NSCLC (20/21) and 58% of NSCLC cell lines (11/19). Transcriptional silencing of DLC-1 was primarily associated with aberrant DNA methylation, rather than genomic deletion as 5-aza-2'-deoxycytidine induced reactivation of DLC-1 expression in 82% (9/11) NSCLC cell lines showing downregulated DLC-1. It was further evidenced by an aberrant DLC-1 promoter methylation pattern, which was detected by Southern blotting in 73% (8/11) of NSCLC cell lines with downregulation of the gene. The transfer of DLC-1 into three DLC-1 negative cell lines caused a significant inhibition in cell proliferation and/or a decrease in colony formation. Furthermore, stable transfer of DLC-1 abolished tumorigenicity in nude mice of two cell lines, suggesting that DLC-1 plays a role in NSCLC by acting as a bona fide new tumor suppressor gene.

  13. Clinical Implications of FADD Gene Amplification and Protein Overexpression in Taiwanese Oral Cavity Squamous Cell Carcinomas

    PubMed Central

    Chien, Huei-Tzu; Cheng, Sou-De; Chuang, Wen-Yu; Liao, Chun-Ta; Wang, Hung-Ming; Huang, Shiang-Fu

    2016-01-01

    Amplification of 11q13.3 is a frequent event in human cancers, including head and neck squamous cell carcinoma. This chromosome region contains several genes that are potentially cancer drivers, including FADD (Fas associated via death domain), an apoptotic effector that was previously identified as a novel oncogene in laryngeal/pharyngeal cancer. This study was designed to explore the role of FADD in oral squamous cell carcinomas (OSCCs) samples from Taiwanese patients, by assessing copy number variations (CNVs) and protein expression and the clinical implications of these factors in 339 male OSCCs. The intensity of FADD protein expression, as determined by immunohistochemistry, was strongly correlated with gene copy number amplification, as analyzed using a TaqMan CNV assay. Both FADD gene copy number amplification and high protein expression were significantly associated with lymph node metastasis (P < 0.001). Patients with both FADD copy number amplification and high protein expression had the shortest disease-free survival (DFS; P = 0.074 and P = 0.002) and overall survival (OS; P = 0.011 and P = 0.027). After adjusting for primary tumor status, tumor differentiation, lymph node metastasis and age at diagnosis, DFS was still significantly lower in patients with either copy number amplification or high protein expression (hazard ratio [H.R.] = 1.483; 95% confidence interval [C.I.], 1.044–2.106). In conclusion, our data reveal that FADD gene copy number and protein expression can be considered potential prognostic markers and are closely associated with lymph node metastasis in patients with OSCC in Taiwan. PMID:27764170

  14. Transcriptional regulation of the fucosyltransferase VI gene in hepatocellular carcinoma cells.

    PubMed

    Higai, Koji; Miyazaki, Noriko; Azuma, Yutaro; Matsumoto, Kojiro

    2008-04-01

    The alpha1,3-fucosyltransferase VI (FUT VI) protein is a key enzyme for synthesis of sialyl Lewis X and Lewis X in epithelial cells. Despite its importance, how FUT VI expression is regulated has not previously been elucidated. In this work, we examined transcriptional regulation of the FUT VI gene in hepatocellular carcinoma HepG2 cells. 5'-Rapid amplification of cDNA ends analysis revealed transcription start sites of FUT VI in HepG2 cells at +65 and +278 nucleotides (nt) downstream of the position registered in the Data Base of Human Transcription Start Sites. We determined promoter regions for FUT VI in HepG2 cells using a luciferase reporter gene assay. The promoter activities of constructs located 5'-upstream of the transcription start site decreased when the -186 to -156 and -56 to -19 nt regions were deleted. Site-directed mutagenesis of these regions revealed that two hepatocyte nuclear factor-4 alpha (HNF-4 alpha) and one octamer binding transcription factor-1 (Oct-1) binding sites are essential for FUT VI transcription. Furthermore, transient over-expression of HNF-4 alpha but not Oct-1 enhanced both FUT VI promoter activities and FUT VI mRNA levels in HuH-7 cells. These results suggest that two defined regions in the 5'-flanking region of the FUT VI transcription start site are critical for FUT VI transcription in HepG2 cells.

  15. Gene expression profiling of taxol-resistant nasopharyngeal carcinoma cells with siRNA-mediated FOLR1 downregulation.

    PubMed

    Song, Yexun; Peng, Xiaowei; Wang, Min; Xie, Jun; Tan, Guolin

    2015-01-01

    Our previous study has shown that downregulation of FOLR1 by siRNA partially reversed taxol-resistant phenotype in taxol-resistant nasopharyngeal carcinoma cell lines. We aim to gain further insight into the molecular mechanisms of this process and identify the differentially expressed genes after FOLR1 downregulation. The global gene expression profile was identified and analyzed using the Affymetrix HG-U133 Plus 2.0 array. There was a significant dysregulation in the global gene expression of the FOLR1-suppressed taxol-resistant nasopharyngeal carcinoma cell lines. There were 41 upregulated genes and 109 downregulated genes. QRT-PCR validation of the selected differentially expressed genes demonstrated there was a good correlation with the microarray analysis. There was a significant deregulation of expression in the apoptosis-related genes such as BIRC3, PRKX, TNFRSF10A and involved in Viral carcinogenesis, MAPK signaling pathways after FOLR1 was downregulated. The suppression of FOLR1 by RNA interference altered gene expression profile of taxol-resistant nasopharyngeal carcinoma cell lines. The apoptosis-related genes and the gene alterations in viral carcinogenesis, MAPK signaling pathways might be important in FOLR1 siRNA-induced taxol-resistant reversal.

  16. Aberrant expression of cell cycle and material metabolism related genes contributes to hepatocellular carcinoma occurrence.

    PubMed

    Yan, Hongxian; Li, Zhaohui; Shen, Quan; Wang, Qian; Tian, Jianguo; Jiang, Qingfeng; Gao, Linbo

    2017-04-01

    This study aims to deepen our understanding of the molecular mechanism underlying the occurrence of hepatocellular carcinoma (HCC). We first downloaded a gene expression profile dataset GSE29721 (10 HCC and 10 control samples) from Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/). Differentially expressed genes (DEGs) were identified by the paired t-test using limma package. Pathway and functional enrichment analyses were performed with DAVID tools. Transcription factors were annotated with TRANSFAC database and tumor associated genes (TAGs) were annotated with TAG and TSGene databases. Protein-protein interaction (PPI) network was conducted using STRING online tool and function module was further identified with BioNet package. Totally, 527 up-regulated DEGs and 587 down-regulated DEGs were identified. GO functional and KEGG pathway enrichment analyses showed that the up-regulated DEGs were mainly related to cell division and cell cycle, while the down-regulated DEGs were largely related to material metabolism, especially secondary metabolism. Proteins encoded by DEGs CDK1, BUB1, CDC20, NCAPG, NDC80, CDCA8, MAD2L1, CCNB1, CCNA2 and BIRC5 were hub genes with high degrees in the PPI network; further module analysis detected a subnetwork consisting of 55 proteins, such as CYP2B6, ACAA1, BHMT and ALDH2. Taken together, aberrant expression of cell cycle related genes (e.g., CDK1, CCNA2, CCNB1, BUB1, MAD2L1 and CDC20) and material metabolism related genes (e.g., CYP2B6, ACAA1, BHMT and ALDH2) may contribute to HCC occurrence. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Effects of TESTIN gene expression on proliferation and migration of the 5-8F nasopharyngeal carcinoma cell line.

    PubMed

    Zhong, Zhun; Zhang, Fei; Yin, Shu-Cheng

    2015-01-01

    To investigate effects of the TESTIN (TES) gene on proliferation and migration of highly metastatic nasopharyngeal carcinoma cell line 5-8F and the related mechanisms. The target gene of human nasopharyngeal carcinoma cell line 5-8F was amplified by PCR and cloned into the empty plasmid pEGFP-N1 to construct a eukaryotic expression vector pEGFP-N1-TES. This was then transfected into 5-8F cells. MTT assays, flow cytometry and scratch wound tests were used to detect the proliferation and migration of transfected 5-8F cells. A cell model with stable and high expression of TES gene was successfully established. MTT assays showed that the OD value of 5-8F/TES cells was markedly lower than that of 5-8F/GFP cells and 5-8F cells (p<0.05). Flow cytometry showed that the apoptosis rate of 5-8F/TES cells was prominently increased compared with 5-8F/GFP cells and 5-8F cells (p<0.05). In vitro scratch wound assays showed that, the width of the wound area of 5-8F/TES cells narrowed slightly, while the width of the wound area of 5-8F/ GFP cells and 5-8F cells narrowed sharply, suggesting that the TES overexpression could inhibit the migration ability. TES gene expression remarkably inhibits the proliferation of human nasopharyngeal carcinoma cell line 5-8F and reduces its migration in vitro. Thus, it may be a potential tumor suppressor gene for nasopharyngeal carcinoma.

  18. Impact of thawing on reference gene expression stability in renal cell carcinoma samples.

    PubMed

    Ma, Yi; Dai, HuiLi; Kong, XianMing; Wang, LiMin

    2012-09-01

    More and more samples are obtained from biobanks for biomedical research; however, some of these samples may undergo thawing before processing. We aim to evaluate the reference gene expression stability in thawed renal cell carcinoma samples. Sixteen matched malignant and nonmalignant renal tissue samples were obtained and each sample was divided into 4 aliquots before being snap frozen and stored at -80°C. By quantitative real-time polymerase chain reaction, a time-course study was conducted on the thawed tissue to evaluate the expression stability of a panel of the 10 most frequently used reference genes in renal cell carcinom samples: ACTB, ALAS1, B2M, GAPDH, HMBS, HPRT, PPIA, RPLP0,TBP, and TUBB. As shown by geNorm M values, PPIA was the most stable gene at the 0-, 15-, and 30-minute time points (M=0.82, 0.85, and 0.76, respectively), whereas GAPDH was ranked last at the 5-, 15-, and 30-minute time points (M=1.38, 1.44, and 1.39, respectively). A positive correlation was found by linear regression between the thawing time and 2 to the power of crossing point values of all candidate reference genes (P<0.05). The mean coefficient of variance of all reference genes increased significantly at time points 5, 15, and 30 minutes compared with 0 minutes (P<0.01). In conclusion, using the geNorm algorithm, PPIA was identified as the most stably expressed gene between malignant and nonmalignant renal tissue samples that were thawed for similar time periods. All the reference genes showed high variations along with the thawing time; it should be recommended to use a combination of several candidate reference genes when comparing samples thawed for different time periods.

  19. A Gene Encoding Antigenic Peptides of Human Squamous Cell Carcinoma Recognized by Cytotoxic T Lymphocytes

    PubMed Central

    Shichijo, Shigeki; Nakao, Masanobu; Imai, Yasuhisa; Takasu, Hideo; Kawamoto, Mayumi; Niiya, Fumihiko; Yang, Damu; Toh, Yuji; Yamana, Hideaki; Itoh, Kyogo

    1998-01-01

    Except for melanomas, tumor antigens recognized by cytotoxic T lymphocytes (CTLs) are yet unidentified. We have identified a gene encoding antigenic peptides of human squamous cell carcinomas (SCCs) recognized by human histocompatibility leukocyte antigens (HLA)- A2601–restricted CTLs. This gene showed no similarity to known sequences, and encoded two (125- and 43-kilodalton [kD]) proteins. The 125-kD protein with the leucine zipper motif was expressed in the nucleus of the majority of proliferating cells tested, including normal and malignant cells. The 43-kD protein was expressed in the cytosol of most SCCs from various organs and half of lung adenocarcinomas, but was not expressed in other cancers nor in a panel of normal tissues. The three nonapeptides shared by the two proteins were recognized by the KE4 CTLs, and one of the peptides induced in vitro from peripheral blood mononuclear cells (PBMCs) the CTLs restricted to the autologous tumor cells. The 43-kD protein and this nonapeptide (KGSGKMKTE) may be useful for the specific immunotherapy of HLA-A2601+ epithelial cancer patients. PMID:9449708

  20. Renal cell carcinoma risk is associated with the interactions of APOE, VHL and MTHFR gene polymorphisms.

    PubMed

    Lv, Cai; Bai, Zhiming; Liu, Zhenxiang; Luo, Pengcheng; Zhang, Jie

    2015-01-01

    The study was designed to explore the association of renal cell carcinoma (RCC) with VHL (rs779805), MTHFR (rs1801133) and APOE (rs8106822 and rs405509) polymorphisms, investigate the interactions among the single nucleotide polymorphisms (SNPs), and explore roles of the interactions in the pathogenesis of RCC in Chinese Han population. 81 RCC patients and 80 healthy controls were included in the study. Polymerase chain reaction (PCR) and direct sequencing methods were used in the analysis on the genotypes of APOE, VHL and MTHFR gene polymorphisms. Multifactor dimensionality reduction (MDR) method was adopted to conduct gene-gene interaction analysis. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were utilized to evaluate the correlation between gene-gene interactions and RCC risk. Significant correlations were found between RCC risk and 3 SNPs (rs8106822, rs779805 and rs1801133). Genotype AA and allele A of APOE rs8106822 were significantly associated with RCC susceptibility (OR=2.65, 95% CI=1.05-6.69). Meanwhile, we found that the frequencies of genotype GG and allele G were much higher in case group, compared with controls (P<0.05 for both) and they appeared to be risk factors for RCC (OR=2.90, 95% CI=1.22-6.87; OR=1.78, 95% CI=1.14-2.27). While, allele T of MTHFR rs1801133 could decrease the risk of RCC (OR=0.62, 95% CI=0.40-0.97). MDR analysis showed that gene-gene interactions among APOE, VHL and MTHFR SNPs were closely related with RCC susceptibility. APOE, VHL and MTHFR gene polymorphisms were related to the risk of RCC. The interactions among APOE, VHL and MTHFR genes could increase the risk of RCC.

  1. Renal cell carcinoma risk is associated with the interactions of APOE, VHL and MTHFR gene polymorphisms

    PubMed Central

    Lv, Cai; Bai, Zhiming; Liu, Zhenxiang; Luo, Pengcheng; Zhang, Jie

    2015-01-01

    Objective: The study was designed to explore the association of renal cell carcinoma (RCC) with VHL (rs779805), MTHFR (rs1801133) and APOE (rs8106822 and rs405509) polymorphisms, investigate the interactions among the single nucleotide polymorphisms (SNPs), and explore roles of the interactions in the pathogenesis of RCC in Chinese Han population. Methods: 81 RCC patients and 80 healthy controls were included in the study. Polymerase chain reaction (PCR) and direct sequencing methods were used in the analysis on the genotypes of APOE, VHL and MTHFR gene polymorphisms. Multifactor dimensionality reduction (MDR) method was adopted to conduct gene-gene interaction analysis. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were utilized to evaluate the correlation between gene-gene interactions and RCC risk. Results: Significant correlations were found between RCC risk and 3 SNPs (rs8106822, rs779805 and rs1801133). Genotype AA and allele A of APOE rs8106822 were significantly associated with RCC susceptibility (OR=2.65, 95% CI=1.05-6.69). Meanwhile, we found that the frequencies of genotype GG and allele G were much higher in case group, compared with controls (P<0.05 for both) and they appeared to be risk factors for RCC (OR=2.90, 95% CI=1.22-6.87; OR=1.78, 95% CI=1.14-2.27). While, allele T of MTHFR rs1801133 could decrease the risk of RCC (OR=0.62, 95% CI=0.40-0.97). MDR analysis showed that gene-gene interactions among APOE, VHL and MTHFR SNPs were closely related with RCC susceptibility. Conclusion: APOE, VHL and MTHFR gene polymorphisms were related to the risk of RCC. The interactions among APOE, VHL and MTHFR genes could increase the risk of RCC. PMID:26191297

  2. The role of HOX genes in head and neck squamous cell carcinoma.

    PubMed

    Platais, Christopher; Hakami, Fahad; Darda, Lav; Lambert, Daniel W; Morgan, Richard; Hunter, Keith D

    2016-04-01

    Recent decades have witnessed the publication of numerous studies reporting alterations in the genome and transcriptome of head and neck squamous cell carcinoma (HNSCC). Currently, the utilisation of these alterations as biomarkers and targets for therapy is limited and new, useful molecular characteristics are being sought. Many of the published HNSCC gene expression profiles demonstrate alterations in the expression of HOX genes. These are a family of Homeobox-containing genes which are involved in developmental patterning and morphogenesis in the embryo, and which are often aberrantly expressed in cancer. The 39 HOX genes found in the human genome are arranged in four paralogous groups at different chromosomal loci. These control a wide range of cellular processes, including proliferation and migration, which are relevant in the context of cancer development. In this review article, we will outline the biology of HOX genes in relation to cancer and summarise the accumulating evidence for their role in the development of HNSCC and the possibility that they could be a therapeutic target in this malignancy. We will also identify areas where our current understanding is weak to focus future work and appraise the ongoing strategies for pharmacological intervention.

  3. Preclinical evaluation of a gene therapy treatment for transitional cell carcinoma.

    PubMed

    Zhang, X; Godbey, W T

    2011-01-01

    Three drugs were compared for their efficacy in treating murine transitional cell carcinoma (TCC) of the bladder. Intravesical gene therapy treatments utilizing expression-targeted plasmids, where the murine cyclooxygenase-2 (Cox-2) promoter was used to drive the expression of exogenously inducible forms of caspases 3 and 9, were compared with treatment modalities employing Bacille Calmette-Guérin (BCG) and celecoxib. When administered via lavage, only the gene therapy regimen was found to be effective at restricting tumor progression following a 7-day incubation of tumor tissues. Celecoxib was also administered via the diet to allow for systemic delivery of the drug. The most efficacious celecoxib use tested yielded tumors with masses of (18.3±8.4 mg) versus the gene delivery method, which yielded tumors with masses of (3.6±7.7 mg). The difference was significant (t-test, n≥4, P<0.025). The results showed that the Cox-2 expression-targeted gene therapy system could efficiently bypass the bladder permeability barrier and more effectively inhibit tumor growth and development than either BCG or celecoxib treatments. Long-term data further demonstrated that the gene therapy system could effectively inhibit tumor growth and elongate life expectancy.

  4. Gene expression profile of renal cell carcinomas after neoadjuvant treatment with sunitinib: new pathways revealed.

    PubMed

    Dzik, Carlos; Reis, Sabrina T; Viana, Nayara I; Brito, Glauber; Paloppi, Isis; Nahas, Willian; Srougi, Miguel; Leite, Katia R M

    2017-05-04

    In renal cell carcinoma (RCC) of the clear cell type, inactivity of the VHL gene induces overexpression of HIF1 α and its targets, the tyrosine kinase receptors, promoting RCC development and progression. The discovery of tyrosine kinase inhibitors (TKIs) changed the treatment of these tumors. Other molecular pathways involved in the TKI mechanisms of action have not been described in the literature. The aim of our study was to elucidate alternative mechanisms of action of sunitinib in tumor tissue after neoadjuvant treatment of RCC. The gene expression profile was accessed using microarray (Affymetrix Human Genome U133 Plus 2.0 platform) and frozen RCC tissues collected from 5 patients with locally advanced non-metastatic tumors who underwent nephrectomy after being treated with 2 cycles of neoadjuvant sunitinib. The results were compared with matched controls comprising 6 patients with no neoadjuvant intervention. There was underexpression of the majority of genes after sunitinib treatment. The lower expression levels of IGFBP1, CCL20, CXCL6 and FGB were confirmed by qRT-PCR in all cases. The downregulation of gene expression leads us to search for methylation as a mechanism of action of the TKI. IGFBP1 was shown to be methylated by methylation-sensitive high-resolution melting technique. The ultimate genetic effects of sunitinib may explain its actions as an antitumor drug that apparently suppresses the expression of important genes related to cell survival, adhesion, invasion and immunomodulation. The methylation of gene promoters was shown to be part of the mechanism of action of this class of drugs.

  5. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  6. Differential regulation of papilloma virus early gene expression in transformed fibroblasts and carcinoma cell lines.

    PubMed Central

    Kleiner, E; Dietrich, W; Pfister, H

    1986-01-01

    Treatment of bovine papilloma virus (BPV) 1-transformed mouse fibroblasts with cycloheximide led to a 10-fold increase in the amount of viral transcripts, after as little as 1 h of protein synthesis inhibition. Northern blots revealed no qualitative changes in the RNA pattern. Nuclear run-on experiments showed about a 7-fold increase in specific transcriptional activity after cycloheximide treatment. The half-life of BPV1 mRNA was twice as long as in untreated controls. These results indicate that both RNA synthesis and degradation of viral RNA are controlled by labile proteins. Cycloheximide stimulation turned out to be independent of the BPV1 E2 gene activity which enhances viral transcription. Cycloheximide treatment had no effect on the amount of human papilloma virus (HPV) 18 transcripts in cervical carcinoma derived HeLa and C4-1 cells. Transcription of HPV16 in the cervical carcinoma line SiHa was likewise unaffected. The differential regulation of transcription in transformed fibroblasts and cancer-derived cells, and the significance for malignant conversion are discussed. Images Fig. 1. Fig. 3. Fig. 4. Fig. 6. PMID:3019673

  7. Gene and miRNA expression changes in squamous cell carcinoma of larynx and hypopharynx

    PubMed Central

    Nair, Jayalakshmi; Jain, Prachi; Chandola, Udita; Palve, Vinayak; Vardhan, N R. Harsha; Reddy, Ram Bhupal; Kekatpure, Vikram D.; Suresh, Amritha; Kuriakose, Moni Abraham; Panda, Binay

    2015-01-01

    Laryngo-pharyngeal squamous cell carcinomas are one of the most common head and neck cancers. Despite the presence of a large body of information, molecular biomarkers are not currently used in the diagnosis, treatment and management of patients for this group of cancer. Here, we have profiled expression of genes and microRNAs of larynx and hypopharynx tumors using high-throughput sequencing experiments. We found that matrix metalloproteinases along with SCEL, CRNN, KRT4, SPINK5, and TGM3 among others have significantly altered expression in these tumors. Alongside gene expression, the microRNAs hsa-miR-139, hsa-miR-203 and the hsa-miR-424/503 cluster have aberrant expression in these cancers. Using target genes for these microRNAs, we found the involvement of pathways linked to cell cycle, p53 signaling, and viral carcinogenesis significant (P-values 10−13, 10−9 and 10−7 respectively). Finally, using an ensemble machine-learning tool, we discovered a unique 8-gene signature for this group of cancers that differentiates the group from the other tumor subsites of head and neck region. We investigated the role of promoter methylation in one of these genes, WIF1, and found no correlation between DNA methylation and down-regulation of WIF1. We validated our findings of gene expression, 8-gene signature and promoter methylation using q-PCR, data from TCGA and q-MSP respectively. Data presented in this manuscript has been submitted to the NCBI Geo database with the accession number GSE67994. PMID:26413216

  8. Induction of carcinoma cell migration on vitronectin by NF-kappa B-dependent gene expression.

    PubMed Central

    Yebra, M; Filardo, E J; Bayna, E M; Kawahara, E; Becker, J C; Cheresh, D A

    1995-01-01

    Integrin alpha v beta 5 promotes FG carcinoma cell adhesion to vitronectin yet requires protein kinase C (PKC) activation for migration on this ligand. Here we report that this PKC-dependent cell motility event requires NF-kappaB-dependent transcription. Specifically, a component within nuclear extracts prepared from PKC-stimulated FG cells exhibited a significant increase in binding activity to a synthetic oligonucleotide containing a consensus kappa B sequence. These nuclear DNA-binding complexes were shown to be comprised of p65 and p50 NF-kappaB/rel family members and appeared functionally active because they promoted transcription of a reporter construct containing a kappa B site. The NF-kappa B activation event was directly linked to the alpha v beta 5 motility response because the NF-kappa B-binding oligonucleotide, when introduced into FG cells, inhibited cell migration on vitronectin but not on collagen and had no effect on cell adhesion to either ligand. These results suggest that the detected DNA-binding complexes interact with kappa B transcriptional elements to regulate gene expression required for alpha v beta 5-dependent cell motility on vitronectin. Images PMID:7579698

  9. High levels of patched gene mutations in basal-cell carcinomas from patients with xeroderma pigmentosum

    PubMed Central

    Bodak, Nathalie; Queille, Sophie; Avril, Marie Françoise; Bouadjar, Bakar; Drougard, Christiane; Sarasin, Alain; Daya-Grosjean, Leela

    1999-01-01

    Recently, hptc, a human gene homologous to the Drosophila segment polarity gene patched (ptc), has been implicated in the nevoid basal-cell carcinoma (BCC) syndrome, and somatic mutations of hptc also have been found in sporadic BCCs, the most frequent cancers found in the white population. We have analyzed the hptc gene, postulated to be a tumor suppressor gene, in 22 BCCs from patients with the hyperphotosensitive genodermatosis xeroderma pigmentosum (XP). Patients with XP are deficient in the repair of UV-induced DNA lesions and are characterized by their predisposition to cancers in sun-exposed skin. Analysis using PCR–single-strand conformation polymorphism of the hptc gene identified 19 alterations in 16 of 22 (73%) of the BCCs examined. Only two (11%) deletions of the hptc gene were found in XP BCCs compared with >30% rearrangement observed in non-XP sporadic BCCs, and 17 of 19 (89%) were base substitutions. Among the 17 base substitutions, 11 (65%) were CC → TT tandem mutations, and 4 (23%) were C → T substitutions, all targeted at bipyrimidine sites. Hence, a significantly higher number (15 of 19; 79%) of UV-specific alterations are seen in XP tumors, in contrast to non-XP sporadic BCCs. Interestingly, we have found that in 7 of 14 (50%) XP BCCs analyzed, both hptc and the tumor suppressor gene p53 are mutated. Not only have our data indicated the key role played by hptc in the development of BCCs, they also have substantiated the link between unrepaired UV-induced DNA lesions and skin carcinogenesis, as exemplified by the UV-specific alterations of different genes in the same tumors. PMID:10220428

  10. Association between infection of virulence cagA gene Helicobacter pylori and laryngeal squamous cell carcinoma

    PubMed Central

    Burduk, Paweł Krzysztof

    2013-01-01

    Background The aim of the study was to evaluate the presence of cagA gene Helicobacter pylori in etiopathogenesis of initiation and development of larynx squamous cell carcinoma (LSCC) and its predictable role as a prognostic factor. Material/Methods The prospective, controlled study involved a series of 75 patients (65 male, 10 female, mean age 59.1 years, range 43 to 79 years) with larynx cancer. Samples of larynx cancerous tissue, each of 10–15 mg, were obtained from fresh tissues and were used for nucleic acid purification. DNA was extracted from 225 samples (larynx tumor – I (75), margin of tumor and normal tissue – II (75) and normal larynx tissue from opposite side to the tumor – III). All samples were subjected to H. pylori ureA detection by the PCR H. pylori diagnostic test. Samples that were positive for ureA H. pylori gene were evaluated for cagA H. pylori gene. Results Presence of H. pylori cagA gene was identified in 46,7% to 49,3% of 75 H. pylori ureA gene-positive larynx cancer depending of tissue location. There was a correlation of high incidence of positive cagA gene in larynx cancer tissue in supraglottic versus subglottic and glottic location. We observed a predominance of cagA gene in LSCC in patients with positive cervical lymph nodes and clinical stage T3 and T4. Conclusions H. pylori is present in larynx tissue and may be a possible carcinogen or co-carcinogen in LSCC development, but that must be addressed by future investigations. The presence of cagA gene in larynx cancer tissues significantly decreases survival rate and increases the disease recurrence possibilities. PMID:23860397

  11. [Establishment of a human laryngeal carcinoma Hep-2/5-Fu cell line and the screening of differentially expressed genes].

    PubMed

    Chen, Jie; Wang, Jiadong

    2012-12-01

    To establish a Hep-2/5-Fu of human drug-resistant laryngeal carcinoma cell line, and to screen the possible drug resistance-associated genes. Hep-2/5-Fu of a human drug resistant laryngeal carcinoma cell line was induced by continuously exposing human laryngeal carcinoma cells to gradually increasing concentrations of 5-Fu. The growth law was observed and the growth curve was protracted. The drug resistance of Hep-2/5-Fu was measured by MTT assay and the drug resistant index RI was calculated. Genes expressed differentially between Hep-2/5-Fu and its parent cell line Hep-2 were screened using a gene chip, and several selected drug resistance associated genes were confirmed by reverse transcription-polymerase chain reaction (RT-PCR). Compared with its parental cells, the drug resistance cell line had slower growth rate and larger size. The Hep-2/5-Fu cell line showed cross drug resistance to 5-Fu, cisplatin and vincristine. There were 1210 differentially expressed genes possibly associated with drug resistance by the gene chip screening method. The possible drug resistance-related genes included Cyclin D, IGF-BP3, CASP9, and CDK4/6. The expression of Cyclin D in the Hep-2/5-Fu cell line was 6.5997 times of that in the parent cell line. RT-PCR results were consistent with the gene chip results. The altered biological properties of Hep-2/5-Fu may be related to its drug resistance phenotype. Several genes, such as Cyclin D, are possibly involved in the mechanism of drug resistance in this cell line.

  12. Double stranded-RNA-mediated activation of P21 gene induced apoptosis and cell cycle arrest in renal cell carcinoma

    PubMed Central

    Whitson, Jared M; Noonan, Emily J; Pookot, Deepa; Place, Robert F; Dahiya, Rajvir

    2014-01-01

    Small double stranded RNAs (dsRNA) are a new class of molecules which regulate gene expression. Accumulating data suggest that some dsRNA can function as tumor suppressors. Here we report further evidence on the potential of dsRNA mediated p21 induction. Using the human renal cell carcinoma cell line A498, we found that dsRNA targeting the p21 promoter significantly induced the expression of p21 mRNA and protein levels. As a result, dsP21 transfected cells had a significant decrease in cell viability with a concomitant G1 arrest. We also observed a significant increase in apoptosis. These findings were associated with a significant decrease in survivin mRNA and protein levels. This is the first report that demonstrates dsRNA mediated gene activation in renal cell carcinoma and suggests that forced over-expression of p21 may lead to an increase in apoptosis through a survivin dependent mechanism. PMID:19384944

  13. Double stranded-RNA-mediated activation of P21 gene induced apoptosis and cell cycle arrest in renal cell carcinoma.

    PubMed

    Whitson, Jared M; Noonan, Emily J; Pookot, Deepa; Place, Robert F; Dahiya, Rajvir

    2009-07-15

    Small double stranded RNAs (dsRNA) are a new class of molecules which regulate gene expression. Accumulating data suggest that some dsRNA can function as tumor suppressors. Here, we report further evidence on the potential of dsRNA mediated p21 induction. Using the human renal cell carcinoma cell line A498, we found that dsRNA targeting the p21 promoter significantly induced the expression of p21 mRNA and protein levels. As a result, dsP21 transfected cells had a significant decrease in cell viability with a concomitant G1 arrest. We also observed a significant increase in apoptosis. These findings were associated with a significant decrease in survivin mRNA and protein levels. This is the first report that demonstrates dsRNA mediated gene activation in renal cell carcinoma and suggests that forced over-expression of p21 may lead to an increase in apoptosis through a survivin dependent mechanism.

  14. The network of microRNAs, transcription factors, target genes and host genes in human renal cell carcinoma

    PubMed Central

    SONG, CHENGLU; XU, ZHIWEN; JIN, YUE; ZHU, MINGHUI; WANG, KUNHAO; WANG, NING

    2015-01-01

    At present, scientists have performed numerous studies investigating the morbidity of renal cell carcinoma (RCC) in the genetic and microRNA (miRNA) fields, obtaining a substantial amount of knowledge. However, the experimentally validated data of genes, miRNA and transcription factors (TFs) cannot be found in a unified form, which makes it challenging to decipher the regulatory mechanisms. In the present study, the genes, miRNAs and TFs involved in RCC are regarded as elements in the regulatory network, and the present study therefore focuses on the association between each entity. Three regulatory networks were constructed hierarchically to indicate the regulatory association between the genes, miRNAs and TFs clearly, including the differentially expressed, associated and global networks. All the elements were macroscopically investigated in these networks, instead of only investigating one or several of them. The present study not only compared and analyzed the similarities and the differences between the three networks, but also systematically expounded the pathogenesis of RCC and supplied theoretical foundations for future gene therapy investigations. Following the construction of the three networks, certain important pathways were highlighted. The upstream and downstream element table of differentially expressed genes and miRNAs was listed, in which self-adaption associations and circle-regulations were identified. In future studies, the identified genes and miRNAs should be granted more attention. PMID:25436016

  15. MicroRNA-451 regulates chemoresistance in renal cell carcinoma by targeting ATF-2 gene.

    PubMed

    Sun, Xiang; Lou, Longhua; Zhong, Kezhao; Wan, Lijuan

    2017-01-01

    Renal cell carcinoma (RCC) is a malignant tumor, which severely threatens human's life, moreover, the multi-drug resistance (MDR) under RCC undoubtedly strengthen the difficulties in the treatment. MiR-451 has been considered to play an important role in regulation of MDR in several cancers, but the role of it in MDR of RCC has not been explored. This study aims to explore the mechanism of miR-451 as a target to regulate chemotherapy resistance, which is crucial for further exploring novel therapy for RCC. Two human cell lines (ACHN and GRC-1) were performed in this study and adriamycin (ADM) was used to construct MDR cell lines. qRT-PCR was used to determine the mRNA expression of miR-451 and ATF-2. Weston blot was used to determine protein expression. MTT assay and flow cytometry were used for assessing cell viability and apoptosis, individually. Luciferase reporter assay was used to detect the targeting of miR-451 and ATF-2. Results presented that the expression of miR-451 was higher in low MDR cell line (ACHN) comparing with the high MDR cell line (GRC-1), while the expression of ATF-2 revealed an opposite results. MiR-451 targeted ATF-2 and regulated its expression. Overexpression of miR-451 strengthened drug resistance, decreased cell viability, and increased cell apoptosis of GRC-1 pretreated by ADM, while overexpressed ATF-2 reversed the effect induced by miR-451 overexpression. Then miR-451 knockdown improved drug susceptibility, decreased cell apoptosis, and increased cell viability of ACHN induced by ADM, however, ATF-2 suppression reversed the low rate of cell apoptosis and high rate of cell viability induced by miR-451 knockdown. Our results revealed that miR-451 regulates the drug resistance of RCC by targeting ATF-2 gene, which might be critical for overcoming MDR in RCC patients. Impact statement This is the first study to emphasize the expression of miR-451 on regulating multi-drug resistance (MDR) in renal cell carcinoma (RCC). Our study found

  16. Cell-specific expression of artificial microRNAs targeting essential genes exhibit potent antitumor effect on hepatocellular carcinoma cells.

    PubMed

    Mao, Chenyu; Liu, Hao; Chen, Ping; Ye, Jingjia; Teng, Lisong; Jia, Zhenyu; Cao, Jiang

    2015-03-20

    To achieve specific and potent antitumor effect of hepatocyte carcinoma cells, replication defective adenoviral vectors, namely rAd/AFP-amiRG, rAd/AFP-amiRE and rAd/AFP-amiRP, were constructed which were armed with artificial microRNAs (amiRs) targeting essential functional genes glyceraldehyde-3-phosphate dehydrogenase, eukaryotic translation initiation factor 4E and DNA polymerase α respectively under the control of a recombinant promoter comprised of human α-fetoprotein enhancer and basal promoter. The AFP enhancer/promoter showed specific high transcription activity in AFP-positive HCC cells Hep3B, HepG2 and SMMC7721, while low in AFP-negative cell Bcap37. All artificial microRNAs exhibited efficient knockdown of target genes. Decreased ATP production and protein synthesis was observed in rAd/AFP-amiRG and rAd/AFP-amiRE treated HCC cells. All three recombinant adenoviruses showed efficient blockage of cell cycle progression and significant suppression of HCC cells in vitro. In nude mice model bearing Hep3B xenograft, administration of rAd/AFP-amiRG showed potent antitumor effect. The strategy of tumor-specific knockdown of genes essential for cell survival and proliferation may suggest a novel promising approach for HCC gene therapy.

  17. Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas

    PubMed Central

    Martinez, Ivan; Wang, Jun; Hobson, Kenosha F.; Ferris, Robert L.; Khan, Saleem A.

    2007-01-01

    Human papillomaviruses (HPVs) have been implicated in the pathogenesis of a subset of squamous cell carcinoma of the head and neck (SCCHN). The goal of this study was to compare the cellular gene expression profiles of HPV-positive and HPV-negative oropharyngeal carcinomas with those of the normal oral epithelium. Using Affymetrix Human U133A GeneChip, our results showed that 397 genes were differentially expressed in HPV-positive SCCHN compared to the normal oral epithelium. The up-regulated genes included those involved in cell cycle regulation (CDKN2A), cell differentiation (SFRP4) and DNA repair (RAD51AP1), while the down-regulated genes included those involved in proteolysis (PRSS3). We also found 162 differentially expressed genes in HPV-negative SCCHN compared to the normal oral mucosa. The up-regulated genes included those involved in cell proliferation (AKR1C3) and transcription regulation (SNAPC1), while down-regulated genes included those involved in apoptosis (CLU) and RNA processing (RBM3). Our studies also identified a subgroup of 59 differentially expressed genes in HPV-positive SCCHN as compared to both HPV-negative SCCHN and normal oral tissues. Such up-regulated genes included those involved in nuclear structure and meiosis (SYCP2), DNA repair (RFC5), and transcription regulation (ZNF238). Genes involved in proteolysis (KLK8) and signal transduction (CRABP2) were found to be down-regulated in HPV-positive SCCHN. The results of GeneChip experiments were validated by quantitative real-time RT-PCR analysis of a few representative genes. Our results reveal specific gene expression patterns in HPV-positive and HPV-negative oropharyngeal squamous carcinomas that may serve as potential biomarkers for the development of SCCHN. PMID:17079134

  18. Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells.

    PubMed

    Marcinkiewicz, Katarzyna M; Gudas, Lorraine J

    2014-01-01

    To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 mark on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes.

  19. Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells

    PubMed Central

    Marcinkiewicz, Katarzyna M.; Gudas, Lorraine J.

    2013-01-01

    To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 mark on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes. PMID:24076275

  20. Mutational status of VHL gene and its clinical importance in renal clear cell carcinoma.

    PubMed

    Alves, Mariana Rezende; Carneiro, Felipe Cavalcanti; Lavorato-Rocha, André Mourão; da Costa, Walter Henriques; da Cunha, Isabela Werneck; de Cássio Zequi, Stênio; Guimaraes, Gustavo Cardoso; Soares, Fernando Augusto; Carraro, Dirce Maria; Rocha, Rafael Malagoli

    2014-09-01

    The most common subtype of renal cell carcinoma is the clear cell type (ccRCC), accounting for 75 % of cases. Inactivation of VHL gene is thought to be an early event in ccRCC carcinogenesis. Our intention was to assess whether VHL mutational status might provide useful predictive or prognostic information in patients with ccRCC. VHL messenger RNA (mRNA) expression was analyzed by in situ hybridization and its protein by immunohistochemistry on a tissue microarray containing samples from 148 cases. This was validated by qRT-PCR on 62 cases, for which RNA was available. The mutation status was assessed in 91 cases by Sanger sequencing. VHL was found mutated in 57 % of cases, with missense mutations in 26 %, nonsense in 5 %, splice site in 13 %, deletions in 39 %, indels in 8 %, duplications in 8 %, and insertions in 2 % of the cases. The prevalence of mutations by exon was the following: exon 1, 47 %; exon 2, 27 %; and exon 3, 13 %. VHL protein was expressed in a high number of cases (80 %), but significant correlations were not found between protein expression, clinical data, and survival. Importantly, of the 91 samples evaluated by sequencing, 45 were mutated, and 87 % of those were strongly positive. We found 32 novel mutations in the VHL gene in ccRCC. The presence of mutations was not concordant with mRNA or protein expression. Nonsense mutations of the VHL gene appear to be related with poorer prognosis and survival.

  1. Network based analyses of gene expression profile of LCN2 overexpression in esophageal squamous cell carcinoma

    PubMed Central

    Wu, Bingli; Li, Chunquan; Du, Zepeng; Yao, Qianlan; Wu, Jianyi; Feng, Li; Zhang, Pixian; Li, Shang; Xu, Liyan; Li, Enmin

    2014-01-01

    LCN2 (lipocalin 2) is a member of the lipocalin family of proteins that transport small, hydrophobic ligands. LCN2 is elevated in various cancers including esophageal squamous cell carcinoma (ESCC). In this study, LCN2 was overexpressed in the EC109 ESCC cell line and we applied integrated analyses of the gene expression data to identify protein-protein interactions (PPI) network to enhance our understanding of the role of LCN2 in ESCC. Through further mining of PPI sub-networks, hundreds of differentially expressed genes (DEGs) were identified to interact with thousands of other proteins. Subcellular localization analyses found the DEGs and their directly or indirectly interacting proteins distributed in multiple layers, which was applied to analyze the possible paths between two DEGs. Gene Ontology annotation generated a functional annotation map and found hundreds of significant terms, especially those associated with the known and potential roles of LCN2 protein. The algorithm of Random Walk with Restart was applied to prioritize the DEGs and identified several cancer-related DEGs ranked closest to LCN2 protein. These analyses based on PPI network have greatly expanded our understanding of the mRNA expression profile of LCN2 overexpresssion for future examination of the roles and mechanisms of LCN2. PMID:24954627

  2. Immunotherapy for Lewis lung carcinoma utilizing dendritic cells infected with CK19 gene recombinant adenoviral vectors

    PubMed Central

    SUN, Q.F.; ZHAO, X.N.; PENG, C.L.; HAO, Y.T.; ZHAO, Y.P.; JIANG, N.; XUE, H.; GUO, J.Z.; YUN, C.H.; CONG, B.; ZHAO, X.G.

    2015-01-01

    Dendritic cells (DCs) as 'professional' antigen-presenting cells (APCs) initiate and regulate immune responses to various antigens. DC-based vaccines have become a promising modality in cancer immunotherapy. Cytokeratin 19 (CK19) protein is expressed at high levels in lung cancer and many other tumor cells, suggesting CK19 as a potential tumor-specific target for cancer immune therapy. We constructed a recombinant adenoviral vector containing the CK19 gene (rAd-CK19). DCs transfected with rAd-CK19 were used to vaccinate C57BL/6 mice bearing xenografts derived from Lewis lung carcinoma (LLC) cells. The transfected DCs gave rise to potent CK19-specific cytotoxic T lymphocytes (CTLs) capable of lysing LLC cells. Mice immunized with the rAd-CK19-DCs exhibited significantly attenuated tumor growth (including tumor volume and weight) when compared to the tumor growth of mice immunized with rAd-c DCs or DCs during the 24-day observation period (P<0.05). The results revealed that the mice vaccinated with the rAd-CK19-DCs exhibited a potent protective and therapeutic antitumor immunity to LLC cells in the subcutaneous model along with an inhibitive effect on tumor growth compared to the mice vaccinated with the rAd-c DCs or DCs alone. The present study proposes a meaningful mode of action utilizing rAd-CK19 DCs in lung cancer immunotherapy. PMID:26323510

  3. Identification of a highly conserved arginine-rich gene (MRC) from human chromosomal band 3p21.1 that contains point mutations in many renal cell carcinomas

    SciTech Connect

    Shridhar, V.; Golembieski, W.; Bostick, L.

    1994-09-01

    Sequences from the short arm of human chromosome 3, band 3p21, are frequently deleted during the development of a variety of different solid tumors, including lung cancer and renal cell carcinoma. The gene for aminoacylase-1 (ACY1), localized in 3p21.1, was previously shown to have lower levels of expression in many small call lung carcinoma cell lines. We focused our efforts on the isolation of genes from the region surrounding ACY1 in an attempt to identify candidate tumor suppressor genes. We report here the isolation of an arginine-rich gene encoded by sequences 600 Kb distal to ACY1. Although this gene is not deleted in any tested lung cancers or renal cell carcinomas, we have detected nucleotide substitutions within a 90 bp region of this gene that encodes multiple arginines in many sporadic renal cell carcinomas. The region, rich in arginines, was found to be remarkably conserved, showing 100% nucleotide sequence identity between humans and chickens. We have therefore identified a new arginine-rich gene in 3p21.1, a region that is frequently deleted in both lung and renal cell carcinomas, containing highly conserved sequences with subtle mutations in many sporadic renal cell carcinomas. We are calling this gene MRC for Mutated in Renal cell Carcinoma. The mutations observed in this gene do not seem to be due to a general replication error phenotype, as no microsatellite instabilities were seen in various di, tri, or tetranucleotides tested.

  4. Role of PTCH and p53 genes in early-onset basal cell carcinoma.

    PubMed

    Zhang, H; Ping, X L; Lee, P K; Wu, X L; Yao, Y J; Zhang, M J; Silvers, D N; Ratner, D; Malhotra, R; Peacocke, M; Tsou, H C

    2001-02-01

    Basal cell carcinoma (BCC) is the most common skin cancer in the Western world. Ultraviolet (UV) exposure, race, age, gender, and decreased DNA repair capacity are known risk factors for the development of BCC. Of these, UVB irradiation from sunlight is the most significant risk factor. The incidence of sporadic BCC increases in individuals older than age 55, with the greatest incidence reported in individuals who are older than 70, and is rare in individuals who are younger than 30. In this study, we analyzed 24 BCC samples from individuals who had BCC diagnosed by the age of 30. Fifteen single-stranded conformation polymorphism variants in the PTCH gene were identified in 13 BCC samples. Sequence analysis of these single-stranded conformation polymorphism variants revealed 13 single nucleotide changes, one AT insertion, and one 15-bp deletion. Most of these nucleotide changes (nine of 15) were predicted to result in truncated PTCH proteins. Fifteen p53 mutations were also found in 11 of the 24 BCC samples. Thirty-three percent (five of 15) and 60% (nine of 15) of the nucleotide changes in the PTCH and p53 genes, respectively, were UV-specific C-->T and CC-->TT nucleotide changes. Our data demonstrate that the p53 and PTCH genes are both implicated in the development of early-onset BCC. The identification of UV-specific nucleotide changes in both tumor suppressor genes suggests that UV exposure is an important risk factor in early onset of BCC.

  5. Tyrosine kinase domain mutations of EGFR gene in head and neck squamous cell carcinoma

    PubMed Central

    Vatte, Chittibabu; Al Amri, Ali M; Cyrus, Cyril; Chathoth, Shahanas; Acharya, Sadananda; Hashim, Tariq Mohammad; Al Ali, Zhara; Alshreadah, Saleh Tawfeeq; Alsayyah, Ahmed; Al-Ali, Amein K

    2017-01-01

    Background Epidermal growth factor receptor (EGFR) is a commonly altered gene that is identified in various cancers, including head and neck squamous cell carcinoma (HNSCC). Therefore, EGFR is a promising molecular marker targeted by monoclonal antibodies and small molecule inhibitors targeting the tyrosine kinase (TK) domain. Objective The objective of this study was to investigate the spectrum of mutations in exons 18, 19, 20, and 21 of the EGFR gene in HNSCC patients. Materials and methods This retrospective study included 47 confirmed HNSCC cases. Mutations in the TK domain, exons 18, 19, 20, and 21 of the EGFR gene, were detected by Scorpion® chemistry and ARMS® technologies on Rotor-Gene Q real-time polymerase chain reaction. Results The tumors exhibited EGFR-TK domain mutations in 57% of cases. Four cases of T790M mutations were reported for the first time among HNSCC patients. Out of the total mutations, L861Q (exon 21), exon 20 insertions and deletions of exon 19 accounted for the majority of mutations (21%, 19%, and 17%, respectively). EGFR mutation status was correlated with the higher grade (P=0.026) and advanced stage (P=0.034) of HNSCC tumors. Conclusion Higher frequency of EGFR-TK domain mutations together with the presence of the T790M mutation suggests that identification of these mutations might streamline the therapy and provide a better prognosis in HNSCC cases. PMID:28352186

  6. MicroRNA-138 enhances TRAIL-induced apoptosis through interferon-stimulated gene 15 downregulation in hepatocellular carcinoma cells.

    PubMed

    Zuo, Chaohui; Sheng, Xinyi; Liu, Zhuo; Ma, Min; Xiong, Shuhan; Deng, Hongyu; Li, Sha; Yang, Darong; Wang, Xiaohong; Xiao, Hua; Quan, Hu; Xia, Man

    2017-06-01

    Hepatocellular carcinoma is a leading cause of cancer-related mortality worldwide. TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a potential target for cancer therapy. However, many cancer cells are resistant to TRAIL-induced apoptosis and its mechanism is not well understood. In this study, to identify potential therapeutic targets for TRAIL-resistant cancer cells, we compared the expression levels of interferon-stimulated gene 15 in TRAIL-sensitive and TRAIL-resistant hepatocellular carcinoma cell lines. Western blot analysis showed that interferon-stimulated gene 15 expression levels were significantly higher in resistant HLCZ01and Huh7 cells than in sensitive LH86 and SMMC-7721 cells. Interferon-stimulated gene 15 knockdown in resistance cells led to TRAIL sensitivity. Conversely, interferon-stimulated gene 15 overexpression in sensitive cells resulted in TRAIL resistance. Our bioinformatics search detected a putative target sequence for microRNA miR-138 in the 3' untranslated region of the interferon-stimulated gene 15. Real-time quantitative polymerase chain reaction analysis demonstrated that miR-138 was significantly downregulated in TRAIL-resistant cells compared to TRAIL-sensitive cells. Forced expression of miR-138 in resistant cells decreased both messenger RNA and protein levels of interferon-stimulated gene 15, and when exposed to TRAIL, activated poly(adenosine diphosphate-ribose) polymerase, indicating sensitization to TRAIL. The results suggested that miR-138 regulates the interferon-stimulated gene 15 expression by directly targeting the 3' untranslated region of interferon-stimulated gene 15 and modulates the sensitivity to TRAIL-induced apoptosis. MiR-138 may be a target for therapeutic intervention in TRAIL-based drug treatments of resistant hepatocellular carcinoma or could be a biomarker to select patients who may benefit from the treatment.

  7. Four-gene expression model predictive of lymph node metastases in oral squamous cell carcinoma.

    PubMed

    Pasini, Fátima Solange; Maistro, Simone; Snitcovsky, Igor; Barbeta, Lílian P; Rotea Mangone, Flavia R; Lehn, Carlos N; Walder, Fernando; Carvalho, Marcos B; Brentani, M Mitzi; Federico, Miriam H H

    2012-01-01

    Previous knowledge of cervical lymph node compromise may be crucial to choose the best treatment strategy in oral squamous cell carcinoma (OSCC). Here we propose a set four genes, whose mRNA expression in the primary tumor predicts nodal status in OSCC, excluding tongue. We identified differentially expressed genes in OSCC with and without compromised lymph nodes using Differential Display RT-PCR. Known genes were chosen to be validated by means of Northern blotting or real time RT-PCR (qRT-PCR). Thereafter we constructed a Nodal Index (NI) using discriminant analysis in a learning set of 35 patients, which was further validated in a second independent group of 20 patients. Of the 63 differentially expressed known genes identified comparing three lymph node positive (pN +) and three negative (pN0) primary tumors, 23 were analyzed by Northern analysis or RT-PCR in 49 primary tumors. Six genes confirmed as differentially expressed were used to construct a NI, as the best set predictive of lymph nodal status, with the final result including four genes. The NI was able to correctly classify 32 of 35 patients comprising the learning group (88.6%; p = 0.009). Casein kinase 1alpha1 and scavenger receptor class B, member 2 were found to be up regulated in pN + group in contrast to small proline-rich protein 2B and Ras-GTPase activating protein SH3 domain-binding protein 2 which were upregulated in the pN0 group. We validated further our NI in an independent set of 20 primary tumors, 11 of them pN0 and nine pN + with an accuracy of 80.0% (p = 0.012). The NI was an independent predictor of compromised lymph nodes, taking into the consideration tumor size and histological grade. The genes identified here that integrate our "Nodal Index" model are predictive of lymph node metastasis in OSCC.

  8. Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas.

    PubMed

    Kleb, Brittany; Estécio, Marcos R H; Zhang, Jiexin; Tzelepi, Vassiliki; Chung, Woonbok; Jelinek, Jaroslav; Navone, Nora M; Tahir, Salahaldin; Marquez, Victor E; Issa, Jean-Pierre; Maity, Sankar; Aparicio, Ana

    2016-03-03

    Small cell prostate carcinoma (SCPC) morphology is rare at initial diagnosis but often emerges during prostate cancer progression and portends a dismal prognosis. It does not express androgen receptor (AR) or respond to hormonal therapies. Clinically applicable markers for its early detection and treatment with effective chemotherapy are needed. Our studies in patient tumor-derived xenografts (PDX) revealed that AR-negative SCPC (AR(-)SCPC) expresses neural development genes instead of the prostate luminal epithelial genes characteristic of AR-positive castration-resistant adenocarcinomas (AR(+)ADENO). We hypothesized that the differences in cellular lineage programs are reflected in distinct epigenetic profiles. To address this hypothesis, we compared the DNA methylation profiles of AR(-) and AR(+) PDX using methylated CpG island amplification and microarray (MCAM) analysis and identified a set of differentially methylated promoters, validated in PDX and corresponding donor patient samples. We used the Illumina 450K platform to examine additional regions of the genome and the correlation between the DNA methylation profiles of the PDX and their corresponding patient tumors. Struck by the low frequency of AR promoter methylation in the AR(-)SCPC, we investigated this region's specific histone modification patterns by chromatin immunoprecipitation. We found that the AR promoter was enriched in silencing histone modifications (H3K27me3 and H3K9me2) and that EZH2 inhibition with 3-deazaneplanocin A (DZNep) resulted in AR expression and growth inhibition in AR(-)SCPC cell lines. We conclude that the epigenome of AR(-) is distinct from that of AR(+) castration-resistant prostate carcinomas, and that the AR(-) phenotype can be reversed with epigenetic drugs.

  9. Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas

    PubMed Central

    Kleb, Brittany; Estécio, Marcos R.H.; Zhang, Jiexin; Tzelepi, Vassiliki; Chung, Woonbok; Jelinek, Jaroslav; Navone, Nora M.; Tahir, Salahaldin; Marquez, Victor E.; Issa, Jean-Pierre; Maity, Sankar; Aparicio, Ana

    2016-01-01

    ABSTRACT Small cell prostate carcinoma (SCPC) morphology is rare at initial diagnosis but often emerges during prostate cancer progression and portends a dismal prognosis. It does not express androgen receptor (AR) or respond to hormonal therapies. Clinically applicable markers for its early detection and treatment with effective chemotherapy are needed. Our studies in patient tumor–derived xenografts (PDX) revealed that AR–negative SCPC (AR−SCPC) expresses neural development genes instead of the prostate luminal epithelial genes characteristic of AR–positive castration-resistant adenocarcinomas (AR+ADENO). We hypothesized that the differences in cellular lineage programs are reflected in distinct epigenetic profiles. To address this hypothesis, we compared the DNA methylation profiles of AR− and AR+ PDX using methylated CpG island amplification and microarray (MCAM) analysis and identified a set of differentially methylated promoters, validated in PDX and corresponding donor patient samples. We used the Illumina 450K platform to examine additional regions of the genome and the correlation between the DNA methylation profiles of the PDX and their corresponding patient tumors. Struck by the low frequency of AR promoter methylation in the AR−SCPC, we investigated this region's specific histone modification patterns by chromatin immunoprecipitation. We found that the AR promoter was enriched in silencing histone modifications (H3K27me3 and H3K9me2) and that EZH2 inhibition with 3-deazaneplanocin A (DZNep) resulted in AR expression and growth inhibition in AR−SCPC cell lines. We conclude that the epigenome of AR− is distinct from that of AR+ castration-resistant prostate carcinomas, and that the AR− phenotype can be reversed with epigenetic drugs. PMID:26890396

  10. Comparative analysis of HPV16 gene expression profiles in cervical and in oropharyngeal squamous cell carcinoma

    PubMed Central

    Cerasuolo, Andrea; Annunziata, Clorinda; Tortora, Marianna; Starita, Noemy; Stellato, Giovanni; Greggi, Stefano; Maglione, Maria Grazia; Ionna, Franco; Losito, Simona; Botti, Gerardo; Buonaguro, Luigi; Buonaguro, Franco M.; Tornesello, Maria Lina

    2017-01-01

    Human papillomavirus type 16 (HPV16) is the major cause of cervical cancer and of a fraction of oropharyngeal carcinoma. Few studies compared the viral expression profiles in the two types of tumor. We analyzed HPV genotypes and viral load as well as early (E2/E4, E5, E6, E6*I, E6*II, E7) and late (L1 and L2) gene expression of HPV16 in cervical and oropharyngeal cancer biopsies. The study included 28 cervical squamous cell carcinoma (SCC) and ten oropharyngeal SCC, along with pair-matched non-tumor tissues, as well as four oropharynx dysplastic tissues and 112 cervical intraepithelial neoplasia biopsies. Viral load was found higher in cervical SCC (<1 to 694 copies/cell) and CIN (<1 to 43 copies/cell) compared to oropharyngeal SCC (<1 to 4 copies/cell). HPV16 E2/E4 and E5 as well as L1 and L2 mRNA levels were low in cervical SCC and CIN and undetectable in oropharynx cases. The HPV16 E6 and E7 mRNAs were consistently high in cervical SCC and low in oropharyngeal SCC. The analysis of HPV16 E6 mRNA expression pattern showed statistically significant higher levels of E6*I versus E6*II isoform in cervical SCC (p = 0.002) and a slightly higher expression of E6*I versus E6*II in oropharyngeal cases. In conclusion, the HPV16 E5, E6, E6*I, E6*II and E7 mRNA levels were more abundant in cervical SCC compared to oropharyngeal SCC suggesting different carcinogenic mechanisms in the two types of HPV-related cancers. PMID:28423662

  11. Comparative analysis of HPV16 gene expression profiles in cervical and in oropharyngeal squamous cell carcinoma.

    PubMed

    Cerasuolo, Andrea; Annunziata, Clorinda; Tortora, Marianna; Starita, Noemy; Stellato, Giovanni; Greggi, Stefano; Maglione, Maria Grazia; Ionna, Franco; Losito, Simona; Botti, Gerardo; Buonaguro, Luigi; Buonaguro, Franco M; Tornesello, Maria Lina

    2017-05-23

    Human papillomavirus type 16 (HPV16) is the major cause of cervical cancer and of a fraction of oropharyngeal carcinoma. Few studies compared the viral expression profiles in the two types of tumor. We analyzed HPV genotypes and viral load as well as early (E2/E4, E5, E6, E6*I, E6*II, E7) and late (L1 and L2) gene expression of HPV16 in cervical and oropharyngeal cancer biopsies. The study included 28 cervical squamous cell carcinoma (SCC) and ten oropharyngeal SCC, along with pair-matched non-tumor tissues, as well as four oropharynx dysplastic tissues and 112 cervical intraepithelial neoplasia biopsies. Viral load was found higher in cervical SCC (<1 to 694 copies/cell) and CIN (<1 to 43 copies/cell) compared to oropharyngeal SCC (<1 to 4 copies/cell). HPV16 E2/E4 and E5 as well as L1 and L2 mRNA levels were low in cervical SCC and CIN and undetectable in oropharynx cases. The HPV16 E6 and E7 mRNAs were consistently high in cervical SCC and low in oropharyngeal SCC. The analysis of HPV16 E6 mRNA expression pattern showed statistically significant higher levels of E6*I versus E6*II isoform in cervical SCC (p = 0.002) and a slightly higher expression of E6*I versus E6*II in oropharyngeal cases. In conclusion, the HPV16 E5, E6, E6*I, E6*II and E7 mRNA levels were more abundant in cervical SCC compared to oropharyngeal SCC suggesting different carcinogenic mechanisms in the two types of HPV-related cancers.

  12. Anaplastic lymphoma kinase (ALK) gene alteration in signet ring cell carcinoma of the gastrointestinal tract.

    PubMed

    Alese, Olatunji B; El-Rayes, Bassel F; Sica, Gabriel; Zhang, Guojing; Alexis, Dianne; La Rosa, Francisco G; Varella-Garcia, Marileila; Chen, Zhengjia; Rossi, Michael R; Adsay, Nazim V; Khuri, Fadlo R; Owonikoko, Taofeek K

    2015-03-01

    ALK-EML4 translocation is an established driver aberration in non-small cell lung cancer (NSCLC), with reported predilection for cases with signet ring histology. We assessed the presence of anaplastic lymphoma kinase (ALK) gene rearrangements in signet ring cancers arising in the stomach and colon. Histologically confirmed cases of signet ring adenocarcinoma of the stomach or the colon were identified. The presence of the classic ALK and EML4 fusion gene was initially determined by fluorescence in-situ hybridization (FISH) technique. Immunohistochemistry (IHC) was performed using two previously validated antibodies, ALK1 clone (1:100; DAKO) and 5A4 (Novocastra, Leica Biosystems) along with positive controls of ALK-translocated lung cancer. We employed 42 cases of signet ring carcinoma diagnosed between 2001 and 2011; 25 gastric and 17 colon cancer. Median age 63.3 years; male/female 17/25; race, black 47.5%, white 47.5%, others, 5%; stage I, 21.4%; stage II, 31%; stage III, 26.2%; stage IV, 21.4%. One of 42 cases (2.3%) was positive for ALK translocation by FISH using the standard criteria of at least 15% positive cells for the break-apart signal (50-70 cells enumerated per case). Using a less restrictive cut-off of 10% positive cells, 7 cases (16%) were considered possibly positive. None of the 'possibly positive' cases was found to harbor ALK translocation by another molecular testing approach (IHC). IHC with two previously validated monoclonal antibodies showed 0 of 42 (0%) cases positive. ALK gene rearrangement is very rare in gastrointestinal cancers and enrichment strategy focusing on signet ring cell histology did not significantly improve the detection rate.

  13. Identification of genes and signaling pathways associated with squamous cell carcinoma by bioinformatics analysis

    PubMed Central

    SHEN, LI; LIU, LINBO; YANG, ZHENYONG; JIANG, NAN

    2016-01-01

    The present study aimed to investigate the genes and signaling pathways associated with squamous cell carcinoma (SCC) by bioinformatics analysis. For this purpose, the GSE2503 was downloaded from the Gene Expression Omnibus database, and the differentially expressed genes (DEGs) between 6 normal skin and 5 SCC samples were analyzed using the Linear Models for Microarray Data package. Gene Ontology (GO) and pathway enrichment analysis of DEGs were performed, followed by functional annotation and construction of a protein-protein interaction (PPI) network. Subnetwork modules were subsequently identified and analyzed. A total of 181 DEGs, including 95 upregulated and 86 downregulated DEGs, were identified, in addition to 20 GO biological processes terms enriched by upregulated DEGs and 14 enriched by downregulated DEGs. The upregulated DEGs were enriched in 18 pathways, and the downregulated DEGs were enriched in 7 pathways. Following functional annotation, three upregulated transcription factors (TFs), including hypoxia inducible factor 1, alpha subunit (HIF1A), and six downregulated TFs were identified. In the PPI network and subnetwork, matrix metallopeptidase 1 (MMP1), also known as interstitial collagenase, and interleukin 8 (IL8) were the hub genes with the highest degree of connectivity (degree =8). Integrin alpha (ITGA)6 and 2 were enriched in several pathways, including focal adhesion and extracellular matrix-receptor interaction. DEGs of SCC were primarily enriched in pathways associated with cancer and cell adhesion. Therefore, DEGs such as IL8, MMP1, HIF1A, ITGA6 and ITGA2 may be potential targets for the diagnosis and treatment of SCC. PMID:26893747

  14. Growth differentiation factor-15: a p53- and demethylation-upregulating gene represses cell proliferation, invasion, and tumorigenesis in bladder carcinoma cells

    PubMed Central

    Tsui, Ke-Hung; Hsu, Shu-Yuan; Chung, Li-Chuan; Lin, Yu-Hsiang; Feng, Tsui-Hsia; Lee, Tzu-Yi; Chang, Phei-Lang; Juang, Horng-Heng

    2015-01-01

    Growth differentiation factor-15 (GDF15), a member of the TGF-β superfamily, affects tumor biology of certain cancers, but remains poorly understood in bladder cancer cells. This study determined the expression, regulation, function, and potential downstream target genes of GDF15 in bladder carcinoma cells. The transitional papilloma carcionoma cells (RT4) expressed higher levels of GDF15 as compared with the bladder carcinoma cells (HT1376 and T24). Treatments of recombinant human GDF15 (rhGDF15) reduced the proliferations of HT1376 and T24 cells. Expression of GDF15 was upregulated via DNA demethylation and p53. The cell proliferation, invasion, and tumorigenesis were reduced in ectopic overexpression of GDF15, while enhanced in GDF15 knockdown. The expressions of mammary serine protease inhibitor (MASPIN) and N-myc downstream-regulated family genes (NDRG1, NDRG2, and NDRG3) were upregulated by GDF15 overexpressions and rhGDF15 treatments in bladder carcinoma cells. GDF15 knockdown induced epithelial-mesenchymal transition (EMT) and F-actin polarization in HT1376 cells. Our results suggest that enhanced expressions of MASPIN and N-myc downstream-regulated family genes and the modulation of EMT may account for the inhibitory functions of GDF15 in the cell proliferation, invasion, and tumorigenesis of bladder carcinoma cells. The GDF15 should be considered as a tumor suppressor in human bladder carcinoma cells. PMID:26249737

  15. Celastrol blocks interleukin-6 gene expression via downregulation of NF-κB in prostate carcinoma cells.

    PubMed

    Chiang, Kun-Chun; Tsui, Ke-Hung; Chung, Li-Chuan; Yeh, Chun-Nan; Chen, Wen-Tsung; Chang, Phei-Lang; Juang, Horng-Heng

    2014-01-01

    Interleukin-6 (IL-6), a multifunctional cytokine, contributes to proliferation or differentiation of prostate carcinoma cells in a highly cell type-specific manner. Celastrol (3-hydroxy-24-nor-2oxo-1(10),3,5,7-friedelatetrane-29-oic acid), also named as tripterine, is extracted from root of Chinese traditional herb Tripterygiumwilfordii Hook f with potent anti-inflammatory and anti-cancer activities. In this study, we evaluated the molecular mechanisms of celastrol on cell proliferation and IL-6 gene expression in prostate carcinoma cells. 3H-thymidine incorporation and flow cytometric analysis indicated that celastrol treatments arrested the cell cycle at the G0/G1 phase, thus attenuating cell proliferation in prostate carcinoma PC-3 cells; moreover, celastrol induced cell apoptosis at higher dosage. Knockdown of IL-6 attenuated the anti-proliferative effect of celastrol on PC-3 cells. Results from ELISA and 5'-deletion transient gene expression assays indicated that celastrol treatment decreased IL-6 secretion and gene expression, and this effect is dependent on the NF-κB response element within IL-6 promoter area since mutation of the NF-κB response element from AAATGTCCCATTTTCCC to AAATGTTACATTTTCCC by site-directed mutagenesis abolished the inhibition of celastrol on the IL-6 promoter activity. Celastrol also attenuated the activation of PMA and TNFα on the gene expression and secretion of IL-6 in PC-3 cells. Immunoblot assays revealed that celastrol treatment downregulated the expressions of IKKα, p50 and p65, supporting the 5'-deletion transient gene expression assay result that celastrol blocked IL-6 expression through the NF-κB pathway in PC-3 cells. For the first time, our results concluded that celastrol attenuates PC-3 cell proliferation via downregulation of IL-6 gene expression through the NF-κB-dependent pathway.

  16. Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells

    SciTech Connect

    Marcinkiewicz, Katarzyna M.; Gudas, Lorraine J.

    2014-01-01

    To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 mark on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes. - Highlights: • RNAseq elucidates differences between non-tumorigenic and tumorigenic oral keratinocytes. • Changes in HOX mRNA in SCC-9 vs. OKF6-TERT1R cells are a result of altered epigenetic regulation. • RNAseq shows that retinoic acid (RA) influences gene expression in both OKF6-TERT1R and SCC-9 cells.

  17. Screening and identification of distant metastasis-related differentially expressed genes in human squamous cell lung carcinoma.

    PubMed

    Wang, Na; Zhou, Fachen; Xiong, Hai; Du, Sha; Ma, Jianwei; Okai, Issac; Wang, Jian; Suo, Jing; Hao, Lihong; Song, Yang; Hu, Jun; Shao, Shujuan

    2012-05-01

    Distant metastasis is one of the leading causes of lung cancer death. Detecting the early-stage molecular alternations in primary tumors, such as gene expression differences, provides a "prognostic" value to the precaution of tumor metastasis. The aim of this article is to screen and identify the metastasis-related genes in human squamous cell lung carcinoma. Primary tumor tissues of nine patients with subsequent metastasis and eight patients without metastasis were selected to perform the gene microarray experiment. GO and pathway analyses were used to determine the differentially expressed genes. Two identified genes were further validated by real-time quantitative reverse transcription polymerase chain reaction (PCR) (real-time qRT-PCR). Two hundred and thirty-eight differentially expressed genes were detected in gene chip experiment, including 51 up-regulated genes and 187 down-regulated genes. These genes were involved in several cellular processes, including cell adhesion, cell cycle regulation, and apoptosis. GO analysis showed that the differentially expressed genes participated in a wide ranging of metastasis-related processes, including extracellular region and regulation of liquid surface tension. In addition, pathway analysis demonstrated that the differentially expressed genes were enriched in pathways related to cell cycle and Wnt signaling. Real-time qRT-PCR validation experiment of LCN2 and PDZK1IP1 showed a consistent up-regulation in the metastasis group. The metastasis of human squamous cell lung carcinoma is a complex process that is regulated by multiple gene alternations on the expression levels. The 238 differentially expressed genes identified in this study presumably contain a core set of genes involved in tumor metastasis. The real-time qRT-PCR results of PDZK1IP1 and LCN2 validated the reliability of this gene microarray experiment.

  18. Altered expression of SIRT gene family in head and neck squamous cell carcinoma.

    PubMed

    Lai, Chi-Chih; Lin, Pai-Mei; Lin, Sheng-Fung; Hsu, Cheng-Hsien; Lin, Hsin-Ching; Hu, Ming-Luen; Hsu, Cheng-Ming; Yang, Ming-Yu

    2013-06-01

    Head and neck squamous cell carcinoma (HNSCC) include a group of malignant neoplasms that arise from the upper aerodigestive tract and represent the seventh most common cause of cancer-related death. The overall 5-year survival rates have not significantly improved for decades in spite of the advances in the field of oncology and surgery, encouraging further research on factors that might modify disease prognosis. The silent information regulator (SIR) genes (Sirtuins) play key roles in cellular stress and are associated with aging-related diseases including cancer. Currently, seven human sirtuin (SIRT1-7) genes have been identified, but the roles of SIRT genes in HNSCC are still uncertain. Therefore, in this study, we used real-time quantitative reverse transcription-polymerase chain reaction to investigate the expressions of the seven SIRT genes in human HNSCC tissues to assess the changes in cancerous and noncancerous parts and the correlation with different tumor behaviors. Our results demonstrated that the expression levels of SIRT1, SIRT2, SIRT3, SIRT5, SIRT6, and SIRT7 were significantly downregulated in cancerous tissues compared with noncancerous tissues (all p<0.01). The expression levels of SIRT1, SIRT2, SIRT3, SIRT5, and SIRT7 showed downregulation in advanced stages in respect to early stages (p<0.05). These results indicate that the downregulation of SIRT genes expression may contribute to the development of cancer and trigger the neoplastic disease to more advanced stages. Our study indicates that SIRT genes expression could help in the diagnosis and represent a prognostic biomarker in HNSCC.

  19. Identification of differentially expressed genes in salivary adenoid cystic carcinoma cells associated with metastasis

    PubMed Central

    Liu, Bing-Yao; Zhang, Xiang; Zhao, Xiao-Ge; Cao, Gang; Dong, Zhen

    2016-01-01

    Introduction Salivary adenoid cystic carcinoma (SACC) is a frequent type of salivary gland cancer which is characterized by slow growth but high incidence of distant metastasis. We aimed to identify therapeutic targets which are associated with metastasis of SACC. Material and methods Total RNA was isolated from a low metastatic SACC cell line (ACC-2) and a highly metastatic SACC cell line (ACC-M), which was screened from ACC-2 by combination of in vivo selection and cloning in vitro. Then the total RNA was subjected to microarray analysis. Differentially expressed genes (DEGs) were screened from ACC-M compared with ACC-2, followed by Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Function annotation for DEGs also was performed. A protein-protein interaction network (PPI) was constructed for DEGs. Results A total of 1128 DEGs were identified from ACC-M cells compared with ACC-2 cells. Both up- and down-regulated DEGs were enriched in different functions in biological process (BP), cellular component (CC) and molecular function (MF). Additionally, down-regulated DEGs were mainly enriched in “Apoptosis” and “Cytokine-cytokine receptor interaction” pathways which involved IFN-α1, NTRK1 and TGF-β1. In the PPI network, PIK3CA, PTPN11 and PIK3R1 had a number of nodes greater than 10. Conclusions Transforming growth factor β1 might play a pivotal role during lung metastasis of SACC and be selected as a candidate target for treatment of metastatic SACC. IFNA1, NTRK1 and PIK3CA were also associated with tumor metastasis. PMID:27478471

  20. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis.

    PubMed

    Thiesen, H-J; Steinbeck, F; Maruschke, M; Koczan, D; Ziems, B; Hakenberg, O W

    2017-01-01

    Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs) presented in 48 clear cell renal cell carcinoma (ccRCC) genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25) and 20 G3 (ratio 0.58). Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes) has been successfully validated on published Swiss data (GSE19949) leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and predictive value.

  1. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis

    PubMed Central

    Thiesen, H.-J.; Steinbeck, F.; Maruschke, M.; Koczan, D.; Ziems, B.; Hakenberg, O. W.

    2017-01-01

    Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs) presented in 48 clear cell renal cell carcinoma (ccRCC) genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25) and 20 G3 (ratio 0.58). Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes) has been successfully validated on published Swiss data (GSE19949) leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and predictive value. PMID

  2. Correlation analysis of VHL and Jade-1 gene expression in human renal cell carcinoma

    PubMed Central

    Xiao-fen, Wu; Ting, Chen; Jie, Li; Deng-yang, Ma; Qing-feng, Zhu

    2016-01-01

    Abstract Objective The aim of this study was to investigate the correlation of von Hippel-Lindau tumor suppressor (VHL) mRNA expression and jade family PHD finger 1 (Jade-1) gene expression in patients with renal cell carcinoma (RCC). Another aim of this study was to analyze the relationship of these two genes with clinicalpathological features of the RCC patients. Methods A total of 75 RCC patients who received surgically therapy in our hospital were included. All patients had complete pathological data. The expression of VHL/Jade-1 was determined by real-time polymerase chain reaction (RT-PCR). Results VHL and Jade-1 were both obviously downregulated in RCC tissues than that of the matched normal tissues, and both negatively correlated with tumor size as well as tumor grade. And we found a fine association of VHL gene expression with Jade-1. Conclusion VHL/Jade-1 exhibited significantly decreased expression in RCC tissues and was closely related to the clinical prognosis of patients. The finding of VHL expression positively correlated with Jade-1 expression shed light and provided crucial evidence on the connection of VHL protein with Wnt/b-catenin pathway. PMID:28352799

  3. Correlation analysis of VHL and Jade-1 gene expression in human renal cell carcinoma.

    PubMed

    Xiao-Fen, Wu; Ting, Chen; Jie, Li; Deng-Yang, Ma; Qing-Feng, Zhu; Xin, Lian

    2016-01-01

    The aim of this study was to investigate the correlation of von Hippel-Lindau tumor suppressor (VHL) mRNA expression and jade family PHD finger 1 (Jade-1) gene expression in patients with renal cell carcinoma (RCC). Another aim of this study was to analyze the relationship of these two genes with clinicalpathological features of the RCC patients. A total of 75 RCC patients who received surgically therapy in our hospital were included. All patients had complete pathological data. The expression of VHL/Jade-1 was determined by real-time polymerase chain reaction (RT-PCR). VHL and Jade-1 were both obviously downregulated in RCC tissues than that of the matched normal tissues, and both negatively correlated with tumor size as well as tumor grade. And we found a fine association of VHL gene expression with Jade-1. VHL/Jade-1 exhibited significantly decreased expression in RCC tissues and was closely related to the clinical prognosis of patients. The finding of VHL expression positively correlated with Jade-1 expression shed light and provided crucial evidence on the connection of VHL protein with Wnt/b-catenin pathway.

  4. Methylation-Associated Gene Silencing of RARB in Areca Carcinogens Induced Mouse Oral Squamous Cell Carcinoma

    PubMed Central

    Tsou, Yung-An; Fan, Shin-Ru; Tsai, Ming-Hsui; Chen, Hsiao-Ling; Chang, Nai-Wen; Cheng, Ju-Chien

    2014-01-01

    Regarding oral squamous cell carcinoma (OSCC) development, chewing areca is known to be a strong risk factor in many Asian cultures. Therefore, we established an OSCC induced mouse model by 4-nitroquinoline-1-oxide (4-NQO), or arecoline, or both treatments, respectively. These are the main two components of the areca nut that could increase the occurrence of OSCC. We examined the effects with the noncommercial MCGI (mouse CpG islands) microarray for genome-wide screening the DNA methylation aberrant in induced OSCC mice. The microarray results showed 34 hypermethylated genes in 4-NQO plus arecoline induced OSCC mice tongue tissues. The examinations also used methylation-specific polymerase chain reaction (MS-PCR) and bisulfite sequencing to realize the methylation pattern in collected mouse tongue tissues and human OSCC cell lines of different grades, respectively. These results showed that retinoic acid receptor β (RARB) was indicated in hypermethylation at the promoter region and the loss of expression during cancer development. According to the results of real-time PCR, it was shown that de novo DNA methyltransferases were involved in gene epigenetic alternations of OSCC. Collectively, our results showed that RARB hypermethylation was involved in the areca-associated oral carcinogenesis. PMID:25197641

  5. Functional effect of point mutations in the alpha-folate receptor gene of CABA I ovarian carcinoma cells.

    PubMed

    Mangiarotti, F; Miotti, S; Galmozzi, E; Mazzi, M; Sforzini, S; Canevari, S; Tomassetti, A

    2001-01-01

    The alpha-folate receptor (alpha FR) is overexpressed in 90% of nonmucinous ovarian carcinomas. In addition to the known role of alpha FR binding and mediating the internalization of folates, functional interaction of alpha FR with signaling molecules was recently shown. To identify a model to study the role of alpha FR in ovarian carcinoma, we characterized the alpha FR gene in the ovarian carcinoma cell line CABA I in comparison to a reference line, IGROV1. In CABA I cells, Northern blot analysis revealed an alpha FR transcript of the expected length and FACS analysis indicated receptor expression on the cell membrane; however, RNase protection assay revealed no specific signals. Southern blot and genomic PCR analysis suggested the presence of a rearrangement(s) involving the 5' region of the gene in CABA I cells as compared to IGROV1 cells. Cloning and sequencing of CABA I alpha FR cDNA revealed several point mutations. The partitioning of alpha FR in membrane microdomains from CABA I cells and its association with regulatory molecules was comparable to that of IGROV1 cells. By contrast, the alpha FR expressed on the CABA I cell membrane bound folic acid with lower affinity, and ectopic expression of the corresponding cDNA in CHO cells confirmed impaired folic acid binding. Thus, CABA I cells may provide a tool to delineate functional domains of the alpha FR.

  6. Polymorphisms in selected DNA repair genes and cell cycle regulating genes involved in the risk of papillary thyroid carcinoma.

    PubMed

    Halkova, Tereza; Dvorakova, Sarka; Sykorova, Vlasta; Vaclavikova, Eliska; Vcelak, Josef; Vlcek, Petr; Sykorova, Pavla; Kodetova, Daniela; Betka, Jan; Lastuvka, Petr; Bavor, Petr; Hoch, Jiri; Katra, Rami; Bendlova, Bela

    2016-06-07

    Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. In addition to causal somatic mutations in the BRAF gene and RET/PTC rearrangements, the contribution of single nucleotide polymorphisms (SNPs) in low-penetrance genes in the development of PTC has been proposed. Four SNPs in the XRCC1 (Arg399Gln, Arg280His, Arg194Trp and T-77C) and one SNP from each of three other genes participating in DNA repair pathways and/or cell cycle regulation (ATM Asp1853Asn, TP53 Arg72Pro, CDKN1B Val109Gly) were selected. The allelic and genotypic distributions of these variants as well as haplotypes of the XRCC1 were examined in 583 individuals comprising well-characterized cohorts of 209 PTC patients and 374 healthy volunteers. Correlations of polymorphism with clinical-pathological data and mutation status were performed. XRCC1 T-77C polymorphism affects the genetic susceptibility for PTC development in men, the specific combination of XRCC1 haplotypes correlates with RET/PTC incidence, CDKN1B Val109Gly significantly influences the risk of developing PTC regardless of gender and in PTC cases, selected genotypes of TP53 Arg72Pro and ATM Asp1853Asn were significantly associated with monitored tumour characteristics. It seems that SNPs in studied regulating genes contribute to the development of PTC and modify the tumour behaviour or characteristics.

  7. Polymorphisms in cell cycle regulatory genes, urinary arsenic profile and urothelial carcinoma

    SciTech Connect

    Chung, C.-J.; Huang, C.-J.; Pu, Y.-S.; Su, C.-T.; Huang, Y.-K.; Chen, Y.-T.; Hsueh, Y.-M.

    2008-10-15

    Introduction: Polymorphisms in p53, p21 and CCND1 could regulate the progression of the cell cycle and might increase the susceptibility to inorganic arsenic-related cancer risk. The goal of our study was to evaluate the roles of cell cycle regulatory gene polymorphisms in the carcinogenesis of arsenic-related urothelial carcinoma (UC). Methods: A hospital-based case-controlled study was conducted to explore the relationships among the urinary arsenic profile, 8-hydroxydeoxyguanosine (8-OHdG) levels, p53 codon 72, p21 codon 31 and CCND1 G870A polymorphisms and UC risk. The urinary arsenic profile was determined using high-performance liquid chromatography (HPLC) and hydride generator-atomic absorption spectrometry (HG-AAS). 8-OHdG levels were measured by high-sensitivity enzyme-linked immunosorbent assay (ELISA) kits. Genotyping was conducted using polymerase chain reaction-restriction fragment length polymerase (PCR-RFLP). Results: Subjects carrying the p21 Arg/Arg genotype had an increased UC risk (age and gender adjusted OR = 1.53; 95% CI, 1.02-2.29). However, there was no association of p53 or CCND1 polymorphisms with UC risk. Significant effects were observed in terms of a combination of the three gene polymorphisms and a cumulative exposure of cigarette smoking, along with the urinary arsenic profile on the UC risk. The higher total arsenic concentration, monomethylarsonic acid percentage (MMA%) and lower dimethylarsinic acid percentage (DMA%), possessed greater gene variant numbers, had a higher UC risk and revealed significant dose-response relationships. However, effects of urinary 8-OHdG levels combined with three gene polymorphisms did not seem to be important for UC risk. Conclusions: The results showed that the variant genotype of p21 might be a predictor of inorganic arsenic-related UC risk.

  8. Association study of genetic variation in DNA repair pathway genes and risk of basal cell carcinoma.

    PubMed

    Lin, Yuan; Chahal, Harvind S; Wu, Wenting; Cho, Hyunje G; Ransohoff, Katherine J; Song, Fengju; Tang, Jean Y; Sarin, Kavita Y; Han, Jiali

    2017-09-01

    DNA repair plays a critical role in protecting the genome from ultraviolet radiation and maintaining the genomic integrity of cells. Genetic variants in DNA repair-related genes can influence an individual's DNA repair capacity, which may be related to the risk of developing basal cell carcinoma (BCC). We comprehensively assessed the associations of 2,965 independent single-nucleotide polymorphisms (SNPs) across 165 DNA repair pathway genes with BCC risk in a genome-wide association meta-analysis totaling 17,187 BCC cases and 287,054 controls from two data sets. After multiple testing corrections, we identified three SNPs (rs2805831 upstream of XPA: OR = 0.93, P = 1.35 × 10(-6) ; rs659857 in exon of MUS81: OR = 1.06, P = 3.09 × 10(-6) and rs57343616 in 3' UTR of NABP2: OR = 1.11, P = 6.47 × 10(-6) ) as significantly associated with BCC risk in meta-analysis, and all of them were nominally significant in both data sets. Furthermore, rs659857 [T] was significantly associated with decreased expression of MUS81 mRNA in the expression quantitative trait locus (eQTL) analysis. Our findings suggest that the inherited common variation in three DNA repair genes-XPA, MUS81 and NABP2-may be involved in the development of BCC. To our knowledge, our study is the first report thoroughly examining the effects of SNPs across DNA repair pathway genes on BCC risk based on a genome-wide association meta-analysis. © 2017 UICC.

  9. Heterozygous mutations in the tumor suppressor gene PATCHED provoke basal cell carcinoma-like features in human organotypic skin cultures.

    PubMed

    Brellier, F; Bergoglio, V; Valin, A; Barnay, S; Chevallier-Lagente, O; Vielh, P; Spatz, A; Gorry, P; Avril, M-F; Magnaldo, T

    2008-11-20

    Basal cell carcinoma of the skin is the most common type of cancer in humans. The majority of these tumors displays aberrant activation of the SONIC HEDGEHOG (SHH)/PATCHED pathway, triggered by mutations in the PATCHED tumor suppressor gene, which encodes a transmembrane receptor of SHH. In this study, we took advantage of the natural genotype (PATCHED(+/-)) of healthy keratinocytes expanded from patients with the nevoid basal cell carcinoma or Gorlin syndrome to mimic heterozygous somatic mutations thought to occur in the PATCHED gene early upon basal cell carcinoma development in the general population. PATCHED(+/-) epidermis developed on a dermal equivalent containing wild-type (WT) PATCHED(+/+) fibroblasts exhibited striking invasiveness and hyperproliferation, as well as marked differentiation impairment. Deciphering the phenotype of PATCHED(+/-) keratinocytes revealed slight increases of the transcriptional activators GLI1 and GLI2-the latter known to provoke basal cell carcinoma-like tumors when overexpressed in transgenic mice. PATCHED(+/-) keratinocytes also showed a substantial increase of the cell cycle regulator cyclin D1. These data show for the first time the physiological impact of constitutive heterozygous PATCHED mutations in primary human keratinocytes and strongly argue for a yet elusive mechanism of haploinsufficiency leading to cancer proneness.

  10. Genetic variants in sex hormone metabolic pathway genes and risk of esophageal squamous cell carcinoma.

    PubMed

    Hyland, Paula L; Freedman, Neal D; Hu, Nan; Tang, Ze-Zhong; Wang, Lemin; Wang, Chaoyu; Ding, Ti; Fan, Jin-Hu; Qiao, You-Lin; Golozar, Asieh; Wheeler, William; Yu, Kai; Yuenger, Jeff; Burdett, Laurie; Chanock, Stephen J; Dawsey, Sanford M; Tucker, Margaret A; Goldstein, Alisa M; Abnet, Christian C; Taylor, Philip R

    2013-05-01

    In China, esophageal cancer is the fourth leading cause of cancer death where essentially all cases are histologically esophageal squamous cell carcinoma (ESCC), in contrast to esophageal adenocarcinoma in the West. Globally, ESCC is 2.4 times more common among men than women and recently it has been suggested that sex hormones may be associated with the risk of ESCC. We examined the association between genetic variants in sex hormone metabolic genes and ESCC risk in a population from north central China with high-incidence rates. A total of 1026 ESCC cases and 1452 controls were genotyped for 797 unique tag single-nucleotide polymorphisms (SNPs) in 51 sex hormone metabolic genes. SNP-, gene- and pathway-based associations with ESCC risk were evaluated using unconditional logistic regression adjusted for age, sex and geographical location and the adaptive rank truncated product (ARTP) method. Statistical significance was determined through use of permutation for pathway- and gene-based associations. No associations were observed for the overall sex hormone metabolic pathway (P = 0.14) or subpathways (androgen synthesis: P = 0.30, estrogen synthesis: P = 0.15 and estrogen removal: P = 0.19) with risk of ESCC. However, six individual genes (including SULT2B1, CYP1B1, CYP3A7, CYP3A5, SHBG and CYP11A1) were significantly associated with ESCC risk (P < 0.05). Our examination of genetic variation in the sex hormone metabolic pathway is consistent with a potential association with risk of ESCC. These positive findings warrant further evaluation in relation to ESCC risk and replication in other populations.

  11. Genetic variants in sex hormone metabolic pathway genes and risk of esophageal squamous cell carcinoma

    PubMed Central

    Hyland, Paula L.

    2013-01-01

    In China, esophageal cancer is the fourth leading cause of cancer death where essentially all cases are histologically esophageal squamous cell carcinoma (ESCC), in contrast to esophageal adenocarcinoma in the West. Globally, ESCC is 2.4 times more common among men than women and recently it has been suggested that sex hormones may be associated with the risk of ESCC. We examined the association between genetic variants in sex hormone metabolic genes and ESCC risk in a population from north central China with high-incidence rates. A total of 1026 ESCC cases and 1452 controls were genotyped for 797 unique tag single-nucleotide polymorphisms (SNPs) in 51 sex hormone metabolic genes. SNP-, gene- and pathway-based associations with ESCC risk were evaluated using unconditional logistic regression adjusted for age, sex and geographical location and the adaptive rank truncated product (ARTP) method. Statistical significance was determined through use of permutation for pathway- and gene-based associations. No associations were observed for the overall sex hormone metabolic pathway (P = 0.14) or subpathways (androgen synthesis: P = 0.30, estrogen synthesis: P = 0.15 and estrogen removal: P = 0.19) with risk of ESCC. However, six individual genes (including SULT2B1, CYP1B1, CYP3A7, CYP3A5, SHBG and CYP11A1) were significantly associated with ESCC risk (P < 0.05). Our examination of genetic variation in the sex hormone metabolic pathway is consistent with a potential association with risk of ESCC. These positive findings warrant further evaluation in relation to ESCC risk and replication in other populations. PMID:23358850

  12. A genome-wide analysis of gene-caffeine consumption interaction on basal cell carcinoma.

    PubMed

    Li, Xin; Cornelis, Marilyn C; Liang, Liming; Song, Fengju; De Vivo, Immaculata; Giovannucci, Edward; Tang, Jean Y; Han, Jiali

    2016-12-01

    Animal models have suggested that oral or topical administration of caffeine could inhibit ultraviolet-induced carcinogenesis via the ataxia telangiectasia and rad3 (ATR)-related apoptosis. Previous epidemiological studies have demonstrated that increased caffeine consumption is associated with reduced risk of basal cell carcinoma (BCC). To identify common genetic markers that may modify this association, we tested gene-caffeine intake interaction on BCC risk in a genome-wide analysis. We included 3383 BCC cases and 8528 controls of European ancestry from the Nurses' Health Study and Health Professionals Follow-up Study. Single nucleotide polymorphism (SNP) rs142310826 near the NEIL3 gene showed a genome-wide significant interaction with caffeine consumption (P = 1.78 × 10(-8) for interaction) on BCC risk. There was no gender difference for this interaction (P = 0.64 for heterogeneity). NEIL3, a gene belonging to the base excision DNA repair pathway, encodes a DNA glycosylase that recognizes and removes lesions produced by oxidative stress. In addition, we identified several loci with P value for interaction <5 × 10(-7) in gender-specific analyses (P for heterogeneity between genders < 0.001) including those mapping to the genes LRRTM4, ATF3 and DCLRE1C in women and POTEA in men. Finally, we tested the associations between caffeine consumption-related SNPs reported by previous genome-wide association studies and risk of BCC, both individually and jointly, but found no significant association. In sum, we identified a DNA repair gene that could be involved in caffeine-mediated skin tumor inhibition. Further studies are warranted to confirm these findings. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Depletion of G9a gene induces cell apoptosis in human gastric carcinoma.

    PubMed

    Lin, Xiaolei; Huang, Yiqun; Zou, Yong; Chen, Xingsheng; Ma, Xudong

    2016-05-01

    G9a is a mammalian histone methyltransferase that contributes to the epigenetic silencing of tumor suppressor genes. Evidence suggests that G9a is required to maintain the malignant phenotype, but little documentation show the role of G9a function in mediating tumor growth. We retrospectively analyzed the protein of G9a and monomethylated histone H3 lysine 9 (H3K9 me1), and dimethylated histone H3 lysine 9 (H3K9 me2) in 175 cases of gastric carcinoma by immunohistochemistry. RNAi-based inhibition of G9a in MGC803 cancer cell line was studied. G9a depletion was done by transient transfection using Lipofectamine 2000. Depletion efficiency of G9a was tested using real-time PCR and western blot analysis. Cell apoptosis and proliferation were detected by TUNEL assay and MTT, respectively. The proteins of H3K9 me1, me2, trimethylation of H3K9 (H3K9 me3), monomethylated histone H3 lysine 27 (H3K27 me1), dimethylated histone H3 lysine 27 (H3K27 me2) and histone acetylated H3, apoptotic proteins were studied by western blot analysis. G9a and H3K9 me2 expression was higher in gastric cancer cells compared to the control (p<0.05). Both G9a and H3K9 me2 were positively correlated with the degree of differentiation, depth of infiltration, lymphatic invasions and tumor-node-metastasis stage in gastric carcinoma, (p<0.05). RNAi-mediated knockdown of G9a induced cell apoptosis and inhibited cell proliferation. Depletion of G9a reduced the levels of H3K9 me1 and me2, H3K27 me1 and me2. Nonetheless, it did not activate acetylation of H3 and H3K9 me3. These data suggest that G9a is required in tumorigenesis, and correlated with prognosis. Furthermore, G9a plays a critical role in regulating epigenetics. Depletion of G9a inhibits cell growth and induces cells apoptosis in gastric cancer. It might be of therapeutic benefit in gastric cancers.

  14. Protein and gene expression characteristics of heterogeneous nuclear ribonucleoprotein H1 in esophageal squamous cell carcinoma

    PubMed Central

    Sun, Yu-Lin; Liu, Fei; Liu, Fang; Zhao, Xiao-Hang

    2016-01-01

    AIM To investigate the expression characteristics of heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1) mRNA and protein in cell lines and tissues of esophageal squamous cell carcinoma (ESCC). METHODS Western blotting was used to assess the expression of HNRNPH1 protein in seven ESCC cell lines and 30 paired fresh tissue specimens. The subcellular localization of HNRNPH1 was determined by immunofluorescence in ESCC cells. The RNA sequencing data from 87 patients with ESCC were obtained from the cancer genome atlas (TCGA), and the expression and clinical characteristics analysis of different transcript variants of HNRNPH1 were evaluated in this dataset. In addition, immunohistochemistry was carried out to detect the expression of HNRNPH1 protein in 125 patients. RESULTS The expression of HNRNPH1 protein varied across different ESCC cell lines. It was exclusively restricted to the nucleus of the ESCC cells. There are two transcript variants of the HNRNPH1 gene. Variant 1 was constitutively expressed, and its expression did not change during tumorigenesis. In contrast, levels of variant 2 were low in non-tumorous tissues and were dramatically increased in ESCC (P = 0.0026). The high levels of variant 2 were associated with poorer differentiated tumors (P = 0.0287). Furthermore, in paired fresh tissue specimens, HNRNPH1 protein was overexpressed in 73.3% (22/30) of neoplastic tissues. HNRNPH1 was significantly upregulated in ESCC, with strong staining in 43.2% (54/125) of tumor tissues and 22.4% (28/125) of matched non-cancerous tissues (P = 0.0005). Positive HNRNPH1 expression was significantly associated with poor tumor differentiation degree (P = 0.0337). CONCLUSION The different alternative transcript variants of HNRNPH1 exhibited different expression changes during tumorigenesis. Its mRNA and protein were overexpressed in ESCC and associated with poorer differentiation of tumor cells. These findings highlight the potential of HNRNPH1 in the therapy and diagnosis

  15. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets

    PubMed Central

    Ramaker, Ryne C.; Cooper, Sara J.; Chen, Dongquan; Sudarshan, Sunil; Wei, Shi; Guru, Arjun S.; Zhao, Amy; Cooper, Tiffiny; Della Manna, Deborah L.; Naik, Gurudatta; Myers, Richard M.; Sonpavde, Guru

    2016-01-01

    Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR) and mammalian target of rapamycin (mTOR) improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC), but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T), matched normal kidney (N) and metastatic tumor tissue (M) may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA) were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79) compared to those that did not develop metastasis for at least 2 years (n = 187). Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001). The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation. PMID:27574806

  16. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets.

    PubMed

    Ghatalia, Pooja; Yang, Eddy S; Lasseigne, Brittany N; Ramaker, Ryne C; Cooper, Sara J; Chen, Dongquan; Sudarshan, Sunil; Wei, Shi; Guru, Arjun S; Zhao, Amy; Cooper, Tiffiny; Della Manna, Deborah L; Naik, Gurudatta; Myers, Richard M; Sonpavde, Guru

    2016-01-01

    Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR) and mammalian target of rapamycin (mTOR) improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC), but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T), matched normal kidney (N) and metastatic tumor tissue (M) may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA) were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79) compared to those that did not develop metastasis for at least 2 years (n = 187). Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001). The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation.

  17. Binding of nuclear caveolin-1 to promoter elements of growth-associated genes in ovarian carcinoma cells

    SciTech Connect

    Sanna, Elena; Miotti, Silvia . E-mail: silvia.miotti@istitutotumori.mi.it; Mazzi, Mimma; De Santis, Giuseppina; Canevari, Silvana; Tomassetti, Antonella

    2007-04-15

    Caveolin-1 (cav-1), a member of a protein family associated mainly with cell membrane microdomains in many cell types, acts as a tumor suppressor in ovarian carcinoma cells. Biochemical analyses demonstrated that cav-1 was also localized in the nuclei of ovarian carcinoma cells, endogenously (SKOV3) or ectopically (IGtC3) expressing cav-1. By confocal analyses, the same cell lines as well as IGROV1 and SKOV3 cells transiently transfected with green fluorescent protein-cav-1 fusion protein showed nuclear punctate speckled pattern. Subnuclear distribution analysis revealed cav-1 mainly associated with the nuclear matrix, but also slightly with chromatin. Cav-1 was found in nuclear high-molecular weight complexes and by confocal analysis was found to co-localized with the inner nuclear membrane protein emerin. Cyclin D1 and folate receptor promoters were modulated by cav-1 in SKOV3 cells as demonstrated by transient transfection with or silencing of cav-1. Chromatin immunoprecipitation and supershift assays indicated that nuclear cav-1 can bind in vitro and in vivo to promoter sequences of both cyclin D1 and folate receptor genes. These data suggest that in ovarian carcinoma cells cav-1, localized in transcriptionally inactive chromatin, exerts a functional activity mediated, at least in part, by directly binding to sequences of genes involved in proliferation.

  18. Germline mutations of the PTCH gene in Japanese patients with nevoid basal cell carcinoma syndrome.

    PubMed

    Tanioka, Miki; Takahashi, Katsu; Kawabata, Tomohiro; Kosugi, Shinji; Murakami, Kenichiro; Miyachi, Yoshiki; Nishigori, Chikako; Iizuka, Tadahiko

    2005-01-01

    We identified seven novel germline mutations of the PTCH gene in eight unrelated Japanese patients with nevoid basal cell carcinoma syndrome (NBCCS). In order to ensure genetic diagnosis, all 23 coding exons of the PTCH gene were amplified from genomic DNA by polymerase chain reaction (PCR) and sequenced. Mutations were found in all eight patients with NBCCS. The mutations detected in this study include one insertion/deletion mutation, one 1-bp insertion, two 1-bp deletions, one nonsense mutation and two missense mutations. None of the mutations have been previously reported. Five mutations caused premature stop codons that are predicted to result in a truncated protein. In the two missense mutations, the strong basic residue arginine was substituted by serine or glycine in highly conserved components of the putative transmembrane domain of PTCH, and these mutations may therefore affect the conformation and function of the PTCH protein. No phenotype-genotype relationships were found in the Japanese NBCCS patients, consistent with results of previous studies on NBCCS in African-American and Caucasian patients.

  19. Increased expression of the PRL-3 gene in human oral squamous cell carcinoma and dysplasia tissues.

    PubMed

    Hassan, Nur Mohammad Monsur; Hamada, Jun-ichi; Kameyama, Takeshi; Tada, Mitsuhiro; Nakagawa, Koji; Yoshida, Shoko; Kashiwazaki, Haruhiko; Yamazaki, Yutaka; Suzuki, Yukiko; Sasaki, Akira; Nagatsuka, Hitoshi; Inoue, Nobuo; Moriuchi, Tetsuya

    2011-01-01

    Phosphatase of regenerating liver (PRL) belongs to a class of the protein tyrosine phosphatase family, which is known so far to consist of 3 members, PRL-1, PRL-2, and PRL-3. The aim of this study was to uncover the role of PRL genes in development of oral malignancy. We analyzed expression levels of the 3 PRL genes in 50 human oral squamous cell carcinomas (OSCCs), 11 dysplasia and 12 normal mucosa tissues by a real-time RT-PCR method. PRL-3 but not PRL-1 or PRL-2 expressions were significantly higher in OSCC and dysplasia than in normal mucosa tissues. Additionally, PRL-3 expressions were significantly higher in OSCC tissues harboring dominant-negative p53 or recessive p53 mutation than in those harboring wild-type p53. These results suggest that PRL-3 plays a role in oral cancer development and can be useful as a marker of pre-malignant and malignant lesion of oral mucosa.

  20. Expression of sphingosine kinase gene in the interactions between human gastric carcinoma cell and vascular endothelial cell

    PubMed Central

    Ren, Juan; Dong, Lei; Xu, Cang-Bao; Pan, Bo-Rong

    2002-01-01

    AIM: To study the interactions between human gastric carcinoma cell (HGCC) and human vascular endothelial cell (HVEC), and if the expression of sphingosine kinase (SPK) gene was involved in these interactions. METHODS: The specific inhibitor to SPK, dimethyl sphingosine (DMS), was added acting on HGCC and HVEC, then the cell proliferation was measured by MTT. The conditioned mediums (CMs) of HGCC and HVEC were prepared. The CM of one kind of cell was added to the other kind of cell, and the cell proliferation was measured by MTT. After the action of CM, the cellular expression of SPK gene in mRNA level was detected with in situ hybridization (ISH). RESULTS: DMS could almost completely inhibit the proliferation of HGCC and HVEC. The growth inhibitory rates could amount to 97.21%, 83.42%, respectively (P < 0.01). The CM of HGCC could stimulate the growth of HVEC (2.70 ± 0.01, P < 0.01) while the CM of HVEC could inhibit the growth of HGCC (52.97% ± 0.01%, P < 0.01). There was no significant change in the mRNA level of SPK gene in one kind of cell after the action of the CM of the other kind of cell. CONCLUSION: SPK plays a key role in regulating the proliferation of HGCC and HVEC. There exist complicated interactions between HGCC and HVEC. HGCC can significantly stimulate the growth of HVEC while HVEC can significantly inhibit the growth of HGCC. The expression of SPK gene is not involved in the interactions. PMID:12174364

  1. Chromophobe cell renal carcinoma.

    PubMed

    Megumi, Y; Nishimura, K

    1998-01-01

    Chromophobe cell renal carcinoma is a recently established subtype of renal cell carcinoma. Herein we report a case of chromophobe cell renal carcinoma in a 67-year-old male patient who occasionally underwent computed tomography. In a microscopic study with hematoxylin and eosin stain, clear eosinophilic cytoplasm, and a moderately atypical nucleus were observed. And it was stained positively by Hale's colloidal iron. Ultrastructurally, the cytoplasm was filled with numerous microvesicles. From these results, this tumor was pathologically diagnosed as chromophobe cell renal carcinoma.

  2. Gene Expression and Proteome Analysis as Sources of Biomarkers in Basal Cell Carcinoma

    PubMed Central

    Ghita, Mihaela Adriana; Voiculescu, Suzana; Rosca, Adrian E.; Moraru, Liliana; Greabu, Maria

    2016-01-01

    Basal cell carcinoma (BCC) is the world's leading skin cancer in terms of frequency at the moment and its incidence continues to rise each year, leading to profound negative psychosocial and economic consequences. UV exposure is the most important environmental factor in the development of BCC in genetically predisposed individuals, this being reflected by the anatomical distribution of lesions mainly on sun-exposed skin areas. Early diagnosis and prompt management are of crucial importance in order to prevent local tissue destruction and subsequent disfigurement. Although various noninvasive or minimal invasive techniques have demonstrated their utility in increasing diagnostic accuracy of BCC and progress has been made in its treatment options, recurrent, aggressive, and metastatic variants of BCC still pose significant challenge for the healthcare system. Analysis of gene expression and proteomic profiling of tumor cells and of tumoral microenvironment in various tissues strongly suggests that certain molecules involved in skin cancer pathogenic pathways might represent novel predictive and prognostic biomarkers in BCC. PMID:27578920

  3. SETD6 controls the expression of estrogen-responsive genes and proliferation of breast carcinoma cells

    PubMed Central

    O'Neill, Daniel J; Williamson, Stuart Charles; Alkharaif, Dhuha; Monteiro, Isabella Christina Mazzaro; Goudreault, Marilyn; Gaughan, Luke; Robson, Craig N; Gingras, Anne-Claude; Binda, Olivier

    2014-01-01

    The lysine methyltransferase SETD6 modifies the histone variant H2AZ, a key component of nuclear receptor-dependent transcription. Herein, we report the identification of several factors that associate with SETD6 and are implicated in nuclear hormone receptor signaling. Specifically, SETD6 associates with the estrogen receptor α (ERα), histone deacetylase HDAC1, metastasis protein MTA2, and the transcriptional co-activator TRRAP. Luciferase reporter assays identify SETD6 as a transcriptional repressor, in agreement with its association with HDAC1 and MTA2. However, SETD6 behaves as a co-activator of several estrogen-responsive genes, such as PGR and TFF1. Consistent with these results, silencing of SETD6 in several breast carcinoma cell lines induced cellular proliferation defects accompanied by enhanced expression of the cell cycle inhibitor CDKN1A and induction of apoptosis. Herein, we have identified several chromatin proteins that associate with SETD6 and described SETD6 as an essential factor for nuclear receptor signaling and cellular proliferation. PMID:24751716

  4. FGFR gene alterations in lung squamous cell carcinoma are potential targets for the multikinase inhibitor nintedanib.

    PubMed

    Hibi, Masaaki; Kaneda, Hiroyasu; Tanizaki, Junko; Sakai, Kazuko; Togashi, Yosuke; Terashima, Masato; De Velasco, Marco Antonio; Fujita, Yoshihiko; Banno, Eri; Nakamura, Yu; Takeda, Masayuki; Ito, Akihiko; Mitsudomi, Tetsuya; Nakagawa, Kazuhiko; Okamoto, Isamu; Nishio, Kazuto

    2016-11-01

    Fibroblast growth factor receptor (FGFR) gene alterations are relatively frequent in lung squamous cell carcinoma (LSCC) and are a potential targets for therapy with FGFR inhibitors. However, little is known regarding the clinicopathologic features associated with FGFR alterations. The angiokinase inhibitor nintedanib has shown promising activity in clinical trials for non-small cell lung cancer. We have now applied next-generation sequencing (NGS) to characterize FGFR alterations in LSCC patients as well as examined the antitumor activity of nintedanib in LSCC cell lines positive for FGFR1 copy number gain (CNG). The effects of nintedanib on the proliferation of and FGFR signaling in LSCC cell lines were examined in vitro, and its effects on tumor formation were examined in vivo. A total of 75 clinical LSCC specimens were screened for FGFR alterations by NGS. Nintedanib inhibited the proliferation of FGFR1 CNG-positive LSCC cell lines in association with attenuation of the FGFR1-ERK signaling pathway in vitro and in vivo. FGFR1 CNG (10.7%), FGFR1 mutation (2.7%), FGFR2 mutation (2.7%), FGFR4 mutation (5.3%), and FGFR3 fusion (1.3%) were detected in LSCC specimens by NGS. Clinicopathologic features did not differ between LSCC patients positive or negative for FGFR alterations. However, among the 36 patients with disease recurrence after surgery, prognosis was significantly worse for those harboring FGFR alterations. Screening for FGFR alterations by NGS warrants further study as a means to identify patients with LSCC recurrence after surgery who might benefit from nintedanib therapy.

  5. Single nucleotide polymorphisms of microRNA-machinery genes modify the risk of renal cell carcinoma

    PubMed Central

    Horikawa, Yohei; Wood, Christopher G.; Yang, Hushan; Zhao, Hua; Ye, Yuanqing; Gu, Jian; Lin, Jie; Habuchi, Tomonori; Wu, Xifeng

    2008-01-01

    Purpose MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that have been implicated in a wide diversity of basic cellular functions through post-transcriptional regulations on their target genes. Compelling evidence has shown that miRNAs are involved in cancer initiation and progression. We hypothesized that genetic variations of the miRNA-machinery genes could be associated with the risk of renal cell carcinoma (RCC). Experimental Design We genotyped 40 single nucleotide polymorphisms (SNPs) from 11 miRNA processing genes (DROSHA, DGCR8, XPO5, RAN, DICER1, TARBP2, EIF2C1, AGO2, GEMIN3, GEMIN4, HIWI) and 15 miRNA genes in 279 Caucasian patients with RCC and 278 matched controls. Results We found that two SNPs in the GEMIN4 gene were significantly associated with altered RCC risks. The variant containing genotypes of the Asn929Asp and Cys1033Arg exhibited a significantly reduced risk with an odds ratio [OR] of 0.67 (95% confidence interval [CI], 0.47–0.96) and 0.68 (95% CI, 0.47–0.98), respectively. Haplotype analysis showed that a common haplotype of the GEMIN4 was associated with a significant reduce in risk of RCC (OR, 0.66; 95% CI, 0.45–0.97). We also conducted a combined unfavorable genotype analysis including five promising SNPs showing at least a borderline significant risk association. Compared with the low-risk reference group within one unfavorable genotype, the median-risk and high-risk group exhibited a 1.55-fold (95% CI, 0.96–2.50) and a 2.49-fold (95% CI, 1.58–3.91) increased risk of RCC, respectively (P for trend <0.001). Conclusion Our results suggested that genetic polymorphisms of the miRNA-machinery genes may impact RCC susceptibility individually and jointly. PMID:19047128

  6. DNA methylation and histone modifications cause silencing of Wnt antagonist gene in human renal cell carcinoma cell lines.

    PubMed

    Kawamoto, Ken; Hirata, Hiroshi; Kikuno, Nobuyuki; Tanaka, Yuichiro; Nakagawa, Masayuki; Dahiya, Rajvir

    2008-08-01

    Secreted frizzled-related protein 2 (sFRP2) is a negative modulator of the Wingless-type (Wnt) signaling pathway, and shown to be inactivated in renal cell carcinoma (RCC). However, the molecular mechanism of silencing of sFRP2 is not fully understood. Our study was designed to elucidate the silencing mechanism of sFRP2 in RCC. Expression of sFRP2 was examined in 20 pairs of primary cancers by immunohistochemistry. Kidney cell lines (HK-2, Caki-1, Caki-2, A-498 and ACHN) were analyzed for sFRP2 expression using real-time RT-PCR and Western blotting. The methylation status at 46 CpG sites of the 2 CpG islands in the sFRP2 promoter was characterized by bisulfite DNA sequencing. Histone modifications were assessed by chromatin immunoprecipitation (ChIP) assay using antibodies against AcH3, AcH4, H3K4 and H3K9. sFRP2 was frequently repressed in primary cancers and in RCC cells. The majority of sFRP2 negative cells had a methylated promoter. Meanwhile, sFRP2 expression was repressed by a hypomethylated promoter in Caki-1 cells, and these cells had a repressive histone modification at the promoter. In Caki-1 cells, sFRP2 was reactivated by trichostatin A (TSA). Repressive histone modifications were also observed in RCC cells with hypermethylated promoters, but sFRP2 was reactivated only by 5-aza-2'-deoxycytidine (DAC) and not by TSA. However, the activation of the silenced sFRP2 gene could be achieved in all cells using a combination of DAC and TSA. This is the first report indicating that aberrant DNA methylation and histone modifications work together to silence the sFRP2 gene in RCC cells.

  7. Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells.

    PubMed

    Lee, Jehn-Chuan; Chung, Li-Chuan; Chen, Yu-Jen; Feng, Tsui-Hsia; Chen, Wen-Tsung; Juang, Horng-Heng

    2015-05-01

    Oral squamous cell carcinoma (OSCC) is a well-known malignancy that accounts for the majority of oral cancers. B-cell translocation gene 2 (BTG2) is an important regulator of cell cycle dynamics in cancer cells. However, the role of BTG2 in OSCC cells and the influences of epigallocatechin-3-gallate (EGCG) on BTG2 gene expressions have not been well evaluated. The objectives of this study were to examine the effect of EGCG-induced BTG2 expression and the potential signal pathways involved. The (3)H-thymidine incorporation and Western-blot assays revealed cell proliferation was attenuated by EGCG via upregulation of BTG2 expression causing cell cycle G1 phase arrest in OSCC cells. BTG2 overexpression decreased tumor cell growth, while BTG2 knockdown illuminated the opposite effect in xenograft animal studies. Overexpressed BTG2 arrested the cell cycle at the G1 phase and downregulated protein expressions of cyclin A, cyclin D, and cyclin E. Western-blot assays indicated that EGCG induced phosphorylation of p38, JNK, and ERK. However, pretreatments with selective mitogen-activated protein kinase (MAPK) inhibitors, SB203580 (p38 inhibitor) and PD0325901 (ERK1/2 inhibitor), significantly suppressed the activation of EGCG on BTG2 expression. Our results indicate that EGCG attenuates cell proliferation of OSCC cells by upregulating BTG2 expression via p38 and ERK pathways.

  8. Key pathways and genes controlling the development and progression of clear cell renal cell carcinoma (ccRCC) based on gene set enrichment analysis.

    PubMed

    Huang, Haipeng; Tang, Yanyan; He, Wenwu; Huang, Qi; Zhong, Jianing; Yang, Zhanbin

    2014-03-01

    Clear-cell renal cell carcinoma (ccRCC) is one of the most common types of kidney cancer in adults; however, its causes are not completely understood. The study was designed to filter the key pathways and genes associated with the occurrence or development of ccRCC, acquaint its pathogenesis at gene and pathway level, to provide more theory evidence and targeted therapy for ccRCC. Gene set enrichment analysis (GSEA) and meta-analysis (Meta) were used to screen the critical pathways and genes which may affect the occurrence and progression of ccRCC on the transcription level. Corresponding pathways of significant genes were obtained with the online website DAVID ( http://david.abcc.ncifcrf.gov/ ). Thirty seven consistent pathways and key genes in these pathways related to ccRCC were obtained with combined GSEA and meta-analysis. These pathways were mainly involved in metabolism, organismal systems, cellular processes and environmental information processing. The gene pathways that we identified could provide insight concerning the development of ccRCC. Further studies are needed to determine the biological function for the positive genes.

  9. Characterization of p53 gene mutations in a Brazilian population with oral squamous cell carcinomas.

    PubMed

    Chaves, Anna C M; Cherubini, Karen; Herter, Nilton; Furian, Roque; Santos, Diogenes S; Squier, Christopher; Domann, Frederick E

    2004-02-01

    Mutations in the p53 tumor suppressor gene are present in approximately 50% of all human cancers. We sought to determine the frequency and type of p53 mutations in squamous cell carcinomas (SCC) of the oral cavity in a Brazilian population. To identify p53 mutations we used PCR-SSCP in tumor tissue microdissected from paraffin- embedded and from fresh-frozen sections followed by direct sequencing of SSCP bands with altered electrophoretic mobility. We identified p53 mutations in 40% of the human SCC analyzed. The mutations were of a broad spectrum, with a preponderance of G --> A and A --> G transitions with an apparent hotspot at the CpG dinucleotide at codon 290. Patient samples were stratified according to tobacco and alcohol consumption as well as by anatomic location of the tumor, and although trends did emerge, no statistically significant associations were obtained between the occurance of TP53 mutations and these lifestyle habits. We conclude that p53 mutations are common among oral cavity cancers in this population, and stress the significance of this study since it is the first analysis of p53 mutation in oral cancer in a southern Brazilian population.

  10. Analysis and interpretation of transcriptomic data obtained from extended Warburg effect genes in patients with clear cell renal cell carcinoma.

    PubMed

    Sanders, Edward; Diehl, Svenja

    2015-01-01

    Many cancers adopt a metabolism that is characterized by the well-known Warburg effect (aerobic glycolysis). Recently, numerous attempts have been made to treat cancer by targeting one or more gene products involved in this pathway without notable success. This work outlines a transcriptomic approach to identify genes that are highly perturbed in clear cell renal cell carcinoma (CCRCC). We developed a model of the extended Warburg effect and outlined the model using Cytoscape. Following this, gene expression fold changes (FCs) for tumor and adjacent normal tissue from patients with CCRCC (GSE6344) were mapped on to the network. Gene expression values with FCs of greater than two were considered as potential targets for treatment of CCRCC. The Cytoscape network includes glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP), the TCA cycle, the serine/glycine pathway, and partial glutaminolysis and fatty acid synthesis pathways. Gene expression FCs for nine of the 10 CCRCC patients in the GSE6344 data set were consistent with a shift to aerobic glycolysis. Genes involved in glycolysis and the synthesis and transport of lactate were over-expressed, as was the gene that codes for the kinase that inhibits the conversion of pyruvate to acetyl-CoA. Interestingly, genes that code for unique proteins involved in gluconeogenesis were strongly under-expressed as was also the case for the serine/glycine pathway. These latter two results suggest that the role attributed to the M2 isoform of pyruvate kinase (PKM2), frequently the principal isoform of PK present in cancer: i.e. causing a buildup of glucose metabolites that are shunted into branch pathways for synthesis of key biomolecules, may not be operative in CCRCC. The fact that there was no increase in the expression FC of any gene in the PPP is consistent with this hypothesis. Literature protein data generally support the transcriptomic findings. A number of key genes have been identified that could serve as

  11. Analysis and interpretation of transcriptomic data obtained from extended Warburg effect genes in patients with clear cell renal cell carcinoma

    PubMed Central

    Sanders, Edward; Diehl, Svenja

    2015-01-01

    Background Many cancers adopt a metabolism that is characterized by the well-known Warburg effect (aerobic glycolysis). Recently, numerous attempts have been made to treat cancer by targeting one or more gene products involved in this pathway without notable success. This work outlines a transcriptomic approach to identify genes that are highly perturbed in clear cell renal cell carcinoma (CCRCC). Methods We developed a model of the extended Warburg effect and outlined the model using Cytoscape. Following this, gene expression fold changes (FCs) for tumor and adjacent normal tissue from patients with CCRCC (GSE6344) were mapped on to the network. Gene expression values with FCs of greater than two were considered as potential targets for treatment of CCRCC. Results The Cytoscape network includes glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP), the TCA cycle, the serine/glycine pathway, and partial glutaminolysis and fatty acid synthesis pathways. Gene expression FCs for nine of the 10 CCRCC patients in the GSE6344 data set were consistent with a shift to aerobic glycolysis. Genes involved in glycolysis and the synthesis and transport of lactate were over-expressed, as was the gene that codes for the kinase that inhibits the conversion of pyruvate to acetyl-CoA. Interestingly, genes that code for unique proteins involved in gluconeogenesis were strongly under-expressed as was also the case for the serine/glycine pathway. These latter two results suggest that the role attributed to the M2 isoform of pyruvate kinase (PKM2), frequently the principal isoform of PK present in cancer: i.e. causing a buildup of glucose metabolites that are shunted into branch pathways for synthesis of key biomolecules, may not be operative in CCRCC. The fact that there was no increase in the expression FC of any gene in the PPP is consistent with this hypothesis. Literature protein data generally support the transcriptomic findings. Conclusions A number of key genes have

  12. Analysis of gene expression profiles of microdissected cell populations indicates that testicular carcinoma in situ is an arrested gonocyte.

    PubMed

    Sonne, Si Brask; Almstrup, Kristian; Dalgaard, Marlene; Juncker, Agnieszka Sierakowska; Edsgard, Daniel; Ruban, Ludmila; Harrison, Neil J; Schwager, Christian; Abdollahi, Amir; Huber, Peter E; Brunak, Søren; Gjerdrum, Lise Mette; Moore, Harry D; Andrews, Peter W; Skakkebaek, Niels E; Rajpert-De Meyts, Ewa; Leffers, Henrik

    2009-06-15

    Testicular germ cell cancers in young adult men derive from a precursor lesion called carcinoma in situ (CIS) of the testis. CIS cells were suggested to arise from primordial germ cells or gonocytes. However, direct studies on purified samples of CIS cells are lacking. To overcome this problem, we performed laser microdissection of CIS cells. Highly enriched cell populations were obtained and subjected to gene expression analysis. The expression profile of CIS cells was compared with microdissected gonocytes, oogonia, and cultured embryonic stem cells with and without genomic aberrations. Three samples of each tissue type were used for the analyses. Unique expression patterns for these developmentally very related cell types revealed that CIS cells were very similar to gonocytes because only five genes distinguished these two cell types. We did not find indications that CIS was derived from a meiotic cell, and the similarity to embryonic stem cells was modest compared with gonocytes. Thus, we provide new evidence that the molecular phenotype of CIS cells is similar to that of gonocytes. Our data are in line with the idea that CIS cells may be gonocytes that survived in the postnatal testis. We speculate that disturbed development of somatic cells in the fetal testis may play a role in allowing undifferentiated cells to survive in the postnatal testes. The further development of CIS into invasive germ cell tumors may depend on signals from their postpubertal niche of somatic cells, including hormones and growth factors from Leydig and Sertoli cells.

  13. Target genes of microsatellite sequences in head and neck squamous cell carcinoma: mononucleotide repeats are not detected.

    PubMed

    Wang, Yimin; Liu, Xuejuan; Li, Yulin

    2012-09-10

    Microsatellite instability (MSI) is detected in a wide variety of tumors. It is thought that mismatch repair gene mutation or inactivation is the major cause of MSI. Microsatellite sequences are predominantly distributed in intergenic or intronic DNA. However, MSI is found in the exonic sequences of some genes, causing their inactivation. In this report, we searched GenBank for candidate genes containing potential MSI sequences in exonic regions. Twenty seven target genes were selected for MSI analysis. Instability was found in 70% of these genes (14/20) with head and neck squamous cell carcinoma (HNSCC). Interestingly, no instability was detected in mononucleotide repeats in genes or in intergenic sequences. We conclude that instability of mononucleotide repeats is a rare event in HNSCC. High MSI phenotype in young HNSCC patients is limited to noncoding regions only. MSI percentage in HNSCC tumor is closely related to the repeat type, repeat location and patient's age.

  14. A novel gene expression scoring system for accurate diagnosis of basaloid squamous cell carcinoma of the esophagus.

    PubMed

    Tada, Takeshi; Honma, Reiko; Imai, Jun-Ichi; Saze, Zenichiro; Kogure, Michihiko; Marubashi, Shigeru; Tasaki, Kazuhiro; Unakami, Masamitu; Ezaki, Junji; Tamura, Hirosumi; Nishikawa, Akira; Hashimoto, Yuko; Waguri, Satoshi; Watanabe, Shinya; Gotoh, Mitsukazu

    2017-09-01

    Basaloid squamous cell carcinoma of the esophagus (BSCE) is a rare variant of squamous cell carcinoma that is difficult to distinguish from other carcinomas by preoperative endoscopic biopsy because of its histological varieties. Accurate diagnosis is essential for adequate treatment, and the methods proposed so far (e.g., immunohistochemical staining) have limitations. In this study, we tried to identify the characteristic bundles of gene expression in BSCE using comprehensive gene expression analysis (CGEA). Subsequently, we constructed a gene expression scoring system for the proper diagnosis of BSCE. Fifty-seven surgical specimens, including seven BSCEs, obtained from 30 patients who underwent esophagectomy were used for constructing the scoring system. Three hundred and twelve biopsy specimens, including eight BSCEs, obtained from 80 patients and 20 commercially available formalin-fixed paraffin-embedded (FFPE) specimens diagnosed as esophageal cancer, including 13 BSCEs, were used for validation. After our original mathematical extraction algorithm, 75 genes were extracted to distinguish BSCE from non-BSCE. The cumulative converted values (gene expression score) of the respective 75 genes from each specimen were obtained and lined up in ascending order to assess the optimal gene expression cut-off score for a definitive diagnosis of BSCE. The validation of this scoring system showed high prediction of the biopsy specimens [area under the curve (AUC)=0.981; 95% confidence interval (CI): 0.952‑1.000] and the commercially available FFPE specimens (AUC=0.901; 95% CI: 0.750-1.000). In conclusion, using CGEA in a gene expression scoring system helps in differentiating BSCE from non-BSCE with high accuracy and may contribute in improving BSCE treatment.

  15. Genomic Analyses Reveal Mutational Signatures and Frequently Altered Genes in Esophageal Squamous Cell Carcinoma

    PubMed Central

    Zhang, Ling; Zhou, Yong; Cheng, Caixia; Cui, Heyang; Cheng, Le; Kong, Pengzhou; Wang, Jiaqian; Li, Yin; Chen, Wenliang; Song, Bin; Wang, Fang; Jia, Zhiwu; Li, Lin; Li, Yaoping; Yang, Bin; Liu, Jing; Shi, Ruyi; Bi, Yanghui; Zhang, Yanyan; Wang, Juan; Zhao, Zhenxiang; Hu, Xiaoling; Yang, Jie; Li, Hongyi; Gao, Zhibo; Chen, Gang; Huang, Xuanlin; Yang, Xukui; Wan, Shengqing; Chen, Chao; Li, Bin; Tan, Yongkai; Chen, Longyun; He, Minghui; Xie, Sha; Li, Xiangchun; Zhuang, Xuehan; Wang, Mengyao; Xia, Zhi; Luo, Longhai; Ma, Jie; Dong, Bing; Zhao, Jiuzhou; Song, Yongmei; Ou, Yunwei; Li, Enming; Xu, Liyan; Wang, Jinfen; Xi, Yanfeng; Li, Guodong; Xu, Enwei; Liang, Jianfang; Yang, Xiaofeng; Guo, Jiansheng; Chen, Xing; Zhang, Yanbo; Li, Qingshan; Liu, Lixin; Li, Yingrui; Zhang, Xiuqing; Yang, Huanming; Lin, Dongxin; Cheng, Xiaolong; Guo, Yongjun; Wang, Jun; Zhan, Qimin; Cui, Yongping

    2015-01-01

    Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and the fourth most lethal cancer in China. However, although genomic studies have identified some mutations associated with ESCC, we know little of the mutational processes responsible. To identify genome-wide mutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES) on 104 ESCC individuals and combined our data with those of 88 previously reported samples. An APOBEC-mediated mutational signature in 47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and CBX8. In our combined cohort, we identified frequent inactivating mutations in AJUBA, ZNF750, and PTCH1 and the chromatin-remodeling genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors indicates that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets. PMID:25839328

  16. Effect of DAPK1 gene on proliferation, migration, and invasion of carcinoma of pancreas BxPC-3 cell line.

    PubMed

    Qin, Yong; Ye, Guan-Xiong; Wu, Cheng-Jun; Wang, Shi; Pan, De-Biao; Jiang, Jin-Yan; Fu, Jing; Xu, Sheng-Qian

    2014-01-01

    DAPK1 can induce apoptosis in several cells; to determine the effect of DAPK1 would provide a new potential therapeutic strategy for treating pancreatic cancer. The aim of the present study was to investigate the effect of DAPK1 gene on proliferation, migration, and invasion of carcinoma of pancreas BxPC-3 cell line and explore the possible mechanisms. In our study, DAPK1 over-expressed cells were established by using the lentiviral transfection method, and DAPK1 obviously increased in BxPC-3 cells after transient transfection. Cell Counting Kit-8 (CCK-8) assay was used to determine the BxPC-3 cells proliferation after transfection. Apoptosis of the BxPC-3 cells was determined by using flow cytometry analysis. In addition, cell adhesion assay and in vitro invasion assay were performed. Western blotting was used to determine the protein expressions of caspase-3, DAPK1, VEGF, PEDF, MMP2, AKT, P-AKT, P-ERK, Bcl2, and Bax. Our results demonstrated that DAPK1 gene over-expression can suppress the proliferation, migration, and invasion of carcinoma of pancreas BxPC-3 cell line, and the possible mechanisms may be correlated to induction of mitochondria-mediated apoptosis, down-regulations of MMP-2 and VEGF, up-regulations of PEDF, through the PI3K/Akt and ERK pathways.

  17. Recurrent point mutations in the kinetochore gene KNSTRN in cutaneous squamous cell carcinoma

    PubMed Central

    Lee, Carolyn S; Bhaduri, Aparna; Mah, Angela; Johnson, Whitney L; Ungewickell, Alexander; Aros, Cody J; Nguyen, Christie B; Rios, Eon J; Siprashvili, Zurab; Straight, Aaron; Kim, Jinah; Aasi, Sumaira Z; Khavari, Paul A

    2015-01-01

    Here we report the discovery of recurrent mutations concentrated at an ultraviolet signature hotspot in KNSTRN, which encodes a kinetochore protein, in 19% of cutaneous squamous cell carcinomas (SCCs). Cancer-associated KNSTRN mutations, most notably those encoding p.Ser24Phe, disrupt chromatid cohesion in normal cells, occur in SCC precursors, correlate with increased aneuploidy in primary tumors and enhance tumorigenesis in vivo. These findings suggest a role for KNSTRN mutagenesis in SCC development. PMID:25194279

  18. Potential Susceptibility Loci Identified for Renal Cell Carcinoma by Targeting Obesity-Related Genes.

    PubMed

    Shu, Xiang; Purdue, Mark P; Ye, Yuanqing; Tu, Huakang; Wood, Christopher G; Tannir, Nizar M; Wang, Zhaoming; Albanes, Demetrius; Gapstur, Susan M; Stevens, Victoria L; Rothman, Nathaniel; Chanock, Stephen J; Wu, Xifeng

    2017-09-01

    Background: Obesity is an established risk factor for renal cell carcinoma (RCC). Although genome-wide association studies (GWAS) of RCC have identified several susceptibility loci, additional variants might be missed due to the highly conservative selection.Methods: We conducted a multiphase study utilizing three independent genome-wide scans at MD Anderson Cancer Center (MDA RCC GWAS and MDA RCC OncoArray) and National Cancer Institute (NCI RCC GWAS), which consisted of a total of 3,530 cases and 5,714 controls, to investigate genetic variations in obesity-related genes and RCC risk.Results: In the discovery phase, 32,946 SNPs located at ±10 kb of 2,001 obesity-related genes were extracted from MDA RCC GWAS and analyzed using multivariable logistic regression. Proxies (R(2) > 0.8) were searched or imputation was performed if SNPs were not directly genotyped in the validation sets. Twenty-one SNPs with P < 0.05 in both MDA RCC GWAS and NCI RCC GWAS were subsequently evaluated in MDA RCC OncoArray. In the overall meta-analysis, significant (P < 0.05) associations with RCC risk were observed for SNP mapping to IL1RAPL2 [rs10521506-G: ORmeta = 0.87 (0.81-0.93), Pmeta = 2.33 × 10(-5)], PLIN2 [rs2229536-A: ORmeta = 0.87 (0.81-0.93), Pmeta = 2.33 × 10(-5)], SMAD3 [rs4601989-A: ORmeta = 0.86 (0.80-0.93), Pmeta = 2.71 × 10(-4)], MED13L [rs10850596-A: ORmeta = 1.14 (1.07-1.23), Pmeta = 1.50 × 10(-4)], and TSC1 [rs3761840-G: ORmeta = 0.90 (0.85-0.97), Pmeta = 2.47 × 10(-3)]. We did not observe any significant cis-expression quantitative trait loci effect for these SNPs in the TCGA KIRC data.Conclusions: Taken together, we found that genetic variation of obesity-related genes could influence RCC susceptibility.Impact: The five identified loci may provide new insights into disease etiology that reveal importance of obesity-related genes in RCC development. Cancer Epidemiol Biomarkers Prev; 26(9); 1436-42. ©2017 AACR. ©2017 American Association for Cancer Research.

  19. Epithelial cells captured from ductal carcinoma in situ reveal a gene expression signature associated with progression to invasive breast cancer

    PubMed Central

    Abuázar, Carolina Sens; de Toledo Osorio, Cynthia Aparecida Bueno; Pinilla, Mabel Gigliola; da Silva, Sabrina Daniela; Camargo, Anamaria Aranha; Silva, Wilson Araujo; e Ferreira, Elisa Napolitano; Brentani, Helena Paula; Carraro, Dirce Maria

    2016-01-01

    Breast cancer biomarkers that can precisely predict the risk of progression of non-invasive ductal carcinoma in situ (DCIS) lesions to invasive disease are lacking. The identification of molecular alterations that occur during the invasion process is crucial for the discovery of drivers of transition to invasive disease and, consequently, biomarkers with clinical utility. In this study, we explored differences in gene expression in mammary epithelial cells before and after the morphological manifestation of invasion, i.e., early and late stages, respectively. In the early stage, epithelial cells were captured from both pre-invasive lesions with distinct malignant potential [pure DCIS as well as the in situ component that co-exists with invasive breast carcinoma lesions (DCIS-IBC)]; in the late stage, epithelial cells were captured from the two distinct morphological components of the same sample (in situ and invasive components). Candidate genes were identified using cDNA microarray and rapid subtractive hybridization (RaSH) cDNA libraries and validated by RT-qPCR assay using new samples from each group. These analyses revealed 26 genes, including 20 from the early and 6 from the late stage. The expression profile based on the 20 genes, marked by a preferential decrease in expression level towards invasive phenotype, discriminated the majority of DCIS samples. Thus, this study revealed a gene expression signature with the potential to predict DCIS progression and, consequently, provides opportunities to tailor treatments for DCIS patients. PMID:27708222

  20. In vitro and in vivo effect of 5-FC combined gene therapy with TNF-α and CD suicide gene on human laryngeal carcinoma cell line Hep-2.

    PubMed

    Chai, Li-Ping; Wang, Zhang-Feng; Liang, Wei-Ying; Chen, Lei; Chen, Dan; Wang, An-Xun; Zhang, Zhao-Qiang

    2013-01-01

    This study was aimed to investigate the effect of combined cancer gene therapy with exogenous tumor necrosis factor-alpha (TNF-α) and cytosine deaminase (CD) suicide gene on laryngeal carcinoma cell line Hep-2 in vitro and in vivo. Transfection of the recombinant eukaryotic vectors of pcDNA3.1 (+) containing TNF-α and/or CD into Hep-2 cells resulted in expression of TNF-α and/or CD gene in vitro. The significant increase in apoptotic Hep-2 cells and decrease of Hep-2 cell proliferation were observed using 5-FC treatment combined with TNF-a expression by CD/5-FC suicide system. Moreover, bystander effect was also observed in the TNF-α and CD gene co-expression group. Laryngeal squamous cell carcinoma (LSCC) mice model was established by using BALB/c mice which different transfected Hep-2 cells with pcDNA3.1 (+) containing TNF-α and/or CD were applied subcutaneously. So these mice are divided into four groups, namely, (1)Hep-2/TIC group; (2)Hep-2/CD group; (3)Hep-2/TNF-α group; (4)Hep-2/0 group. At day 29 after cell inoculation, volume of grafted tumor had significant difference between each two of them (P<0.05). These results showed that the products of combined CD and TNF-α genes inhibited the growth of transplanted LSCC in mice model. So by our observed parameters and many others results, we hypothesized that 5-FC combined gene therapy with TNF-αand CD suicide gene should be an effective treatment on Laryngeal carcinoma.

  1. In Vitro and In Vivo Effect of 5-FC Combined Gene Therapy with TNF-α and CD Suicide Gene on Human Laryngeal Carcinoma Cell Line Hep-2

    PubMed Central

    Chai, Li-Ping; Wang, Zhang-Feng; Liang, Wei-Ying; Chen, Lei; Chen, Dan; Wang, An-Xun; Zhang, Zhao-Qiang

    2013-01-01

    This study was aimed to investigate the effect of combined cancer gene therapy with exogenous tumor necrosis factor-alpha (TNF-α) and cytosine deaminase (CD) suicide gene on laryngeal carcinoma cell line Hep-2 in vitro and in vivo. Transfection of the recombinant eukaryotic vectors of pcDNA3.1 (+) containing TNF-α and/or CD into Hep-2 cells resulted in expression of TNF-α and/or CD gene in vitro. The significant increase in apoptotic Hep-2 cells and decrease of Hep-2 cell proliferation were observed using 5-FC treatment combined with TNF-a expression by CD/5-FC suicide system. Moreover, bystander effect was also observed in the TNF-α and CD gene co-expression group. Laryngeal squamous cell carcinoma (LSCC) mice model was established by using BALB/c mice which different transfected Hep-2 cells with pcDNA3.1 (+) containing TNF-α and/or CD were applied subcutaneously. So these mice are divided into four groups, namely, Hep-2/TIC group; Hep-2/CD group; Hep-2/TNF-α group; Hep-2/0 group. At day 29 after cell inoculation, volume of grafted tumor had significant difference between each two of them (P<0.05). These results showed that the products of combined CD and TNF-α genes inhibited the growth of transplanted LSCC in mice model. So by our observed parameters and many others results, we hypothesized that 5-FC combined gene therapy with TNF-αand CD suicide gene should be an effective treatment on Laryngeal carcinoma. PMID:23593411

  2. The expression and clinical significance of metastasis suppressor gene and matrix metalloproteinase-2 in esophageal squamous cell of carcinoma.

    PubMed

    Guo, Xiao-Qi; Li, Xing-Ya

    2016-07-01

    To investigate the expression and clinical significance of metastasis suppressor gene and matrix metalloproteinase-2 in esophageal squamous cell of carcinoma. choose 30 cases of specimens of esophageal squamous cell carcinoma which are removed in surgery and confirmed by pathology and 30 cases of specimens of normal esophageal mucosa. Use immunohistochemistry SP method to detect the expression of nm23-H1, MMP-2 protein in esophageal squamous cell carcinoma and normal esophageal mucosal. The positive rate of nm23-H1 protein in esophageal squamous cell carcinoma was 43.3% (13/30), while that in normal esophageal mucosa was 100% (30/30), which has a significant difference between them (χ2=22. 083, P<0.05). The positive rate of MMP-2 protein in esophageal squamous cell carcinoma was 90.0% (27/30), while that in normal esophageal mucosa was 33.3% (10/30), and there is a significant difference between them (χ2=28. 370, P<0.05); For the expression of nm23-H1 and MMP-2 in esophageal squamous cell carcinoma, there was nothing to do with sex, age and tumor size (P>0.05), but it was related to the degree of tumor differentiation, depth of invasion and lymph node metastasis (P<0.05); The expression of nm23-H1 is related to the cut end of residual cancer (P<0.05), while the expression of MMP-2 has nothing to do with the cut end of residual cancer (P>0.05); The expression of nm23-H1 and MMP-2 in esophageal squamous cell carcinoma was negatively correlated. nm23-H1 and MMP-2 have played a role in the development of esophageal cancer, which can promote the occurence of distant metastasis; The loss of expression of nm23-H1 may be related to cut end residual cancer; nm23-H1 and MMP-2 may be as an indicator for esophageal cancer metastasis and prognosis.

  3. Basal cell carcinoma: pathophysiology.

    PubMed

    Sehgal, Virendra N; Chatterjee, Kingshuk; Pandhi, Deepika; Khurana, Ananta

    2014-01-01

    Basal cell carcinoma (BCC) is the most common skin cancer in humans, which typically appears over the sun-exposed skin as a slow-growing, locally invasive lesion that rarely metastasizes. Although the exact etiology of BCC is unknown, there exists a well-established relationship between BCC and the pilo-sebaceous unit, and it is currently thought to originate from pluri-potential cells in the basal layer of the epidermis or the follicle. The patched/hedgehog intracellular signaling pathway plays a central role in both sporadic BCCs and nevoid BCC syndrome (Gorlin syndrome). This pathway is vital for the regulation of cell growth, and differentiation and loss of inhibition of this pathway is associated with development of BCC. The sonic hedgehog protein is the most relevant to BCC; nevertheless, the Patched (PTCH) protein is the ligand-binding component of the hedgehog receptor complex in the cell membrane. The other protein member of the receptor complex, smoothened (SMO), is responsible for transducing hedgehog signaling to downstream genes, leading to abnormal cell proliferation. The importance of this pathway is highlighted by the successful use in advanced forms of BCC of vismodegib, a Food and Drug Administration-approved drug, that selectively inhibits SMO. The UV-specific nucleotide changes in the tumor suppressor genes, TP53 and PTCH, have also been implicated in the development of BCC.

  4. High therapeutic concentration of prazosin up-regulates angiogenic IL6 and CCL2 genes in hepatocellular carcinoma cells.

    PubMed

    Lin, Zu-Yau; Chuang, Wan-Long

    2012-12-01

    Alteration of the oxidative stress of hepatocellular carcinoma (HCC) cells can influence the expressions of genes favored angiogenesis. Quinone reductase 2 which can activate quinones leading to reactive oxygen species production is a melatonin receptor known as MT3. Prazosin prescribed for benign prostate hyperplasia and hypertension is a potent antagonist for MT3. This study was to investigate the influence of therapeutic concentrations of prazosin (0.01 and 0.1μM) on cell proliferation and differential expressions of CCL2, CCL20, CXCL6, CXCL10, IL8 and IL6 genes related to inflammation and/or oxidative stress in human HCC cell lines. Two HCC cell lines including one without susceptible to amphotericin B-induced oxidative stress (cell line A; HCC24/KMUH) and one with this effect (cell line B; HCC38/KMUH) were investigated by 0.01 and 0.1μM prazosin. The premixed WST-1 cell proliferation reagent was applied for proliferation assay. Differential expressions of genes were examined by quantitative reverse transcriptase-polymerase chain reaction. Our results showed that both 0.01 and 0.1μM prazosin did not influence cell proliferation in both cell lines. Both 0.01 and 0.1μM prazosin in cell line A and 0.01μM prazosin in cell line B did not cause differential expressions of tested genes. However, 0.1μM prazosin caused remarkable up-regulation of IL6 gene and slightly up-regulation of CCL2 gene in cell line B. In conclusion, high therapeutic concentration of prazosin can up-regulate angiogenic IL6 and CCL2 genes in human HCC cells susceptible to amphotericin B-induced oxidative stress. Clinical application of prazosin in patients with HCC should consider this possibility.

  5. Mutational analysis of HRAS and KRAS genes in oral carcinoma cell lines.

    PubMed

    Maemoto, Sachiko; Yumoto, Megumi; Ibata, Masato; Torizuka, Sho; Ozawa, Naohumi; Tatsumi, Shunsuke; Hashido, Moeko; Morikawa, Masako; Maeda, Genta; Imai, Kazushi

    2012-07-01

    RAS overexpression and its active mutations are involved in malignant tumorigenesis. However, the mutation rates in oral carcinoma cells differ between populations. In the present study, genomic DNA of oral carcinoma cells (HOC313, TSU, HSC2, HSC3, KOSC2, KOSC3, SCCKN, OSC19, Ca9.22, and Ho1u1 cells) or normal gingival fibroblasts (GF12 cells) derived from a Japanese population were amplified by polymerase chain reaction using primer sets, spanning HRAS and KRAS exons. Nucleotide substitutions were analyzed by single strand conformation polymorphism. In contrast to no substitutions in KRAS, nine different substitutions were detected in HRAS. Of the nine, six substitutions were located at intron 1 (HSC2 and HSC3 cells) or intron 2 (HSC3, SCCKN and Ca9.22 cells), and one each of exon 1 (all cells), exon 2 (HOC313, TSU, HSC2 and HSC3 cells) and the 5' upstream region (all cells). Substitutions at exons 1 and 2 did not affect the amino acid sequence; the exon 1 substitution was positioned at the 5' untranslated region, which may be a single nucleotide polymorphism (SNP) sequence because all the cells were isolated from a Japanese population, and the mutations at exon 2 was a silent mutation. A substitution at the 5' upstream region was an SNP. These data demonstrate that SNPs and point mutations observed in HRAS do not change the amino acid sequence, and suggest that the mutations affecting the amino acid sequence may be a rare event in oral carcinomas of the Japanese population.

  6. Leptin acts on neoplastic behavior and expression levels of genes related to hypoxia, angiogenesis, and invasiveness in oral squamous cell carcinoma.

    PubMed

    Sobrinho Santos, Eliane Macedo; Guimarães, Talita Antunes; Santos, Hércules Otacílio; Cangussu, Lilian Mendes Borborema; de Jesus, Sabrina Ferreira; Fraga, Carlos Alberto de Carvalho; Cardoso, Claudio Marcelo; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Gomez, Ricardo Santiago; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2017-05-01

    Leptin, one of the main hormones controlling energy homeostasis, has been associated with different cancer types. In oral cancer, its effect is not well understood. We investigated, through in vitro and in vivo assays, whether leptin can affect the neoplastic behavior of oral squamous cell carcinoma. Expression of genes possibly linked to the leptin pathway was assessed in leptin-treated oral squamous cell carcinoma cells and also in tissue samples of oral squamous cell carcinoma and oral mucosa, including leptin, leptin receptor, hypoxia-inducible factor 1-alpha, E-cadherin, matrix metalloproteinase-2, matrix metalloproteinase-9, Col1A1, Ki67, and mir-210. Leptin treatment favored higher rates of cell proliferation and migration, and reduced apoptosis. Accordingly, leptin-treated oral squamous cell carcinoma cells show decreased messenger RNA caspase-3 expression, and increased levels of E-cadherin, Col1A1, matrix metalloproteinase-2, matrix metalloproteinase-9, and mir-210. In tissue samples, hypoxia-inducible factor 1-alpha messenger RNA and protein expression of leptin and leptin receptor were high in oral squamous cell carcinoma cases. Serum leptin levels were increased in first clinical stages of the disease. In animal model, oral squamous cell carcinoma-induced mice show higher leptin receptor expression, and serum leptin level was increased in dysplasia group. Our findings suggest that leptin seems to exert an effect on oral squamous cell carcinoma cells behavior and also on molecular markers related to cell proliferation, migration, and tumor angiogenesis.

  7. Relationships between cell cycle pathway gene polymorphisms and risk of hepatocellular carcinoma

    PubMed Central

    Nan, Yue-Li; Hu, Yan-Ling; Liu, Zhi-Ke; Duan, Fang-Fang; Xu, Yang; Li, Shu; Li, Ting; Chen, Da-Fang; Zeng, Xiao-Yun

    2016-01-01

    AIM: To investigate the associiations between the polymorphisms of cell cycle pathway genes and the risk of hepatocellular carcinoma (HCC). METHODS: We enrolled 1127 cases newly diagnosed with HCC from the Tumor Hospital of Guangxi Medical University and 1200 non-tumor patients from the First Affiliated Hospital of Guangxi Medical University. General demographic characteristics, behavioral information, and hematological indices were collected by unified questionnaires. Genomic DNA was isolated from peripheral venous blood using Phenol-Chloroform. The genotyping was performed using the Sequenom MassARRAY iPLEX genotyping method. The association between genetic polymorphisms and risk of HCC was shown by P-value and the odd ratio (OR) with 95% confidence interval (CI) using the unconditional logistic regression after adjusting for age, sex, nationality, smoking, drinking, family history of HCC, and hepatitis B virus (HBV) infection. Moreover, stratified analysis was conducted on the basis of the status of HBV infection, smoking, and alcohol drinking. RESULTS: The HCC risk was lower in patients with the MCM4 rs2305952 CC (OR = 0.22, 95%CI: 0.08-0.63, P = 0.01) and with the CHEK1 rs515255 TC, TT, TC/TT (OR = 0.73, 95%CI: 0.56-0.96, P = 0.02; OR = 0.67, 95%CI: 0.46-0.97, P = 0.04; OR = 0.72, 95%CI: 0.56-0.92, P = 0.01, respectively). Conversely, the HCC risk was higher in patients with the KAT2B rs17006625 GG (OR = 1.64, 95%CI: 1.01-2.64, P = 0.04). In addition, the risk was markedly lower for those who were carriers of MCM4 rs2305952 CC and were also HBsAg-positive and non-drinking and non-smoking (P < 0.05, respectively) and for those who were carriers of CHEK1 rs515255 TC, TT, TC/TT and were also HBsAg-negative and non-drinking (P < 0.05, respectively). Moreover, the risk was higher for those who were carriers of KAT2B rs17006625 GG and were also HBsAg-negative (P < 0.05). CONCLUSION: Of 12 cell cycle pathway genes, MCM4, CHEK1 and KAT2B polymorphisms may be

  8. Spatially Fractionated Radiation Induces Cytotoxicity and Changes in Gene Expression in Bystander and Radiation Adjacent Murine Carcinoma Cells

    PubMed Central

    Asur, Rajalakshmi S.; Sharma, Sunil; Chang, Ching-Wei; Penagaricano, Jose; Kommuru, Indira M.; Moros, Eduardo G.; Corry, Peter M.; Griffin, Robert J.

    2012-01-01

    Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied

  9. Tissue-specific gene expression in medullary thyroid carcinoma cells employing calcitonin regulatory elements and AAV vectors.

    PubMed

    Jiang, S; Altmann, A; Grimm, D; Kleinschmidt, J A; Schilling, T; Germann, C; Haberkorn, U

    2001-07-01

    Calcitonin (CT), the major secretory product of the C cell, is also expressed in C-cell-derived neoplasia. To investigate the role of the CT gene regulatory sequence in tissue-specific gene expression, the genes coding for the herpes simplex virus thymidine kinase (HSVtk) and for the enhanced green fluorescent protein (EGFP) regulated by the CT promoter (rAAV/CT266tkneo), the CT promoter/enhancer element (rAAV/CTenhtkneo), or the cytomegalovirus (CMV) promoter (rAAV/CMVtkneo) were transduced by recombinant adenoassociated viral (AAV) vectors into the medullary thyroid carcinoma (MTC) cell lines TT and hMTC and into HeLa cells as controls. In TT cell lines and hMTC cell lines transiently infected by the rAAV/CT266tkneo viruses, a significant increase in (3)H ganciclovir uptake was observed. Upon ganciclovir treatment, TT cells infected by rAAV/CT266tkneo revealed a significant growth inhibition, which was less tissue-specific because HeLa cells were also affected by these particles (74.5%). In contrast, a minor but more tissue-specific growth inhibition (33.6%) was observed for TT cells after transient infection with the rAAV/CTenhtkneo particles. Employing EGFP controlled by CMV promoter and the individual CT regulatory sequences for transduction by rAAV particles, similar results were obtained indicating that both the CT promoter and enhancer element are required for tissue-specific gene expression in MTC.

  10. Identification of high-risk human papillomavirus (hrHPV)-associated genes in early stage cervical squamous cell carcinomas.

    PubMed

    Hu, Y; Liu, Y; Liu, C-B; Ling, Z-Q

    2011-01-01

    This retrospective study investigated gene expression in tumour samples from 38 patients with early stage human papillomavirus (HPV)-associated cervical squamous cell carcinoma (CSCC). The patients were divided into two groups based on the presence of viral markers of HPV16 or HPV18 infection. Gene expression profiles of tumour samples and the corresponding normal cervical epithelium were analysed using cDNA microarrays. Several genes showed differential expression between the two groups of HPV-infected CSCC patients, although seven genes showed similar changes in both groups. The four genes encoding cyclin-dependent kinase inhibitor 2A, matrix metallopeptidase 9, laminin γ-1, and epidermal growth factor receptor were up-regulated, and the three genes encoding transforming growth factor β receptor 1, interleukin-1α and insulin-like growth factor-binding protein 6 were down-regulated, in both HPV16(+) and HPV18(+) CSCC. These proteins are involved in cell proliferation, cell structure and cell attachment, so their expression might be involved in the mechanism of HPV-induced carcino genesis. A clearer understanding of HPV type-specific gene expression might aid diagnosis and treatment.

  11. The hereditary renal cell carcinoma 3;8 translocation fuses FHIT to a patched-related gene, TRC8.

    PubMed

    Gemmill, R M; West, J D; Boldog, F; Tanaka, N; Robinson, L J; Smith, D I; Li, F; Drabkin, H A

    1998-08-04

    The 3;8 chromosomal translocation, t(3;8)(p14.2;q24.1), was described in a family with classical features of hereditary renal cell carcinoma. Previous studies demonstrated that the 3p14.2 breakpoint interrupts the fragile histidine triad gene (FHIT) in its 5' noncoding region. However, evidence that FHIT is causally related to renal or other malignancies is controversial. We now show that the 8q24.1 breakpoint region encodes a 664-aa multiple membrane spanning protein, TRC8, with similarity to the hereditary basal cell carcinoma/segment polarity gene, patched. This similarity involves two regions of patched, the putative sterol-sensing domain and the second extracellular loop that participates in the binding of sonic hedgehog. In the 3;8 translocation, TRC8 is fused to FHIT and is disrupted within the sterol-sensing domain. In contrast, the FHIT coding region is maintained and expressed. In a series of sporadic renal carcinomas, an acquired TRC8 mutation was identified. By analogy to patched, TRC8 might function as a signaling receptor and other pathway members, to be defined, are mutation candidates in malignant diseases involving the kidney and thyroid.

  12. Differential transcription of the human spermidine/spermine N1-acetyltransferase (SSAT) gene in human lung carcinoma cells.

    PubMed Central

    Xiao, L; Casero, R A

    1996-01-01

    The expression of spermidine/spermine N1-acetyltransferase (SSAT), the rate-limiting enzyme in the catabolism of polyamines, is highly regulated by a number of factors including the natural polyamines and their analogues. The phenotype-specific cytotoxicity that occurs in response to a class of polyamine analogues, the diethylpolyamines, is associated with a phenotype-specific superinduction of SSAT in human non-small-cell lung carcinomas, whereas in non-responding cell types, including the small-cell lung carcinomas, the superinduction of SSAT does not occur. In this study, we have investigated the molecular basis of this phenotype-specific SSAT induction in human lung carcinoma cells in response to N1,N12-diethylspermine (BESpm). To facilitate the study of transcriptional regulation, we have cloned and characterized 11 kb of the human SSAT locus, including 3500 bp of the 5' promoter region. Nuclear run-on transcription studies suggest that the initial induction of SSAT results from an increase in the rate of gene transcription. Results from Northern blot analysis and ribonuclease protection assays indicate a differential expression of SSAT mRNA between the analogue-responsive H157 and non-responsive H82 cells. There is no detectable SSAT mRNA in H82 cells, even after a 24-h analogue treatment, whereas SSAT mRNA in H157 cells was detectable by Northern blot analysis and increased more than 100-fold following drug exposure. Furthermore, nuclear run-on transcription assays do not detect any active transcription of SSAT gene in either treated or untreated H82 cells. These results indicate that at least one component of the phenotype-specific induction of SSAT appears to be due to differences in transcriptional regulation of the gene. In addition, mapping of DNase I-hypersensitive sites of the SSAT gene suggest that the cell type-specific promoter/enhancer utilization may control the expression of the SSAT gene in differentially sensitive cell types in vivo. PMID

  13. Gene Expression Changes in Cervical Squamous Cell Carcinoma After Initiation of Chemoradiation and Correlation With Clinical Outcome

    SciTech Connect

    Klopp, Ann H.; Jhingran, Anuja Ramdas, Latha; Story, Michael D.; Broadus, Russell R.; Lu, Karen H.; Eifel, Patricia J.; Buchholz, Thomas A.

    2008-05-01

    Purpose: The purpose of this study was to investigate early gene expression changes after chemoradiation in a human solid tumor, allowing identification of chemoradiation-induced gene expression changes in the tumor as well as the tumor microenvironment. In addition we aimed to identify a gene expression profile that was associated with clinical outcome. Methods and Materials: Microarray experiments were performed on cervical cancer specimens obtained before and 48 h after chemoradiation from 12 patients with Stage IB2 to IIIB squamous cell carcinoma of the cervix treated between April 2001 and August 2002. Results: A total of 262 genes were identified that were significantly changed after chemoradiation. Genes involved in DNA repair were identified including DDB2, ERCC4, GADD45A, and XPC. In addition, significantly regulated cell-to-cell signaling pathways included insulin-like growth factor-1 (IGF-1), interferon, and vascular endothelial growth factor signaling. At a median follow-up of 41 months, 5 of 12 patients had experienced either local or distant failure. Supervised clustering analysis identified a 58-gene set from the pretreatment samples that were differentially expressed between patients with and without recurrence. Genes involved in integrin signaling and apoptosis pathways were identified in this gene set. Immortalization-upregulated protein (IMUP), IGF-2, and ARHD had particularly marked differences in expression between patients with and without recurrence. Conclusions: Genetic profiling identified genes regulated by chemoradiation including DNA damage and cell-to-cell signaling pathways. Genes associated with recurrence were identified that will require validation in an independent patient data set to determine whether the 58-gene set associated with clinical outcome could be useful as a prognostic assay.

  14. Basal Cell Carcinoma

    PubMed Central

    Lanoue, Julien

    2016-01-01

    Basal cell carcinoma is the most commonly occurring cancer in the world and overall incidence is still on the rise. While typically a slow-growing tumor for which metastases is rare, basal cell carcinoma can be locally destructive and disfiguring. Given the vast prevalence of this disease, there is a significant overall burden on patient well-being and quality of life. The current mainstay of basal cell carcinoma treatment involves surgical modalities, such as electrodessication and curettage, excision, cryosurgery, and Mohs micrographic surgery. Such methods are typically reserved for localized basal cell carcinoma and offer high five-year cure rates, but come with the risk of functional impairment, disfigurement, and scarring. Here, the authors review the evidence and indications for nonsurgical treatment modalities in cases where surgery is impractical, contraindicated, or simply not desired by the patient. PMID:27386043

  15. The histone deacetylase inhibitor LBH589 inhibits expression of mitotic genes causing G2/M arrest and cell death in head and neck squamous cell carcinoma cell lines.

    PubMed

    Prystowsky, Michael B; Adomako, Alfred; Smith, Richard V; Kawachi, Nicole; McKimpson, Wendy; Atadja, Peter; Chen, Quan; Schlecht, Nicolas F; Parish, Joanna L; Childs, Geoffrey; Belbin, Thomas J

    2009-08-01

    Head and neck squamous cell carcinoma represents a complex set of neoplasms arising in diverse anatomical locations. The site and stage of the cancer determine whether patients will be treated with single or multi-modality therapy. The HDAC inhibitor LBH589 is effective in treating some haematological neoplasms and shows promise for certain epithelial neoplasms. As with other human cancer cell lines, LBH589 causes up-regulation of p21, G2/M cell cycle arrest, and cell death of human HNSCC cell lines, as measured using flow cytometry and cDNA microarrays. Global RNA expression studies following treatment of the HNSCC cell line FaDu with LBH589 reveal down-regulation of genes required for chromosome congression and segregation (SMC2L1), sister chromatid cohesion (DDX11), and kinetochore structure (CENP-A, CENP-F, and CENP-M); these LBH589-induced changes in gene expression coupled with the down-regulation of MYC and BIRC5 (survivin) provide a plausible explanation for the early mitotic arrest and cell death observed. When LBH589-induced changes in gene expression were compared with gene expression profiles of 41 primary HNSCC samples, many of the genes that were down-regulated by LBH589 showed increased expression in primary HNSCC, suggesting that some patients with HNSCC may respond to treatment with LBH589. (c) 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  16. VHL and HIF-1α: gene variations and prognosis in early-stage clear cell renal cell carcinoma.

    PubMed

    Lessi, Francesca; Mazzanti, Chiara Maria; Tomei, Sara; Di Cristofano, Claudio; Minervini, Andrea; Menicagli, Michele; Apollo, Alessandro; Masieri, Lorenzo; Collecchi, Paola; Minervini, Riccardo; Carini, Marco; Bevilacqua, Generoso

    2014-03-01

    Von Hipple-Lindau gene (VHL) inactivation represents the most frequent abnormality in clear cell renal cell carcinoma (ccRCC). Hypoxia-inducible factor-1α (HIF-1α) expression is regulated by O2 level. In normal O2 conditions, VHL binds HIF-1α and allows HIF-1α proteasomal degradation. A single-nucleotide polymorphism (SNP) has been found located in the oxygen-dependent degradation domain at codon 582 (C1772T, rs11549465, Pro582Ser). In hypoxia, VHL/HIF-1α interaction is abolished and HIF-1α activates target genes in the nucleus. This study analyzes the impact of genetic alterations and protein expression of VHL and the C1772T SNP of HIF-1α gene (HIF-1α) on prognosis in early-stage ccRCC (pT1a, pT1b, and pT2). Mutational analysis of the entire VHL sequence and the genotyping of HIF-1α C1772T SNP were performed together with VHL promoter methylation analysis and loss of heterozygosis (LOH) analysis at (3p25) locus. Data obtained were correlated with VHL and HIF-1α protein expression and with tumor-specific survival (TSS). VHL mutations, methylation status, and LOH were detected in 51, 11, and 12% of cases, respectively. Our results support the association between biallelic alterations and/or VHL silencing with a worse TSS. Moreover, we found a significant association between the HIF-1α C1772C genotype and a worse TSS. The same association was found when testing the presence of HIF-1α protein in the nucleus. Our results highlight the role of VHL/HIF-1α pathway in RCC and support the molecular heterogeneity of early-stage ccRCC. More important, we show the involvement of HIF-1α C1772T SNP in ccRCC progression.

  17. A new germline mutation of the PTCH gene in a Japanese patient with nevoid basal cell carcinoma syndrome associated with meningioma.

    PubMed

    Tate, Genshu; Li, Min; Suzuki, Takao; Mitsuya, Toshiyuki

    2003-01-01

    We employed polymerase chain reaction and DNA sequencing analysis to characterize the PTCH gene in a Japanese nevoid basal cell carcinoma syndrome (NBCCS) patient suffering from meningioma, multiple basal cell carcinoma and epidermal cysts. Direct sequence analyses revealed a novel single base deletion at nucleotide 2613 in exon 16 (2613delC) in one PTCH allele, resulting in the frame shift and the introduction of a premature termination codon in this mutated allele.

  18. Germline mutations in the VHL tumor suppresssor gene are similar to somatic VHL aberrations in sporadic renal cell carcinoma

    SciTech Connect

    Whaley, J.M.; Naglich, J.; Gelbert, L.

    1994-09-01

    A candidate gene for von Hippel Lindau disease was recently identified that led to the isolation of a partial cDNA clone with extended open reading frame without significant homology to known genes or obvious functional motifs, except for an acidic pentamer repeat domain. To further characterize the functional domains of the VHL gene and assess its involvement in hereditary and non-hereditary tumors, we performed mutation analyses and studied its expresssion in normal and tumor tissue. We identified germline mutations in 39% of VHL disease families. Moreover, 33% of sporadic RCCs, and all (6/6) sporadic RCC cell lines analyzed, showed mutations within the VHL gene. Both germline and somatic mutations included deletions, insertions, splice site mutations, missense and nonsense mutations, all of which clustered at the 3{prime} end of the corresponding partial VHL cDNA open reading frame including an alternatively-spliced exon of 123 nucleotides in length, suggesting functionally important domains encoded by the VHL gene in this region. Over 180 sporadic tumors of other types have shown no detectable base changes within the presumed coding sequence of the VHL gene to date. We conclude that the gene causing VHL has an important and specific role in the etiology of sporadic renal cell carcinomas, acts as a recessive tumor suppressor gene, and appears to encode important functional domains within the 3{prime} end of the known open reading frame.

  19. ABCG2/BCRP gene expression is related to epithelial-mesenchymal transition inducer genes in a papillary thyroid carcinoma cell line (TPC-1).

    PubMed

    Mato, E; González, C; Moral, A; Pérez, J I; Bell, O; Lerma, E; de Leiva, A

    2014-06-01

    Tumor malignancy is associated with the epithelial-mesenchymal transition (EMT) process and resistance to chemotherapy. However, little is known about the relationship between the EMT and the multidrug-resistance gene in thyroid tumor progression. We investigated whether the expression of the ABCG2/BCRP gene is associated with ZEB1 and other EMT inducer genes involved in tumor dedifferentiation. We established a subpopulation of cells that express the ABCG2/BCRP gene derived from the thyroid papillary carcinoma cell line (TPC-1), the so-called TPC-1 MITO-resistant subline. The most relevant findings in these TPC-1 selected cells were a statistically significant upregulation of ZEB1 and TWIST1 (35- and 15-fold change respectively), no changes in the relative expression of vimentin and SNAIL1, and no expression of E-cadherin. The TPC-1 MITO-resistant subline displayed a faster migration and greater invasive ability than parental cells in correlation with a significant upregulation of the survivin (BIRC5) gene (twofold change, P<0.05). The knockdown of ZEB1 promoted nuclear re-expression of E-cadherin, reduced expression of vimentin, N-cadherin, and BIRC5 genes, and reduced cell migration (P<0.05). Analysis of human thyroid carcinoma showed a slight overexpression of the ABCG2/BCRP at stages I and II (P<0.01), and a higher overexpression at stages III and IV (P<0.01). SNAIL1, TWIST1, and ZEB1 genes showed higher expression at stages III and IV than at stages I and II. E- and N-cadherin genes were upregulated at stages I and II of the disease (ninefold and tenfold change, respectively, P<0.01) but downregulated at stages III and IV (fourfold lower, P<0.01). These results could be a promising starting point for further study of the role of the ABCG2/BCRP gene in the progression of thyroid tumor.

  20. Effects of 5-azacytidine on RUNX3 gene expression and the biological behavior of esophageal carcinoma cells.

    PubMed

    Wang, Shuai; Liu, Hong; Wang, Zhou; Chen, Hua-Xia

    2014-04-01

    The present study investigated the effects of 5-azacytidine (5-azaC) on the expression level of the human runt-related transcription factor 3 (RUNX3) gene and the biological behavior of esophageal carcinoma Eca109 cells. The effect of the demethylation reagent 5-azaC on the viability of Eca109 cells was detected by the MTT assay, which demonstrated that 5-azaC inhibited the viability of Eca109 cells in a time- and dose-dependent manner. Although demethylation of other genes may occur following treatment with 5-azaC, we focused on the RUNX3 gene. When treated with 5-azaC at hypoxic levels, the expression of RUNX3 increased and the methylation degree of the RUNX3 gene was decreased significantly in Eca109 cells. 5-azaC at 50 µM demonstrated the highest RUNX3-induction activity, inducing RUNX3 mRNA and protein expression, and decreasing the degree of methylation of the RUNX3 gene. Methylation specific PCR indicated that 5-azaC induced RUNX3 expression through demethylation. The abilities of migration and invasion of Eca109 cells were inhibited by 5-azaC. The growth of Eca109 cells treated with 5-azaC in vivo was detected by a tumorigenesis experiment. 5-azaC inhibited the growth of Eca109 xenografts in nude mice. Taken together, our findings demonstrated that the RUNX3 gene is hypermethylated in Eca109 cells and that 5-azaC induces the expression of the RUNX3 gene by demethylation, which inhibits the proliferation, migration and invasion of Eca109 cells.

  1. Increase in gene dosage is a mechanism of HIF-1alpha constitutive expression in head and neck squamous cell carcinomas.

    PubMed

    Secades, Pablo; Rodrigo, Juan Pablo; Hermsen, Mario; Alvarez, Cesar; Suarez, Carlos; Chiara, María-Dolores

    2009-05-01

    The HIF-1alpha protein plays a key role in the cellular response to hypoxia via transcriptional regulation of genes involved in erythropoiesis, angiogenesis, and metabolism. Overexpression of HIF-1alpha is commonly found in solid tumors in significant association with increased patient mortality and resistance to therapy. The predominant mode of HIF-1alpha regulation by hypoxia occurs at the level of protein stability. In addition to hypoxia, HIF-1alpha protein stability and synthesis is regulated by nonhypoxic signals such as inactivation of tumor suppressors and activation of oncogenes. Here, we show that an increase in gene dosage may contribute to HIF-1alpha mRNA and protein overexpression in a nonhypoxic environment in head and neck squamous cell carcinomas (HNSCC). Increased HIF-1alpha gene dosage was found in one out of five HNSCC-derived cell lines and three out of 27 HNSCC primary tumors. Significantly, increased gene dosage in those samples was associated with high HIF-1alpha mRNA and protein levels. Normoxic overexpression of HIF-1alpha protein in HNSCC-derived cell lines was also paralleled by higher expression levels of HIF-1alpha target genes. Array CGH analysis confirmed the copy number increase of HIF-1alpha gene and revealed that the gene is contained within a region of amplification at 14q23-q24.2 both in the cell line and primary tumors. In addition, FISH analysis revealed the presence of 11-13 copies on a tetraploid background in SCC2 cells. These data suggest that increased HIF-1alpha gene dosage is a mechanism of HIF-1alpha protein overexpression in HNSCC that possibly prepares the cells for a higher activity in an intratumoral hypoxic environment.

  2. Promoter hypermethylation of the 14-3-3 sigma, SYK and CAGE-1 genes is related to the various phenotypes of urinary bladder carcinomas and associated with progression of transitional cell carcinomas.

    PubMed

    Kunze, Ekkehard; Wendt, Maike; Schlott, Thilo

    2006-10-01

    To explore the significance of epigenetic mechanisms in urinary bladder carcinogenesis mediated by methylation of cytosine in CpG dinucleotides at 5' promoter regions, we analysed the methylation status of a broad panel of different genes in transitional cell carcinomas (TCC) and nonurothelial cancers, among which the 14-3-3 sigma, SYK and CAGE-1 genes were recognised as promising target genes. Using methylation-specific PCR, the rate of DNA hypermethylation proved to be related to the various histopathological cancer subtypes. The higher frequency of promoter methylation of the 14-3-3 sigma (57.1%) and SYK (64.3%) genes in high-grade, high-stage TCC in association with a reduced or even lacking immunohistochemical protein expression than in low-grade, low-stage TCC (28.6% and 42.9%, respectively), indicates that aberrant methylation of these genes plays an essential role in the progression of TCC. The importance of DNA hypermethylation in the conversion of TCC from a low to a high malignant potential was strongly supported by the finding that, unlike superficial low-grade TCC, advanced muscle invasive TCC showed a concurrent promoter methylation of the 14-3-3 sigma, SYK and CAGE-1 genes. Squamous cell carcinomas revealed a peak incidence of hypermethylation of the 14-3-3 sigma gene (80%), and conversely, the lowest methylation frequency of the SYK gene (13.3%). Undifferentiated small cell carcinomas disclosed a promoter methylation of the 14-3-3 sigma, SYK and CAGE-1 genes in only a quarter each for the cases. Although a correlation between the methylation status and gene activity in squamous cell and undifferentiated small cell carcinomas was not observed, the underexpression of the SYK protein products in both cancer types and additionally of the 14-3-3 sigma protein in small cell carcinomas appeared to be related to the aggressive clinical behaviour of both these nonurothelial bladder carcinomas. The relevance of the high frequency of DNA hypermethylation of

  3. Cisplatin modulates B-cell translocation gene 2 to attenuate cell proliferation of prostate carcinoma cells in both p53-dependent and p53-independent pathways.

    PubMed

    Chiang, Kun-Chun; Tsui, Ke-Hung; Chung, Li-Chuan; Yeh, Chun-Nan; Feng, Tsui-Hsia; Chen, Wen-Tsung; Chang, Phei-Lang; Chiang, Hou-Yu; Juang, Horng-Heng

    2014-07-01

    Cisplatin is a widely used anti-cancer drug. The B-cell translocation gene 2 (BTG2) is involved in the cell cycle transition regulation. We evaluated the cisplatin effects on prostate cancer cell proliferation and the expressions of BTG2, p53, androgen receptor (AR) and prostate specific antigen (PSA) in prostate carcinoma, p53 wild-type LNCaP or p53-null PC-3, cells. Cisplatin treatments attenuated cell prostate cancer cell growth through inducing Go/G1 cell cycle arrest in lower concentration and apoptosis at higher dosage. Cisplatin treatments enhanced p53 and BTG2 expression, repressed AR and PSA expression, and blocked the activation of androgen on the PSA secretion in LNCaP cells. BTG2 knockdown in LNCaP cells attenuated cisplatin-mediated growth inhibition. Cisplatin enhanced BTG2 gene expression dependent on the DNA fragment located within -173 to -82 upstream of BTG2 translation initiation site in prostate cancer cells. Mutation of the p53 response element from GGGCAGAGCCC to GGGCACC or mutation of the NFκB response element from GGAAAGTCC to GGAAAGGAA by site-directed mutagenesis abolished the stimulation of cisplatin on the BTG2 promoter activity in LNCaP or PC-3 cells, respectively. Our results indicated that cisplatin attenuates prostate cancer cell proliferation partly mediated by upregulation of BTG2 through the p53-dependent pathway or p53-independent NFκB pathway.

  4. The gene expression profile of inflammatory, hypoxic and metabolic genes predicts the metastatic spread of human head and neck squamous cell carcinoma.

    PubMed

    Clatot, Florian; Gouérant, Sophie; Mareschal, Sylvain; Cornic, Marie; Berghian, Anca; Choussy, Olivier; El Ouakif, Faissal; François, Arnaud; Bénard, Magalie; Ruminy, Philippe; Picquenot, Jean-Michel; Jardin, Fabrice

    2014-03-01

    To assess the prognostic value of the expression profile of the main genes implicated in hypoxia, glucose and lactate metabolism, inflammation, angiogenesis and extracellular matrix interactions for the metastatic spread of head and neck squamous cell carcinoma. Using a high-throughput qRT-PCR, we performed an unsupervised clustering analysis based on the expression of 42 genes for 61 patients. Usual prognostic factors and clustering analysis results were related to metastasis free survival. With a median follow-up of 48months, 19 patients died from a metastatic evolution of their head and neck squamous cell carcinoma and one from a local recurrence. The unsupervised clustering analysis distinguished two groups of genes that were related to metastatic evolution. A capsular rupture (p=0.005) and the "cluster CXCL12 low" (p=0.002) were found to be independent prognostic factors for metastasis free survival. Using a Linear Predictive Score methodology, we established a 9-gene model (VHL, PTGER4, HK1, SLC16A4, DLL4, CXCL12, CXCR4, PTGER3 and CA9) that was capable of classifying the samples into the 2 clusters with 90% accuracy. In this cohort, our clustering analysis underlined the independent prognostic value of the expression of a panel of genes involved in hypoxia and tumor environment. It allowed us to define a 9-gene model which can be applied routinely to classify newly diagnosed head and neck squamous cell carcinoma. If confirmed by an independent prospective study, this approach may help future clinical management of these aggressive tumors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. One-Carbon Metabolism Pathway Gene Variants and Risk of Clear Cell Renal Cell Carcinoma in a Chinese Population

    PubMed Central

    Cai, Hongzhou; Li, Pu; Cao, Qiang; Shao, Pengfei; Qin, Chao; Yin, Changjun

    2013-01-01

    Background One-carbon metabolism is the basement of nucleotide synthesis and the methylation of DNA linked to cancer risk. Variations in one-carbon metabolism genes are reported to affect the risk of many cancers, including renal cancer, but little knowledge about this mechanism is known in Chinese population. Methods Each subject donated 5 mL venous blood after signing the agreement. The study was approved by the Institutional Review Board of the Nanjing Medical University, Nanjing, China. 18 SNPs in six one-carbon metabolism-related genes (CBS, MTHFR, MTR, MTRR, SHMT1, and TYMS) were genotyped in 859 clear cell renal cell carcinoma (ccRCC) patients and 1005 cancer-free controls by the Snapshot. Results Strong associations with ccRCC risk were observed for rs706209 (P = 0.006) in CBS and rs9332 (P = 0.027) in MTRR. Compared with those carrying none variant allele, individuals carrying one or more variant alleles in these two genes had a statistically significantly decreased risk of ccRCC [P = 0.001, adjusted odds ratio (OR) = 0.73, 95% confidence interval (CI) = 0.06–0.90]. In addition, patients carrying one or more variant alleles were more likely to develop localized stage disease (P = 0.002, adjusted OR = 1.37, 95%CI = 1.11–1.69) and well-differentiated ccRCC (P<0.001, adjusted OR = 1.42, 95%CI = 0.87–1.68). In the subgroup analysis, individuals carrying none variant allele in older group (P = 0.007, adjusted OR = 0.67, 95%CI = 0.49–0.91), male group (P = 0.007, adjusted OR = 0.71, 95%CI = 0.55–0.92), never smoking group (P = 0.002, adjusted OR = 0.68, 95%CI = 0.53–0.88) and never drinking group (P<0.001, adjusted OR = 0.68, 95%CI = 0.53–0.88) had an increased ccRCC risk. Conclusions Our results suggest that the polymorphisms of the one-carbon metabolism-related genes are associated with ccRCC risk in Chinese population. Future population-based prospective studies

  6. Basal cell carcinoma, squamous cell carcinoma and melanoma of the head and face.

    PubMed

    Feller, L; Khammissa, R A G; Kramer, B; Altini, M; Lemmer, J

    2016-02-05

    Ultraviolet light (UV) is an important risk factor for cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma of the skin. These cancers most commonly affect persons with fair skin and blue eyes who sunburn rather than suntan. However, each of these cancers appears to be associated with a different pattern of UV exposure and to be mediated by different intracellular molecular pathways.Some melanocortin 1 receptor (MC1R) gene variants play a direct role in the pathogenesis of cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma apart from their role in determining a cancer-prone pigmentory phenotype (fair skin, red hair, blue eyes) through their interactions with other genes regulating immuno-inflammatory responses, DNA repair or apoptosis.In this short review we focus on the aetiological role of UV in cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma of the skin, and on some associated biopathological events.

  7. Improving gene transfer in human renal carcinoma cells: Utilization of adenovirus vectors containing chimeric type 5 and type 35 fiber proteins

    PubMed Central

    ACHARYA, BISHNU; TERAO, SHUJI; SUZUKI, TORU; NAOE, MICHIO; HAMADA, KATSUYUKI; MIZUGUCHI, HIROYUKI; GOTOH, AKINOBU

    2010-01-01

    The transduction efficacy of adenovirus serotype 5 (Ad5) vector in human renal carcinoma cells is generally low due to the down-regulated expression of Coxsackie and adenovirus receptor (CAR) in target cells. By contrast, the infectivity of adenovirus serotype 35 vectors depends on the binding rate to CD46 receptor, independent of CAR. In this study, we examined whether an adenovirus vector containing chimeric type 5 and type 35 fiber proteins (Ad5/F35) increases transduction efficiency compared to Ad5 vector in human renal carcinoma cells in vitro. The expression of CAR was much lower in the human renal carcinoma cells than in control HEK293 cells. By contrast, the expression of CD46 was similar and perhaps at a higher level in the human renal carcinoma cells than in the HEK293 cells. The transduction efficacy of Ad5/F35 vector was dramatically higher compared to that of Ad5 in human renal carcinoma cells, and was correlated to the expression of CD46. Thus, Ad5/35 vector may be useful for the development of novel gene therapy approaches to renal cell carcinoma. PMID:22993573

  8. Antimetastatic effect of fluvastatin on breast and hepatocellular carcinoma cells in relation to SGK1 and NDRG1 genes.

    PubMed

    Salis, Osman; Okuyucu, Ali; Bedir, Abdulkerim; Gör, Ufuk; Kulcu, Canan; Yenen, Eser; Kılıç, Nermin

    2016-03-01

    Metastasis occurs due to migration of the cells from primary tumor toward other tissues by gaining invasive properties. Since metastatic invasion shows a strong resistance against conventional cancer treatments, the studies on this issue have been focused. Within this context, inhibition of migration and determination of the relationships at the gene level will contribute to treatment of metastatic cancer cases. We have aimed to demonstrate the impact of TGF-β1 and fluvastatin on human breast cancer (MCF-7) and human hepatocellular carcinoma (Hep3B) cell cultures via Real-Time Cell Analyzer (RTCA) and to test the expression levels of some genes (NDRG1, SGK1, TWIST1, AMPKA2) and to compare their gene expression levels according to RTCA results. Both of cell series were applied TGF-β1 and combinations of TGF-β1/fluvastatin. Primer and probes were synthesized using Universal Probe Library (UPL, Roche) software, and expression levels of genes were tested via qPCR using the device LightCycler 480 II (Roche). Consequently, fluvastatin dose-dependently inhibited migration induced by TGF-β1 in both groups. This inhibition was accompanied by low level of SGK1 messenger RNA (mRNA) and high levels of NDRG1 and AMPKA2 mRNA. Thus, we conclude that fluvastatin plays an important role in reducing resistance to chemotherapeutics and preventing metastasis.

  9. Gene-expression profiling reveals distinct expression patterns for Classic versus Variant Merkel cell phenotypes and new classifier genes to distinguish Merkel cell from small-cell lung carcinoma.

    PubMed

    Van Gele, Mireille; Boyle, Glen M; Cook, Anthony L; Vandesompele, Jo; Boonefaes, Tom; Rottiers, Pieter; Van Roy, Nadine; De Paepe, Anne; Parsons, Peter G; Leonard, J Helen; Speleman, Frank

    2004-04-08

    Merkel cell carcinoma (MCC) is a rare aggressive skin tumor which shares histopathological and genetic features with small-cell lung carcinoma (SCLC), both are of neuroendocrine origin. Comparable to SCLC, MCC cell lines are classified into two different biochemical subgroups designated as 'Classic' and 'Variant'. With the aim to identify typical gene-expression signatures associated with these phenotypically different MCC cell lines subgroups and to search for differentially expressed genes between MCC and SCLC, we used cDNA arrays to profile 10 MCC cell lines and four SCLC cell lines. Using significance analysis of microarrays, we defined a set of 76 differentially expressed genes that allowed unequivocal identification of Classic and Variant MCC subgroups. We assume that the differential expression levels of some of these genes reflect, analogous to SCLC, the different biological and clinical properties of Classic and Variant MCC phenotypes. Therefore, they may serve as useful prognostic markers and potential targets for the development of new therapeutic interventions specific for each subgroup. Moreover, our analysis identified 17 powerful classifier genes capable of discriminating MCC from SCLC. Real-time quantitative RT-PCR analysis of these genes on 26 additional MCC and SCLC samples confirmed their diagnostic classification potential, opening opportunities for new investigations into these aggressive cancers.

  10. Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: a meta-analysis and review.

    PubMed

    Kim, Bum Jun; Kim, Jung Han; Kim, Hyeong Su; Zang, Dae Young

    2017-01-17

    The von Hippel-Lindau (VHL) gene is often inactivated in sporadic renal cell carcinoma (RCC) by mutation or promoter hypermethylation. The prognostic or predictive value of VHL gene alteration is not well established. We conducted this meta-analysis to evaluate the association between the VHL alteration and clinical outcomes in patients with RCC. We searched PUBMED, MEDLINE and EMBASE for articles including following terms in their titles, abstracts, or keywords: 'kidney or renal', 'carcinoma or cancer or neoplasm or malignancy', 'von Hippel-Lindau or VHL', 'alteration or mutation or methylation', and 'prognostic or predictive'. There were six studies fulfilling inclusion criteria and a total of 633 patients with clear cell RCC were included in the study: 244 patients who received anti-vascular endothelial growth factor (VEGF) therapy in the predictive value analysis and 419 in the prognostic value analysis. Out of 663 patients, 410 (61.8%) had VHL alteration. The meta-analysis showed no association between the VHL gene alteration and overall response rate (relative risk = 1.47 [95% CI, 0.81-2.67], P = 0.20) or progression free survival (hazard ratio = 1.02 [95% CI, 0.72-1.44], P = 0.91) in patients with RCC who received VEGF-targeted therapy. There was also no correlation between the VHL alteration and overall survival (HR = 0.80 [95% CI, 0.56-1.14], P = 0.21). In conclusion, this meta-analysis indicates that VHL gene alteration has no prognostic or predictive value in patients with clear cell RCC.

  11. Altered metabolic pathways in clear cell renal cell carcinoma: A meta-analysis and validation study focused on the deregulated genes and their associated networks.

    PubMed

    Zaravinos, Apostolos; Pieri, Myrtani; Mourmouras, Nikos; Anastasiadou, Natassa; Zouvani, Ioanna; Delakas, Dimitris; Deltas, Constantinos

    2014-01-01

    Clear cell renal cell carcinoma (ccRCC) is the predominant subtype of renal cell carcinoma (RCC). It is one of the most therapy-resistant carcinomas, responding very poorly or not at all to radiotherapy, hormonal therapy and chemotherapy. A more comprehensive understanding of the deregulated pathways in ccRCC can lead to the development of new therapies and prognostic markers. We performed a meta- analysis of 5 publicly available gene expression datasets and identified a list of co- deregulated genes, for which we performed extensive bioinformatic analysis coupled with experimental validation on the mRNA level. Gene ontology enrichment showed that many proteins are involved in response to hypoxia/oxygen levels and positive regulation of the VEGFR signaling pathway. KEGG analysis revealed that metabolic pathways are mostly altered in ccRCC. Similarly, Ingenuity Pathway Analysis showed that the antigen presentation, inositol metabolism, pentose phosphate, glycolysis/gluconeogenesis and fructose/mannose metabolism pathways are altered in the disease. Cellular growth, proliferation and carbohydrate metabolism, were among the top molecular and cellular functions of the co-deregulated genes. qRT-PCR validated the deregulated expression of several genes in Caki-2 and ACHN cell lines and in a cohort of ccRCC tissues. NNMT and NR3C1 increased expression was evident in ccRCC biopsies from patients using immunohistochemistry. ROC curves evaluated the diagnostic performance of the top deregulated genes in each dataset. We show that metabolic pathways are mostly deregulated in ccRCC and we highlight those being most responsible in its formation. We suggest that these genes are candidate predictive markers of the disease.

  12. Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups

    PubMed Central

    Maitra, Arindam; Biswas, Nidhan K.; Amin, Kishore; Kowtal, Pradnya; Kumar, Shantanu; Das, Subrata; Sarin, Rajiv; Majumder, Partha P.; Bagchi, I; Bairagya, B. B.; Basu, A.; Bhan, M. K.; Chaturvedi, P.; Das, D.; D'Cruz, A.; Dhar, R.; Dutta, D.; Ganguli, D.; Gera, P.; Gupta, T.; Mahapatra, S.; Mujawar, M. H. K.; Mukherjee, S.; Nair, S.; Nikam, S.; Nobre, M.; Patil, A.; Patra, S.; Rama-Gowtham, M.; Rao, T. S.; Roy, B.; Roychowdhury, B.; Sarkar, D.; Sarkar, S.; Sarkar-Roy, N.; Sutradhar, D.

    2013-01-01

    Gingivo-buccal oral squamous cell carcinoma (OSCC-GB), an anatomical and clinical subtype of head and neck squamous cell carcinoma (HNSCC), is prevalent in regions where tobacco-chewing is common. Exome sequencing (n=50) and recurrence testing (n=60) reveals that some significantly and frequently altered genes are specific to OSCC-GB (USP9X, MLL4, ARID2, UNC13C and TRPM3), while some others are shared with HNSCC (for example, TP53, FAT1, CASP8, HRAS and NOTCH1). We also find new genes with recurrent amplifications (for example, DROSHA, YAP1) or homozygous deletions (for example, DDX3X) in OSCC-GB. We find a high proportion of C>G transversions among tobacco users with high numbers of mutations. Many pathways that are enriched for genomic alterations are specific to OSCC-GB. Our work reveals molecular subtypes with distinctive mutational profiles such as patients predominantly harbouring mutations in CASP8 with or without mutations in FAT1. Mean duration of disease-free survival is significantly elevated in some molecular subgroups. These findings open new avenues for biological characterization and exploration of therapies. PMID:24292195

  13. Differential expression of store-operated calcium- and proliferation-related genes in hepatocellular carcinoma cells following TRPC1 ion channel silencing.

    PubMed

    Selli, Cigdem; Pearce, Dominic A; Sims, Andrew H; Tosun, Metiner

    2016-09-01

    TRPC1 and store-operated Ca(2+) (SOC) entry have previously been associated with hepatocellular carcinoma cell proliferation. The aim of the study was to determine genes and processes associated with TRPC1 down-regulation and the resulting increase of SOC entry and decrease in hepatocellular carcinoma cell proliferation. For this purpose, transcriptome analysis was performed to determine differentially expressed genes in TRPC1-silenced Huh7 cells. SOC entry- and proliferation-related genes correlated with TRPC1 down-regulation were also examined. Changes in SOC entry and cell proliferation were monitored in the TRPC1-silenced and parental cells and found to be significantly increased and decreased, respectively, in TRPC1-silenced cells. A total of 71 genes were significantly differentially expressed (40 up- and 31 down-regulated), including four mitogen-activated protein kinase (MAPK) signalling-associated genes. STIM1 levels were significantly up-regulated and negatively correlated with TRPC1 levels. In addition, expression of two cell cycle regulation genes, CDK11A/11B and URGCP, was observed to decrease, whereas ERBB3 and FGFR4, pro-survival genes, increased significantly in TRPC1-silenced cells. In conclusion, these results suggest reciprocal alterations in TRPC1 and STIM1 levels and a role for STIM1 in the regulation of SOC entry in TRPC1-silenced Huh7 cells. In addition to TRPC1, STIM1 may participate in Huh7 cell proliferation by regulating SOC entry. Alterations in MAPK signalling genes may be involved in diminished cell proliferation in TRPC1-silenced Huh7 cells. Similarly, changes in cell cycle regulating genes in TRPC1-silenced cells indicate possible cell cycle arrest along with compensatory up-regulation of ERBB3 growth factor receptor-amongst others-to maintain hepatocellular carcinoma cell proliferation.

  14. Subungual squamous cell carcinoma*

    PubMed Central

    Padilha, Carolina Barbosa de Sousa; Balassiano, Laila Klotz de Almeida; Pinto, Julyana Calegari; de Souza, Flávia Crespo Schueler; Kac, Bernard Kawa; Treu, Curt Mafra

    2016-01-01

    Although subungual squamous cell carcinoma is rare, it is the most common primary malignant neoplasms in this location. The higher incidence occurs in the fingernails, but involvement of the toenails is also possible. Subungual squamous cell carcinoma often looks like other more common benign lesions, such as fungal infection, onychomycosis, or viral wart. These factors, together with a general lack of awareness of this disease among physicians, often result in delayed diagnosis. Therefore, it is underdiagnosed, with few reports in the literature. The authors present a case of a man with a diagnosis of subungual squamous cell carcinoma in the hallux, without bone involvement, which was submitted to the appropriate surgical treatment. PMID:28099608

  15. Renal cell carcinoma.

    PubMed

    Hsieh, James J; Purdue, Mark P; Signoretti, Sabina; Swanton, Charles; Albiges, Laurence; Schmidinger, Manuela; Heng, Daniel Y; Larkin, James; Ficarra, Vincenzo

    2017-03-09

    Renal cell carcinoma (RCC) denotes cancer originated from the renal epithelium and accounts for >90% of cancers in the kidney. The disease encompasses >10 histological and molecular subtypes, of which clear cell RCC (ccRCC) is most common and accounts for most cancer-related deaths. Although somatic VHL mutations have been described for some time, more-recent cancer genomic studies have identified mutations in epigenetic regulatory genes and demonstrated marked intra-tumour heterogeneity, which could have prognostic, predictive and therapeutic relevance. Localized RCC can be successfully managed with surgery, whereas metastatic RCC is refractory to conventional chemotherapy. However, over the past decade, marked advances in the treatment of metastatic RCC have been made, with targeted agents including sorafenib, sunitinib, bevacizumab, pazopanib and axitinib, which inhibit vascular endothelial growth factor (VEGF) and its receptor (VEGFR), and everolimus and temsirolimus, which inhibit mechanistic target of rapamycin complex 1 (mTORC1), being approved. Since 2015, agents with additional targets aside from VEGFR have been approved, such as cabozantinib and lenvatinib; immunotherapies, such as nivolumab, have also been added to the armamentarium for metastatic RCC. Here, we provide an overview of the biology of RCC, with a focus on ccRCC, as well as updates to complement the current clinical guidelines and an outline of potential future directions for RCC research and therapy.

  16. Profiling Analysis of Histone Modifications and Gene Expression in Lewis Lung Carcinoma Murine Cells Resistant to Anti-VEGF Treatment

    PubMed Central

    Du, Yanhua; Chen, Kaiming; Liu, Zhenping; Li, Bing; Li, Jie; Tao, Fei; Gu, Hua; Jiang, Cizhong; Fang, Jianmin

    2016-01-01

    Tumor cells become resistant after long-term use of anti-VEGF (vascular endothelial growth factor) agents. Our previous study shows that treatment with a VEGF inhibitor (VEGF-Trap) facilitates to develop tumor resistance through regulating angiogenesis-related genes. However, the underlying molecular mechanisms remain elusive. Histone modifications as a key epigenetic factor play a critical role in regulation of gene expression. Here, we explore the potential epigenetic gene regulatory functions of key histone modifications during tumor resistance in a mouse Lewis lung carcinoma (LLC) cell line. We generated high resolution genome-wide maps of key histone modifications in sensitive tumor sample (LLC-NR) and resistant tumor sample (LLC-R) after VEGF-Trap treatment. Profiling analysis of histone modifications shows that histone modification levels are effectively predictive for gene expression. Composition of promoters classified by histone modification state is different between LLC-NR and LLC-R cell lines regardless of CpG content. Histone modification state change between LLC-NR and LLC-R cell lines shows different patterns in CpG-rich and CpG-poor promoters. As a consequence, genes with different level of CpG content whose gene expression level are altered are enriched in distinct functions. Notably, histone modification state change in promoters of angiogenesis-related genes consists with their expression alteration. Taken together, our findings suggest that treatment with anti-VEGF therapy results in extensive histone modification state change in promoters with multiple functions, particularly, biological processes related to angiogenesis, likely contributing to tumor resistance development. PMID:27362259

  17. Profiling Analysis of Histone Modifications and Gene Expression in Lewis Lung Carcinoma Murine Cells Resistant to Anti-VEGF Treatment.

    PubMed

    Li, Dong; Shi, Jiejun; Du, Yanhua; Chen, Kaiming; Liu, Zhenping; Li, Bing; Li, Jie; Tao, Fei; Gu, Hua; Jiang, Cizhong; Fang, Jianmin

    2016-01-01

    Tumor cells become resistant after long-term use of anti-VEGF (vascular endothelial growth factor) agents. Our previous study shows that treatment with a VEGF inhibitor (VEGF-Trap) facilitates to develop tumor resistance through regulating angiogenesis-related genes. However, the underlying molecular mechanisms remain elusive. Histone modifications as a key epigenetic factor play a critical role in regulation of gene expression. Here, we explore the potential epigenetic gene regulatory functions of key histone modifications during tumor resistance in a mouse Lewis lung carcinoma (LLC) cell line. We generated high resolution genome-wide maps of key histone modifications in sensitive tumor sample (LLC-NR) and resistant tumor sample (LLC-R) after VEGF-Trap treatment. Profiling analysis of histone modifications shows that histone modification levels are effectively predictive for gene expression. Composition of promoters classified by histone modification state is different between LLC-NR and LLC-R cell lines regardless of CpG content. Histone modification state change between LLC-NR and LLC-R cell lines shows different patterns in CpG-rich and CpG-poor promoters. As a consequence, genes with different level of CpG content whose gene expression level are altered are enriched in distinct functions. Notably, histone modification state change in promoters of angiogenesis-related genes consists with their expression alteration. Taken together, our findings suggest that treatment with anti-VEGF therapy results in extensive histone modification state change in promoters with multiple functions, particularly, biological processes related to angiogenesis, likely contributing to tumor resistance development.

  18. [Imaging renal cell carcinoma].

    PubMed

    Bazan, F; Busto, M

    2014-01-01

    Renal cell carcinoma is the eighth most common malignancy in adults and the most common malignancy in the kidney. It is thus a very common disease for radiologists. This review aims to provide a general overview of the imaging techniques used to diagnose, characterize, and help plan the treatment of renal cell carcinoma as well as to review basic aspects related to staging, imaging-guided percutaneous treatment, and follow-up in the most common clinical scenarios. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  19. Possible prediction of the response of esophageal squamous cell carcinoma to neoadjuvant chemotherapy based on gene expression profiling.

    PubMed

    Shen, Lu-Yan; Wang, Hui; Dong, Bin; Yan, Wan-Pu; Lin, Yao; Shi, Qi; Chen, Ke-Neng

    2016-01-26

    Heterogeneous efficacy of neoadjuvant chemotherapy has led to controversies that have limited its application in clinical practice. Thus, we aimed to identify potential biomarkers predicting esophageal squamous cell carcinoma (ESCC) chemo-responsiveness by gene expression profiling. CCK8 assay was used to evaluate the growth inhibitory effect of different concentrations of cisplatin and paclitaxel on the ESCC cell lines EC109, KYSE450, KYSE410, KYSE510, and KYSE150 to differentiate between chemosensitive and chemoresistant cell lines. Gene expression profiling and Real-time PCR were applied to analyze and validate the gene expression differences between chemosensitive and chemoresistant cell lines. IHC was conducted to examine the expression of selected target markers MUC4, MUC13, and MUC20 in 186 ESCC resection samples and the relationships between their expression and tumor regression grade was analyzed. Moreover, RNAi was conducted to instantly block the expression of MUC4, MUC13, and MUC20 to observe their influences on chemo-responsiveness. EC109 was found to be relatively sensitive to both cisplatin and paclitaxel, while KYSE410 was relatively resistant to cisplatin, KYSE510 was relatively resistant to paclitaxel. Gene expression profiling analysis showed that 2018 genes were differentially expressed in sensitive cell line compared to resistant cell lines. The expression patterns of MUC4, MUC13, MUC20 were validated. Low expression of MUC4 and MUC20 in resection samples was significantly correlated with better TRG. Blockage of MUC20 and MUC13 decreased the drug-resistance capacity and chemosensitivity, respectively. MUC4 and MUC20 were identified as potential biomarkers for predicting the efficacy of neoadjuvant chemotherapy in ESCC patients.

  20. Deletion and methylation of the tumour suppressor gene p16/CDKN2 in primary head and neck squamous cell carcinoma.

    PubMed Central

    González, M V; Pello, M F; López-Larrea, C; Suárez, C; Menéndez, M J; Coto, E

    1997-01-01

    AIMS: To study the homozygous deletion and methylation status of the 5' CpG island of the p16 and p15 genes (9p21) in a set of primary advanced head and neck squamous cell carcinomas (SCC) and to test whether inactivation of these genes by these mechanisms contributes to head and neck SCC development. METHODS: DNA was extracted from fresh tumours. Homozygous deletion was determined by the polymerase chain reaction (PCR) followed by hybridisation with the corresponding probe, radioactively labelled by the random priming method. Methylation status of the CpG island of the 5' region of these genes was assessed by digestion with the appropriate restriction enzymes followed by PCR and subsequent hybridisation with the corresponding probe. The presence of point mutations was determined by PCR-SSCP (single strand conformation polymorphism). RESULTS: The p16 and p15 genes were homozygously deleted in 20% and 10% of the tumours, respectively. No point mutations were found at p16 and p15. The 5' CpG island at the p16 gene was methylated in 20% of the cases. CONCLUSIONS: The tumour suppressor gene p16 is inactivated through homozygous deletion or methylation in a significant proportion of cases of head and neck SCC. Images PMID:9378820

  1. Ultra-deep targeted sequencing of advanced oral squamous cell carcinoma identifies a mutation-based prognostic gene signature

    PubMed Central

    Huang, Po-Jung; Huang, Yi; Hsu, An; Tang, Petrus; Chang, Yu-Sun; Chen, Hua-Chien; Yen, Tzu-Chen

    2015-01-01

    Background Patients with advanced oral squamous cell carcinoma (OSCC) have heterogeneous outcomes that limit the implementation of tailored treatment options. Genetic markers for improved prognostic stratification are eagerly awaited. Methods Herein, next-generation sequencing (NGS) was performed in 345 formalin-fixed paraffin-embedded (FFPE) samples obtained from advanced OSCC patients. Genetic mutations on the hotspot regions of 45 cancer-related genes were detected using an ultra-deep (>1000×) sequencing approach. Kaplan-Meier plots and Cox regression analyses were used to investigate the associations between the mutation status and disease-free survival (DFS). Results We identified 1269 non-synonymous mutations in 276 OSCC samples. TP53, PIK3CA, CDKN2A, HRAS and BRAF were the most frequently mutated genes. Mutations in 14 genes were found to predict DFS. A mutation-based signature affecting ten genes (HRAS, BRAF, FGFR3, SMAD4, KIT, PTEN, NOTCH1, AKT1, CTNNB1, and PTPN11) was devised to predict DFS. Two different resampling methods were used to validate the prognostic value of the identified gene signature. Multivariate analysis demonstrated that presence of a mutated gene signature was an independent predictor of poorer DFS (P = 0.005). Conclusions Genetic variants identified by NGS technology in FFPE samples are clinically useful to predict prognosis in advanced OSCC patients. PMID:25980437

  2. Further localization of the gene for nevoid basal cell carcinoma syndrome (NBCCS) in 15 Australasian families: Linkage and loss of heterozygosity

    SciTech Connect

    Chenevix-Trench, G.; Wicking, C.; Berkman, J.; Sharpe, H.; Hockey, A.; Haan, E.; Oley, C.; Ravine, D.; Turner, A.; Searle, J.

    1993-09-01

    Nevoid basal cell carcinoma syndrome (NBCCS; basal cell nevus syndrome or Gorlin syndrome) is a cancer-predisposition syndrome characterized by multiple basal cell carcinomas (BCCs) and diverse developmental defects. The gene for NBCCS has been mapped to 9q23.1-q31 in North Americal and European families. In addition, loss of heterozygosity (LOH) for genetic markers in this region has been detected in sporadic BCCs, indicating that the NBCCs gene is probably a tumor-suppressor gene. In this study the authors have determined that the NBCCS gene is also linked to this region in Australasian pedigrees and that there is no significant evidence of heterogeneity. They have defined the localization of the gene by multipoint and haplotype analysis of 15 families, using four microsatellite markers. LOH at these loci was detected in 50% of sporadic BCCs, a rate that is significantly higher than that in other skin lesions used as controls. 21 refs., 3 figs., 2 tabs.

  3. Altered gene expression in squamous cell carcinoma arising from congenital unilateral linear porokeratosis.

    PubMed

    Scola, N; Skrygan, M; Wieland, U; Kreuter, A; Gambichler, T

    2012-10-01

    Congenital unilateral linear porokeratosis (CULP) is a rare disorder of keratinization that shares clinical and molecular similarities with psoriasis. It also has an increased risk for malignant transformation to cutaneous squamous cell carcinoma (SCC). We investigated the expression of psoriasin, human beta-defensin-2, cathelicidin antimicrobial peptide/LL-37, e-cadherin, involucrin, p16(INK4a) , p53, cyclin D1 and microchromosome maintenance protein 7 in healthy skin and in lesions of psoriasis, CULP and SCC from the same patient. p16(INK4a) was overexpressed in CULP but not in the subsequent SCC. Psoriasin was overexpressed in psoriasis, CULP and SCC compared with healthy skin. Speculatively, p16(INK4a) and psoriasin could be involved in the pathogenesis of CULP. Moreover, psoriasin may play a role in the malignant transformation of CULP to SCC. © The Author(s). CED © 2012 British Association of Dermatologists.

  4. Identification of Mutations in the PYRIN-Containing NLR Genes (NLRP) in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Lei, Yu; Lui, Vivian W. Y.; Grandis, Jennifer R.; Egloff, Ann Marie

    2014-01-01

    Head and Neck Squamous Cell Carcinoma (HNSCC) encompasses malignancies that arise in the mucosa of the upper aerodigestive tract. Recent high throughput DNA sequencing revealed HNSCC genes mutations that contribute to several cancer cell characteristics, including dysregulation of cell proliferation and death, intracellular proinflammatory signaling, and autophagy. The PYRIN-domain containing NLR (Nucleotide-binding domain, Leucine rich Repeats – containing) proteins have recently emerged as pivotal modulators of cell death, autophagy, inflammation, and metabolism. Their close physiologic association with cancer development prompted us to determine whether mutations within the NLRP (PYRIN-containing NLR) gene family were associated with HNSCC genome instability and their clinicopathologic correlations. Catastrophic mutational events underlie cancer cell genome instability and mark a point-of-no-return in cancer cell development and generation of heterogeneity. The mutation profiles of 62 patients with primary conventional type HNSCC excluding other histologic variants were analyzed. Associations were tested using Fisher's Exact test or Mann-Whitney U test. Mutations in NLRP were associated with elevated genome instability as characterized by higher mutation rates. Clinically, NLRP mutations were more frequently found in HNSCC arising in the floor of mouth (50.0%) in comparison with HNSCC at other head and neck locations (14.8%). These mutations were clustered at the leucine rich repeats region of NLRP proteins, and affected NLRP genes were mostly localized at chromosomes 11p15.4 and 19q13.42-19q13.43. Twenty novel NLRP mutations were identified in HNSCC, and mutations in this group of genes were correlated with increased cancer cell genome mutation rates, and such features could be a potential molecular biomarker of HNSCC genome instability. PMID:24465623

  5. Aberrant Cosmc genes result in Tn antigen expression in human colorectal carcinoma cell line HT-29

    PubMed Central

    Yu, Xiaofeng; Du, Zhenzhen; Sun, Xuhong; Shi, Chuanqin; Zhang, Huaixiang; Hu, Tao

    2015-01-01

    The Tn antigen, which arises from mutation in the Cosmc gene is one of the most common tumor associated carbohydrate antigens. Cosmc resides in X24 encoded by a single gene and functions as a specific molecular chaperone for T-synthase. While the Tn antigen cannot be detected in normal cells, Cosmc mutations inactivate T-synthase and consequently result in Tn antigen expression within certain cancers. In addition to this Cosmc mutation-induced expression, the Tn antigen is also expressed in such cell lines as Jurkat T, LSC and LS174T. Whether the Cosmc mutation is present in the colon cancer cell line HT-29 is still unclear. Here, we isolate HT-29-Tn+ cells from HT-29 cells derived from a female colon cancer patient. These HT-29-Tn+ cells show a loss of the Cosmc gene coding sequence (CDS) leading to an absence of T-synthase activity and Tn antigen expression. Additionally, almost no methylation of Cosmc CpG islands was detected in HT-29-Tn+ as well as in HT-29-Tn- and Tn- tumor cells from male patients. In contrast, the methylation frequency of CpG island of Cosmc in normal female cells was ~50%. Only one active allele of Cosmc existed in HT-29-Tn+ and HT-29-Tn- cells as based upon detection of SNP sites. These results indicate that Tn antigens expression and T-synthase inactivity in HT-29-Tn+ cells can be related to the absence of CDS in Cosmc active alleles, while an inactive allele deletion of Cosmc in HT-29 cells has no influence on Cosmc function. PMID:26045765

  6. Epidemiology of basal cell carcinoma.

    PubMed

    Chinem, Valquiria Pessoa; Miot, Hélio Amante

    2011-01-01

    Basal cell carcinoma is the most common malignant neoplasm in humans and its incidence has increased over the last decades. Its high frequency significantly burdens the health system, making the disease a public health issue. Despite the low mortality rates and the rare occurrence of metastases, the tumor may be locally invasive and relapse after treatment, causing significant morbidity. Exposure to ultraviolet radiation is the main environmental risk factor associated with its cause. However, other elements of risk are described, such as light skin phototypes, advanced age, family history of skin carcinoma, light eyes and blond hair, freckles in childhood and immunosuppression. Behavioral aspects such as occupational sun exposure, rural labor and sunburns at a young age also play a role. Between 30% and 75% of the sporadic cases are associated with patched hedgehog gene mutation, but other genetic changes are also described. The tumor is commonly found in concomitance with skin lesions related to chronic sun exposure, such as actinic keratoses, solar lentigines and facial telangiectasia. The prevention of basal cell carcinoma is based on the knowledge of risk factors, early diagnosis and treatment, as well as on the adoption of specific measures, particularly in susceptible populations. The authors present a review of the epidemiology of basal cell carcinoma.

  7. Knockdown of the differentially expressed gene TNFRSF12A inhibits hepatocellular carcinoma cell proliferation and migration in vitro

    PubMed Central

    Wang, Tao; Ma, Sicong; Qi, Xingxing; Tang, Xiaoyin; Cui, Dan; Wang, Zhi; Chi, Jiachang; Li, Ping; Zhai, Bo

    2017-01-01

    Human hepatocellular carcinoma (HCC) has been reported to be highly insensitive to conventional chemotherapy. In the current study, the Agilent Whole Human Genome Oligo Microarray (4×44 K) was used in order to identify the differentially expressed genes between HCC and adjacent tissues, and the top 22 differentially expressed genes were confirmed through reverse transcription-quantitative polymerase chain reaction. Among the identified differences in gene expression, expression of tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) was markedly higher in HCC tissue than in adjacent tissue. Previous studies have suggested that TNFRSF12A may serve a role in tumor growth and metastasis, thus in the current study, TNFRSF12A was knocked down in the SMMC7721 cell line through siRNA. This demonstrated that cells exhibited reduced reproductive and metastatic capacity ex vivo. Thus, the results of the current study suggest that TNFRSF12A may be a candidate therapeutic target for cancer including HCC, and additional genes that exhibited significantly different expression from normal adjacent tissues require further study. PMID:28138696

  8. Differences in the expression of genes between normal tissue and squamous cell carcinomas of head and neck using cancer-related gene cDNA microarray.

    PubMed

    Kainuma, Kazuyuki; Katsuno, Satoshi; Hashimoto, Shigenari; Oguchi, Tomohiro; Suzuki, Nobuyoshi; Asamura, Kenji; Usami, Shin-ichi

    2006-09-01

    This study clearly showed the molecular characteristics of head and neck squamous cell carcinoma (HNSCC) on the basis of gene expression patterns. cDNA microarray has recently been shown to have the ability to represent the expression patterns of large numbers of genes from a small amount of tissue, potentially enabling definition of groups of patients with similar biological behavior of cancer. Although gene expression profiling using this technique has proven helpful for predicting the prognosis in various cancers, little is known regarding HNSCC. The aim of this study was to investigate the differences in the expression of various genes between normal tissue and cancers of patients with HNSCC by cDNA microarray. We extracted mRNA from 17 HNSCC patients and used cDNA microarray analysis to investigate the gene expression patterns. The present study was not designed to perform an inclusive search for genes but rather to focus on cancer-related genes. Seven independent genes were found to be up-regulated in cancer tissues: matrix metalloproteinase-1, -3, and -10, interleukin-8, cadherin 3, hexabrachion, and interferon gamma-inducible protein 10. Hyaluronic acid-binding protein 2, keratin 4, and keratin 13 were categorized as down-regulated. The hierarchical clustering and dendrogram for 17 cancer samples and 425 genes could be grouped into three clusters.

  9. Effects of curcumin on global gene expression profiles in the highly invasive human breast carcinoma cell line MDA-MB 231: A gene network-based microarray analysis

    PubMed Central

    CINE, NACI; LIMTRAKUL, PORNNGARM; SUNNETCI, DENIZ; NAGY, BALINT; SAVLI, HAKAN

    2013-01-01

    Curcumin, or diferuloylmethane, is a major chemical component of turmeric (Curcuma longa Linn.) that has been consumed as a dietary spice through the ages. This yellow-colored polyphenol has a notably wide range of beneficial properties, including anti-inflammatory, antioxidant, antitumoral, anti-invasive and anti-metastatic activity. In the present study, microarray gene expression analysis was applied to identify the curcumin-regulated genes in a highly invasive human breast carcinoma cell line (MDA-MB 231). Cells were cultured with curcumin (20 μM) for 24 h; total RNA was isolated and hybridized to Whole Human Genome Microarray slides. Gene set enrichment analyses on our whole genome expression data revealed downregulation of the EGF pathway elements following curcumin treatment. Furthermore, gene network analysis identified a significantly relevant network among the differentially expressed genes, centered on the EGR1 and FOS genes. The members of these pathways and networks play an essential role in the regulation of cancer cell growth and development; the majority exhibited decreased expression levels following treatment with curcumin. These observations suggest that curcumin is an excellent candidate for the prevention and treatment of breast cancer. PMID:23251236

  10. Expressions of cytochrome P450, UDP-glucuronosyltranferase, and transporter genes in monolayer carcinoma cells change in subcutaneous tumors grown as xenografts in immunodeficient nude mice.

    PubMed

    Sugawara, Michiko; Okamoto, Kiyoshi; Kadowaki, Tadashi; Kusano, Kazutomi; Fukamizu, Akiyoshi; Yoshimura, Tsutomu

    2010-03-01

    Human tumors grown as xenografts in immunodeficient nude mice are widely used to investigate the pharmacological activities of anticancer drugs. Drug-metabolizing enzymes and transporters are expressed in tumor cell lines and changes in drug metabolism and pharmacokinetics (DMPK)-related gene expression after inoculation of the tumor cell may affect the pharmacological activity of the drug under consideration. The aims of the current study were to characterize DMPK-related gene expression profiles and responses to typical cytochrome P450 inducers in monolayer carcinoma cells grown in tissue culture versus those inoculated into a xenograft model. We used the human hepatocellular carcinoma cell line PLC/PRF/5 for this study and comprehensively assessed changes in DMPK-related gene expression by reverse transcription-polymerase chain reaction quantitation. CYP3A4 and UDP-glucuronosyltransferase 1A protein amounts were also analyzed by immunoprecipitation followed by immunoblotting. We found that the expression of many DMPK-related genes was elevated in the inoculated tumor compared with the monolayer carcinoma cells, indicating changes in their gene regulation pathways, presumably due to modulation of the nuclear receptor family of transcription factors. In addition, monolayer carcinoma versus inoculated tumor cells showed different responses to rifampicin, but similar responses to dexamethasone or 3-methylcholanthrene. These results suggest that inoculation of tumor cells results in the activation of drug metabolism and transport function, leading to changes in the responses to pregnane X receptor ligands and consequent discrepancies in the pharmacological activities between in vitro monolayer carcinoma cells and in vivo xenograft models.

  11. Distinct von Hippel-Lindau gene and hypoxia-regulated alterations in gene and protein expression patterns of renal cell carcinoma and their effects on metabolism.

    PubMed

    Leisz, Sandra; Schulz, Kristin; Erb, Susanne; Oefner, Peter; Dettmer, Katja; Mougiakakos, Dimitrios; Wang, Ena; Marincola, Francesco M; Stehle, Franziska; Seliger, Barbara

    2015-05-10

    During the last decade the knowledge about the molecular mechanisms of the cellular adaption to hypoxia and the function of the "von Hippel Lindau" (VHL) protein in renal cell carcinoma (RCC) has increased, but there exists little information about the overlap and differences in gene/protein expression of both processes. Therefore the aim of this study was to dissect VHL- and hypoxia-regulated alterations in the metabolism of human RCC using ome-based strategies. The effect of the VHL- and hypoxia-regulated altered gene/protein expression pattern on the cellular metabolism was analyzed by determination of glucose uptake, lactate secretion, extracellular pH, lactate dehydrogenase activity, amino acid content and ATP levels. By employing VHL-/VHL(+) RCC cells cultured under normoxic and hypoxic conditions, VHL-dependent, HIF-dependent as well as VHL-/HIF-independent alterations in the gene and protein expression patterns were identified and further validated in other RCC cell lines. The genes/proteins differentially expressed under these distinct conditions were mainly involved in the cellular metabolism, which was accompanied by an altered metabolism as well as changes in the abundance of amino acids in VHL-deficient cells. In conclusion, the study reveals similarities, but also differences in the genes and proteins controlled by VHL functionality and hypoxia thereby demonstrating differences in the metabolic switch of RCC under these conditions.

  12. UHRF1 gene silencing inhibits cell proliferation and promotes cell apoptosis in human cervical squamous cell carcinoma CaSki cells.

    PubMed

    Ge, Ting-Ting; Yang, Meng; Chen, Zhuo; Lou, Ge; Gu, Tao

    2016-07-19

    Up-regulation of UHRF1 has been observed in a variety of cancers and appears to serve as an independent prognostic factor. To explore the effect of UHRF1 gene silencing on apoptosis and proliferation of cervical squamous cell carcinoma (CSCC) CaSki cells. This study consisted of 47 CSCC tissues and 40 normal cervical tissues. The CaSki cells were assigned into Blank group (CaSki cells not transfected), NC group (CaSki cells transfected with control siRNA), and UHRF1 Silence group (CaSki cells transfected with UHRF1 siRNA). qRT-PCR and Western blot were used for UHRF1 mRNA and protein expressions, CKK-8 assay for cell proliferation, flow cytometry for cell cycle and apoptosis, Western blot for expressions of apoptosis-related proteins. Nude mice tumor transplant experiment was performed. UHRF1 exhibited higher mRNA and protein expressions in the CSCC tissues than normal cervical tissues (both P < 0.05). The cell proliferation ability in the UHRF1 Silence group was reduced when compared with the Blank group and the NC group, the cells at S-G2M stage in the UHRF1 Silence group were dropped when compared with the Blank group and the NC group (P < 0.05), while the cells at G0/G1 stage were elevated (P < 0.05), and the proportion of Annexin V positive cells in the UHRF1 Silence group was increased in comparison with the Blank group and the NC group (P < 0.05). Nude mice tumor transplant experiment indicated that the growth rate and weight of tumor in the Blank group and NC group was higher and heavier than the UHRF1 Silence group (P < 0.05). UHRF1 showed a high expression in CSCC and UHRF1 silencing can reduce proliferation and enhance apoptosis of the CaSki cells.

  13. Prevalence of von Hippel-Lindau gene mutations in sporadic renal cell carcinoma: results from the Netherlands cohort study

    PubMed Central

    van Houwelingen, Kjeld P; van Dijk, Boukje AC; Hulsbergen-van de Kaa, Christina A; Schouten, Leo J; Gorissen, Hanneke JM; Schalken, Jack A; van den Brandt, Piet A; Oosterwijk, Egbert

    2005-01-01

    Background Biallelic von Hippel-Lindau (VHL) gene defects, a rate-limiting event in the carcinogenesis, occur in approximately 75% of sporadic clear-cell Renal Cell Carcinoma (RCC). We studied the VHL mutation status in a large population-based case group. Methods Cases were identified within the Netherlands cohort study on diet and cancer, which includes 120,852 men and women. After 11.3 years of follow-up, 337 incident cases with histologically confirmed epithelial cancers were identified. DNA was isolated from paraffin material collected from 51 pathology laboratories and revised by one pathologist, leaving material from 235 cases. VHL mutational status was assessed by SSCP followed by direct sequencing, after testing SSCP as a screening tool in a subsample. Results The number of mutations was significantly higher for clear-cell RCC compared to other histological types. We observed 131 mutations in 114 out of 187 patients (61%) with clear-cell RCC. The majority of mutations were truncating mutations (47%). The mean tumor size was 72.7 mm for mutated tumors compared to 65.3 mm for wildtype tumors (p = 0.06). No statistically significant differences were observed for nuclear grade, TNM distribution or stage. In other histological types, we observed 8 mutations in 7 out of 48 patients (15%), 1 mutation in 1 of 6 oncocytoma, 3 mutations in 2 of 7 chromophobe RCC, 2 mutations in 2 of 30 papillary RCC, no mutations in 1 collecting duct carcinoma and 2 mutations in 2 of 4 unclassified RCC. Conclusion VHL mutations were detected in 61% of sporadic clear-cell RCC. VHL mutated and wildtype clear-cell RCC did not differ with respect to most parameters. PMID:15932632

  14. Cytomorphology of non-small cell lung carcinoma with anaplastic lymphoma kinase gene rearrangement.

    PubMed

    Toll, Adam D; Maleki, Zahra

    2015-01-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase demonstrating activating mutations in several malignancies including a subset (1-5%) of non-small cell lung carcinomas (NSCLC). Prior work examining, the histologic features of these tumors found a spectrum of findings, notably a solid/acinar pattern, as well as a mucinous cribriform pattern. We present the first study to date describing the cytomorphology of NSCLC harboring ALK rearrangements. A retrospective database search was conducted to identify cytologic specimens of NSCLC demonstrating ALK rearrangement. Cytogenetic analysis was performed with fluorescence in situ hybridization. A total of 12 patients were identified, 10 with available material. Cellular morphology and smear background was evaluated in the study group, as well as control cases lacking ALK rearrangement. A total of 25 specimens from 10 patients were obtained. Five patients never smoked, and four patients had a remote smoking history. ALK rearrangements were identified in cells with unique cytologic characteristics. All cases demonstrated moderate to poor differentiation with a predominance of single cells showing anisonucleosis and frequent intracytoplasmic neutrophils. The control cases showed cells with smaller, less pleomorphic nuclei, and smaller nucleoli with more clusters/tissue fragments. Several unique cytomorphologic features were consistently identified in the study population relative to the control population and include a prominence of single, markedly enlarged tumor cells with plasmacytoid features and anisonucleosis, as well as intracytoplasmic neutrophils. Larger studies are warranted to confirm our preliminary findings, as these features may help establish a more cost-effective means to select patients being tested for ALK mutational analysis. © 2014 Wiley Periodicals, Inc.

  15. Hepatocellular Carcinoma Cells Carrying a Multimodality Reporter Gene for Fluorescence, Bioluminescence, and Magnetic Resonance Imaging In Vitro and In Vivo.

    PubMed

    Qin, Xiaoxiao; Hu, Xiaojun; Wu, Chun; Cai, Mingyue; Li, Zhengran; Zhang, Lina; Lin, Liteng; Huang, Wensou; Zhu, Kangshun

    2016-11-01

    The study aimed to evaluate the feasibility of imaging or tracking hepatocellular carcinoma cells by modifying these cells to carry a multimodality reporter gene, enabling fluorescence, bioluminescence, and magnetic resonance imaging (MRI) in vitro and in vivo. HepG2 cells were labeled with the enhanced green fluorescent protein (EGFP)/luciferase2/ferritin-the multimodality reporter gene (labeled HepG2 cells). The labeled and unlabeled HepG2 cells were cultured in vitro and then injected subcutaneously into mice as a hepatoma model in vivo. The expressions of EGFP, luciferase2, and ferritin in HepG2 cell suspensions and hepatoma model were investigated using fluorescence, bioluminescence, and MRI. Individual HepG2 cells expressing EGFP were identified under blue laser excitation. The linear coefficient between the optical signal intensity of luciferase2 and the number of labeled cells was 0.993. MRI was used to distinguish the T2* signal of 2 × 10(7) cells/mL between the labeled (6.67 ± 1.88 ms) and unlabeled cells (10.66 ± 2.22 ms) (P = 0.034). In vivo, individual HepG2 cells expressing EGFP in frozen sections were observed. Labeled cells expressing luciferase2 have been detected since the second day after injection, and the bioluminescence increased with the tumor size. The T2* signal was significantly different between the labeled (6.04 ± 1.60 ms) and unlabeled cells (17.06 ± 2.17 ms) (P <0.001). A multimodality reporter gene consisting of EGFP, luciferase2, and ferritin was successfully integrated into the HepG2 cell genome via a lentiviral vector and was highly expressed in the daughter cells. These cells could be detected by fluorescence, bioluminescence, and MRI in vitro and in vivo. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  16. Evaluation of EGFR, KRAS and BRAF gene mutations in renal cell carcinoma

    PubMed Central

    Sen, Haluk; Bulut, Ersan; Cengiz, Beyhan; Karakok, Metin; Erturhan, Sakip; Seckiner, Ilker

    2014-01-01

    A subset of renal cell carcinoma (RCC) patients has been shown to respond to anti-EGFR therapy. As KRAS and BRAF mutations are associated with poor response to anti-EGFR therapy in some cancers, it has been suggested that screening for KRAS and BRAF mutations in RCC may be a promising strategy to identify patients who might respond to EGFR-targeted therapy. The aim of this study was to investigate the mutation status of EGFR, KRAS and BRAF in RCC patients. Renal tumors and normal renal samples from forty-eight patients who underwent radical or partial nephrectomy for kidney cancer were used in this study. Histological classification of the tumors was performed according to International Union against Cancer (UICC) / American Joint Committee on Cancer (AJCC) classification. Seventeen patients (48%) had clear-cell RCC, 7 (20%) had chromophobe RCC, and 11 patients (32%) had papillary RCC. DNA isolated from the samples was subjected to melting curve mutation analysis for EGFR, BRAF and KRAS using ABI-3130 DNA sequencer. DNA sequencing analysis of RCC samples, when compared with morphologically normal matched regions, did not show any exon mutations. Our results do not support the notion that EGFR, KRAS and BRAF might be mutated in RCC.

  17. An oncolytic adenovirus that expresses the HAb18 and interleukin 24 genes exhibits enhanced antitumor activity in hepatocellular carcinoma cells

    PubMed Central

    Yuan, Sujing; Fang, Xianlong; Xu, Yanni; Ni, Aimin; Liu, Xin-Yuan; Chu, Liang

    2016-01-01

    Hepatocellular carcinoma (HCC) is characterized by alterations in multiple genes. High expression of CD147 on the surface of HCC cells promotes proliferation. The monoclonal antibody HAb18 recognizes CD147. We constructed an oncolytic adenoviral vector to express HAb18 (ZD55-HAb18) in HCC cells. Interleukin 24 (IL24) was co-expressed through the use of an F2A linker. ZD55-HAb18-IL24 decreased HCC cell viability to a greater degree than either ZD55-HAb18 or ZD55-IL24 alone. ZD55-HAb18-IL24 also induced apoptosis and autophagy in PLC/PRF/5 HCC cells. Intratumoral injection of ZD55-HAb18-IL24 repressed tumor growth in a PLC/PRF/5 xenograft model. Our results suggest that antibody-antitumor gene conjugation elicited a stronger antitumor effect than the antibody alone, and that this strategy could broaden the applications of antibody-based therapies in HCC. PMID:27528029

  18. PTEN and p16 genes as epigenetic biomarkers in oral squamous cell carcinoma (OSCC): a study on south Indian population.

    PubMed

    Sushma, P S; Jamil, Kaiser; Kumar, P Uday; Satyanarayana, U; Ramakrishna, M; Triveni, B

    2016-06-01

    Phosphatase and tensin homolog (PTEN) and p16INK4a (p16) genes are tumor suppressor genes, associated with epigenetic alterations. PTEN and p16 promoter hypermethylation is a major epigenetic silencing mechanism leading to cancer. The cooperation between PTEN and p16 in pathogenesis of cancers suggest that their combination might be considered as potential molecular marker for specific subgroups of patients. Hence, the present study aimed to investigate whether PTEN and p16 promoter methylations were involved in oral squamous cell carcinoma (OSCC) in south Indian subjects. DNA methylation quantitative analyses of the two candidate tumor suppressor genes PTEN and p16 were performed by methylation-specific polymerase chain reaction (MSP). Fifty OSCC biopsy samples and their corresponding non-malignant portions as controls were studied comparatively. The methylation status was correlated with the clinical manifestations. Twelve out of 50 patients (24 %) were found to be methylated for PTEN gene, whereas methylation of the p16 gene occurred in 19 out of 50 cases (38 %). A statistically significant result was obtained (P = <0.0001 and 0.017) for both PTEN and p16 genes. PTEN and p16 promoter methylation may be the main mechanism leading to the low expression of PTEN and p16 genes indicating the progress of tumor development. Our data suggest that a low PTEN and p16 expression due to methylation may contribute to the cancer progression and could be useful for prognosis of OSCC. Therefore, analysis of promoter methylation in such genes may provide a biomarker valuable for early detection of oral cancer.

  19. Clear cell carcinoma of ovary and uterus.

    PubMed

    Glasspool, Rosalind M; McNeish, Iain A

    2013-12-01

    Clear cell carcinomas of the female genital tract are rare tumours with a fearsome reputation for having poor responses to conventional platinum-based chemotherapy and poor prognosis. However, it is now clear that early-stage ovarian clear cell carcinoma has an excellent prognosis and may not require any adjuvant therapy. In addition, radiotherapy may also have a key role to play in adjuvant management of clear cell tumours. Identification of patients who truly do not need adjuvant chemotherapy is important. The past 3 years has seen a significant improvement in our understanding of clear cell carcinoma biology-in particular, the role of mutations in the chromatin remodelling gene ARID1A as key drivers that are common to clear cell carcinomas of ovarian and endometrial origin. Moreover, gynaecological clear cell carcinomas appear to share many features with renal clear cell tumours, suggesting a common pathogenesis. This raises the possibility of clinical trials that include patients with clear cell tumours from different organs of origin. Dissecting the role of disordered chromatin organisation in clear cell carcinoma pathogenesis is a key priority. Finally, the role of endometriosis and the attendant chronic inflammation are recognised. The inflammatory cytokine interleukin-6 appears to play a key role in clear cell carcinoma biology and is an excellent potential therapeutic target.

  20. E2F-1 gene therapy induces apoptosis and increases chemosensitivity in human pancreatic carcinoma cells.

    PubMed

    Elliott, Mary Jane; Farmer, Michael R; Atienza, Cesar; Stilwell, Ariel; Dong, Yan Bin; Yang, Hai Liang; Wong, Sandra L; McMasters, Kelly M

    2002-01-01

    Pancreatic cancer is often resistant to conventional chemotherapy. In this study, we examined the role of adenovirus-mediated overexpression of E2F-1 in inducing apoptosis and increasing the sensitivity of pancreatic cancer cells to chemotherapeutic agents. MIA PaCa-2 pancreatic head exocrine adenocarcinoma cells (mutant p53) were treated by mock infection or adenoviruses expressing beta-galactosidase or E2F-1 (Ad-E2F-1) alone or in combination with sublethal concentrations of each chemotherapeutic drug. Cell growth and viability were assessed at selected time points. Apoptosis was evaluated by flow cytometry, characteristic changes in cell morphology and poly (ADP-ribose) polymerase (PARP) cleavage. Western blot analysis was used to examine the expression of E2F-1 and Bcl-2 family member proteins and PARP cleavage. Western blot analysis revealed marked overexpression of E2F-1 at a multiplicity of infection (MOI) of 20 and 70. By 3 days after infection, Ad-E2F-1 treatment at an MOI of 70 resulted in approximately a 20-fold reduction in cell growth and 60% reduction in cell viability as compared to mock-infected cells. Cell cycle analysis, PARP cleavage and changes in cell morphology supported apoptosis as the mechanism of cell death in response to E2F-1. In order to test the efficacy of treatment with a combination of gene therapy and chemotherapy, we utilized concentrations of Ad-E2F-1 which reduced viability to 50% in combination with each chemotherapeutic agent. Cotreatment of the cells with E2F-1 virus and roscovitine (ROS) or etoposide resulted in an additive effect on cell growth inhibition and induction of apoptosis. Interestingly, 5-fluorouracil did not cooperate with Ad-E2F-1 in the mediation of tumor death or inhibition of cell growth. Immunoblotting for Bcl-2 family members revealed no significant changes in the expression levels of Bcl-2, Bcl X(L), Bax or Bak following gene or 'chemogene' therapy with E2F-1. However, a Bax cleavage product was noted

  1. Gene expression profiling reveals biological pathways responsible for phenotypic heterogeneity between UK and Sri Lankan oral squamous cell carcinomas.

    PubMed

    Saeed, Anas A; Sims, Andrew H; Prime, Stephen S; Paterson, Ian; Murray, Paul G; Lopes, Victor R

    2015-03-01

    It is well recognized that oral squamous cell carcinoma (OSCC) cases from Asia that are associated with betel quid chewing are phenotypically distinct to those from Western countries that are predominantly caused by smoking/drinking, but the molecular basis of these differences are largely unknown. The aim of this study is to examine gene expression, related carcinogenic pathways and molecular processes that might be responsible for the phenotypic heterogeneity of OSCC between UK and Sri Lankan population groups. We have compared the gene expression profiles of OSCCs and normal oral mucosal tissues from both Sri Lankan and UK individuals using Affymetrix gene expression arrays. The generated data was interrogated using significance analysis of microarrays and Ingenuity Pathway Analysis (IPA). The gene expression profiles of UK and Sri Lankan OSCC are similar in many respects to other oral cancer expression profiles reported in the literature and were mainly similar to each other. However, genes involved in tumor invasion, metastasis and recurrence were more obviously associated with UK tumors as opposed to those from Sri Lanka. The development of OSCCs in both UK and Sri Lankan populations appears largely mediated by similar biological pathways despite the differences related to race, ethnicity, lifestyle, and/or exposure to environmental carcinogens. However, IPA revealed a highly activated "Cell-mediated Immune Response" in Sri Lankan normal and tumor samples relative to UK cohorts. It seems likely, therefore, that any future attempts to personalize treatment for OSCC patients will need to be different in Western and Asian countries to reflect differences in gene expression and the immune status of the patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. SOX2 expression is associated with FGFR fusion genes and predicts favorable outcome in lung squamous cell carcinomas.

    PubMed

    Zheng, Shanbo; Pan, Yunjian; Wang, Rui; Li, Yuan; Cheng, Chao; Shen, Xuxia; Li, Bin; Zheng, Difan; Sun, Yihua; Chen, Haiquan

    2015-01-01

    SOX2 is a gene that encodes for a transcription factor, which functions as an activator or suppressor of gene transcription. SOX2 amplification and overexpression have been found in various types of tumors and play important roles in cancer cells. The aim of the study was to evaluate SOX2 expression and amplification in lung squamous cell carcinomas (SCCs) and to determine the relationship with main clinicopathologic features, patient prognosis, and common driver mutations. SOX2 protein levels were measured by immunohistochemistry, while SOX2 copy numbers were measured by fluorescence in situ hybridization in resected samples from 162 Chinese lung SCC patients. All patients were also analyzed for mutations in EGFR, HER2, BRAF, PIK3CA, NFE2L2, and FGFR fusion genes. Clinical characteristics, including age, sex, smoking status, stage, relapse-free survival (RFS), and overall survival (OS), were collected. SOX2 overexpression and amplification were observed in 58.6% and 45.9% of lung SCCs. Lung SCC patients with SOX2 overexpression were significantly associated with absence of malignant tumor family history (P=0.021), FGFR fusion gene (P=0.046), longer RFS (P=0.041), and OS (P=0.025). No correlation was found between SOX2 gene amplification and main clinicopathologic features, patient prognosis, or common driver mutations. SOX2 overexpression and amplification are common in lung SCCs. SOX2 over-expression was associated with FGFR fusion genes and predicted favorable outcome in lung SCCs. The underlying relationship of SOX2 and FGFR still needs further investigation.

  3. Xp11.2 translocation renal cell carcinoma with NONO-TFE3 gene fusion: morphology, prognosis, and potential pitfall in detecting TFE3 gene rearrangement.

    PubMed

    Xia, Qiu-Yuan; Wang, Zhe; Chen, Ni; Gan, Hua-Lei; Teng, Xiao-Dong; Shi, Shan-Shan; Wang, Xuan; Wei, Xue; Ye, Sheng-Bing; Li, Rui; Ma, Heng-Hui; Lu, Zhen-Feng; Zhou, Xiao-Jun; Rao, Qiu

    2017-03-01

    Xp11 translocation renal cell carcinomas are characterized by several different translocations involving the TFE3 gene. Tumors with different specific gene fusions may have different clinicopathological manifestations. Fewer than 10 renal cell carcinoma cases with NONO-TFE3 have been described. Here we examined eight additional cases of this rare tumor using clinicopathological, immunohistochemical, and molecular analyses. The male-to-female ratio of our study cohort was 1:1, and the median age was 30 years. The most distinctive feature of the tumors was that they exhibited glandular/tubular or papillary architecture that was lined with small-to-medium cuboidal to high columnar cells with indistinct cell borders and an abundantly clear or flocculent eosinophilic cytoplasm. The nuclei were oriented toward the luminal surface and were round and uniform in shape, which resulted in the appearance of secretory endometrioid subnuclear vacuolization. The distinct glandular/tubular or papillary architecture was often accompanied by sheets of epithelial cells that presented a biphasic pattern. Immunohistochemically, all eight cases demonstrated moderate (2+) or strong (3+) positive staining for TFE3, CD10, RCC marker, and PAX-8. None of the tumors were immunoreactive for CK7, Cathepsin K, Melan-A, HMB45, Ksp-cadherin, Vimentin, CA9, 34βE12 or CD117. NONO-TFE3 fusion transcripts were identified in six cases by RT-PCR. All eight cases showed equivocal split signals with a distance of nearly 2 signal diameters and sometimes had false-negative results. Furthermore, we developed a fluorescence in situ hybridization (FISH) assay to serve as an adjunct diagnostic tool for the detection of the NONO-TFE3 fusion gene and used this method to detect the fusion gene in all eight cases. Long-term follow-up (range, 10-102 months) was available for 7 patients. All 7 patients were alive with no evidence of recurrent disease or disease progression after their initial resection. This report

  4. PROFILING GENE EXPRESSION IN HUMAN H295R ADRENOCORTICAL CARCINOMA CELLS AND RAT TESTES TO IDENTIFY PATHWAYS OF TOXICITY FOR CONAZOLE FUNGICIDES

    EPA Science Inventory

    Profiling Gene Expression in Human H295R Adrenocortical Carcinoma Cells and Rat Testes to Identify Pathways of Toxicity for Conazole Fungicides
    Ren1, H., Schmid1, J., Retief2, J., Turpaz2, Y.,Zhang3, X.,Jones3, P., Newsted3, J.,Giesy3, J., Wolf1, D.,Wood1, C., Bao1, W., Dix1, ...

  5. PROFILING GENE EXPRESSION IN HUMAN H295R ADRENOCORTICAL CARCINOMA CELLS AND RAT TESTES TO IDENTIFY PATHWAYS OF TOXICITY FOR CONAZOLE FUNGICIDES

    EPA Science Inventory

    Profiling Gene Expression in Human H295R Adrenocortical Carcinoma Cells and Rat Testes to Identify Pathways of Toxicity for Conazole Fungicides
    Ren1, H., Schmid1, J., Retief2, J., Turpaz2, Y.,Zhang3, X.,Jones3, P., Newsted3, J.,Giesy3, J., Wolf1, D.,Wood1, C., Bao1, W., Dix1, ...

  6. p16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma.

    PubMed

    Brown, Victoria L; Harwood, Catherine A; Crook, Tim; Cronin, James G; Kelsell, David P; Proby, Charlotte M

    2004-05-01

    The p16(INK4a) and p14(ARF) tumor suppressor genes (TSGs) are encoded within the CDKN2A locus on chromosome 9p21 and function as cell cycle regulatory proteins in the p53 and RB pathways. Inactivation of these genes by genetic and epigenetic changes has been described in some human cancers, but their importance in cutaneous squamous cell carcinoma (SCC) has not been established. Our detailed examination of 40 cutaneous SCC revealed loss of heterozygosity of 9p21 markers in 32.5% of cases. Mutational analysis confirmed five point mutations in four of 40 SCCs. These mutations changed the amino acid sequence of p16(INK4a) in four tumors and p14(ARF) in three tumors. Promoter methylation of p16(INK4a) and p14(ARF) was detected in 13 of 36 (36%) and 16 of 38 (42%) cases, respectively. Absent protein expression was confirmed by immunohistochemistry in 13 of 16 (82%) of the tumors with biallelic inactivating events. Overall, the frequency of 9p21 alterations was 76% and for both p16(INK4a) and p14(ARF), promoter methylation is the commonest mechanism of gene inactivation. Alterations at this locus were significantly more common in tumors from immunocompetent compared with immunosuppressed individuals. These data confirm the importance of inactivation of p16(INK4a) and p14(ARF) TSGs in the pathogenesis of cutaneous SCCs.

  7. Gene expression profiling of chromophobe renal cell carcinomas and renal oncocytomas by Affymetrix GeneChip using pooled and individual tumours.

    PubMed

    Yusenko, Maria V; Zubakov, Dmitry; Kovacs, Gyula

    2009-07-29

    Due to overlapping morphology, malignant chromophobe renal cell carcinomas (RCC) and benign renal oncocytomas (RO) may pose a diagnostic problem. In the present study, we have applied different algorithms to evaluate the data sets obtained by hybridisation of pooled and also individual samples of renal cell tumours (RCT) onto two different gene expression platforms. The two approaches revealed high similarities in the gene expression profiles of chromophobe RCCs and ROs but also some differences. After identifying the differentially expressed genes by statistic analyses, the candidate genes were further selected by a real time and normal RT-PCR and their products were analysed by immunohistochemistry. We have identified CD82 and S100A1 as valuable markers for chromophobe RCC as well as AQP6 for ROs. However, these genes are expressed at the protein level in other types of RCTs as well albeit at a low frequency and low intensity. As none of the selected genes marks exclusively one type of RCTs, for the differential diagnosis of chromophobe RCCs and ROs, a set of markers such as CD82, S100A1 and AQP6 as well as some others would be an option in routine histological laboratories.

  8. Gene expression profiling of chromophobe renal cell carcinomas and renal oncocytomas by Affymetrix GeneChip using pooled and individual tumours

    PubMed Central

    Yusenko, Maria V.; Zubakov, Dmitry; Kovacs, Gyula

    2009-01-01

    Due to overlapping morphology, malignant chromophobe renal cell carcinomas (RCC) and benign renal oncocytomas (RO) may pose a diagnostic problem. In the present study, we have applied different algorithms to evaluate the data sets obtained by hybridisation of pooled and also individual samples of renal cell tumours (RCT) onto two different gene expression platforms. The two approaches revealed high similarities in the gene expression profiles of chromophobe RCCs and ROs but also some differences. After identifying the differentially expressed genes by statistic analyses, the candidate genes were further selected by a real time and normal RT-PCR and their products were analysed by immunohistochemistry. We have identified CD82 and S100A1 as valuable markers for chromophobe RCC as well as AQP6 for ROs. However, these genes are expressed at the protein level in other types of RCTs as well albeit at a low frequency and low intensity. As none of the selected genes marks exclusively one type of RCTs, for the differential diagnosis of chromophobe RCCs and ROs, a set of markers such as CD82, S100A1 and AQP6 as well as some others would be an option in routine histological laboratories. PMID:19680475

  9. Nevoid basal cell carcinoma syndrome with cleft lip and palate associated with the novel PTCH gene mutations.

    PubMed

    Sasaki, Ryo; Saito, Kayoko; Watanabe, Yorikatsu; Takayama, Yoshinaga; Fujii, Katsunori; Agawa, Kaori; Miyashita, Toshiyuki; Ando, Tomohiro; Akizuki, Tanetaka

    2009-07-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is a rare autosomal dominant disorder characterized by developmental abnormalities and a predisposition to cancers. Two unrelated patients, 21- and 16-year-old males, with cleft lip and palate and multiple jaw cysts, were diagnosed according to clinical criteria. To confirm a diagnosis of NBCCS, we undertook a molecular genetic analysis of the PTCH gene. Their PTCH genes were analyzed by direct sequencing of the PCR product from their DNA, and previously unreported mutations were identified. A heterozygous duplication at the nucleotide position between 3325 and 3328 of the PTCH gene (c.3325_3328dupGGCG) was detected in the 21-year-old patient. It caused a frameshift mutation, resulting in a premature termination of the PTCH protein. A point mutation (G to C) in intron 7 of the PTCH gene (c.1067+1G>C) was detected in the 16-year-old patient. This caused an aberrant splicing of PTCH. It is interesting to note that the non-canonical cryptic splice-donor site was activated, which did not conform to the GT-AG rule.

  10. Inactivation of the PBRM1 tumor suppressor gene amplifies the HIF-response in VHL-/- clear cell renal carcinoma.

    PubMed

    Gao, Wenhua; Li, Wei; Xiao, Tengfei; Liu, Xiaole Shirley; Kaelin, William G

    2017-01-31

    Most clear cell renal carcinomas (ccRCCs) are initiated by somatic inactivation of the VHL tumor suppressor gene. The VHL gene product, pVHL, is the substrate recognition unit of an ubiquitin ligase that targets the HIF transcription factor for proteasomal degradation; inappropriate expression of HIF target genes drives renal carcinogenesis. Loss of pVHL is not sufficient, however, to cause ccRCC. Additional cooperating genetic events, including intragenic mutations and copy number alterations, are required. Common examples of the former are loss-of-function mutations of the PBRM1 and BAP1 tumor suppressor genes, which occur in a mutually exclusive manner in ccRCC and define biologically distinct subsets of ccRCC. PBRM1 encodes the Polybromo- and BRG1-associated factors-containing complex (PBAF) chromatin remodeling complex component BRG1-associated factor 180 (BAF180). Here we identified ccRCC lines whose ability to proliferate in vitro and in vivo is sensitive to wild-type BAF180, but not a tumor-associated BAF180 mutant. Biochemical and functional studies linked growth suppression by BAF180 to its ability to form a canonical PBAF complex containing BRG1 that dampens the HIF transcriptional signature.

  11. MiR-21 down-regulation suppresses cell growth, invasion and induces cell apoptosis by targeting FASL, TIMP3, and RECK genes in esophageal carcinoma.

    PubMed

    Wang, Na; Zhang, Chao-Qi; He, Jia-Huan; Duan, Xiao-Fei; Wang, Yuan-Yuan; Ji, Xiang; Zang, Wen-Qiao; Li, Min; Ma, Yun-Yun; Wang, Tao; Zhao, Guo-Qiang

    2013-07-01

    miR-21 is overexpressed in esophageal squamous cell carcinoma (ESCC) and is thought to be correlated with the development of the cancer. The target gene of miR-21 including FASL, TIMP3 and RECK is revealed by researchers. miR-21 may be involved in the tumorgenesis of ESCC by targeting FASL, TIMP3 and RECK. The purpose of this study was to explore the mechanism of miR-21 in the development of ESCC. miR-21 expression in ESCC and the matched non-malignant adjacent tissues (NMATs) was examined by qRT-PCR. Cell growth, cell apoptosis and cell invasion ability of EC9706 and EC-1 cells was examined after the cells were transfected with miR-21 inhibitor. The potential target genes of miR-21 including FASL, TIMP3 and RECK were examined by western blot and Luciferase reporter assay. miR-21 expression was increased significantly in ESCC tissues compared with NMAT. miR-21 down-regulation inhibits cell growth, cell invasion and induces cells to apoptosis. FASL, TIMP3 and RECK are direct targets of miR-21. miR-21 down-regulation inhibits cell growth, invasion and induces cells to apoptosis by targeting FASL, TIMP3 and RECK genes.

  12. Epigenetic silencing of Na,K-ATPase β 1 subunit gene ATP1B1 by methylation in clear cell renal cell carcinoma.

    PubMed

    Selvakumar, Ponniah; Owens, Tori A; David, Justin M; Petrelli, Nicholas J; Christensen, Brock C; Lakshmikuttyamma, Ashakumary; Rajasekaran, Ayyappan K

    2014-04-01

    The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na(+) and uptake of K(+) across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β 1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients' tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2'-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.

  13. Epigenetic silencing of Na,K-ATPase β1 subunit gene ATP1B1 by methylation in clear cell renal cell carcinoma

    PubMed Central

    Selvakumar, Ponniah; Owens, Tori A; David, Justin M; Petrelli, Nicholas J; Christensen, Brock C; Lakshmikuttyamma, Ashakumary; Rajasekaran, Ayyappan K

    2014-01-01

    The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na+ and uptake of K+ across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients’ tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2′-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression. PMID:24452105

  14. Integrative Genomics in Combination with RNA Interference Identifies Prognostic and Functionally Relevant Gene Targets for Oral Squamous Cell Carcinoma

    PubMed Central

    Xu, Chang; Wang, Pei; Liu, Yan; Zhang, Yuzheng; Fan, Wenhong; Upton, Melissa P.; Lohavanichbutr, Pawadee; Houck, John R.; Doody, David R.; Futran, Neal D.; Zhao, Lue Ping; Schwartz, Stephen M.; Chen, Chu; Méndez, Eduardo

    2013-01-01

    In oral squamous cell carcinoma (OSCC), metastasis to lymph nodes is associated with a 50% reduction in 5-year survival. To identify a metastatic gene set based on DNA copy number abnormalities (CNAs) of differentially expressed genes, we compared DNA and RNA of OSCC cells laser-microdissected from non-metastatic primary tumors (n = 17) with those from lymph node metastases (n = 20), using Affymetrix 250K Nsp single-nucleotide polymorphism (SNP) arrays and U133 Plus 2.0 arrays, respectively. With a false discovery rate (FDR)<5%, 1988 transcripts were found to be differentially expressed between primary and metastatic OSCC. Of these, 114 were found to have a significant correlation between DNA copy number and gene expression (FDR<0.01). Among these 114 correlated transcripts, the corresponding genomic regions of each of 95 transcripts had CNAs differences between primary and metastatic OSCC (FDR<0.01). Using an independent dataset of 133 patients, multivariable analysis showed that the OSCC–specific and overall mortality hazards ratio (HR) for patients carrying the 95-transcript signature were 4.75 (95% CI: 2.03–11.11) and 3.45 (95% CI: 1.84–6.50), respectively. To determine the degree by which these genes impact cell survival, we compared the growth of five OSCC cell lines before and after knockdown of over-amplified transcripts via a high-throughput siRNA–mediated screen. The expression-knockdown of 18 of the 26 genes tested showed a growth suppression ≥30% in at least one cell line (P<0.01). In particular, cell lines derived from late-stage OSCC were more sensitive to the knockdown of G3BP1 than cell lines derived from early-stage OSCC, and the growth suppression was likely caused by increase in apoptosis. Further investigation is warranted to examine the biological role of these genes in OSCC progression and their therapeutic potentials. PMID:23341773

  15. Prevalence of promoter mutations in the TERT gene in oral cavity squamous cell carcinoma.

    PubMed

    Chang, Kai-Ping; Wang, Chun-I; Pickering, Curtis R; Huang, Yenlin; Tsai, Chi-Neu; Tsang, Ngan-Ming; Kao, Huang-Kai; Cheng, Ming-Huei; Myers, Jeffrey N

    2017-06-01

    Mutations in the human telomerase reverse transcriptase (TERT) promoter contribute to increased TERT activity. The purpose of the present study was to assess the prevalence of TERT promoter mutations in oral cavity squamous cell carcinoma (SCC). Total DNA was extracted from 201 oral cavity SCC tumors and adjacent normal tissues. Primers were used to amplify the sequence region containing 2 TERT promoter mutations (C228T and C250T) that were then sequenced using the Sanger method. Sequencing revealed that 52.5% (104/201) and 12.9% (26/201) of oral cavity SCC tumor tissues and 6.0% (12/201) and 2.5% (5/201) of adjacent normal tissues contained C228T and C250T mutations, respectively. In addition, the C228T mutation was significantly associated with betel nut chewing. Our results show that mutations in the TERT promoter occur in patients with oral cavity SCC at a high frequency. This suggests that somatic TERT promoter mutations could play a vital role in the pathogenesis and progression of oral cavity SCC. © 2017 Wiley Periodicals, Inc. Head Neck 39: 1131-1137, 2017. © 2017 Wiley Periodicals, Inc.

  16. PTCH gene mutations in invasive transitional cell carcinoma of the bladder.

    PubMed

    McGarvey, T W; Maruta, Y; Tomaszewski, J E; Linnenbach, A J; Malkowicz, S B

    1998-09-03

    LOH analysis suggests that multiple tumor suppressor genes play a role in the development of human TCC. The human homolog of the Drosophila PTCH was recently cloned and mapped to the BCNS locus on 9q22.3, a chromosomal region commonly deleted in TCCs. We first examined the steady state mRNA transcription of the PTCH, SMOH and GLI3 genes of the HH signal transduction pathway in TCC cell lines and normal urothelium. Normal urothelium and TCC cell lines express these three genes within the PTCH signal transduction pathway. We then screened for PTCH mutations in 'hot spot' exons 6, 8, 13 and 16 by PCR/SSCP analysis of genomic DNAs from 54 TCC tumor samples and control autologous peripheral blood lymphocytes. DNA sequence analysis confirmed TCC-specific mutations in two of 54 patients (3.7%). These mutations resulted a single amino acid substitution and two frame shifts. One tumor had PTCH mutations in exon 16 as well as exon 13 and one tumor had a mutation in exon 13 alone. Both TCC tumors that contained PTCH mutations had a loss of heterozygosity at 9q. Although the PTCH protein has an unknown function in urothelial cells, the detection of the PTCH, SMOH and GLI3 transcripts in normal urothelium and TCC cell lines and rare PTCH mutations in tumor samples suggest that the HH pathway may have a role in controlling the proliferation of urothelial cells and that PTCH mutations may contribute to the development of a subset of TCCs.

  17. MicroRNA-374a Promotes Hepatocellular Carcinoma Cell Proliferation by Targeting Mitogen-Inducible Gene-6 (MIG-6).

    PubMed

    Li, Hui; Chen, Huicheng; Wang, Haibin; Dong, Yilong; Yin, Min; Zhang, Liang; Wei, Jia

    2017-07-21

    Hepatocellular carcinoma (HCC) is a dreadful disease with poor prognosis rates and ineffective therapeutic options. Previous studies have reported the involvement of mitogeninducible gene 6 (MIG-6) as a negative regulator in tumor formation. MicroRNAs (miRNAs) play crucial roles in the development of different types of cancer. However, the underlying mechanisms of miRNAs in HCC are poorly understood. This study was aimed to investigate the role of miR-374a in HCC and its role in regulation of expression of MIG-6. The results showed that MIG-6 overexpression significantly inhibited cell viability of HepG2 cells after 4 day of post-transfection. Moreover, MIG-6 was a direct target of miR-374a and the expression of MIG-6 was remarkably down-regulated by overexpression of miR-374a in HepG2 cells. Furthermore, we found that overexpression of miR-374a promoted cell viability, however, the protective effect was abolished by MIG-6 overexpression. Besides, overexpression of miR-374a activated EGFR and AKT/ERK signal pathways by regulation of MIG-6. Our findings suggest that miR-374a could promote cell viability by targeting MIG-6 and activating EGFR and AKT/ERK signal pathways. These data will provide a promising therapeutic strategy for HCC treatment.

  18. Role of the WWOX gene, encompassing fragile region FRA16D, in suppression of pancreatic carcinoma cells.

    PubMed

    Nakayama, Shunji; Semba, Shuho; Maeda, Naoko; Aqeilan, Rami I; Huebner, Kay; Yokozaki, Hiroshi

    2008-07-01

    The WW-domain-containing oxidoreductase (WWOX) gene spans the common chromosomal fragile site FRA16D (16q23.2) and is believed to be a tumor suppressor in various human malignancies. We have previously shown frequent down-modulation of Wwox expression in pancreatic carcinoma (PC); however, biological function of Wwox in pancreatic duct carcinogenesis remains unknown. In PANC-1 (Wwox-negative) PC-derived cells, restoration of recombinant WWOX gene expression with adenoviral gene delivery (Ad-WWOX) effectively increased the number of cells with subG(1) DNA contents in a multiplicity of infection-dependent manners: Ad-WWOX infection up-regulated caspase-3 activity and reduced procaspase-3 and procaspase-8 levels. We also confirmed that restoration of WWOX gene suppressed cell growth in vitro and tumorigenicity in vivo. In addition, transduction of wild-type WWOX-expressing vector inhibited PANC-1 colony formation; however, substitution of Y33 of Wwox with arginine did not lead to inhibition of colony formation, suggesting the biological significance of the WW1 domain of Wwox for its tumor-suppressing activity. In PC tissue samples, abundant cytoplasmic Wwox expression was detected in the normal pancreatic duct epithelium, whereas Wwox expression was frequently reduced not only in a large fraction of PC but also in precancerous lesions in accord with the pancreatic intraepithelial neoplasia (PanIN) grade, which was closely correlated with patients' poorer outcome. Interestingly, the existence of Wwox expression was associated with elevated mothers against decapentaplegic homolog 4 (Smad4) protein levels in vitro and in vivo. These findings suggest that down-modulation of Wwox expression is an early event and may be associated with the down-regulation of Smad4 protein levels during pancreatic duct carcinogenesis.

  19. Deregulation of paralogous 13 HOX genes in oral squamous cell carcinoma.

    PubMed

    Aquino, Gabriella; Franco, Renato; Sabatino, Rocco; Mantia, Elvira La; Scognamiglio, Giosuè; Collina, Francesca; Longo, Francesco; Ionna, Franco; Losito, Nunzia S; Liguori, Giuseppina; Botti, Gerardo; Cantile, Monica

    2015-01-01

    Many oncogenic drivers related to the pathogenesis of OSCC have identified, but the discovery of new molecular markers for early detection of this cancer, remains one the main goals of clinical research. HOX genes regulate normal embryonic development, cell differentiation and other critical processes in eukaryotic cell life. Several studies have demonstrated that the deregulation of HOX genes play a significant role in cancer development and progression. In this study, we built a prognostic TMA with 119 OSCC samples, representative of deep and superficial part of the tumour, to investigate, the paralogous 13 HOX proteins expression, correlating them with clinicpathological parameters, outcomes and therapy information. Our results show an aberrant expression of HOX A13 and HOX D13 in OSCC pathogenesis and tumour progression. HOX A13 overexpression is related to an OSCC better prognosis (P=0.029) and better therapy response in patients treated with both radiotherapy and chemotherapy (P=0.015). HOX D13 overexpression is inversely related to an overall survival (P=0.004). These data highlight the potential prognostic role of HOX paralogous group 13 genes in OSCC.

  20. Expression Microarray Analysis Reveals Alternative Splicing of LAMA3 and DST Genes in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Li, Ryan; Ochs, Michael F.; Ahn, Sun Mi; Hennessey, Patrick; Tan, Marietta; Soudry, Ethan; Gaykalova, Daria A.; Uemura, Mamoru; Brait, Mariana; Shao, Chunbo; Westra, William; Bishop, Justin; Fertig, Elana J.; Califano, Joseph A.

    2014-01-01

    Purpose Prior studies have demonstrated tumor-specific alternative splicing events in various solid tumor types. The role of alternative splicing in the development and progression of head and neck squamous cell carcinoma (HNSCC) is unclear. Our study queried exon-level expression to implicate splice variants in HNSCC tumors. Experimental Design We performed a comparative genome-wide analysis of 44 HNSCC tumors and 25 uvulopalatopharyngoplasty (UPPP) tissue samples at an exon expression level. In our comparison we ranked genes based upon a novel score—the Maximum-Minimum Exon Score (MMES) – designed to predict the likelihood of an alternative splicing event occurring. We validated predicted alternative splicing events using quantitative RT-PCR on an independent cohort. Results After MMES scoring of 17,422 genes, the top 900 genes with the highest scores underwent additional manual inspection of expression patterns in a graphical analysis. The genes LAMA3, DST, VEGFC, SDHA, RASIP1, and TP63 were selected for further validation studies because of a high frequency of alternative splicing suggested in our graphical analysis, and literature review showing their biological relevance and known splicing patterns. We confirmed TP63 as having dominant expression of the short DeltaNp63 isoform in HNSCC tumor samples, consistent with prior reports. Two of the six genes (LAMA3 and DST) validated by quantitative RT-PCR for tumor-specific alternative splicing events (Student's t test, P<0.001). Conclusion Alternative splicing events of oncologically relevant proteins occur in HNSCC. The number of genes expressing tumor-specific splice variants needs further elucidation, as does the functional significance of selective isoform expression. PMID:24675808

  1. Identification of new candidate therapeutic target genes in head and neck squamous cell carcinomas

    PubMed Central

    Klijanienko, Jerzy; Vacher, Sophie; Ouafi, Lamia; Chemlali, Walid; Caly, Martial; Sastre-Garau, Xavier; Lappartient, Emmanuelle; Mariani, Odette; Rodriguez, José; Jouffroy, Thomas; Girod, Angélique; Calugaru, Valentin; Hoffmann, Caroline; Lidereau, Rosette; Berger, Frédérique; Kamal, Maud; Bieche, Ivan; Le Tourneau, Christophe

    2016-01-01

    Background We aimed at identifying druggable molecular alterations at the RNA level from untreated HNSCC patients, and assessing their prognostic significance. Methods We retrieved 96 HNSCC patients who underwent primary surgery. Real-time quantitative RT-PCR was used to analyze a panel of 42 genes coding for major druggable proteins. Univariate and multivariate analyses were performed to assess the prognostic significance of overexpressed genes. Results Median age was 56 years [35–78]. Most of patients were men (80%) with a history of alcohol (70.4%) and/or tobacco consumption (72.5%). Twelve patients (12%) were HPV-positive. Most significantly overexpressed genes involved cell cycle regulation (CCND1 [27%], CDK6 [21%]), tyrosine kinase receptors (MET [18%], EGFR [14%]), angiogenesis (PGF [301%], VEGFA [14%]), and immune system (PDL1/CD274 [28%]). PIK3CA expression was an independent prognostic marker, associated with shorter disease-free survival. Conclusions We identified druggable overexpressed genes associated with a poor outcome that might be of interest for personalizing treatment of HNSCC patients. PMID:27329726

  2. Clusterin is a Gene Specific Target of MicroRNA-21 in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Mydlarz, Wojciech; Uemura, Mamoru; Ahn, Sun; Hennessey, Patrick; Chang, Steven; Demokan, Semra; Sun, Wenyue; Shao, Chunbo; Bishop, Justin; Krosting, Julie; Mambo, Elizabeth; Westra, William; Ha, Patrick; Sidransky, David; Califano, Joseph

    2014-01-01

    Purpose: MicroRNA-21 (miRNA-21) has proto-oncogenic properties, though no miRNA-21 specific targets have been found in head and neck squamous cell carcinoma (HNSCC). Further study of miRNA-21 and its specific targets is essential to understanding HNSCC biology. Experimental Design: miRNA expression profiles of 10 HNSCC and 10 normal mucosa samples were investigated using a custom miRNA microarray. 13 HNSCC and 5 normal mucosa primary tissue specimens underwent mRNA expression microarray analysis. To identify miRNA-21 downstream targets, oral keratinocyte cells were subjected to microarray analysis after miRNA-21 transient transfection. miRNA and mRNA expression were validated by RT-qPCR in a separate cohort of 16 HNSCC and 15 normal mucosal samples. Microarray and bioinformatics analyses were integrated to identify potential gene targets. In vitro assays looked at the function and interaction of miRNA-21 and its specific gene targets. Results: miRNA-21 was upregulated in HNSCC and stimulated cell growth. Integrated analyses identified Clusterin (CLU) as a potential miRNA-21 gene target. CLU was downregulated after forced expression of miRNA-21 in normal and HNSCC cell lines. The activity of a luciferase construct containing the 3’UTR of CLU was repressed by the ectopic expression of miRNA-21. CLU was also downregulated in primary HNSCC and correlated with miRNA-21 over-expression. CLU variant 1 (CLU-1) was the predominant splice variant in HNSCC, and showed growth suppression function that was reversed by miRNA-21 over-expression. Conclusions: CLU is a specific, functional target of oncogenic miRNA-21 in HNSCC. CLU-1 isoform is the predominant growth suppressive variant targeted by miRNA-21. PMID:24327270

  3. Frequent loss of heterozygosity in human primary squamous cell and colon carcinomas at 7q31.1: evidence for a broad range tumor suppressor gene.

    PubMed

    Zenklusen, J C; Thompson, J C; Klein-Szanto, A J; Conti, C J

    1995-03-15

    Consistent deletions and loss of heterozygosity (LOH) in polymorphic markers in a determinate chromosomal fragment are known to be indicative of a closely mapping tumor suppressor gene. Deletion of the long arm of chromosome 7 is a frequent trait in many kinds of human primary tumors. We studied LOH of 14 markers on chromosome 7q in order to determine the location of a putative tumor suppressor gene in human primary squamous cell carcinoma of the head and neck and in human primary colon carcinomas. Samples were obtained from 18 primary squamous cell carcinomas of the head and neck and 18 primary colon carcinomas surgically removed from patients at the Fox Chase Cancer Center. Loss of heterozygosity was studied performing PCR amplifications of a set of 14 CA microsatellite repeats encompassing 7q21-qter. Of 18 squamous cell carcinomas of the head and neck cases studied, 12 had LOH at one or more loci on 7q. Fifty-three percent of 15 informative cases had LOH of the CA microsatellite dinucleotide repeat marker D7S522 at 7q31.1-7q31.2. Eleven of 18 colon carcinoma cases had LOH of one or more markers assayed, and the maximum LOH (80% of 10 informative cases) was at D7S522. Distributions of percentage of LOH in both tumor types were normally distributed around microsatellite D7S522. The high incidence of LOH in both tumor types studied suggests that a tumor suppressor gene relevant to the development of epithelial cancers is present on the 7q31.1-31.2, confirming our previous functional evidence for a tumor suppressor gene on chromosome 7.

  4. Mutations of the p53 and PTCH gene in basal cell carcinomas: UV mutation signature and strand bias.

    PubMed

    Kim, Mi-Yeon; Park, Hyun Jeong; Baek, Seung-Cheol; Byun, Dae Gyoo; Houh, Dong

    2002-05-01

    Mutations of p53 and PTCH gene, two candidate tumor suppressor genes for basal cell carcinoma (BCC), were screened in 15 cases of sporadic BCCs that developed in sun-exposed skin region in a Korean population. p53 and PTCH mutations were detected at a frequency of 33 and 40%, respectively, and the mutations were predominantly UV-signature transition, C-->T transitions at dipyrimidine sites and CC-->TT tandem mutations. In both genes, the most common mutations were missense mutations resulting in amino acid substitution, which is different than the results from Caucasian BCCs where mutations are frequently predicted to make truncated or absent proteins. All mutations, except for one, occurred on the nontranscribed strand where is little efficient removal of UV-induced pyrimidine dimers relative to the transcribed strand. Loss of heterozygocity (LOH) of 9q22 for PTCH loci was found in eight of 15 informative cases of BCCs (53%), but none of the cases were informative for LOH of 17p13 for p53 loci. Not only do our data indicate the key role played by p53 and PTCH in the development of BCCs, these findings also suggest that UVB may significantly contribute to BCC tumorigenesis. Moreover, molecular epidemiology composed of incidence of p53 and PTCH mutations, difference in the type of mutation and repair bias of UV-induced DNA lesions might affect the distinct features of BCCs between different racial population.

  5. Late changes in cutaneous gene expression patterns after adjuvant treatment of oral squamous cell carcinoma (OSCC) by radiation therapy.

    PubMed

    Mueller, Cornelia K; Thorwarth, Michael; Schultze-Mosgau, Stefan

    2010-05-01

    The objective of this study was to investigate radiation-induced late changes in cutaneous gene expression using a microarray platform and quantitative, real-time, reverse-transcriptase polymerase chain reaction (RT-PCR) validation. Paired irradiated and nonirradiated skin biopsies were obtained from 19 patients with a history of oral squamous cell carcinoma (OSCC) treated by surgery and adjuvant radiotherapy at the time of secondary corrective surgery. Topic-defined PIQOR (Parallel Identification and Quantification of RNAs) skin microarrays were used to compare gene expression profiles between control and irradiated skin sample in 8 patients. The data were validated for matrixmetalloproteinase (MMP)-1 and tissue-inhibitor of matrixmetalloproteinase (TIMP)-1 by RT-PCR for all patients. Irradiation markedly enhanced the expression of molecules associated with the transforming growth factor (TGF)-beta(1) signaling pathway, blood vessel development, as well as extracellular matrix constitution and turn-over. Our data suggest that radiation-induced late changes in cutaneous gene expression mainly affect molecules related to extracellular matrix (ECM)-constitution and-remodeling. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  6. Overexpression and amplification of glutathione S-transferase pi gene in head and neck squamous cell carcinomas.

    PubMed

    Wang, X; Pavelic, Z P; Li, Y; Gleich, L; Gartside, P S; Pavelic, L; Gluckman, J L; Stambrook, P J

    1997-01-01

    Human glutathione S-transferase pi (GST-pi) may serve as a useful tumor marker because of the high frequency with which it is found in elevated levels in several tumor types. To determine whether GST-pi is useful as an indicator for cancers of the head and neck, expression of GST-pi mRNA was investigated by Northern analysis in this tumor type. Overexpression of GST-pi mRNA was detected in 9 of 36 (25%) primary head and neck squamous cell carcinomas (HNSCCs). When Southern blot analysis was used to examine the relationship between overexpression and amplification of the GST-pi gene, only 3 of 36 tumors (8%) showed GST-pi gene amplification. Thus, gene amplification is not critical to GST-pi mRNA overexpression in HNSCCs. Moderately and poorly differentiated HNSCCs tended to manifest elevated GST-pi mRNA compared with well differentiated tumors (30% for moderately and poorly differentiated tumors versus none of the well differentiated tumors examined). However, there was no significant correlation between GST-% mRNA overexpression and clinical stage, T stage (tumor size), N stage (neck nodal status), pathological nodes, or patient survival.

  7. Distinct gene expression profiles of viral- and non-viral associated Merkel cell carcinoma revealed by transcriptome analysis

    PubMed Central

    Harms, Paul William; Patel, Rajiv Michael; Verhaegen, Monique Elise; Giordano, Thomas James; Nash, Kevin Tyler; Johnson, Craig Norman; Daignault, Stephanie; Thomas, Dafydd Gareth; Gudjonsson, Johann Eli; Elder, James Tilford; Dlugosz, Andrzej Antoni; Johnson, Timothy M.; Fullen, Douglas Randall; Bichakjian, Christopher Keram

    2012-01-01

    Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine tumor with high mortality rates. Merkel cell polyomavirus (MCPyV), identified in the majority of MCC, may drive tumorigenesis via viral T antigens. However, mechanisms underlying pathogenesis in MCPyV-negative MCC remain poorly understood. To nominate genes contributing to pathogenesis of MCPyV-negative MCC, we performed DNA microarray analysis on 30 MCCs. MCPyV status of MCCs was determined by PCR for viral DNA and RNA. 1593 probe-sets were differentially expressed between MCPyV-negative and -positive MCC, with significant differential expression defined as at least 2-fold change in either direction and p-value of ≤ 0.05. MCPyV-negative tumors showed decreased RB1 expression, whereas MCPyV-positive tumors were enriched for immune response genes. Validation studies included immunohistochemistry demonstration of decreased RB protein expression in MCPyV-negative tumors and increased peritumoral CD8+ T lymphocytes surrounding MCPyV-positive tumors. In conclusion, our data suggest that loss of RB1 expression may play an important role in tumorigenesis of MCPyV-negative MCC. Functional and clinical validation studies are needed to determine whether this tumor suppressor pathway represents an avenue for targeted therapy. PMID:23223137

  8. RNA-binding protein CELF1 promotes tumor growth and alters gene expression in oral squamous cell carcinoma.

    PubMed

    House, Reniqua P; Talwar, Sudha; Hazard, E Starr; Hill, Elizabeth G; Palanisamy, Viswanathan

    2015-12-22

    The RNA binding protein CELF1 (also known as CUGBP1) is emerging as a critical regulator of cancer cell proliferation and apoptosis. Here, to provide a global prospective of CELF1 regulation of oral squamous cell carcinoma, we performed RNA-sequencing in oral cancer cells and CELF1 overexpression analysis in non-malignant human oral keratinocytes. Our approaches identified 1283 mRNAs differentially regulated as a function of CELF1 expression and more importantly CELF1 promoted alternative splicing of several target pre-mRNAs, which are known to be involved in various cancer biological processes. Overexpression of CELF1 in non-malignant human oral keratinocytes protected cells against oxidative damage and altered gene expression patterns. Finally, we provide evidence that reduction of CELF1 protein using a xenograft tumorigenesis mouse model decreased tumor growth. Altogether, these data provided a comprehensive view of the CELF1 mRNA regulatory network in oral cancer and suggests that CELF1 and/or its target mRNAs are viable candidates for therapeutic intervention.

  9. RNA-binding protein CELF1 promotes tumor growth and alters gene expression in oral squamous cell carcinoma

    PubMed Central

    House, Reniqua P.; Talwar, Sudha; Hazard, E. Starr; Hill, Elizabeth G.; Palanisamy, Viswanathan

    2015-01-01

    The RNA binding protein CELF1 (also known as CUGBP1) is emerging as a critical regulator of cancer cell proliferation and apoptosis. Here, to provide a global prospective of CELF1 regulation of oral squamous cell carcinoma, we performed RNA-sequencing in oral cancer cells and CELF1 overexpression analysis in non-malignant human oral keratinocytes. Our approaches identified 1283 mRNAs differentially regulated as a function of CELF1 expression and more importantly CELF1 promoted alternative splicing of several target pre-mRNAs, which are known to be involved in various cancer biological processes. Overexpression of CELF1 in non-malignant human oral keratinocytes protected cells against oxidative damage and altered gene expression patterns. Finally, we provide evidence that reduction of CELF1 protein using a xenograft tumorigenesis mouse model decreased tumor growth. Altogether, these data provided a comprehensive view of the CELF1 mRNA regulatory network in oral cancer and suggests that CELF1 and/or its target mRNAs are viable candidates for therapeutic intervention. PMID:26498364

  10. MC1R and PTCH gene polymorphism in French patients with basal cell carcinomas.

    PubMed

    Liboutet, Muriel; Portela, Marc; Delestaing, Gisèle; Vilmer, Catherine; Dupin, Nicolas; Gorin, Isabelle; Saiag, Philippe; Lebbé, Céleste; Kerob, Delphine; Dubertret, Louis; Grandchamp, Bernard; Basset-Seguin, Nicole; Soufir, Nadem

    2006-07-01

    In this study, we assessed the role of melanocortin 1 receptor (MC1R) variants and of two patched (PTCH) polymorphisms (c.3944C>T (P1315L), insertion 18 bp IVS1-83) as risk factors for basal cell carcinoma (BCC) in the French population. The population investigated comprised 126 BCC patients who were enrolled on the basis of specific criteria (multiple and/or familial BCC and/or onset before the age of 40 years and/or association with another tumor)--and 151 controls matched for ethnicity, age, and sex. MC1R variants appeared as a moderate risk factor for BCC (odds ratio (OR) for one and two variants, 2.17 [1.28-3.68] and 7.72 [3.42-17.38], respectively), independently of pigmentation characteristics (OR = 2.53 [1.34-4.8]). Interestingly, in addition to the predictable red hair color (RHC) alleles, two non-RHC alleles (V60L and V92M) were also closely associated with BCC risk (OR 3.21 [1.91-5.38] and 2.87 [1.5-5.48], respectively), which differs from the situation in the Celtic population. In addition, the PTCH c.3944C/C genotype was also associated with BCC risk (OR 1.94 [1.2-3.1]), especially in the subgroup of patients with multiple tumors (OR 2.16 [1.3-3.6]). Thus, our data show that MC1R and PTCH variants are associated with BCC risk in the French population. We further suggest that assessing MC1R and PTCH status could be useful, combined with the assessment of clinical risk factors, in identifying high-risk patients to be targeted for prevention or more rigorous surveillance.

  11. Gene promoter methylation signature predicts survival of head and neck squamous cell carcinoma patients

    PubMed Central

    Kostareli, Efterpi; Hielscher, Thomas; Zucknick, Manuela; Baboci, Lorena; Wichmann, Gunnar; Holzinger, Dana; Mücke, Oliver; Pawlita, Michael; Del Mistro, Annarosa; Boscolo-Rizzo, Paolo; Da Mosto, Maria Cristina; Tirelli, Giancarlo; Plinkert, Peter; Dietz, Andreas; Plass, Christoph; Weichenhan, Dieter; Hess, Jochen

    2016-01-01

    Abstract Infection with high-risk types of human papilloma virus (HPV) is currently the best-established prognostic marker for head and neck squamous cell carcinoma (HNSCC), one of the most common and lethal human malignancies worldwide. Clinical trials have been launched to address the concept of treatment de-escalation for HPV-positive HNSCC with the final aim to reduce treatment related toxicity and debilitating long-term impacts on the quality of life. However, HPV-related tumors are mainly restricted to oropharyngeal SCC (OPSCC) and there is an urgent need to establish reliable biomarkers for all patients at high risk for treatment failure. A patient cohort (n = 295) with mainly non-OPSCC (72.9%) and a low prevalence of HPV16-related tumors (8.8%) was analyzed by MassARRAY to determine a previously established prognostic methylation score (MS). Kaplan-Meier revealed a highly significant correlation between a high MS and a favorable survival for OPSCC (P = 0.0004) and for non-OPSCC (P<0.0001), which was confirmed for all HNSCC by multivariate Cox regression models (HR: 9.67, 95% CI [4.61–20.30], P<0.0001). Next, we established a minimal methylation signature score (MMSS), which consists of ten most informative of the originally 62 CpG units used for the MS. The prognostic value of the MMSS was confirmed by Kaplan-Meier analysis for all HNSCC (P<0.0001) and non-OPSCC (P = 0.0002), and was supported by multivariate Cox regression models for all HNSCC (HR: 2.15, 95% CI [1.36–3.41], P = 0.001). In summary, the MS and the MMSS exhibit an excellent performance as prognosticators for survival, which is not limited by the anatomical site, and both could be implemented in future clinical trials. PMID:26786582

  12. Gene promoter methylation signature predicts survival of head and neck squamous cell carcinoma patients.

    PubMed

    Kostareli, Efterpi; Hielscher, Thomas; Zucknick, Manuela; Baboci, Lorena; Wichmann, Gunnar; Holzinger, Dana; Mücke, Oliver; Pawlita, Michael; Del Mistro, Annarosa; Boscolo-Rizzo, Paolo; Da Mosto, Maria Cristina; Tirelli, Giancarlo; Plinkert, Peter; Dietz, Andreas; Plass, Christoph; Weichenhan, Dieter; Hess, Jochen

    2016-01-01

    Infection with high-risk types of human papilloma virus (HPV) is currently the best-established prognostic marker for head and neck squamous cell carcinoma (HNSCC), one of the most common and lethal human malignancies worldwide. Clinical trials have been launched to address the concept of treatment de-escalation for HPV-positive HNSCC with the final aim to reduce treatment related toxicity and debilitating long-term impacts on the quality of life. However, HPV-related tumors are mainly restricted to oropharyngeal SCC (OPSCC) and there is an urgent need to establish reliable biomarkers for all patients at high risk for treatment failure. A patient cohort (n = 295) with mainly non-OPSCC (72.9%) and a low prevalence of HPV16-related tumors (8.8%) was analyzed by MassARRAY to determine a previously established prognostic methylation score (MS). Kaplan-Meier revealed a highly significant correlation between a high MS and a favorable survival for OPSCC (P = 0.0004) and for non-OPSCC (P<0.0001), which was confirmed for all HNSCC by multivariate Cox regression models (HR: 9.67, 95% CI [4.61-20.30], P<0.0001). Next, we established a minimal methylation signature score (MMSS), which consists of ten most informative of the originally 62 CpG units used for the MS. The prognostic value of the MMSS was confirmed by Kaplan-Meier analysis for all HNSCC (P<0.0001) and non-OPSCC (P = 0.0002), and was supported by multivariate Cox regression models for all HNSCC (HR: 2.15, 95% CI [1.36-3.41], P = 0.001). In summary, the MS and the MMSS exhibit an excellent performance as prognosticators for survival, which is not limited by the anatomical site, and both could be implemented in future clinical trials.

  13. Weighted gene co-expression network analysis in identification of metastasis-related genes of lung squamous cell carcinoma based on the Cancer Genome Atlas database.

    PubMed

    Tian, Feng; Zhao, Jinlong; Fan, Xinlei; Kang, Zhenxing

    2017-01-01

    Lung squamous cell carcinoma (lung SCC) is a common type of malignancy. Its pathogenesis mechanism of tumor development is unclear. The aim of this study was to identify key genes for diagnosis biomarkers in lung SCC metastasis. We searched and downloaded mRNA expression data and clinical data from The Cancer Genome Atlas (TCGA) database to identify differences in mRNA expression of primary tumor tissues from lung SCC with and without metastasis. Gene co-expression network analysis, protein-protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and quantitative real-time polymerase chain reactions (qRT-PCR) were used to explore the biological functions of the identified dysregulated genes. Four hundred and eighty-two differentially expressed genes (DEGs) were identified between lung SCC with and without metastasis. Nineteen modules were identified in lung SCC through weighted gene co-expression network analysis (WGCNA). Twenty-three DEGs and 26 DEGs were significantly enriched in the respective pink and black module. KEGG pathway analysis displayed that 26 DEGs in the black module were significantly enriched in bile secretion pathway. Forty-nine DEGs in the two gene co-expression module were used to construct PPI network. CFTR in the black module was the hub protein, had the connectivity with 182 genes. The results of qRT-PCR displayed that FIGF, SFTPD, DYNLRB2 were significantly down-regulated in the tumor samples of lung SCC with metastasis and CFTR, SCGB3A2, SSTR1, SCTR, ROPN1L had the down-regulation tendency in lung SCC with metastasis compared to lung SCC without metastasis. The dysregulated genes including CFTR, SCTR and FIGF might be involved in the pathology of lung SCC metastasis and could be used as potential diagnosis biomarkers or therapeutic targets for lung SCC.

  14. Weighted gene co-expression network analysis in identification of metastasis-related genes of lung squamous cell carcinoma based on the Cancer Genome Atlas database

    PubMed Central

    Tian, Feng; Zhao, Jinlong; Kang, Zhenxing

    2017-01-01

    Background Lung squamous cell carcinoma (lung SCC) is a common type of malignancy. Its pathogenesis mechanism of tumor development is unclear. The aim of this study was to identify key genes for diagnosis biomarkers in lung SCC metastasis. Methods We searched and downloaded mRNA expression data and clinical data from The Cancer Genome Atlas (TCGA) database to identify differences in mRNA expression of primary tumor tissues from lung SCC with and without metastasis. Gene co-expression network analysis, protein-protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and quantitative real-time polymerase chain reactions (qRT-PCR) were used to explore the biological functions of the identified dysregulated genes. Results Four hundred and eighty-two differentially expressed genes (DEGs) were identified between lung SCC with and without metastasis. Nineteen modules were identified in lung SCC through weighted gene co-expression network analysis (WGCNA). Twenty-three DEGs and 26 DEGs were significantly enriched in the respective pink and black module. KEGG pathway analysis displayed that 26 DEGs in the black module were significantly enriched in bile secretion pathway. Forty-nine DEGs in the two gene co-expression module were used to construct PPI network. CFTR in the black module was the hub protein, had the connectivity with 182 genes. The results of qRT-PCR displayed that FIGF, SFTPD, DYNLRB2 were significantly down-regulated in the tumor samples of lung SCC with metastasis and CFTR, SCGB3A2, SSTR1, SCTR, ROPN1L had the down-regulation tendency in lung SCC with metastasis compared to lung SCC without metastasis. Conclusions The dysregulated genes including CFTR, SCTR and FIGF might be involved in the pathology of lung SCC metastasis and could be used as potential diagnosis biomarkers or therapeutic targets for lung SCC. PMID:28203405

  15. Enhanced specific antitumor immunity of dendritic cells transduced with the glypican 3 gene and co-cultured with cytokine-induced killer cells against hepatocellular carcinoma cells

    PubMed Central

    WANG, YULIANG; WANG, YINLONG; MU, HONG; LIU, TAO; CHEN, XIAOBO; SHEN, ZHONGYANG

    2015-01-01

    Dendritic cell (DC)-based cancer immunotherapy requires an immunogenic tumor-associated antigen and an effective therapeutic strategy. Glypican 3 (GPC3) is a valuable diagnostic marker and a potential therapeutic target in hepatocellular carcinoma (HCC). The present study investigated whether DCs transduced with the GPC3 gene (DCs-GPC3) and co-cultured with autologous cytokine-induced killer cells (CIKs) may induce a marked specific immune response against GPC3-expressing HCC cells in vitro and in vivo. Human DCs were transfected with a green fluorescent protein plasmid with GPC3 by nucleofection and then co-cultured with autologous CIKs. Flow cytometry was used to measure the phenotypes of DCs and CIKs. The co-cultured cells were harvested and incubated with HCC cells and the cytotoxicity of the CIKs was assessed by nonradioactive cytotoxicity assay. The anti-tumor activity of these effector cells was further evaluated using a nude mouse tumor model. The results demonstrated that DCs-GPC3 significantly promoted the autologous CIKs differentiation, as well as anti-tumor cytokine interferon-γ secretion. In addition, DCs-GPC3-CIKs significantly enhanced the cytotoxic activity against GPC3-expressing HepG2 cells, indicating a GPC3-specific marked immune response against HCC cells. The in vivo data indicated that DCs-GPC3-CIKs exhibited significant HepG2 cell-induced tumor growth inhibition in nude mice. The results of the present study provided a new insight into the design of personalizing adoptive immunotherapy for GPC3-expressing HCC cells. PMID:25625609

  16. Integrative analysis of DNA copy number and gene expression in metastatic oral squamous cell carcinoma identifies genes associated with poor survival

    PubMed Central

    2010-01-01

    Background Lymphotropism in oral squamous cell carcinoma (OSCC) is one of the most important prognostic factors of 5-year survival. In an effort to identify genes that may be responsible for the initiation of OSCC lymphotropism, we examined DNA copy number gains and losses and corresponding gene expression changes from tumor cells in metastatic lymph nodes of patients with OSCC. Results We performed integrative analysis of DNA copy number alterations (CNA) and corresponding mRNA expression from OSCC cells isolated from metastatic lymph nodes of 20 patients using Affymetrix 250 K Nsp I SNP and U133 Plus 2.0 arrays, respectively. Overall, genome CNA accounted for expression changes in 31% of the transcripts studied. Genome region 11q13.2-11q13.3 shows the highest correlation between DNA CNA and expression. With a false discovery rate < 1%, 530 transcripts (461 genes) demonstrated a correlation between CNA and expression. Among these, we found two subsets that were significantly associated with OSCC (n = 122) when compared to controls, and with survival (n = 27), as tested using an independent dataset with genome-wide expression profiles for 148 primary OSCC and 45 normal oral mucosa. We fit Cox models to calculate a principal component analysis-derived risk-score for these two gene sets ('122-' or '27-transcript PC'). The models combining the 122- or 27-transcript PC with stage outperformed the model using stage alone in terms of the Area Under the Curve (AUC = 0.82 or 0.86 vs. 0.72, with p = 0.044 or 0.011, respectively). Conclusions Genes exhibiting CNA-correlated expression may have biological impact on carcinogenesis and cancer progression in OSCC. Determination of copy number-associated transcripts associated with clinical outcomes in tumor cells with an aggressive phenotype (i.e., cells metastasized to the lymph nodes) can help prioritize candidate transcripts from high-throughput data for further studies. PMID:20537188

  17. Amplification of EGFR and cyclin D1 genes associated with human papillomavirus infection in oral squamous cell carcinoma.

    PubMed

    Chuerduangphui, Jureeporn; Pientong, Chamsai; Patarapadungkit, Natcha; Chotiyano, Apinya; Vatanasapt, Patravoot; Kongyingyoes, Bunkerd; Promthet, Supannee; Swangphon, Piyawut; Bumrungthai, Sureewan; Pimson, Charinya; Ekalaksananan, Tipaya

    2017-09-01

    Human papillomavirus (HPV) infection is associated with several genetic alterations including oncogene amplification, leading to increased aggression of tumors. Recently, a relationship between HPV infection and oncogene amplification has been reported, but this finding remains controversial. This study therefore investigated relationships between HPV infection and amplification of genes in the epidermal growth factor receptor (EGFR) signaling cascade in oral squamous cell carcinoma (OSCC). Extracted DNA from 142 formalin-fixed paraffin-embedded (FFPE) OSCC tissues was performed to investigate the copy number of EGFR, KRAS, c-myc and cyclin D1 genes using real-time polymerase chain reaction (RT-PCR) and compared with calibrators. A tissue microarray of OSCC tissues was used for detection of c-Myc expression and HPV infection by immunohistochemistry and HPV E6/E7 RNA in situ hybridization, respectively. HPV infection was also investigated using PCR and RT-PCR. Of the 142 OSCC samples, 81 (57%) were HPV-infected cases. The most frequently amplified gene was c-myc (55.6%), followed by cyclin D1 (26.1%), EGFR (23.9%) and KRAS (19.7%). Amplification of c-myc was significantly associated with levels of its protein product. EGFR amplification was also significantly associated with amplification of genes in the signaling cascade: KRAS (50.0%), c-myc (34.2%) and cyclin D1 (46.0%). Interestingly, HPV infection was significantly associated with amplification of both EGFR (76.5%) and cyclin D1 (73.0%). Only cyclin D1 amplification was significantly associated with severity of OSCC histopathology. HPV infection may play an important synergistic role in amplification of genes in the EGFR signaling cascade, leading to increased aggression in oral malignancies.

  18. Endomandibular acinic cell carcinoma.

    PubMed

    Bondi, R; Nardi, P; Urso, C

    1989-01-01

    A rare case of endomandibular acinic cell carcinoma (ACC) in a white woman aged 79 is reported. Radiologic examination revealed an osteolytic area within the jaw, extending from the left molar region to the ascending branch. The tumor was located within a cavity of the mandible and did not seem to infiltrate the bone. Histologically, it was composed of large epithelial cells with granular cytoplasm, arranged in solid nests, sometimes displaying microcystic spaces. ACC generally occurs in salivary glands. In the reported case, the tumor was considered to arise from ectopic salivary tissue enclosed in the jaw, as no lesion was found in minor salivary glands.

  19. P53 gene codon 72 polymorphism in patients with oral squamous cell carcinoma in the population of northern Iran.

    PubMed

    Sina, Mahmud; Pedram, Mehrdad; Ghojazadeh, Morteza; Kochaki, Ahmad; Aghbali, Amirala

    2014-11-01

    Squamous cell carcinoma is the most common cancer of the oral cavity, and several etiologic factors are involved in its developing. Single nucleotide polymorphism (SNP) of the P53 gene codon 72 (P53c72) changes the structure of the protein and affects its activity. The prevalence of P53c72 different genotypes, which seems to vary with race and geographic location, has shown a strong correlation with many types of human cancers. The aim of this study was to investigate the correlation between P53c72polymorphism and risk of oral squamous cell carcinoma (OSCC) in the heavily populated Gilan Province in northern Iran. This case-control study was done on 55 paraffin-embedded samples from OSCC patients and 100 samples of non-dysplastic oral cavity lesions. The P53c72 genotypes were determined using the ARMS-PCR method. SPSS-15 software was used for statistical analysis. There were no significant statistical differences found between the prevalence of different P53c72 genotypes in the OSCC group vs. the control. However, the Pro/Pro genotype in OSCC samples showed a strong correlation with age, as 70% of such patients were below 50 years old. Interestingly, a large portion (40%) of the patients with the Pro/Pro genotype had the tumor in the lip area. Although P53c72 polymorphism does not appear to be a predisposing factor for OSCC in the population of Northern Iran, the Pro/Pro genotype could be considered as a risk factor for OSCC in adults below 50 years old and the anatomical location of the tumor.

  20. Influence of chromosomal integration on glucocorticoid-regulated transcription of growth-stimulating papillomavirus genes E6 and E7 in cervical carcinoma cells

    SciTech Connect

    Von Knebel Doeberitz, M.; Bauknecht, T.; Bartsch, D.; Zur Hausen, H. )

    1991-02-15

    In most cervical carcinoma cells the E6 and E7 genes of specific human papillomaviruses are transcribed from viral sequences integrated into host cell chromosomes. Glucocorticoids activate the promoter elements of various human papillomaviruses in transient-expression assays. The authors have analyzed the effect of dexamethasone on the transcription rate of human papillomaviruses 18 E6 and E7 genes integrated at different chromosomal sites in four cervical cancer cell lines. Dexamethasone led to an increase in the transcription rate of the integrated E6-E7 sequences in C4-1 and C4-2 cells but led to a decrease in SW 756 cells and did not affect the transcription rate in HeLa cells. It thus appears that dominant regulatory mechanisms presumably depending on the chromosomal integration site are able to override the response of the viral promoter to steroid hormones. The growth rate of all dexamethasone-treated cell lines correlated consistently with the expression of the papillomavirus E6 and E7 genes, supporting their role in the maintenance of the proliferative phenotype of cervical carcinoma cells. Since human papillomaviruses are integrated into the host cell genome at variable, presumably randomly selected chromosomal loci, regulatory mechanisms that influence viral gene expression, and hence cell growth, may differ among cancers of independent clonal origin.

  1. Fallacious Carcinoma- Spindle Cell Variant of Squamous Cell Carcinoma

    PubMed Central

    Bavle, Radhika M; Govinda, Girish; Muniswamappa, Sudhakara; Venugopal, Reshma

    2016-01-01

    Spindle cell carcinoma is a unique, rare and peculiar biphasic tumour of head and neck which is not frequently observed in the oral cavity. This variant of squamous cell carcinoma although of monophasic epithelial origin, simulates a sarcoma and is an aggressive carcinoma with high frequency of recurrence and metastasis. A correct and timely diagnosis is of paramount importance. Most of the tumours require an Immunohistochemistry (IHC) panel for confirmation or diagnosis. We report a case of spindle cell carcinoma with varied histopathological morphology and clinical presentation in a middle aged female with a brief review of literature. PMID:27630965

  2. Vismodegib in basal cell carcinoma.

    PubMed

    Amaria, R N; Bowles, D W; Lewis, K D; Jimeno, A

    2012-07-01

    Vismodegib is a novel, small-molecule inhibitor of smoothened, a key component of the hedgehog signaling pathway. Increased hedgehog pathway signaling is critical in the development of hereditary and spontaneous basal cell carcinomas of the skin, and has been implicated in the development of a number of other tumors. In preclinical models, vismodegib demonstrated potent antitumor activity in hedgehog-dependent tumors, particularly basal cell carcinomas. Clinically, phase I and II studies showed dramatic anticancer activity in patients with advanced basal cell carcinomas. In January 2012, vismodegib was approved by the FDA for the treatment of unresectable or metastatic basal cell carcinomas of the skin.

  3. TUMORAL TISSUE SPECIFIC PROMOTER HYPERMETHYLATION OF DISTINCT TUMOR SUPPRESSOR GENES IN A CASE WITH NONSMALL CELL LUNG CARCINOMA: A CASE REPORT

    PubMed Central

    Arslan, Sulhattin; Dogan, Tamer; Koksal, Binnur; Yildirim, Malik Ejder; Gumus, Cesur; Elagoz, Sahenda; Akkurt, Ibrahim; Ozdemir, Oztürk

    2008-01-01

    SUMMARY Objective: Non-small cell lung carcinoma is an aggressive phenomenon and the epigenetical alterations of some tumor supressor genes have been reported for the different tumor types. Case Presentation: It is presented a case report concerning a 43 years old male with NSCLC on the lower segment of the right lung. The patient underwent a diag-nostic excisional thin-needle biopsy and after the histological confirmation. We examined the promoter methylation status of some distinct tumor supressor genes in tumoral and blood tissues of the case after sodium bisulfite conversion and DNA amplification with methylation specific multiplex PCR technique. Both tissues were also searched for G to A transitions in codons 12 and 13 of the K-ras proto-oncogene. Results: Tumor specimen showed fully methyl pattern profiles for the SFRP2, p16, DAPK1 and partially hyper-methylated profile for the p53 and MGMT genes in this case with non-small lung carci-noma. Blood speicemen showed normal hypomethylated profiles for all studied TS genes. The K-ras proto-oncogene was in normal structure both in blood and tumoral spiecemens that examined. Conclusion: Results indicate that genes exhibit tumor suppressor activi-ties in blood, but exhibit epigenetic inactivation in carcinoma cell. These findings strongly support the hypothesis that epigenetic mechanisms may play an important role in the non-small cell lung carcinogenesis in human. PMID:21264081

  4. The synergy of tobacco and alcohol and glutathione S-transferase θ 1 gene deletion and oral squamous cell carcinoma

    PubMed Central

    D’ Mello, Sarah; Bavle, Radhika Manoj; Paremala, K; Makarla, Soumya; Sudhakara, M; Bhatt, Madhura

    2016-01-01

    Background: Oral squamous cell carcinoma (OSCC) is the leading cancer among males in India. It is related to tobacco habits and alcohol consumption as well as the individual susceptibility for xenobiotic metabolizing enzyme polymorphisms. Glutathione S-transferase θ 1 (GSTT1) is a Phase II metabolic enzyme which is directly involved in catalyzing chemicals to mutagenic intermediates. This gene is characterized by genetic polymorphism resulting in complete gene deletion and subsequent absence of the enzyme, which ultimately dictates the risk of cancer development. Scraping buccal mucosa to obtain DNA from the cells is a simple, readily acceptable and rapid method to detect and assess the gene. Aim: To assess GSTT1 gene deletion in individuals giving a history of tobacco smoking and/or chewing and alcohol consumption and absence of clinically detectable lesions; and in OSCC cases to gauge if GSTT1 gene deletion confers protection to an individual and whether it can be used as a “single” marker to arrive at this conclusion. To validate the use of buccal scrape for determining the genotype of an individual by assessing the polymorphism at GSTT1 gene locus (22q11.2). Materials and Methods: Fifty-two cases were evaluated using buccal mucosal scrapes of tobacco habituates for 8 or more years, without clinically evident lesion (Group I) and from mucosa of tobacco habituates with clinically evident and histopathologically confirmed OSCC (Group II). DNA extraction and genotype at GSTT1 gene locus was determined by polymerase chain reaction assay. Statistical Analysis: The results were statistically analyzed using Chi-square test. Results: 90.66% of subjects had GSTT1 null genotype in Group I subjects. In Group II, subjects with both clinically and histopathologically diagnosed oral cancer, about 76.96% had GSTT1 null genotype. Conclusion: GSTT1 null genotype confers protection to individuals with tobacco habits and alcohol consumption, predominantly to those who used

  5. Analysis of HAX-1 gene expression in esophageal squamous cell carcinoma

    PubMed Central

    2013-01-01

    Objective To explore the expression of HAX-1 mRNA and protein in esophageal squamous cell carcinoma (ESCC) and its relation with the prognosis of patients with ESCC. Methods The expression of HAX-1 mRNA and protein were detected with quantitative real-time RT-PCR and immunohistochemical method in 112 ESCC samples and 112 corresponding non-neoplastic samples. Survival curves were made with follow-up data. The relations of the prognosis with clinical and pathological characteristics were analyzed. Results The expression level of HAX-1 mRNA and the strong positive rate of HAX-1 protein were significantly higher in ESCC samples (0.527 ± 0.060 and 45.54%) than that in non-neoplastic samples (0.121 ± 0.017 and 0.00%), and in ESCC samples with lymph node metastasis (0.554 ± 0.054 and 71.11%) than that in ESCC samples without lymph node metastasis (0.509 ± 0.058 and 28.36%) (all P < 0.01). HAX-1 mRNA expression level was a risk factor of lymph node metastasis in patients with ESCC (P = 0.000). There were significant differences in survival curves between lymph node metastatic group and non-metastatic group (P = 0.000), and among groups of HAX-1 protein expression +, ++and +++(,P = 0.000); but no statistical significance between male patients and female patients (P = 0.119), and between ≥60 years old patients and <60 years old patients (P = 0.705). The level of HAX-1 mRNA (P = 0.000) and protein (P = 0.005) were risk factors of survival, but lymph node metastasis (P = 0.477) was not. Conclusion There is HAX-1 over-expression in ESCC tissue and HAX-1 mRNA level is a risk factor of lymph node metastasis. The level of HAX-1 mRNA and protein were risk factors of survival in patients with ESCC. HAX-1 may be a novel therapeutic target for ESCC treatment. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5130393079296037 PMID:23531395

  6. Effects of Cx43 gene modification on the proliferation and migration of the human lung squamous carcinoma cell line NCI-H226.

    PubMed

    Zang, J-P; Wei, R

    2015-10-27

    In this study, the human lung squamous carcinoma cell line NCI-H226 was transfected with the recombinant plasmid pBudCE4.1_Cx43 to explore the role of the Cx43 gene in cell growth, cell cycle, and tumor migration. pBudCE4.1-Cx43 was transfected into human lung squamous carcinoma NCI-H226 cells using Lipofectamine TM2000. The mRNA and protein expressions of Cx43 in the transfected cells were detected by reverse transcriptase polymerase chain reaction and western blot analysis. The cell-cell communication was detected using the scratch dye tracer method and the cell cycle was detected by flow cytometry. The CCK-8 proliferation, scratch healing, and cell invasion assays were performed to evaluate the effect of the Cx43 gene transfection on the proliferation, migration, and invasive abilities of NCI-H226 cells. Cx43 mRNA and protein expressions and the fluorescence intensity in the scratch healing test were significantly higher in the experimental group than those in the control and blank groups (P < 0.05 and < 0.01, respectively). The CCK-8 proliferation assay and the scratch healing experiment revealed significantly inhibited NCI-H226 cell proliferation (especially 72 h after incubation) and cell migration, respectively, in the experimental group, compared to the control and blank groups (P < 0.001 and <0.05, respectively). The transwell chamber test showed a statistically significant decrease in the invasive ability of NCI-H226 cells in the experimental group (P < 0.05). Therefore, Cx43 gene transfection could inhibit the migration of human lung squamous carcinoma cell line NCI-H226, thereby inhibiting tumor cell proliferation.

  7. Differential role of gene hypermethylation in adenocarcinomas, squamous cell carcinomas and cervical intraepithelial lesions of the uterine cervix.

    PubMed

    Blanco-Luquin, Idoia; Guarch, Rosa; Ojer, Amaya; Pérez-Janices, Noemí; Martín-Sánchez, Esperanza; Maria-Ruiz, Sergio; Monreal-Santesteban, Iñaki; Blanco-Fernandez, Laura; Pernaut-Leza, Eduardo; Escors, David; Guerrero-Setas, David

    2015-09-01

    Cervical cancer is the third most common cancer in women worldwide. The hypermethylation of P16, TSLC-1 and TSP-1 genes was analyzed in squamous cell carcinomas (SCC), cervical intraepithelial lesions (CIN) and adenocarcinomas (ADC) of the uterine cervix (total 181 lesions). Additionally human papillomavirus (HPV) type, EPB41L3, RASSF1 and RASSF2 hypermethylation were tested in ADC and the results were compared with those obtained previously by our group in SCC. P16, TSLC-1 and TSP-1 hypermethylation was more frequent in SCCs than in CINs. These percentages and the corresponding ones for EPB41L3, RASSF1 and RASSF2 genes were also higher in SCCs than in ADCs, except for P16. The presence of HPV in ADCs was lower than reported previously in SCC and CIN. Patients with RASSF1A hypermethylation showed significantly longer disease-free survival (P = 0.015) and overall survival periods (P = 0.009) in ADC patients. To our knowledge, this is the first description of the EPB41L3 and RASSF2 hypermethylation in ADCs. These results suggest that the involvement of DNA hypermethylation in cervical cancer varies depending on the histological type, which might contribute to explaining the different prognosis of patients with these types of tumors.

  8. Merkel cell carcinoma

    PubMed Central

    Koljonen, Virve

    2006-01-01

    Background Merkel cell carcinoma (MCC) is an unusual primary neuroendocrine carcinoma of the skin. MCC is a fatal disease, and patients have a poor chance of survival. Moreover, MCC lacks distinguishing clinical features, and thus by the time the diagnosis is made, the tumour usually have metastasized. MCC mainly affects sun-exposed areas of elderly persons. Half of the tumours are located in the head and neck region. Methods MCC was first described in 1972. Since then, most of the cases reported, have been in small series of patients. Most of the reports concern single cases or epidemiological studies. The present study reviews the world literature on MCC. The purpose of this article is to shed light on this unknown neuroendocrine carcinoma and provide the latest information on prognostic markers and treatment options. Results The epidemiological studies have revealed that large tumour size, male sex, truncal site, nodal/distant disease at presentation, and duration of disease before presentation, are poor prognostic factors. The recommended initial treatment is extensive local excision. Adjuvant radiation therapy has recently been shown to improve survival. Thus far, no chemotherapy protocol have achieved the same objective. Conclusion Although rare, the fatality of this malignancy makes is important to understand the etiology and pathophysiology. During the last few years, the research on MCC has produced prognostic markers, which can be translated into clinical patient care. PMID:16466578

  9. Integrating pathway analysis and genetics of gene expression for genome-wide association study of basal cell carcinoma.

    PubMed

    Zhang, Mingfeng; Liang, Liming; Morar, Nilesh; Dixon, Anna L; Lathrop, G Mark; Ding, Jun; Moffatt, Miriam F; Cookson, William O C; Kraft, Peter; Qureshi, Abrar A; Han, Jiali

    2012-04-01

    Genome-wide association studies (GWASs) have primarily focused on marginal effects for individual markers and have incorporated external functional information only after identifying robust statistical associations. We applied a new approach combining the genetics of gene expression and functional classification of genes to the GWAS of basal cell carcinoma (BCC) to identify potential biological pathways associated with BCC. We first identified 322,324 expression-associated single-nucleotide polymorphisms (eSNPs) from two existing GWASs of global gene expression in lymphoblastoid cell lines (n = 955), and evaluated the association of these functionally annotated SNPs with BCC among 2,045 BCC cases and 6,013 controls in Caucasians. We then grouped them into 99 KEGG pathways for pathway analysis and identified two pathways associated with BCC with p value <0.05 and false discovery rate (FDR) <0.5: the autoimmune thyroid disease pathway (mainly HLA class I and II antigens, p < 0.001, FDR = 0.24) and Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway (p = 0.02, FDR = 0.49). Seventy-nine (25.7%) out of 307 significant eSNPs in the JAK-STAT pathway were associated with BCC risk (p < 0.05) in an independent replication set of 278 BCC cases and 1,262 controls. In addition, the association of JAK-STAT signaling pathway was marginally validated using 16,691 eSNPs identified from 110 normal skin samples (p = 0.08). Based on the evidence of biological functions of the JAK-STAT pathway on oncogenesis, it is plausible that this pathway is involved in BCC pathogenesis.

  10. Gene discovery in oral squamous cell carcinoma through the Head and Neck Cancer Genome Anatomy Project: confirmation by microarray analysis.

    PubMed

    Leethanakul, C; Knezevic, V; Patel, V; Amornphimoltham, P; Gillespie, J; Shillitoe, E J; Emko, P; Park, M H; Emmert-Buck, M R; Strausberg, R L; Krizman, D B; Gutkind, J S

    2003-04-01

    The near completion of the human genome project and the recent development of novel, highly sensitive high-throughput techniques have now afforded the unique opportunity to perform a comprehensive molecular characterization of normal, precancerous, and malignant cells, including those derived from squamous carcinomas of the head and neck (HNSCC). As part of these efforts, representative cDNA libraries from patient sets, comprising of normal and malignant squamous epithelium, were generated and contributed to the Head and Neck Cancer Genome Anatomy Project (HN-CGAP). Initial analysis of the sequence information indicated the existence of many novel genes in these libraries [Oral Oncol 36 (2000) 474]. In this study, we surveyed the available sequence information using bioinformatic tools and identified a number of known genes that were differentially expressed in normal and malignant epithelium. Furthermore, this effort resulted in the identification of 168 novel genes. Comparison of these clones to the human genome identified clusters in loci that were not previously recognized as being altered in HNSCC. To begin addressing which of these novel genes are frequently expressed in HNSCC, their DNA was used to construct an oral-cancer-specific microarray, which was used to hybridize alpha-(33)P dCTP labeled cDNA derived from five HNSCC patient sets. Initial assessment demonstrated 10 clones to be highly expressed (>2-fold) in the normal squamous epithelium, while 14 were highly represented in the malignant counterpart, in three of the five patient sets, thus suggesting that a subset of these newly discovered transcripts might be highly expressed in this tumor type. These efforts, together with other multi-institutional genomic and proteomic initiatives are expected to contribute to the complete understanding of the molecular pathogenesis of HNSCCs, thus helping to identify new markers for the early detection of preneoplastic lesions and novel targets for pharmacological

  11. Molecular epidemiology of VHL gene mutations in renal cell carcinoma patients: relation to dietary and other factors.

    PubMed

    Hemminki, Kari; Jiang, Yongwen; Ma, Xin; Yang, Ke; Egevad, Lars; Lindblad, Per

    2002-05-01

    Carcinogenic chemicals act through DNA damage and mitogenic effects. No established mechanism explains the cancer preventive effects, if any, of food items, such as vegetables and fruit. If such data were available, preferably on tumor-initiating genes, the evidence for the protective effects would become stronger. The von Hipple-Lindau (VHL) gene is the tumor suppressor gene predisposing to both sporadic renal cell carcinoma (RCC) and von Hippel-Lindau disease. We have earlier analyzed VHL mutations in RCCs from 102 Swedish patients identified in a case-control study and here examine associations between patient characteristics, including dietary habits and mutations, considering the type of mutation. The results are given as odds ratios (OR), separately for smokers and all patients. In univariate analysis, consumption of vegetables and citrus fruit decreased the frequency of VHL mutations among smokers and citrus fruit among all patients. In multivariate analysis of smokers' characteristics, welding fumes showed a risk of 5.63 for multiple VHL mutations. In smokers, citrus fruit decreased the OR of GC to AT mutations to 0.13 and that of multiple mutations to 0.17; vegetables decreased the OR for single mutations to 0.22. Among all subjects, welding fumes were a risk factor and citrus fruit a protective factor. Additionally, an intake of selenium protected against multiple mutations. The present results provide evidence that the intake of vegetables, selenium and particularly of citrus fruit protects the renal VHL gene from mutational insults that may be endogenous or common in a population. Even though most of the associations are biologically plausible, and vegetables and fruit were an a priori hypothesis, fortuitous results cannot be ruled out in this relatively small study.

  12. Comparative SRY incorporation on the regulatory regions of pluripotency/differentiation genes in human embryonic carcinoma cells after retinoic acid induction.

    PubMed

    Kakhki, Sara Ashrafi; Shahhoseini, Maryam; Salekdeh, Ghasem Hosseini

    2013-04-01

    Members of the SOX (SRY box) family proteins play critical roles in multiple aspects of development. SRY, as a founder member of SOX family, has been long believed to be involved in the development of sexual gonads by triggering signaling cascades which lead to the formation of testis or ovary from bipotential gonads. However, less is known about other potential regulatory roles of SRY in the development and differentiation. In order to gain further insight into the possible roles of SRY during development, we looked into possible SRY-regulated genes and their levels of expression in a human embryonic carcinoma cell line, named NTera2, before and after induction of differentiation. For this respect, SRY incorporation on the regulatory regions of two groups of genes including OCT4, NANOG, and SOX2 as pluripotency marker genes, and NESTIN and PAX6 as differentiation marker genes were evaluated quantitatively. Chromatin immunoprecipitation using SRY antibody was performed on chromatin extract of a human embryonic carcinoma cell line, NT2/NTERA-2, before and after onset of differentiation. The results showed that incorporation of SRY in both groups of genes was increased after induction of differentiation. Besides, lower expression of OCT4, SOX2, and NANOG and higher expression of PAX6 and NESTIN genes in differentiated cells suggest that SRY may act as a transcription repressor for pluripotency-associated genes and as a transcription activator for differentiation-related genes.

  13. Suicide gene therapy for hepatocellular carcinoma cells by survivin promoter-driven expression of the herpes simplex virus thymidine kinase gene

    PubMed Central

    QU, LILI; WANG, YANYUN; GONG, LAILING; ZHU, JIN; GONG, RUJUN; SI, JIN

    2013-01-01

    The aim of this study was to investigate the selective killing effect of the herpes simplex virus-thymidine kinase/ganciclovir (TK/GCV) suicide gene system controlled by the survivin promoter on hepatocellular carcinoma (HCC) cells in vitro. Recombinant plasmid vectors driven by the survivin promoter were constructed. HepG2 HCC and LO2 normal human liver cells were transfected with the recombinant plasmids, green fluorescent protein (GFP)/pSURV, TK/pSURV and TAT-TK/pSURV. GFP expression was detected by fluoroscopy and flow cytometry (FCM). TK gene expression was detected using RT-PCR and western blot analysis. The selective killing effects after GCV application were evaluated by tetrazolium assay, FCM and western blot analysis. Statistical analysis was performed by ANOVA. After transfection with GFP/pSURV, TK/pSURV and TAT-TK/pSURV for 48 h, GFP expression was observed in the HepG2 cells, but not in the L02 cells and TK gene expression was evidently detected by RT-PCR and western blot analysis in the HepG2 cells. Three stably transfected cell lines (HepG2/pSURV, HepG2/TK/pSURV and HepG2/TAT-TK/pSURV) were successfully established. Compared with the HepG2/TK/pSURV group, a significant ‘bystander effect’ was observed in the HepG2/TAT-TK/pSURV group with the incorporation of unmodifed HepG2 cells at different ratios. Following transfection with TK/pSURV and TAT-TK/pSURV, the growth of HepG2 cells in the presence of GCV was markedly inhibited. This finding was further corroborated by FCM and immunoblot analysis revealed the repressed expression of proliferating cell nuclear antigen (PCNA). Our results showed that the plasmid vectors carrying the TK and TAT-TK fusion protein gene driven by the survivin promoter were successfully constructed and their specific expression in HepG2 cells provided the basis for the targeted gene therapy of HCC. PMID:23354806

  14. Suicide gene therapy for hepatocellular carcinoma cells by survivin promoter-driven expression of the herpes simplex virus thymidine kinase gene.

    PubMed

    Qu, Lili; Wang, Yanyun; Gong, Lailing; Zhu, Jin; Gong, Rujun; Si, Jin

    2013-04-01

    The aim of this study was to investigate the selective killing effect of the herpes simplex virus-thymidine kinase/ganciclovir (TK/GCV) suicide gene system controlled by the survivin promoter on hepatocellular carcinoma (HCC) cells in vitro. Recombinant plasmid vectors driven by the survivin promoter were constructed. HepG2 HCC and LO2 normal human liver cells were transfected with the recombinant plasmids, green fluorescent protein (GFP)/pSURV, TK/pSURV and TAT-TK/pSURV. GFP expression was detected by fluoroscopy and flow cytometry (FCM). TK gene expression was detected using RT-PCR and western blot analysis. The selective killing effects after GCV application were evaluated by tetrazolium assay, FCM and western blot analysis. Statistical analysis was performed by ANOVA. After transfection with GFP/pSURV, TK/pSURV and TAT-TK/pSURV for 48 h, GFP expression was observed in the HepG2 cells, but not in the L02 cells and TK gene expression was evidently detected by RT-PCR and western blot analysis in the HepG2 cells. Three stably transfected cell lines (HepG2/pSURV, HepG2/TK/pSURV and HepG2/TAT-TK/pSURV) were successfully established. Compared with the HepG2/TK/pSURV group, a significant 'bystander effect' was observed in the HepG2/TAT-TK/pSURV group with the incorporation of unmodifed HepG2 cells at different ratios. Following transfection with TK/pSURV and TAT-TK/pSURV, the growth of HepG2 cells in the presence of GCV was markedly inhibited. This finding was further corroborated by FCM and immunoblot analysis revealed the repressed expression of proliferating cell nuclear antigen (PCNA). Our results showed that the plasmid vectors carrying the TK and TAT-TK fusion protein gene driven by the survivin promoter were successfully constructed and their specific expression in HepG2 cells provided the basis for the targeted gene therapy of HCC.

  15. Inhibition of alpha-mannosidase Man2c1 gene expression suppresses growth of esophageal carcinoma cells through mitotic arrest and apoptosis.

    PubMed

    Tian, Yun; Ju, Ji Yu; Zhou, Yi Qun; Liu, Yin; Zhu, Li Ping

    2008-12-01

    To study the effects of suppressed alpha-mannosidase Man2c1 gene expression on EC9706 human esophageal carcinoma cells, the cells were treated with short interfering RNA. Growth inhibition of EC9706 cells was observed when Man2c1 expression was inhibited in this way. Flow cytometric analysis showed accumulation of cells in S and G(2)-M phases, as well as cell apoptosis. The mitotic index test showed cell-cycle arrest at the M checkpoint. Although the percentage of cells in (pro)metaphase increased, the proportion of cells in anaphase and telophase decreased. Apoptosis was trigged by mitotic arrest. Furthermore, microtubules in EC9607 cells were examined by means of fluorescence staining of alpha-tubulin. Although control cells showed a nest-like microtubule network, the microtubule network in experimental cells was vague and condensed at the perinuclear region. Some cells with Man2c1 suppression had large protrusions of cytoplasm, some of which linked with the main body through a long, thin connection. Western blotting showed that tubulin polymerization was inhibited. The data imply that induction of mitotic arrest and consequent apoptosis resulted from microtubule disorganization, which appears to be one of the major cellular mechanisms by which suppressed expression of the Man2c1 gene causes growth inhibition of EC9706 esophageal carcinoma cells. In addition, Man2c1 suppression results in upregulation of E-cadherin, alpha-catenin, and beta-catenin expression in cells.

  16. Lack of a Functional VHL Gene Product Sensitizes Renal Cell Carcinoma Cells to the Apoptotic Effects of the Protein Synthesis Inhibitor Verrucarin A12

    PubMed Central

    Woldemichael, Girma M; Turbyville, Thomas J; Vasselli, James R; Linehan, W Marston; McMahon, James B

    2012-01-01

    Verrucarin A (VA) is a small molecule derived from the fungal plant pathogen Myrothecium verrucaria and was identified as a selective inhibitor of clear cell renal cell carcinoma (CCRCC) cell proliferation in a high-throughput screen of a library of naturally occurring small molecules. CCRCC arises as a result of loss-of-function mutations in the von Hippel-Lindau (VHL) gene. Here we show that VA inhibits protein translation initiation culminating in apoptosis through the extrinsic signaling pathway. Reintroduction of the VHL gene in CCRCC cells afforded resistance to VA's apoptotic effects. This resistance is mediated in part by the formation of stress granules that entrap signaling molecules that initiate the apoptotic signaling cascade. The VHL gene product was found to be a component of stress granules that develop as result of VA treatment. These findings reveal an important role for the VHL gene product in cytotoxic stress response and have important implications for the rational development of VA-related compounds in chemotherapeutic targeting of CCRCC. PMID:22952429

  17. Cell-specific induction of sensitivity to ganciclovir in medullary thyroid carcinoma cells by adenovirus-mediated gene transfer of herpes simplex virus thymidine kinase.

    PubMed

    Minemura, K; Takeda, T; Minemura, K; Nagasawa, T; Zhang, R; Leopardi, R; DeGroot, L J

    2000-05-01

    Herpes simplex virus thymidine kinase (HSVtk) gene transfer followed by ganciclovir administration is a common strategy for experimental cancer therapy. To evaluate the feasibility of using the human calcitonin promoter to target medullary thyroid carcinoma (MTC), we developed adenovirus vectors containing Escherichia coli beta-galactosidase gene under the control of the CALC-I promoter (AdCTlacZ), or the human cytomegalovirus promoter (AdCMVlacZ). Beta-galactosidase activity driven by the CALC-I promoter was higher than by the CMV promoter in rat MTC cells after infection with adenovirus vectors. AdCTlacZ induced an equal or lower expression level of beta-galactosidase in TT (human MTC), T98G, Cos1, HepG2, and HeLa cells compared with AdCMVlacZ. To inhibit the growth of MTC cells, we developed two adenovirus vectors, AdCMVtk carrying HSVtk driven by the cytomegalovirus promoter and AdDCTtk containing a human CALC-I minigene under the control of the CALC-I promoter. HSVtk is fused to a portion of calcitonin coded in exon 4 to direct cell-specific regulation of splicing. All cell lines infected with AdCMVtk were rendered sensitive to ganciclovir, whereas T98G and Cos1 cells infected with AdDCTtk were not affected. Cell killing was also observed in HeLa, HepG2, rat MTC and TT cells infected with AdDCTtk.

  18. Loss of heterozygosity of tumor suppressor genes (p16, Rb, E-cadherin, p53) in hypopharynx squamous cell carcinoma.

    PubMed

    Sang-Hyuk Lee, Sang-Hyuk; Lee, Nam-Hoon; Jin, Sung-Min; Rho, Young-Soo; Jo, Sung-Jin

    2011-07-01

    Microsatellite alterations, especially those that cause loss of heterozygosity (LOH), have recently been postulated as a novel mechanism of carcinogenesis and a useful prognostic factor in many kinds of malignant tumors. However, few studies have focused on a specific site, hypopharynx. The aim of this study was to evaluate the relationship between LOH and hypopharyngeal squamous cell carcinoma (HPSCC). Laboratory-based study. Integrated health care system. Matched normal and cancerous tissues from 30 patients with HPSCC were examined for LOH in 4 tumor suppressor genes (TSGs) (p16, Rb, E-cadherin, and p53) at loci 9p21, 13q21, 6q22, and 17p13, respectively, using microsatellite markers amplified by polymerase chain reaction. The results for each loci were compared with clinicopathological features. Among the 30 cases, 26 (86.7%) exhibited LOH, with the most common alteration being LOH at p53 (52.6%). Significantly higher rates of LOH detection were seen in Rb, p53, and the LOH-high group (cases where 2 or more loci with LOH were found) in cases of lymph node metastasis. Compared with stage I and II carcinoma, tumors of stages III and IV had significantly higher frequencies of LOH in Rb, p53, and the LOH-high group. However, the presence of LOH was not significantly correlated with survival. These results suggest that LOH in TSGs such as Rb and p53 may contribute to the development and progression of HPSCC. The presence of LOH in the primary tumor may also be predictive of lymph node metastasis.

  19. Squamous cell carcinoma.

    PubMed

    Webb, Julie L; Burns, Rachel E; Brown, Holly M; LeRoy, Bruce E; Kosarek, Carrie E

    2009-03-01

    Squamous cell carcinoma (SCC) is a relatively common, malignant neoplasm of dogs and cats that can arise in a variety of locations. The gross appearance of SCC can be variable and nonspecific, so definitive diagnosis requires microscopic examination of the tissue (cytology or histology). Several treatment modalities exist, but surgical excision, if possible, is regarded as the best treatment option. Early diagnosis and treatment of SCC are key because small, early-stage tumors are the most amenable to treatment and carry the best prognosis.

  20. Profiling cancer-related gene mutations in oral squamous cell carcinoma from Japanese patients by targeted amplicon sequencing.

    PubMed

    Nakagaki, Takafumi; Tamura, Miyuki; Kobashi, Kenta; Koyama, Ryota; Fukushima, Hisayo; Ohashi, Tomoko; Idogawa, Masashi; Ogi, Kazuhiro; Hiratsuka, Hiroyoshi; Tokino, Takashi; Sasaki, Yasushi

    2017-08-29

    Somatic mutation analysis is a standard practice in the study of human cancers to identify mutations that cause therapeutic sensitization and resistance. We performed comprehensive genomic analyses that used PCR target enrichment and next-generation sequencing on Ion Proton semiconductor sequencers. Forty-seven oral squamous cell carcinoma (OSCC) samples and their corresponding noncancerous tissues were used for multiplex PCR amplification to obtain targeted coverage of the entire coding regions of 409 cancer-related genes (covered regions: 95.4% of total, 1.69 megabases of target sequence). The number of somatic mutations in 47 patients with OSCC ranged from 1 to 20 with a mean of 7.60. The most frequent mutations were in TP53 (61.7%), NOTCH1 (25.5%), CDKN2A (19.1%), SYNE1 (14.9%), PIK3CA (10.6%), ROS1 (10.6%), and TAF1L (10.6%). We also detected copy number variations (CNVs) in the segments of the genome that could be duplicated or deleted from deep sequencing data. Pathway assessment showed that the somatic aberrations within OSCC genomes are mainly involved in several important pathways, including cell cycle regulation and RTK-MAPK-PI3K. This study may enable better selection of therapies and deliver improved outcomes for OSCC patients when combined with clinical diagnostics.

  1. Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma.

    PubMed

    Clark, J; Lu, Y J; Sidhar, S K; Parker, C; Gill, S; Smedley, D; Hamoudi, R; Linehan, W M; Shipley, J; Cooper, C S

    1997-10-01

    We demonstrate that the cytogenetically defined translocation t(X;1)(p11.2;p34) observed in papillary renal cell carcinomas results in the fusion of the splicing factor gene PSF located at 1p34 to the TFE3 helix-loop-helix transcription factor gene at Xp11.2. In addition we define an X chromosome inversion inv(X)(p11.2;q12) that results in the fusion of the NonO (p54nrb) gene to TFE3. NonO (p54nrb), the human homologue of the Drosophila gene NonAdiss which controls the male courtship song, is closely related to PSF and also believed to be involved in RNA splicing. In each case the rearrangement results in the fusion of almost the entire splicing factor protein to the TFE3 DNA-binding domain. These observations suggest the possibility of intriguing links between the processes of RNA splicing, DNA transcription and oncogenesis.

  2. Metastatic Basal cell carcinoma accompanying gorlin syndrome.

    PubMed

    Bilir, Yeliz; Gokce, Erkan; Ozturk, Banu; Deresoy, Faik Alev; Yuksekkaya, Ruken; Yaman, Emel

    2014-01-01

    Gorlin-Goltz syndrome or basal cell nevus syndrome is an autosomal dominant syndrome characterized by skeletal anomalies, numerous cysts observed in the jaw, and multiple basal cell carcinoma of the skin, which may be accompanied by falx cerebri calcification. Basal cell carcinoma is the most commonly skin tumor with slow clinical course and low metastatic potential. Its concomitance with Gorlin syndrome, resulting from a mutation in a tumor suppressor gene, may substantially change morbidity and mortality. A 66-year-old male patient with a history of recurrent basal cell carcinoma was presented with exophthalmus in the left eye and the lesions localized in the left lateral orbita and left zygomatic area. His physical examination revealed hearing loss, gapped teeth, highly arched palate, and frontal prominence. Left orbital mass, cystic masses at frontal and ethmoidal sinuses, and multiple pulmonary nodules were detected at CT scans. Basal cell carcinoma was diagnosed from biopsy of ethmoid sinus. Based on the clinical and typical radiological characteristics (falx cerebri calcification, bifid costa, and odontogenic cysts), the patient was diagnosed with metastatic skin basal cell carcinoma accompanied by Gorlin syndrome. Our case is a basal cell carcinoma with aggressive course accompanying a rarely seen syndrome.

  3. Overexpression of astrocyte elevated gene-1 (AEG-1) is associated with esophageal squamous cell carcinoma (ESCC) progression and pathogenesis.

    PubMed

    Yu, Chunping; Chen, Kun; Zheng, Haiqing; Guo, Xianzhi; Jia, Weihua; Li, Manzhi; Zeng, Musheng; Li, Jun; Song, Libing

    2009-05-01

    Astrocyte elevated gene-1 (AEG-1), upregulated in various types of human cancers, has been reported to be associated with the carcinogenesis of human cancer. However, the functional significance of AEG-1 in human esophageal squamous cell carcinoma (ESCC) remains unknown. In the present study, we showed the expression of AEG-1 was markedly upregulated in esophageal cancer cell lines and surgical ESCC specimens at both transcriptional and translational levels. Immunohistochemical analysis revealed that 80 of 168 (47.6%) paraffin-embedded archival ESCC specimens exhibited high levels of AEG-1 expression. Statistical analysis suggested the upregulation of AEG-1 was significantly correlated with the clinical staging of the ESCC patients (P = 0.001), T classification (P = 0.002), N classification (P = 0.034), M classification (P = 0.021) and histological differentiation (P = 0.035) and those patients with high AEG-1 levels exhibited shorter survival time (P < 0.001). Multivariate analysis indicated that AEG-1 expression might be an independent prognostic indicator of the survival of patients with ESCC. Furthermore, we found that ectopic expression of AEG-1 in ESCC cells could significantly enhance cell proliferation and anchorage-independent growth ability. Conversely, silencing AEG-1 by short hairpin RNAi caused an inhibition of cell growth and anchorage-independent growth ability on soft agar. Moreover, we demonstrated that the upregulation of AEG-1 could reduce the expression of p27(Kip1) and induce the expression of cyclin D1 through the AKT/FOXO3a pathway. Our findings suggest that the AEG-1 protein is a valuable marker of ESCC progression and that the upregulation of AEG-1 plays an important role in the development and pathogenesis of human ESCC.

  4. Pleomorphic carcinomas of the lung show a selective distribution of gene products involved in cell differentiation, cell cycle control, tumor growth, and tumor cell motility: a clinicopathologic and immunohistochemical study of 31 cases.

    PubMed

    Pelosi, Giuseppe; Fraggetta, Filippo; Nappi, Oscar; Pastorino, Ugo; Maisonneuve, Patrick; Pasini, Felice; Iannucci, Antonio; Solli, Piergiorgio; Musavinasab, Hossein S; De Manzoni, Giovanni; Terzi, Alberto; Viale, Giuseppe

    2003-09-01

    We investigated 31 cases of pleomorphic carcinomas of the lung, with a double component of neoplastic epithelial cells and of spindle and/or giant cells. To correlate the morphologic diversity of these two cell components with their immunophenotype, we evaluated the expression of several gene products involved in cell differentiation (cytokeratins, epithelial membrane antigen, carcinoembryonic antigen, vimentin, S-100 protein, smooth muscle actin, desmin), cell cycle control and apoptosis (p53, p21Waf1, p27Kip1, FHIT), tumor growth (proliferative fraction, assessed by Ki-67 antigen, and microvascular density, assessed by CD34 immunostaining), and tumor cell motility (fascin). We found the epithelial component to be significantly more immunoreactive for cytokeratins, epithelial membrane antigen, carcinoembryonic antigen, cell cycle inhibitors p21Waf1, p27Kip1 and tumor suppressor gene FHIT, whereas the sarcomatoid component, independent of tumor stage and size, was more immunoreactive for vimentin, fascin, and microvascular density. Accordingly, we suggest a model of tumorigenesis whereby the mesenchymal phenotype of pleomorphic cells is likely induced by the selective activation and segregation of several molecules involved in cell differentiation, cell cycle control, and tumor cell growth and motility. Whether pleomorphic carcinomas of the lung are tumors with a dismal prognosis still remains an unsettled issue. In our series, however, stage I pleomorphic carcinomas have the same clinical behavior as ordinary non-small cell lung cancer, and only a high proliferative index (Ki-67 labeling index >35%) is associated with a worse prognosis in these tumors.

  5. Identification of reliable reference genes for quantitative gene expression studies in oral squamous cell carcinomas compared to adjacent normal tissues in the F344 rat model.

    PubMed

    Peng, Xinjian; McCormick, David L

    2016-08-01

    Oral squamous cell carcinomas (OSCCs) induced in F344 rats by 4-nitroquinoline-1-oxide (4-NQO) demonstrate considerable phenotypic similarity to human oral cancers and the model has been widely used for carcinogenesis and chemoprevention studies. Molecular characterization of this model needs reliable reference genes (RGs) to avoid false- positive and -negative results for proper interpretation of gene expression data between tumor and adjacent normal tissues. Microarray analysis of 11 pairs of OSCC and site-matched phenotypically normal oral tissues from 4-NQO-treated rats identified 10 stably expressed genes in OSCC compared to adjacent normal tissues (p>0.5, CV<15%) that could serve as potential RGs in this model. The commonly used 27 RGs in the rat were also analyzed based on microarray data and most of them were found unsuitable for RGs in this model. Traditional RGs such as ACTB and GAPDH were significantly altered in OSCC compared to adjacent normal tissues (p<0.01, n=11); however, the Hsp90ab1 was ranked as the best RG candidate and the combination of Hsp90ab1 and HPRT1 was identified by NormFinder to be a superior reference for gene normalization among the commonly used RGs. This result was also validated by RT-PCR based on the selected top RG candidate pool. These data suggest that there are no common RGs suitable for different models and RG(s) should be identified before gene expression analysis. We successfully identified Hsp90ab1 as a stable RG in 4-NQO-induced OSCC compared to adjacent normal tissues in F344 rats. The combination of two stably expressed genes may be a better option for gene normalization in tissue samples.

  6. Effects of targeted silencing of FOXC1 gene on proliferation and in vitro migration of human non-small-cell lung carcinoma cells

    PubMed Central

    Chen, Sumei; Jiao, Shunchang; Jia, Youchao; Li, Yang

    2016-01-01

    Background: The aim of this study was to evaluate the effects of targeted silencing of forkhead box C1 (FOXC1) gene with small interfering RNA (siRNA) on the proliferation and in vitro migration of human non-small-cell lung carcinoma (NSCLC) A549 and NCIH460 cells, and to explore the molecular mechanism. Methods: These cells were divided into FOXC1 siRNA groups and negative control groups. Results: Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) showed that compared with normal cells and paracancerous tissues, FOXC1 mRNA expressions in NSCLC cells and tissues were significantly higher (P<0.05). qRT-PCR and Western blot showed that FOXC1 siRNA effectively silenced FOXC1 gene expression in NSCLC cells. EdU labeling assay revealed that the proliferative capacity significantly decreased compared with that of normal control group after FOXC1 silencing (P<0.05). Significantly fewer cells in the transfected group migrated than those in negative control group did. After FOXC1 silencing, NSCLC cells were arrested in the G0/G1 phase, which were significantly different from those in negative control group (P<0.05). Compared with negative control group, the expression of cyclin D1 decreased and that of E-cadherin increased. Meanwhile, vimentin and MMP-2 expressions significantly reduced (P<0.05). FOXC1 siRNA effectively silenced FOXC1 gene expressions in NSCLC cells, inhibited their proliferation and invasion, and arrested them in the G0/G1 phase, suggesting that FOXC1 affected proliferation probably by regulating the expression of cell cycle-related protein cyclin D1. Conclusion: Silencing FOXC1 may evidently inhibit the migration of these cells by reversing the EMT process through suppressing cadherin, being associated with the expressions of extracellular MMPs. PMID:27648121

  7. Lobomycosis and squamous cell carcinoma*

    PubMed Central

    Nogueira, Lisiane; Rodrigues, Luciana; Rodrigues, Carlos Alberto Chirano; Santos, Mônica; Talhari, Sinésio; Talhari, Carolina

    2013-01-01

    The occurence of squamous cell carcinoma on long-lasting ulcers is classic. Malignant transformation may occur on burn scars and chronic ulcers of varying etiology, including infectious agents. Transformation of old lobomycosis lesion scars into squamous cell carcinoma has been rarely reported. Careful and long-term follow-up of such patients is important to avoid carcinomatous transformation. PMID:23739701

  8. Targeting Ovarian Carcinoma Stem Cells

    DTIC Science & Technology

    2012-05-01

    expertise with expertise in gynecologic oncology /ovarian carcinoma and in animal models of cancer this proposal will: 1) Identify, isolate, and...more numerous differentiated progeny characterizing the malignancy . Although the clinical significance of these cancer stem cells (CSC) has been...the dramatic initial response rates in ovarian carcinoma represent therapeutic effectiveness against the differentiated cancer cells making up the

  9. p53 gene product expression in resected non-small cell carcinoma of the lung, with studies of concurrent cytological preparations and microwave antigen retrieval.

    PubMed Central

    Binks, S; Clelland, C A; Ronan, J; Bell, J

    1997-01-01

    AIM: To document the frequency and extent of p53 gene product expression in paraffin sections of resected non-small cell carcinoma of the lung and in cytological preparations of the same tumours; to determine the effect of microwave antigen retrieval on antigen detection. METHODS: Representative paraffin sections of 50 non-small cell carcinomas were stained with an antibody to p53 gene product (DO-7) both with and without prior microwave antigen retrieval. Cytoblocks and cell smears obtained from 19 cases were similarly stained. RESULTS: Using a histochemical scoring system (0-300) which takes into account staining intensity and extent, 78% (n = 39) of microwave pretreated paraffin sections and 52% (n = 26) of non-pretreated sections scored between 5 and 300; p = 0.001; 56% (n = 28) of microwave pretreated sections and only 2% (n = 1) of non-pretreated sections scored between 100 and 300 (p = 0.0001); 75% of direct smears of tumours and 80% of cytoblocks stained similarly to the paraffin sections of the resected specimens. No smears or cytoblocks stained positively when the sections of the resected specimen were negative. CONCLUSIONS: As up to 78% of non-small cell lung carcinomas overexpress p53 gene product, this may prove to be a valuable diagnostic method in biopsy or cytological material when the morphological diagnosis is uncertain. Microwave antigen retrieval is effective on formalin fixed tissue. Images PMID:9215149

  10. FUT11 as a potential biomarker of clear cell renal cell carcinoma progression based on meta-analysis of gene expression data.

    PubMed

    Zodro, Elżbieta; Jaroszewski, Marcin; Ida, Agnieszka; Wrzesiński, Tomasz; Kwias, Zbigniew; Bluyssen, Hans; Wesoly, Joanna

    2014-03-01

    In this paper, we provide a comprehensive summary of available clear cell renal cell carcinoma (ccRCC) microarray data in the form of meta-analysis of genes differentially regulated in tumors as compared to healthy tissue, using effect size to measure the strength of a relationship between the disease and gene expression. We identified 725 differentially regulated genes, with a number of interesting targets, such as TMEM213, SMIM5, or ATPases: ATP6V0A4 and ATP6V1G3, of which limited or no information is available in terms of their function in ccRCC pathology. Downregulated genes tended to represent pathways related to tissue remodeling, blood clotting, vasodilation, and energy metabolism, while upregulated genes were classified into pathways generally deregulated in cancers: immune system response, inflammatory response, angiogenesis, and apoptosis. One hundred fifteen deregulated genes were included in network analysis, with EGLN3, AP-2, NR3C1, HIF1A, and EPAS1 (gene encoding HIF2-α) as points of functional convergence, but, interestingly, 610 genes failed to join previously identified molecular networks. Furthermore, we validated the expression of 14 top deregulated genes in independent sample set of 32 ccRCC tumors by qPCR and tested if it could serve as a marker of disease progression. We found a correlation of high fucosyltransferase 11 (FUT11) expression with non-symptomatic course of the disease, which suggests that FUT11's expression might be potentially used as a biomarker of disease progression.

  11. Correlation of Ataxia-Telangiectasia-Mutated (ATM) gene loss with outcome in head and neck squamous cell carcinoma.

    PubMed

    Lim, Annette M; Young, Richard J; Collins, Marnie; Fox, Stephen B; McArthur, Grant A; Corry, June; Peters, Lester; Rischin, Danny; Solomon, Benjamin

    2012-08-01

    Ataxia-Telangiectasia-Mutated (ATM) gene loss has been associated with poor prognosis and treatment resistance in head and neck squamous cell carcinomas (HNSCC). We investigated the relationship between ATM loss detected by fluorescence in-situ hybridisation (FISH) with patient outcome, and its relationship with Human Papillomavirus (HPV)/p16(INK4A) status. Copy number of the ATM gene and chromosome 11 were determined by FISH and HPV status was determined using p16(INK4A) immunohistochemistry in 87 paraffin embedded tumour samples from patients with HNSCC treated with chemoradiation at a single institution. ATM loss was correlated with patient outcome as both a continuous and dichotomous variable. Of 73 evaluable patients, 44 (60.3%) demonstrated loss of the ATM gene. There was no correlation between ATM loss (defined as a mean ratio of ATM: chromosome 11<0.75) and overall survival (OS, p=0.67) or time to locoregional failure (TTLRF, p=0.72). Similarly, when evaluated as a continuous variable there was no significant relationship between ATM loss and patient outcome (OS, p=0.89; TTLRF, p=0.21). No significant relationship was found between p16(INK4A) status and ATM loss, for patient outcome. We found 35.6% (n=26) of patients demonstrated polysomy of chromosome 11 (defined as the presence of a mean >2.5 copies of chromosome 11) which was significantly associated with p16(INK4A) negative status (p=0.0004), but did not influence outcome. ATM loss is a frequent event in HNSCC, however it does not impact outcome after treatment with chemoradiation. Polysomy of chromosome 11 was significantly associated with p16(INK4A) negative status but also lacks prognostic significance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Association of Interleukin-10 (A1082G) gene polymorphism with Oral squamous cell carcinoma in north Indian population.

    PubMed

    Hussain, Syed Rizwan; Ahmad, Mohammad Kaleem; Mahdi, Abbas Ali; Naqvi, Hena; Ahmad, Mohammad Waseem; Srivastava, Saurabh; Nigam, Kumud; Gupta, Shalini

    2016-06-01

    The functional polymorphism A1082G in the gene (IL10) for interleukin-10 associated with risk of oral squamous cell carcinoma (OSCC). The present case-control study was to evaluate the possible association between IL10 A1082G gene and OSCC in north Indian population. Analysis of IL10 A1082G genotype in 232 OSCC cases and 221 healthy controls of comparable age, gender, smokers, tobacco chewing and alcohol consumption. IL10 A1082G status in cases and controls were evaluated by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). The frequencies of IL10 A1082G polymorphism AA, AG, GG genotypes were 29.74, 68.10 and 2.15% in OSCC cases and 57.46, 42.08 and 0.45% in healthy controls. The average frequency of G mutant allele was 36.20% in OSCC cases compared with 21.50% among the controls and this allele was associated with increased risk for OSCC cases. Heterozygous AG genotype was found statistically significant in OSCC cases than in controls (OR = 1.6, 95% CI = 1.1-2.2, P = 0.003), whereas homozygous mutant GG genotype was not found significant (OR = 4.7, 95% CI = 0.55-41.1, P = 0.2). Moreover, we found that G allele was significant in OSCC cases of tobacco chewing. The frequency of IL10 A1082G polymorphism G allele and AG genotype is associated with OSCC cases as compared with controls; this may be due to smoking and tobacco chewing. Our findings showed that in IL10 A1082G gene polymorphism AG genotype and G allele may participate in the progression of OSCC.

  13. E6 and E7 gene silencing results in decreased methylation of tumor suppressor genes and induces phenotype transformation of human cervical carcinoma cell lines.

    PubMed

    Li, Liming; Xu, Cui; Long, Jia; Shen, Danbei; Zhou, Wuqing; Zhou, Qiyan; Yang, Jia; Jiang, Mingjun

    2015-09-15

    In SiHa and CaSki cells, E6 and E7-targeting shRNA specifically and effectively knocked down human papillomavirus (HPV) 16 E6 and E7 at the transcriptional level, reduced the E6 and E7 mRNA levels by more than 80% compared with control cells that expressed a scrambled-sequence shRNA. E6 and E7 repression resulted in down-regulation of DNA methyltransferase mRNA and protein expression, decreased DNA methylation and increased mRNA expression levels of tumor suppressor genes, induced a certain apoptosis and inhibited proliferation in E6 and E7 shRNA-infected SiHa and CaSki cells compared with the uninfected cells. Repression of E6 and E7 oncogenes resulted in restoration of DNA methyltransferase suppressor pathways and induced apoptosis in HPV16-positive cervical carcinoma cell lines. Our findings suggest that the potential carcinogenic mechanism of HPV16 through influencing DNA methylation pathway to activate the development of cervical cancer exist, and maybe as a candidate therapeutic strategy for cervical and other HPV-associated cancers.

  14. Spindle cell carcinoma in maxilla

    PubMed Central

    Samuel, Soumi; Sreelatha, S V; Hegde, Nidarsh; Nair, Preeti P

    2013-01-01

    Spindle cell carcinomas (sarcomatoid carcinomas) are rare tumours. It is a variant of squamous cell carcinoma which has spindled tumour cells, which simulate a true sarcoma, but are epithelial in origin. They are extremely uncommon in the head and neck region. Only five cases with maxillary origin have been discussed in the literature. As compared to squamous cell carcinoma of maxilla, this variant is associated with poor diagnosis and advanced disease at presentation, as is demonstrated in the case presented. There are no standard recommendations for management owing to the rarity of this histology. Surgery and radiotherapy form the mainstays of treatment. We report a rare case of spindle cell carcinoma involving the maxilla. PMID:23632620

  15. Chromosome 3p loss of heterozygosity and mutation analysis of the FHIT and beta-cat genes in squamous cell carcinoma of the head and neck.

    PubMed Central

    González, M V; Pello, M F; Ablanedo, P; Suárez, C; Alvarez, V; Coto, E

    1998-01-01

    AIMS: To study the loss of heterozygosity at the short arm of chromosome 3 in primary tumours from patients with squamous cell carcinoma of the head and neck; to determine whether the FHIT gene, mapped to 3p14.2 and the CTNNB1 (beta-cat) gene, mapped to 3p21, are deleted or mutated in these tumours. METHODS: DNA was extracted from fresh tumours. Loss of heterozygosity was assessed by microsatellite analysis of the following markers: D3S1283 and D3S1286 (3p24), D3S966 (3p21), and D3S1300 (3P14.2). Homozygous deletion was determined by radioactive multiplex polymerase chain reaction of exons 5 and 6 of the FHIT gene. The presence of mutations in FHIT exon 5 and beta-cat exon 3 was studied by single strand conformation polymorphism. RESULTS: 50% of informative cases (25/50) showed loss of heterozygosity for at least one of the 3p markers. 3p21 was the region with the highest rate of allelic deletion (63%). No point mutation was found in FHIT exon 5 or beta-cat exon 3. No case showed homozygous deletion for the FHIT (exons 5 and 6) or the beta-cat exon 3. CONCLUSIONS: The short arm of chromosome 3 is often deleted in the head and neck squamous cell carcinomas. In the remaining alleles of the FHIT or beta-cat genes, no evidence was found for point mutations or deletions, documented in other common carcinomas. Inactivation could occur by different mechanisms such as methylation, or other genes (not studied here) could be target of allelic losses in squamous cell carcinoma of the head and neck. Images PMID:9797729

  16. [Effect of CCR1 gene overexpression on the migration of bone marrow - derived mesenchymal stem cells towards hepatocellular carcinoma].

    PubMed

    Gao, Y; Huang, X L; Zhang, L; Deng, L; Yin, A H; Sun, B C; Lu, S

    2017-05-20

    Objective: To evaluate the effect of human CCR1 (hCCR1) gene overexpression on the migration of human bone marrow-derived mesenchymal stem cells (hMSCs) towards hepatocellular carcinoma (HCC), and to examine the application prospects of MSCs as gene delivery vectors in the treatment of HCC. Methods: The hCCR1 gene was subcloned into a lentiviral vector to generate the recombinant plasmid pLV-hCCR1. The pLV-hCCR1 plasmid and two other packaging plasmids were co-transfected into 293T cells using calcium phosphate, and the virus-containing supernatant was collected. hMSCs were then infected with the recombinant lentivirus, and the expression of hCCR1 mRNA and protein was analyzed by RT-PCR and Western blot, respectively. The effect of CCR1 gene overexpression on the in vitro migration of hMSCs was examined using the Transwell migration assay. Orthotopic nude mice models of HCC were established using the MHCC-97H-GFP cell line, and the mice were divided into two groups (n = 8 per group). hMSCs were then intravenously injected via the tail vein into the tumor-bearing nude mice to examine the effect of hCCR1 overexpression on the in vivo migration of hMSCs towards HCC. Unpaired Student's t-test was used for two-group comparisons, and one-way ANOVA was used for multi-group comparisons. Results: Restriction enzyme digestion and DNA sequencing demonstrated that the recombinant plasmid pLV-hCCR1 was constructed successfully. The LV-hCCR1 lentivirus packaged by 293T cells has high infection efficiency in hMSCs, and hCCR1 was overexpressed in hMSCs after LV-hCCR1 infection. Transwell migration assay showed that hCCR1-transfected hMSCs had significantly enhanced migration towards HCC cell line-derived condition medium (CM) compared with the control RFP-hMSCs [(134.8±15.7)/LPF vs (83.5±10.9)/LPF, t = 10.40, P < 0.01]. In vivo migration experiment also demonstrated that there was significantly higher number of hCCR1-hMSCs localized within the MHCC-97H-GFP xenografts than h

  17. Expression of cancer stem markers could be influenced by silencing of p16 gene in HeLa cervical carcinoma cells.

    PubMed

    Wu, H; Zhang, J; Shi, H

    2016-01-01

    Effect of the tumor suppression gene p16 on the biological characteristics of HeLa cervical carcinoma cells was explored. The expression of p16 protein was increased in HeLa tumor sphere cells, and no significant difference in tumor spheres from the first to the fourth passages. Compared with those of parental HeLa cells, the proportion of CD44+/CD24- and ABCG2+ cells increased significantly in tumor spheres. However after the cells were silenced by the p16-sh289 vector, expression of P16 protein and the cell number of CD44+/CD24- and ABCG2+ decreased. Moreover, HeLa cells with p16 gene silencing showed decreased abilities of sphere formation and matrigel invasion. More HeLa cells with p16 gene silence were needed for tumor formation in nude mice. Tumor size and weight in mouse model established with p16 gene silenced HeLa cells were less than those with HeLa parental cell model. The present results indicate that silencing of the p16 gene inhibits expression of cancer stem cell markers and tumorigenic ability of HeLa cells.

  18. Frequent mutations of p53 gene in oesophageal squamous cell carcinomas with and without human papillomavirus (HPV) involvement suggest the dominant role of environmental carcinogens in oesophageal carcinogenesis.

    PubMed Central

    Chang, F.; Syrjänen, S.; Tervahauta, A.; Kurvinen, K.; Wang, L.; Syrjänen, K.

    1994-01-01

    Epidemiological evidence suggests that alcohol intake, use of tobacco, ingestion of mycotoxins and nitrosamines and nutritional deficiencies are high-risk factors for the development of oesophageal cancer. Similarly, viral infections have been postulated to play a role in some tumours. However, the molecular events underlying the development of oesophageal carcinoma are poorly understood as yet. Loss of p53 tumour-suppressor gene function has been found in different human malignancies, and it can occur in a variety of ways, including gene mutation and interaction with the E6 protein of oncogenic human papillomaviruses (HPVs). Because the oesophageal mucosa is potentially exposed to mutagens and HPVs, we studied DNA samples derived from nine HPV-positive squamous cell carcinomas and 12 HPV-negative tumours. Exons 5-9 of the p53 gene containing phylogenetically conserved domains were examined using the polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) technique. HPV detection was done using DNA in situ hybridisation with biotin-labelled HPV DNA probes. Mutations were detected in eight (38%) out of the 21 cases. Three mutations were found in exons 5/6, three in exon 7 and two in exon 8/9. Six (50%) of the 12 HPV-negative carcinomas showed p53 mutations. Two (22.2%) of the nine HPV-positive carcinomas were found to contain p53 mutations as well; one contained HPV 16 DNA sequences and showed p53 mutation in exon 8/9, and the other was HPV 6/11 positive with the mutation in exon 5/6. Although mutations were more common in HPV-negative tumours (50.0% vs 22.2%), the difference in p53 mutations in HPV-positive and -negative tumours did not reach statistical significance (P = 0.1946). These data indicate that inactivation of the p53 gene is a frequent event in oesophageal squamous cell carcinomas and such an inactivation might be an important molecular pathway for the development of oesophageal cancer. The findings of p53 mutations in HPV

  19. Genetic Variants in MTHFR Gene Predict ≥ 2 Radiation Pneumonitis in Esophageal Squamous Cell Carcinoma Patients Treated with Thoracic Radiotherapy

    PubMed Central

    Zhang, Jian; Li, Hongsheng; Qiao, Yumei; Huang, Chengsuo; Li, Baosheng

    2017-01-01

    Reactive oxygen species (ROS), formed as an indirect production of radiotherapy (RT), could cause DNA damage of normal tissues. Meanwhile, our body possesses the ability to restore the damage by DNA repair pathways. The imbalance between the two systems could finally result in radiation injury. Therefore, in this prospective cohort study, we explored the association of genetic variants in ROS metabolism and DNA repair pathway-related genes with radiation pneumonitis (RP). A total of 265 locally advanced esophageal squamous cell carcinoma (ESCC) patients receiving RT in Chinese Han population were enrolled. Five functional single nucleotide polymorphisms (SNPs) (rs1695 in GSTP1; rs4880 in SOD2; rs3957356 in GSTA1; and rs1801131, rs1801133 in MTHFR) were genotyped using the MassArray system, and rs1801131 was found to be a predictor of ≥ 2 RP. Our results showed that, compared with TT genotype, patients with GG/GT genotypes of rs1801131 had a notably lower risk of developing ≥ 2 RP (HR = 0.339, 95% CI = 0.137–0.839, P = 0.019). Further independent studies are required to confirm this findings. PMID:28046029

  20. Mutations in the Mitochondrial ND1 Gene Are Associated with Postoperative Prognosis of Localized Renal Cell Carcinoma

    PubMed Central

    Kim, Hakushi; Komiyama, Tomoyoshi; Inomoto, Chie; Kamiguchi, Hiroshi; Kajiwara, Hiroshi; Kobayashi, Hiroyuki; Nakamura, Naoya; Terachi, Toshiro

    2016-01-01

    We analyzed mutations in the mitochondrial ND1 gene to determine their association with clinicopathological parameters and postoperative recurrence of renal cell carcinoma (RCC) in Japanese patients. Among 62 RCC cases for which tumor pathology was confirmed by histopathology, ND1 sequencing revealed the presence of 30 mutation sites in 19 cases. Most mutations were heteroplasmic, with 16 of 19 cases harboring one or more heteroplasmic sites. Additionally, 12 sites had amino acid mutations, which were frequent in 10 of the cases. The 5-year recurrence-free survival (RFS) rate was significantly worse in patients with tumors >40 mm in diameter (p = 0.0091), pathological T (pT) stage ≥3 (p = 0.0122), Fuhrman nuclear atypia grade ≥III (p = 0.0070), and ND1 mutations (p = 0.0006). Multivariate analysis using these factors revealed that mutations in ND1 were significantly associated with the 5-year RFS rate (p = 0.0044). These results suggest a strong correlation between the presence of ND1 mutations in cancer tissue and postoperative recurrence of localized RCC in Japanese patients. PMID:27941608

  1. p16INK4A and p14ARF Gene Promoter Hypermethylation as Prognostic Biomarker in Oral and Oropharyngeal Squamous Cell Carcinoma: A Review

    PubMed Central

    Al-Kaabi, A.; van Bockel, L. W.; Pothen, A. J.; Willems, S. M.

    2014-01-01

    Head and neck squamous cell carcinoma is a heterogeneous group of tumors with each subtype having a distinct histopathological and molecular profile. Most tumors share, to some extent, the same multistep carcinogenic pathways, which include a wide variety of genetic and epigenetic changes. Epigenetic alterations represent all changes in gene expression patterns that do not alter the actual DNA sequence. Recently, it has become clear that silencing of cancer related genes is not exclusively a result of genetic changes such as mutations or deletions, but it can also be regulated on epigenetic level, mostly by means of gene promoter hypermethylation. Results from recent studies have demonstrated that DNA methylation patterns contain tumor-type-specific signatures, which could serve as biomarkers for clinical outcome in the near future. The topic of this review discusses gene promoter hypermethylation in oral and oropharyngeal squamous cell carcinoma (OSCC). The main objective is to analyse the available data on gene promoter hypermethylation of the cell cycle regulatory proteins p16INK4A and p14ARF and to investigate their clinical significance as novel biomarkers in OSCC. Hypermethylation of both genes seems to possess predictive properties for several clinicopathological outcomes. We conclude that the methylation status of p16INK4A is definitely a promising candidate biomarker for predicting clinical outcome of OSCC, especially for recurrence-free survival. PMID:24803719

  2. Validation of Gene Expression Signatures to Identify Low-risk Clear-cell Renal Cell Carcinoma Patients at Higher Risk for Disease-related Death.

    PubMed

    Parasramka, Mansi; Serie, Daniel J; Asmann, Yan W; Eckel-Passow, Jeanette E; Castle, Erik P; Stanton, Melissa L; Leibovich, Brad C; Thompson, Robert Houston; Thompson, E Aubrey; Parker, Alexander S; Ho, Thai H; Joseph, Richard W

    2016-12-15

    Approximately 5-10% of patients with "low-risk" clear cell renal cell carcinoma (ccRCC), as stratified by externally validated clinicopathologic prognostic algorithms, eventually have disease relapse and die. Improving prognostic algorithms for these low-risk patients could help to provide improved individualized surveillance recommendations. To identify genes that are differentially expressed in patients with low-risk ccRCC who did and did not die of their disease. Using the Mayo Clinic Renal Registry, we identified formalin-fixed paraffin-embedded samples from patients with low-risk ccRCC, as defined by Mayo Clinic stage, size, grade, and necrosis score of 0-3. We conducted a nested case-control study between patients who did (cases) and did not (controls) have ccRCC relapse and death, using two independent sets (discovery and validation). We performed RNA sequencing of all samples in the discovery set to identify differentially expressed genes. In the independent validation set, we assessed the top 50 expressed genes using the nCounter Analysis System (NanoString Technologies, Seattle, WA, USA). In the discovery set of 24 cases and 24 controls, 92 genes were differentially expressed with p<0.001. The top 50 genes were validated in an independent set of 22 cases and 22 controls using linear mixed models. In the validation set, 10 genes remained differentially expressed between the groups. RNA signatures from formalin-fixed paraffin-embedded blocks can identify patients with low-risk ccRCC who die of their disease. This finding provides an opportunity to help guide improved surveillance in patients with low-risk ccRCC. In the current study we identified RNA signatures from low-risk clear cell renal cell carcinoma patients who died from this disease. Improving prognostic algorithms for these low-risk patients could help to provide improved individualized surveillance recommendations. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All

  3. Renal Cell Carcinoma Associated with Xp11.2 Translocation/TFE3 Gene Fusions: Clinical Features, Treatments and Prognosis

    PubMed Central

    Gan, Weidong; Xiong, Lei; Miao, Baolei; Chen, Xiancheng; Guo, Hongqian; Li, Dongmei

    2016-01-01

    To investigate the clinical characteristics, treatments and prognosis of renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusions (Xp11.2 tRCC), the epidemiological features and treatment results of 34 cases of Xp11.2 tRCC, which were diagnosed by immunohistochemistry staining of TFE3 and fluorescence in situ hybridization at our center, were retrospectively reviewed. The 34 patients included 21 females and 13 males aged 3 to 64 years (median age: 27 years). Four patients were children or adolescents (<18 years of age), and 26 patients were young or middle-aged adults (18–45 years). Radical nephrectomy was performed on 25 patients. Laparoscopic nephron-sparing surgery was performed on 9 patients who presented with an isolated mass with a small diameter (<7 cm) and well-defined boundary on computed tomography imaging. Postoperative staging showed that 25 cases (73.53%) were at stage I/II, while 9 cases (26.47%) were at stage III/IV. All stage I/II patients received a favorable prognosis with a three-year overall survival rate of 100%, including the patients who underwent laparoscopic nephron-sparing surgery. With the exception of 2 children, the other 7 stage III/IV patients died or developed recurrence with a median follow-up of 29 months. On univariate analysis, maximum diameter, adjuvant treatment, TNM stage, lymph node metastasis, inferior vena cava tumor thrombosis and tumor boundary were identified as statistically significant factors impacting survival (P<0.05). Multivariate analysis indicated that TNM stage and inferior vena cava tumor thrombosis were independent prognostic factors (P<0.05). In conclusion, Xp11.2 tRCC is a rare subtype of renal cell carcinoma that mainly occurs in young females. Nephron-sparing surgery was confirmed effective preliminarily in the treatment of small Xp11.2 tRCCs with clear rims. Advanced TNM stage and inferior vena cava tumor thrombosis were associated with poor prognosis. PMID:27893792

  4. The gene expression profiles of canine mammary cancer cells grown with carcinoma-associated fibroblasts (CAFs) as a co-culture in vitro

    PubMed Central

    2012-01-01

    Background It is supposed that fibroblasts present in tumour microenvironment increase cancer invasiveness and its ability to metastasize but the mechanisms have not been clearly defined yet. Thus, the current study was designed to assess changes in gene expression in five various cancer cell lines grown as a co-culture with the carcinoma-associated fibroblasts (CAFs) in vitro. Results A carcinoma-associated fibroblast cell line was isolated from a canine mammary cancer. Then, a co-culture of cancer cells with the CAFs was established and maintained for 72 hrs. Having sorted the cells, a global gene expression in cancer cells using DNA microarrays was examined. The analysis revealed an up-regulation of 100 genes and a down-regulation of 106 genes in the cancer cells grown as a co-culture with the CAFs in comparison to control conditions. The PANTHER binomial statistics tool was applied to determine statistically over-manifested pathways (p < 0.05). Bulk of the up-regulated genes are involved in the adhesion, the angiogenesis, the epithelial-mesenchymal transition (EMT) and generally take part in the developmental processes. These results were further confirmed using real-time qPCR. Moreover, a wound-healing assay and growth characteristics on Matrigel matrix showed that CAFs increase cancer cell migration and matrix invasion. Conclusion The results of the current study showed that the co-culturing of cancer cells and the CAFs caused significant changes to the cancer gene expression. The presence of the CAFs in a microenvironment of cancer cells promotes adhesion, angiogenesis and EMT. PMID:22453032

  5. HPV-16 E2 gene disruption and sequence variation in CIN 3 lesions and invasive squamous cell carcinomas of the cervix: relation to numerical chromosome abnormalities

    PubMed Central

    Graham, D A; Herrington, C S

    2000-01-01

    Aim—To test the hypothesis that, because the human papillomavirus (HPV) E2 protein represses viral early gene transcription, E2 gene sequence variation or disruption could play a part in the induction of the numerical chromosome abnormalities that have been described in squamous cervical lesions. Methods—The integrity and sequence of the E2 gene from 11 cervical intraepithelial neoplasia (CIN) grade 3 lesions and 14 invasive squamous cell carcinomas, all of which contained HPV-16, were analysed by the polymerase chain reaction (PCR). The E2 gene was amplified in three overlapping fragments and PCR products sequenced directly. Chromosome abnormalities were identified by interphase cytogenetics using chromosome specific probes for chromosomes 1, 3, 11, 17, 18, and X. Results—E2 gene disruption was present in significantly more invasive carcinomas (eight of 14) than CIN 3 lesions (one of 11) (p = 0.03). No association was found between E2 disruption and the presence of a numerical chromosome abnormality. The E2 gene from the non-disrupted isolates was sequenced and wild-type (n = 5) and variant (n = 11) sequences identified. Variant sequences belonged to European and African classes and contained from one to 15 amino acid substitutions. Although numerical chromosome abnormalities were significantly more frequent in invasive squamous cell carcinoma than CIN 3 (p = 0.04), there was no significant relation between the presence of sequence variation and either histological diagnosis or chromosome abnormality. Conclusions—These data do not support the hypothesis that E2 gene disruption or variation is important in the induction of chromosome imbalance in these lesions. However, there is a relation between E2 gene disruption and the presence of invasive disease. PMID:11040943

  6. A serine proteinase inhibitor locus at 18q21.3 contains a tandem duplication of the human squamous cell carcinoma antigen gene.

    PubMed Central

    Schneider, S S; Schick, C; Fish, K E; Miller, E; Pena, J C; Treter, S D; Hui, S M; Silverman, G A

    1995-01-01

    The squamous cell carcinoma antigen (SCCA) is a member of the ovalbumin family of serine proteinase inhibitors (serpins). A neutral form of the protein is found in normal and some malignant squamous cells, whereas an acidic form is detected exclusively in tumor cells and in the circulation of patients with squamous cell tumors. In this report, we describe the cloning of the SCCA gene from normal genomic DNA. Surprisingly, two genes were found. They were tandemly arrayed and flanked by two other closely related serpins, plasminogen activator inhibitor type 2 (PAI2) and maspin at 18q21.3. The genomic structure of the two genes, SCCA1 and SCCA2, was highly conserved. The predicted amino acid sequences were 92% identical and suggested that the neutral form of the protein was encoded by SCCA1 and the acidic form was encoded by SCCA2. Further characterization of the region should determine whether the differential expression of the SCCA genes plays a causal role in development of more aggressive squamous cell carcinomas. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7724531

  7. Chemokine gene expression in the murine renal cell carcinoma, RENCA, following treatment in vivo with interferon-alpha and interleukin-2.

    PubMed Central

    Sonouchi, K.; Hamilton, T. A.; Tannenbaum, C. S.; Tubbs, R. R.; Bukowski, R.; Finke, J. H.

    1994-01-01

    The expression of three chemoattractant cytokine (chemokine) messenger (m)RNAs in the murine renal cell carcinoma (RENCA) from mice treated with a combination of interferon-alpha (IFN-alpha) and interleukin-2 was examined and related to tumor infiltration by inflammatory leukocytes. Using a semi-quantitative reverse transcriptase polymerase chain reaction assay, mRNAs encoding the KC, JE, and IP-10 genes were all elevated in tumor tissue from mice treated systemically with IFN-alpha/interleukin-2 for 4 days. Similarly, the mRNA for tumor necrosis factor-alpha (TNF-alpha) was also increased in tumors from treated as compared to control animals. The same tumors showed a significant increase in Mac-1+ leukocytes, which correlated well with the increase in chemokine and TNF-alpha gene expression. The renal cell carcinoma tumor itself may be responsible for the expression of chemokine genes in the tumor bed following cytokine therapy. Cultures of freshly explanted RENCA cells expressed significant levels of chemokine mRNAs when stimulated in vitro with IFN alpha, IFN gamma, and/or interleukin-2, demonstrating that this tumor cell has potential for expression of these genes in vivo. In contrast, TNF-alpha expression was not detected in cultured tumor cells. Thus TNF-alpha may be expressed by infiltrating monocytes following exposure to recombinant cytokine therapy. Images Figure 1 Figure 2 Figure 4 PMID:8160774

  8. Detection of Epstein-Barr virus genome and latent infection gene expression in normal epithelia, epithelial dysplasia, and squamous cell carcinoma of the oral cavity.

    PubMed

    Kikuchi, Kentaro; Noguchi, Yoshihiro; de Rivera, Michelle Wendoline Garcia-Niño; Hoshino, Miyako; Sakashita, Hideaki; Yamada, Tsutomu; Inoue, Harumi; Miyazaki, Yuji; Nozaki, Tadashige; González-López, Blanca Silvia; Ide, Fumio; Kusama, Kaoru

    2016-03-01

    A relationship between Epstein-Barr virus (EBV) infection and cancer of lymphoid and epithelial tissues such as Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma (NPC), gastric carcinoma, and oral cancer has been reported. EBV is transmitted orally and infects B cells and epithelial cells. However, it has remained uncertain whether EBV plays a role in carcinogenesis of oral mucosal tissue. In the present study, we detected the EBV genome and latent EBV gene expression in normal mucosal epithelia, epithelial dysplasia, and oral squamous cell carcinoma (OSCC) to clarify whether EBV is involved in carcinogenesis of the oral cavity. We examined 333 formalin-fixed, paraffin-embedded tissue samples (morphologically normal oral mucosa 30 samples, gingivitis 32, tonsillitis 17, oral epithelial dysplasia 83, OSCC 150, and NPC 21). EBV latent infection genes (EBNA-2, LMP-1) were detected not only in OSCC (50.2 %, 10.7 %) but also in severe epithelial dysplasia (66.7 %, 44.4 %), mild to moderate epithelial dysplasia (43.1 %, 18.5 %), gingivitis (78.1 %, 21.9 %), and normal mucosa (83.3 %, 23.3 %). Furthermore, the intensity of EBV latent infection gene expression (EBER, LMP-1) was significantly higher in severe epithelial dysplasia (94.4 %, 72.2 %) than in OSCC (34.7 %, 38.7 %). These results suggest that EBV latent infection genes and their increased expression in severe epithelial dysplasia might play an important role in the dysplasia-carcinoma sequence in the oral cavity.

  9. Association between a microRNA-214 binding site polymorphism in the methylenetetrahydrofolate reductase gene and esophageal squamous cell carcinoma.

    PubMed

    Shen, G R; Li, W Z; Liu, Y C; Li, X P; Yuan, H Y

    2016-05-13

    MicroRNAs (miRNAs) are key regulators of gene expression and play an important role in the development and progression of various diseases including esophageal squamous cell carcinoma (ESCC). In this study, we determined whether a polymorphism at the miR-214 binding site in the 3'-untranslated region (3'-UTR) of the methylenetetrahydrofolate reductase gene (MTHFR) is associated with susceptibility to ESCC. A total of 448 ESCC cases and 460 gender- and age-matched subjects were recruited for the study. The genotypes of the rs114673809 single nucleotide polymorphism (SNP) were determined by polymerase chain reaction sequencing. Associations between genotypes of MTHFR rs114673809 and ESCC risk were determined using logistic regression analyses. In the recessive model, when the MTHFR rs114673809 GG homozygote genotype was used as the reference group, the GA genotype was not associated with the risk of ESCC (GA vs GG: OR = 1.261, 95%CI = 0.960-1.657, P = 0.110), but the AA genotype was associated with increased risk of ECSS (AA vs GG: OR = 1.752, 95%CI = 1.076-2.853, P = 0.027). Additionally, the rs114673809 A allele carriers also showed a 1.286-fold increased ESCC risk compared with those carrying the rs114673809 G allele genotype. Furthermore, we observed a significant increase in plasma homocysteine levels in ESCC cases carrying the AA genotype relative to ESCC cases carrying the GG genotype. Our data demonstrate that a polymorphism at the miR-214 binding site in the 3'-UTR of MTHFR is an ESCC susceptibility SNP in the Chinese population.

  10. RNA interference-mediated targeting of DKK1 gene expression in Ishikawa endometrial carcinoma cells causes increased tumor cell invasion and migration.

    PubMed

    Yi, Nuo; Liao, Qin-Ping; Li, Zhen-Hua; Xie, Bao-Jiang; Hu, Yu-Hong; Yi, Wei; Liu, Min

    2013-09-01

    The Wnt signaling pathway plays an essential role in tumor invasion and migration. DKK1 functions as an important inhibitor of the pathway and represents a promising target for cancer therapy. The aim of the present study was to determine the role of DKK1 in endometrial carcinoma (EC) cell invasion and migration using RNA interference (RNAi) technology. Ishikawa EC cells were transfected at high efficiency with specific DKK1 siRNA. RT-PCR and western blot analysis were used to determine the mRNA and protein levels of DKK1, β-catenin and metalloproteinase 14 (MMP14) in siRNA-treated and -untreated cells. In addition, the invasion and migration of the EC cells were detected by invasion and migration assays. Transient transfection of DKK1 siRNA significantly inhibited the mRNA and protein levels of DKK1. Markedly increased cell invasion and migration was observed following treatment with DKK1 siRNA when compared with the negative control siRNA-treated and siRNA-untreated cells. The knockdown of DKK1 also elevated the mRNA and protein levels of β-catenin and MMP14 involved in the Wnt signaling pathway, indicating that targeting this gene may promote intracellular Wnt signal transduction and thus, accelerate EC cell invasion and migration in vitro. The RNAi-mediated targeting of DKK1 gene expression in Ishikawa EC cells resulted in increased tumor cell invasion and migration. DKK1 was identified as an inhibitor of EC cell invasion and migration via its novel role in the Wnt signaling pathway. Targeting DKK1 may therefore represent an effective anti-invasion and -migration strategy for the treatment of EC.

  11. [I148M polymorphism of PNPLA3 gene affects cell cycle of hepatoma carcinoma cell Huh-7].

    PubMed

    Geng, Ning; Jiang, Man; Zhang, Dingding; Wang, Jian; Xin, Yongning; Xuan, Shiying

    2015-05-01

    To investigate the cell cycle of Huh-7 cells affected by I148M polymorphism of PNPLA3 gene and the possible mechanisms. Huh-7 cells which could respectively overexpress PNPLA3 wild type and I148M variant were cultured and Huh-7 cells with zero load plasmids were used as matched control, Flow cytometry was conducted to detect the cell cycles of these 3 type of Huh-7 cells and western blot and realtime fluorescence quantitative PCR were applied to investigate the expression of regulatory factors (Cyclin D1 and p53) of cell cycle. t-test was used in statistical analysis. Cell cycle phase distribution was presented by the proportion of cells in each phases (%), compared with the control group, the cell cycle phase distribution (G1 phase 59.27 ± 0.15, G2/M phase 24.23 ± 0.31, S phases 16.50 ± 0.26) had no differences in wild type group (G1 phase 58.53 ± 0.35, G2/M phase 24.87 ± 0.60, S phases 16.60 ± 0.26; Probability value less than 0.05). While between variant type group and wild type group, G1 phase was significantly decreased (variant type group G phase 38.37 ± 0.21, Probability value less than 0.05), S phase and G2/M phase were increased (variant type group S phase 27.47 ± 0.35, P less than 0.05; G2/M phase 34.17 ± 0.15, P less than 0.05), respectively. compared with control group, the relative expression of P53 mRNA in variant type group was significantly upregulated (control group 1.06 ± 0.41, variant type group 6.54 ± 0.34; Probability value less than 0.05) and there was no statistical significance in wild type group (1.66 ± 0.30, P more than 0.05); Cyclin D1 expression showed no statistical significance in any of these three groups, control group 1.00 ± 0.10, wild type group 1.06 ± 0.03, variant type group, 1.11 ± 0.04; P > 0.05). I148M polymorphism of PNPLA3 gene affects cell cycles of Huh-7 cells via up-regulatating P53.

  12. [Basal cell carcinoma and rare form variants].

    PubMed

    Liersch, J; Schaller, J

    2014-09-01

    Basal cell carcinomas are the most common primary cutaneous malignant neoplasms. The diagnosis of basal cell carcinoma represents a common and routine task for pathologists and dermatopathologists. The aim of this review is the clinical and histopathological presentation of the most common subtypes of basal cell carcinoma. Furthermore, the rare variants of basal cell carcinoma and their differential diagnoses are also discussed.

  13. Silencing of the metastasis-linked gene, AEG-1, using siRNA-loaded cholamine surface-modified gelatin nanoparticles in the breast carcinoma cell line MCF-7.

    PubMed

    Abozeid, Salma M; Hathout, Rania M; Abou-Aisha, Khaled

    2016-09-01

    Cholamine surface-modified gelatin nanoparticles prepared by the double desolvation method using acetone as a dehydrating agent were selected and potentially evaluated as non viral vectors of siRNA targeting a metastatic gene AEG-1 in MCF-7 breast carcinoma cells. The ability of modified gelatin nanoparticle to complex and deliver siRNA for gene silencing was investigated. Hence, Particle size, surface charge (zeta potential) and morphology of siRNA/Gelatin nanoparticles (siGNPs) were characterized via dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Moreover, the nanoparticles cytotoxicity, loading efficiency and interaction with MCF-7 human breast carcinoma cells were evaluated. Cationized GNPs of mean size range of 174nm and PDI of 0.101 were produced. The loading efficiency of siGNPs at a Nitrogen/Phosphate (N/P) ratio (w/w) of 200:1 was approximately 96%. Cellular uptake was evaluated after FITC conjugation where the particles produced high transfection efficiency. Finally, ELISA analysis of AEG-1/MTDH expression demonstrated the gene silencing effect of siGNPs, as more than 75% MTDH protein were inhibited. Our data indicate that cholamine modified GNPs pose a promising non-viral siRNA carrier for altering gene expression in MCF-7 breast cancer cells with many advantages such as relatively high gene transfection efficiency and efficient silencing ability.

  14. The candidate tumor suppressor CST6 alters the gene expression profile of human breast carcinoma cells: Down-regulation of the potent mitogenic, motogenic, and angiogenic factor autotaxin

    SciTech Connect

    Song Jin; Jie Chunfa; Polk, Paula; Shridhar, Ravi; Clair, Timothy; Zhang, Jun; Yin, Lijia; Keppler, Daniel . E-mail: dkeppl@lsuhsc.edu

    2006-02-03

    We recently coined CST6 as a novel candidate tumor suppressor gene for breast cancer. CST6 indeed is expressed in the normal human breast epithelium, but little or not at all in breast carcinomas and breast cancer cell lines. Moreover, ectopic expression of CST6 in human breast cancer cells suppressed cell proliferation, migration, invasion, and orthotopic tumor growth. To obtain insights into the molecular mechanism by which CST6 exhibits its pleiotropic effects on tumor cells, we compared global gene expression profiles in mock- and CST6-transfected human MDA-MB-435S cells. Out of 12,625 transcript species, 61 showed altered expression. These included genes for extracellular matrix components, cytokines, kinases, and phosphatases, as well as several key transcription factors. TaqMan PCR assays were used to confirm the microarray data for 7 out of 11 genes. One down-regulated gene product, secreted autotaxin/lyso-phospholipase D, was of particular interest because its down-regulation by CST6 could explain most of CST6's effect on the breast cancer cells. This study thus provides First evidence that CST6 plays a role in the modulation of genes, particularly, genes that are highly relevant to breast cancer progression.

  15. Global effects of anchorage on gene expression during mammary carcinoma cell growth reveal role of tumor necrosis factor-related apoptosis-inducing ligand in anoikis.

    PubMed

    Goldberg, G S; Jin, Z; Ichikawa, H; Naito, A; Ohki, M; El-Deiry, W S; Tsuda, H

    2001-02-15

    Anchorage-independent growth is a hallmark of tumor cells. We compared gene expression profiles of anchored and nonanchored human mammary carcinoma cells to study this phenomenon. In this study, we show that anchorage had striking effects on cell growth and morphology but altered transcript levels from a limited number of genes. Only about 1% of mRNA transcripts detected in these cells was altered by anchorage. These include genes related to amino acid and polyamine metabolism, apoptosis, ion channels, cytoskeletal and stress proteins, transcription factors, and growth factors. Some of these may be crucial for the survival of transformed cells. For example, clusterin and the tumor necrosis factor-related apoptosis inducing ligand (TRAIL) were suppressed by anchorage, which could help prevent programmed cell death of these tumor cells. In addition to suppressing TRAIL expression, anchorage also decreased the susceptibility of these tumor cells to TRAIL-induced apoptosis as determined by poly(ADP-ribose) phosphorylase cleavage, annexin-V binding (P < 0.01), and cell cycle analysis (P < 0.0001). These data may help explain mechanisms by which anchorage prevents apoptosis of cells that would otherwise experience anoikis. Thus, genes found to be altered by this analysis could serve as potential targets for anticancer therapy. These findings suggest that TRAIL may be used as a means to target circulating epithelial tumor cells before their attachment and colonization at new sites.

  16. A new long noncoding RNA (lncRNA) is induced in cutaneous squamous cell carcinoma and down-regulates several anticancer and cell differentiation genes in mouse.

    PubMed

    Ponzio, Gilles; Rezzonico, Roger; Bourget, Isabelle; Allan, Richard; Nottet, Nicolas; Popa, Alexandra; Magnone, Virginie; Rios, Géraldine; Mari, Bernard; Barbry, Pascal

    2017-07-28

    Keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. Although some of the early events involved in this pathology have been identified, the subsequent steps leading to tumor development are poorly defined. We demonstrate here that the development of mouse tumors induced by the concomitant application of a carcinogen and a tumor promoter (7,12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA), respectively) is associated with the up-regulation of a previously uncharacterized long noncoding RNA (lncRNA), termed AK144841. We found that AK144841 expression was absent from normal skin and was specifically stimulated in tumors and highly tumorigenic cells. We also found that AK144841 exists in two variants, one consisting of a large 2-kb transcript composed of four exons and one consisting of a 1.8-kb transcript lacking the second exon. Gain- and loss-of-function studies indicated that AK144841 mainly inhibited gene expression, specifically down-regulating the expression of genes of the late cornified envelope-1 (Lce1) family involved in epidermal terminal differentiation and of anticancer genes such as Cgref1, Brsk1, Basp1, Dusp5, Btg2, Anpep, Dhrs9, Stfa2, Tpm1, SerpinB2, Cpa4, Crct1, Cryab, Il24, Csf2, and Rgs16 Interestingly, the lack of the second exon significantly decreased AK144841's inhibitory effect on gene expression. We also noted that high AK144841 expression correlated with a low expression of the aforementioned genes and with the tumorigenic potential of cell lines. These findings suggest that AK144841 could contribute to the dedifferentiation program of tumor-forming keratinocytes and to molecular cascades leading to tumor development. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Curcumin induces G2/M arrest, apoptosis, NF-κB inhibition, and expression of differentiation genes in thyroid carcinoma cells.

    PubMed

    Schwertheim, Suzan; Wein, Frederik; Lennartz, Klaus; Worm, Karl; Schmid, Kurt Werner; Sheu-Grabellus, Sien-Yi

    2017-07-01

    The therapy of unresectable advanced thyroid carcinomas shows unfavorable outcome. Constitutive nuclear factor-κB (NF-κB) activation in thyroid carcinomas frequently contributes to therapeutic resistance; the radioiodine therapy often fails due to the loss of differentiated functions in advanced thyroid carcinomas. Curcumin is known for its anticancer properties in a series of cancers, but only few studies have focused on thyroid cancer. Our aim was to evaluate curcumin's molecular mechanisms and to estimate if curcumin could be a new therapeutic option in advanced thyroid cancer. Human thyroid cancer cell lines TPC-1 (papillary), FTC-133 (follicular), and BHT-101 (anaplastic) were treated with curcumin. Using real-time PCR analysis, we investigated microRNA (miRNA) and mRNA expression levels. Cell cycle, Annexin V/PI staining, and caspase-3 activity analysis were performed to detect apoptosis. NF-κB p65 activity and cell proliferation were analyzed using appropriate ELISA-based colorimetric assay kits. Treatment with 50 μM curcumin significantly increased the mRNA expression of the differentiation genes thyroglobulin (TG) and sodium iodide symporter (NIS) in all three cell lines and induced inhibition of cell proliferation, apoptosis, and decrease of NF-κB p65 activity. The miRNA expression analyses showed a significant deregulation of miRNA-200c, -21, -let7c, -26a, and -125b, known to regulate cell differentiation and tumor progression. Curcumin arrested cell growth at the G2/M phase. Curcumin increases the expression of redifferentiation markers and induces G2/M arrest, apoptosis, and downregulation of NF-κB activity in thyroid carcinoma cells. Thus, curcumin appears to be a promising agent to overcome resistance to the conventional cancer therapy.

  18. Mutations in BHD and TP53 genes, but not in HNF1β gene, in a large series of sporadic chromophobe renal cell carcinoma

    PubMed Central

    Gad, S; Lefèvre, S H; Khoo, S K; Giraud, S; Vieillefond, A; Vasiliu, V; Ferlicot, S; Molinié, V; Denoux, Y; Thiounn, N; Chrétien, Y; Méjean, A; Zerbib, M; Benoît, G; Hervé, J M; Allègre, G; Bressac-de Paillerets, B; Teh, B T; Richard, S

    2006-01-01

    BHD, TP53, and HNF1β on chromosome 17 were studied in 92 cases of renal cell carcinoma (46 chromophobe, 19 clear cell, 18 oncocytoma, and nine papillary). Six, thirteen, and zero cases had, respectively BHD, TP53, and HNF1β mutations, (84% mutations involved chromophobe), suggesting a role for BHD and TP53 in chromophobe subtype. PMID:17133269

  19. Metastasis-suppressing NID2, an epigenetically-silenced gene, in the pathogenesis of nasopharyngeal carcinoma and esophageal squamous cell carcinoma

    PubMed Central

    Chai, Annie Wai Yeeng; Cheung, Arthur Kwok Leung; Dai, Wei; Ko, Josephine Mun Yee; Ip, Joseph Chok Yan; Chan, Kwok Wah; Kwong, Dora Lai-Wan; Ng, Wai Tong; Lee, Anne Wing Mui; Ngan, Roger Kai Cheong; Yau, Chun Chung; Tung, Stewart Yuk; Lee, Victor Ho Fun; Lam, Alfred King-Yin; Pillai, Suja; Law, Simon; Lung, Maria Li

    2016-01-01

    Nidogen-2 (NID2) is a key component of the basement membrane that stabilizes the extracellular matrix (ECM) network. The aim of the study is to analyze the functional roles of NID2 in the pathogenesis of nasopharyngeal carcinoma (NPC) and esophageal squamous cell carcinoma (ESCC). We performed genome-wide methylation profiling of NPC and ESCC and validated our findings using the methylation-sensitive high-resolution melting (MS-HRM) assay. Results showed that promoter methylation of NID2 was significantly higher in NPC and ESCC samples than in their adjacent non-cancer counterparts. Consistently, down-regulation of NID2 was observed in the clinical samples and cell lines of both NPC and ESCC. Re-expression of NID2 suppresses clonogenic survival and migration abilities of transduced NPC and ESCC cells. We showed that NID2 significantly inhibits liver metastasis. Mechanistic studies of signaling pathways also confirm that NID2 suppresses the EGFR/Akt and integrin/FAK/PLCγ metastasis-related pathways. This study provides novel insights into the crucial tumor metastasis suppression roles of NID2 in cancers. PMID:27793011

  20. Effect and mechanism of RUNX3 gene on biological characteristics of human esophageal squamous cell carcinoma (ESCC).

    PubMed

    Chen, Huaxia; Wang, Zhou; Wang, Shuai; Zhang, Zhiping; Shi, Shanshan

    2015-01-01

    The aim of this study was to investigate the role of RUNX3 in esophageal squamous cell carcinoma (ESCC) cells biological behavior and the relationship between the expression of RUNX3 and MMP-9, TIMP-1, ICAM-1. RUNX3 levels in 90 esophageal squamous cell carcinoma specimens using immunohistochemical staining to examine the correlation between RUNX3 expression and clinical stage of ESCC. Furthermore, the role of RUNX3 in ESCC progression was evaluated in vitro by siRNA-mediated knockdown of RUNX3 or lentivirus-mediated over-expression of RUNX3 in ESCC cell lines. The expression and activities of MMP-9, TIMP-1, and ICAM-1 were analyzed. We found decreased expression of RUNX3 in ESCC tissue to be significantly related to T stage of tumor (p < 0.01). In vitro, knockdown of RUNX3 in Eca9706 cells resulted in promoting cell growth, migration, and invasion. Additionally, MMP-9 and ICAM-1 were upregulated in RUNX3-knockdown cells. Notably, RUNX3 over-expression in Kyse150 cells could significantly decrease MMP-9 and ICAM-1. Tumorigenesis in vivo was significantly determined. The study indicates that low expression of RUNX3 in human ESCC tissue is significantly correlated with progression. Restoration of RUNX3 expression significantly inhibits ESCC cells migration, invasion, and tumorigenesis, which may be caused by RUNX3's interaction with MMP-9 and ICAM-1; RUNX3 may be a potential therapeutic target for ESCC.

  1. Genetic associations of transitional cell carcinoma.

    PubMed

    Herring, D W; Cartwright, R A; Williams, D D

    1979-04-01

    A series of 101 cases of transitional cell carcinoma (TCC) was contrasted with a control series for several genetic parameters. Three genetic associations were demonstrated with the TCC patients having A gene frequencies, HLA B5 and HLA CW4 genes all higher than might be expected by chance. A classification of the natural history of the disease is used to show that the HLA frequencies vary with the more or the less severe forms of the disease.

  2. MTHFR C677T polymorphisms are associated with aberrant methylation of the IGF-2 gene in transitional cell carcinoma of the bladder

    PubMed Central

    Cheng, Huan; Deng, Zhonglei; Wang, Zengjun; Zhang, Wei; Su, Jiantang

    2012-01-01

    The purpose of this study was to determine the relationship between methylation status of the insulin-like growth factor 2 (IGF-2) gene and methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphisms in bladder transitional cell carcinoma tissues in a Chinese population. The polymorphisms of the folate metabolism enzyme gene MTHFR were studied by restrictive fragment length polymorphism (RFLP). PCR-based methods of DNA methylation analysis were used to detect the CpG island methylation status of the IGF-2 gene. The association between the methylation status of the IGF-2 gene and clinical characteristics, as well as MTHFR C677T polymorphisms, was analyzed. Aberrant hypomethylation of the IGF-2 gene was found in 68.3% bladder cancer tissues and 12.4% normal bladder tissues, respectively, while hypomethylation was not detected in almost all normal bladder tissues. The hypomethylation rate of the IGF-2 gene in cancer tissues was significantly higher in patients with lymph node metastasis than in those without lymph node metastasis (46.3% vs 17.2%, P = 0.018). No association was found between aberrant DNA methylation and selected factors including sex, age, tobacco smoking, alcohol consumption and green tea consumption. After adjusting for potential confounding variables the variant allele of MTHFR C677T was found to be associated with hypomethylation of the IGF-2 gene. Compared with wildtype CC, the odds ratio was 4.33 (95% CI=1.06-10.59) for CT and 4.95 (95% CI=1.18-12.74) for TT. MTHFR 677 CC and CT genotypes might be one of the reasons that cause abnormal hypomethylation of the IGF-2 gene, and the aberrant CpG island hypomethylation of the IGF-2 gene may contribute to the genesis and progression of bladder transitional cell carcinoma. PMID:23554734

  3. Genomic Integration of High-Risk HPV Alters Gene Expression in Oropharyngeal Squamous Cell Carcinoma.

    PubMed

    Walline, Heather M; Komarck, Christine M; McHugh, Jonathan B; Bellile, Emily L; Brenner, J Chad; Prince, Mark E; McKean, Erin L; Chepeha, Douglas B; Wolf, Gregory T; Worden, Francis P; Bradford, Carol R; Carey, Thomas E

    2016-10-01

    High-risk HPV (hrHPV) is the leading etiologic factor in oropharyngeal cancer. HPV-positive oropharyngeal tumors generally respond well to therapy, with complete recovery in approximately 80% of patients. However, it remains unclear why some patients are nonresponsive to treatment, with 20% of patients recurring within 5 years. In this study, viral factors were examined for possible clues to differences in tumor behavior. Oropharynx tumors that responded well to therapy were compared with those that persisted and recurred. Viral oncogene alternate transcripts were assessed, and cellular sites of viral integration were mapped and sequenced. Effects of integration on gene expression were assessed by transcript analysis at the integration sites. All of the tumors demonstrated active viral oncogenesis, indicated by expression of HPV E6 and E7 oncogenes and alternate E6 splicing. In the responsive tumors, HPV integration occurred exclusively in intergenic chromosome regions, except for one tumor with viral integration into TP63. Each recurrent tumor exhibited complex HPV integration patterns into cancer-associated genes, including TNFRSF13B, SCN2A, SH2B1, UBE2V2, SMOC1, NFIA, and SEMA6D Disrupted cellular transcripts were identified in the region of integration in four of the seven affected genes.

  4. Stages of Merkel Cell Carcinoma

    MedlinePlus

    ... other organs . Sun exposure and having a weak immune system can affect the risk of Merkel cell carcinoma. ... ultraviolet A (PUVA) therapy for psoriasis . Having an immune system weakened by disease, such as chronic lymphocytic leukemia ...

  5. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    SciTech Connect

    Zacapala-Gómez, Ana Elvira; Del Moral-Hernández, Oscar; Villegas-Sepúlveda, Nicolás; Hidalgo-Miranda, Alfredo; Romero-Córdoba, Sandra Lorena; and others

    2016-01-15

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.

  6. BH3 domain mutation of proapoptotic genes Bad, Bmf and Bcl-G is rare in transitional cell carcinomas of the urinary bladder.

    PubMed

    Soung, Young Hwa; Lee, Jong Woo; Park, Won Sang; Nam, Suk Woo; Lee, Jung Young; Yoo, Nam Jin; Lee, Sug Hyung

    2006-02-01

    Mounting evidence indicates that deregulation of apoptosis contributes to the development of human cancers. Bcl-2 family proteins regulate the intrinsic apoptosis pathway. The aim of this study was to explore the possibility that mutation of BH3 domain of proapoptotic Bcl-2 genes Bad, Bmf and Bcl-G might be involved in the development of urinary bladder cancer. We analysed the BH3 domains of Bad, Bmf and Bcl-G genes for the detection of somatic mutations in 43 transitional cell carcinomas (TCCs) of the urinary bladder by a single strand conformation polymorphism assay in this study. There was no somatic mutation of BH3 domains of Bad, Bmf and Bcl-G genes in the TCC samples. The data presented here indicate that BH3 domain mutation of these genes is rare in TCCs and may not contribute to the pathogenesis of TCCs.

  7. Stable gene-silence of Kif2a synergistic with 5-fluorouracil suppresses oral tongue squamous cell carcinoma growth in vitro and in vivo.

    PubMed

    Wang, Cheng-Qin; Li, Yu-Jun; Wei, Zhi-Min; Zhu, Chang-Jun; Qu, Xun; Wei, Feng-Cai; Xing, Xiao-Ming; Yu, Wen-Juan

    2013-07-01

    Squamous cell carcinoma of the oral tongue (SCCOT) is one of the most common malignant carcinomas in the head and neck. Recurrence and/or metastasis often results in failure of treatment and decreases the survival of the patients. The purpose of this study is to investigate the effect of gene-silence of Kif2a on SCCOT in viro and in vivo. Plasmid-mediated expression of Kif2a-siRNA (pGPU6/GFP/Kif2a) was employed to silence the expression of Kif2a in Tca8113 cells at both mRNA and protein levels. Tca8113 cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and growth of Tca8113 tumors was determined by intra-tumor injection of pGPU6/GFP/Kif2a in nude mice. Gene-silence of Kif2a suppressed Tca8113 cell proliferation. pGPU6/GFP/Kif2a synergized the tumor suppression effect of 5-Fluorouracil (5-Fu) on Tca8113 cells. Our data support that Kif2a is a potential molecular target for the therapeutics of recurrent and metastatic SCCOT. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Analysis of gene status in cervical dysplastic lesions and squamous cell carcinoma using tissue microarrays.

    PubMed

    Costa, Carlota; Espinet, Blanca; Molina, Miguel A; Salgado, Rocio; Salido, Marta; Baró, Teresa; Fusté, Pere; Mancebo, Gemma; Carreras, Ramón; Solé, Francesc; Serrano, Sergi; Alameda, Francesc

    2009-07-01

    Cervical displasia are classified as CIN-I, CIN-II and CIN-III. It has been observed that in at least 60% of CIN-I and CIN-II, the pathology disappears spontaneously, while around 30% persist at 24 months, 10% progress to CIN-III and 1% develops as a SCC. The factors involved in the evolution of the pathology are not defined, although infection of HPV is a necessary condition, but not the only one. For this reason, the identification of genetic changes is an essential element for understanding the carcinogenic process. It can also serve as a helpful tool for identifying patients who may be susceptible to its evolution and treatment, from patients whose lesions could regress spontaneous and for whom periodic follow-ups would be enough. Fifty three cervical biopsies from patients with dysplasia and ISCC were included in the study. These biopsies were set into nine macroarrays. Eight genes and five proteins were examined in each samples (hTERT, PIK3CA, hTERC, MYC, CCND1, BCL2, ZNF217 and p16) by fluorescence in situ hybridization (FISH) and/or immunohistochemistry (IHC). The results reflected that the genetic alterations of PIK3CA, ZNF217 and CCND1 were associated with the evolution of normal tissue to CIN I, those of hTERC and ERBB with the evolution of LSIL to HSIL, those of hTERT and MYC with the evolution of CIN-II/CIN-III to ISCC, and those of BCL-2 with the inception of ISCC. With regards to proteins, the expression of MYC and CCND1 in the initial stages of the illness would help in the acquisition of the altered cellular phenotype.

  9. [Impact of epigallocatechin gallate on gene expression profiles of human hepatocellular carcinoma cell lines BEL7404/ADM and BEL7402/5-FU].

    PubMed

    Tang, Hai-Hua; Zhou, Ming; Liang, Gang

    2008-10-01

    Epigallocatechin gallate (EGCG) from green tea could reverse multidrug resistance (MDR) in human hepatocellular carcinoma (HCC) in vitro and in vivo. This study was to investigate the mechanism of reversing effect of EGCG on MDR of human hepatocelluar carcinoma cell lines BEL7404/ADM and BEL7402/5-FU. Drug sensitivity of BEL7404/ADM and BEL7402/5-FU cells was tested by MTT assay. The different gene expression profiles of BEL7404/ADM and BEL7402/5-FU cells were detected by cDNA microarray before and after treatment of EGCG. The expression of MDR1 and LRP genes was detemined by reverse transcription-polymerase chain reaction (RT-PCR); the expression of Cyclin G1 protein was detected by Western blot to confirm the results of cDNA microarray. The 10% inhibitory concentration (IC10) of EGCG was 24.76 mg/L for BEL7404/ADM cells and 20.60 mg/L for BEL7402/5-FU cells. When treated with 0.05 mg/L adriamycin (ADM) and 100 micromol/L 5-fluorouracil (5-FU) in combination, 20 mg/L EGCG reversed the MDR by 9.66 folds in BEL7404/ADM cells and by 2.36 folds in BEL7402/5-FU cells. After treatment of EGCG, 210 differentially expressed genes were identified in BEL7404/ADM cells: 38 were up-regulated and 172 were down-regulated; the potential MDR-related genes included the up-regulated ABCB10 (MDR/TAP), TOP2A, TOP2B, CCNG1, and down-regulated ABCB1, MVP, ARHD, HDAC5, GSS, GSTPI, HSPA1B, HSPB7, CDKN1A, RAB11B, RAB9P40. After treatment of EGCG, 179 differentially expressed genes were identified in BEL7402/5-FU cells: 31 were up-regulated and 148 were down-regulated; the potential MDR-related genes included the up-regulated ABCG (BCRP), CCNG2, GADD34, RB1, RBBP4, and down-regulated DTYMK, GPX1, USP5, BAX, BAK1, HSPA1L. The down-regulation of MDR1 and LRP expression was confirmed by RT-PCR; the up-regulation of Cyclin G1 expression was confirmed by Western blot. EGCG could reverse the MDR of BEL7404/ADM and BEL7402/5-FU cells, but the changes of gene expression profiles of these two HCC

  10. Microarray gene expression analysis of chemosensitivity for docetaxel, cisplatin and 5-fluorouracil (TPF) combined chemotherapeutic regimen in hypopharyngeal squamous cell carcinoma.

    PubMed

    Lian, Meng; Wang, Haizhou; Fang, Jugao; Zhai, Jie; Wang, Ru; Shen, Xixi; Yang, Yifan; Ma, Zhihong; Liu, Honggang

    2017-06-01

    To screen out a set of candidate genes which could help to determine whether patients with hypopharyngeal squamous cell carcinoma (HSCC) could benefit from docetaxel, cisplatin and 5-fluorouracil (TPF) induction chemotherapy. Gene-expression profiles in 12 TPF-sensitive patients were compared to 9 resistant controls by microarray analysis. Subsequently, expression levels of potential biomarkers in chemosensitive cell line FaDu after TPF treatment were observed by quantitative real-time polymerase chain reaction (qRT-PCR). Through microarray analysis, 1,579 differentially expressed genes were identified, of which 815 were up-regulated in TPF chemotherapy-responsive tissues whereas 764 were down-regulated. Gene ontology (GO) analysis suggested these genes participating in physiological processes including transcription and its regulation, cellular signal transduction and metabolic process. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed that MAPK and Jat/STAT signaling pathways occupied important roles in TPF chemotherapeutic sensitivity. Moreover, in vitro cell culture experiments revealed the expression alternations of IL-6, MAPK14, JUN, CDK5 and CAMK2A exposed to TPF treatment by qRT-PCR, whilst providing an insight into the mechanism underlying TPF chemotherapeutic response in HSCC. These results provided a battery of genes related to TPF chemotherapeutic sensitivity and might act as molecular targets in HSCC treatment. Moreover, these candidate biomarkers could contribute to HSCC individualized treatment.

  11. Functional single nucleotide polymorphisms of the RASSF3 gene and susceptibility to squamous cell carcinoma of the head and neck

    PubMed Central

    Guo, Hongguang; Liu, Hongliang; Wei, Jianhua; Li, Yangkai; Yu, Hongping; Guan, Xiaoxiang; Li-E, Wang; Li, Guojun; Sturgis, Erich M.; Wei, Qingyi; Liu, Zhensheng

    2014-01-01

    Background RASSF3 suppresses tumour formation through uncertain mechanisms, but it is an important gene of p53-dependent apoptosis. RASSF3 depletion impairs DNA repair after DNA damage, leading to polyploidy. The authors hypothesised that potential functional single-nucleotide polymorphisms (SNPs) of RASSF3 are associated with risk of squamous cell carcinoma of the head and neck (SCCHN). Methods The authors used a functional SNP approach to evaluate the associations between common (minor allele frequency ≥0.05), putative functional variants in RASSF3 and risk of SCCHN. Four selected such functional SNPs (rs6581580 T>G, rs7313765 G>A, rs12311754 G>C and rs1147098 T>C) in RASSF3 were identified and genotyped in 1087 patients and 1090 cancer-free controls in a non-Hispanic white population. Results The authors found that two SNPs were significantly associated with SCCHN risk. Carriers of the variant rs6581580G and rs7313765A alleles were at a reduced SCCHN risk, compared with the corresponding common homozygotes [adjusted odds ratio (OR) = 0.75 and 0.73 and 95% confidence interval (CI) = 0.62–0.91 and 0.60–0.88, respectively, for dominant models; and Ptrend = 0.012 and 0.041, respectively, for additive models], particularly for non-oropharyngeal tumours (adjusted OR = 0.68 and 0.60 and 95% CI = 0.53–0.86 and 0.47– 0.77, respectively, for dominant models). In the genotype–phenotype correlation analysis of peripheral blood mononuclear cells from 102 cancer-free controls, the rs6581580 GG genotype was associated with significantly increased expression levels of RASSF3 mRNA (P = 0.038), compared with the TT genotype. Additional functional experiments further showed that variant G allele of rs6581580 had a significantly stronger binding affinity to the nuclear protein extracts than the T allele. Conclusion Taken together, these findings indicate that the RASSF3 promoter rs6581580 T>G SNP is potentially functional, modulating susceptibility to SCCHN among non

  12. hIL-15 gene-modified human natural killer cells (NKL-IL15) augments the anti-human hepatocellular carcinoma effect in vivo.

    PubMed

    Jiang, Wen; Zhang, Cai; Tian, Zhigang; Zhang, Jian

    2014-07-01

    Genetic modification of NK cells may provide new possibilities for developing effective cancer immunotherapy by improving NK cell function and specificity. We previously established human interleukin-15 (hIL-15) gene-modified NKL cells (NKL-IL15) and demonstrated their therapeutic efficiency against human hepatocellular carcinoma (HCC) in vitro. To further assess the applicability of NKL-IL15 cells in adoptive cellular immunotherapy, we further investigated their natural cytotoxicity against HCC in vivo in the present study. NKL-IL15 cells exhibited strong inhibition on the growth of transplanted human HCC tumors in xenograft nude mouse models. Further investigation showed that NKL-IL15 cells expressed much higher levels of cytolysis-related molecules, including NKp80, TRAIL, granzyme B, IFN-γ, and TNF-α, than parental NKL cells in response to HCC stimulation. Moreover, soluble mediators secreted by NKL-IL15 cells decreased HCC cell proliferation; in particular, NKL-IL15-derived TNF-α and IFN-γ induced higher NKG2D ligand expression on target cells and resulted in the increased susceptibility of HCCs to NKL-mediated cytolysis. These results show that hIL-15 gene-modified human NK cells can augment the anti-tumor effect of NK cells on human HCC in vivo and suggest their promising applicability as a new candidate for adoptive immunotherapy against HCCs in the future. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Promoter methylation of MGMT, MLH1 and RASSF1A tumor suppressor genes in head and neck squamous cell carcinoma: pharmacological genome demethylation reduces proliferation of head and neck squamous carcinoma cells.

    PubMed

    Koutsimpelas, Dimitrios; Pongsapich, Warut; Heinrich, Ulf; Mann, Sylvia; Mann, Wolf J; Brieger, Jürgen

    2012-04-01

    Promoter hypermethylation of tumor suppressor genes (TSGs) is a common feature of primary cancer cells. However, to date the somatic epigenetic events that occur in head and neck squamous cell carcinoma (HNSCC) tumorigenesis have not been well-defined. In the present study, we analyzed the promoter methylation status of the genes mutL homolog 1 (MLH1), Ras-association domain family member 1 (RASSF1A) and O-6-methylguanine-DNA methyltransferase (MGMT) in 23 HNSCC samples, three control tissues and one HNSCC cell line (UM-SCC 33) using methylation-specific PCR (MSP). The expression of the three proteins was quantified by semi-quantitative immunohistochemical analysis. The cell line was treated with the demethylating agent 5-azacytidine (5-Aza) and the methylation status after 5-Aza treatment was analyzed by MSP and DNA sequencing. Proliferation was determined by Alamar blue staining. We found that the MGMT promoter in 57% of the analyzed primary tumor samples and in the cell line was hypermethylated. The MLH promoter was found to be methylated in one out of 23 (4%) tumor samples while in the examined cell line the MLH promoter was unmethylated. The RASSF1A promoter showed methylation in 13% of the tumor samples and in the cell line. MGMT expression in the group of tumor samples with a hypermethylated promoter was statistically significantly lower compared to the group of tumors with no measured hypermethylation of the MGMT promoter. After treatment of the cell line with the demethylating agent 5-Aza no demethylation of the methylated MGMT and RASSF1A genes were determined by MSP. DNA sequencing verified the MSP results, however, increased numbers of unmethylated CpG islands in the promoter region of MGMT and RASSF1A were observed. Proliferation was significantly (p<0.05) reduced after treatment with 5-Aza. In summary, we have shown promoter hypermethylation of the tumor suppressor genes MGMT and RASSF1A in HNSCC, suggesting that this epigenetic inactivation of TSGs

  14. Peroxisome proliferator-activated receptor-gamma ligands suppress fibronectin gene expression in human lung carcinoma cells: involvement of both CRE and Sp1.

    PubMed

    Han, Shouwei; Ritzenthaler, Jeffrey D; Rivera, Hilda N; Roman, Jesse

    2005-09-01

    Lung carcinoma often occurs in patients with chronic lung disease such as tobacco-related emphysema and asbestos-related pulmonary fibrosis. These diseases are characterized by dramatic alterations in the content and composition of the lung extracellular matrix, and we believe this "altered" matrix has the ability to promote lung carcinoma cell growth. One extracellular matrix molecule shown to be altered in these lung diseases is fibronectin (Fn). We previously reported increased growth and survival of non-small cell lung carcinoma (NSCLC) cells exposed to Fn. Thus Fn may serve as a mitogen/survival factor for NSCLC and therefore represents a novel target for anti-cancer strategies. To this end, we studied the effects of the PPARgamma ligands 15d-PGJ(2), rosiglitazone (BRL49653), and troglitazone on Fn expression in NSCLC cells and found that they were able to inhibit Fn gene transcription. Inhibition of Fn expression by BRL49653 and troglitazone, but not by 15d-PGJ(2), was prevented by the specific PPARgamma antagonist GW-9662 and by PPARgamma small interfering RNA. Working with Fn deletion and mutated promoter constructs, we found that the region between -170 and -50 bp downstream from the transcriptional start site of the promoter was involved in PPARgamma ligand inhibition. PPARgamma ligands also diminished the phosphorylation of CREB, diminished Sp1 nuclear protein expression, and prevented the binding of these transcription factors to CRE and Sp1 sites, respectively, within the Fn promoter. In summary, our results demonstrate that PPARgamma ligands inhibit Fn gene expression in NSCLC cells through PPARgamma-dependent and -independent pathways that affect both CREB and Sp1.

  15. Gene expression patterns through oral squamous cell carcinoma development: PD-L1 expression in primary tumor and circulating tumor cells

    PubMed Central

    Oliveira-Costa, Joao Paulo; de Carvalho, Alex Fiorini; da Silveira, Giorgia Gobbi; Amaya, Peter; Wu, Yongqi; Park, Kyoung-Joo Jenny; Gigliola, Mabel Pinilla; Lustberg, Maryam; Buim, Marcilei Eliza Cavicchioli; Ferreira, Elisa Napolitano; Kowalski, Luiz Paulo; Chalmers, Jeffrey J.; Soares, Fernando Augusto; Carraro, Dirce Maria; Ribeiro-Silva, Alfredo

    2015-01-01

    Oral squamous cell carcinoma (OSCC) is the most common tumor of the oral cavity and has been associated with poor prognosis. Scarce prognostic markers are available for guiding treatment and/or sub-classifying patients. This study aims to identify biomarkers by searching for genes whose expression is increased or decreased during tumor progression (through T1 to T4 stages). Thirty-six samples from all tumor size stages (from T1 to T4) were analyzed using cDNA microarrays. Selected targets were analyzed by immunohistochemistry and in circulating tumor cells by immunofluorescence and Nanostring. Correlation was shown between PD-L1 and tumor size and lymph node metastasis, HOXB9 and tumor size, BLNK and perineural invasion, and between ZNF813 and perineural invasion. PD-L1 positivity was an independent prognostic factor in this cohort (p = 0.044, HH = 0.426). In CTCs from patients with locally advanced OSCC, we found a strong cytoplasmatic expression of PD-L1. PD-L1 is a ligand of PD-1 and is believed to limit T cell activity in inflammatory responses and limit autoimmune diseases. We demonstrated an important role for PD-L1 in primary tumors according to tumor size, and in disease specific survival. Therefore, we could further determine individuals with PD-L1+ CTCs, and possibly follow treatment using CTCs. PMID:26041877

  16. Gene expression patterns through oral squamous cell carcinoma development: PD-L1 expression in primary tumor and circulating tumor cells.

    PubMed

    Oliveira-Costa, Joao Paulo; de Carvalho, Alex Fiorini; da Silveira, da Giorgia Gobbi; Amaya, Peter; Wu, Yongqi; Park, Kyoung-Joo Jenny; Gigliola, Mabel Pinilla; Lustberg, Maryam; Buim, Marcilei Eliza Cavicchioli; Ferreira, Elisa Napolitano; Kowalski, Luiz Paulo; Chalmers, Jeffrey J; Soares, Fernando Augusto; Carraro, Dirce Maria; Ribeiro-Silva, Alfredo

    2015-08-28

    Oral squamous cell carcinoma (OSCC) is the most common tumor of the oral cavity and has been associated with poor prognosis. Scarce prognostic markers are available for guiding treatment and/or sub-classifying patients. This study aims to identify biomarkers by searching for genes whose expression is increased or decreased during tumor progression (through T1 to T4 stages). Thirty-six samples from all tumor size stages (from T1 to T4) were analyzed using cDNA microarrays. Selected targets were analyzed by immunohistochemistry and in circulating tumor cells by immunofluorescence and Nanostring. Correlation was shown between PD-L1 and tumor size and lymph node metastasis, HOXB9 and tumor size, BLNK and perineural invasion, and between ZNF813 and perineural invasion. PD-L1 positivity was an independent prognostic factor in this cohort (p = 0.044, HH = 0.426). In CTCs from patients with locally advanced OSCC, we found a strong cytoplasmatic expression of PD-L1. PD-L1 is a ligand of PD-1 and is believed to limit T cell activity in inflammatory responses and limit autoimmune diseases. We demonstrated an important role for PD-L1 in primary tumors according to tumor size, and in disease specific survival. Therefore, we could further determine individuals with PD-L1+ CTCs, and possibly follow treatment using CTCs.

  17. Human Leukocyte Antigen (HLA) A*1101-Restricted Epstein-Barr Virus-Specific T-cell Receptor Gene Transfer to Target Nasopharyngeal Carcinoma.

    PubMed

    Zheng, Yong; Parsonage, Greg; Zhuang, Xiaodong; Machado, Lee R; James, Christine H; Salman, Asmaa; Searle, Peter F; Hui, Edwin P; Chan, Anthony T C; Lee, Steven P

    2015-10-01

    Infusing virus-specific T cells is effective treatment for rare Epstein-Barr virus (EBV)-associated posttransplant lymphomas, and more limited success has been reported using this approach to treat a far more common EBV-associated malignancy, nasopharyngeal carcinoma (NPC). However, current approaches using EBV-transformed lymphoblastoid cell lines to reactivate EBV-specific T cells for infusion take 2 to 3 months of in vitro culture and favor outgrowth of T cells targeting viral antigens expressed within EBV(+) lymphomas, but not in NPC. Here, we explore T-cell receptor (TCR) gene transfer to rapidly and reliably generate T cells specific for the NPC-associated viral protein LMP2. We cloned a human leukocyte antigen (HLA) A*1101-restricted TCR, which would be widely applicable because 40% of NPC patients carry this HLA allele. Studying both the wild-type and modified forms, we have optimized expression of the TCR and demonstrated high-avidity antigen-specific function (proliferation, cytotoxicity, and cytokine release) in both CD8(+) and CD4(+) T cells. The engineered T cells also inhibited LMP2(+) epithelial tumor growth in a mouse model. Furthermore, transduced T cells from patients with advanced NPC lysed LMP2-expressing NPC cell lines. Using this approach, within a few days large numbers of high-avidity LMP2-specific T cells can be generated reliably to treat NPC, thus providing an ideal clinical setting to test TCR gene transfer without the risk of autoimmunity through targeting self-antigens.

  18. Human Leukocyte Antigen (HLA) A*1101-restricted Epstein-Barr Virus-specific T-cell Receptor Gene Transfer to Target Nasopharyngeal Carcinoma

    PubMed Central

    Zheng, Yong; Parsonage, Greg; Zhuang, Xiaodong; Machado, Lee R; James, Christine H.; Salman, Asmaa; Searle, Peter F.; Hui, Edwin P.; Chan, Anthony T.C.; Lee, Steven P.

    2015-01-01

    Infusing virus-specific T cells is effective treatment for rare Epstein-Barr virus (EBV)-associated post-transplant lymphomas and more limited success has been reported using this approach to treat a far more common EBV-associated malignancy, nasopharyngeal carcinoma (NPC). However, current approaches using EBV-transformed lymphoblastoid cell lines to reactivate EBV-specific T cells for infusion take 2 to 3 months of in vitro culture and favour outgrowth of T cells targeting viral antigens expressed within EBV+ lymphomas but not in NPC. Here we explore T-cell receptor (TCR) gene transfer to rapidly and reliably generate T cells specific for the NPC-associated viral protein LMP2. We cloned a HLA A*1101-restricted TCR, which would be widely applicable since 40% of NPC patients carry this HLA allele. Studying both the wild-type and modified forms we have optimised expression of the TCR and demonstrated high avidity antigen-specific function (proliferation, cytotoxicity, cytokine release) in both CD8+ and CD4+ T cells. The engineered T cells also inhibited LMP2+ epithelial tumour growth in a mouse model. Furthermore, transduced T cells from patients with advanced NPC lysed LMP2-expressing NPC cell lines. Using this approach, within a few days large numbers of high avidity LMP2-specific T cells can be generated reliably to treat NPC, thus providing an ideal clinical setting to test TCR gene transfer without the risk of autoimmunity through targeting self-antigens. PMID:25711537

  19. Distinct nuclear arrangement of active and inactive c-myc genes in control and differentiated colon carcinoma cells

    SciTech Connect

    Harnicarova, Andrea; Kozubek, Stanislav . E-mail: kozubek@ibp.cz; Pachernik, Jiri; Krejci, Jana; Bartova, Eva

    2006-12-10

    Using sequential RNA-DNA fluorescence in situ hybridization, the nuclear arrangement of both the active and inactive c-myc gene as well as its transcription was investigated in colon cancer HT-29 cells induced to differentiate into enterocytes. Cytogenetic studies revealed the presence of two chromosomes 8 in HT-29 cells, of which the one containing c-myc gene amplicons was substantially larger and easily distinguished from the normal chromosome. This observation enabled detection of both activity and nuclear localization of c-myc genes in single cells and in individual chromosome territories. Similar transcriptional activity of the c-myc gene was observed in both the normal and derivative chromosome 8 territories showing no influence of the amplification on the c-myc gene expression. Our experiments demonstrate strikingly specific nuclear and territorial arrangements of active genes as compared with inactive ones: on the periphery of their territories facing to the very central region of the cell nucleus. Nuclear arrangement of c-myc genes and transcripts was conserved during cell differentiation and, therefore, independent of the level of differentiation-specific c-myc gene expression. However, after the induction of differentiation, a more internal territorial location was found for the single copy c-myc gene of normal chromosome 8, while amplicons conserved their territorial topography.

  20. Distinct nuclear arrangement of active and inactive c-myc genes in control and differentiated colon carcinoma cells.

    PubMed

    Harnicarová, Andrea; Kozubek, Stanislav; Pacherník, Jirí; Krejci, Jana; Bártová, Eva

    2006-12-10

    Using sequential RNA-DNA fluorescence in situ hybridization, the nuclear arrangement of both the active and inactive c-myc gene as well as its transcription was investigated in colon cancer HT-29 cells induced to differentiate into enterocytes. Cytogenetic studies revealed the presence of two chromosomes 8 in HT-29 cells, of which the one containing c-myc gene amplicons was substantially larger and easily distinguished from the normal chromosome. This observation enabled detection of both activity and nuclear localization of c-myc genes in single cells and in individual chromosome territories. Similar transcriptional activity of the c-myc gene was observed in both the normal and derivative chromosome 8 territories showing no influence of the amplification on the c-myc gene expression. Our experiments demonstrate strikingly specific nuclear and territorial arrangements of active genes as compared with inactive ones: on the periphery of their territories facing to the very central region of the cell nucleus. Nuclear arrangement of c-myc genes and transcripts was conserved during cell differentiation and, therefore, independent of the level of differentiation-specific c-myc gene expression. However, after the induction of differentiation, a more internal territorial location was found for the single copy c-myc gene of normal chromosome 8, while amplicons conserved their territorial topography.

  1. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells.

    PubMed

    Zacapala-Gómez, Ana Elvira; Del Moral-Hernández, Oscar; Villegas-Sepúlveda, Nicolás; Hidalgo-Miranda, Alfredo; Romero-Córdoba, Sandra Lorena; Beltrán-Anaya, Fredy Omar; Leyva-Vázquez, Marco Antonio; Alarcón-Romero, Luz Del Carmen; Illades-Aguiar, Berenice

    2016-01-15

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants.

  2. A Novel Function for the nm23-Hl Gene: Overexpression in Human Breast Carcinoma Cells Leads to the Formation of Basement Membrane and Growth Arrest

    SciTech Connect

    Howlett, Anthony R; Petersen, Ole W; Steeg, Patricia S; Bissell, Mina J

    1994-01-01

    We have developed a culture system using reconstituted basement membrane components in which normal human mammary epithelial cells exhibit several aspects of the development and differentiation process, including formation of acinar-like structures, production and basal deposition of basement membrane components, and production and apical secretion of sialomucins. Cell lines and cultures from human breast carcinomas failed to recapitulate this process. The data indicate the importance of cellular interactions with the basement membrane in the regulation of normal breast differentiation and, potentially, its loss in neoplasia. Our purpose was to use this assay to investigate the role of the putative metastasis suppressor gene nm23-H1 in mammary development and differentiation. The metastatic human breast carcinoma cell line MDA-MB-435, clones transfected with a control pCMVBamneo vector, and clones transfected with pCMVBamneo vector containing nm23-H1 complementary DNA (the latter of which exhibited a substantial reduction in spontaneous metastatic potential in vivo) were cultured within a reconstituted basement membrane. Clones were examined for formation of acinus-like spheres, deposition of basement membrane components, production of sialomucin, polarization, and growth arrest. In contrast to the parental cell line and control transfectants, MDA-MB-435 breast carcinoma cells overexpressing Nm23-H1 protein regained several aspects of the normal phenotype within reconstituted basement membrane. Nm23-H1 protein-positive cells formed organized acinus-like spheres, deposited the basement membrane components type IV collagen and, to some extent, laminin to the outside of the spheres, expressed sialomucin, and growth arrested. Growth arrest of Nm23-H1 protein-positive cells was preceded by and correlated with formation of a basement membrane, suggesting a causal relationship. The data indicate a previously unidentified cause-and-effect relationship between nm23-H1 gene

  3. Carcinomas of ovary and lung with clear cell features: can immunohistochemistry help in differential diagnosis?

    PubMed

    Howell, Nicole R; Zheng, Wenxin; Cheng, Liang; Tornos, Carmen; Kane, Philip; Pearl, Michael; Chalas, Eva; Liang, Sharon X

    2007-04-01

    Metastatic lung carcinomas with clear cell morphology can be confused with primary ovarian clear cell carcinomas. We performed immunohistochemical stains in 14 cases of non-small cell lung carcinomas with clear cell features and 14 cases of ovarian clear cell carcinomas using a panel of markers, including thyroid transcription factor 1 (TTF-1), carcinoembryonic antigen (CEA), Wilms tumor gene 1, octamer-binding transcription factor 4 (OCT-4), cancer antigen 125 (CA-125), estrogen receptor, and progesterone receptor. Among non-small cell lung carcinomas with clear cell features, 87.5% of adenocarcinomas (or 50% overall frequency in lung carcinomas) were positive for TTF-1, whereas none of the ovarian clear cell carcinomas were positive (P = 0.002). All 14 ovarian clear cell carcinomas stained for CA-125 as compared with 1 non-small cell lung carcinoma (P < 0.001). On the other hand, 85% of non-small cell lung carcinomas stained for CEA, whereas none of the ovarian clear cell carcinomas did (P < 0.001). Interestingly, 4 ovarian clear cell carcinomas (28%) showed positive staining for the germ cell marker OCT-4. Either lung or ovarian carcinomas stained for Wilms tumor gene 1, estrogen receptor, or progesterone receptor very infrequently; and the difference between the 2 groups was not statistically significant. Our results suggest that an immunohistochemical panel consisting of TTF-1, CEA, CA-125, and OCT-4 is helpful in distinguishing most pulmonary and ovarian carcinomas with clear cell features.

  4. Biphasic components of sarcomatoid clear cell renal cell carcinomas are molecularly similar to each other, but distinct from, non-sarcomatoid renal carcinomas.

    PubMed

    Sircar, Kanishka; Yoo, Suk-Young; Majewski, Tadeusz; Wani, Khalida; Patel, Lalit R; Voicu, Horatiu; Torres-Garcia, Wandaliz; Verhaak, Roel G W; Tannir, Nizar; Karam, Jose A; Jonasch, Eric; Wood, Christopher G; Tamboli, Pheroze; Baggerly, Keith A; Aldape, Kenneth D; Czerniak, Bogdan

    2015-10-01

    Sarcomatoid transformation, wherein an epithelioid carcinomatous tumour component coexists with a sarcomatoid histology, is a predictor of poor prognosis in clear cell renal cell carcinoma. Our understanding of sarcomatoid change has been hindered by the lack of molecular examination. Thus, we sought to characterize molecularly the biphasic epithelioid and sarcomatoid components of sarcomatoid clear cell renal cell carcinoma and compare them to non-sarcomatoid clear cell renal cell carcinoma. We examined the transcriptome of the epithelioid and sarcomatoid components of advanced stage sarcomatoid clear cell renal cell carcinoma (n=43) and non-sarcomatoid clear cell renal cell carcinoma (n=37) from independent discovery and validation cohorts using the cDNA microarray and RNA-seq platforms. We analyzed DNA copy number profiles, generated using SNP arrays, from patients with sarcomatoid clear cell renal cell carcinoma (n=10) and advanced non-sarcomatoid clear cell renal cell carcinoma (n=155). The epithelioid and sarcomatoid components of sarcomatoid clear cell renal cell carcinoma had similar gene expression and DNA copy number signatures that were, however, distinct from those of high-grade, high-stage non-sarcomatoid clear cell renal cell carcinoma. Prognostic clear cell renal cell carcinoma gene expression profiles were shared by the biphasic components of sarcomatoid clear cell renal cell carcinoma and the sarcomatoid component showed a partial epithelial-to-mesenchymal transition signature. Our genome-scale microarray-based transcript data were validated in an independent set of sarcomatoid and non-sarcomatoid clear cell renal cell carcinomas using RNA-seq. Sarcomatoid clear cell renal cell carcinoma is molecularly distinct from non-sarcomatoid clear cell renal cell carcinoma, with its genetic programming largely shared by its biphasic morphological components. These data explain why a low percentage of sarcomatoid histology augurs a poor prognosis; suggest the

  5. Biphasic components of sarcomatoid clear cell renal cell carcinomas are molecularly similar to each other, but distinct from, non‐sarcomatoid renal carcinomas

    PubMed Central

    Sircar, Kanishka; Yoo, Suk‐Young; Majewski, Tadeusz; Wani, Khalida; Patel, Lalit R.; Voicu, Horatiu; Torres‐Garcia, Wandaliz; Verhaak, Roel G. W.; Tannir, Nizar; Karam, Jose A.; Jonasch, Eric; Wood, Christopher G.; Tamboli, Pheroze; Baggerly, Keith A.

    2015-01-01

    Abstract Sarcomatoid transformation, wherein an epithelioid carcinomatous tumour component coexists with a sarcomatoid histology, is a predictor of poor prognosis in clear cell renal cell carcinoma. Our understanding of sarcomatoid change has been hindered by the lack of molecular examination. Thus, we sought to characterize molecularly the biphasic epithelioid and sarcomatoid components of sarcomatoid clear cell renal cell carcinoma and compare them to non‐sarcomatoid clear cell renal cell carcinoma. We examined the transcriptome of the epithelioid and sarcomatoid components of advanced stage sarcomatoid clear cell renal cell carcinoma (n=43) and non‐sarcomatoid clear cell renal cell carcinoma (n=37) from independent discovery and validation cohorts using the cDNA microarray and RNA‐seq platforms. We analyzed DNA copy number profiles, generated using SNP arrays, from patients with sarcomatoid clear cell renal cell carcinoma (n=10) and advanced non‐sarcomatoid clear cell renal cell carcinoma (n=155). The epithelioid and sarcomatoid components of sarcomatoid clear cell renal cell carcinoma had similar gene expression and DNA copy number signatures that were, however, distinct from those of high‐grade, high‐stage non‐sarcomatoid clear cell renal cell carcinoma. Prognostic clear cell renal cell carcinoma gene expression profiles were shared by the biphasic components of sarcomatoid clear cell renal cell carcinoma and the sarcomatoid component showed a partial epithelial‐to‐mesenchymal transition signature. Our genome‐scale microarray‐based transcript data were validated in an independent set of sarcomatoid and non‐sarcomatoid clear cell renal cell carcinomas using RNA‐seq. Sarcomatoid clear cell renal cell carcinoma is molecularly distinct from non‐sarcomatoid clear cell renal cell carcinoma, with its genetic programming largely shared by its biphasic morphological components. These data explain why a low percentage of sarcomatoid histology

  6. Identification of FGF19 as a prognostic marker and potential driver gene of lung squamous cell carcinomas in Chinese smoking patients.

    PubMed

    Tan, Qiang; Li, Fan; Wang, Guan; Xia, Weiliang; Li, Ziming; Niu, Xiaomin; Ji, Wenxiang; Yuan, Hong; Xu, Qiang; Luo, Qingquan; Zhang, Jie; Lu, Shun

    2016-04-05

    Comprehensive genomic characterizations of lung squamous cell carcinoma (LSCC) have been performed, but the differences between smokers (S-LSCC) and never smokers (NS-LSCC) are not clear, as NS-LSCC could be considered as a different disease from S-LSCC. In this study we delineated genomic alterations in a cohort of 21 NS-LSCC and 16 S-LSCC patients, and identified common gene mutations and amplifications as previously reported. Inclusion of more NS-LSCC patients enabled us to identify unreported S-LSCC- or NS-LSCC-specific alterations. Importantly, an amplification region containing FGF19, FGF3, FGF4 and CCND1 was found five-times more frequent in S-LSCC than in NS-LSCC. Amplification of FGF19 was validated in independent LSCC samples. Furthermore, FGF19 stimulated LSCC cell growth in vitro. These data implicate FGF19 as a potential driver gene in LSCC with clinic characteristics as smoking.

  7. Increased expression of prion protein gene is accompanied by demethylation of CpG sites in a mouse embryonal carcinoma cell line, P19C6

    PubMed Central

    DALAI, Wuyun; MATSUO, Eiko; TAKEYAMA, Natsumi; KAWANO, Junichi; SAEKI, Keiichi

    2017-01-01

    Elucidation of the processes regulating the prion protein gene (Prnp) is an important key to understanding the development of prion disorders. In this study, we explored the involvement of DNA methylation in Prnp transcriptional regulation during neuronal differentiation of embryonic carcinoma P19C6 cells. When P19C6 cells were differentiated into neuronal cells, the expression of Prnp was markedly increased, while CpG methylation was significantly demethylated at the nucleotide region between −599 and −238 from the transcription start site. In addition, when P19C6 cells were applied in a DNA methyltransferase inhibitor, RG108, Prnp transcripts were also significantly increased in relation to the decreased methylation statuses. These findings helped to elucidate the DNA methylation-mediated regulation of Prnp expression during neuronal differentiation. PMID:28132962

  8. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease.

    PubMed

    Kennedy, Edward M; Kornepati, Anand V R; Goldstein, Michael; Bogerd, Hal P; Poling, Brigid C; Whisnant, Adam W; Kastan, Michael B; Cullen, Bryan R

    2014-10-01

    High-risk human papillomaviruses (HPVs), including HPV-16 and HPV-18, are the causative agents of cervical carcinomas and are linked to several other tumors of the anogenital and oropharyngeal regions. The majority of HPV-induced tumors contain integrated copies of the normally episomal HPV genome that invariably retain intact forms of the two HPV oncogenes E6 and E7. E6 induces degradation of the cellular tumor suppressor p53, while E7 destabilizes the retinoblastoma (Rb) protein. Previous work has shown that loss of E6 function in cervical cancer cells induces p53 expression as well as downstream effectors that induce apoptosis and cell cycle arrest. Similarly, loss of E7 allows increased Rb expression, leading to cell cycle arrest and senescence. Here, we demonstrate that expression of a bacterial Cas9 RNA-guided endonuclease, together with single guide RNAs (sgRNAs) specific for E6 or E7, is able to induce cleavage of the HPV genome, resulting in the introduction of inactivating deletion and insertion mutations into the E6 or E7 gene. This results in the induction of p53 or Rb, leading to cell cycle arrest and eventual cell death. Both HPV-16- and HPV-18-transformed cells were found to be responsive to targeted HPV genome-specific DNA cleavage. These data provide a proof of principle for the idea that vector-delivered Cas9/sgRNA combinations could represent effective treatment modalities for HPV-induced cancers. Importance: Human papillomaviruses (HPVs) are the causative agents of almost all cervical carcinomas and many other tumors, including many head and neck cancers. In these cancer cells, the HPV DNA genome is integrated into the cellular genome, where it expresses high levels of two viral oncogenes, called E6 and E7, that are required for cancer cell growth and viability. Here, we demonstrate that the recently described bacterial CRISPR/Cas RNA-guided endonuclease can be reprogrammed to target and destroy the E6 or E7 gene in cervical carcinoma cells

  9. Myc target gene, long intergenic noncoding RNA, Linc00176 in hepatocellular carcinoma regulates cell cycle and cell survival by titrating tumor suppressor microRNAs.

    PubMed

    Tran, D D H; Kessler, C; Niehus, S E; Mahnkopf, M; Koch, A; Tamura, T

    2017-09-04

    Hepatocellular carcinoma (HCC) is a frequent form of cancer with a poor prognosis and with limited possibilities for medical intervention. Recent evidence has accumulated that long noncoding RNAs (lncRNAs) are important regulators of disease processes including cancer. Chromatin remodeling in cancer cells may result in an unusual expression of lncRNAs and indeed it has been shown that more than 7000 unannotated lncRNAs are expressed in HCCs. We identified a novel long intergenic noncoding RNA, Linc00176, that plays a role in proliferation and survival of HCC. Linc00176 regulates expression of more than 200 genes by the sponge function for tumor suppressor miRNAs, miR-9 and miR-185. Linc00176 is expressed at a high level only in HCC, and is activated by Myc, Max and AP-4 transcription regulators. Myc also upregulates miR-9 and miR-185. In Linc00176-depleted HCC, these miRNAs were released from Linc00176 and downregulated their target mRNAs. Thus, depletion of Linc00176 disrupted the cell cycle and induced necroptosis in HCC via released tumor suppressor miRNAs. These data indicate that atypically expressed lncRNAs may be useful targets for cancer therapy.Oncogene advance online publication, 4 September 2017; doi:10.1038/onc.2017.312.

  10. Functional polymorphisms in antioxidant genes in Hurthle cell thyroid neoplasm - an association of GPX1 polymorphism and recurrent Hurthle cell thyroid carcinoma

    PubMed Central

    Goricar, Katja; Gazic, Barbara; Dolzan, Vita; Besic, Nikola

    2016-01-01

    Abstract Background Hurthle cells of the thyroid gland are very rich in mitochondria and oxidative enzymes. As a high level oxidative metabolism may lead to higher level of oxidative stress and can be associated with an increased risk for cancer, we investigated whether common functional polymorphisms in antioxidant genes (SOD2, CAT, GPX, GSTP1, GSTM1 and GSTT1) are associated with the development or clinical course of Hurthle cell thyroid carcinoma (HCTC). Methods A retrospective study was performed in 139 patients treated by thyroid surgery for a Hurthle cell neoplasm. HCTC, Hurthle cell thyroid adenoma (HCTA) or Hurthle cell thyroid nodule (HCTN) were diagnosed by pathomorphology. DNA was extracted from cores of histologically confirmed normal tissue obtained from formalin-fixed paraffin-embedded specimens and genotyped for investigated polymorphisms. Logistic regression was used to compare genotype distributions between patient groups. Results HCTC, HCTA and HCTN were diagnosed in 53, 47 and 21 patients, respectively. Metastatic disease and recurrence of HCTC were diagnosed in 20 and 16 HCTC patients, respectively. Genotypes and allele frequencies of investigated polymorphisms did not deviate from Hardy-Weinberg equilibrium in patients with HCTC, HCTA and HCTN. Under the dominant genetic model we observed no differences in the genotype frequency distribution of the investigated polymorphisms when the HCTA and HCTN group was compared to the HCTC group for diagnosis of HCTC or for the presence of metastatic disease. However, GPX1 polymorphism was associated with the occurrence of recurrent disease (p = 0.040). Conclusions GPX1 polymorphism may influence the risk for recurrent disease in HCTC. PMID:27679545

  11. Sorafenib in renal cell carcinoma.

    PubMed

    Davoudi, Ehsan Taghizadeh; bin-Noordin, Mohamed Ibrahim; Javar, Hamid Akbari; Kadivar, Ali; Sabeti, Bahare

    2014-01-01

    Cancer is among most important causes of death in recent decades. Whoever the renal cell carcinoma incidence is low but it seems it is more complicated than the other cancers in terms of pathophysiology and treatments. The purpose of this work is to provide an overview and also deeper insight to renal cell carcinoma and the steps which have been taken to reach more specific treatment and target therapy, in this type of cancer by developing most effective agents such as Sorafenib. To achieve this goal hundreds of research paper and published work has been overviewed and due to limitation of space in a paper just focus in most important points on renal cell carcinoma, treatment of RCC and clinical development of Sorafenib. The information presented this paper shows the advanced of human knowledge to provide more efficient drug in treatment of some complicated cancer such as RCC in promising much better future to fight killing disease.

  12. Potential targets for lung squamous cell carcinoma

    Cancer.gov

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  13. A novel ankyrin repeat-containing gene (Kank) located at 9p24 is a growth suppressor of renal cell carcinoma.

    PubMed

    Sarkar, Shubhashish; Roy, Badal Chandra; Hatano, Naoya; Aoyagi, Teiichiro; Gohji, Kazuo; Kiyama, Ryoiti

    2002-09-27

    By a combination of genome subtraction and comprehensive analysis of loss of heterozygosity based on mapping hemizygous deletions for a potential tumor-related locus, a minimum overlapping region of deletions at 9p24 the size of 165 kb was identified and found to harbor a new potential tumor suppressor gene for renal cell carcinoma, the Kank gene. Kank (for kidney ankyrin repeat-containing protein) contains four ankyrin repeats at its C terminus. Expression of the gene was suppressed in 6 of 8 or 6 of 10 cancer tissues examined by reverse transcription-PCR or Western blotting, respectively, and in several kidney tumor cell lines due to methylation at CpG sites in the gene. Epigenetic methylation or imprinting seemed to be the first hit, which was followed by a second hit of deletion, resulting in loss of function in many of these deletion cases. Expression of this gene in expression-negative HEK293 cells induced growth retardation at G(0)/G(1) as well as morphological changes.

  14. Pluripotency-associated genes in human nasopharyngeal carcinoma CNE-2 cells are reactivated by a unique epigenetic sub-microenvironment

    PubMed Central

    2010-01-01

    Background There is increasing evidence that cancers contain their own stem-like cells, and particular attention has been paid to one subset of cancer-stem cells termed side population (SP). Stem cells under normal physical conditions are tightly controlled by their microenvironment, however, the regulatory role of the microenvironment surrounding cancer stem cells is not well characterized yet. In this study we found that the phenotype of SP can be "generated" by macrophage-like cells under conditioned culture. Furthermore the gene regulation pathway involved in cellular reprogramming process was investigated. Methods The selection and identification of SP in 50 CNE-2 single cell clones were performed by flow cytometry. The transwell assay and immunofluorescence staining were used to measure migration and cancer stem cell characters of non-SP single clone cells cultured with conditioned medium respectively. The subtraction suppression hybridization (SSH) technique and northern blotting analysis was applied to explore the pluripotency-associated genes under a unique epigenetic sub-microenvironment. Results Among 50 clones, only one did not possess SP subpopulation while others did. The non-SP cells induced by macrophage-like cells showed more aggressive characters, which increased cell migration compared with the control cells and showed some fraction of SP phenotype. These cells expressed distinguished level of pluripotency-associated genes such as ADP-ribosylation factor-like 6 interacting protein (ARMER), poly (rC) binding protein 1 (PCBP1) and pyruvate dehydrogenase E1-β subunit (PDHB) when subjected to the environment. Conclusion To our knowledge, this is the first study to demonstrate that non-SP single-clone cells can be induced to generate a SP phenotype when they are cultured with conditioned medium of macrophage-like cells, which is associated with the reactivation of pluripotency-associated genes. PMID:20181293

  15. [Primary orbital squamous cell carcinoma].

    PubMed

    Campos Arbulú, Ana L; Sadava, Emmanuel E; Sánchez Ruiz, Alejandro; Fernández Vila, Juan M; Dillon, Horacio S; Mezzadri, Norberto A

    2017-01-01

    Primary orbital squamous cell carcinoma is a rare entity. There is little published literature. We report a case of primary squamous cell carcinoma of the orbital soft tissues. Surgical resection offered the best treatment for the patient. Complete resection of the lesion was achieved. The patient received adjuvant radiotherapy due to the proximity of the lesion to the surgical margins. Surgical treatment is feasible and should be considered as part of the surgeon's arsenal. However, therapeutic decisions must be made on a case-by-case basis.

  16. MicroRNA-93-5p increases multidrug resistance in human colorectal carcinoma cells by downregulating cyclin dependent kinase inhibitor 1A gene expression

    PubMed Central

    Wang, Shi-Jun; Cao, Yun-Fei; Yang, Zu-Qing; Jiang, Zhi-Yuan; Cai, Bin; Guo, Jiao; Zhang, Sen; Zhang, Xiao-Long; Gao, Feng

    2017-01-01

    Multidrug resistance (MDR) impedes successful chemotherapy in colorectal carcinoma (CRC) and emerging evidence suggests that microRNAs (miRs) are involved in the development of MDR. In the present study, the role of miR-93-5p in the modulation of drug resistance in CRC was investigated using HCT-8 and MDR HCT-8/vincristine (VCR) cell lines. The results demonstrated upregulated expression of miR-93-5p and MDR protein 1 (MDR1) in HCT-8/VCR cells, compared with the parental HCT-8 cells. Furthermore, cyclin-dependent kinase inhibitor 1A (CDKN1A) was identified as a potential target of miR-93-5p using miR target analysis tools, including PicTar, TargetScan and miRanda. In addition, inhibition of miR-93-5p expression in HCT-8/VCR cells markedly downregulated MDR1 gene expression, upregulated CDKN1A gene expression and induced cell cycle arrest in G1. Conversely, the overexpression of miR-93-5p in HCT-8/VCR cells upregulated MDR1 gene expression, downregulated CDKN1A gene expression and promoted G1/S transition. Furthermore, the in vitro drug sensitivity assay performed suggested that downregulation of miR-93-5p enhanced the sensitivity of HCT-8/VCR cells to VCR, while the upregulation of miR-93-5p decreased the sensitivity of HCT-8 cells to VCR. In conclusion, the results of the present study suggest that miR-93-5p serves a role in the development of MDR through downregulating CDKN1A gene expression in CRC.

  17. Induction and repression of mammalian achaete-scute homologue (MASH) gene expression during neuronal differentiation of P19 embryonal carcinoma cells.

    PubMed

    Johnson, J E; Zimmerman, K; Saito, T; Anderson, D J

    1992-01-01

    MASH1 and MASH2, mammalian homologues of the Drosophila neural determination genes achaete-scute, are members of the basic helix-loop-helix (bHLH) family of transcription factors. We show here that murine P19 embryonal carcinoma cells can be used as a model system to study the regulation and function of these genes. MASH1 and MASH2 display complementary patterns of expression during the retinoic-acid-induced neuronal differentiation of P19 cells. MASH1 mRNA is undetectable in undifferentiated P19 cells but is induced to high levels by retinoic acid coincident with neuronal differentiation. In contrast, MASH2 mRNA is expressed in undifferentiated P19 cells and is repressed by retinoic acid treatment. These complementary expression patterns suggest distinct functions for MASH1 and MASH2 in development, despite their sequence homology. In retinoic-acid-treated P19 cells, MASH1 protein expression precedes and then overlaps expression of neuronal markers. However, MASH1 is expressed by a smaller proportion of cells than expresses such markers. MASH1 immunoreactivity is not detected in differentiated cells displaying a neuronal morphology, suggesting that its expression is transient. These features of MASH1 expression are similar to those observed in vivo, and suggest that P19 cells represent a good model system in which to study the regulation of this gene. Forced expression of MASH1 was achieved in undifferentiated P19 cells by transfection of a cDNA expression construct. The transfected cells expressing exogenous MASH1 protein contained E-box-binding activity that could be super-shifted by an anti-MASH1 antibody, but exhibited no detectable phenotypic changes. Thus, unlike myogenic bHLH genes, such as MyoD, which are sufficient to induce muscle differentiation, expression of MASH1 appears insufficient to promote neurogenesis.

  18. Dendritic cells pulsed with alpha-fetoprotein and mutant P53 fused gene induce bi-targeted cytotoxic T lymphocyte response against hepatic carcinoma.

    PubMed

    Ren, Jun; Jia, Jun; Zhang, Hongmei; Zhang, Liwang; Ma, Bo; Jiang, Hanfang; Di, Lijun; Song, Guohong; Yu, Jing

    2008-07-01

    Dendritic cell (DC)-based immunotherapy is rapidly emerging as a promising treatment in cancer therapy. We had previously shown that DC pulsed with either defined mRNA of tumor antigen (Ag) such as alpha-fetoprotein (AFP), or total RNA of hepatocellular carcinoma (HCC) could elicit Ag-specific cytotoxic T lymphocyte (CTL) response. Therefore, we suggested a novel DC-based therapeutic method, in which DCs derived from CD34(+) cells enriched peripheral blood mononuclear cells were pulsed with liposome-coated AFP and mutant P53 (mtP53) fused gene pEGFP-C3/AFP-mtP53 to induce bi-targeted specific CTL responses against HCC. Three different genotype HCC cell lines, HepG2 (human histocompatibility leukocyte antigens (HLA) A2 positive, AFP expressing positive, P53 expressing negative), SMMC7721 (HLA A2 positive, neither AFP nor P53 expressing positive), and HMCC97 (HLA A2 positive, both AFP and P53 expressing positive) were selected as targets for CTL responses. An important finding was that DCs pulsed with the liposome-coated fused gene could evoke more intensive bi-targeted Ag-specific CTL responses against HMCC97 than DCs pulsed with either AFP or P53 single gene (P < 0.05). This experimental therapeutic model provides a new promising cytotherapeutic approach, in that DCs pulsed with the fused gene of different Ags might induce more extensive multitargeted antitumor immunity.

  19. Tuberous sclerosis complex protein 1 expression is affected by VHL Gene alterations and HIF-1α production in sporadic clear-cell renal cell carcinoma.

    PubMed

    Damjanovic, Svetozar S; Ilic, Bojana B; Beleslin Cokic, Bojana B; Antic, Jadranka A; Bankovic, Jovana Z; Milicevic, Ivana T; Rodic, Gordana S; Ilic, Dusan S; Todorovic, Vera N; Puskas, Nela; Tulic, Cane D

    2016-12-01

    Alterations in von Hippel-Lindau gene (VHL) do not determine deregulation of hypoxia-inducible factors (HIFs) in clear-cell renal carcinoma (ccRCC). Their effects on tuberous sclerosis proteins (TSC1/2) and heat shock protein 90 (Hsp90) expressions in sporadic ccRCC are unknown. Therefore, we analyze the impact of VHL alterations and HIF-α production on the expression of TSC proteins and Hsp90 in these tumors. Alterations in VHL gene region exhibited 37/47 (78.7%) tumors. Monoallelic inactivation (intragenic mutation or LOH) was found in 10 (21.3%) and biallelic inactivation (intragenic mutation plus LOH) in 27 (57.4%) ccRCCs. Tumorous expression of HIF-α mRNAs, HIF-α, Hsp90 and TSC2 were VHL independent; TSC2 was underexpressed in all tumors by immunostaining (P<0.001). Immunoblotting revealed that TSC1 production was lower in tumors with monoallelic VHL inactivation than in control (P=0.01) and tissues with biallelic VHL inactivation (P=0.019), while tumors lacking HIF-1α (16/47) concurrently overexpressed HIF-2α and underexpressed TSC1 in comparison to controls (P=0.01 for both) and HIF-1α positive tumors (P=0.015 and P=0.050). Significant portion of variability (56.4%) in tumor diameter was explained by oscillations in nuclear grade, and TSC1 and HIF-2α expression in VHL altered tumors. In conclusion, while TSC2 is broadly downregulated in sporadic ccRCC, TSC1 expression is reduced in two subsets of these tumors, those with monoallelic VHL gene inactivation and those with concurrent low HIF-1α and high HIF-2α expression. Hence, the involvement of nuclear grade, TSC1 and HIF-2α in the progression of VHL altered tumors, implies the interplay between pVHL and TSC1.

  20. Gene microarray analysis of lncRNA and mRNA expression profiles in patients with hypopharyngeal squamous cell carcinoma

    PubMed Central

    Zhou, Jieyu; Li, Wenming; Jin, Tong; Xiang, Xuan; Li, Maocai; Wang, Juan; Li, Guojun; Pan, Xinliang; Lei, Dapeng

    2015-01-01

    Background: Studies have shown that long noncoding RNAs (lncRNAs) are involved in the development and progression of many types of cancer. However, the mechanisms by which lncRNAs influence development and progression of hypopharyngeal squamous cell carcinoma (HSCC) are unclear. Method: We investigated differences in lncRNA and mRNA expression profiles between 3 pairs of HSCC tissues and adjacent nontumor tissues by microarray analysis. Results: In HSCC tissues, 1299 lncRNAs were significantly upregulated (n=669) or downregulated (n=630) compared to levels in adjacent nontumor tissues. Moreover, 1432 mRNAs were significantly upregulated (n=684) or downregulated (n=748) in HSCC tissues. We randomly selected 2 differentially expressed lncRNAs (AB209630, AB019562) and 2 differentially expressed mRNAs (SPP1, TJP2) for confirmation of microarray results using qRT-PCR. The qRT-PCR results matched well with the microarray data. The differentially expressed lncRNAs and mRNAs were distributed on each of the chromosomes, including the X and Y chromosomes. Pathway analysis indicated that the biological functions of differentially expressed mRNAs were related to 48 cellular pathways that may be associated with HSCC development. GO analysis revealed that 593 mRNAs involved in biological processes, 50 mRNAs involved in cellular components, and 46 mRNAs involved in molecular functions were upregulated in the carcinomas; 280 mRNAs involved in biological processes, 58 mRNAs involved in cellular components, and 71 mRNAs involved in molecular functions were downregulated in the carcinomas. In addition, 8 enhancer-like lncRNAs and 21 intergenic lncRNAs with their adjacent mRNA pairs were identified as coregulated transcripts. Conclusion: These findings provide insight into the mechanisms underlying HSCC tumorigenesis and will facilitate identification of new therapeutic targets and diagnostic biomarkers for this disease. PMID:26131061

  1. A human pluripotent carcinoma stem cell-based model for in vitro developmental neurotoxicity testing: effects of methylmercury, lead and aluminum evaluated by gene expression studies.

    PubMed

    Laurenza, Incoronata; Pallocca, Giorgia; Mennecozzi, Milena; Scelfo, Bibiana; Pamies, David; Bal-Price, Anna

    2013-11-01

    The major advantage of the neuronal cell culture models derived from human stem cells is their ability to replicate the crucial stages of neurodevelopment such as the commitment of human stem cells to the neuronal lineage and their subsequent stages of differentiation into neuronal and glial-like cell. In these studies we used mixed neuronal/glial culture derived from the NTERA-2 (NT-2) cell line, which has been established from human pluripotent testicular embryonal carcinoma cells. After characterization of the different stages of cell differentiation into neuronal- and glial-like phenotype toxicity studies were performed to evaluate whether this model would be suitable for developmental neurotoxicity studies. The cells were exposed during the differentiation process to non-cytotoxic concentrations of methylmercury chloride, lead chloride and aluminum nitrate for two weeks. The toxicity was then evaluated by measuring the mRNA levels of cell specific markers (neuronal and glial). The results obtained suggest that lead chloride and aluminum nitrate at low concentrations were toxic primarily to astrocytes and at the higher concentrations it also induced neurotoxicity. In contrast, MetHgCl was toxic for both cell types, neuronal and glial, as mRNA specific for astrocytes and neuronal markers were affected. The results obtained suggest that a neuronal mixed culture derived from human NT2 precursor cells is a suitable model for developmental neurotoxicity studies and gene expression could be used as a sensitive endpoint for initial screening of potential neurotoxic compounds.

  2. Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

    PubMed

    Kehrmann, Angela; Truong, Ha; Repenning, Antje; Boger, Regina; Klein-Hitpass, Ludger; Pascheberg, Ulrich; Beckmann, Alf; Opalka, Bertram; Kleine-Lowinski, Kerstin

    2013-01-01

    The fusion between human tumorigenic cells and normal human diploid fibroblasts results in non-tumorigenic hybrid cells, suggesting a dominant role for tumor suppressor genes in the generated hybrid cells. After long-term cultivation in vitro, tumorigenic segregants may arise. The loss of tumor suppressor genes on chromosome 11q13 has been postulated to be involved in the induction of the tumorigenic phenotype of human papillomavirus (HPV)18-positive cervical carcinoma cells and their derived tumorigenic hybrid cells after subcutaneous injection in immunocompromised mice. The aim of this study was the identification of novel cellular genes that may contribute to the suppression of the tumorigenic phenotype of non-tumorigenic hybrid cells in vivo. We used cDNA microarray technology to identify differentially expressed cellular genes in tumorigenic HPV18-positive hybrid and parental HeLa cells compared to non-tumorigenic HPV18-positive hybrid cells. We detected several as yet unknown cellular genes that play a role in cell differentiation, cell cycle progression, cell-cell communication, metastasis formation, angiogenesis, antigen presentation, and immune response. Apart from the known differentially expressed genes on 11q13 (e.g., phosphofurin acidic cluster sorting protein 1 (PACS1) and FOS ligand 1 (FOSL1 or Fra-1)), we detected novel differentially expressed cellular genes located within the tumor suppressor gene region (e.g., EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) and leucine rich repeat containing 32 (LRRC32) (also known as glycoprotein-A repetitions predominant (GARP)) that may have potential tumor suppressor functions in this model system of non-tumorigenic and tumorigenic HeLa x fibroblast hybrid cells.

  3. A Case of Hereditary Leiomyomatosis and Renal Cell Carcinoma

    PubMed Central

    Mehrtens, Sarah; Veitch, David; Kulakov, Elizabeth; Perrett, Conal M.

    2016-01-01

    A 49-year-old lady presented with multiple recurring painful lesions over her thighs, arms, and back. Past medical history included a left sided nephrectomy for renal cell carcinoma and a hysterectomy for multiple uterine fibroids (leiomyomas). Histopathological examination revealed changes consistent with pilar leiomyomas. Gene mutation analysis confirmed a diagnosis of hereditary leiomyomatosis and renal cell carcinoma. Hereditary leiomyomatosis and renal cell carcinoma is an uncommon autosomal dominant condition characterised by the concurrent presentation of cutaneous and uterine leiomyomas. Renal cell carcinoma associated with this condition is more aggressive and a significant cause of mortality. Due to this association with potentially fatal renal cell carcinoma we felt that it was important to highlight this case with an update on pathophysiology and management. PMID:27144040

  4. Trans Fatty Acids Suppress TNF-α-Induced Inflammatory Gene Expression in Endothelial (HUVEC) and Hepatocellular Carcinoma (HepG2) Cells.

    PubMed

    Da Silva, Marine S; Julien, Pierre; Bilodeau, Jean-François; Barbier, Olivier; Rudkowska, Iwona

    2017-04-01

    Trans fatty acids (TFA) intake has been linked to cardiovascular diseases and liver diseases; yet the effect of TFA on inflammation remains controversial. Accordingly, the objective of this paper was to determine the in vitro effects of TFA on inflammatory gene expression. Human umbilical vein endothelial cells (HUVEC) and human hepatocellular carcinoma (HepG2) cells were treated for 24 h with either trans-vaccenic acid (tVA), trans-palmitoleic acid (tPA) or elaidic acid (EA) at concentrations of 5-150 µM, or with a mixture of tVA and tPA (150/50 µM). All TFA were highly incorporated into cell membranes, as determined by gas chromatography, representing 15-20% of total fatty acids in HUVEC and 3-8% in HepG2 cells. Incorporation of EA, a common industrial TFA, increased the ratio of the stearoyl-CoA desaturase (SCD-1), a key enzyme involved in fatty acid metabolism. Ruminant TFA, including tVA, tPA and the mixture of tVA and tPA, significantly reduced the TNF-α-induced gene expression of TNF, VCAM-1 and SOD2 in HUVEC, as well as TNF and IL-8 in HepG2 cells. EA also decreased inflammatory gene expression in HUVEC, but not in HepG2 cells. The inhibition of peroxisome proliferator-activated receptor (PPAR)-γ did not influence the effects of TFA on gene expression. Overall, physiological and supraphysiological concentrations of TFA, especially tVA and tPA, prevented inflammatory gene expression in vitro. This effect is independent of PPAR-γ activation and may be due to an alteration of fatty acid metabolism in cell membranes caused by the high incorporation of TFA.

  5. Pb2+ induces gastrin gene expression by extracellular signal-regulated kinases 1/2 and transcription factor activator protein 1 in human gastric carcinoma cells.

    PubMed

    Chan, Chien-Pin; Tsai, Yao-Ting; Chen, Yao-Li; Hsu, Yu-Wen; Tseng, Joseph T; Chuang, Hung-Yi; Shiurba, Robert; Lee, Mei-Hsien; Wang, Jaw-Yuan; Chang, Wei-Chiao

    2015-02-01

    Divalent lead ions (Pb(2+) ) are toxic environmental pollutants known to cause serious health problems in humans and animals. Absorption of Pb(2+) from air, water, and food takes place in the respiratory and digestive tracts. The ways in which absorbed Pb(2+) affects cell physiology are just beginning to be understood at the molecular level. Here, we used reverse transcription PCR and Western blotting to analyze cultures of human gastric carcinoma cells exposed to 10 μM lead nitrate. We found that Pb(2+) induces gastrin hormone gene transcription and translation in a time-dependent manner. Promoter deletion analysis revealed that activator protein 1 (AP1) was necessary for gastrin gene transcription in cells exposed to Pb(2+) . MitogIen-activated protein kinase (MAPK)/ERK kinase inhibitor PD98059 suppressed the Pb(2+) -induced increase in messenger RNA. Epidermal growth factor receptor (EGFR) inhibitors AG1478 and PD153035 reduced both transcription and phosphorylation by extracellular signal-regulated kinase (ERK1/2). Cells exposed to Pb(2+) also increased production of c-Jun protein, a component of AP1, and over-expression of c-Jun enhanced activation of the gastrin promoter. In sum, the findings suggest the EGFR-ERK1/2-AP1 pathway mediates the effects of Pb(2+) on gastrin gene activity in cell culture.

  6. Mutant Thyroid Hormone Receptors (TRs) Isolated from Distinct Cancer Types Display Distinct Target Gene Specificities: a Unique Regulatory Repertoire Associated with Two Renal Clear Cell Carcinomas

    PubMed Central

    Rosen, Meghan D.; Chan, Ivan H.

    2011-01-01

    Thyroid hormone receptors (TRs) are hormone-regulated transcription factors that regulate a diverse array of biological activities, including metabolism, homeostasis, and development. TRs also serve as tumor suppressors, and aberrant TR function (via mutation, deletion, or altered expression) is associated with a spectrum of both neoplastic and endocrine diseases. A particularly high frequency of TR mutations has been reported in renal clear cell carcinoma (RCCC) and in hepatocellular carcinoma (HCC). We have shown that HCC-TR mutants regulate only a fraction of the genes targeted by wild-type TRs but have gained the ability to regulate other, unique, targets. We have suggested that this altered gene recognition may contribute to the neoplastic phenotype. Here, to determine the generality of this phenomenon, we examined a distinct set of TR mutants associated with RCCC. We report that two different TR mutants, isolated from independent RCCC tumors, possess greatly expanded target gene specificities that extensively overlap one another, but only minimally overlap that of the wild-type TRs, or those of two HCC-TR mutants. Many of the genes targeted by either or both RCCC-TR mutants have been previously implicated in RCCC and include a series of metallothioneins, solute carriers, and genes involved in glycolysis and energy metabolism. We propose as a hypothesis that TR mutations from RCCC and HCC may play tissue-specific roles in carcinogenesis, and that the divergent target gene recognition patterns of TR mutants isolated from the two different types of tumors may arise from different selective pressures during development of RCCC vs. HCC. PMID:21622534

  7. Mutant thyroid hormone receptors (TRs) isolated from distinct cancer types display distinct target gene specificities: a unique regulatory repertoire associated with two renal clear cell carcinomas.

    PubMed

    Rosen, Meghan D; Chan, Ivan H; Privalsky, Martin L

    2011-08-01

    Thyroid hormone receptors (TRs) are hormone-regulated transcription factors that regulate a diverse array of biological activities, including metabolism, homeostasis, and development. TRs also serve as tumor suppressors, and aberrant TR function (via mutation, deletion, or altered expression) is associated with a spectrum of both neoplastic and endocrine diseases. A particularly high frequency of TR mutations has been reported in renal clear cell carcinoma (RCCC) and in hepatocellular carcinoma (HCC). We have shown that HCC-TR mutants regulate only a fraction of the genes targeted by wild-type TRs but have gained the ability to regulate other, unique, targets. We have suggested that this altered gene recognition may contribute to the neoplastic phenotype. Here, to determine the generality of this phenomenon, we examined a distinct set of TR mutants associated with RCCC. We report that two different TR mutants, isolated from independent RCCC tumors, possess greatly expanded target gene specificities that extensively overlap one another, but only minimally overlap that of the wild-type TRs, or those of two HCC-TR mutants. Many of the genes targeted by either or both RCCC-TR mutants have been previously implicated in RCCC and include a series of metallothioneins, solute carriers, and genes involved in glycolysis and energy metabolism. We propose as a hypothesis that TR mutations from RCCC and HCC may play tissue-specific roles in carcinogenesis, and that the divergent target gene recognition patterns of TR mutants isolated from the two different types of tumors may arise from different selective pressures during development of RCCC vs. HCC.

  8. Gene and miRNA expression signature of Lewis lung carcinoma LLC1 cells in extracellular matrix enriched microenvironment.

    PubMed

    Stankevicius, Vaidotas; Vasauskas, Gintautas; Bulotiene, Danute; Butkyte, Stase; Jarmalaite, Sonata; Rotomskis, Ricardas; Suziedelis, Kestutis

    2016-10-11

    The extracellular matrix (ECM), one of the key components of tumor microenvironment, has a tremendous impact on cancer development and highly influences tumor cell features. ECM affects vital cellular functions such as cell differentiation, migration, survival and proliferation. Gene and protein expression levels are regulated in cell-ECM interaction dependent manner as well. The rate of unsuccessful clinical trials, based on cell culture research models lacking the ECM microenvironment, indicates the need for alternative models and determines the shift to three-dimensional (3D) laminin rich ECM models, better simulating tissue organization. Recognized advantages of 3D models suggest the development of new anticancer treatment strategies. This is among the most promising directions of 3D cell cultures application. However, detailed analysis at the molecular level of 2D/3D cell cultures and tumors in vivo is still needed to elucidate cellular pathways most promising for the development of targeted therapies. In order to elucidate which biological pathways are altered during microenvironmental shift we have analyzed whole genome mRNA and miRNA expression differences in LLC1 cells cultured in 2D or 3D culture conditions. In our study we used DNA microarrays for whole genome analysis of mRNA and miRNA expression differences in LLC1 cells cultivated in 2D or 3D culture conditions. Next, we indicated the most common enriched functional categories using KEGG pathway enrichment analysis. Finally, we validated the microarray data by quantitative PCR in LLC1 cells cultured under 2D or 3D conditions or LLC1 tumors implanted in experimental animals. Microarray gene expression analysis revealed that 1884 genes and 77 miRNAs were significantly altered in LLC1 cells after 48 h cell growth under 2D and ECM based 3D cell growth conditions. Pathway enrichment results indicated metabolic pathway, MAP kinase, cell adhesion and immune response as the most significantly altered

  9. Oncolytic Adenoviral Mutants with E1B19K Gene Deletions Enhance Gemcitabine-induced Apoptosis in Pancreatic Carcinoma Cells and Anti-Tumor Efficacy In vivo

    PubMed Central

    Leitner, Stephan; Sweeney, Katrina; Öberg, Daniel; Davies, Derek; Miranda, Enrique; Lemoine, Nick R.; Halldén, Gunnel

    2010-01-01

    Purpose Pancreatic adenocarcinoma is a rapidly progressive malignancy that is highly resistant to current chemotherapeutic modalities and almost uniformly fatal.We show that a novel targeting strategy combining oncolytic adenoviral mutants with the standard cytotoxic treatment, gemcitabine, can markedly improve the anticancer potency. Experimental Design Adenoviral mutants with the E1B19K gene deleted with and without E3B gene expression (AdΔE1B19K and dl337 mutants, respectively) were assessed for synergistic interactions in combination with gemcitabine. Cell viability, mechanism of cell death, and antitumor efficacy in vivo were determined in the pancreatic carcinoma cells PT45 and Suit2, normal human bronchial epithelial cells, and in PT45 xenografts. Results The ΔE1B19K-deleted mutants synergized with gemcitabine to selectively kill cultured pancreatic cancer cells and xenografts in vivo with no effect in normal cells. The corresponding wild-type virus (Ad5) stimulated drug-induced cell killing to a lesser degree. Gemcitabine blocked replication of all viruses despite the enhanced cell killing activity due to gemcitabine-induced delay in G1/S-cell cycle progression, with repression of cyclin E and cdc25A, which was not abrogated by viral E1A-expression. Synergistic cell death occurred through enhancement of gemcitabine-induced apoptosis in the presence of both AdΔE1B19K and dl337 mutants, shown by increased cell membrane fragmentation, caspase-3 activation, and mitochondrial dysfunction. Conclusions Our data suggest that oncolytic mutants lacking the antiapoptotic E1B19K gene can improve efficacy of DNA-damaging drugs such as gemcitabine through convergence on cellular apoptosis pathways.These findings imply that less toxic doses than currently practicedin the clinic could efficiently target pancreatic adenocarcinomas when combined with adenoviral mutants. PMID:19223497

  10. Autocrine Human Growth Hormone Stimulates Oncogenicity of Endometrial Carcinoma Cells

    PubMed Central

    Pandey, Vijay; Perry, Jo K.; Mohankumar, Kumarasamypet M.; Kong, Xiang-Jun; Liu, Shu-Min; Wu, Zheng-Sheng; Mitchell, Murray D.; Zhu, Tao; Lobie, Peter E.

    2008-01-01

    Recent published data have demonstrated elevated levels of human GH (hGH) in endometriosis and endometrial adenocarcinoma. Herein, we demonstrate that autocrine production of hGH can enhance the in vitro and in vivo oncogenic potential of endometrial carcinoma cells. Forced expression of hGH in endometrial carcinoma cell lines RL95-2 and AN3 resulted in an increased total cell number through enhanced cell cycle progression and decreased apoptotic cell death. In addition, autocrine hGH expression in endometrial carcinoma cells promoted anchorage-independent growth and increased cell migration/invasion in vitro. In a xenograft model of human endometrial carcinoma, autocrine hGH enhanced tumor size and progression. Changes in endometrial carcinoma cell gene expression stimulated by autocrine hGH was consistent with the altered in vitro and in vivo behavior. Functional antagonism of hGH in wild-type RL95-2 cells significantly reduced cell proliferation, cell survival, and anchorage-independent cell growth. These studies demonstrate a functional role for autocrine hGH in the development and progression of endometrial carcinoma and indicate potential therapeutic relevance of hGH antagonism in the treatment of endometrial carcinoma. PMID:18450952

  11. PT2385 for the Treatment of Von Hippel-Lindau Disease-Associated Clear Cell Renal Cell Carcinoma

    ClinicalTrials.gov

    2017-04-04

    VHL Gene Mutation; VHL; VHL Syndrome; VHL Gene Inactivation; Von Hippel; Von Hippel-Lindau Disease; Von Hippel's Disease; Von Hippel-Lindau Syndrome, Modifiers of; Clear Cell Renal Cell Carcinoma; Clear Cell RCC; ccRCC

  12. Impact of RGD Peptide Tethering to IL24/mda-7 (Melanoma Differentiation Associated Gene-7) on Apoptosis Induction in Hepatocellular Carcinoma Cells.

    PubMed

    Bina, Samaneh; Shenavar, Fatemeh; Khodadad, Mahboobeh; Haghshenas, Mohammad Reza; Mortazavi, Mojtaba; Fattahi, Mohammad-Reza; Erfani, Nasrollah; Hosseini, Seyed Younes

    2015-01-01

    Melanoma differentiation-associated gene-7 (MDA-7)/interleukin-24 (IL-24), a unique tumor suppressor gene, has killing activity in a broad spectrum of cancer cells. Herein, plasmids producing mda-7 proteins fused to different RGD peptides (full RGD4C and shortened RGD, tRGD) were evaluated for apoptosis induction with a hepatocellular carcinoma cell line, Hep-G2. The study aim was to improve the apoptosis potency of mda-7 by tethering to RGD peptides. Three plasmids including mda-7, mda-7-RGD and mda-7-tRGD genes beside a control vector were transfected into Hep-G2 cells. After 72 hours incubation, cell viability was evaluated by MTT assay. In addition, the rate of apoptosis was analyzed by flow cytometry using PI/annexin staining. To detect early events in apoptosis, 18 hours after transfection, expression of the BAX gene was quantified by real time PCR. Modeling of proteins was also performed to extrapolate possible consequences of RGD modification on their structures and subsequent attachment to receptors. In MTT assays, while all mda-7 forms showed measurable inhibition of proliferation, unmodified mda-7 protein exhibited most significant effect compared to control plasmid (P<0.001). Again, flow cytometry analysis showed a significant apoptosis induction by simple mda-7 gene but not for those RGD-fused mda-7 proteins. These findings were also supported by expression analysis of BAX gene (P<0.001). Protein modelling analysis revealed that tethering RGD at the end of IL-24/Mda7 disrupt attachment to cognate receptor, IL-20R1/ IL-20R2. In conclusion, fusion of RGD4C and shortened RGD peptides to carboxyl terminal of mda7, not only reduce apoptosis property in vitro but also disrupt receptor attachment as demonstrated by protein modelling.

  13. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma.

    PubMed

    Hirata, Hiroshi; Hinoda, Yuji; Nakajima, Koichi; Kawamoto, Ken; Kikuno, Nobuyuki; Ueno, Koji; Yamamura, Soichiro; Zaman, Mohd S; Khatri, Gaurav; Chen, Yi; Saini, Sharanjot; Majid, Shahana; Deng, Guoren; Ishii, Nobuhisa; Dahiya, Rajvir

    2011-04-15

    The functional significance of Wnt antagonist DKK1 has not been investigated in renal cell carcinoma (RCC). Therefore, we hypothesized that DKK1 may be a tumor suppressor gene and is epigenetically silenced, thus decreased DKK1 may cause progression of RCC. To assess the function of DKK1, we established stable DKK1 transfected cells and monitored them regarding cell viability, colony formation, apoptosis, cell cycle, and invasive capability. RCC cell lines had decreased levels of DKK1, which were increased after treatment with 5-Aza-2'-deoxycytidine and trichostatin A. In chromatin immunoprecipitation assay, the level of dimethyl H3K9 and trimethyl H3K27 was decreased after 5-Aza-2'-deoxycytidine/trichostatin A treatment in RCC cell lines. Increased methylation was also associated with higher pathological stages in primary RCC tissues. T-cell factor/lymphoid enhancer factor activity and nuclear beta-catenin expression were not changed in DKK1 transfectants. Also the expression of cyclinD1 and c-Myc was not changed in DKK1 transfectants. These results suggest that DKK1 may not be involved in the beta-catenin dependent pathway. We also evaluated the expression of various related genes. Cleaved caspase3, p53, p21 and puma expression were significantly upregulated in the DKK1 transfected cells. The population of apoptotic cells was increased in stable DKK1 cells and tumor growth suppression was also observed in nude mice with DKK1 transfected cells. In conclusion, this is the first report to show that DKK1 expression is epigenetically silenced in kidney cancer and its reexpression induces apoptosis and cell cycle arrest in RCC.

  14. Oncogenic properties of a novel gene JK-1 located in chromosome 5p and its overexpression in human esophageal squamous cell carcinoma.

    PubMed

    Tang, Wing K; Chui, Chung H; Fatima, Sarwat; Kok, Stanton H L; Pak, Kai C; Ou, Tian M; Hui, Kin S; Wong, Mei M; Wong, John; Law, Simon; Tsao, S W; Lam, King Y; Beh, Philip S L; Srivastava, Gopesh; Chan, Albert S C; Ho, Kwok P; Tang, Johnny C O

    2007-06-01

    Esophageal squamous cell carcinoma (ESCC) shows high frequency and mortality in Asian regions, including China. Previous analysis of genomic DNA of ESCC using comparative genomic hybridization indicated that amplification of the chromosome 5p regions is a common event in ESCC cell lines and patient cases of Hong Kong Chinese origin, and the results suggested that the genes located in the chromosome 5p regions may play crucial roles in the molecular pathogenesis of ESCC. Our previous studies on ESCC confirmed the tumorigenic and overexpression properties of a novel gene JS-1 located in chromosome 5p15.2 upstream to delta-catenin. In the present study, another novel gene JK-1 which is located at 5p15.1 downstream to delta-catenin was characterized for its roles in the pathogenesis of ESCC. Thirteen ESCC cell lines and 30 surgical specimens of esophageal tumors were studied for the overexpression of JK-1 using multiplex RT-PCR analysis. The transforming capacity of overexpression of JK-1 was also investigated by transfecting NIH 3T3 and HEK 293 cells with the expression vector cloned with JK-1, followed by the soft agar and foci formation assays. JK-1 was overexpressed in 9/13 (69%) of the ESCC cell lines and 9/30 (30%) of the ESCC patient cases. Both NIH 3T3 and HEK 293 cells acquired the properties of anchorage-dependent and -independent growth when JK-1 was overexpressed. Most significantly, subcutaneous sarcomas were formed in all (3/3) the athymic nude mice after NIH 3T3 cells overexpressing JK-1 were injected subcutaneously. Our results thus indicated that JK-1 is commonly overexpressed in ESCC and has a prominent capacity to transform normal cells. Our overall results thus provide the first evidence that the overexpression of JK-1 and its transforming capacity in normal cells may play a critical role in the molecular pathogenesis of ESCC.

  15. Germ-line mutations in the von Hippel-Lindau tumor-suppressor gene are similar to somatic von Hippel-Lindau aberrations in sporadic renal cell carcinoma

    SciTech Connect

    Whaley, J.M.; Naglich, J.; Gelbert, L.; Laidlaw, J.; Seizinger, B.R.; Kley, N.; Hsia, Y.E.; Lamiell, J.M.; Green, J.S.; Collins, D.

    1994-12-01

    von Hippel-Lindau (VHL) disease is a hereditary tumor syndrome predisposing to multifocal bilateral renal cell carcinomas (RCCs), pheochromocytomas, and pancreatic tumors, as well as angiomas and hemangioblastomas of the CNS. A candidate gene for VHL was recently identified, which led to the isolation of a partial cDNA clone with extended open reading frame, without significant homology to known genes or obvious functional motifs, except for an acidic pentamer repeat domain. To further characterize the functional domains of the VHL gene and assess its involvement in hereditary and nonhereditary tumors, we performed mutation analyses and studied its expression in normal and tumor tissue. The authors identified germline mutations in 39% of VHL disease families. Moreover, 33% of sporadic RCCs and all (6/6) sporadic RCC cell lines analyzed showed mutations within the VHL gene. Both germ-line and somatic mutations included deletions, insertions, splice-site mutations, and missense and nonsense mutations, all of which clustered at the 3{prime} end of the corresponding partial VHL cDNA open reading frame, including an alternatively spliced exon 123 nt in length, suggesting functionally important domains encoded by the VHL gene in this region. Over 180 sporadic tumors of other types have shown no detectable base changes within the presumed coding sequence of the VHL gene to date. We conclude that the gene causing VHL has an important and specific role in the etiology of sporadic RCCs, acts as a recessive tumor-suppressor gene, and appears to encode important functional domains within the 3{prime} end of the known open reading frame.

  16. Prognostication of patients with clear cell renal cell carcinomas based on quantification of DNA methylation levels of CpG island methylator phenotype marker genes.

    PubMed

    Tian, Ying; Arai, Eri; Gotoh, Masahiro; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Kanai, Yae

    2014-10-20

    The CpG island methylator phenotype (CIMP) of clear cell renal cell carcinomas (ccRCCs) is characterized by accumulation of DNA methylation at CpG islands and poorer patient outcome. The aim of this study was to establish criteria for prognostication of patients with ccRCCs using the ccRCC-specific CIMP marker genes. DNA methylation levels at 299 CpG sites in the 14 CIMP marker genes were evaluated quantitatively in tissue specimens of 88 CIMP-negative and 14 CIMP-positive ccRCCs in a learning cohort using the MassARRAY system. An additional 100 ccRCCs were also analyzed as a validation cohort. Receiver operating characteristic curve analysis showed that area under the curve values for the 23 CpG units including the 32 CpG sites in the 7 CIMP-marker genes, i.e. FAM150A, ZNF540, ZNF671, ZNF154, PRAC, TRH and SLC13A5, for discrimination of CIMP-positive from CIMP-negative ccRCCs were larger than 0.95. Criteria combining the 23 CpG units discriminated CIMP-positive from CIMP-negative ccRCCs with 100% sensitivity and specificity in the learning cohort. Cancer-free and overall survival rates of patients with CIMP-positive ccRCCs diagnosed using the criteria combining the 23 CpG units in a validation cohort were significantly lower than those of patients with CIMP-negative ccRCCs (P = 1.41 × 10-5 and 2.43 × 10-13, respectively). Patients with CIMP-positive ccRCCs in the validation cohort had a higher likelihood of disease-related death (hazard ratio, 75.8; 95% confidence interval, 7.81 to 735; P = 1.89 × 10-4) than those with CIMP-negative ccRCCs. The established criteria are able to reproducibly diagnose CIMP-positive ccRCCs and may be useful for personalized medicine for patients with ccRCCs.

  17. Epigenetic inactivation of the candidate tumor suppressor gene ASC/TMS1 in human renal cell carcinoma and its role as a potential therapeutic target

    PubMed Central

    Liu, Qianling; Jin, Jie; Ying, Jianming; Cui, Yun; Sun, Mengkui; Zhang, Lian; Fan, Yu; Xu, Ben; Zhang, Qian

    2015-01-01

    This study investigated the epigenetic alteration and biological function of the pro-apoptotic gene ASC/TMS1 in renal cell carcinoma. ASC/TMS1 was downregulated in five out of six RCC cell lines. A significant downregulation was also detected in sixty-seven paired renal tumors compared with adjacent non-cancerous tissues. The downregulation of ASC/TMS1 was correlated with promoter hypermethylation and could be restored with demethylation treatment. Re-expression of ASC/TMS1 in silenced RCC cell lines inhibited cell viability, colony formation, arrested cell cycle, induced apoptosis, suppressed cell invasion and repressed tumorigenicity in SCID mice. The antitumorigenic function of ASC/TMS1 in renal cancer was partially regulated by activation of p53 and p21 signaling. In addition, restoration of ASC/TMS1 sensitizes RCC cells to DNA damaging agents. Knockdown of ASC/TMS1 reduced DNA damaging agents-induced p53 activation and cell apoptosis. Moreover, ASC/TMS1 hypermethylation was further detected in 41.1% (83/202) of RCC tumors, but only 12% in adjacent non-cancerous tissues. ASC/TMS1 methylation was significantly correlated with higher tumor nuclear grade. In conclusion, ASC/TMS1 is a novel functional tumor suppressor in renal carcinogenesis. ASC/TMS1 tumor specific methylation may be a useful biomarker for designing improved diagnostic and therapeutic strategies for RCC. PMID:26093088

  18. Microarray Analysis of Mercury-Induced Changes in Gene Expression in Human Liver Carcinoma (HepG2) Cells: Importance in Immune Responses

    PubMed Central

    Ayensu, Wellington K.; Tchounwou, Paul B.

    2006-01-01

    Mercury is widely distributed in the biosphere, and its toxic effects have been associated with human death and several ailments that include cardiovascular diseases, anemia, kidney and liver damage, developmental abnormalities, neurobehavioral disorders, autoimmune diseases, and cancers in experimental animals. At the cellular level, mercury has been shown to interact with sulphydryl groups of proteins and enzymes, to damage DNA, and to modulate cell cycle progression and/or apoptosis. However, the underlying molecular mechanisms of mercury toxicity remain to be elucidated. Our laboratory has demonstrated that mercury exposure induces cytotoxicity and apoptosis, modulates cell cycle, and transcriptionally activates specific stress genes in human liver carcinoma cells. The liver is one of the few organs capable of regeneration from injury. Dormant genes in the liver are therefore capable of reactivation. In this research, we hypothesize that mercury-induced hepatotoxicity is associated with the modulation of specific gene expressions in liver cells that can lead to several disease states involving immune system dysfunctions. In testing this hypothesis, we used an Affymetrix oligonucleotide microarray with probe sets complementary to more than 20,000 genes to determine whether patterns of gene expressions differ between controls and mercury (1–3μg/mL) treated cells. There was a clear separation in gene expression profiles between controls and mercury-treated cells. Hierarchical cluster analysis identified 2,211 target genes that were affected. One hundred and thirty-eight of these genes were up-regulated, among which forty three were significantly over-expressed (p = 0.001) with greater than a two-fold change, and ninety five genes were moderately over-expressed with an increase of more than one fold (p = 0.004). Two thousand and twenty-three genes were down-regulated with only forty five of them reaching a statistically significant decline at p = 0.05 according

  19. Gene expression in the bladder carcinoma rat model.

    PubMed

    Ariel, Ilana; Ayesh, Suhail; Gofrit, Ofer; Ayesh, Basim; Abdul-Ghani, Rula; Pizov, Galina; Smith, Yoav; Sidi, Ami A; Birman, Tatiana; Schneider, Tamar; de Groot, Nathan; Hochberg, Abraham

    2004-10-01

    We investigated gene expression in N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)-induced rat bladder carcinoma in order to test its applicability as a model for the study of novel therapeutic modalities, particularly gene therapy. We administered BBN in the drinking water to Wistar rats for up to 30 wk and induced papillary transitional cell carcinoma (TCC), which is similar to the most prevalent type of human bladder cancer. Tumor evolution was similar to that found in previous studies. However, we described the morphological stages according to modern human bladder carcinoma terminology. Our main goal was to examine the expression levels of the H19 gene, of the insulin-like growth factor 2 (Igf2) transcripts expressed from promoters P2 and P3 and of the telomerase subunits that we had previously investigated as tools for targeted gene therapy of bladder cancer. We detected at 30 wk of BBN exposure significant upregulation of these sequences in the rat bladder tumors, similar to our previous findings in human bladder cancer. To reinforce the similarity of this model to the corresponding human disease, we searched for additional tumor-specific genes documented as having altered expression in human bladder carcinoma, using cDNA expression arrays (Clontech). We suggest that BBN-induced rat bladder cancer has morphological, biological, and molecular parallels to human bladder cancer and is an attractive model for studying novel alternatives of therapeutic intervention. Copyright 2004 Wiley-Liss, Inc.

  20. In vivo gene expression profiling for chemosensitivity to docetaxel-cisplatin-5-FU (TPF) triplet regimen in laryngeal squamous cell carcinoma and the effect of TPF treatment on related gene expression in vitro.

    PubMed

    Lian, Meng; Shi, Qian; Fang, Jugao; Feng, Ling; Ma, Hongzhi; Wang, Haizhou; Zhang, Liang; Wang, Hong; Ma, Zhihong; Liu, Honggang

    2017-07-01

    These results provided a battery of genes relating to TPF chemotherapeutic sensitivity and might act as molecular targets in laryngeal squamous cell carcinoma (LSCC) treatment. Moreover, these candidate biomarkers could contribute to LSCC individualized treatment. To screen out a set of candidate genes which could help to determine whether patients with LSCC could benefit from TPF induction chemotherapy. Gene-expression profiles in seven TPF-sensitive patients were compared to four resistant controls by microarray analysis. Subsequently, expression levels of potential biomarkers in chemosensitive cell line UMSCC5 after TPF treatment were observed by qRT-PCR. Through microarray analysis, 1546 differently expressed genes were identified, of which 769 were up-regulated in TPF chemotherapy-responsive tissues, whereas 777 were down-regulated. Gene ontology (GO) analysis suggested these genes participating in physiological processes including cell differentiation, metabolism, signal transduction, and cellular component organization. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed that Wnt and p53 signaling pathways occupied important roles in TPF chemotherapeutic sensitivity. Moreover, in vitro cell culture experiments revealed the expression alternations of Mapk10, Jun, Vegfb, Pik3r5, Pld1, Tek, Itga6 exposed to TPF treatment by qRT-PCR, whilst providing an insight into the mechanism underlying TPF chemotherapeutic response in LSCC.

  1. Radioiodine therapy of thyroid carcinoma following Pax-8 gene transfer.

    PubMed

    Mu, D; Huang, R; Ma, X; Li, S; Kuang, A

    2012-04-01

    The thyroid transcription factor Pax-8 could bind with the promoter/enhancer of thyroid-specific genes such as thyroglobulin (Tg), thyroperoxidase (TPO) and sodium iodide symporter (NIS), and regulate the expression of these proteins in thyrocyte. Promoting iodide accumulation in tumor cells by re-expression of Pax-8 provides a possible strategy for radioiodine therapy of tumor. Therefore, we investigated the effect of Pax-8 gene transfer on radioiodine therapy of thyroid carcinoma. The human Pax-8 gene was transfected into the human thyroid carcinoma (K1 and F133) cells by the recombinant adenovirus vector. Although the NIS mRNA was not detected, the expression of mRNA and proteins of Tg and TPO in AdPax-8-infected F133 cells were activated by Pax-8. Iodide uptake in thyroid carcinoma cells was reactivated by Pax-8 (increasing 3.3-fold in K1 cells and 5.7-fold in F133 cells). Moreover, Pax-8 promoted iodide organification and the retention time of iodine in Pax-8-expressing cells apparently prolonged in vitro and in vivo (P<0.05). Pax-8-expressing thyroid carcinoma cells were selectively killed by radioiodine. The AdPax-8-infected tumors in vivo clearly visualized in scanning images at 12 h after administration of radioiodine. These results indicate that Pax-8 can promote iodide uptake, and specifically prolong the retention time of iodide in thyroid cancer in vitro and in vivo by promoting the expression of TPO and Tg proteins. Pax-8 gene transfection may lead to effective radioiodine therapy of tumor.

  2. RNAi screening with shRNAs against histone methylation-related genes reveals determinants of sorafenib sensitivity in hepatocellular carcinoma cells

    PubMed Central

    Li, Guang-Ming; Wang, Yu-Gang; Pan, Qin; Wang, Jun; Fan, Jian-Gao; Sun, Chao

    2014-01-01

    Sorafenib is the first drug currently approved to treat advanced hepatocellular carcinoma (HCC). However, very low response rate and acquired drug resistance makes rare patients benefit from sorafenib therapy, therefore it is urgent to find biomarkers for sorafenib sensitivity. Histone modifications, including histone methylation, have been demonstrated to influence the initiation and progression of HCC. It is of great interest to elicit the possibility whether histone methylation plays a role in regulation of sorafenib sensitivity. In present work, a high throughput RNAi screening with 176 shRNA pools against 88 histone methyltransferases (HMTs) and histone demethyltransferases genes was applied to HepG2 cells. Silencing of 3 genes (ASH1L, C17ORF49 and SETD4) was validated to specifically promote HepG2 cells sensitivity to sorafenib. Western blotting results showed that those 3 HMT genes knockdown alone or sorafenib treatments alone both induce AKT/ERK activation. However, combination treatment with sorafenib and silencing of C17ORF49 or SETD4 downregulated AKT phosphorylation and hence induced HCC cells death. Our work may provide potential biomarkers for sorafenib sensitivity and therapeutic combination for sorafenib treatment in HCC patients. PMID:24696725

  3. Effects of Japanese mistletoe lectin on cytokine gene expression in human colonic carcinoma cells and in the mouse intestine.

    PubMed

    Monira, Pervin; Koyama, Yu; Fukutomi, Ryuuta; Yasui, Kensuke; Isemura, Mamoru; Yokogoshi, Hidehiko

    2009-10-01

    Mistletoe lectins have various biological activities including anti-cancer and immunomodulatory effects. We previously isolated a lectin (ML-J) from Japanese mistletoe. In the present study, we examined the effects of ML-J on cytokine gene expression in human colon adenocarcinoma Caco-2 cells and in the mouse intestine. The results of reverse transcription-polymerase chain reaction and quantitative real-time polymerase chain reaction indicated that ML-J caused an upregulation of the gene expression of the proinflammatory cytokines interleukin (IL)-8, tumor necrosis factor-alpha (TNF-alpha) and IL-6 in Caco-2 cells and TNF-alpha and IL-6 in the duodenum. This study provides the first example to show that a perorally administered plant lectin affects gene expression in the duodenum.

  4. Mechanisms behind signet ring cell carcinoma formation.

    PubMed

    Fukui, Yasuhisa

    2014-08-08

    Signet ring cell carcinomas are highly malignant dedifferentiated adenocarcinomas. There are no cell-cell interactions between these round-shaped cells. They contain huge numbers of vacuoles, filled with mucins, which are secreted from the cells. The mechanism behind this phenotype has recently begun to be elucidated. In highly differentiated adenocarcinomas the ErbB2/ErbB3 complex is activated, which is followed by phosphatidylinositol 3-kinase (PI3K) activation. p38 MAP kinase is activated downstream of PI3K and adherens junctions are disrupted via Rac1 activation. Loss of adherens junctions leads to the disappearance of tight junctions, which results in a loss of cell-cell interactions. Secretion of mucin is enhanced by activation of PI3K. One of the mucins - Muc4 - can activate ErbB2. Under normal conditions Muc4 and ErbB2 are separated by adherens and tight junctions, however in signet ring cells they are able to interact, since these junctions have been lost. Therefore, an activation loop is formed, consisting of ERbB2/ErbB3-Muc4-ErbB2/ErbB3. As a result, the ErbB2/ErbB3 signaling pathway becomes constitutively activated, cell-cell interactions are lost, and signet ring carcinomas are formed. As a result of constitutive activation of the ErbB2/ErbB3 complex, cell growth is continuously enhanced. Some signet ring cell carcinomas have been found to have mutations in the E-cadherin gene, which fits the above hypothesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Loss of p53 in esophageal squamous cell carcinoma and the correlation with survival: analyses of gene mutations, protein expression, and loss of heterozygosity in Japanese patients.

    PubMed

    Egashira, Akinori; Morita, Masaru; Yoshida, Rintaro; Saeki, Hiroshi; Oki, Eiji; Sadanaga, Noriaki; Kakeji, Yoshihiro; Tsujitani, Shun-Ichi; Maehara, Yoshihiko

    2011-08-01

    A high frequency of p53 protein expression or gene mutation has been reported in the early stages of esophageal squamous cell carcinoma (ESCC), and thus loss of p53 function is thought to be very important in esophageal carcinogenesis. However, there is controversy surrounding the correlation between p53 dysfunction and ESCC tumor progression. The complexity arises from the different modalities, such as mutation analysis, immunohistochemistry, and the detection of loss of heterozygosity (LOH) at the p53 genomic locus. In this study, we comprehensively analyzed p53 gene mutation, p53 protein expression, and LOH at 17p13 in 94 surgically resected Japanese cases of ESCC. The frequency of p53 gene mutation was 60.6%. The rate of positive p53 protein expression was 56.4%. The frequency of LOH at 17p13 was 67.5%. There was a statistically significant correlation between the presence of a gene mutation and LOH, whereas, there was no significant correlation between gene mutation and protein expression. Despite the importance of loss of p53 function in esophageal carcinogenesis, none of the examined parameters, either singly or combined, correlated with overall survival. Taken together, p53 function is a primary target for esophageal carcinogenesis but there is no apparent correlation with the malignant phenotype in ESCC. Copyright © 2011 Wiley-Liss, Inc.

  6. Differential gene expression profiling in aggressive bladder transitional cell carcinoma compared to the adjacent microscopically normal urothelium by microdissection-SMART cDNA PCR-SSH.

    PubMed

    Wang, H T; Ma, F L; Ma, X B; Han, R F; Zhang, Y B; Chang, J W

    2006-01-01

    Identifying novel and known genes that are differentially expressed in aggressive bladder transitional cell carcinoma (BTCC) has important implications in understanding the biology of bladder tumorigenesis and developing new diagnostic and therapeutic agents. In this study we identified the differential gene expression profiles comparing tumor to the adjacent microscopically normal mucosa by manual microdissection on frozen sections. The RNAs extracted from microdissected tissues were amplified by SMART cDNA PCR technology to generate forward subtractive cDNA library by suppressive subtractive hybridization (SSH). We obtained 376 positive clones, one hundred clones of aggressive BTCC subtracted cDNA library were selected at random and inserts were reamplified by PCR. After differential screening by reverse dot blotting, 73 positive clones, that contend inserts putatively upregulated in aggressive BTCC, were further analysed by DNA sequencing, GenBank and EST database searching. Sequencing results showed that 66 clones stand for 23 known genes and 7 clones for three new EST (Genbank number: DN236875, DN236874 and DN236873). In conclusion, microdissection-SMART cDNA PCR-SSH allowed for an efficient way to identify aggressive BTCC-specific differential expressed genes that may potentially be involved in the carcinogenesis and/or progression of aggressive BTCC. These differentially expressed genes may be of potential utility as therapeutic and diagnostic targets for aggressive BTCC.

  7. Clinical significance of Anoctamin-1 gene at 11q13 in the development and progression of head and neck squamous cell carcinomas

    PubMed Central

    Rodrigo, Juan P.; Menéndez, Sofía Tirados; Hermida-Prado, Francisco; Álvarez-Teijeiro, Saúl; Villaronga, M. Ángeles; Alonso-Durán, Laura; Vallina, Aitana; Martínez-Camblor, Pablo; Astudillo, Aurora; Suárez, Carlos; María García-Pedrero, Juana

    2015-01-01

    This study investigates the clinical significance of Anoctamin-1 gene mapping at 11q13 amplicon in both the development and progression of head and neck squamous cell carcinomas (HNSCC). ANO1 protein expression was evaluated by immunohistochemistry in a cohort of 372 surgically treated HNSCC patients and also in 35 laryngeal precancerous lesions. ANO1 gene amplification was determined by real-time PCR in all the laryngeal premalignancies and 60 of the HNSCCs, and molecular data correlated with clinical outcome. ANO1 gene amplification was frequently detected in both premalignant lesions (63%) and HNSCC tumours (58%), whereas concomitant ANO1 expression occurred at a much lower frequency (20 and 22%). Interestingly, laryngeal dysplasias harbouring ANO1 gene amplification showed a higher risk of malignant transformation (HR = 3.62; 95% CI 0.79–16.57; P = 0.097; Cox regression). ANO1 expression and gene amplification showed no significant associations with clinicopathological parameters in HNSCC. However, remarkably ANO1 expression differentially influenced patient survival depending on the tumour site. Collectively, this study provides original evidence demonstrating the distinctive impact of ANO1 expression on HNSCC prognosis depending on the tumour site. PMID:26498851

  8. Clinical significance of Anoctamin-1 gene at 11q13 in the development and progression of head and neck squamous cell carcinomas.

    PubMed

    Rodrigo, Juan P; Menéndez, Sofía Tirados; Hermida-Prado, Francisco; Álvarez-Teijeiro, Saúl; Villaronga, M Ángeles; Alonso-Durán, Laura; Vallina, Aitana; Martínez-Camblor, Pablo; Astudillo, Aurora; Suárez, Carlos; María García-Pedrero, Juana

    2015-10-26

    This study investigates the clinical significance of Anoctamin-1 gene mapping at 11q13 amplicon in both the development and progression of head and neck squamous cell carcinomas (HNSCC). ANO1 protein expression was evaluated by immunohistochemistry in a cohort of 372 surgically treated HNSCC patients and also in 35 laryngeal precancerous lesions. ANO1 gene amplification was determined by real-time PCR in all the laryngeal premalignancies and 60 of the HNSCCs, and molecular data correlated with clinical outcome. ANO1 gene amplification was frequently detected in both premalignant lesions (63%) and HNSCC tumours (58%), whereas concomitant ANO1 expression occurred at a much lower frequency (20 and 22%). Interestingly, laryngeal dysplasias harbouring ANO1 gene amplification showed a higher risk of malignant transformation (HR = 3.62; 95% CI 0.79-16.57; P = 0.097; Cox regression). ANO1 expression and gene amplification showed no significant associations with clinicopathological parameters in HNSCC. However, remarkably ANO1 expression differentially influenced patient survival depending on the tumour site. Collectively, this study provides original evidence demonstrating the distinctive impact of ANO1 expression on HNSCC prognosis depending on the tumour site.

  9. Recurrent rearrangements of the Myb/SANT-like DNA-binding domain containing 3 gene (MSANTD3) in salivary gland acinic cell carcinoma

    PubMed Central

    Barasch, Nicholas; Gong, Xue; Kwei, Kevin A.; Varma, Sushama; Biscocho, Jewison; Qu, Kunbin; Xiao, Nan; Lipsick, Joseph S.; Pelham, Robert J.; West, Robert B.; Pollack, Jonathan R.

    2017-01-01

    Pathogenic gene fusions have been identified in several histologic types of salivary gland neoplasia, but not previously in acinic cell carcinoma (AcCC). To discover novel gene fusions, we performed whole-transcriptome sequencing surveys of three AcCC archival cases. In one specimen we identified a novel HTN3-MSANTD3 gene fusion, and in another a novel PRB3-ZNF217 gene fusion. The structure of both fusions was consistent with the promoter of the 5’ partner (HTN3 or PRB3), both highly expressed salivary gland genes, driving overexpression of full-length MSANTD3 or ZNF217. By fluorescence in situ hybridization of an expanded AcCC case series, we observed MSANTD3 rearrangements altogether in 3 of 20 evaluable cases (15%), but found no additional ZNF217 rearrangements. MSANTD3 encodes a previously uncharacterized Myb/SANT domain-containing protein. Immunohistochemical staining demonstrated diffuse nuclear MSANTD3 expression in 8 of 27 AcCC cases (30%), including the three cases with MSANTD3 rearrangement. MSANTD3 displayed heterogeneous expression in normal salivary ductal epithelium, as well as among other histologic types of salivary gland cancer though without evidence of translocation. In a broader survey, MSANTD3 showed variable expression across a wide range of normal and neoplastic human tissue specimens. In preliminary functional studies, engineered MSANTD3 overexpression in rodent salivary gland epithelial cells did not enhance cell proliferation, but led to significant upregulation of gene sets involved in protein synthesis. Our findings newly identify MSANTD3 rearrangement as a recurrent event in salivary gland AcCC, providing new insight into disease pathogenesis, and identifying a putative novel human oncogene. PMID:28212443

  10. Recurrent rearrangements of the Myb/SANT-like DNA-binding domain containing 3 gene (MSANTD3) in salivary gland acinic cell carcinoma.

    PubMed

    Barasch, Nicholas; Gong, Xue; Kwei, Kevin A; Varma, Sushama; Biscocho, Jewison; Qu, Kunbin; Xiao, Nan; Lipsick, Joseph S; Pelham, Robert J; West, Robert B; Pollack, Jonathan R

    2017-01-01

    Pathogenic gene fusions have been identified in several histologic types of salivary gland neoplasia, but not previously in acinic cell carcinoma (AcCC). To discover novel gene fusions, we performed whole-transcriptome sequencing surveys of three AcCC archival cases. In one specimen we identified a novel HTN3-MSANTD3 gene fusion, and in another a novel PRB3-ZNF217 gene fusion. The structure of both fusions was consistent with the promoter of the 5' partner (HTN3 or PRB3), both highly expressed salivary gland genes, driving overexpression of full-length MSANTD3 or ZNF217. By fluorescence in situ hybridization of an expanded AcCC case series, we observed MSANTD3 rearrangements altogether in 3 of 20 evaluable cases (15%), but found no additional ZNF217 rearrangements. MSANTD3 encodes a previously uncharacterized Myb/SANT domain-containing protein. Immunohistochemical staining demonstrated diffuse nuclear MSANTD3 expression in 8 of 27 AcCC cases (30%), including the three cases with MSANTD3 rearrangement. MSANTD3 displayed heterogeneous expression in normal salivary ductal epithelium, as well as among other histologic types of salivary gland cancer though without evidence of translocation. In a broader survey, MSANTD3 showed variable expression across a wide range of normal and neoplastic human tissue specimens. In preliminary functional studies, engineered MSANTD3 overexpression in rodent salivary gland epithelial cells did not enhance cell proliferation, but led to significant upregulation of gene sets involved in protein synthesis. Our findings newly identify MSANTD3 rearrangement as a recurrent event in salivary gland AcCC, providing new insight into disease pathogenesis, and identifying a putative novel human oncogene.

  11. Nevoid basal cell carcinoma syndrome with medulloblastoma in an African-American boy: A rare case illustrating gene-environment interaction

    SciTech Connect

    Korczak, J.F.; Goldstein, A.M.; Kase, R.G.

    1997-03-31

    We present an 8-year-old African-American boy with medulloblastoma and nevoid basal cell carcinoma syndrome (NBCCS) who exhibited the radiosensitive response of basal cell carcinoma (BCC) formation in the area irradiated for medulloblastoma. Such a response is well-documented in Caucasian NBCCS patients with medulloblastoma. The propositus was diagnosed with medulloblastoma at the age of 2 years and underwent surgery, chemotherapy, and craniospinal irradiation. At the age of 6 years, he was diagnosed with NBCCS following his presentation with a large odontogenic keratocyst of the mandible, pits of the palms and soles and numerous BCCs in the area of the back and neck that had been irradiated previously for medulloblastoma. Examination of other relatives showed that the propositus mother also had NBCCS but was more mildly affected; in particular, she had no BCCs. This case illustrates complex gene-environment interaction, in that increased skin pigmentation in African-Americans is presumably protective against ultraviolet, but not ionizing, radiation. This case and other similar cases in the literature show the importance of considering NBCCS in the differential diagnosis of any patient who presents with a medulloblastoma, especially before the age of 5 years, and of examining other close relatives for signs of NBCCS to determine the patient`s at-risk status. Finally, for individuals who are radiosensitive, protocols that utilize chemotherapy in lieu of radiotherapy should be considered. 27 refs., 4 figs.

  12. Single-Nucleotide Polymorphisms of the MSH2 and MLH1 Genes, Potential Molecular Markers for Susceptibility to the Development of Basal Cell Carcinoma in the Brazilian Population.

    PubMed

    da Silva Calixto, Poliane; Lopes, Otávio Sérgio; Dos Santos Maia, Mayara; Herrero, Sylvia Satomi Takeno; Longui, Carlos Alberto; Melo, Cynthia Germoglio Farias; de Carvalho Filho, Ivan Rodrigues; Soares, Leonardo Ferreira; de Medeiros, Arnaldo Correia; Delatorre, Plínio; Khayat, André Salim; Burbano, Rommel Rodriguez; Lima, Eleonidas Moura

    2017-06-30

    Basal