Chalcogen catalysts for polymer electrolyte fuel cell
Alonso-Vante, Nicolas [Buxerolles, FR; Zelenay, Piotr [Los Alamos, NM; Choi, Jong-Ho [Los Alamos, NM; Wieckowski, Andrzej [Champaign, IL; Cao, Dianxue [Urbana, IL
2009-09-15
A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.
Chalcogen catalysts for polymer electrolyte fuel cell
Zelenay, Piotr; Choi, Jong-Ho; Alonso-Vante, Nicolas; Wieckowski, Andrzej; Cao, Dianxue
2010-08-24
A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.
NASA Astrophysics Data System (ADS)
Chaparro, A. M.; Ferreira-Aparicio, P.; Folgado, M. A.; Brightman, E.; Hinds, G.
2016-09-01
The performance of electrosprayed cathode catalyst layers in a polymer electrolyte membrane fuel cell (PEMFC) is studied using a localized reference electrode technique. Single cells with an electrosprayed cathode catalyst layer show an increase of >20% in maximum power density under standard testing conditions, compared with identical cells assembled with a conventional, state-of-the-art, gas diffusion cathode. When operated at high current density (1.2 A cm-2) the electrosprayed catalyst layers show more homogeneous distribution of the localized cathode potential, with a standard deviation from inlet to outlet of <50 mV, compared with 79 mV for the conventional gas diffusion cathode. Higher performance and homogeneity of cell response is attributed to the superhydrophobic nature of the macroporous electrosprayed catalyst layer structure, which enhances the rate of expulsion of liquid water from the cathode. On the other hand, at low current densities (<0.5 A cm-2), the electrosprayed layers exhibit more heterogeneous distribution of cathode potential than the conventional cathodes; this behavior is attributed to less favorable kinetics for oxygen reduction in very hydrophobic catalyst layers. The optimum performance may be obtained with electrosprayed catalyst layers employing a high Pt/C catalyst ratio.
Methanol-tolerant cathode catalyst composite for direct methanol fuel cells
Zhu, Yimin; Zelenay, Piotr
2006-09-05
A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.
Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells
Zhu, Yimin; Zelenay, Piotr
2006-03-21
A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.
High performance, high durability non-precious metal fuel cell catalysts
Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.
2016-03-15
This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.
Ferreira-Aparicio, Paloma; Chaparro, Antonio M; Folgado, M Antonia; Conde, Julio J; Brightman, Edward; Hinds, Gareth
2017-03-29
Degradation of a polymer electrolyte membrane fuel cell (PEMFC) with electrosprayed cathode catalyst layers is investigated during cyclic start-up and shut-down events. The study is carried out within a single cell incorporating an array of reference electrodes that enables measurement of cell current as a function of local cathode potential (localized polarization curves). Accelerated degradation of the cell by start-up/shut-down cycling gives rise to inhomogeneous performance loss, which is more severe close to the gas outlet and occurs predominantly during start-up. The degradation consists primarily of loss of cathode catalyst activity and increase in cell internal resistance, which is attributed to carbon corrosion and Pt aggregation in both anode and cathode. Cells with an electrosprayed cathode catalyst layer show lower degradation rates during the first 100 cycles, compared with those of a conventional gas diffusion electrode. This difference in behavior is attributed to the high hydrophobicity of the electrosprayed catalyst layer microstructure, which retards the kinetics of corrosion of the carbon support. In the long term, however, the degradation rate is dominated by the Pt/C ratio in the cathode catalyst layer.
Catalyst inks and method of application for direct methanol fuel cells
Zelenay, Piotr; Davey, John; Ren, Xiaoming; Gottesfeld, Shimshon; Thomas, Sharon C.
2004-02-24
Inks are formulated for forming anode and cathode catalyst layers and applied to anode and cathode sides of a membrane for a direct methanol fuel cell. The inks comprise a Pt catalyst for the cathode and a Pt--Ru catalyst for the anode, purified water in an amount 4 to 20 times that of the catalyst by weight, and a perfluorosulfonic acid ionomer in an amount effective to provide an ionomer content in the anode and cathode surfaces of 20% to 80% by volume. The inks are prepared in a two-step process while cooling and agitating the solutions. The final solution is placed in a cooler and continuously agitated while spraying the solution over the anode or cathode surface of the membrane as determined by the catalyst content.
Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells
NASA Astrophysics Data System (ADS)
Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.
2016-12-01
One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.
Organometallic catalysts for primary phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Walsh, Fraser
1987-01-01
A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.
NASA Astrophysics Data System (ADS)
Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang
2017-08-01
The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.
NASA Astrophysics Data System (ADS)
Lei, Libin; Tao, Zetian; Hong, Tao; Wang, Xiaoming; Chen, Fanglin
2018-06-01
The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400-650 °C). To address this problem, for the first time, a novel hybrid catalyst consisting of PrNi0.5Mn0.5O3 and PrOx is impregnated in the (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr0.8Y0.2O3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 W cm-2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm-2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. This study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.
Single chamber microbial fuel cell with Ni-Co cathode
NASA Astrophysics Data System (ADS)
Włodarczyk, Barbara; Włodarczyk, Paweł P.; Kalinichenko, Antonina
2017-10-01
The possibility of wastewater treatment and the parallel energy production using the Ni-Co alloy as cathode catalyst for single chamber microbial fuel cells is presented in this research. The research included a preparation of catalyst and comparison of COD, NH4+ and NO3- reduction in the reactor without aeration, with aeration and with using a single chamber microbial fuel cell with Ni-Co cathode. The reduction time for COD with the use of microbial fuel cell with the Ni-Co catalyst is similar to the reduction time with aeration. The current density (2.4 A·m-2) and amount of energy (0.48 Wh) obtained in MFC is low, but the obtained amount of energy allows elimination of the energy needed for reactor aeration. It has been shown that the Ni-Co can be used as cathode catalyst in single chamber microbial fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Libin; Tao, Zetian; Hong, Tao
The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400–650 °C). In this paper, to address this problem, for the first time, a novel hybrid catalyst consisting of PrNi 0.5Mn 0.5O 3 and PrOx is impregnated in the (La 0.60Sr 0.40) 0.95Co 0.20Fe 0.80O 3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr 0.8Y 0.2O 3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 Wmore » cm -2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm -2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. Finally, this study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.« less
Lei, Libin; Tao, Zetian; Hong, Tao; ...
2018-04-06
The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400–650 °C). In this paper, to address this problem, for the first time, a novel hybrid catalyst consisting of PrNi 0.5Mn 0.5O 3 and PrOx is impregnated in the (La 0.60Sr 0.40) 0.95Co 0.20Fe 0.80O 3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr 0.8Y 0.2O 3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 Wmore » cm -2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm -2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. Finally, this study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.« less
Ma, Jiwei; Habrioux, Aurélien; Morais, Cláudia; Alonso-Vante, Nicolas
2014-07-21
We reported herein on the use of tolerant cathode catalysts such as carbon supported Pt(x)Ti(y) and/or Pt(x)Se(y) nanomaterials in an air-breathing methanol microfluidic fuel cell. In order to show the improvement of mixed-reactant fuel cell (MRFC) performances obtained with the developed tolerant catalysts, a classical Pt/C nanomaterial was used for comparison. Using 5 M methanol concentration in a situation where the fuel crossover is 100% (MRFC-mixed reactant fuel cell application), the maximum power density of the fuel cell with a Pt/C cathodic catalyst decreased by 80% in comparison with what is observed in the laminar flow fuel cell (LFFC) configuration. With Pt(x)Ti(y)/C and Pt(x)Se(y)/C cathode nanomaterials, the performance loss was only 55% and 20%, respectively. The evaluation of the tolerant cathode catalysts in an air-breathing microfluidic fuel cell suggests the development of a novel nanometric system that will not be size restricted. These interesting results are the consequence of the high methanol tolerance of these advanced electrocatalysts via surface electronic modification of Pt. Herein we used X-ray photoelectron and in situ FTIR spectroscopies to investigate the origin of the high methanol tolerance on modified Pt catalysts.
Cui, Xiangzhi; Shi, Jianlin; Wang, Yongxia; Chen, Yu; Zhang, Lingxia; Hua, Zile
2014-01-01
As one of the most important clean energy sources, proton exchange membrane fuel cells (PEMFCs) have been a topic of extensive research focus for decades. Unfortunately, several critical technique obstacles, such as the high cost of platinum electrode catalysts, performance degradation due to the CO poisoning of the platinum anode, and carbon corrosion by oxygen in the cathode, have greatly impeded its commercial development. A prototype of a single PEMFC catalyzed by a mesostructured platinum-free WO3/C anode and a mesostructured carbon-free Pt/WC cathode catalysts is reported herein. The prototype cell exhibited 93% power output of a standard PEMFC using commercial Pt/C catalysts at 50 and 70 °C, and more importantly, CO poisoning-free and carbon corrosion-resistant characters of the anode and cathode, respectively. Consequently, the prototype cell demonstrated considerably enhanced cell operation durability. The mesostructured electrode catalysts are therefore highly promising in the future development and application of PEMFCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mahmoud, Mohamed; Gad-Allah, Tarek A; El-Khatib, K M; El-Gohary, Fatma
2011-11-01
This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Alkaline direct alcohol fuel cells using an anion exchange membrane
NASA Astrophysics Data System (ADS)
Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi
Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800 mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323 K, which was about 100-200 mV higher than that for a DMFC using Nafion ®. The maximum power densities were in the order of ethylene glycol > glycerol > methanol > erythritol > xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode.
Formic acid fuel cells and catalysts
Masel, Richard I.; Larsen, Robert; Ha, Su Yun
2010-06-22
An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.
Durability and performance optimization of cathode materials for fuel cells
NASA Astrophysics Data System (ADS)
Colon-Mercado, Hector Rafael
The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and understanding the mechanisms of ORR. However, a relatively small number of publications are related to the durability of Pt alloys in the PEMFC environment. In the second part of this dissertation an ADT is developed for the evaluation of PEMFC cathode catalysts in a time and cost effective way.
Cathodes for lithium-air battery cells with acid electrolytes
Xing, Yangchuan; Huang, Kan; Li, Yunfeng
2016-07-19
In various embodiments, the present disclosure provides a layered metal-air cathode for a metal-air battery. Generally, the layered metal-air cathode comprises an active catalyst layer, a transition layer bonded to the active catalyst layer, and a backing layer bonded to the transition layer such that the transition layer is disposed between the active catalyst layer and the backing layer.
Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté; Nagy, Balázs; László, Krisztina
2017-07-01
Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source. This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m -3 . At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m -3 and 18.8 g COD m -3 h -1 , respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450-600 to 350-370 Ω. Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.
Jadhav, Dipak A; Deshpande, Parag A; Ghangrekar, Makarand M
2017-08-01
Application of ZrO 2 , MnO 2 , palladium, palladium-substituted-zirconium oxide (Zr 0.98 Pd 0.02 O 2 ) and palladium-substituted-manganese oxide (Mn 0.98 Pd 0.02 O 2 ) cathode catalysts in a single-chambered microbial fuel cell (MFC) was explored. The highest power generation (1.28W/m 3 ) was achieved in MFC with Mn 0.98 Pd 0.02 O 2 catalyst, which was higher than that with MnO 2 (0.58W/m 3 ) alone; whereas, MFC having Zr 0.98 Pd 0.02 O 2 catalyzed cathode and non-catalyzed cathode produced powers of 1.02 and 0.23W/m 3 , respectively. Also, low-cost zirconium-palladium-composite showed better catalytic activity and capacitance over ZrO 2 with 20A/m 3 current production and demonstrated its suitability for MFC applications. Cyclic voltammetry analyses showed higher well-defined redox peaks in composite catalysts (Mn/Zr-Pd-C) over other catalyzed MFCs containing MnO 2 or ZrO 2 . Electrochemical behaviour of composite catalysts on cathode showed higher availability of adsorption sites for oxygen reduction and, hence, enhanced the rate of cathodic reactions. Thus, Mn/Zr-Pd-C-based composite catalysts exhibited superior cathodic performance and could be proposed as alternatives to costly Pd-catalyst for field applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oxygen-consuming chlor alkali cell configured to minimize peroxide formation
Chlistunoff, Jerzy B [Los Alamos, NM; Lipp, Ludwig [Brookfield, CT; Gottesfeld, Shimshon [Niskayuna, NY
2006-08-01
Oxygen-consuming zero gap chlor-alkali cell was configured to minimize peroxide formation. The cell included an ion-exchange membrane that divided the cell into an anode chamber including an anode and a cathode chamber including an oxygen gas diffusion cathode. The cathode included a single-piece of electrically conducting graphitized carbon cloth. Catalyst and polytetrafluoroethylene were attached to only one side of the cloth. When the cathode was positioned against the cation exchange membrane with the catalyst side away from the membrane, electrolysis of sodium chloride to chlorine and caustic (sodium hydroxide) proceeded with minimal peroxide formation.
Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells.
Gan, Lin; Du, Hongda; Li, Baohua; Kang, Feiyu
2011-04-07
Graphite nanofibers (GNFs), on which surface graphite edges were reconstructed into nano-loops, were explored as a cathode catalyst support for fuel cells. The high degree of graphitization, as well as the surface-reconstructed nano-loops that possess topological defects for uniform metal deposition, resulted in an improved performance of the GNF-supported Pt catalyst.
Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun
2015-03-02
Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells.
Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun
2015-01-01
Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells. PMID:25728910
Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries
NASA Astrophysics Data System (ADS)
Davydova, E. S.; Atamanyuk, I. N.; Ilyukhin, A. S.; Shkolnikov, E. I.; Zhuk, A. Z.
2016-02-01
Cobalt tetramethoxyphenyl porphyrin and polyacrylonitrile - based catalysts for oxygen reduction reaction were synthesized and characterized by means of SEM, TEM, XPS, BET, limited evaporation method, rotating disc and rotating ring-disc electrode methods. Half-cell and Al-air cell tests were carried out to determine the characteristics of gas-diffusion cathodes. Effect of active layer thickness and its composition on the characteristics of the gas-diffusion cathodes was investigated. Power density of 300 mW cm-2 was achieved for alkaline Al-air cell with an air-breathing polyacrylonitrile-based cathode.
Haoran, Yuan; Lifang, Deng; Tao, Lu; Yong, Chen
2014-01-01
Much effort has been devoted to the synthesis of novel nanostructured MnO2 materials because of their unique properties and potential applications as cathode catalyst in Microbial fuel cell. Hybrid MnO2 nanostructures were fabricated by a simple hydrothermal method in this study. Their crystal structures, morphology, and electrochemical characters were carried out by FESEM, N2-adsorption-desorption, and CV, indicating that the hydrothermally synthesized MnO2 (HSM) was structured by nanorods of high aspect ratio and multivalve nanoflowers and more positive than the naturally synthesized MnO2 (NSM), accompanied by a noticeable increase in oxygen reduction peak current. When the HSM was employed as the cathode catalyst in air-cathode MFC which fed with leachate, a maximum power density of 119.07 mW/m2 was delivered, 64.68% higher than that with the NSM as cathode catalyst. Furthermore, the HSM via a 4-e pathway, but the NSM via a 2-e pathway in alkaline solution, and as 4-e pathway is a more efficient oxygen reduction reaction, the HSM was more positive than NSM. Our study provides useful information on facile preparation of cost-effective cathodic catalyst in air-cathode MFC for wastewater treatment. PMID:24723824
Takao, Shinobu; Sekizawa, Oki; Samjeské, Gabor; Nagamatsu, Shin-ichi; Kaneko, Takuma; Yamamoto, Takashi; Higashi, Kotaro; Nagasawa, Kensaku; Uruga, Tomoya; Iwasawa, Yasuhiro
2015-06-04
We have made the first success in the same-view imagings of 2D nano-XAFS and TEM/STEM-EDS under a humid N2 atmosphere for Pt/C cathode catalyst layers in membrane electrode assemblies (MEAs) of polymer electrolyte fuel cells (PEFCs) with Nafion membrane to examine the degradation of Pt/C cathodes by anode gas exchange cycles (start-up/shut-down simulations of PEFC vehicles). The same-view imaging under the humid N2 atmosphere provided unprecedented spatial information on the distribution of Pt nanoparticles and oxidation states in the Pt/C cathode catalyst layer as well as Nafion ionomer-filled nanoholes of carbon support in the wet MEA, which evidence the origin of the formation of Pt oxidation species and isolated Pt nanoparticles in the nanohole areas of the cathode layer with different Pt/ionomer ratios, relevant to the degradation of PEFC catalysts.
Qiu, Yang; Huo, Jiajie; Jia, Fan; ...
2015-11-06
Nitrogen and sulfur were simultaneously doped into the framework of mesoporous CMK-3 as metal-free catalysts for direct biorenewable alcohol fuel cells. Glucose, NH 3, and thiophene were used as carbon, nitrogen and sulfur precursors, respectively, to prepare mesoporous N-S-CMK-3 with uniform mesopores and extra macropores, resulting in good O 2 diffusion both in half cell and alcohol fuel cell investigations. Among all investigated CMK-3 based catalysts, N-S-CMK-3 prepared at 800 °C exhibited the highest ORR activity with the onset potential of 0.92 V vs. RHE, Tafel slope of 68 mV dec -1, and 3.96 electron transfer number per oxygen moleculemore » in 0.1 M KOH. In addition, the alkaline membrane-based direct alcohol fuel cell (DAFC) with N-S-CMK-3 cathode displayed 88.2 mW cm -2 peak power density without obvious O 2 diffusion issue, reaching 84% initial performance of that with a Pt/C cathode. The high catalyst durability and fuel-crossover tolerance led to stable performance of the N-S-CMK-3 cathode DAFC with 90.6 mW cm -2 peak power density after 2 h operation, while the Pt/C cathode-based DAFC lost 36.9% of its peak power density. In conclusion, the high ORR activity of N-S-CMK-3 can be attributed to the synergistic effect between graphitic-N and S (C–S–C structure), suggesting great potential to use N-S-CMK-3 as an alternative to noble metal catalysts in the fuel cell cathode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Yang; Huo, Jiajie; Jia, Fan
Nitrogen and sulfur were simultaneously doped into the framework of mesoporous CMK-3 as metal-free catalysts for direct biorenewable alcohol fuel cells. Glucose, NH 3, and thiophene were used as carbon, nitrogen and sulfur precursors, respectively, to prepare mesoporous N-S-CMK-3 with uniform mesopores and extra macropores, resulting in good O 2 diffusion both in half cell and alcohol fuel cell investigations. Among all investigated CMK-3 based catalysts, N-S-CMK-3 prepared at 800 °C exhibited the highest ORR activity with the onset potential of 0.92 V vs. RHE, Tafel slope of 68 mV dec -1, and 3.96 electron transfer number per oxygen moleculemore » in 0.1 M KOH. In addition, the alkaline membrane-based direct alcohol fuel cell (DAFC) with N-S-CMK-3 cathode displayed 88.2 mW cm -2 peak power density without obvious O 2 diffusion issue, reaching 84% initial performance of that with a Pt/C cathode. The high catalyst durability and fuel-crossover tolerance led to stable performance of the N-S-CMK-3 cathode DAFC with 90.6 mW cm -2 peak power density after 2 h operation, while the Pt/C cathode-based DAFC lost 36.9% of its peak power density. In conclusion, the high ORR activity of N-S-CMK-3 can be attributed to the synergistic effect between graphitic-N and S (C–S–C structure), suggesting great potential to use N-S-CMK-3 as an alternative to noble metal catalysts in the fuel cell cathode.« less
Brushett, Fikile R; Thorum, Matthew S; Lioutas, Nicholas S; Naughton, Matthew S; Tornow, Claire; Jhong, Huei-Ru Molly; Gewirth, Andrew A; Kenis, Paul J A
2010-09-08
The performance of a novel carbon-supported copper complex of 3,5-diamino-1,2,4-triazole (Cu-tri/C) is investigated as a cathode material using an alkaline microfluidic H(2)/O(2) fuel cell. The absolute Cu-tri/C cathode performance is comparable to that of a Pt/C cathode. Furthermore, at a commercially relevant potential, the measured mass activity of an unoptimized Cu-tri/C-based cathode was significantly greater than that of similar Pt/C- and Ag/C-based cathodes. Accelerated cathode durability studies suggested multiple degradation regimes at various time scales. Further enhancements in performance and durability may be realized by optimizing catalyst and electrode preparation procedures.
Investigations of direct methanol fuel cell (DMFC) fading mechanisms
NASA Astrophysics Data System (ADS)
Sarma, Loka Subramanyam; Chen, Ching-Hsiang; Wang, Guo-Rung; Hsueh, Kan-Lin; Huang, Chiou-Ping; Sheu, Hwo-Shuenn; Liu, Ding-Goa; Lee, Jyh-Fu; Hwang, Bing-Joe
In this report, we present the microscopic investigations on various fading mechanisms of a direct methanol fuel cell (DMFC). High energy X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopic analysis were applied to a membrane-electrode-assembly (MEA) before and after fuel cell operation to figure out the various factors causing its fading. High energy XRD analysis of the fresh and faded MEA revealed that the agglomeration of the catalyst particles in the cathode layer of the faded MEA was more significant than in the anode layer of the faded MEA. The XAS analysis demonstrated that the alloying extent of Pt (J Pt) and Ru (J Ru) in the anode catalyst was increased and decreased, respectively, from the fresh to the faded MEA, indicating that the Ru environment in the anode catalyst was significantly changed after the fuel cell operation. Based on the X-ray absorption edge jump measurements at the Ru K-edge on the anode catalyst of the fresh and the faded MEA it was found that Ru was dissolved from the Pt-Ru catalyst after the fuel cell operation. Both the Ru K-edge XAS and EDX analysis on the cathode catalyst layer of the faded MEA confirms the presence of Ru environment in the cathode catalyst due to the Ru crossover from the anode to the cathode side. The changes in the membrane and the gas diffusion layer (GDL) after the fuel cell operation were observed from the Raman spectroscopy analysis.
Mohanta, Paritosh Kumar; Regnet, Fabian; Jörissen, Ludwig
2018-05-28
Stability of cathode catalyst support material is one of the big challenges of polymer electrolyte membrane fuel cells (PEMFC) for long term applications. Traditional carbon black (CB) supports are not stable enough to prevent oxidation to CO₂ under fuel cell operating conditions. The feasibility of a graphitized carbon (GC) as a cathode catalyst support for low temperature PEMFC is investigated herein. GC and CB supported Pt electrocatalysts were prepared via an already developed polyol process. The physical characterization of the prepared catalysts was performed using transmission electron microscope (TEM), X-ray Powder Diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES) analysis, and their electrochemical characterizations were conducted via cyclic voltammetry(CV), rotating disk electrode (RDE) and potential cycling, and eventually, the catalysts were processed using membrane electrode assemblies (MEA) for single cell performance tests. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SEM) have been used as MEA diagonostic tools. GC showed superior stability over CB in acid electrolyte under potential conditions. Single cell MEA performance of the GC-supported catalyst is comparable with the CB-supported catalyst. A correlation of MEA performance of the supported catalysts of different Brunauer⁻Emmett⁻Teller (BET) surface areas with the ionomer content was also established. GC was identified as a promising candidate for catalyst support in terms of both of the stability and the performance of fuel cell.
Wen, Qing; Wang, Shaoyun; Yan, Jun; Cong, Lijie; Chen, Ye; Xi, Hongyuan
2014-02-01
Porous nitrogen-doped carbon nanosheet on graphene (PNCN) was used as an alternative cathode catalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). Here we report a novel, low-cost, scalable, synthetic method for preparation of PNCN via the carbonization of graphite oxide-polyaniline hybrid (GO-PANI), subsequently followed by KOH activation treatment. Due to its high concentration of nitrogen and high specific surface area, PNCN exhibited an excellent catalytic activity for ORR. As a result, the maximum power density of 1159.34mWm(-2) obtained with PNCN catalyst was higher than that of Pt/C catalyst (858.49mWm(-2)) in a MFC. Therefore, porous nitrogen-doped carbon nanosheet could be a good alternative to Pt catalyst in MFCs. © 2013.
Huang, Jianjian; Zhu, Nengwu; Yang, Tingting; Zhang, Taiping; Wu, Pingxiao; Dang, Zhi
2015-10-15
Comparing with the precious metal catalysts, non-precious metal catalysts were preferred to use in microbial fuel cells (MFCs) due to the low cost and high oxygen reduction reaction (ORR) efficiency. In this study, the transmission electron microscope and X-ray diffraction as well as Raman investigation revealed that the prepared nanoscale NiO was attached on the surface of CNT. Cyclic voltammogram and rotating ring-disk electrode tests showed that the NiO/CNT composite catalyst had an apparent oxygen reduction peak and 3.5 electron transfer pathway was acquired under oxygen atmosphere. The catalyst performance was highly dependent on the percentage of NiO in the CNT nanocomposites. When 77% NiO/CNT nano-sized composite was applied as cathode catalyst in membrane free single-chamber air cathode MFC, a maximum power density of 670 mW/m(2) and 0.772 V of OCV was obtained. Moreover, the MFC with pure NiO (control) could not achieve more than 0.1 V. All findings suggested that NiO/CNT could be a potential cathode catalyst for ORR in MFCs. Copyright © 2015 Elsevier B.V. All rights reserved.
Yan, Bing; Concannon, Nolan M; Milshtein, Jarrod D; Brushett, Fikile R; Surendranath, Yogesh
2017-06-19
Polymer electrolyte membranes employed in contemporary fuel cells severely limit device design and restrict catalyst choice, but are essential for preventing short-circuiting reactions at unselective anode and cathode catalysts. Herein, we report that nickel sulfide Ni 3 S 2 is a highly selective catalyst for the oxygen reduction reaction in the presence of 1.0 m formate. We combine this selective cathode with a carbon-supported palladium (Pd/C) anode to establish a membrane-free, room-temperature formate fuel cell that operates under benign neutral pH conditions. Proof-of-concept cells display open circuit voltages of approximately 0.7 V and peak power values greater than 1 mW cm -2 , significantly outperforming the identical device employing an unselective platinum (Pt) cathode. The work establishes the power of selective catalysis to enable versatile membrane-free fuel cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J
2011-01-01
To improve the catalytic activity of palladium (Pd) as a cathode catalyst in direct methanol fuel cells (DMFCs), we prepared palladium-titanium oxide (Pd-TiO2) catalysts which the Pd and TiO2 nanoparticles were simultaneously impregnated on carbon. We selected Pd and TiO2 as catalytic materials because of their electrochemical stability in acid solution. The crystal structure and the loading amount of Pd and TiO2 on carbon were characterized by X-ray diffraction (XRD) and energy dispersive X-ray microanalysis (EDX). The electrochemical characterization of Pd-TiO2/C catalysts for the oxygen reduction reaction was carried out in half and single cell systems. The catalytic activities of the Pd-TiO2 catalysts were strongly influenced by the TiO2 content. In the single cell test, the Pd-TiO2 catalysts showed very comparable performance to the Pt catalyst.
Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts
Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne
2014-08-12
Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.
NASA Astrophysics Data System (ADS)
Aziznia, Amin; Oloman, Colin W.; Gyenge, Előd L.
2014-11-01
The Swiss-roll single-cell mixed reactant (SR-MRFC) borohydride - oxygen fuel cell equipped with Pt/carbon cloth 3D anode and either MnO2 or Ag gas-diffusion cathodes is investigated by a combination of experimental studies and preliminary mathematical modeling of the polarization curve. We investigate the effects of four variables: cathode side metallic mesh fluid distributor, separator type (Nafion 112® vs. Viledon®), cathode catalyst (MnO2 vs. Ag), and the hydrophilic pore volume fraction of the gas-diffusion cathode. Using a two-phase feed of alkaline borohydride solution (1 M NaBH4 - 2 M NaOH) and O2 gas in an SR-MRFC equipped with Pt/C 3D anode, MnO2 gas diffusion cathode, Viledon® porous diaphragm, expanded mesh cathode-side fluid distributor, the maximum superficial power density is 2230 W m-2 at 323 K and 105 kPa(abs). The latter superficial power density is almost 3.5 times higher than our previously reported superficial power density for the same catalyst combinations. Furthermore, with a Pt anode and Ag cathode catalyst combination, a superficial power density of 2500 W m-2 is achieved with superior performance durability compared to the MnO2 cathode. The fuel cell results are substantiated by impedance spectroscopy analysis and preliminary mathematical model predictions based on mixed potential theory.
Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell
NASA Astrophysics Data System (ADS)
Kruusenberg, Ivar; Ratso, Sander; Vikkisk, Merilin; Kanninen, Petri; Kallio, Tanja; Kannan, Arunachala M.; Tammeveski, Kaido
2015-05-01
Direct methanol fuel cells are assembled and evaluated using Fumatech FAA3 alkaline anion exchange membrane. Two novel metal-free cathode catalysts are synthesised, investigated and compared with the commercial Pt-based catalyst. In this work nitrogen-doped few-layer graphene/multi-walled carbon nanotube (N-FLG/MWCNT) composite and nitrogen-doped MWCNT (N-MWCNT) catalyst are prepared by pyrolysing the mixture of dicyandiamide (DCDA) and carbon nanomaterials at 800 °C. The resulting cathode catalyst material shows a remarkable electrocatalytic activity for oxygen reduction reaction (ORR) in 0.1 M KOH solution employing the rotating disk electrode (RDE) method. Fuel cell tests are performed by using 1 M methanol as anode and pure oxygen gas cathode feed. The maximum power density obtained with the N-FLG/MWCNT material (0.72 mW cm-2) is similar to that of the Pt/C catalyst (0.72 mW cm-2), whereas the N-MWCNT material shows higher peak power density (0.92 mW cm-2) than the commercial Pt/C catalyst.
Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes.
Rivera Gavidia, Luis M; Sebastián, David; Pastor, Elena; Aricò, Antonino S; Baglio, Vincenzo
2017-05-25
Direct methanol fuel cells (DMFCs) are electrochemical devices that efficiently produce electricity and are characterized by a large flexibility for portable applications and high energy density. Methanol crossover is one of the main obstacles for DMFC commercialization, forcing the search for highly electro-active and methanol tolerant cathodes. In the present work, carbon-supported Pd and PdFe catalysts were synthesized using a sodium borohydride reduction method and physico-chemically characterized using transmission electron microscopy (TEM) and X-ray techniques such as photoelectron spectroscopy (XPS), diffraction (XRD) and energy dispersive spectroscopy (EDX). The catalysts were investigated as DMFC cathodes operating at different methanol concentrations (up to 10 M) and temperatures (60 °C and 90 °C). The cell based on PdFe/C cathode presented the best performance, achieving a maximum power density of 37.5 mW·cm -2 at 90 °C with 10 M methanol, higher than supported Pd and Pt commercial catalysts, demonstrating that Fe addition yields structural changes to Pd crystal lattice that reduce the crossover effects in DMFC operation.
Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes
Rivera Gavidia, Luis M.; Sebastián, David; Pastor, Elena; Aricò, Antonino S.; Baglio, Vincenzo
2017-01-01
Direct methanol fuel cells (DMFCs) are electrochemical devices that efficiently produce electricity and are characterized by a large flexibility for portable applications and high energy density. Methanol crossover is one of the main obstacles for DMFC commercialization, forcing the search for highly electro-active and methanol tolerant cathodes. In the present work, carbon-supported Pd and PdFe catalysts were synthesized using a sodium borohydride reduction method and physico-chemically characterized using transmission electron microscopy (TEM) and X-ray techniques such as photoelectron spectroscopy (XPS), diffraction (XRD) and energy dispersive spectroscopy (EDX). The catalysts were investigated as DMFC cathodes operating at different methanol concentrations (up to 10 M) and temperatures (60 °C and 90 °C). The cell based on PdFe/C cathode presented the best performance, achieving a maximum power density of 37.5 mW·cm−2 at 90 °C with 10 M methanol, higher than supported Pd and Pt commercial catalysts, demonstrating that Fe addition yields structural changes to Pd crystal lattice that reduce the crossover effects in DMFC operation. PMID:28772937
NASA Astrophysics Data System (ADS)
Chen, Ming; Wang, Meng; Yang, Zhaoyi; Wang, Xindong
2017-06-01
In this paper, an order-structured cathode catalyst layer consisting of Pt-TiO2@PANI core-shell nanowire arrays that in situ grown on commercial gas diffusion layer (GDL) are prepared and applied to membrane electrode assembly (MEA) of proton exchange membrane fuel cell (PEMFC). In order to prepare the TiO2@PANI core-shell nanowire arrays with suitable porosity and prominent conductivity, the morphologies of the TiO2 nanoarray and electrochemical polymerization process of aniline are schematically investigated. The MEA with order-structured cathode catalyst layer is assembled in the single cell to evaluate the electrochemical performance and durability of PEMFC. As a result, the PEMFC with order-structured cathode catalyst layer shows higher peak power density (773.54 mW cm-2) than conventional PEMFC (699.30 mW cm-2). Electrochemically active surface area (ECSA) and charge transfer impedance (Rct) are measured before and after accelerated degradation test (ADT), and the corresponding experimental results indicate the novel cathode structure exhibits a better stability with respect to conventional cathode. The enhanced electrochemical performance and durability toward PEMFC can be ascribed to the order-structured cathode nanoarray structure with high specific surface area increases the utilization of catalyst and reduces the tortuosity of transport pathways, and the synergistic effect between TiO2@PANI support and Pt nanoparticles promotes the high efficiency of electrochemical reaction and improves the stability of catalyst. This research provides a facile and controllable method to prepare order-structured membrane electrode with lower Pt loading for PEMFC in the future.
Komini Babu, Siddharth; Chung, Hoon Taek; Zelenay, Piotr; ...
2017-08-04
Here, this paper presents a two-dimensional (2D) computational model of a polymer electrolyte fuel cell (PEFC) with a platinum group metal-free (PGM-free) catalyst cathode that can significantly reduce PEFC costs by eliminating the need for expensive platinum catalysts. Due to their comparatively low volumetric activity, PGM-free cathodes are an order of magnitude thicker than their Pt-based counterpart. The resulting need for greater electrode thickness to achieve sufficient power density requires careful attention to the transport losses across the thicker cathodes. The presented model is used to correlate the composition and morphology of the cathode to PEFC performance. The model ismore » a complete cell, continuum model that includes an advanced agglomerate model for a microstructurally consistent representation of the cathode. A unique feature of the approach is the integration of morphology and transport parameter statistics extracted from nano-scale resolution X-ray computed tomography (nano-CT) imaging of PGM-free cathodes. The model was validated with experimental results of PGM-free cathodes with varying Nafion loading. Lastly, our key findings are a need for increased cathode hydrophobicity and increased ionomer conductivity through either reduced tortuosity or increased bulk conductivity. We further use the model to evaluate targets for the volumetric activity and active site density for future catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komini Babu, Siddharth; Chung, Hoon Taek; Zelenay, Piotr
Here, this paper presents a two-dimensional (2D) computational model of a polymer electrolyte fuel cell (PEFC) with a platinum group metal-free (PGM-free) catalyst cathode that can significantly reduce PEFC costs by eliminating the need for expensive platinum catalysts. Due to their comparatively low volumetric activity, PGM-free cathodes are an order of magnitude thicker than their Pt-based counterpart. The resulting need for greater electrode thickness to achieve sufficient power density requires careful attention to the transport losses across the thicker cathodes. The presented model is used to correlate the composition and morphology of the cathode to PEFC performance. The model ismore » a complete cell, continuum model that includes an advanced agglomerate model for a microstructurally consistent representation of the cathode. A unique feature of the approach is the integration of morphology and transport parameter statistics extracted from nano-scale resolution X-ray computed tomography (nano-CT) imaging of PGM-free cathodes. The model was validated with experimental results of PGM-free cathodes with varying Nafion loading. Lastly, our key findings are a need for increased cathode hydrophobicity and increased ionomer conductivity through either reduced tortuosity or increased bulk conductivity. We further use the model to evaluate targets for the volumetric activity and active site density for future catalysts.« less
Fuel cell development for transportation: Catalyst development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doddapaneni, N.
1996-04-01
Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.
Fang, Baizeng; Kim, Jung Ho; Kim, Minsik; Kim, Minwoo; Yu, Jong-Sung
2009-03-07
Hierarchical nanostructured spherical carbon with hollow macroporous core in combination with mesoporous shell has been explored to support Pt cathode catalyst with high metal loading in proton exchange membrane fuel cell (PEMFC). The hollow core-mesoporous shell carbon (HCMSC) has unique structural characteristics such as large specific surface area and mesoporous volume, ensuring uniform dispersion of the supported high loading (60 wt%) Pt nanoparticles with small particle size, and well-developed three-dimensionally interconnected hierarchical porosity network, facilitating fast mass transport. The HCMSC-supported Pt(60 wt%) cathode catalyst has demonstrated markedly enhanced catalytic activity toward oxygen reduction and greatly improved PEMFC polarization performance compared with carbon black Vulcan XC-72 (VC)-supported ones. Furthermore, the HCMSC-supported Pt(40 wt%) or Pt(60 wt%) outperforms the HCMSC-supported Pt(20 wt%) even at a low catalyst loading of 0.2 mg Pt cm(-2) in the cathode, which is completely different from the VC-supported Pt catalysts. The capability of supporting high loading Pt is supposed to accelerate the commercialization of PEMFC due to the anticipated significant reduction in the amount of catalyst support required, diffusion layer thickness and fabricating cost of the supported Pt catalyst electrode.
Low cost fuel cell diffusion layer configured for optimized anode water management
Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E
2013-08-27
A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.
NASA Technical Reports Server (NTRS)
White, James H. (Inventor); Schwartz, Michael (Inventor); Sammells, Anthony F. (Inventor)
1997-01-01
An electrolytic cell for generating hydrogen peroxide is provided including a cathode containing a catalyst for the reduction of oxygen, and an anode containing a catalyst for the oxidation of water. A polymer membrane, semipermeable to either protons or hydroxide ions is also included and has a first face interfacing to the cathode and a second face interfacing to the anode so that when a stream of water containing dissolved oxygen or oxygen bubbles is passed over the cathode and a stream of water is passed over the anode, and an electric current is passed between the anode and the cathode, hydrogen peroxide is generated at the cathode and oxygen is generated at the anode.
Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu; Ding, Dong; Wei, Tao
The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminantsmore » using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO 2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions has been studied. It is found that SrO readily segregated/enriched on the LSCF surface. More severe contamination conditions cause more SrO on surface. Novel catalyst coatings through particle depositions (PrOx) or continuous thin films (PNM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized PNM (dense film and particles) infiltration process, under clean air and realistic operating conditions (3% H 2O, 5% CO 2 and direct Crofer contact). Both performance and durability of single cells with PNM coating has been enhanced compared with those without coating. Raman analysis of cathodes surface indicated that the intensity of SrCrO 4 was significantly decreased.« less
Yang, Wulin; Logan, Bruce E
2016-08-23
Applications of microbial fuel cells (MFCs) are limited in part by low power densities mainly due to cathode performance. Successful immobilization of an Fe-N-C co-catalyst on activated carbon (Fe-N-C/AC) improved the oxygen reduction reaction to nearly a four-electron transfer, compared to a twoelectron transfer achieved using AC. With acetate as the fuel, the maximum power density was 4.7±0.2 W m(-2) , which is higher than any previous report for an air-cathode MFC. With domestic wastewater as a fuel, MFCs with the Fe-N-C/AC cathode produced up to 0.8±0.03 W m(-2) , which was twice that obtained with a Pt-catalyzed cathode. The use of this Fe-N-C/AC catalyst can therefore substantially increase power production, and enable broader applications of MFCs for renewable electricity generation using waste materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhu, Shiyao; Zheng, Junsheng; Huang, Jun; Dai, Ningning; Li, Ping; Zheng, Jim P.
2018-07-01
Polyelectrolyte poly(diallyldimethylammonium chloride) (PDDA) functionalized carbon nanotubes (CNTs) supported Pt electrocatalyst was synthesized as a substitute for commonly used Pt/C and Pt/CNTs (modified by harsh acid-oxidation treatment) catalysts. In addition, this catalyst was fabricated as the cathode catalyst layer (CL) with a unique double-layered structure for proton exchange membrane fuel cells (PEMFCs). Thermogravimetric analysis shows an enhanced thermal stability of Pt/PDDA-CNTs. The Pt/PDDA-CNTs catalyst with an average Pt particle size of ∼3.1 nm exhibits the best electrocatalytic activity and a significantly enhanced electrochemical stability. Scanning electron microscope, energy dispersive spectrometer and mercury intrusion porosimetry results demonstrate the gradient distribution of Pt content and pore size along the thickness of buckypaper catalyst layer (BPCL). The accelerated degradation test results of BPCLs indicate that this gradient structure can ensure a high Pt utilization in the BPCLs (up to 90%) and further improve the catalyst durability. In addition, the membrane electrode assembly (MEA) fabricated with cathode BPCL-PDDA shows the best single cell performance and long-term stability, and a reduction of Pt loading can be achieved. The feasibility of BPCL for improving the Pt utilization is also demonstrated by the cathode cyclic voltammetry in MEA.
NASA Astrophysics Data System (ADS)
Santoro, Carlo; Kodali, Mounika; Herrera, Sergio; Serov, Alexey; Ieropoulos, Ioannis; Atanassov, Plamen
2018-02-01
Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e- transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm-2 and 10 mgcm-2. Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm-2 and 262 ± 4 μWcm-2 with catalyst loading of 0.1 mgcm-2 and 10 mgcm-2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.
Study on the water flooding in the cathode of direct methanol fuel cells.
Im, Hun Suk; Kim, Sang-Kyung; Lim, Seongyop; Peck, Dong-Hyun; Jung, Doohwan; Hong, Won Hi
2011-07-01
Water flooding phenomena in the cathode of direct methanol fuel cells were analyzed by using electrochemical impedance spectroscopy. Two kinds of commercial gas diffusion layers with different PTFE contents of 5 wt% (GDL A5) and 20 wt% (GDL B20) were used to investigate the water flooding under various operating conditions. Water flooding was divided into two types: catalyst flooding and backing flooding. The cathode impedance spectra of each gas diffusion layer was obtained and compared under the same conditions. The diameter of the capacitive semicircle became larger with increasing current density for both, and this increase was greater for GDL B20 than GDL A5. Catalyst flooding is dominant and backing flooding is negligible when the air flow rate is high and current density is low. An equivalent model was suggested and fitted to the experimental data. Parameters for catalyst flooding and backing flooding were individually obtained. The capacitance of the catalyst layer decreases as the air flow rate decreases when the catalyst flooding is dominant.
Yu, Jong-Sung; Kim, Min-Sik; Kim, Jung Ho
2010-12-14
Combinatorial synthesis and screening were used to identify methanol-tolerant non-platinum cathode electrocatalysts for use in direct methanol fuel cells (DMFCs). Oxygen reduction consumes protons at the surface of DMFC cathode catalysts. In combinatorial screening, this pH change allows one to differentiate active catalysts using fluorescent acid-base indicators. Combinatorial libraries of carbon-supported catalyst compositions containing Ru, Mo, W, Sn, and Se were screened. Ternary and quaternary compositions containing Ru, Sn, Mo, Se were more active than the "standard" Alonso-Vante catalyst, Ru(3)Mo(0.08)Se(2), when tested in liquid-feed DMFCs. Physical characterization of the most active catalysts by powder X-ray diffraction, gas adsorption, and X-ray photoelectron spectroscopy revealed that the predominant crystalline phase was hexagonal close-packed (hcp) ruthenium, and showed a surface mostly covered with oxide. The best new catalyst, Ru(7.0)Sn(1.0)Se(1.0), was significantly more active than Ru(3)Se(2)Mo(0.08), even though the latter contained smaller particles.
New electrocatalysts for hydrogen-oxygen fuel cells
NASA Technical Reports Server (NTRS)
Cattabriga, R. A.; Giner, J.; Parry, J.; Swette, L. L.
1970-01-01
Platinum-silver, palladium-gold, and platinum-gold alloys serve as oxygen reduction catalysts in high-current-density cells. Catalysts were tested on polytetrafluoroethylene-bonded cathodes and a hydrogen anode at an operating cell temperature of 80 degrees C.
Insights on the SO2 Poisoning of Pt3Co/VC and Pt/VC Fuel Cell Catalysts
2010-01-01
catalyst is performed at the cathode of proton exchange membrane fuel cells ( PEMFCs ) in order to link previously reported results at the elec- trode...stripping voltammetry and underpotential deposition (upd) of copper adatoms. Then the performance of PEMFC cathodes employing 30wt.% Pt3Co/VC and 50wt.% Pt/VC...proton exchange membrane fuel cells( PEMFCs )in order to link previously reported results at the elec- trode/solution interface to the FC environment. First
High-performance hydrogen fuel cell using nitrate reduction reaction on a non-precious catalyst.
Han, Sang-Beom; Song, You-Jung; Lee, Young-Woo; Ko, A-Ra; Oh, Jae-Kyung; Park, Kyung-Won
2011-03-28
The H(2)-NO(3)(-) electrochemical cell using nitrate reduction on a non-precious cathode catalyst shows much improved efficiency despite ∼75% reduction of Pt metal loading as compared to typical PEMFCs using typical ORR on precious catalysts.
Zerrouki, A; Salar-García, M J; Ortiz-Martínez, V M; Guendouz, S; Ilikti, H; de Los Ríos, A P; Hernández-Fernández, F J; Kameche, M
2018-03-05
Microbial fuel cells (MFCs) are a promising technology that generates electricity from several biodegradable substrates and wastes. The main drawback of these devices is the need of using a catalyst for the oxygen reduction reaction at the cathode, which makes the process relatively expensive. In this work, two low cost materials are tested as catalysts in MFCs. A novel iron complex based on the ligand n-phenyledenparaethoxy aniline has been synthesized and its performance as catalyst in single chamber MFCs containing ionic liquids has been compared with a commercial inorganic material such as Raney nickel. The results show that both materials are suitable for bioenergy production and wastewater treatment in the systems. Raney nickel cathodes allow MFCs to reach a maximum power output of 160 mW.m -3 anode , while the iron complex offers lower values. Regarding the wastewater treatment capacity, MFCs working with Raney nickel-based cathodes reach higher values of chemical oxygen demand removal (76%) compared with the performance displayed by the cathodes based on Fe-complex (56%).
Multi-variable mathematical models for the air-cathode microbial fuel cell system
NASA Astrophysics Data System (ADS)
Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.
2016-05-01
This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). Simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.
Theory, Investigation and Stability of Cathode Electrocatalytic Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Dong; Liu, Mingfei; Lai, Samson
2012-09-30
The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details andmore » stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.« less
Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells
Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.; ...
2018-03-15
The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less
Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.
The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less
Jun, Young Jin; Park, Sung Hyeon; Woo, Seong Ihl
2014-12-08
Combinatorial high-throughput optical screening method was developed to find the optimum composition of highly active Pd-based catalysts at the cathode of the hybrid Li-air battery. Pd alone, which is one-third the cost of Pt, has difficulty in replacing Pt; therefore, the integration of other metals was investigated to improve its performance toward oxygen reduction reaction (ORR). Among the binary Pd-based catalysts, the composition of Pd-Ir derived catalysts had higher performance toward ORR compared to other Pd-based binary combinations. The composition at 88:12 at. % (Pd: Ir) showed the highest activity toward ORR at the cathode of the hybrid Li-air battery. The prepared Pd(88)Ir(12)/C catalyst showed a current density of -2.58 mA cm(-2) at 0.8 V (vs RHE), which was around 30% higher compared to that of Pd/C (-1.97 mA cm(-2)). When the prepared Pd(88)Ir(12)/C catalyst was applied to the hybrid Li-air battery, the polarization of the cell was reduced and the energy efficiency of the cell was about 30% higher than that of the cell with Pd/C.
Santoro, Carlo; Kodali, Mounika; Herrera, Sergio; Serov, Alexey; Ieropoulos, Ioannis; Atanassov, Plamen
2018-02-28
Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e - transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm -2 and 10 mgcm -2 . Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm -2 and 262 ± 4 μWcm -2 with catalyst loading of 0.1 mgcm -2 and 10 mgcm -2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Sang-Joon; Chung, Ho-Kyoon; Yoo, Ji-Beom
2014-01-15
A new type of PtCo/C catalyst for use as a cathode in polymer electrolyte fuel cells was prepared by selective chemical vapor pulse deposition (CVPD) of Pt on the surface of Co. The activity of the prepared catalyst for oxygen reduction was higher than that of a catalyst prepared by sequential impregnation (IMP) with the two metallic components. This catalytic activity difference occurs because the former catalyst has smaller Pt crystallites that produce stronger Pt-Co interactions and have a larger Pt surface area. Consequently, the CVPD catalyst has a great number of Co particles that are in close contact withmore » the added Pt. The Pt surface was also electronically modified by interactions with Co, which were stronger in the CVPD catalyst than in the IMP catalyst, as indicated by X-ray diffraction, X-ray photoemission spectroscopy, and cyclic voltammetry measurements of the catalysts.« less
NASA Astrophysics Data System (ADS)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.
2017-10-01
The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.
NASA Astrophysics Data System (ADS)
Ghosh, Sourov; Ohashi, Hidenori; Tabata, Hiroshi; Hashimasa, Yoshiyuki; Yamaguchi, Takeo
2017-09-01
The impact of electrochemical carbon corrosion via potential cycling durability tests mimicking start-stop operation events on the microstructure of the cathode catalyst layer in polymer electrolyte fuel cells (PEFCs) is investigated using focused ion beam (FIB) fabrication without/with the pore-filling technique and subsequent scanning electron microscope (SEM) observations. FIB/SEM investigations without pore-filling reveals that the durability test induces non-uniform cathode shrinking across the in-plane direction; the thickness of the catalyst layer decreases more under the gas flow channel compared to the area under the rim of the flow field. Furthermore, FIB/SEM investigations with the pore-filling technique reveal that the durability test also induces non-uniform cathode shrinking in the through-plane direction; the pores in the area close to the membrane are more shrunken compared with those close to the microporous layer. In particular, a thin area (1-1.5 μm) close to the membrane is found to be severely damaged; it includes closed pores that hinder mass transport through the catalyst layer. It is suggested that uneven carbon corrosion and catalyst layer compaction are responsible for the performance loss during potential cycling operation of PEFCs.
Sebastian, David; Serov, Alexey; Matanovic, Ivana; ...
2017-02-21
Direct alcohol fuel cells (DAFCs) represent the best alternative to batteries for portable and auxiliary power units application due to the high energy density of short chain alcohols. Currently, the utilization of the best platinum group metal (PGM) cathode catalysts is limited, not only by a high cost and scarce resources, but also by the inefficient oxygen reduction reaction (ORR) when permeated alcohols adsorb on the catalytic active sites. In this work, a highly active Fe-N-C catalyst derived from the pyrolysis of nicarbazin (a nitrogen charge transfer organic salt) and an iron precursor has been investigated to get insights onmore » the extraordinary tolerance to the presence of alcohols (methanol and ethanol) of such a PGM-free catalyst. Density functional theory (DFT) calculations demonstrate for the first time that Fe-N 4 and Fe-N 2C 2 active sites preferentially adsorb oxygen with much higher energy than methanol, ethanol and products of partial ethanol oxidation (0.73–1.16 eV stronger adsorption), while nitrogen-carbon related sites (pyridinic and graphitic nitrogen) are much less selective towards ORR. Half-cell electrochemical characterization showed that the Fe-N-C catalyst overcomes Pt ORR activity in acidic medium with methanol or ethanol concentrations as low as 0.01 M. The feasibility of DAFCs operation based on high methanol (up to 17 M) and ethanol (up to 5 M) concentration thanks to the utilization of Fe-N-C cathode catalyst is demonstrated. Lastly, a new strategy is proposed for DAFCs where using Pt only at the anode and Fe-N-C at the cathode allows extending the device energy density compared to PGM-based catalysts at both electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebastian, David; Serov, Alexey; Matanovic, Ivana
Direct alcohol fuel cells (DAFCs) represent the best alternative to batteries for portable and auxiliary power units application due to the high energy density of short chain alcohols. Currently, the utilization of the best platinum group metal (PGM) cathode catalysts is limited, not only by a high cost and scarce resources, but also by the inefficient oxygen reduction reaction (ORR) when permeated alcohols adsorb on the catalytic active sites. In this work, a highly active Fe-N-C catalyst derived from the pyrolysis of nicarbazin (a nitrogen charge transfer organic salt) and an iron precursor has been investigated to get insights onmore » the extraordinary tolerance to the presence of alcohols (methanol and ethanol) of such a PGM-free catalyst. Density functional theory (DFT) calculations demonstrate for the first time that Fe-N 4 and Fe-N 2C 2 active sites preferentially adsorb oxygen with much higher energy than methanol, ethanol and products of partial ethanol oxidation (0.73–1.16 eV stronger adsorption), while nitrogen-carbon related sites (pyridinic and graphitic nitrogen) are much less selective towards ORR. Half-cell electrochemical characterization showed that the Fe-N-C catalyst overcomes Pt ORR activity in acidic medium with methanol or ethanol concentrations as low as 0.01 M. The feasibility of DAFCs operation based on high methanol (up to 17 M) and ethanol (up to 5 M) concentration thanks to the utilization of Fe-N-C cathode catalyst is demonstrated. Lastly, a new strategy is proposed for DAFCs where using Pt only at the anode and Fe-N-C at the cathode allows extending the device energy density compared to PGM-based catalysts at both electrodes.« less
Liu, Xian-Wei; Sun, Xue-Fei; Huang, Yu-Xi; Sheng, Guo-Ping; Zhou, Kang; Zeng, Raymond J; Dong, Fang; Wang, Shu-Guang; Xu, An-Wu; Tong, Zhong-Hua; Yu, Han-Qing
2010-10-01
Microbial fuel cells (MFCs) provide new opportunities for the simultaneous wastewater treatment and electricity generation. Enhanced oxygen reduction capacity of cost-effective metal-based catalysts in an air cathode is essential for the scale-up and commercialization of MFCs in the field of wastewater treatment. We demonstrated that a nano-structured MnO(x) material, prepared by an electrochemically deposition method, could be an effective catalyst for oxygen reduction in an MFC to generate electricity with the maximum power density of 772.8 mW/m(3) and remove organics when the MFC was fed with an acetate-laden synthetic wastewater. The nano-structured MnO(x) with the controllable size and morphology could be readily obtained with the electrochemical deposition method. Both morphology and manganese oxidation state of the nano-scale catalyst were largely dependent on the electrochemical preparation process, and they governed its catalytic activity and the cathodic oxygen reduction performance of the MFC accordingly. Furthermore, cyclic voltammetry (CV) performed on each nano-structured material suggests that the MnO(x) nanorods had an electrochemical activity towards oxygen reduction reaction via a four-electron pathway in a neutral pH solution. This work provides useful information on the facile preparation of cost-effective cathodic catalysts in a controllable way for the single-chamber air-cathode MFC for wastewater treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.
Durable electrocatalytic-activity of Pt-Au/C cathode in PEMFCs.
Selvaganesh, S Vinod; Selvarani, G; Sridhar, P; Pitchumani, S; Shukla, A K
2011-07-21
Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be ∼10% after 7000 accelerated potential-cycles as against ∼60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand >10,000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer. This journal is © the Owner Societies 2011
Stabilizing platinum in phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Remick, R. J.
1982-01-01
Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.
Esmaeili, Chakavak; Ghasemi, Mostafa; Heng, Lee Yook; Hassan, Sedky H A; Abdi, Mahnaz M; Daud, Wan Ramli Wan; Ilbeygi, Hamid; Ismail, Ahmad Fauzi
2014-12-19
A novel nano-bio composite polypyrrole (PPy)/kappa-carrageenan(KC) was fabricated and characterized for application as a cathode catalyst in a microbial fuel cell (MFC). High resolution SEM and TEM verified the bud-like shape and uniform distribution of the PPy in the KC matrix. X-ray diffraction (XRD) has approved the amorphous structure of the PPy/KC as well. The PPy/KC nano-bio composites were then studied as an electrode material, due to their oxygen reduction reaction (ORR) ability as the cathode catalyst in the MFC and the results were compared with platinum (Pt) as the most common cathode catalyst. The produced power density of the PPy/KC was 72.1 mW/m(2) while it was 46.8 mW/m(2) and 28.8 mW/m(2) for KC and PPy individually. The efficiency of the PPy/KC electrode system is slightly lower than a Pt electrode (79.9 mW/m(2)) but due to the high cost of Pt electrodes, the PPy/KC electrode system has potential to be an alternative electrode system for MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Progress of air-breathing cathode in microbial fuel cells
NASA Astrophysics Data System (ADS)
Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng
2017-07-01
Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.
NASA Astrophysics Data System (ADS)
Li, Baitao; Zhou, Xiuxiu; Wang, Xiujun; Liu, Bingchuan; Li, Baikun
2014-12-01
A novel hybrid binuclear-cobalt-phthalocyanine (Bi-CoPc) is developed as the cathode catalyst to replace the costly platinum (Pt) in single chamber microbial fuel cells (SCMFCs). Bi-CoPc/C is integrated with metal oxides (NiO and CoO) to form macrocyclic complex for enhanced oxygen reduction rate (ORR). The characteristics of hybrid catalysts (Bi-CoPc/C-CoO and Bi-CoPc/C-NiO) are compared with Co-contained catalysts (CoPc/C and Bi-CoPc/C) and metal oxide catalysts (NiO and CoO). The increase in O and N functional groups indicates the benefits of NiO and CoO to the cathode catalysts. The cyclic voltammetry (CV) shows the reduction peak for Bi-CoPc/C-NiO and Bi-CoPc/C-CoO at -0.12 V and -0.22 V, respectively. The power densities (368 mW m-2 and 400 mW m-2) of SCMFCs with Bi-CoPc/C-CoO and Bi-CoPc-NiO/C are the highest among the cathodes tested, and close to that of Pt (450 mW m-2). This study demonstrates that hybrid Bi-CoPc/C with metal oxides has a great potential as a cost-effective catalyst in MFCs.
Multi-variable mathematical models for the air-cathode microbial fuel cell system
Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; ...
2016-03-10
This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explainmore » elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect we considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). We found simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.« less
Final Report - Advanced Cathode Catalysts and Supports for PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debe, Mark
2012-09-28
The principal objectives of the program were development of a durable, low cost, high performance cathode electrode (catalyst and support), that is fully integrated into a fuel cell membrane electrode assembly with gas diffusion media, fabricated by high volume capable processes, and is able to meet or exceed the 2015 DOE targets. Work completed in this contract was an extension of the developments under three preceding cooperative agreements/grants Nos. DE-FC-02-97EE50473, DE-FC-99EE50582 and DE-FC36- 02AL67621 which investigated catalyzed membrane electrode assemblies for PEM fuel cells based on a fundamentally new, nanostructured thin film catalyst and support system, and demonstrated the feasibilitymore » for high volume manufacturability.« less
Hong, Qingshui; Lu, Huimin
2017-06-13
Carbon fiber papers supported Ag catalysts (Ag/CFP) with different coverage of electro-active site are prepared by electrochemical deposition and used as binder free cathodes in primary aluminum-air (Al-air) battery. Scanning Electron Microscopy and X-ray Diffraction studies are carried out to characterize the as-prepared Ag/CFP air cathodes. Oxygen reduction reaction (ORR) activities on these air cathodes in alkaline solutions are systematic studied. A newly designed aluminum-air cell is used to further determine the cathodes performance under real operation condition and during the test, the Ag/CFP electrodes show outstanding catalytic activity for ORR in concentrated alkaline electrolyte, and no obvious activity degradation is observed after long-time discharge. The electrochemical test results display the dependence of coverage of the electro-active Ag on the catalytic performance of the air cathodes. The resulting primary Al-air battery made from the best-performing cathode shows an impressive discharge peak power density, outperforming that of using commercial nano-manganese catalyst air electrodes.
Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells
Chen, Fanglin; Zhao, Fei; Liu, Qiang
2015-10-06
In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.
Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells
NASA Technical Reports Server (NTRS)
Liu, Qiang (Inventor); Chen, Fanglin (Inventor); Zhao, Fei (Inventor)
2015-01-01
In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.
Xing, Weibing; Buettner-Garrett, Josh
2017-04-18
This disclosure relates generally to cathode materials for electrochemical energy cells, more particularly to metal/air electrochemical energy cell cathode materials containing silver vanadium oxide and methods of making and using the same. The metal/air electrochemical energy cell can be a lithium/air electrochemical energy cell. Moreover the silver vanadium oxide can be a catalyst for one or more of oxidation and reduction processes of the electrochemical energy cell.
Liu, Yisi; Jiang, Hao; Hao, Jiayu; Liu, Yulong; Shen, Haibo; Li, Wenzhang; Li, Jie
2017-09-20
Aluminum-air battery is a promising candidate for large-scale energy applications because of its low cost and high energy density. Remarkably, tremendous efforts have been concentrated on developing efficient and stable cathode electrocatalysts toward the oxygen reduction reaction. In this work, a hydrothermal-calcination approach was utilized to prepare novel reduced graphene oxide (rGO)-supported hollow ZnO/ZnCo 2 O 4 nanoparticle-embedded carbon nanocages (ZnO/ZnCo 2 O 4 /C@rGO) using a zeolitic imidazolate framework (ZIF-67)/graphene oxide/zinc nitrate composite as the precursor. The ZnO/ZnCo 2 O 4 /C@rGO hybrid exhibits remarkable electrocatalytic performance for oxygen reduction reaction under alkaline conditions and superior stability and methanol tolerance to those of the commercial Pt/C catalyst. Furthermore, novel and simple Al-air coin cells were first fabricated using the hybrid materials as cathode catalysts under ambient air conditions to further investigate their catalytic performance. The coin cell with the ZnO/ZnCo 2 O 4 /C@rGO cathode catalyst displays a higher open circuit voltage and discharge voltage and more sluggish potential drop than those of the cell with the ZnO/ZnCo 2 O 4 /C cathode catalyst, which confirms that rGO can enhance the electrocatalytic activity and stability of the catalyst system. The excellent electrocatalytic performance of the ZnO/ZnCo 2 O 4 /C@rGO hybrid is attributed to the prominent conductivity and high specific surface area resulting from rGO, the more accessible catalytic active sites induced by the unique porous hollow nanocage structure, and synergic covalent coupling between rGO sheets and ZnO/ZnCo 2 O 4 /C nanocages.
Enhanced Performance of non-PGM Catalysts in Air Operated PEM-Fuel Cells
Barkholtz, Heather M.; Chong, Lina; Kaiser, Zachary Brian; ...
2016-10-13
Here a non-platinum group metal (non-PGM) oxygen reduction catalyst was prepared from “support-free” zeolitic imidazolate framework (ZIF) precursor and tested in the proton exchange membrane fuel cell with air as the cathode feed. The iron nitrogen and carbon composite (FeeNeC) based catalyst has high specific surface area decorated uniformly with active sites, which redefines the triple phase boundary (TPB) and requires re-optimization of the cathodic membrane electrode fabrication to ensure efficient mass and charge transports to the catalyst surface. This study reports an effort in optimizing catalytic ink formulation for the membrane electrode preparation and its impact to the fuelmore » cell performance under air. Through optimization, the fuel cell areal current density as high as 115.2 mA/cm 2 at 0.8 V or 147.6 mA/cm 2 at 0.8 V iR-free has been achieved under one bar air. We also investigated impacts on fuel cell internal impedance and the water formation.« less
Manganese dioxide as a new cathode catalyst in microbial fuel cells
NASA Astrophysics Data System (ADS)
Li, Xiang; Hu, Boxun; Suib, Steven; Lei, Yu; Li, Baikun
This study focused on manganese oxides with a cryptomelane-type octahedral molecular sieve (OMS-2) structure to replace platinum as a cathode catalyst in microbial fuel cells (MFCs). Undoped (ud-OSM-2) and three catalysts doped with cobalt (Co-OMS-2), copper (Cu-OMS-2), and cerium (Ce-OMS-2) to enhance their catalytic performances were investigated. The novel OMS-2 cathodes were examined in granular activated carbon MFC (GACMFC) with sodium acetate as the anode reagent and oxygen in air as the cathode reagent. The results showed that after 400 h of operation, the Co-OMS-2 and Cu-OMS-2 exhibited good catalytic performance in an oxygen reduction reaction (ORR). The voltage of the Co-OMS-2 GACMFC was 217 mV, and the power density was 180 mW m -2. The voltage of the Cu-OMS-2 GACMFC was 214 mV and the power density was 165 mW m -2. The internal resistance (R in) of the OMS-2 GACMFCs (18 ± 1 Ω) was similar to that of the platinum GACMFCs (17 Ω). Furthermore, the degradation rates of organic substrates in the OMS-2 GACMFCs were twice those in the platinum GACMFCs, which enhance their wastewater treatment efficiencies. This study indicated that using OMS-2 manganese oxides to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs.
3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports.
Sneed, Brian T; Cullen, David A; Reeves, Kimberly S; Dyck, Ondrej E; Langlois, David A; Mukundan, Rangachary; Borup, Rodney L; More, Karren L
2017-09-06
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.
3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports
Sneed, Brian T.; Cullen, David A.; Reeves, Kimberly S.; ...
2017-08-15
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of themore » cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Moreover, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.« less
3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sneed, Brian T.; Cullen, David A.; Reeves, Kimberly S.
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of themore » cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Moreover, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.
The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less
Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications
Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun
2016-01-01
Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945
Kramm, Ulrike I; Lefèvre, Michel; Bogdanoff, Peter; Schmeißer, Dieter; Dodelet, Jean-Pol
2014-11-06
The applicability of analyzing by Mößbauer spectroscopy the structural changes of Fe-N-C catalysts that have been tested at the cathode of membrane electrode assemblies in proton exchange membrane (PEM) fuel cells is demonstrated. The Mößbauer characterization of powders of the same catalysts was recently described in our previous publication. A possible change of the iron species upon testing in fuel cell was investigated here by Mößbauer spectroscopy, energy-dispersive X-ray cross-sectional imaging, and neutron activation analysis. Our results show that the absorption probability of γ rays by the iron nuclei in Fe-N-C is strongly affected by the presence of Nafion and water content. A detailed investigation of the effect of an oxidizing treatment (1.2 V) of the non-noble cathode in PEM fuel cell indicates that the observed activity decay is mainly attributable to carbon oxidation causing a leaching of active iron sites hosted in the carbon matrix.
Non-Kinetic Losses Caused by Electrochemical Carbon Corrosion in PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Seh Kyu; Shao, Yuyan; Viswanathan, Vilayanur V.
2012-05-01
This paper presented non-kinetic losses in PEM fuel cells under an accelerated stress test of catalyst support. The cathode with carbon-supported Pt catalyst was prepared and characterized with potential hold at 1.2 V vs. SHE in PEM fuel cells. Irreversible losses caused by carbon corrosion were evaluated using a variety of electrochemical characterizations including cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy, and polarization technique. Ohmic losses at the cathode with potential hold were determined using its capacitive responses. Concentration losses in PEM fuel cells were analyzed in terms of Tafel behavior and thin film/flooded-agglomerate dynamics.
Electrochemical device for converting carbon dioxide to a reaction product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masel, Richard I.; Chen, Qingmei; Liu, Zengcai
An electrochemical device converts carbon dioxide to a reaction product. The device includes an anode and a cathode, each comprising a quantity of catalyst. The anode and cathode each has reactant introduced thereto. A polymer electrolyte membrane is interposed between the anode and the cathode. At least a portion of the cathode catalyst is directly exposed to gaseous carbon dioxide during electrolysis. The average current density at the membrane is at least 20 mA/cm.sup.2, measured as the area of the cathode gas diffusion layer that is covered by catalyst, and CO selectivity is at least 50% at a cell potentialmore » of 3.0 V. In some embodiments, the polymer electrolyte membrane comprises a polymer in which a constituent monomer is (p-vinylbenzyl)-R, where R is selected from the group consisting of imidazoliums, pyridiniums and phosphoniums. In some embodiments, the polymer electrolyte membrane is a Helper Membrane comprising a polymer containing an imidazolium ligand, a pyridinium ligand, or a phosphonium ligand.« less
Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.
Yuan, Heyang; He, Zhen
2017-07-01
Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low-grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost-effective. A variety of noble-metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS 2 , carbon-based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J
2014-01-01
The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.
Liu, Peng; Liu, Xianhua; Dong, Feng; Lin, Qingxia; Tong, Yindong; Li, Yang; Zhang, Pingping
2018-08-01
Low-cost and highly active catalyst for oxygen reduction reaction is of great importance in the design of alkaline fuel cells. In this work, Cu 2 O-Cu composite catalyst has been fabricated by a facile laser-irradiation method. The addition of Cu 2 O-Cu composite in activated carbon air-cathode greatly improves the performance of the cathode. Our results indicate the enhanced performance is likely attributed to the synergistic effect of high conductivity of Cu and the catalytic activity of Cu 2 O towards the oxygen reduction reaction. Furthermore, an alkaline fuel cell equipped with the composite air-cathode has been built to turn banana peels into electricity. Peak power density of 16.12Wm -2 is obtained under the condition of 3M KOH and 22.04gL -1 reducing sugar, which is higher than other reported low-temperature direct biomass alkaline fuel cells. HPLC results indicate the main oxidation products in the alkaline fuel cell were small organic acids. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesfaye, Meron; MacDonald, Andrew N.; Dudenas, Peter J.
Local gas transport limitation attributed to the ionomer thin-film in the catalyst layer is a major deterrent to widespread commercialization of polymer-electrolyte fuel cells. So far functionality and limitations of these thin-films have been assumed identical in the anode and cathode. In this study, Nafion ionomer thin-films on platinum(Pt) support were exposed to H 2 and air as model schemes, mimicking anode and cathode catalyst layers. Findings indicate decreased swelling, increased densification of ionomer matrix, and increased humidity-induced aging rates in reducing environment, compared to oxidizing and inert environments. Observed phenomenon could be related to underlying Pt-gas interaction dictating Pt-ionomermore » behavior. Presented results could have significant implications about the disparate behavior of ionomer thin-film in anode and cathode catalyst layers.« less
Catalyst and electrode research for phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Antoine, A. C.; King, R. B.
1987-01-01
An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.
Zhou, Xinxing; Xu, Yunzhi; Mei, Xiaojie; Du, Ningjie; Jv, Rongmao; Hu, Zhaoxia; Chen, Shouwen
2018-05-01
An efficient and inexpensive catalyst for oxygen reduction reaction (ORR), polyaniline (PANI) and β-MnO 2 nanocomposites (PANI/β-MnO 2 ), was developed for air-cathode microbial fuel cells (MFCs). The PANI/β-MnO 2 , β-MnO 2 , PANI and β-MnO 2 mixture modified graphite felt electrodes were fabricated as air-cathodes in double-chambered MFCs and their cell performances were compared. At a dosage of 6 mg cm -2 , the maximum power densities of MFCs with PANI/β-MnO 2 , β-MnO 2 , PANI and β-MnO 2 mixture cathodes reached 248, 183 and 204 mW m -2 , respectively, while the cathode resistances were 38.4, 45.5 and 42.3 Ω, respectively, according to impedance analysis. Weak interaction existed between the rod-like β-MnO 2 and surficial growth granular PANI, this together with the larger specific surface area and PANI electric conducting nature enhanced the electrochemical activity for ORR and improved the power generation. The PANI/β-MnO 2 nanocomposites are a promising cathode catalyst for practical application of MFCs. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Park, Jong Cheol; Choi, Chang Hyuck
2017-08-01
Non-precious metal catalysts (typically Fe(Co)-N-C catalysts) have been widely investigated for use as cost-effective cathode materials in low temperature fuel cells. Despite the high oxygen reduction activity and methanol-tolerance of graphene-based Fe(Co)-N-C catalysts in an acidic medium, their use in direct methanol fuel cells (DMFCs) has not yet been successfully implemented, and only a few studies have investigated this topic. Herein, we synthesized a nano-sized graphene-derived Fe/Co-N-C catalyst by physical ball-milling and a subsequent chemical modification of the graphene oxide. Twelve membrane-electrode-assemblies are fabricated with various cathode compositions to determine the effects of the methanol concentration, ionomer (i.e. Nafion) content, and catalyst loading on the DMFC performance. The results show that a graphene-based catalyst is capable of tolerating a highly-concentrated methanol feed up to 10.0 M. The optimized electrode composition has an ionomer content and catalyst loading of 66.7 wt% and 5.0 mg cm-2, respectively. The highest maximum power density is ca. 32 mW cm-2 with a relatively low PtRu content (2 mgPtRu cm-2). This study overcomes the drawbacks of conventional graphene-based electrodes using a nano-sized graphene-based catalyst and further shows the feasibility of their potential applications in DMFC systems.
High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode.
Li, Qing; Wang, Tanyuan; Havas, Dana; Zhang, Hanguang; Xu, Ping; Han, Jiantao; Cho, Jaephil; Wu, Gang
2016-11-01
Direct methanol fuel cells (DMFCs) hold great promise for applications ranging from portable power for electronics to transportation. However, apart from the high costs, current Pt-based cathodes in DMFCs suffer significantly from performance loss due to severe methanol crossover from anode to cathode. The migrated methanol in cathodes tends to contaminate Pt active sites through yielding a mixed potential region resulting from oxygen reduction reaction and methanol oxidation reaction. Therefore, highly methanol-tolerant cathodes must be developed before DMFC technologies become viable. The newly developed reduced graphene oxide (rGO)-based Fe-N-C cathode exhibits high methanol tolerance and exceeds the performance of current Pt cathodes, as evidenced by both rotating disk electrode and DMFC tests. While the morphology of 2D rGO is largely preserved, the resulting Fe-N-rGO catalyst provides a more unique porous structure. DMFC tests with various methanol concentrations are systematically studied using the best performing Fe-N-rGO catalyst. At feed concentrations greater than 2.0 m, the obtained DMFC performance from the Fe-N-rGO cathode is found to start exceeding that of a Pt/C cathode. This work will open a new avenue to use nonprecious metal cathode for advanced DMFC technologies with increased performance and at significantly reduced cost.
Solid oxide fuel cells fueled with reducible oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Steven S.; Fan, Liang Shih
A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing themore » solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.« less
NASA Astrophysics Data System (ADS)
Navessin, Titichai
2005-07-01
This work investigated the effect of ion exchange capacity (IEC) of polymer electrolyte membranes (PEM) on the PEM fuel cell cathode catalyst layer. A series of radiation grafted ethylene tetrafluoroethylene-g-polystyrene sulfonic acid (ETFE-g-PSSA) membranes was used to provide a systematic variation of IEC. A method to fabricate gas diffusion electrodes (GDEs) was adapted and custom-made GDEs with known compositions were prepared. Oxygen electrochemistry, mass transport properties, water absorption behaviour and proton conductivity were studied in relation to the IEC. Electrochemical characterization including cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry were employed. The agglomerate model for cathodes was adapted and used to extract mass transport parameters from experimental results. Prior to investigation in fuel cell systems, studies were performed in a half-fuel cell, which simplified complicating parameters associated with fuel cell operation. It was found that membranes with higher IEC resulted in a higher active surface area of electrode. In contrast, they exhibited lower oxygen reduction performance. The extracted effective diffusion coefficient of oxygen and O2 solubility in the catalyst layer was used to estimate the extent of flooding, which revealed that ˜67--70% of void space was filled with water. The membrane's IEC regulates the extent of flooding of the cathode, which in turn affects its electrochemical characteristics. The investigation under operating fuel cell conditions revealed an increase in fuel cell performance with increasing IEC---a contradicting trend to that found for the half-fuel cell. This is explained by the interplay of electroosmotic flux and hydraulic counterflux in the membrane which affects water management in the membrane electrode assembly (MEA). The influence was most significant in the cathode catalyst layer, where it affects mass transport and electrochemical characteristics. It was found that the higher IEC facilitated better water management in MEAs. Comparing results obtained with half fuel cell and fuel cell systems revealed insights into the state of hydration and effective use of Pt in the catalyst layer. The two types of measurements provide a convenient approach to study the interplay of different mechanisms of water flux in the membrane.
Mo, Jingke; Steen, Stuart; Kang, Zhenye; ...
2017-10-09
The corrosion of low-cost, easily manufactured metallic components inside the electrochemical environment of proton exchange membrane electrolyzer cells (PEMECs) has a significant effect on their performance and durability. Here, 316 stainless steel (SS) mesh was used as a model liquid/gas diffusion layer material to investigate the migration of corrosion products in the catalyst-coated membrane of a PEMEC. Iron and nickel cation particles were found distributed throughout the anode catalyst layer, proton exchange membrane, and cathode catalyst layer, as revealed by scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. Our results indicate the corrosion products of 316 SS are transportedmore » from anode to cathode through the nanochannels of the Nafion membrane, resulting in impeded proton transport and overall PEMEC performance loss.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Jingke; Steen, Stuart; Kang, Zhenye
The corrosion of low-cost, easily manufactured metallic components inside the electrochemical environment of proton exchange membrane electrolyzer cells (PEMECs) has a significant effect on their performance and durability. Here, 316 stainless steel (SS) mesh was used as a model liquid/gas diffusion layer material to investigate the migration of corrosion products in the catalyst-coated membrane of a PEMEC. Iron and nickel cation particles were found distributed throughout the anode catalyst layer, proton exchange membrane, and cathode catalyst layer, as revealed by scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. Our results indicate the corrosion products of 316 SS are transportedmore » from anode to cathode through the nanochannels of the Nafion membrane, resulting in impeded proton transport and overall PEMEC performance loss.« less
Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Lu, Yaxiang; Wang, Lianqin; Preuß, Kathrin; Qiao, Mo; Titirici, Maria-Magdalena; Varcoe, John; Cai, Qiong
2017-12-01
Developing the low-cost, highly active carbonaceous materials for oxygen reduction reaction (ORR) catalysts has been a high-priority research direction for durable fuel cells. In this paper, two novel N-doped carbonaceous materials with flaky and rod-like morphology using the natural halloysite as template are obtained from urea nitrogen source as well as glucose (denoted as GU) and furfural (denoted as FU) carbon precursors, respectively, which can be directly applied as metal-free electrocatalysts for ORR in alkaline electrolyte. Importantly, compared with a benchmark Pt/C (20wt%) catalyst, the as-prepared carbon catalysts demonstrate higher retention in diffusion limiting current density (after 3000 cycles) and enhanced methanol tolerances with only 50-60mV negative shift in half-wave potentials. In addition, electrocatalytic activity, durability and methanol tolerant capability of the two N-doped carbon catalysts are systematically evaluated, and the underneath reasons of the outperformance of rod-like catalysts over the flaky are revealed. At last, the produced carbonaceous catalysts are also used as cathodes in the single cell H2/O2 anion exchange membrane fuel cell (AEMFC), in which the rod-like FU delivers a peak power density as high as 703 mW cm-2 (vs. 1106 mW cm-2 with a Pt/C benchmark cathode catalyst).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sneed, Brian T.; Cullen, David A.; Mukundan, R.
Development of Pt catalysts alloyed with transition metals has led to a new class of state-of-the-art electrocatalysts for oxygen reduction at the cathode of proton exchange membrane fuel cells; however, the durability of Pt-based alloy catalysts is challenged by poor structural and chemical stability. There is a need for better understanding of the morphological and compositional changes that occur to the catalyst under fuel cell operation. In this work, we report in-depth characterization results of a Pt-Co electrocatalyst incorporated in the cathode of membrane electrode assemblies, which were evaluated before and after accelerated stress tests designed specifically to enhance catalystmore » degradation. Electron microscopy, spectroscopy, and 3D electron tomography analyses of the Pt-Co nanoparticle structures suggest that the small- and intermediate-sized Pt-Co particles, which are typically Pt-rich in the fresh condition, undergo minimal morphological changes, whereas intermediate- and larger-sized Pt-Co nanoparticles that exhibit a porous “spongy” morphology and initially have a higher Co content, transform into hollowed-out shells, which is driven by continuous leaching of Co from the Pt-Co catalysts. We further show how these primary Pt-Co nanoparticle morphologies group toward a lower Co, larger size portion of the size vs. composition distribution, and provide details of their nanoscale morphological features.« less
Sneed, Brian T.; Cullen, David A.; Mukundan, R.; ...
2018-03-01
Development of Pt catalysts alloyed with transition metals has led to a new class of state-of-the-art electrocatalysts for oxygen reduction at the cathode of proton exchange membrane fuel cells; however, the durability of Pt-based alloy catalysts is challenged by poor structural and chemical stability. There is a need for better understanding of the morphological and compositional changes that occur to the catalyst under fuel cell operation. In this work, we report in-depth characterization results of a Pt-Co electrocatalyst incorporated in the cathode of membrane electrode assemblies, which were evaluated before and after accelerated stress tests designed specifically to enhance catalystmore » degradation. Electron microscopy, spectroscopy, and 3D electron tomography analyses of the Pt-Co nanoparticle structures suggest that the small- and intermediate-sized Pt-Co particles, which are typically Pt-rich in the fresh condition, undergo minimal morphological changes, whereas intermediate- and larger-sized Pt-Co nanoparticles that exhibit a porous “spongy” morphology and initially have a higher Co content, transform into hollowed-out shells, which is driven by continuous leaching of Co from the Pt-Co catalysts. We further show how these primary Pt-Co nanoparticle morphologies group toward a lower Co, larger size portion of the size vs. composition distribution, and provide details of their nanoscale morphological features.« less
Pettit, William Henry
2001-01-01
A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.
Steady state and transient simulation of anion exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Dekel, Dario R.; Rasin, Igal G.; Page, Miles; Brandon, Simon
2018-01-01
We present a new model for anion exchange membrane fuel cells. Validation against experimental polarization curve data is obtained for current densities ranging from zero to above 2 A cm-2. Experimental transient data is also successfully reproduced. The model is very flexible and can be used to explore the system's sensitivity to a wide range of material properties, cell design specifications, and operating parameters. We demonstrate the impact of gas inlet relative humidity (RH), operating current density, ionomer loading and ionomer ion exchange capacity (IEC) values on cell performance. In agreement with the literature, high air RH levels are shown to improve cell performance. At high current densities (>1 A cm-2) this effect is observed to be especially significant. Simulated hydration number distributions across the cell reveal the related critical dependence of cathode hydration on air RH and current density values. When exploring catalyst layer design, optimal intermediate ionomer loading values are demonstrated. The benefits of asymmetric (cathode versus anode) electrode design are revealed, showing enhanced performance using higher cathode IEC levels. Finally, electrochemical reaction profiles across the electrodes uncover inhomogeneous catalyst utilization. Specifically, at high current densities the cathodic reaction is confined to a narrow region near the membrane.
Henning, Sebastian; Ishikawa, Hiroshi; Kühn, Laura; Herranz, Juan; Müller, Elisabeth; Eychmüller, Alexander; Schmidt, Thomas J
2017-08-28
Highly active and durable oxygen reduction catalysts are needed to reduce the costs and enhance the service life of polymer electrolyte fuel cells (PEFCs). This can be accomplished by alloying Pt with a transition metal (for example Ni) and by eliminating the corrodible, carbon-based catalyst support. However, materials combining both approaches have seldom been implemented in PEFC cathodes. In this work, an unsupported Pt-Ni alloy nanochain ensemble (aerogel) demonstrates high current PEFC performance commensurate with that of a carbon-supported benchmark (Pt/C) following optimization of the aerogel's catalyst layer (CL) structure. The latter is accomplished using a soluble filler to shift the CL's pore size distribution towards larger pores which improves reactant and product transport. Chiefly, the optimized PEFC aerogel cathodes display a circa 2.5-fold larger surface-specific ORR activity than Pt/C and maintain 90 % of the initial activity after an accelerated stress test (vs. 40 % for Pt/C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Jung Ho; Yu, Jong-Sung
2010-12-14
Hierarchical nanostructured erythrocyte-like hollow carbon (EHC) with a hollow hemispherical macroporous core of ca. 230 nm in diameter and 30-40 nm thick mesoporous shell was synthesized and explored as a cathode catalyst support in a proton exchange membrane fuel cell (PEMFC). The morphology control of EHC was successfully achieved using solid core/mesoporous shell (SCMS) silica template and different styrene/furfuryl alcohol mixture compositions by a nanocasting method. The EHC-supported Pt (20 wt%) cathodes prepared have demonstrated markedly enhanced catalytic activity towards oxygen reduction reactions (ORRs) and greatly improved PEMFC polarization performance compared to carbon black Vulcan XC-72 (VC)-supported ones, probably due to the superb structural characteristics of the EHC such as uniform size, well-developed porosity, large specific surface area and pore volume. In particular, Pt/EHC cathodes exhibited ca. 30-60% higher ORR activity than a commercial Johnson Matthey Pt catalyst at a low catalyst loading of 0.2 mg Pt cm(-2).
Exploring substrate/ionomer interaction under oxidizing and reducing environments
Tesfaye, Meron; MacDonald, Andrew N.; Dudenas, Peter J.; ...
2018-02-09
Local gas transport limitation attributed to the ionomer thin-film in the catalyst layer is a major deterrent to widespread commercialization of polymer-electrolyte fuel cells. So far functionality and limitations of these thin-films have been assumed identical in the anode and cathode. In this study, Nafion ionomer thin-films on platinum(Pt) support were exposed to H 2 and air as model schemes, mimicking anode and cathode catalyst layers. Findings indicate decreased swelling, increased densification of ionomer matrix, and increased humidity-induced aging rates in reducing environment, compared to oxidizing and inert environments. Observed phenomenon could be related to underlying Pt-gas interaction dictating Pt-ionomermore » behavior. Presented results could have significant implications about the disparate behavior of ionomer thin-film in anode and cathode catalyst layers.« less
Scofield, Megan E; Liu, Haiqing; Wong, Stanislaus S
2015-08-21
The rising interest in fuel cell vehicle technology (FCV) has engendered a growing need and realization to develop rational chemical strategies to create highly efficient, durable, and cost-effective fuel cells. Specifically, technical limitations associated with the major constituent components of the basic proton exchange membrane fuel cell (PEMFC), namely the cathode catalyst and the proton exchange membrane (PEM), have proven to be particularly demanding to overcome. Therefore, research trends within the community in recent years have focused on (i) accelerating the sluggish kinetics of the catalyst at the cathode and (ii) minimizing overall Pt content, while simultaneously (a) maximizing activity and durability as well as (b) increasing membrane proton conductivity without causing any concomitant loss in either stability or as a result of damage due to flooding. In this light, as an example, high temperature PEMFCs offer a promising avenue to improve the overall efficiency and marketability of fuel cell technology. In this Critical Review, recent advances in optimizing both cathode materials and PEMs as well as the future and peculiar challenges associated with each of these systems will be discussed.
NASA Astrophysics Data System (ADS)
Malko, Daniel; Lopes, Thiago; Ticianelli, Edson A.; Kucernak, Anthony
2016-08-01
The effect of the ionomer to carbon (I/C) ratio on the performance of single cell polymer electrolyte fuel cells is investigated for three different types of non-precious metal cathodic catalysts. Polarisation curves as well as impedance spectra are recorded at different potentials in the presence of argon or oxygen at the cathode and hydrogen at the anode. It is found that a optimised ionomer content is a key factor for improving the performance of the catalyst. Non-optimal ionomer loading can be assessed by two different factors from the impedance spectra. Hence this observation could be used as a diagnostic element to determine the ideal ionomer content and distribution in newly developed catalyst-electrodes. An electrode morphology based on the presence of inhomogeneous resistance distribution within the porous structure is suggested to explain the observed phenomena. The back-pressure and relative humidity effect on this feature is also investigated and supports the above hypothesis. We give a simple flowchart to aid optimisation of electrodes with the minimum number of trials.
Lottin, Olivier; Dillet, Jerome; Maranzana, Gael; ...
2015-09-14
Separate testing protocols for fuel cell startups and shutdowns were developed to distinguish between their effects on reverse currents and CO 2 evolution. The internal currents and the local potentials were measured with different membrane-electrode assemblies (MEAs): we examined the influence of the type of carbon for cathode catalyst support as well as the mitigating effect of low anode Pt loading. In conclusion, significant differences were observed and the experiments also confirmed previous results that the evolved CO 2 accounts for less than 25% of the total exchanged charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottin, Olivier; Dillet, Jerome; Maranzana, Gael
Separate testing protocols for fuel cell startups and shutdowns were developed to distinguish between their effects on reverse currents and CO 2 evolution. The internal currents and the local potentials were measured with different membrane-electrode assemblies (MEAs): we examined the influence of the type of carbon for cathode catalyst support as well as the mitigating effect of low anode Pt loading. In conclusion, significant differences were observed and the experiments also confirmed previous results that the evolved CO 2 accounts for less than 25% of the total exchanged charge.
Ogawa, S.; Komini Babu, S.; Chung, H. T.; ...
2016-08-22
The nano/micro-scale geometry of polymer electrolyte fuel cell (PEFC) catalyst layers critically affects cell performance. The small length scales and complex structure of these composite layers make it challenging to analyze cell performance and physics at the particle scale by experiment. We present a computational method to simulate transport and chemical reaction phenomena at the pore/particle-scale and apply it to a PEFC cathode with platinum group metal free (PGM-free) catalyst. Here, we numerically solve the governing equations for the physics with heterogeneous oxygen diffusion coefficient and proton conductivity evaluated using the actual electrode structure and ionomer distribution obtained using nano-scalemore » resolution X-ray computed tomography (nano-CT). Using this approach, the oxygen concentration and electrolyte potential distributions imposed by the oxygen reduction reaction are solved and the impact of the catalyst layer structure on performance is evaluated.« less
Shimizu, Kenichi; Wang, Joanna S; Wai, Chien M
2010-03-25
A series of green techniques for synthesizing carbon nanotube-supported platinum nanoparticles and their high electrocatalytic activity toward methanol fuel cell applications are reported. The techniques utilize either the supercritical fluid carbon dioxide or water as a medium for depositing platinum nanoparticles on surfaces of multiwalled or single-walled carbon nanotubes. The catalytic properties of the carbon nanotubes-supported Pt nanoparticle catalysts prepared by four different techniques are compared for anodic oxidation of methanol and cathodic reduction of oxygen using cyclic voltammetry. One technique using galvanic exchange of Pt(2+) in water with zerovalent iron present on the surfaces of as-grown single-walled carbon nanotubes produces a Pt catalyst that shows an unusually high catalytic activity for reduction of oxygen but a negligible activity for oxidation of methanol. This fuel-selective catalyst may have a unique application as a cathode catalyst in methanol fuel cells to alleviate the problems caused by crossover of methanol through the polymer electrolyte membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, S.; Komini Babu, S.; Chung, H. T.
The nano/micro-scale geometry of polymer electrolyte fuel cell (PEFC) catalyst layers critically affects cell performance. The small length scales and complex structure of these composite layers make it challenging to analyze cell performance and physics at the particle scale by experiment. We present a computational method to simulate transport and chemical reaction phenomena at the pore/particle-scale and apply it to a PEFC cathode with platinum group metal free (PGM-free) catalyst. Here, we numerically solve the governing equations for the physics with heterogeneous oxygen diffusion coefficient and proton conductivity evaluated using the actual electrode structure and ionomer distribution obtained using nano-scalemore » resolution X-ray computed tomography (nano-CT). Using this approach, the oxygen concentration and electrolyte potential distributions imposed by the oxygen reduction reaction are solved and the impact of the catalyst layer structure on performance is evaluated.« less
NASA Astrophysics Data System (ADS)
Bharti, Abha; Cheruvally, Gouri
2017-09-01
This study deals with the synthesis and characterization of V-doped, TiO2 supported Pt catalyst (Pt/V-TiO2) for oxygen reduction reaction (ORR) and its in-situ performance investigation in proton exchange membrane (PEM) fuel cell. Pt/V-TiO2 nanocomposite catalyst is prepared via a facile sol-gel and microwave assisted, modified chemical reduction route and its performance is compared with the undoped TiO2 supported catalyst, Pt/TiO2 prepared in an identical way. The prepared Pt/V-TiO2 and Pt/TiO2 catalysts are employed as cathode catalyst in PEM fuel cell and compared with standard Pt/C catalyst. Their comparative studies are conducted with physical and electrochemical techniques. In-situ electrochemical characterization studies show improved ORR catalytic activity of Pt/V-TiO2 compared to Pt/TiO2. Furthermore, both Pt/TiO2 and Pt/V-TiO2 are more stable than Pt/C when subjected to 6000 voltammetric cycles in the range of 0.2-1.2 V vs. standard hydrogen electrode in operating fuel cell conditions, losing only <20% of its electrochemical surface area as compared to 50% loss exhibited by Pt/C. This study thus demonstrates Pt/V-TiO2 nanocomposite material as a potential cathode catalyst for PEM fuel cell with immense scope for further investigation.
NASA Technical Reports Server (NTRS)
Valdez, Thomas I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.
2005-01-01
Dissolution of ruthenium was observed in the 80-cell stack. Duration testing was performed in single cell MEAs to determine the pathway of cell degradation. EDAX analysis on each of the single cell MEAs has shown that the Johnson Matthey commercial catalyst is stable in DMFC operation for 250 hours, no ruthenium dissolution was observed. Changes in the hydrophobicity of the cathode backing papers was minimum. Electrode polarization analysis revealed that the MEA performance loss is attributed to changes in the cathode catalyst layer. Ruthenium migration does not seem to occur during cell operation but can occur when methanol is absent from the anode compartment, the cathode compartment has access to air, and the cells in the stack are electrically connected to a load (Shunt Currents). The open-to-air cathode stack design allowed for: a) The MEAs to have continual access to oxygen; and b) The stack to sustain shunt currents. Ruthenium dissolution in a DMFC stack can be prevented by: a) Developing an internally manifolded stacks that seal reactant compartments when not in operation; b) Bringing the cell voltages to zero quickly when not in operation; and c) Limiting the total number of cells to 25 in an effort to limit shunt currents.
Corrosion-resistant catalyst supports for phosphoric acid fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosek, J.A.; Cropley, C.C.; LaConti, A.B.
High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-areamore » alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.« less
NASA Astrophysics Data System (ADS)
Meng, Xie; Han, Da; Wu, Hao; Li, Junliang; Zhan, Zhongliang
2014-01-01
This paper describes the structure and electrochemical properties of composite cathodes for solid oxide fuel cells fabricated by infiltration of aqueous solutions corresponding to SrFe0.75Mo0.25O3-δ (SFMO) into porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) backbones. XRD measurement confirms the predominance of the perovskite SFMO oxides in the infiltrates together with some minor impurities of SrMoO4 after calcinations at 850-1100 °C. The cathode polarization resistance as obtained from impedance measurement on symmetric cathode fuel cells exhibits a pronounced increase as a function of calcinations temperature due to increased SFMO particle sizes, e.g., 0.04 Ω cm2 for 70 nm-sized catalysts calcinated at 850 °C versus 0.11 Ω cm2 for 400 nm-sized catalysts calcinated at 1100 °C. Oxygen partial pressure and temperature dependence of impedance data shows that oxygen reduction kinetics is largely determined by ionization of adsorbed oxygen atoms on the SFMO catalysts.
Kumar, Ravinder; Singh, Lakhveer; Zularisam, A W; Hai, Faisal I
2016-11-01
This study aims to investigate the potential of porous Co3O4 nanorods as the cathode catalyst for oxygen reduction reaction (ORR) in aqueous air cathode microbial fuel cells (MFCs). The porous Co3O4 nanorods were synthesized by a facile and cost-effective hydrothermal method. Three different concentrations (0.5mg/cm(2), 1mg/cm(2), and 2mg/cm(2)) of Co3O4 nanorods coated on graphite electrodes were used to test its performance in MFCs. The results showed that the addition of porous Co3O4 nanorods enhanced the electrocatalytic activity and ORR kinetics significantly and the overall resistance of the system was greatly reduced. Moreover, the MFC with a higher concentration of the catalyst achieved a maximum power density of 503±16mW/m(2), which was approximately five times higher than the bare graphite electrode. The improved catalytic activity of the cathodes could be due to the porous properties of Co3O4 nanorods that provided the higher number of active sites for oxygen. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Saha, Shibely; Cabrera Rodas, José Andrés; Tan, Shuai; Li, Dongmei
2018-02-01
An alternative catalyst platform, consisting of a phase-pure transition carbide (TMC) support and Pt nanoparticles (NPs) in the range of subnanometer to < 2.7 nm, is established that can be used in both anode and cathode catalyst layers. While some TMCs with low Pt loadings have demonstrated similar activity as commercial Pt catalyst in idealized disk electrode screening tests, few to none have been applied in a realistic fuel cell membrane electrode assembly (MEA). We recently reported that β-Mo2C hollow nanotubes modified with Pt NPs via atomic layer deposition (ALD) possess better activity and durability than 20% Pt/C. This paper presents systematic evaluation of the Pt/Mo2C catalysts in a MEA, investigating effects of different MEA preparation techniques, gas diffusion layers (GDL) and various Pt loadings in the ultralow range (<0.04 mg/cm2) on MEA performance. Most importantly, we demonstrate, for the first time, that Pt/Mo2C catalyst on both anode and cathode, with a loading of 0.02 mg (Pt) cm-2, generated peak power density of 414 mW cm-2 that corresponds to 10.35 kWgPt-1 using hydrogen (H2) and oxygen (O2). Accelerated degradation tests (ADT) on Pt/Mo2C catalysts show 111% higher power density than commercial 20% Pt/C after the vigorous ADT.
NASA Astrophysics Data System (ADS)
Liu, Bingchuan; Brückner, Cristian; Lei, Yu; Cheng, Yue; Santoro, Carlo; Li, Baikun
2014-07-01
This study focused on the development of novel cathode material based on the pyrolysis of [meso-tetrakis(2-thienyl)porphyrinato]Co(II) (CoTTP) for use in single chamber microbial fuel cells (SCMFCs) to treat wastewater containing methanol. The cathodes produced at two loadings (0.5 and 1.0 mg cm-2) were examined in batch mode SCMFCs treating methanol of different concentrations (ranging from 0.005 to 0.04 M) over a 900 h operational period. Methanol was completely removed in SCMFCs, and the cycle duration was prolonged at high methanol concentrations, indicating methanol was used as fuel in SCMFCs. Methanol had more poisoning effects to the traditional platinum (Pt) cathodes than to the CoTTP cathodes. Specifically, power generations from SCMFCs with Pt cathodes gradually decreased over time, while the ones with CoTTP cathodes remained stable, even at the highest methanol concentration (0.04 M). Cathode linear sweep voltammetry (LSVs) indicated that the electrocatalytic activity of the Pt cathode was suppressed by methanol. Higher CoTTP loadings had similar open circuit potential (OCP) but higher electrocatalytic activity than lower loadings. This study demonstrated that methanol can be co-digested with wastewater and converted to power in MFCs, and a novel cathode CoTTP catalyst exhibits higher tolerance towards methanol compared with traditional Pt catalyst.
Method of making metal-polymer composite catalysts
Zelena, Piotr [Los Alamos, NM; Bashyam, Rajesh [Los Alamos, NM
2009-06-23
A metal-polymer-carbon composite catalyst for use as a cathode electrocatalyst in fuel cells. The catalyst includes a heteroatomic polymer; a transition metal linked to the heteroatomic polymer by one of nitrogen, sulfur, and phosphorus, and a recast ionomer dispersed throughout the heteroatomic polymer-carbon composite. The method includes forming a heteroatomic polymer-carbon composite and loading the transition metal onto the composite. The invention also provides a method of making a membrane electrode assembly for a fuel cell that includes the metal-polymer-carbon composite catalyst.
Fuel Cell Measurements with Cathode Catalysts of Sputtered Pt3 Y Thin Films.
Lindahl, Niklas; Eriksson, Björn; Grönbeck, Henrik; Lindström, Rakel Wreland; Lindbergh, Göran; Lagergren, Carina; Wickman, Björn
2018-05-09
Fuel cells are foreseen to have an important role in sustainable energy systems, provided that catalysts with higher activity and stability are developed. In this study, highly active sputtered thin films of platinum alloyed with yttrium (Pt 3 Y) are deposited on commercial gas diffusion layers and their performance in a proton exchange membrane fuel cell is measured. After acid pretreatment, the alloy is found to have up to 2.5 times higher specific activity than pure platinum. The performance of Pt 3 Y is much higher than that of pure Pt, even if all of the alloying element was leached out from parts of the thin metal film on the porous support. This indicates that an even higher performance is expected if the structure of the Pt 3 Y catalyst or the support could be further improved. The results show that platinum alloyed with rare earth metals can be used as highly active cathode catalyst materials, and significantly reduce the amount of platinum needed, in real fuel cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of highly active and stable hybrid cathode catalyst for PEMFCs
NASA Astrophysics Data System (ADS)
Jung, Won Suk
Polymer electrolyte membrane fuel cells (PEMFCs) are attractive power sources of the future for a variety of applications including portable electronics, stationary power, and automobile application. However, sluggish cathode kinetics, high Pt cost, and durability issues inhibit the commercialization of PEMFCs. To overcome these drawbacks, research has been focused on alloying Pt with transition metals since alloy catalysts show significantly improved catalytic properties like high activity, selectivity, and durability. However, Pt-alloy catalysts synthesized using the conventional impregnation method exhibit uneven particle size and poor particle distribution resulting in poor performance and/or durability in PEMFCs. In this dissertation, a novel catalyst synthesis methodology is developed and compared with catalysts prepared using impregnation method and commercial catalysts. Two approaches are investigated for the catalyst development. The catalyst durability was studied under U. S. DRIVE Fuel Cell Tech Team suggested protocols. In the first approach, the carbon composite catalyst (CCC) having active sites for oxygen reduction reaction (ORR) is employed as a support for the synthesis of Pt/CCC catalyst. The structural and electrochemical properties of Pt/CCC catalyst are investigated using high-resolution transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, while RDE and fuel cell testing are carried out to study the electrochemical properties. The synergistic effect of CCC and Pt is confirmed by the observed high activity towards ORR for the Pt/CCC catalyst. The second approach is the synthesis of Co-doped hybrid cathode catalysts (Co-doped Pt/CCC) by diffusing the Co metal present within the CCC support into the Pt nanoparticles during heat-treatment. The optimized Co-doped Pt/CCC catalyst performed better than the commercial catalysts and the catalyst prepared using the impregnation method in PEMFCs and showed high stability under 30,000 potential cycles between 0.6 and 1.0 V. To further increase the stability of the catalyst at high potential cycles (1.0-1.5 V), high temperature treatment is used to obtain graphitized carbon having optimum BET surface area. The novel catalyst synthesis procedure developed in this study was successfully applied for the synthesis of Co-doped Pt catalysts supported on the graphitized carbon which showed high activity and enhanced stability at high potentials.
Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan
2016-01-01
Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected. PMID:28335275
Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan
2016-08-15
Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.
Method for improving fuel cell performance
Uribe, Francisco A.; Zawodzinski, Thomas
2003-10-21
A method is provided for operating a fuel cell at high voltage for sustained periods of time. The cathode is switched to an output load effective to reduce the cell voltage at a pulse width effective to reverse performance degradation from OH adsorption onto cathode catalyst surfaces. The voltage is stepped to a value of less than about 0.6 V to obtain the improved and sustained performance.
Metallofullerenes as fuel cell electrocatalysts: a theoretical investigation of adsorbates on C59Pt.
Gabriel, Margaret A; Genovese, Luigi; Krosnicki, Guillaume; Lemaire, Olivier; Deutsch, Thierry; Franco, Alejandro A
2010-08-28
Nano-structured electrode degradation in state-of-the-art polymer electrolyte membrane fuel cells (PEMFCs) is one of the main shortcomings that limit the large-scale development and commercialization of this technology. During normal operating conditions of the fuel cell, the PEMFC lifetime tends to be limited by coarsening of the cathode's Pt-based catalyst and by corrosion of the cathode's carbon black support. Because of their chemical properties, metallofullerenes such as C(59)Pt may be more electrochemically stable than the Pt/C mixture. In this paper we investigate, by theoretical methods, the stability of oxygen reduction reaction (ORR) adsorbates on the metallofullerene C(59)Pt and evaluate its potential as a PEMFC fuel cell catalyst.
Komini Babu, S.; Chung, H. T.; Wu, G.; ...
2014-08-18
This paper reports the development of a model for simulating polymer electrolyte fuel cells (PEFCs) with non-precious metal catalyst (NPMC) cathodes. NPMCs present an opportunity to dramatically reduce the cost of PEFC electrodes by removing the costly Pt catalyst. To address the significant transport losses in thick NPMC cathodes (ca. >60 µm), we developed a hierarchical electrode model that resolves the unique structure of the NPMCs we studied. A unique feature of the approach is the integration of the model with morphology data extracted from nano-scale resolution X-ray computed tomography (nano-CT) imaging of the electrodes. A notable finding is themore » impact of the liquid water accumulation in the electrode and the significant performance improvement possible if electrode flooding is mitigated.« less
Sputter-deposited fuel cell membranes and electrodes
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Chun, William (Inventor); Ruiz, Ron P. (Inventor); Valdez, Thomas I. (Inventor)
2001-01-01
A method for preparing a membrane for use in a fuel cell membrane electrode assembly includes the steps of providing an electrolyte membrane, and sputter-depositing a catalyst onto the electrolyte membrane. The sputter-deposited catalyst may be applied to multiple sides of the electrolyte membrane. A method for forming an electrode for use in a fuel cell membrane electrode assembly includes the steps of obtaining a catalyst, obtaining a backing, and sputter-depositing the catalyst onto the backing. The membranes and electrodes are useful for assembling fuel cells that include an anode electrode, a cathode electrode, a fuel supply, and an electrolyte membrane, wherein the electrolyte membrane includes a sputter-deposited catalyst, and the sputter-deposited catalyst is effective for sustaining a voltage across a membrane electrode assembly in the fuel cell.
Effect of Particle Size and Operating Conditions on Pt 3Co PEMFC Cathode Catalyst Durability
Gummalla, Mallika; Ball, Sarah; Condit, David; ...
2015-05-29
The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC) cathodes with Pt 3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm) with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA) and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes withmore » the smallest Pt 3Co particle size was the highest and that of the largest Pt 3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s), the relative improvement in performance of the cathode based on 8.1 nm Pt 3Co over the 4.9 nm Pt 3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA) of the decayed membrane-electrode assembly (MEA) showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt 3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.« less
NASA Astrophysics Data System (ADS)
Liu, Di; Mo, Xiaoping; Li, Kexun; Liu, Yi; Wang, Junjie; Yang, Tingting
2017-08-01
Nano spinel bulk-like CoGa2O4 prepared via a facile hydrothermal method is used as a high efficient electrochemical catalyst in activated carbon (AC) air-cathode microbial fuel cell (MFC). The maximum power density of the modified MFC is 1911 ± 49 mW m-2, 147% higher than the MFC of untreated AC cathode. Transmission electron microscope (TEM) and X-ray diffraction (XRD) exhibit the morphology and crystal structure of CoGa2O4. Rotating disk electrode (RDE) confirms the four-electron pathway at the cathode during the oxygen reduction reaction (ORR). Thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) illustrate that the high rate oxygen vacancy exist in the CoGa2O4. The oxygen vacancy of CoGa2O4 plays an important role in catalytic activity. In a word, the prepared nano spinel bulk-like CoGa2O4 provides an alternative to the costly Pt in air-cathode for power output.
Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications
NASA Technical Reports Server (NTRS)
Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.
2013-01-01
Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.
NASA Astrophysics Data System (ADS)
James, S. D.; Smith, P. H.; Oneill, K. M.; Wilson, M. H.
1986-05-01
This patent application relates to electrochemical cells and especially to high-energy, liquid cathode, non-aqueous lithium electrochemical cells free from highly toxic materials. A non-aqueous lithium electrochemical cell is described which includes a halocarbon cathode depolarizer which is 1,2-dichloroethane, 1.1,2-trichloroethane, 1,1,2,2-tetrachloroethane, 1,2-dichloro-1,1-difluoroethane or mixtures thereof and a cathode catalyst which is copper, rhodium, palladium, cobalt phthalocyanine, nickel phthalocyanine, iron phthalocyanine, a cobalt tetraaza-(14)-annulene, a nickel tetraaza-(14)-annulene, a iron tetraaza-(14)-annulene, a cobalt porphyrin, a nickel porphyrin, a iron porphyrin, or a mixture thereof.
Barwe, Stefan; Masa, Justus; Andronescu, Corina; Mei, Bastian; Schuhmann, Wolfgang; Ventosa, Edgar
2017-07-10
Engineering stable electrodes using highly active catalyst nanopowders for electrochemical water splitting remains a challenge. We report an innovative and general approach for attaining highly stable catalyst films with self-healing capability based on the in situ self-assembly of catalyst particles during electrolysis. The catalyst particles are added to the electrolyte forming a suspension that is pumped through the electrolyzer. Particles with negatively charged surfaces stick onto the anode, while particles with positively charged surfaces stick to the cathode. The self-assembled catalyst films have self-healing properties as long as sufficient catalyst particles are present in the electrolyte. The proof-of-concept was demonstrated in a non-zero gap alkaline electrolyzer using NiFe-LDH and Ni x B catalyst nanopowders for anode and cathode, respectively. Steady cell voltages were maintained for at least three weeks during continuous electrolysis at 50-100 mA cm -2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ansari, Sajid Ali; Parveen, Nazish; Han, Thi Hiep; Ansari, Mohammad Omaish; Cho, Moo Hwan
2016-04-07
Fibrous Pani-MnO2 nanocomposite were prepared using a one-step and scalable in situ chemical oxidative polymerization method. The formation, structural and morphological properties were investigated using a range of characterization techniques. The electrochemical capacitive behavior of the fibrous Pani-MnO2 nanocomposite was examined by cyclic voltammetry and galvanostatic charge-discharge measurements using a three-electrode experimental setup in an aqueous electrolyte. The fibrous Pani-MnO2 nanocomposite achieved high capacitance (525 F g(-1) at a current density of 2 A g(-1)) and excellent cycling stability of 76.9% after 1000 cycles at 10 A g(-1). Furthermore, the microbial fuel cell constructed with the fibrous Pani-MnO2 cathode catalyst showed an improved power density of 0.0588 W m(-2), which was higher than that of pure Pani and carbon paper, respectively. The improved electrochemical supercapacitive performance and cathode catalyst performance in microbial fuel cells were attributed mainly to the synergistic effect of Pani and MnO2 in fibrous Pani-MnO2, which provides high surface area for the electrode/electrolyte contact as well as electronic conductive channels and exhibits pseudocapacitance behavior.
Characterization of the Ternary Compound Pd5Pt3Ni2 for PEMFC Cathode Electrocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, Karalee; Zhao, J; Allard Jr, Lawrence Frederick
2010-01-01
Research on proton exchange membrane fuel cells (PEMFC) has increased over the last decade due to an increasing demand for alternative energy solutions. Most PEMFCs use Pt on carbon support as electrocatalysts for oxygen reduction reactions (ORR) [1]. Due to the high cost of Pt, there is a strong drive to develop less expensive catalysts that meet or exceed the performance of Pt. Binary and ternary Pt alloys with less expensive metals are a possible route [1]. In this work, a ternary alloy with composition Pd5Pt3Ni2 was studied as a potential cathode material. Preliminary results showed similar catalytic performance tomore » pure Pt in single-cell tests. However, to enhance its performance, it is necessary to understand how this ternary catalyst behaves during fuel cell operation. Various electron microscopy techniques were used to characterize the ternary Pd5Pt3Ni2 catalysts within the membrane-electrode assembly (MEA) both before and after fuel cell operation.« less
Fuel cell generator with fuel electrodes that control on-cell fuel reformation
Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA
2011-10-25
A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.
Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO2 Catalyst
Kharkwal, Shailesh; Tan, Yi Chao; Lu, Min; Ng, How Yong
2017-01-01
A novel microbial fuel cell (MFC)-based biosensor was designed for continuous monitoring of biochemical oxygen demand (BOD) in real wastewater. To lower the material cost, manganese dioxide (MnO2) was tested as an innovative cathode catalyst for oxygen reduction in a single chamber air-cathode MFC, and two different crystalline structures obtained during synthesis of MnO2 (namely β- and γ-MnO2) were compared. The BOD sensor was studied in a comprehensive way, using both sodium acetate solution and real domestic wastewater (DWW). The optimal performance of the sensor was obtained with a β-MnO2 catalyst, with R2 values of 0.99 and 0.98 using sodium acetate solution and DWW, respectively. The BOD values predicted by the β-MnO2 biosensor for DWW were in agreement with the BOD5 values, determined according to standard methods, with slight variations in the range from 3% to 12%. Finally, the long-term stability of the BOD biosensor was evaluated over 1.5 years. To the best of our knowledge, this is the first report of an MFC BOD sensor using an MnO2 catalyst at the cathode; the feasibility of using a low-cost catalyst in an MFC for online measurement of BOD in real wastewater broadens the scope of applications for such devices. PMID:28134838
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, Le; Yang, Fan; Xie, Jian
2017-01-01
This work demonstrates that functionalizing annealed-Pt/Ketjen black EC300j (a-Pt/KB) and dealloyed-PtNi/Ketjen black EC300j (d-PtNi/KB) catalysts using p-phenyl sulfonic acid can effectively enhance performance in the membrane electrode assemblies (MEAs) of proton exchange membrane fuel cells (PEMFCs). The functionalization increased the size of both Pt and PtNi catalyst particles and resulted in the further leaching of Ni from the PtNi catalyst while promoting the formation of nanoporous PtNi nanoparticles. The size of the SO3H-Pt/KB and SO3H-PtNi/KB carbon-based aggregates decreased dramatically, leading to the formation of catalyst layers with narrower pore size distributions.MEA tests highlighted the benefits of the surface functionalization, inmore » which the cells with SO3H-Pt/KB and SO3H-PtNi/KB cathode catalysts showed superior high current density performance under reduced RH conditions, in comparison with cells containing annealed Pt/KB (a-Pt/KB) and de-alloyed PtNi/KB (d-PtNi/KB) catalysts. The performance improvement was particularly evident when using reactant gases with low relative humidity, indicating that the hydrophilic functional groups on the carbon improved the water retention in the cathode catalyst layer. These results show a new avenue for enhancing catalyst performance for the next generation of catalytic materials for PEMFCs.« less
Analysis of performance losses of direct ethanol fuel cells with the aid of a reference electrode
NASA Astrophysics Data System (ADS)
Li, Guangchun; Pickup, Peter G.
The performances of direct ethanol fuel cells with different anode catalysts, different ethanol concentrations, and at different operating temperatures have been studied. The performance losses of the cell have been separated into individual electrode performance losses with the aid of a reference electrode, ethanol crossover has been quantified, and CO 2 and acetic acid production have been measured by titration. It has been shown that the cell performance strongly depends on the anode catalyst, ethanol concentration, and operating temperature. It was found that the cathode and anode exhibit different dependences on ethanol concentration and operating temperature. The performance of the cathode is very sensitive to the rate of ethanol crossover. Product analysis provides insights into the mechanisms of electro-oxidation of ethanol.
Kim, Ho Young; Cho, Seonghun; Sa, Young Jin; Hwang, Sun-Mi; Park, Gu-Gon; Shin, Tae Joo; Jeong, Hu Young; Yim, Sung-Dae; Joo, Sang Hoon
2016-10-01
Developing highly active and stable cathode catalysts is of pivotal importance for proton exchange membrane fuel cells (PEMFCs). While carbon-supported nanostructured Pt-based catalysts have so far been the most active cathode catalysts, their durability and single-cell performance are yet to be improved. Herein, self-supported mesostructured Pt-based bimetallic (Meso-PtM; M = Ni, Fe, Co, Cu) nanospheres containing an intermetallic phase are reported, which can combine the beneficial effects of transition metals (M), an intermetallic phase, a 3D interconnected framework, and a mesoporous structure. Meso-PtM nanospheres show enhanced oxygen reduction reaction (ORR) activity, compared to Pt black and Pt/C catalysts. Notably, Meso-PtNi containing an intermetallic phase exhibits ultrahigh stability, showing enhanced ORR activity even after 50 000 potential cycles, whereas Pt black and Pt/C undergo dramatic degradation. Importantly, Meso-PtNi with an intermetallic phase also demonstrated superior activity and durability when used in a PEMFC single-cell, with record-high initial mass and specific activities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mitov, M.; Chorbadzhiyska, E.; Nalbandian, L.; Hubenova, Y.
2017-07-01
The development of cost-effective cathodes, operating at neutral pH and ambient temperatures, is a crucial challenge for the practical application of microbial electrolysis cell (MEC) technology. In this study, NiW and NiMo co-deposits produced by electroplating on Ni-foam are explored as cathodes in MEC. The fabricated electrodes exhibit higher corrosion stability and enhanced electrocatalytic activity towards hydrogen evolution reaction in neutral electrolyte compared to the bare Ni-foam. NiW/Ni-foam electrodes possess six times higher intrinsic catalytic activity, estimated from data obtained by linear voltammetry and chronoamperometry. The newly developed electrodes are applied as cathodes in single-chamber membrane-free MEC reactors, inoculated with wastewater and activated sludge from a municipal wastewater treatment plant. Cathodic hydrogen recovery of 79% and 89% by using NiW and NiMo cathodes, respectively, is achieved at applied voltage of 0.6 V. The obtained results reveal potential for practical application of used catalysts in MEC.
Liu, Weifeng; Cheng, Shaoan; Sun, Dan; Huang, Haobin; Chen, Jie; Cen, Kefa
2015-10-15
The inevitable growth of aerobic bacteria on the surface of air cathodes is an important factor reducing the performance stability of air cathode single-chamber membrane-free microbial fuel cells (MFCs). Thus searching for effective methods to inhibit the cathodic microbial growth is critical for the practical application of MFCs. In this study, enrofloxacin (ENR), a broad spectrum fluoroquinolone antibiotic, was incorporated into the catalyst layer of activated carbon air cathodes (ACACs) to inhibit the cathodic microbial growth. The biomass content on ACACs was substantially reduced by 60.2% with ENR treatment after 91 days of MFCs operation. As a result of the inhibited microbial growth, the oxygen reduction catalytic performance of the ENR treated ACACs was much stable compared to the fast performance decline of the untreated control. Consequently, a quite stable electricity production was obtained for the MFCs with the ENR treated ACACs, in contrast with a 22.5% decrease in maximum power density of the MFCs with the untreated cathode. ENR treatment of ACACs showed minimal effects on the anode performance. These results indicate that incorporating antibiotics into ACACs should be a simple and effective strategy to inhibit the microbial growth and improve the long-term stability of the performance of air cathode and the electricity production of MFCs. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiao Xia; Cullen, David A.; Pan, Yung-Tin
Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). In this paper, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN 4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, anmore » atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm -2). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. Finally, the remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN 4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.« less
Wang, Xiao Xia; Cullen, David A.; Pan, Yung-Tin; ...
2018-01-24
Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). In this paper, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN 4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, anmore » atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm -2). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. Finally, the remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN 4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.« less
Wang, Xiao Xia; Cullen, David A; Pan, Yung-Tin; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; Wang, Jingyun; Engelhard, Mark H; Zhang, Hanguang; He, Yanghua; Shao, Yuyan; Su, Dong; More, Karren L; Spendelow, Jacob S; Wu, Gang
2018-03-01
Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN 4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm -2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN 4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transport equations in an enzymatic glucose fuel cell
NASA Astrophysics Data System (ADS)
Jariwala, Soham; Krishnamurthy, Balaji
2018-01-01
A mathematical model is developed to study the effects of convective flux and operating temperature on the performance of an enzymatic glucose fuel cell with a membrane. The model assumes isothermal operating conditions and constant feed rate of glucose. The glucose fuel cell domain is divided into five sections, with governing equations describing transport characteristics in each region, namely - anode diffusion layer, anode catalyst layer (enzyme layer), membrane, cathode catalyst layer and cathode diffusion layer. The mass transport is assumed to be one-dimensional and the governing equations are solved numerically. The effects flow rate of glucose feed on the performance of the fuel cell are studied as it contributes significantly to the convective flux. The effects of operating temperature on the performance of a glucose fuel cell are also modeled. The cell performances are compared using cell polarization curves, which were found compliant with experimental observations.
Performance of (CoPC)n catalyst in active lithium-thionyl chloride cells
NASA Technical Reports Server (NTRS)
Shah, Pinakin M.
1990-01-01
An experimental study was conducted with anode limited D size cells to characterize the performance of an active lithium-thionyl chloride (Li/SOCl2) system using the polymeric cobalt phthalocyanine, (CoPC)n, catalyst in carbon cathodes. The author describes the results of this experiment with respect to initial voltage delays, operating voltages, and capacities. The effectiveness of the preconditioning methods evolved to alleviate passivation effects on storage are also discussed. The results clearly demonstrated the superior high rate capability of cells with the catalyst. The catalyst did not adversely impact the performance of cells after active storage for up to 6 months, while retaining its beneficial influences.
NASA Astrophysics Data System (ADS)
Chang, KwangHyun; Cho, Seonghun; Lim, Eun Ja; Park, Seok-Hee; Yim, Sung-Dae
2018-03-01
Rambutan-like CNT-Al2O3 scaffolds are introduced as a potential candidate for CNT-based catalyst supports to overcome the CNT issues, such as the easy bundling in catalyst ink and the poor pore structure of the CNT-based catalyst layers, and to achieve high MEA performance in PEFCs. Non-porous α-phase Al2O3 balls are introduced to enable the growth of multiwalled CNTs, and Pt nanoparticles are loaded onto the CNT surfaces. In a half-cell, the Pt/CNT-Al2O3 catalyst shows much higher durability than those of a commercial Pt/C catalyst even though it shows lower oxygen reduction reaction (ORR) activity than Pt/C. After using the decal process for MEA formation, the Pt/CNT-Al2O3 shows comparable initial performance characteristics to Pt/C, overcoming the lower ORR activity, mainly due to the facile oxygen transport in the cathode catalyst layers fabricated with the CNT-Al2O3 scaffolds. The Pt/CNT-Al2O3 also exhibits much higher durability against carbon corrosion than Pt/C owing to the durable characteristics of CNTs. Systematic analysis of single cell performance for both initial and after degradation is provided to understand the origin of the high initial performance and durable behavior of Pt/CNT-Al2O3-based catalyst layers. This will provide insights into the design of electrocatalysts for high-performance MEAs in PEFCs.
Lei, M; Wang, J; Li, J R; Wang, Y G; Tang, H L; Wang, W J
2014-08-11
Replacing precious and nondurable Pt catalysts with cheap materials is a key issue for commercialization of fuel cells. In the case of oxygen reduction reaction (ORR) catalysts for direct methanol fuel cell (DMFC), the methanol tolerance is also an important concern. Here, we develop AlN nanowires with diameters of about 100-150 nm and the length up to 1 mm through crystal growth method. We find it is electrochemically stable in methanol-contained alkaline electrolyte. This novel material exhibits pronounced electrocatalytic activity with exchange current density of about 6.52 × 10(-8) A/cm(2). The single cell assembled with AlN nanowire cathodic electrode achieves a power density of 18.9 mW cm(-2). After being maintained at 100 mA cm(-2) for 48 h, the AlN nanowire-based single cell keeps 92.1% of the initial performance, which is in comparison with 54.5% for that assembled with Pt/C cathode. This discovery reveals a new type of metal nitride ORR catalyst that can be cheaply produced from crystal growth method.
Tang, Haolin; Cai, Shichang; Xie, Shilei; Wang, Zhengbang; Tong, Yexiang; Pan, Mu; Lu, Xihong
2016-02-01
A new class of dual metal and N doped carbon catalysts with well-defined porous structure derived from metal-organic frameworks (MOFs) has been developed as a high-performance electrocatalyst for oxygen reduction reaction (ORR). Furthermore, the microbial fuel cell (MFC) device based on the as-prepared Ni/Co and N codoped carbon as air cathode catalyst achieves a maximum power density of 4335.6 mW m -2 and excellent durability.
Sherrell, Peter C; Zhang, Weimin; Zhao, Jie; Wallace, Gordon G; Chen, Jun; Minett, Andrew I
2012-07-01
Proton-exchange membrane fuel cells (PEMFCs) are expected to provide a complementary power supply to fossil fuels in the near future. The current reliance of fuel cells on platinum catalysts is undesirable. However, even the best-performing non-noble metal catalysts are not as efficient. To drive commercial viability of fuel cells forward in the short term, increased utilization of Pt catalysts is paramount. We have demonstrated improved power and energy densities in a single PEMFC using a designed cathode with a Pt loading of 0.1 mg cm(-2) on a mesoporous conductive entangled carbon nanotube (CNT)-based architecture. This electrode allows for rapid transfer of both fuel and waste to and from the electrode, respectively. Pt particles are bound tightly, directly to CNT sidewalls by a microwave-reduction technique, which provided increased charge transport at this interface. The Pt entangled CNT cathode, in combination with an E-TEK 0.2 mg cm(-2) anode, has a maximum power and energy density of 940 mW cm(-2) and 2700 mA cm(-2), respectively, and a power and energy density of 4.01 W mg(Pt)(-1) and 6.35 A mg(Pt)(-1) at 0.65 V. These power densities correspond to a specific mass activity of 0.81 g Pt per kW for the combined mass of both anode and cathode electrodes, approaching the current US Department of Energy efficiency target. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Komini Babu, S.; Chung, H. T.; Zelenay, P.; ...
2015-09-14
This manuscript presents micro-scale experimental diagnostics and nano-scale resolution X-ray imaging applied to the study of proton conduction in non-precious metal catalyst (NPMC) fuel cell cathodes. NPMC’s have the potential to reduce the cost of the fuel cell for multiple applications. But, NPMC electrodes are inherently thick compared to the convention Pt/C electrode due to the lower volumetric activity. Thus, the electric potential drop through the Nafion across the electrode thickness can yield significant performance loss. Ionomer distributions in the NPMC electrodes with different ionomer loading are extracted from morphological data using nanoscale X-ray computed tomography (nano-XCT) imaging of themore » cathode. Microstructured electrode scaffold (MES) diagnostics are used to measure the electrolyte potential at discrete points across the thickness of the catalyst layer. When using that apparatus, the electrolyte potential drop, the through-thickness reaction distribution, and the proton conductivity are measured and correlated with the corresponding Nafion morphology and cell performance.« less
Aricò, Antonino S; Stassi, Alessandro; D'Urso, Claudia; Sebastián, David; Baglio, Vincenzo
2014-08-18
A composite Pd-based electrocatalyst consisting of a surface layer of Pt (5 wt.%) supported on a core Pd3Co1 alloy (95 wt.%) and dispersed as nanoparticles on a carbon black support (50 wt.% metal content) was prepared by using a sulphite-complex route. The structure, composition, morphology, and surface properties of the catalyst were investigated by XRD, XRF, TEM, XPS and low-energy ion scattering spectroscopy (LE-ISS). The catalyst showed an enrichment of Pt on the surface and a smaller content of Co in the outermost layers. These characteristics allow a decrease the Pt content in direct methanol fuel cell cathode electrodes (from 1 to 0.06 mg cm(-2)) without significant decay in performance, due also to a better tolerance to methanol permeated through the polymer electrolyte membrane. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Freiberg, Anna T. S.; Tucker, Michael C.; Weber, Adam Z.
2017-04-12
The reduction of platinum-loading on the cathode side of polymer-electrolyte fuel cells leads to a poorly understood increase in mass-transport resistance (MTR) at high current densities. This local resistance was measured using a facile hydrogen-pump technique with dilute active gases for membrane-electrode assemblies with catalyst layers of varying platinum-loading (0.03-0.40 mgPt/cm²). Furthermore, polarization curves in H 2/air were measured and corrected for the overpotential caused by the increased MTR for low loadings on the air side due to the reduced concentration of reactant gas at the catalyst surface. The difference in performance after correction for all resistances including the MTRmore » is minor, suggesting its origin to be diffusive in nature, and proving the meaningfulness of the facile hydrogen-pump technique for the characterization of the cathode catalyst layer under defined operation conditions.« less
Oxygen reduction reaction: A framework for success
Allendorf, Mark D.
2016-05-06
Oxygen reduction at the cathode of fuel cells typically requires a platinum-based material to catalyse the reaction, but lower-cost, more stable catalysts are sought. Here, an intrinsically conductive metal–organic framework based on cheaper elements is shown to be a durable, structurally well-defined catalyst for this reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komini Babu, Siddharth; Chung, Hoon T.; Zelenay, Piotr
This paper reports on the characterization of polymer electrolyte fuel cell (PEFC) cathodes featuring a platinum group metal-free (PGM-free) catalyst using nano-scale resolution X-ray computed tomography (nano-CT) and morphological analysis. PGM-free PEFC cathodes have gained significant interest in the past decade since they have the potential to dramatically reduce PEFC costs by eliminating the large platinum (Pt) raw material cost. However, several challenges remain before they are commercially viable. Since these catalysts have lower volumetric activity, the PGM-free cathodes are thicker and are subject to increased gas and proton transport resistances that reduce the performance. To better understand the efficacymore » of the catalyst and improve electrode performance, a detailed understanding the correlation between electrode fabrication, morphology, and performance is crucial. In this work, the pore/solid structure and the ionomer distribution was resolved in three dimensions (3D) using nano-CT for three PGM-free electrodes of varying Nafion® loading. The associated transport properties were evaluated from pore/particlescale simulations within the nano-CT imaged structure. These characterizations are then used to elucidate the microstructural origins of the dramatic changes in fuel cell performance with varying Nafion® ionomer loading. We show that this is primarily a result of distinct changes in ionomer’s spatial distribution. The significant impact of electrode morphology on performance highlights the importance of PGM-free electrode development in concert with efforts to improve catalyst activity and durability.« less
Komini Babu, Siddharth; Chung, Hoon T.; Zelenay, Piotr; ...
2016-11-02
This paper reports on the characterization of polymer electrolyte fuel cell (PEFC) cathodes featuring a platinum group metal-free (PGM-free) catalyst using nano-scale resolution X-ray computed tomography (nano-CT) and morphological analysis. PGM-free PEFC cathodes have gained significant interest in the past decade since they have the potential to dramatically reduce PEFC costs by eliminating the large platinum (Pt) raw material cost. However, several challenges remain before they are commercially viable. Since these catalysts have lower volumetric activity, the PGM-free cathodes are thicker and are subject to increased gas and proton transport resistances that reduce the performance. To better understand the efficacymore » of the catalyst and improve electrode performance, a detailed understanding the correlation between electrode fabrication, morphology, and performance is crucial. In this work, the pore/solid structure and the ionomer distribution was resolved in three dimensions (3D) using nano-CT for three PGM-free electrodes of varying Nafion® loading. The associated transport properties were evaluated from pore/particlescale simulations within the nano-CT imaged structure. These characterizations are then used to elucidate the microstructural origins of the dramatic changes in fuel cell performance with varying Nafion® ionomer loading. We show that this is primarily a result of distinct changes in ionomer’s spatial distribution. The significant impact of electrode morphology on performance highlights the importance of PGM-free electrode development in concert with efforts to improve catalyst activity and durability.« less
NASA Astrophysics Data System (ADS)
Hitchcock, Adam P.; Berejnov, Viatcheslav; Lee, Vincent; West, Marcia; Colbow, Vesna; Dutta, Monica; Wessel, Silvia
2014-11-01
Scanning Transmission X-ray Microscopy (STXM) at the C 1s, F 1s and S 2p edges has been used to investigate degradation of proton exchange membrane fuel cell (PEM-FC) membrane electrode assemblies (MEA) subjected to accelerated testing protocols. Quantitative chemical maps of the catalyst, carbon support and ionomer in the cathode layer are reported for beginning-of-test (BOT), and end-of-test (EOT) samples for two types of carbon support, low surface area carbon (LSAC) and medium surface area carbon (MSAC), that were exposed to accelerated stress testing with upper potentials (UPL) of 1.0, 1.2, and 1.3 V. The results are compared in order to characterize catalyst layer degradation in terms of the amounts and spatial distributions of these species. Pt agglomeration, Pt migration and corrosion of the carbon support are all visualized, and contribute to differing degrees in these samples. It is found that there is formation of a distinct Pt-in-membrane (PTIM) band for all EOT samples. The cathode thickness shrinks due to loss of the carbon support for all MSAC samples that were exposed to the different upper potentials, but only for the most aggressive testing protocol for the LSAC support. The amount of ionomer per unit volume significantly increases indicating it is being concentrated in the cathode as the carbon corrosion takes place. S 2p spectra and mapping of the cathode catalyst layer indicates there are still sulfonate groups present, even in the most damaged material.
Du, Yue; Feng, Yujie; Qu, Youpeng; Liu, Jia; Ren, Nanqi; Liu, Hong
2014-07-01
The photoelectrochemical cell (PEC) is a promising tool for the degradation of organic pollutants and simultaneous electricity recovery, however, current cathode catalysts suffer from high costs and short service lives. Herein, we present a novel biocathode coupled PEC (Bio-PEC) integrating the advantages of photocatalytic anode and biocathode. Electrochemical anodized TiO2 nanotube arrays fabricated on Ti substrate were used as Bio-PEC anodes. Field-emission scanning electron microscope images revealed that the well-aligned TiO2 nanotubes had inner diameters of 60-100 nm and wall-thicknesses of about 5 nm. Linear sweep voltammetry presented the pronounced photocurrent output (325 μA/cm(2)) under xenon illumination, compared with that under dark conditions. Comparing studies were carried out between the Bio-PEC and PECs with Pt/C cathodes. The results showed that the performance of Pt/C cathodes was closely related with the structure and Pt/C loading amounts of cathodes, while the Bio-PEC achieved similar methyl orange (MO) decoloration rate (0.0120 min(-1)) and maximum power density (211.32 mW/m(2)) to the brush cathode PEC with 50 mg Pt/C loading (Brush-PEC, 50 mg). The fill factors of Bio-PEC and Brush-PEC (50 mg) were 39.87% and 43.06%, respectively. The charge transfer resistance of biocathode was 13.10 Ω, larger than the brush cathode with 50 mg Pt/C (10.68 Ω), but smaller than the brush cathode with 35 mg Pt/C (18.35 Ω), indicating the comparable catalytic activity with Pt/C catalyst. The biocathode was more dependent on the nutrient diffusion, such as nitrogen and inorganic carbon, thus resulting in relatively higher diffusion resistance compared to the brush cathode with 50 mg Pt/C loading that yielded similar MO removal and power output. Considering the performance and cost of PEC system, the biocathode was a promising alternative for the Pt/C catalyst.
Wang, Junjie; Tian, Pei; Li, Kexun; Ge, Baochao; Liu, Di; Liu, Yi; Yang, Tingting; Ren, Rong
2016-12-01
This study investigated the performance of nano spinel nest-like oxygen-deficient Cu 1.5 Mn 1.5 O 4 doping activated carbon (AC) as air cathode in microbial fuel cell (MFC). The Cu 1.5 Mn 1.5 O 4 was synthesized via hydrothermal method and subsequent annealed. The maximum power density (MPD) of MFC with oxygen-deficient Cu 1.5 Mn 1.5 O 4 modified cathode was 1928±18mWm -2 , which was 1.53 times higher than the bare cathode. The electrochemical studies showed that Cu 1.5 Mn 1.5 O 4 doping AC exhibited higher kinetic activity and lower resistance. The mechanism of oxygen reduction for the catalyst was a four electron pathway. The oxygen deficient of Cu 1.5 Mn 1.5 O 4 played an important role in catalytic activity. So Cu 1.5 Mn 1.5 O 4 would be an excellent promising catalyst for ORR in MFC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Methods of conditioning direct methanol fuel cells
Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon
2005-11-08
Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.
Choi, Mahnsoo; Han, Choonsoo; Kim, In-Tae; Lee, Ji-Jung; Lee, Hong-Ki; Shim, Joongpyo
2011-07-01
Pd-TiO2/C catalysts were prepared by impregnating titanium dioxide (TiO2) on carbon-supported Pd (Pd/C) for use as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells (DMFCs). Transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were carried to confirm the distribution, morphology and structure of Pd and TiO2 on the carbon support. In fuel cell test, we confirmed that the addition of TiO2 nanoparticles make the improved catalytic activity of oxygen reduction. The electrochemical characterization of the Pd-TiO2/C catalyst for the ORR was carried out by cyclic voltammetry (CV) in the voltage window of 0.04 V to 1.2 V with scan rate of 25 mV/s. With the increase in the crystallite size of TiO2, the peak potential for OH(ads) desorption on the surface of Pd particle shifted to higher potential. This implies that TiO2 might affect the adsorption and desorption of oxygen molecules on Pd catalyst. The performance of Pd-TiO2/C as a cathode material was found to be similar to or better performance than that of Pt/C.
Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won
2015-01-01
Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries. PMID:25563733
Alkaline fuel cell performance investigation
NASA Technical Reports Server (NTRS)
Martin, R. E.; Manzo, M. A.
1988-01-01
An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.
Alkaline fuel cell performance investigation
NASA Technical Reports Server (NTRS)
Martin, R. E.; Manzo, M. A.
1988-01-01
An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more than two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.
Nanocrystalline cerium oxide materials for solid fuel cell systems
Brinkman, Kyle S
2015-05-05
Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.
NASA Astrophysics Data System (ADS)
Morales, M.; Espiell, F.; Segarra, M.
2015-10-01
Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.
NASA Astrophysics Data System (ADS)
Zhu, Nengwu; Lu, Yu; Liu, Bowen; Zhang, Taiping; Huang, Jianjian; Shi, Chaohong; Wu, Pingxiao; Dang, Zhi; Wang, Ruixin
2017-10-01
Recently, the synthesis of nonprecious metal catalysts with low cost and high oxygen reduction reaction (ORR) efficiency is paid much attention in field of microbial fuel cells (MFCs). Transition metal oxides (AMn2O4, A = Co、Ni, and Zn) supported on carbon materials such as graphene and carbon nanotube exhibit stronger electroconductivity and more active sites comparing to bare AMn2O4. Herein, we demonstrate an easy operating Hummer's method to functionalize carbon nanotubes (CNTs) with poly (diallyldimethylammonium chloride) in order to achieve effective loading of CoMn2O4 nanoparticles, named CoMn2O4/PDDA-CNTs (CMODT). After solvothermal treatment, nanoscale CoMn2O4 particles ( 80 nm) were successfully attached on the noncovalent functionalized carbon nanotube. Results show that such composites possess an outstanding electrocatalytic activity towards ORR comparable to the commercial Pt/C catalyst in neutral media. Electrochemical detections as cyclic voltammogram (CV) and rotating ring-disk electrode tests (RRDE) showed that the potential of oxygen reduction peak of 30% CMODT was at - 0.3 V (vs Ag/AgCl), onset potential was at + 0.4 V. Among them, 30% CMODT composite appeared the best candidate of oxygen reduction via 3.9 electron transfer pathway. When 30% CMODT composite was utilized as cathode catalyst in air cathode MFC, the reactor obtained 1020 mW m-2 of the highest maximum power density and 0.781 V of open circuit voltage. The excellent activity and low cost (0.2 g-1) of the hybrid materials demonstrate the potential of transition metal oxide/carbon as effective cathode ORR catalyst for microbial fuel cells. [Figure not available: see fulltext.
Durability of symmetric-structured metal-supported solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Tucker, Michael C.
2017-11-01
Symmetric-structure metal-supported solid oxide fuel cells (MS-SOFC) with YSZ electrolyte are fabricated with porous YSZ backbone electrodes, stainless steel supports, and infiltrated catalysts on both anode and cathode side. Durability towards aggressive thermal and redox cycling, and long-term operation is assessed. Many sealing material candidates are screened for compatibility with the cell materials and operating conditions, and a commercial sealing glass, GM31107, is selected. LSM/SDCN cells are then subjected to 200 very fast thermal cycles and 20 complete redox cycles, with minimal impact to cell performance. LSM/SDCN and SDCN/SDCN cells are operated for more than 1200 h at 700 °C. The seal and cell hermeticity is maintained, and cell ohmic impedance does not change significantly during operation. Electrode polarization increases during operation, leading to significant degradation of the cell performance. In-operando EIS and post-mortem SEM/EDS analysis suggest that catalyst coarsening and cathode Cr deposition are the dominant degradation modes.
Solar Powered CO.Sub.2 Conversion
NASA Technical Reports Server (NTRS)
Chen, Bin (Inventor)
2016-01-01
Methods and devices for reducing CO.sub.2 to produce hydrocarbons are disclosed. A device comprises a photoanode capable of splitting H.sub.2O into electrons, protons, and oxygen; an electrochemical cell cathode comprising an electro-catalyst capable of reducing CO.sub.2; H.sub.2O in contact with the surface of the photoanode; CO.sub.2 in contact with the surface of the cathode; and a proton-conducting medium positioned between the photoanode and the cathode. Electrical charges associated with the protons and the electrons move from the photoanode to the cathode, driven in part by a chemical potential difference sufficient to drive the electrochemical reduction of CO.sub.2 at the cathode. A light beam is the sole source of energy used to drive chemical reactions. The photoanode can comprise TiO.sub.2 nanowires or nanotubes, and can also include WO.sub.3 nanowires or nanotubes, quantum dots of CdS or PbS, and Ag or Au nanostructures. The cathode can comprise a conductive gas diffusion layer with nanostructures of an electro-catalyst such as Cu or Co.
A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts.
Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen
2012-01-01
Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO₃ and MnO₂, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm⁻² has been achieved at 65°C, which increases by a factor of 1.7-3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC.
Soboleva, Tatyana; Malek, Kourosh; Xie, Zhong; Navessin, Titichai; Holdcroft, Steven
2011-06-01
The effects of carbon microstructure and ionomer loading on water vapor sorption and retention in catalyst layers (CLs) of PEM fuel cells are investigated using dynamic vapor sorption. Catalyst layers based on Ketjen Black and Vulcan XC-72 carbon blacks, which possess distinctly different surface areas, pore volumes, and microporosities, are studied. It is found that pores <20 nm diameter facilitate water uptake by capillary condensation in the intermediate range of relative humidities. A broad pore size distribution (PSD) is found to enhance water retention in Ketjen Black-based CLs whereas the narrower mesoporous PSD of Vulcan CLs is shown to have an enhanced water repelling action. Water vapor sorption and retention properties of CLs are correlated to electrochemical properties and fuel cell performance. Water sorption enhances electrochemical properties such as the electrochemically active surface area (ESA), double layer capacitance and proton conductivity, particularly when the ionomer content is very low. The hydrophilic properties of a CL on the anode and the cathode are adjusted by choosing the PSD of carbon and the ionomer content. It is shown that a reduction of ionomer content on either cathode or anode of an MEA does not necessarily have a significant detrimental effect on the MEA performance compared to the standard 30 wt % ionomer MEA. Under operation in air and high relative humidity, a cathode with a narrow pore size distribution and low ionomer content is shown to be beneficial due to its low water retention properties. In dry operating conditions, adequate ionomer content on the cathode is crucial, whereas it can be reduced on the anode without a significant impact on fuel cell performance. © 2011 American Chemical Society
Li, Winton; Bonakdarpour, Arman; Gyenge, Előd; Wilkinson, David P
2013-11-01
The industrial anthraquinone auto-oxidation process produces most of the world's supply of hydrogen peroxide. For applications that require small amounts of H2 O2 or have economically difficult transportation means, an alternate, on-site H2 O2 production method is needed. Advanced drinking water purification technologies use neutral-pH H2 O2 in combination with UV treatment to reach the desired water purity targets. To produce neutral H2 O2 on-site and on-demand for drinking water purification, the electroreduction of oxygen at the cathode of a proton exchange membrane (PEM) fuel cell operated in either electrolysis (power consuming) or fuel cell (power generating) mode could be a possible solution. The work presented here focuses on the H2 /O2 fuel cell mode to produce H2 O2 . The fuel cell reactor is operated with a continuous flow of carrier water through the cathode to remove the product H2 O2 . The impact of the cobalt-carbon composite cathode catalyst loading, Teflon content in the cathode gas diffusion layer, and cathode carrier water flowrate on the production of H2 O2 are examined. H2 O2 production rates of up to 200 μmol h(-1) cmgeometric (-2) are achieved using a continuous flow of carrier water operating at 30 % current efficiency. Operation times of more than 24 h have shown consistent H2 O2 and power production, with no degradation of the cobalt catalyst. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reducing carbon dioxide to products
Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A
2014-09-30
A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.
NASA Astrophysics Data System (ADS)
Chu, Fuqiang; Li, Xingxing; Yuan, Wensen; Zhu, Huanhuan; Qin, Yong; Zhang, Shuai; Yuan, Ningyi; Lin, Bencai; Ding, Jianning
Catalysts are a key component of polymer electrolyte membrane fuel cells (PEMFCs). In this work, nitrogen-doped three-dimensional graphene-supported platinum (Pt-3DNG) catalysts are successfully prepared and characterized. SEM and TEM images show the Pt nanoparticles are uniformly dispersed in the sheets of nitrogen-doped 3DNG. Compared with that of the commercial Pt/C catalysts, Pt-3DNG show much better oxygen reduction reaction (ORR) activity and cycling stability, and the reduction in limit current density after 1000 cycles is only about 1.6% for the Pt-3DNG catalysts, whereas 7.2% for the commercial Pt/C catalysts. The single cell using Pt-3DNG catalysts in both the anode and the cathode show a higher peak power density (21.47mW cm-2) than that using commercial Pt/C catalysts (20.17mW cm-2) under the same conditions. These properties make this type of catalyst suitable for the application in PEMFCs.
Berejnov, Viatcheslav; Martin, Zulima; West, Marcia; Kundu, Sumit; Bessarabov, Dmitri; Stumper, Jürgen; Susac, Darija; Hitchcock, Adam P
2012-04-14
Synchrotron-based scanning transmission X-ray spectromicroscopy (STXM) was used to characterize the local chemical environment at and around the platinum particles in the membrane (PTIM) which form in operationally tested (end-of-life, EOL) catalyst coated membranes (CCMs) of polymer electrolyte membrane fuel cells (PEM-FC). The band of metallic Pt particles in operationally tested CCM membranes was imaged using transmission electron microscopy (TEM). The cathode catalyst layer in the beginning-of-life (BOL) CCMs was fabricated using commercially available catalysts created from Pt precursors with and without nitrogen containing ligands. The surface composition of these catalyst powders was measured by X-ray Photoelectron Spectroscopy (XPS). The local chemical environment of the PTIM in EOL CCMs was found to be directly related to the Pt precursor used in CCM fabrication. STXM chemical mapping at the N 1s edge revealed a characteristic spectrum at and around the dendritic Pt particles in CCMs fabricated with nitrogen containing Pt-precursors. This N 1s spectrum was identical to that of the cathode and different from the membrane. For CCM samples fabricated without nitrogen containing Pt-precursors the N 1s spectrum at the Pt particles was indistinguishable from that of the adjacent membrane. We interpret these observations to indicate that nitrogenous ligands in the nitrogen containing precursors, or decomposition product(s) from that source, are transported together with the dissolved Pt from the cathode into the membrane as a result of the catalyst degradation process. This places constraints on possible mechanisms for the PTIM band formation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knights, Shanna; Harvey, David
The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications which target operational lifetimes of 5,000 hours and 60,000 hours by 2020, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifyingmore » the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different membrane compositions remains an area not well understood. The focus of this project extension was to enhance the predictive capability of the PEM Fuel Cell Performance & Durability Model called FC-APOLLO (Application Package for Open-source Long Life Operation) by including interaction effects of membrane transport properties such as water transport, changes in proton conductivity, and overall water uptake/adsorption and the state of the catalyst layer local conditions to further understand the driving forces for platinum dissolution.« less
Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials.
Tatin, Arnaud; Comminges, Clément; Kokoh, Boniface; Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
2016-05-17
Low-cost, efficient CO2-to-CO+O2 electrochemical splitting is a key step for liquid-fuel production for renewable energy storage and use of CO2 as a feedstock for chemicals. Heterogeneous catalysts for cathodic CO2-to-CO associated with an O2-evolving anodic reaction in high-energy-efficiency cells are not yet available. An iron porphyrin immobilized into a conductive Nafion/carbon powder layer is a stable cathode producing CO in pH neutral water with 90% faradaic efficiency. It is coupled with a water oxidation phosphate cobalt oxide anode in a home-made electrolyzer by means of a Nafion membrane. Current densities of approximately 1 mA/cm(2) over 30-h electrolysis are achieved at a 2.5-V cell voltage, splitting CO2 and H2O into CO and O2 with a 50% energy efficiency. Remarkably, CO2 reduction outweighs the concurrent water reduction. The setup does not prevent high-efficiency proton transport through the Nafion membrane separator: The ohmic drop loss is only 0.1 V and the pH remains stable. These results demonstrate the possibility to set up an efficient, low-voltage, electrochemical cell that converts CO2 into CO and O2 by associating a cathodic-supported molecular catalyst based on an abundant transition metal with a cheap, easy-to-prepare anodic catalyst oxidizing water into O2.
Corrosion testing of candidates for the alkaline fuel cell cathode
NASA Technical Reports Server (NTRS)
Singer, Joseph; Fielder, William L.
1990-01-01
Current/voltage data have been obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consist of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to evaluate fully this approach to corrosion screening.
NASA Astrophysics Data System (ADS)
Hu, Yang; Jiang, Yiliang; Jensen, Jens Oluf; Cleemann, Lars N.; Li, Qingfeng
2018-01-01
Phosphoric acid is the common electrolyte for high-temperature polymer electrolyte fuel cells (HT-PEMFCs) that have advantages such as enhanced CO tolerance and simplified heat and water management. The currently used rotating disk electrode technique is limited to tests in dilute solutions at low temperatures and hence is not suitable for catalyst evaluation for HT-PEMFCs. In this study, we have designed and constructed a half-cell setup to measure the intrinsic activities of catalysts towards the oxygen reduction reaction (ORR) in conditions close to HT-PEMFC cathodes. By optimization of the hydrophobic characteristics of electrodes and the catalyst layer thickness, ORR activities of typical Pt/C catalysts are successfully measured in concentrated phosphoric acid at temperatures above 100 °C. In terms of mass-specific activities, the catalyst exhibits about two times higher activity in the half-cell electrode than that observed in fuel cells, indicating the feasibility of the technique as well as the potential for further improvement of fuel cell electrode performance.
Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst
NASA Astrophysics Data System (ADS)
Chung, Hoon T.; Cullen, David A.; Higgins, Drew; Sneed, Brian T.; Holby, Edward F.; More, Karren L.; Zelenay, Piotr
2017-08-01
Platinum group metal-free (PGM-free) metal-nitrogen-carbon catalysts have emerged as a promising alternative to their costly platinum (Pt)-based counterparts in polymer electrolyte fuel cells (PEFCs) but still face some major challenges, including (i) the identification of the most relevant catalytic site for the oxygen reduction reaction (ORR) and (ii) demonstration of competitive PEFC performance under automotive-application conditions in the hydrogen (H2)-air fuel cell. Herein, we demonstrate H2-air performance gains achieved with an iron-nitrogen-carbon catalyst synthesized with two nitrogen precursors that developed hierarchical porosity. Current densities recorded in the kinetic region of cathode operation, at fuel cell voltages greater than ~0.75 V, were the same as those obtained with a Pt cathode at a loading of 0.1 milligram of Pt per centimeter squared. The proposed catalytic active site, carbon-embedded nitrogen-coordinated iron (FeN4), was directly visualized with aberration-corrected scanning transmission electron microscopy, and the contributions of these active sites associated with specific lattice-level carbon structures were explored computationally.
Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst
Chung, Hoon T.; Cullen, David A.; Higgins, Drew; ...
2017-08-04
Platinum group metal–free (PGM-free) metal-nitrogen-carbon catalysts have emerged as a promising alternative to their costly platinum (Pt)–based counterparts in polymer electrolyte fuel cells (PEFCs) but still face some major challenges, including (i) the identification of the most relevant catalytic site for the oxygen reduction reaction (ORR) and (ii) demonstration of competitive PEFC performance under automotive-application conditions in the hydrogen (H 2)–air fuel cell. We demonstrate H 2-air performance gains achieved with an iron-nitrogen-carbon catalyst synthesized with two nitrogen precursors that developed hierarchical porosity. In current densities recorded in the kinetic region of cathode operation, at fuel cell voltages greater thanmore » ~0.75 V, were the same as those obtained with a Pt cathode at a loading of 0.1 milligram of Pt per centimeter squared. The catalytic active site we proposed, carbon-embedded nitrogen-coordinated iron (FeN 4), was directly visualized with aberration-corrected scanning transmission electron microscopy, and the contributions of these active sites associated with specific lattice-level carbon structures were explored computationally.« less
Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin
2015-01-13
Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.
NASA Astrophysics Data System (ADS)
Fujii, Keitaro; Ito, Mizuki; Sato, Yasushi; Takenaka, Sakae; Kishida, Masahiro
2015-04-01
Pd metal particles supported on a high surface area carbon black (Pd/CB) were covered with silica layers to improve the durability under severe cathode condition of proton exchange membrane fuel cells (PEMFCs). The performance and the durability of the silica-coated Pd/CB (SiO2/Pd/CB) were investigated by rotating disk electrode (RDE) in aqueous HClO4 and single cell test of the membrane-electrode assemblies (MEAs). SiO2/Pd/CB showed excellent durability exceeding Pt/CB during potential cycle in single cell test as well as in RDE measurement while Pd/CB significantly degraded. Furthermore, the MEA using SiO2/Pd/CB as the cathode catalyst showed higher performance than that using Pd/CB even in the initial state. The catalytic activity of SiO2/Pd/CB was higher than that of Pd/CB, and the drop of the cell performances due to the inhibition of electron conduction, proton conduction, and oxygen diffusion by the silica layer was not significant. It has been shown that the silica-coating is a very practical technique that can stabilize metal species originally unstable in the cathode condition of PEMFCs without a decrease in the cell performance.
NASA Astrophysics Data System (ADS)
Ratso, Sander; Kruusenberg, Ivar; Käärik, Maike; Kook, Mati; Puust, Laurits; Saar, Rando; Leis, Jaan; Tammeveski, Kaido
2018-01-01
The search for an efficient electrocatalyst for oxygen reduction reaction (ORR) to replace platinum in fuel cell cathode materials is one of the hottest topics in electrocatalysis. Among the many non-noble metal catalysts, metal/nitrogen/carbon composites made by pyrolysis of cheap materials are the most promising with control over the porosity and final structure of the catalyst a crucial point. In this work we show a method of producing a highly active ORR catalyst in alkaline media with a controllable porous structure using titanium carbide derived carbon as a base structure and dicyandiamide along with FeCl3 or CoCl2 as the dopants. The resulting transition metal-nitrogen co-doped carbide derived carbon (M/N/CDC) catalyst is highly efficient for ORR electrocatalysis with the activity in 0.1 M KOH approaching that of commercial 46.1 wt.% Pt/C. The catalyst materials are also investigated by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to characterise the changes in morphology and composition causing the raise in electrochemical activity. MEA performance of M/N/CDC cathode materials in H2/O2 alkaline membrane fuel cell is tested with the highest power density reached being 80 mW cm-2 compared to 90 mW cm-2 for Pt/C.
Xin, Le; Yang, Fan; Qiu, Yang; ...
2016-08-25
Nanoscale graphenes were used as cathode catalyst supports in proton exchange membrane fuel cells (PEMFCs). Surface-initiated polymerization that covalently bonds polybenzimidazole (PBI) polymer on the surface of graphene supports enables the uniform distribution of the Pt nanoparticles, as well as allows the sealing of the unterminated carbon bonds usually present on the edge of graphene from the chemical reduction of graphene oxide. The nanographene effectively shortens the length of channels and pores for O 2 diffusion/water dissipation and significantly increases the primary pore volume. Further addition of p-phenyl sulfonic functional graphitic carbon particles as spacers, increases the specific volume ofmore » the secondary pores and greatly improves O 2 mass transport within the catalyst layers. The developed composite cathode catalyst of Pt/PBI-nanographene (50 wt%) + SO 3H-graphitic carbon black demonstrates a higher beginning of life (BOL) PEMFC performance as compared to both Pt/PBI-nanographene (50 wt%) and Pt/PBI-graphene (50 wt%) + SO 3H-graphitic carbon black (GCB). Accelerated stress tests show excellent support durability compared to that of traditional Pt/Vulcan XC72 catalysts, when subjected to 10,000 cycles from 1.0 V to 1.5 V. As a result, this study suggests the promise of using PBI-nanographene + SO 3H-GCB hybrid supports in fuel cells to achieve the 2020 DOE targets for transportation applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artyushkova, Kateryna; Workman, Michael J.; Matanovic, Ivana
The role of the interaction between doped carbon-based materials and ionic conductors is essential in multiple technologies, from fuel cells and energy storage devices to conductive polymer composites. In this paper, we report how the surface chemistry of transition metal–nitrogen–carbon (MNC) electrocatalysts affects catalyst–ionomer interaction and the resulting structure of cathodes. The cathode structure resulting from these interactions is directly related to the performance in membrane electrode assembly (MEA) fuel cells. To advance the development of platinum group metal (PGM)-free electrodes for the oxygen reduction reaction it is necessary to understand the structure of the catalyst layers with focus onmore » chemistry and distribution of active sites and ionomer morphology. To assess catalyst interaction with an ionomer, X-ray photoelectron spectroscopy is applied to study the chemistry of catalyst layers while density functional theory (DFT) is used to calculate adsorption energies of the ionomer side chain on different nitrogen species. We report that a high surface concentration of hydrogenated nitrogen at the surface of MNC catalysts causes inefficient ionomer morphology, while an abundance of surface oxides promotes both an efficient distribution of active sites and an optimal ionomer–catalyst interface. The critical role of protonation of nitrogen within catalytic layers in inhibiting proton transport during fuel cell operation is also suggested. As a result, this is the first report of the effect the surface chemistry of MNC catalysts, in the presence of the ionomer, has on the structure and performance of MEA electrodes.« less
Artyushkova, Kateryna; Workman, Michael J.; Matanovic, Ivana; ...
2017-12-18
The role of the interaction between doped carbon-based materials and ionic conductors is essential in multiple technologies, from fuel cells and energy storage devices to conductive polymer composites. In this paper, we report how the surface chemistry of transition metal–nitrogen–carbon (MNC) electrocatalysts affects catalyst–ionomer interaction and the resulting structure of cathodes. The cathode structure resulting from these interactions is directly related to the performance in membrane electrode assembly (MEA) fuel cells. To advance the development of platinum group metal (PGM)-free electrodes for the oxygen reduction reaction it is necessary to understand the structure of the catalyst layers with focus onmore » chemistry and distribution of active sites and ionomer morphology. To assess catalyst interaction with an ionomer, X-ray photoelectron spectroscopy is applied to study the chemistry of catalyst layers while density functional theory (DFT) is used to calculate adsorption energies of the ionomer side chain on different nitrogen species. We report that a high surface concentration of hydrogenated nitrogen at the surface of MNC catalysts causes inefficient ionomer morphology, while an abundance of surface oxides promotes both an efficient distribution of active sites and an optimal ionomer–catalyst interface. The critical role of protonation of nitrogen within catalytic layers in inhibiting proton transport during fuel cell operation is also suggested. As a result, this is the first report of the effect the surface chemistry of MNC catalysts, in the presence of the ionomer, has on the structure and performance of MEA electrodes.« less
A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts
Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen
2012-01-01
Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO3 and MnO2, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm−2 has been achieved at 65°C, which increases by a factor of 1.7–3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC. PMID:22880160
Metal-catalyst-free carbohydrazide fuel cells with three-dimensional graphene anodes.
Qi, Ji; Benipal, Neeva; Wang, Hui; Chadderdon, David J; Jiang, Yibo; Wei, Wei; Hu, Yun Hang; Li, Wenzhen
2015-04-13
As a potential solution to concerns on sustainable energy, the wide spread commercialization of fuel cell has long been hindered by limited reserves and relatively high costs of metal catalysts. 3D graphene, a carbon-only catalyst prepared by reduction of carbon monoxide with lithium oxide, is found to electrochemically catalyze carbohydrazide oxidation reaction efficiently. A prototype of a completely metal-catalyst-free anion exchange membrane fuel cell (AEMFC) with a 3D graphene anode catalyst and an N-doped CNT (N-CNT) cathode catalyst generate a peak power density of 24.9 mW cm(-2) . The average number of electrons electrochemically extracted from one carbohydrazide molecule is 4.9, indicating the existence of CN bond activation, which is a key factor contributing to high fuel utilization efficiency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
To alloy or not to alloy? Cr modified Pt/C cathode catalysts for PEM fuel cells.
Wells, Peter P; Qian, Yangdong; King, Colin R; Wiltshire, Richard J K; Crabb, Eleanor M; Smart, Lesley E; Thompsett, David; Russell, Andrea E
2008-01-01
The cathode electrocatalysts for proton exchange membrane (PEM) fuel cells are commonly platinum and platinum based alloy nanoparticles dispersed on a carbon support. Control over the particle size and composition has, historically, been attained empirically, making systematic studies of the effects of various structural parameters difficult. The controlled surface modification methodology used in this work has enabled the controlled modification of carbon supported Pt nanoparticles by Cr so as to yield nanoalloy particles with defined compositions. Subsequent heat treatment in 5% H2 in N2 resulted in the formation of a distinct Pt3Cr alloy phase which was either restricted to the surface of the particles or present throughout the bulk of the particle structure. Measurement of the oxygen reduction activity of the catalysts was accomplished using the rotating thin film electrode method and the activities obtained were related to the structure of the nanoalloy catalyst particles, largely determined using Cr K edge and Pt L3 edge XAS.
NASA Astrophysics Data System (ADS)
Zhang, Lihua; Hu, Yongyou; Chen, Junfeng; Huang, Wantang; Cheng, Jianhua; Chen, Yuancai
2018-04-01
To improve the power generation of microbial fuel cell (MFC), the cathode is modified to increase its oxygen reduction reaction (ORR) activity by using a Cu, N-incorporated carbon-based material as catalyst, which obtained from pyrolyzing ORR active Cu (II)-based metal organic framework (MOF; Cu-bipy-BTC, bipy = 2,2‧-bipyridine, BTC = 1,3,5-tricarboxylate). MOF-800 (the product of pyrolyzing Cu-bipy-BTC at 800 °C) shows porous structure with micropores ranging from 0.5 to 1.3 nm and mesopores ranging from 27 to 46 nm. It also exhibits improved ORR electrocatalytic activity with a higher current density of -3.06 mA cm-2 compared to Cu-bipy-BTC. Moreover, the charge transfer resistance of MOF-800 cathode (1.38 Ω) is much smaller than that of Cu-bipy-BTC cathode (176.8 Ω). A maximum power density of 326 ± 11 mW m-2 is achieved by MOF-800-MFC, which is 2.6 times of that of Cu-bipy-BTC-MFC and comparable with Pt/C-MFC (402 ± 17 mW m-2). The results imply the enhancements of ORR catalytic activity and electrical conductivity of MOF-800 are due to the enhanced porous structure and abundant active sites (C-N, Cu-Nχ), which result in the improved power generation of MFC. This study provides technical and theoretical validation for the MFC performance improvement by ORR active MOF-derived catalysts modified cathodes.
NASA Astrophysics Data System (ADS)
Santoro, Carlo; Kodali, Mounika; Kabir, Sadia; Soavi, Francesca; Serov, Alexey; Atanassov, Plamen
2017-07-01
Three-dimensional graphene nanosheets (3D-GNS) were used as cathode catalysts for microbial fuel cells (MFCs) operating in neutral conditions. 3D-GNS catalysts showed high performance towards oxygen electroreduction in neutral media with high current densities and low hydrogen peroxide generation compared to activated carbon (AC). 3D-GNS was incorporated into air-breathing cathodes based on AC with three different loadings (2, 6 and 10 mgcm-2). Performances in MFCs showed that 3D-GNS had the highest performances with power densities of 2.059 ± 0.003 Wm-2, 1.855 ± 0.007 Wm-2 and 1.503 ± 0.005 Wm-2 for loading of 10, 6 and 2 mgcm-2 respectively. Plain AC had the lowest performances (1.017 ± 0.009 Wm-2). The different cathodes were also investigated in supercapacitive MFCs (SC-MFCs). The addition of 3D-GNS decreased the ohmic losses by 14-25%. The decrease in ohmic losses allowed the SC-MFC with 3D-GNS (loading 10 mgcm-2) to have the maximum power (Pmax) of 5.746 ± 0.186 Wm-2. At 5 mA, the SC-MFC featured an "apparent" capacitive response that increased from 0.027 ± 0.007 F with AC to 0.213 ± 0.026 F with 3D-GNS (loading 2 mgcm-2) and further to 1.817 ± 0.040 F with 3D-GNS (loading 10 mgcm-2).
2011-03-01
concentrations. Cathode capacity approaching 000mAhg−1 for a Mn based catalyst [7] and cathode capac- ty 5360mAhg−1 for cell employing a hydrophobic ionic ... liquid nd lithium salt were reported [8]. A gravimetric capacity of 813mAhg−1 was achieved using a novel lithium–oxygen cath- de architecture without...andNafion (tetrafluoroethy- ene based fluoropolymer-copolymer) solution in one case and -KB and Nafion in another were prepared and spread on graphite
Transport phenomena in polymer electrolyte membrane fuel cells via voltage loss breakdown
NASA Astrophysics Data System (ADS)
Flick, Sarah; Dhanushkodi, Shankar R.; Mérida, Walter
2015-04-01
This study presents a voltage loss breakdown method based on in-situ experimental data to systematically analyze the different overpotentials of a polymer electrolyte membrane fuel cell. This study includes a systematic breakdown of the anodic overpotentials via the use of a reference electrode system. This work demonstrates the de-convolution of the individual overpotentials for both anode and cathode side, including the distinction between mass-transport overpotentials in cathode porous transport layer (PTL) and electrode, based on in-situ polarization tests under different operating conditions. This method is used to study the relationship between mass-transport losses inside the cathode catalyst layer (CL) and the PTL for both a single layer and two-layer PTL configuration. We conclude that the micro-porous layer (MPL) significantly improves the water removal within the cell, especially inside the cathode electrode, and therefore the mass transport within the cathode CL. This study supports the theory that the MPL on the cathode leads to an increase in water permeation from cathode to anode due to its function as a capillary barrier. This is reflected in increased anodic mass-transport overpotential, decreased ohmic losses and decreased cathode mass-transport losses, especially in the cathode electrode.
Mo, Jingke; Steen, Stuart M.; Zhang, Feng-Yuan; ...
2015-08-05
The lack of a fundamental understanding of the corrosion mechanisms in the electrochemical environments of proton exchange membrane (PEM) electrolyzer and/or fuel cells (ECs/FCs) has seriously hindered the improvement of performance and efficiency of PEM ECs/FCs. In this study, a stainless steel mesh was purposely used as an anode gas diffusion layer that was intentionally operated with high positive potentials under harsh oxidative environments in a PEMEC to study the corrosion mechanism of metal migration. A significant amount of iron and nickel cations were determined to transport through the anode catalyst layer, the PEM and the cathode catalyst layer duringmore » the PEMEC operation. The formation/deposition of iron oxide and nickel oxide on the carbon paper gas diffusion layer at the cathode side is first revealed by both scanning electron microscope and X-ray diffraction. The results indicate the corrosion elements of iron and nickel are transported from anode to cathode through the catalyst-coated membrane, and deposited on carbon fibers as oxides. This phenomenon could also open a new corrosion-based processing approach to potentially fabricate multifunctional oxide structures on carbon fiber devices. This study has demonstrated a new accelerated test method for investigating the corrosion and durability of metallic materials as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Jingke; Steen, Stuart M.; Zhang, Feng-Yuan
The lack of a fundamental understanding of the corrosion mechanisms in the electrochemical environments of proton exchange membrane (PEM) electrolyzer and/or fuel cells (ECs/FCs) has seriously hindered the improvement of performance and efficiency of PEM ECs/FCs. In this study, a stainless steel mesh was purposely used as an anode gas diffusion layer that was intentionally operated with high positive potentials under harsh oxidative environments in a PEMEC to study the corrosion mechanism of metal migration. A significant amount of iron and nickel cations were determined to transport through the anode catalyst layer, the PEM and the cathode catalyst layer duringmore » the PEMEC operation. The formation/deposition of iron oxide and nickel oxide on the carbon paper gas diffusion layer at the cathode side is first revealed by both scanning electron microscope and X-ray diffraction. The results indicate the corrosion elements of iron and nickel are transported from anode to cathode through the catalyst-coated membrane, and deposited on carbon fibers as oxides. This phenomenon could also open a new corrosion-based processing approach to potentially fabricate multifunctional oxide structures on carbon fiber devices. This study has demonstrated a new accelerated test method for investigating the corrosion and durability of metallic materials as well.« less
Obermaier, Michael; Bandarenka, Aliaksandr S; Lohri-Tymozhynsky, Cyrill
2018-03-21
Electrochemical impedance spectroscopy (EIS) is an indispensable tool for non-destructive operando characterization of Polymer Electrolyte Fuel Cells (PEFCs). However, in order to interpret the PEFC's impedance response and understand the phenomena revealed by EIS, numerous semi-empirical or purely empirical models are used. In this work, a relatively simple model for PEFC cathode catalyst layers in absence of oxygen has been developed, where all the equivalent circuit parameters have an entire physical meaning. It is based on: (i) experimental quantification of the catalyst layer pore radii, (ii) application of De Levie's analytical formula to calculate the response of a single pore, (iii) approximating the ionomer distribution within every pore, (iv) accounting for the specific adsorption of sulfonate groups and (v) accounting for a small H 2 crossover through ~15 μm ionomer membranes. The derived model has effectively only 6 independent fitting parameters and each of them has clear physical meaning. It was used to investigate the cathode catalyst layer and the double layer capacitance at the interface between the ionomer/membrane and Pt-electrocatalyst. The model has demonstrated excellent results in fitting and interpretation of the impedance data under different relative humidities. A simple script enabling fitting of impedance data is provided as supporting information.
Kim, Ok-Hee; Cho, Yoon-Hwan; Jeon, Tae-Yeol; Kim, Jung Won; Cho, Yong-Hun; Sung, Yung-Eun
2015-07-01
Core-shell structure nanoparticles have been the subject of many studies over the past few years and continue to be studied as electrocatalysts for fuel cells. Therefore, many excellent core-shell catalysts have been fabricated, but few studies have reported the real application of these catalysts in a practical device actual application. In this paper, we demonstrate the use of platinum (Pt)-exoskeleton structure nanoparticles as cathode catalysts with high stability and remarkable Pt mass activity and report the outstanding performance of these materials when used in membrane-electrode assemblies (MEAs) within a polymer electrolyte membrane fuel cell. The stability and degradation characteristics of these materials were also investigated in single cells in an accelerated degradation test using load cycling, which is similar to the drive cycle of a polymer electrolyte membrane fuel cell used in vehicles. The MEAs with Pt-exoskeleton structure catalysts showed enhanced performance throughout the single cell test and exhibited improved degradation ability that differed from that of a commercial Pt/C catalyst.
Metallization of bacterial cellulose for electrical and electronic device manufacture
Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan
2006-01-17
The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, Lina; Goenaga, Gabriel A.; Williams, Kia
We demonstrated that the oxygen reduction reaction (ORR) activity over the catalysts derived from pyrolyzed cobalt zeolitic imidazolate frameworks depends strongly on the imidazole ligand structure and cobalt content. The activity and durability of these catalysts were tested in the proton exchange membrane fuel cell for the first time. The membrane electrode assembly containing a catalyst derived from Co/Zn bimetallic ZIF at cathode achieved an open circuit voltage of 0.93 V, a current density of 28 mA cm-2 at 0.8 ViR-free and a peak power density of 374 mW cm-2.
NASA Astrophysics Data System (ADS)
Huang, Xiaoming
Direct methanol fuel cell (DMFC) is an attractive power source for portable applications in the near future, due to the high energy density of liquid methanol. Towards commercialization of the DMFC, several technical and economic challenges need to be addressed though. The present study aims at developing and characterizing high performance membrane electrode assemblies (MEAs) for the DMFCs by using a hydrocarbon type membrane (PolyFuel 62) and supported catalysts (PtRu/C). First, methanol and water transport properties in the PolyFuel 62 membrane were examined by various material characterization methods. Compared with the currently used perflurosulfonated Nafion 212 membrane, the PolyFuel membrane has lower methanol crossover, especially at high testing temperature. In addition, based on results of water diffusivity test, water diffusion through the PolyFuel membrane was also lower compared with the Nafion membrane. In order to check the possible impacts of the low methanol and water diffusivities in the PolyFuel membrane, a MEA with this new type of membrane was developed and its performance was compared with a Nafion MEA with otherwise identical electrodes and GDLs. The results showed anode performance was identical, while cathode performance of the PolyFuel MEA was lower. More experiments combined with a transmission line model revealed that low water transport through the PolyFuel membrane resulted in a higher proton resistance in the cathode electrode and thus, leading to a low cathode performance. Thus increasing the water content in the cathode electrode is critical for using the PolyFuel membrane in the DMFC MEA. Then, a low loading carbon supported catalyst, PtRu/C, was prepared and tested as the anode electrode in a MEA of the DMFC. Compared with performance of an unsupported MEA, we could find that lower performance in the supported MEA was due to methanol transport limitation because of the denser and thicker supported catalyst layer. Accordingly, an addition of a pore former, Li 2CO3, was proposed during the catalyst ink preparation. This was proved to be very effective, largely improving anode performance with only 1/3 of catalyst loading. Finally, the PolyFuel membrane and supported catalysts were ready to be applied in the new MEA for the DMFCs. The new made MEA, with the catalyst loading of 2.6-time lower than a reference MEA, showed a very promising result, about only 10mV performance loss under the current density of 150mA/cm² compared with the reference MEA. Moreover, a short-term decay test indicated that the new MEA may have better durability and life because of its low methanol crossover on the cathode electrode due the PolyFuel membrane.
Solid-State Water Electrolysis with an Alkaline Membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, YJ; Chen, G; Mendoza, AJ
2012-06-06
We report high-performance, durable alkaline membrane water electrolysis in a solid-state cell. An anion exchange membrane (AEM) and catalyst layer ionomer for hydroxide ion conduction were used without the addition of liquid electrolyte. At 50 degrees C, an AEM electrolysis cell using iridium oxide as the anode catalyst and Pt black as the cathode catalyst exhibited a current density of 399 mA/cm(2) at 1.80 V. We found that the durability of the AEM-based electrolysis cell could be improved by incorporating a highly durable ionomer in the catalyst layer and optimizing the water feed configuration. We demonstrated an AEM-based electrolysis cellmore » with a lifetime of > 535 h. These first-time results of water electrolysis in a solid-state membrane cell are promising for low-cost, scalable hydrogen production.« less
High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction
NASA Astrophysics Data System (ADS)
Peng, Hongliang; Mo, Zaiyong; Liao, Shijun; Liang, Huagen; Yang, Lijun; Luo, Fan; Song, Huiyu; Zhong, Yiliang; Zhang, Bingqing
2013-05-01
Proton exchange membrane fuel cells are promising candidates for a clean and efficient energy conversion in the future, the development of carbon based inexpensive non-precious metal ORR catalyst has becoming one of the most attractive topics in fuel cell field. Herein we report a Fe- and N- doped carbon catalyst Fe-PANI/C-Mela with graphene structure and the surface area up to 702 m2 g-1. In 0.1 M HClO4 electrolyte, the ORR onset potential for the catalyst is high up to 0.98 V, and the half-wave potential is only 60 mV less than that of the Pt/C catalyst (Loadings: 51 μg Pt cm-2). The catalyst shows high stability after 10,000 cyclic voltammetry cycles. A membrane electrode assembly made with the catalyst as a cathode is tested in a H2-air single cell, the maximum power density reached ~0.33 W cm2 at 0.47 V.
NASA Astrophysics Data System (ADS)
Herden, Susanne; Riewald, Felix; Hirschfeld, Julian A.; Perchthaler, Markus
2017-07-01
Within the active area of a fuel cell inhomogeneous operating conditions occur, however, state of the art electrodes are homogenous over the complete active area. This study uses current density distribution measurements to analyze which ionomer equivalent weight (EW) shows locally the highest current densities. With this information a segmented cathode electrode is manufactured by decal transfer. The segmented electrode shows better performance especially at high current densities compared to homogenous electrodes. Furthermore this segmented catalyst coated membrane (CCM) performs optimal in wet as well as dry conditions, both operating conditions arise in automotive fuel cell applications. Thus, cathode electrodes with an optimized ionomer EW distribution might have a significant impact on future automotive fuel cell development.
Sebastián, David; Serov, Alexey; Artyushkova, Kateryna; Gordon, Jonathan; Atanassov, Plamen; Aricò, Antonino S; Baglio, Vincenzo
2016-08-09
Direct methanol fuel cells (DMFCs) offer great advantages for the supply of power with high efficiency and large energy density. The search for a cost-effective, active, stable and methanol-tolerant catalyst for the oxygen reduction reaction (ORR) is still a great challenge. In this work, platinum group metal-free (PGM-free) catalysts based on Fe-N-C are investigated in acidic medium. Post-treatment of the catalyst improves the ORR activity compared with previously published PGM-free formulations and shows an excellent tolerance to the presence of methanol. The feasibility for application in DMFC under a wide range of operating conditions is demonstrated, with a maximum power density of approximately 50 mW cm(-2) and a negligible methanol crossover effect on the performance. A review of the most recent PGM-free cathode formulations for DMFC indicates that this formulation leads to the highest performance at a low membrane-electrode assembly (MEA) cost. Moreover, a 100 h durability test in DMFC shows suitable applicability, with a similar performance-time behavior compared to common MEAs based on Pt cathodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nabae, Yuta; Nagata, Shinsuke; Hayakawa, Teruaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Isoda, Ayano; Matsunaga, Atsushi; Tanaka, Kazuhisa; Aoki, Tsutomu
2016-01-01
The development of a non-precious metal (NPM) fuel cell catalyst is extremely important to achieve globalization of polymer electrolyte fuel cells due to the cost and scarcity of platinum. Here, we report on a NPM cathode catalyst prepared by the pyrolysis of spherical polyimide nanoparticles that contain small amounts of Fe additive. 60 nm diameter Fe-containing polyimide nanoparticles were successfully synthesized by the precipitation polymerization of pyromellitic acid dianhydride and 1,3,5-tris(4-aminophenyl)benzene with Fe(acac)3 (acac = acetylacetonate) as an additive. The particles were subsequently carbonized by multistep pyrolysis to obtain the NPM catalyst while retaining the small particle size. The catalyst has good performance and promising durability for fuel cell applications. The fuel cell performance under a 0.2 MPa air atmosphere at 80 °C of 1.0 A cm−2 at 0.46 V is especially remarkable and better than that previously reported. PMID:26987682
Microbial fuel cells with highly active aerobic biocathodes
NASA Astrophysics Data System (ADS)
Milner, Edward M.; Popescu, Dorin; Curtis, Tom; Head, Ian M.; Scott, Keith; Yu, Eileen H.
2016-08-01
Microbial fuel cells (MFCs), which convert organic waste to electricity, could be used to make the wastewater infrastructure more energy efficient and sustainable. However, platinum and other non-platinum chemical catalysts used for the oxygen reduction reaction (ORR) at the cathode of MFCs are unsustainable due to their high cost and long-term degradation. Aerobic biocathodes, which use microorganisms as the biocatalysts for cathode ORR, are a good alternative to chemical catalysts. In the current work, high-performing aerobic biocathodes with an onset potential for the ORR of +0.4 V vs. Ag/AgCl were enriched from activated sludge in electrochemical half-cells poised at -0.1 and + 0.2 V vs. Ag/AgCl. Gammaproteobacteria, distantly related to any known cultivated gammaproteobacterial lineage, were identified as dominant in these working electrode biofilms (23.3-44.3% of reads in 16S rRNA gene Ion Torrent libraries), and were in very low abundance in non-polarised control working electrode biofilms (0.5-0.7%). These Gammaproteobacteria were therefore most likely responsible for the high activity of biologically catalysed ORR. In MFC tests, a high-performing aerobic biocathode increased peak power 9-fold from 7 to 62 μW cm-2 in comparison to an unmodified carbon cathode, which was similar to peak power with a platinum-doped cathode at 70 μW cm-2.
Evaluation studies on carbon supported catalysts for oxygen reduction in alkaline medium
NASA Technical Reports Server (NTRS)
Srinivasan, Vakula S.; Singer, Joseph
1986-01-01
This paper describes tests designed to predict the performance of fuel cell electrodes, as applied to an alkaline oxygen-fuel cell having specially fabricated porous-carbon electrodes with various amounts of dispersed platinum or gold as active catalysts. The tests are based on information obtained from the techniques of cyclic voltammetry and polarization. The parameters obtained from cyclic voltammetry were of limited use in predicting fuel cell performance of the cathode. On the other hand, half-cell polarization measurements offered close simulation of the oxygen electrode, although a predictor of the electrode life is still lacking. The very low polarization of the Au-10 percent Pt catalytic electrode suggests that single-phase catalysts should be considered.
NASA Astrophysics Data System (ADS)
Vij, Varun; Tiwari, Jitendra N.; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S.
2016-02-01
High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp2 carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm-2 at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadias, D. D.; Ahluwalia, R. K.; Kariuki, N.
The durability of Pt-Co alloy cathode catalysts supported on high surface area carbon is investigated by subjecting them to accelerated stress tests (ASTs). The catalysts had different initial Co contents and nanoparticle morphologies: a “spongy” porous morphology for the high-Co (H) content catalyst, and a fully alloyed crystalline morphology for the medium-Co (M) and low-Co (L) content catalysts. The specific activity of the catalysts depends on their initial Co content, morphology and nanoparticle size, and remained higher than 1000 μA/cm 2-Pt after 27–50% Co loss. The H-catalyst electrode showed the smallest kinetic overpotentials (η c s) due to higher initialmore » Pt loading than the other two electrodes, but it had the fastest increase in ηcs with AST cycling due to lower Co retention; the L-catalyst electrode showed higher η c s due to a lower initial Pt loading, but had a smaller increase in η c s with aging due to higher Co retention; the M-catalyst electrode showed a similar increase in η c s with aging, but this increase was due to the combined effects of Co dissolution and electrochemically active surface area (ECSA) loss. In conclusion, the modeled increase in mass transfer overpotentials with aging correlates with the initial Pt loading, ECSA loss and the initial catalyst morphology« less
Papadias, D. D.; Ahluwalia, R. K.; Kariuki, N.; ...
2018-03-17
The durability of Pt-Co alloy cathode catalysts supported on high surface area carbon is investigated by subjecting them to accelerated stress tests (ASTs). The catalysts had different initial Co contents and nanoparticle morphologies: a “spongy” porous morphology for the high-Co (H) content catalyst, and a fully alloyed crystalline morphology for the medium-Co (M) and low-Co (L) content catalysts. The specific activity of the catalysts depends on their initial Co content, morphology and nanoparticle size, and remained higher than 1000 μA/cm 2-Pt after 27–50% Co loss. The H-catalyst electrode showed the smallest kinetic overpotentials (η c s) due to higher initialmore » Pt loading than the other two electrodes, but it had the fastest increase in ηcs with AST cycling due to lower Co retention; the L-catalyst electrode showed higher η c s due to a lower initial Pt loading, but had a smaller increase in η c s with aging due to higher Co retention; the M-catalyst electrode showed a similar increase in η c s with aging, but this increase was due to the combined effects of Co dissolution and electrochemically active surface area (ECSA) loss. In conclusion, the modeled increase in mass transfer overpotentials with aging correlates with the initial Pt loading, ECSA loss and the initial catalyst morphology« less
Process for recycling components of a PEM fuel cell membrane electrode assembly
Shore, Lawrence [Edison, NJ
2012-02-28
The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branko N. Popov
2009-03-03
The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst showsmore » the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable catalytic activity and selectivity for ORR as the Pt catalyst. A theoretical analysis is made of the four-electron reduction reaction of oxygen to water over the mixed anion and cation (202) surface of pentlandite structure Co9Se8, one of several selenide phases. Reversible potentials for forming adsorbed reaction intermediates in acid are predicted using adsorption energies calculated with the Vienna ab initio simulation program (VASP) and the known bulk solution values together in a linear Gibbs energy relationship. The effect of hydrophobic and structural properties of a single/dual-layer cathode gas diffusion layer on mass transport in PEM fuel cells was studied using an analytical expression. The simulations indicated that liquid water transport at the cathode is controlled by the fraction of hydrophilic surface and the average pore diameter in the cathode gas diffusion layer. The optimized hydrophobicity and pore geometry in a dual-layer cathode GDL leads to an effective water management, and enhances the oxygen diffusion kinetics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branko N. Popov
2009-02-20
The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst showsmore » the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable catalytic activity and selectivity for ORR as the Pt catalyst. A theoretical analysis is made of the four-electron reduction reaction of oxygen to water over the mixed anion and cation (202) surface of pentlandite structure Co9Se8, one of several selenide phases. Reversible potentials for forming adsorbed reaction intermediates in acid are predicted using adsorption energies calculated with the Vienna ab initio simulation program (VASP) and the known bulk solution values together in a linear Gibbs energy relationship. The effect of hydrophobic and structural properties of a single/dual-layer cathode gas diffusion layer on mass transport in PEM fuel cells was studied using an analytical expression. The simulations indicated that liquid water transport at the cathode is controlled by the fraction of hydrophilic surface and the average pore diameter in the cathode gas diffusion layer. The optimized hydrophobicity and pore geometry in a dual-layer cathode GDL leads to an effective water management, and enhances the oxygen diffusion kinetics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sehkyu; Shao, Yuyan; Viswanathan, Vilayanur V.
2016-10-01
In this paper, we describe a highly stable cathode containing a Pt catalyst supported on an indium tin oxide (ITO) and carbon nanotube (CNT) composite. The dependence of cathode performance and durability on the ITO content and the diameter of the CNTs were investigated by electrochemical techniques. The cathode with 30 wt% ITO and CNTs with diameters 10–20 nm in the composite offered preferred locations for Pt stabilization and was very resistant to carbon corrosion (i.e., 82.7% ESA retention and 105.7% mass activity retention after an accelerated stress test for 400 h).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Joseph; Windmiller, Joshua Ray; Jia, Wenzhao
2016-11-22
Methods, systems, and devices are disclosed for implementing a biofuel cell device for extracting energy from a biofuel. In one aspect, a biofuel cell device includes a substrate, an anode including a catalyst to facilitate the conversion of a fuel in a biological fluid in an oxidative process that releases electrons captured at the anode, thereby extracting energy from the fuel substance, a cathode configured on the substrate adjacent to the anode and separated from the anode by a spacing region, and a load electrically coupled to the anode and cathode via electrical interconnects to obtain the extracted energy asmore » electrical energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petkov, Valeri; Maswadeh, Yazan; Zhao, Yinguang
We introduce an experimental approach for structural characterization of catalysts for fuel cells combining synchrotron x-ray spectroscopy and total scattering. The approach allows probing catalysts inside operating fuel cells with atomic-level precision (~ 0.02 Å) and element specificity (~ 2–3 at%) in both time (~ 1 min) and space (~ μm) resolved manner. The approach is demonstrated on exemplary Pd-Sn and Pt-Ni-Cu nanoalloy catalysts for the oxygen reduction reaction (ORR) deposited on the cathode of an operating proton exchange membrane fuel cell. In operando x-ray data show that under operating conditions, the catalyst particles can undergo specific structural changes, rangingmore » from sub-Å atomic fluctuations and sharp nanophase transitions to a gradual strain relaxation and growth, which inflict significant losses in their ORR activity. Though triggered electrochemically, the changes are not driven solely by differences in the reduction potential and surface energy of the metallic species constituting the nanoalloys but also by the formation energy of competing nanophases, mismatch between the size of individual atomic species and their ability to interdiffuse fast in search of energetically favorable configurations. Given their complexity, the changes are difficult to predict and so the resulting ORR losses remain difficult to limit. We show that in operando knowledge of the structural evolution of nanoalloy catalysts helps create strategies for improving their activity and stability. In particular, we show that shaping Pd-Sn nanoalloys rich in Pd as cubes reduces the interdiffusion of atoms at their surface and so makes them better catalysts for ORR in fuel cells in comparison to other Pd-Sn nanoalloys. In addition, we demonstrate that the approach introduced here can provide knowledge of other major factors affecting the performance of fuel cells such as operating temperature and the overall catalyst utilization, in particular the evolution of elemental and mass distribution of catalyst particles over the cells’ cathode. Last but not least, we discuss how in operando x-ray spectroscopy and total x-ray scattering can bridge the knowledge gap between the widely used in situ SAXS, EXAFS and monocrystal surface XRD techniques for structural characterization of nanoalloy catalysts explored for energy related applications.« less
Petkov, Valeri; Maswadeh, Yazan; Zhao, Yinguang; ...
2018-04-18
We introduce an experimental approach for structural characterization of catalysts for fuel cells combining synchrotron x-ray spectroscopy and total scattering. The approach allows probing catalysts inside operating fuel cells with atomic-level precision (~ 0.02 Å) and element specificity (~ 2–3 at%) in both time (~ 1 min) and space (~ μm) resolved manner. The approach is demonstrated on exemplary Pd-Sn and Pt-Ni-Cu nanoalloy catalysts for the oxygen reduction reaction (ORR) deposited on the cathode of an operating proton exchange membrane fuel cell. In operando x-ray data show that under operating conditions, the catalyst particles can undergo specific structural changes, rangingmore » from sub-Å atomic fluctuations and sharp nanophase transitions to a gradual strain relaxation and growth, which inflict significant losses in their ORR activity. Though triggered electrochemically, the changes are not driven solely by differences in the reduction potential and surface energy of the metallic species constituting the nanoalloys but also by the formation energy of competing nanophases, mismatch between the size of individual atomic species and their ability to interdiffuse fast in search of energetically favorable configurations. Given their complexity, the changes are difficult to predict and so the resulting ORR losses remain difficult to limit. We show that in operando knowledge of the structural evolution of nanoalloy catalysts helps create strategies for improving their activity and stability. In particular, we show that shaping Pd-Sn nanoalloys rich in Pd as cubes reduces the interdiffusion of atoms at their surface and so makes them better catalysts for ORR in fuel cells in comparison to other Pd-Sn nanoalloys. In addition, we demonstrate that the approach introduced here can provide knowledge of other major factors affecting the performance of fuel cells such as operating temperature and the overall catalyst utilization, in particular the evolution of elemental and mass distribution of catalyst particles over the cells’ cathode. Last but not least, we discuss how in operando x-ray spectroscopy and total x-ray scattering can bridge the knowledge gap between the widely used in situ SAXS, EXAFS and monocrystal surface XRD techniques for structural characterization of nanoalloy catalysts explored for energy related applications.« less
Sawant, Sandesh Y.; Han, Thi Hiep; Cho, Moo Hwan
2016-01-01
Microbial fuel cells (MFCs) are a promising green approach for wastewater treatment with the simultaneous advantage of energy production. Among the various limiting factors, the cathodic limitation, with respect to performance and cost, is one of the main obstacles to the practical applications of MFCs. Despite the high performance of platinum and other metal-based cathodes, their practical use is limited by their high cost, low stability, and environmental toxicity. Oxygen is the most favorable electron acceptor in the case of MFCs, which reduces to water through a complicated oxygen reduction reaction (ORR). Carbon-based ORR catalysts possessing high surface area and good electrical conductivity improve the ORR kinetics by lowering the cathodic overpotential. Recently, a range of carbon-based materials have attracted attention for their exceptional ORR catalytic activity and high stability. Doping the carbon texture with a heteroatom improved their ORR activity remarkably through the favorable adsorption of oxygen and weaker molecular bonding. This review provides better insight into ORR catalysis for MFCs and the properties, performance, and applicability of various metal-free carbon-based electrocatalysts in MFCs to find the most appropriate cathodic catalyst for the practical applications. The approaches for improvement, key challenges, and future opportunities in this field are also explored. PMID:28029116
NASA Astrophysics Data System (ADS)
Wu, Juan; Melo, Lis G. A.; Zhu, Xiaohui; West, Marcia M.; Berejnov, Viatcheslav; Susac, Darija; Stumper, Juergen; Hitchcock, Adam P.
2018-03-01
4D imaging - the three-dimensional distributions of chemical species determined using multi-energy X-ray tomography - of cathode catalyst layers of polymer electrolyte membrane fuel cells (PEM-FC) has been measured by scanning transmission x-ray microscopy (STXM) spectro-tomography at the C 1s and F 1s edges. In order to monitor the effects of radiation damage on the composition and 3D structure of the perfluorosulfonic acid (PFSA) ionomer, the same volume was measured 3 times sequentially, with spectral characterization of that same volume at several time points during the measurements. The changes in the average F 1s spectrum of the ionomer in the cathode as the measurements progressed gave insights into the degree of chemical modification, fluorine mass loss, and changes in the 3D distributions of ionomer that accompanied the spectro-tomographic measurement. The PFSA ionomer-in-cathode is modified both chemically and physically by radiation damage. The 3D volume decreases anisotropically. By reducing the incident flux, partial defocusing (50 nm spot size), limiting the number of tilt angles to 14, and using compressed sensing reconstruction, we show it is possible to reproducibly measure the 3D structure of ionomer in PEM-FC cathodes at ambient temperature while causing minimal radiation damage.
NASA Astrophysics Data System (ADS)
Ma, Ming; You, Shijie; Gong, Xiaobo; Dai, Ying; Zou, Jinlong; Fu, Honggang
2015-06-01
Biofilms from anode heterotrophic bacteria are inevitably formed over cathodic catalytic sites, limiting the performances of single-chamber microbial fuel cells (MFCs). Graphitic carbon (GC) - based nano silver/iron oxide (AgNPs/Fe3O4/GC) composites are prepared from waste pomelo skin and used as antibacterial oxygen reduction catalysts for MFCs. AgNPs and Fe3O4 are introduced in situ into the composites by one-step carbothermal reduction, enhancing their conductivity and catalytic activity. To investigate the effects of Fe species on the antibacterial and catalytic properties, AgNPs/Fe3O4/GC is washed with sulfuric acid (1 mol L-1) for 0.5 h, 1 h, and 5 h and marked as AgNPs/Fe3O4/GC-x (x = 0.5 h, 1 h and 5 h, respectively). A maximum power density of 1712 ± 35 mW m-2 is obtained by AgNPs/Fe3O4/GC-1 h, which declines by 4.12% after 17 cycles. Under catalysis of all AgNP-containing catalysts, oxygen reduction reaction (ORR) proceeds via the 4e- pathway, and no toxic effects to anode microorganisms result from inhibiting the cathodic biofilm overgrowth. With the exception of AgNPs/Fe3O4/GC-5 h, the AgNPs-containing composites exhibit remarkable power output and coulombic efficiency through lowering proton transfer resistance and air-cathode biofouling. This study provides a perspective for the practical application of MFCs using these efficient antibacterial ORR catalysts.
Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell
NASA Astrophysics Data System (ADS)
Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.
2017-04-01
This paper presents a computational model of a single chamber, air-cathode MFC. The model considers losses due to mass transport, as well as biological and electrochemical reactions, in both the anode and cathode half-cells. Computational fluid dynamics and Monod-Nernst analysis are incorporated into the reactions for the anode biofilm and cathode Pt catalyst and biofilm. The integrated model provides a macro-perspective of the interrelation between the anode and cathode during power production, while incorporating microscale contributions of mass transport within the anode and cathode layers. Model considerations include the effects of pH (H+/OH- transport) and electric field-driven migration on concentration overpotential, effects of various buffers and various amounts of buffer on the pH in the whole reactor, and overall impacts on the power output of the MFC. The simulation results fit the experimental polarization and power density curves well. Further, this model provides insight regarding mass transport at varying current density regimes and quantitative delineation of overpotentials at the anode and cathode. Overall, this comprehensive simulation is designed to accurately predict MFC performance based on fundamental fluid and kinetic relations and guide optimization of the MFC system.
NASA Technical Reports Server (NTRS)
Isenberg, Arnold O.; Cusick, Robert J.
1988-01-01
The direct electrochemical reduction of carbon dioxide (CO2) is achieved without catalysts and at sufficiently high temperatures to avoid carbon formation. The tubular electrolysis cell consists of thin layers of anode, electrolyte, cathode and cell interconnection. The electrolyte is made from yttria-stabilized zirconia which is an oxygen ion conductor at elevated temperatures. Anode and cell interconnection materials are complex oxides and are electronic conductors. The cathode material is a composite metal-ceramic structure. Cell performance characteristics have been determined using varying feed gas compositions and degrees of electrochemical decomposition. Cell test data are used to project the performance of a three-person CO2-electrolysis breadboard system.
Electricity generation of microbial fuel cell with waterproof breathable membrane cathode
NASA Astrophysics Data System (ADS)
Xing, Defeng; Tang, Yu; Mei, Xiaoxue; Liu, Bingfeng
2015-12-01
Simplification of fabrication and reduction of capital cost are important for scale-up and application of microbial electrochemical systems (MES). A fast and inexpensive method of making cathode was developed via assembling stainless steel mesh (SSM) with waterproof breathable membrane (WBM). Three assemble types of cathodes were fabricated; Pt@SSM/WBM (SSM as cathode skeleton, WBM as diffusion layer, platinum (Pt) catalyst applied on SSM), SSM/Pt@WBM and Pt@WBM. SSM/Pt@WBM cathode showed relatively preferable with long-term stability and favorable power output (24.7 W/m3). Compared to conventional cathode fabrication, air-cathode was made for 0.5 h. The results indicated that the novel fabrication method could remarkably reduce capital cost and simplify fabrication procedures with a comparable power output, making MFC more prospective for future application.
Catalytic membranes for fuel cells
Liu, Di-Jia [Naperville, IL; Yang, Junbing [Bolingbrook, IL; Wang, Xiaoping [Naperville, IL
2011-04-19
A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.
Kerr, John B.; Zhu, Xiaobing; Hwang, Gi Suk; Martin, Zulima; He, Qinggang; Driscoll, Peter; Weber, Adam; Clark, Kyle
2016-09-27
Water soluble catalysts, (M)meso-tetra(N-Methyl-4-Pyridyl)Porphinepentachloride (M=Fe, Co, Mn & Cu), have been incorporated into the polymer binder of oxygen reduction cathodes in membrane electrode assemblies used in PEM fuel cells and found to support encouragingly high current densities. The voltages achieved are low compared to commercial platinum catalysts but entirely consistent with the behavior observed in electroanalytical measurements of the homogeneous catalysts. A model of the dynamics of the electrode action has been developed and validated and this allows the MEA electrodes to be optimized for any chemistry that has been demonstrated in solution. It has been shown that improvements to the performance will come from modifications to the structure of the catalyst combined with optimization of the electrode structure and a well-founded pathway to practical non-platinum group metal catalysts exists.
NASA Technical Reports Server (NTRS)
Hagedorn, Norman H. (Inventor)
1993-01-01
An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.
NASA Astrophysics Data System (ADS)
Hou, Yang; Yuan, Heyang; Wen, Zhenhai; Cui, Shumao; Guo, Xiaoru; He, Zhen; Chen, Junhong
2016-03-01
Cost-effective catalysts are of key importance to the successful deployment of microbial fuel cells (MFCs) for electricity generation from organic wastes. Herein, a novel catalyst prepared by one-step synthesis strategy is reported. The catalyst features N-doped bamboo-like carbon nanotube (BCNT) in which CoNi-alloy is encapsulated at the end and/or the middle section of the tube with many graphene layers inside inner cavities of BCNT (N-G@CoNi/BCNT). The prepared N-G@CoNi/BCNT exhibits a high oxygen reduction reaction (ORR) activity with an early onset potential of 0.06 V vs. Ag/AgCl and a comparable exchange current density to that of commercial Pt/C. The excellent catalytic activity is further evidenced by a high electron transfer number of 3.63. When being applied in MFCs, the N-G@CoNi/BCNT yields an average current density of 6.7 A m-2, slightly lower than that of Pt/C but with a less mass transfer potential loss. The cost of the N-G@CoNi/BCNT for constructing a 1-m2 cathode electrode is 200 times lower than that of Pt/C. With such a competitive price and excellent electrocatalytic-activity resulting from its unique morphology, CoNi-alloy/nitrogen dopants, considerable specific surface area, and carbon-coated alloy/graphene hybridization, the present catalyst is a promising candidate for ORR catalysts in MFCs for energy recovery from wastes.
Wang, Chao; Cheng, Xiaojing; Lu, Jiabin; Shen, Shuiyun; Yan, Xiaohui; Yin, Jiewei; Wei, Guanghua; Zhang, Junliang
2017-12-07
Remarkable progress has been made in reducing the cathodic Pt loading of PEMFCs; however, a huge performance loss appears at high current densities, indicating the existence of a large oxygen transport resistance associated with the ultralow Pt loading catalyst layer. To reduce the Pt loading without sacrificing cell performance, it is essential to illuminate the oxygen transport mechanism in the catalyst layer. Toward this goal, an experimental approach to measure the oxygen transport resistance in catalyst layers is proposed and realized for the first time in this study. The measuring approach involves a dual-layer catalyst layer design, which consists of a dummy catalyst layer and a practical catalyst layer, followed by changing the thickness of dummy layer to respectively quantify the local and bulk resistances via limiting current measurements combined with linear extrapolation. The experimental results clearly reveal that the local resistance dominates the total resistance in the catalyst layer.
NASA Astrophysics Data System (ADS)
Herden, Susanne; Hirschfeld, Julian A.; Lohri, Cyrill; Perchthaler, Markus; Haase, Stefan
2017-10-01
To improve the performance of proton exchange membrane fuel cells, membrane electrode assemblies (MEAs) with segmented cathode electrodes have been manufactured. Electrodes with a higher and lower ionomer equivalent weight (EW) were used and analyzed using current density and temperature distribution, polarization curve, temperature sweep and electrochemical impedance spectroscopy measurements. These were performed using automotive metallic bipolar plates and operating conditions. Measurement data were used to manufacture an optimized segmented cathode electrode. We were able to show that our results are transferable from a small scale hardware to automotive application and that an ionomer EW segmentation of the cathode leads to performance improvement in a broad spectrum of operating conditions. Furthermore, we confirmed our results by using in-situ electrochemical impedance spectroscopy.
Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C electrodes.
López-González, B; Dector, A; Cuevas-Muñiz, F M; Arjona, N; Cruz-Madrid, C; Arana-Cuenca, A; Guerra-Balcázar, M; Arriaga, L G; Ledesma-García, J
2014-12-15
A hybrid glucose microfluidic fuel cell composed of an enzymatic cathode (Laccase/ABTS/C) and an inorganic anode (AuAg/C) was developed and tested. The enzymatic cathode was prepared by adsorption of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Laccase on Vulcan XC-72, which act as a redox mediator, enzymatic catalyst and support, respectively. The Laccase/ABTS/C composite was characterised by Fourier Transform Infrared (FTIR) Spectroscopy, streaming current measurements (Zeta potential) and cyclic voltammetry. The AuAg/C anode catalyst was characterised by Transmission electron microscopy (TEM) and cyclic voltammetry. The hybrid microfluidic fuel cell exhibited excellent performance with a maximum power density value (i.e., 0.45 mW cm(-2)) that is the highest reported to date. The cell also exhibited acceptable stability over the course of several days. In addition, a Mexican endemic Laccase was used as the biocathode electrode and evaluated in the hybrid microfluidic fuel cell generating 0.5 mW cm(-2) of maximum power density. Copyright © 2014 Elsevier B.V. All rights reserved.
Gentil, Solène; Lalaoui, Noémie; Dutta, Arnab; Nedellec, Yannig; Cosnier, Serge; Shaw, Wendy J; Artero, Vincent; Le Goff, Alan
2017-02-06
A biomimetic nickel bis-diphosphine complex incorporating the amino acid arginine in the outer coordination sphere was immobilized on modified carbon nanotubes (CNTs) through electrostatic interactions. The functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H 2 /2 H + interconversion from pH 0 to 9, with catalytic preference for H 2 oxidation at all pH values. The high activity of the complex over a wide pH range allows us to integrate this bio-inspired nanomaterial either in an enzymatic fuel cell together with a multicopper oxidase at the cathode, or in a proton exchange membrane fuel cell (PEMFC) using Pt/C at the cathode. The Ni-based PEMFC reaches 14 mW cm -2 , only six-times-less as compared to full-Pt conventional PEMFC. The Pt-free enzyme-based fuel cell delivers ≈2 mW cm -2 , a new efficiency record for a hydrogen biofuel cell with base metal catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionic Conductivity and its Role in Oxidation Reactions
NASA Astrophysics Data System (ADS)
Tamimi, Mazin Abdulla
In the field of solid oxide fuel cells (SOFCs), a substantial portion of research is focused on the ability of some oxide materials to conduct oxygen anions through their structure. For electrolytes, the benefits of improving bulk transport of ions are obvious: decrease the resistive losses of the electrolyte, and device efficiency goes up and higher power densities are possible. Even for cathode materials, better bulk ion transport leads to an increase in the oxygen exchange rate at the cathode surface, and the oxygen reduction reaction at the cathode surface is the rate limiting step for SOFC operation at intermediate temperatures (500-700ºC). As operation in this regime is a key step towards lowering the manufacturing cost and increasing the lifetime of devices, much effort is spent searching for new, more conductive materials, and analyzing existing materials to discover the structure-activity relationships that influence ionic conductivity. In the first part of this work, an overview is given of the neutron powder diffraction (NPD) techniques that are used to probe the structure of the materials in later parts. In the second part, NPD was used to analyze the structures of perovskite-type cathode materials, and show that increases in bulk conductivity led to increases in the surface oxygen exchange rate of these materials. In the final part, the methods used for SOFC cathode design were applied towards the design of oxide catalysts used for certain hydrocarbon partial oxidation reactions. The reactions studied follow the Mars van Krevelen mechanism, where oxygen atoms in the catalyst are consumed as part of the reaction and are subsequently replenished by oxygen in the gas phase. Similar to SOFC cathode operation, these processes include an oxygen reduction step, so it was hypothesized that increasing the ionic conductivity of the catalysts would improve their performance, just as it does for SOFC cathode materials. While the results are preliminary, the combination of a reference catalyst for the oxidative coupling of methane with a support with very high oxygen conductivity demonstrated a small increase in performance at low temperatures.
Coating of porous carbon for use in lithium air batteries
Amine, Khalil; Lu, Jun; Du, Peng; Lei, Yu; Elam, Jeffrey W
2015-04-14
A cathode includes a carbon material having a surface, the surface having a first thin layer of an inert material and a first catalyst overlaying the first thin layer, the first catalyst including metal or metal oxide nanoparticles, wherein the cathode is configured for use as the cathode of a lithium-air battery.
Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries
NASA Astrophysics Data System (ADS)
Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu
2016-01-01
Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g-1 at a current density of 100 mA g-1. When they were cycled at a limited capacity of 800 mAh g-1 at current densities of 200 or 400 mA g-1, these cathodes showed stable charge voltages of ˜3.65 or 3.90 V, corresponding to energy efficiencies of ˜71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.
Yamada, Yusuke; Fukunishi, Yurie; Yamazaki, Shin-ichi; Fukuzumi, Shunichi
2010-10-21
Hydrogen peroxide was electrochemically produced by reducing oxygen in an aqueous solution with [Co(TCPP)] as a catalyst and photovoltaic solar cell operating at 0.5 V. Hydrogen peroxide thus produced is utilized as a fuel for a one-compartment fuel cell with Ag-Pb alloy nanoparticles as the cathode.
Liu, Di-Jia [Naperville, IL; Yang, Junbing [Bolingbrook, IL
2012-03-20
A membrane electrode assembly (MEA) of the invention comprises an anode and a cathode and a proton conductive membrane therebetween, the anode and the cathode each comprising a patterned sheet of longitudinally aligned transition metal-containing carbon nanotubes, wherein the carbon nanotubes are in contact with and are aligned generally perpendicular to the membrane, wherein a catalytically active transition metal is incorporated throughout the nanotubes.
Report on Carbon Nano Material Workshop: Challenges and Opportunities
2013-01-22
trolyte fuel cells ( PEMFCs ) utilize the ability of the catalysts to initiate and maintain the oxygen reduction reaction on the cathode and the fuel...oxidation reaction on the anode. In order to increase the efficiency of the PEMFC catalysts, high-surface-area mesoporous carbons, carbon blacks, carbon...mechanical and thermal properties derived from a three-dimensional intercon- nected nanonetwork structure. The exceptional properties of CAs for PEMFC
Effective recycling of manganese oxide cathodes for lithium based batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo
Rechargeable lithium ion batteries (LIBs) occupy a prominent consumer presence due to their high cell potential and gravimetric energy density, there are also limited opportunities for electrode recycling. Currently used or proposed cathode recycling processes are multistep procedures which involve sequences of mechanical, thermal, and chemical leaching, where only the base material is recovered and significant processing is required to generate a recycled electrode structure. Another significant issue facing lithium based batteries is capacity fade due to structural degradation of the electroactive material upon extending cycling. Herein, inspired by heterogeneous catalyst thermal regeneration strategies, we present a new facile cathodemore » recycling process, where previously used cathodes are removed from a cell, heat treated, and then inserted into a new cell restoring the delivered capacity and cycle life. An environmentally sustainable manganese based material is employed, where binder-free self-supporting (BFSS) electrodes are prepared using a fibrous, high aspect ratio manganese oxide active material. After 200 discharge–charge cycles, the recycled BFSS electrodes display restored crystallinity and oxidation state of the manganese centers with the resulting electrochemistry (capacity and coulombic efficiency) reminiscent of freshly prepared BFSS cathodes. Of note, the BFSS electrode structure is robust with no degradation during the cell disassembly, electrode recovery, washing, and heat treatment steps; thus no post-processing is required for the recycled electrode. Furthermore, this work shows for the first time that a thermal regeneration method previously employed in catalyst systems can fully restore battery electrochemical performance, demonstrating a novel electrode recycling process which could open up new possibilities for energy storage devices with extended electrode lifecycles.« less
Effective recycling of manganese oxide cathodes for lithium based batteries
Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo; ...
2016-02-29
Rechargeable lithium ion batteries (LIBs) occupy a prominent consumer presence due to their high cell potential and gravimetric energy density, there are also limited opportunities for electrode recycling. Currently used or proposed cathode recycling processes are multistep procedures which involve sequences of mechanical, thermal, and chemical leaching, where only the base material is recovered and significant processing is required to generate a recycled electrode structure. Another significant issue facing lithium based batteries is capacity fade due to structural degradation of the electroactive material upon extending cycling. Herein, inspired by heterogeneous catalyst thermal regeneration strategies, we present a new facile cathodemore » recycling process, where previously used cathodes are removed from a cell, heat treated, and then inserted into a new cell restoring the delivered capacity and cycle life. An environmentally sustainable manganese based material is employed, where binder-free self-supporting (BFSS) electrodes are prepared using a fibrous, high aspect ratio manganese oxide active material. After 200 discharge–charge cycles, the recycled BFSS electrodes display restored crystallinity and oxidation state of the manganese centers with the resulting electrochemistry (capacity and coulombic efficiency) reminiscent of freshly prepared BFSS cathodes. Of note, the BFSS electrode structure is robust with no degradation during the cell disassembly, electrode recovery, washing, and heat treatment steps; thus no post-processing is required for the recycled electrode. Furthermore, this work shows for the first time that a thermal regeneration method previously employed in catalyst systems can fully restore battery electrochemical performance, demonstrating a novel electrode recycling process which could open up new possibilities for energy storage devices with extended electrode lifecycles.« less
Aqueous cathode for next-generation alkali-ion batteries.
Lu, Yuhao; Goodenough, John B; Kim, Youngsik
2011-04-20
The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost.
Santoro, Carlo; Kodali, Mounika; Kabir, Sadia; Soavi, Francesca; Serov, Alexey; Atanassov, Plamen
2017-07-15
Three-dimensional graphene nanosheets (3D-GNS) were used as cathode catalysts for microbial fuel cells (MFCs) operating in neutral conditions. 3D-GNS catalysts showed high performance towards oxygen electroreduction in neutral media with high current densities and low hydrogen peroxide generation compared to activated carbon (AC). 3D-GNS was incorporated into air-breathing cathodes based on AC with three different loadings (2, 6 and 10 mgcm -2 ). Performances in MFCs showed that 3D-GNS had the highest performances with power densities of 2.059 ± 0.003 Wm -2 , 1.855 ± 0.007 Wm -2 and 1.503 ± 0.005 Wm -2 for loading of 10, 6 and 2 mgcm -2 respectively. Plain AC had the lowest performances (1.017 ± 0.009 Wm -2 ). The different cathodes were also investigated in supercapacitive MFCs (SC-MFCs). The addition of 3D-GNS decreased the ohmic losses by 14-25%. The decrease in ohmic losses allowed the SC-MFC with 3D-GNS (loading 10 mgcm -2 ) to have the maximum power (P max ) of 5.746 ± 0.186 Wm -2 . At 5 mA, the SC-MFC featured an "apparent" capacitive response that increased from 0.027 ± 0.007 F with AC to 0.213 ± 0.026 F with 3D-GNS (loading 2 mgcm -2 ) and further to 1.817 ± 0.040 F with 3D-GNS (loading 10 mgcm -2 ).
Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro
2010-04-27
The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.
Platinum- and membrane-free swiss-roll mixed-reactant alkaline fuel cell.
Aziznia, Amin; Oloman, Colin W; Gyenge, Előd L
2013-05-01
Eliminating the expensive and failure-prone proton exchange membrane (PEM) together with the platinum-based anode and cathode catalysts would significantly reduce the high capital and operating costs of low-temperature (<373 K) fuel cells. We recently introduced the Swiss-roll mixed-reactant fuel cell (SR-MRFC) concept for borohydride-oxygen alkaline fuel cells. We now present advances in anode electrocatalysis for borohydride electrooxidation through the development of osmium nanoparticulate catalysts supported on porous monolithic carbon fiber materials (referred to as an osmium 3D anode). The borohydride-oxygen SR-MRFC operates at 323 K and near atmospheric pressure, generating a peak power density of 1880 W m(-2) in a single-cell configuration by using an osmium-based anode (with an osmium loading of 0.32 mg cm(-2)) and a manganese dioxide gas-diffusion cathode. To the best of our knowledge, 1880 W m(-2) is the highest power density ever reported for a mixed-reactant fuel cell operating under similar conditions. Furthermore, the performance matches the highest reported power densities for conventional dual chamber PEM direct borohydride fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laccase/AuAg Hybrid Glucose Microfludic Fuel Cell
NASA Astrophysics Data System (ADS)
López-González, B.; Cuevas-Muñiz, F. M.; Guerra-Balcázar, M.; Déctor, A.; Arjona, N.; Ledesma-García, J.; Arriaga, L. G.
2013-12-01
In this work a hybrid microfluidic fuel cell was fabricated and evaluated with a AuAg/C bimetallic material for the anode and an enzymatic cathode. The cathodic catalyst was prepared adsorbing laccase and ABTS on Vulcan carbon (Lac-ABTS/C). This material was characterized by FTIR-ATR, the results shows the presence of absorption bands corresponding to the amide bounds. The electrochemical evaluation for the materials consisted in cyclic voltammetry (CV). The glucose electrooxidation reaction in AuAg/C occurs around - 0.3 V vs. NHE. Both electrocatalytic materials were placed in a microfluidic fuel cell. The fuel cell was fed with PBS pH 5 oxygen saturated solution in the cathodic compartment and 5 mM glucose + 0.3 M KOH in the anodic side. Several polarization curves were performed and the maximum power density obtained was 0.3 mWcm-2 .
PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells
NASA Astrophysics Data System (ADS)
Ma, Liang; He, Hui; Hsu, Andrew; Chen, Rongrong
2013-11-01
Carbon supported PdRu catalysts with various Pd:Ru atomic ratios were synthesized by impregnation method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), electrochemical half-cell tests, and the anion-exchange membrane direct ethanol fuel cell (AEM-DEFC) tests. XRD results suggest that the PdRu metal exists on carbon support in an alloy form. TEM study shows that the bimetallic PdRu/C catalysts have slightly smaller average particle size than the single metal Pd/C catalyst. Lower onset potential and peak potential and much higher steady state current for ethanol oxidation in alkaline media were observed on the bimetallic catalysts (PdxRuy/C) than on the Pd/C, while the activity for ethanol oxidation on the pure Ru/C was not noticeable. By using Pd/C anode catalysts and MnO2 cathode catalysts, AEM-DEFCs free from the expensive Pt catalyst were assembled. The AEM DEFC using the bimetallic Pd3Ru/C anode catalyst showed a peak power density as high as 176 mW cm-2 at 80 °C, about 1.8 times higher than that using the single metal Pd/C catalyst. The role of Ru for enhancing the EOR activity of Pd/C catalysts is discussed.
Evaluation of advanced high rate Li-SOCl2 cells
NASA Technical Reports Server (NTRS)
Deligiannis, F.; Ang, V.; Dawson, S.; Frank, H.; Subbarao, S.
1986-01-01
Under NASA sponsorship, JPL is developing advanced, high rate Li-SOCl2 cells for future space missions. As part of this effort, Li-SOCl2 cells of various designs were examined for performance and safety. The cells differed from one another in several aspects, such as: nature of carbon cathode, catalysts, cell configuration, case polarity, and safety devices. Performance evaluation included constant-current discharge over a range of currents and temperatures. Abuse-testing consisted of shortcircuiting, charging, and over-discharge. Energy densities greater than 300 Wh/Kg at the C/2 rate were found for some designs. A cell design featuring a high-surface-area carbon cathode was found to deliver nearly 500 Wh/Kg at moderate discharge rates. Temperature influenced the performance significantly.
Lei, M.; Wang, Z. B.; Li, J. S.; Tang, H. L.; Liu, W. J.; Wang, Y. G.
2014-01-01
Rapid degradation of cell performance still remains a significant challenge for proton exchange membrane fuel cell (PEMFC). In this work, we develop novel CeO2 nanocubes-graphene oxide nanocomposites as durable and highly active catalyst support for proton exchange membrane fuel cell. We show that the use of CeO2 as the radical scavenger in the catalysts remarkably improves the durability of the catalyst. The catalytic activity retention of Pt-graphene oxide-8 wt.% CeO2 nanocomposites reaches as high as 69% after 5000 CV-cycles at a high voltage range of 0.8–1.23 V, in contrast to 19% for that of the Pt-graphene oxide composites. The excellent durability of the Pt-CeO2 nanocubes-graphene oxide catalyst is attributed to the free radical scavenging activity of CeO2, which significantly slows down the chemical degradation of Nafion binder in catalytic layers, and then alleviates the decay of Pt catalysts, resulting in the excellent cycle life of Pt-CeO2-graphene oxide nanocomposite catalysts. Additionally, the performance of single cell assembled with Nafion 211 membrane and Pt-CeO2-graphene oxide catalysts with different CeO2 contents in the cathode as well as the Pt-C catalysts in the anode are also recorded and discussed in this study. PMID:25491655
Lei, M; Wang, Z B; Li, J S; Tang, H L; Liu, W J; Wang, Y G
2014-12-10
Rapid degradation of cell performance still remains a significant challenge for proton exchange membrane fuel cell (PEMFC). In this work, we develop novel CeO2 nanocubes-graphene oxide nanocomposites as durable and highly active catalyst support for proton exchange membrane fuel cell. We show that the use of CeO2 as the radical scavenger in the catalysts remarkably improves the durability of the catalyst. The catalytic activity retention of Pt-graphene oxide-8 wt.% CeO2 nanocomposites reaches as high as 69% after 5000 CV-cycles at a high voltage range of 0.8-1.23 V, in contrast to 19% for that of the Pt-graphene oxide composites. The excellent durability of the Pt-CeO2 nanocubes-graphene oxide catalyst is attributed to the free radical scavenging activity of CeO2, which significantly slows down the chemical degradation of Nafion binder in catalytic layers, and then alleviates the decay of Pt catalysts, resulting in the excellent cycle life of Pt-CeO2-graphene oxide nanocomposite catalysts. Additionally, the performance of single cell assembled with Nafion 211 membrane and Pt-CeO2-graphene oxide catalysts with different CeO2 contents in the cathode as well as the Pt-C catalysts in the anode are also recorded and discussed in this study.
NASA Astrophysics Data System (ADS)
Lei, M.; Wang, Z. B.; Li, J. S.; Tang, H. L.; Liu, W. J.; Wang, Y. G.
2014-12-01
Rapid degradation of cell performance still remains a significant challenge for proton exchange membrane fuel cell (PEMFC). In this work, we develop novel CeO2 nanocubes-graphene oxide nanocomposites as durable and highly active catalyst support for proton exchange membrane fuel cell. We show that the use of CeO2 as the radical scavenger in the catalysts remarkably improves the durability of the catalyst. The catalytic activity retention of Pt-graphene oxide-8 wt.% CeO2 nanocomposites reaches as high as 69% after 5000 CV-cycles at a high voltage range of 0.8-1.23 V, in contrast to 19% for that of the Pt-graphene oxide composites. The excellent durability of the Pt-CeO2 nanocubes-graphene oxide catalyst is attributed to the free radical scavenging activity of CeO2, which significantly slows down the chemical degradation of Nafion binder in catalytic layers, and then alleviates the decay of Pt catalysts, resulting in the excellent cycle life of Pt-CeO2-graphene oxide nanocomposite catalysts. Additionally, the performance of single cell assembled with Nafion 211 membrane and Pt-CeO2-graphene oxide catalysts with different CeO2 contents in the cathode as well as the Pt-C catalysts in the anode are also recorded and discussed in this study.
Chen, Dan; Li, Yuexia; Liao, Shijun; ...
2015-08-03
Core–shell structured catalysts, made by placing either a monolayer or a thin layer of a noble metal on relatively cheap core-metal nanoparticles, are fascinating and promising fuel cell catalysts due to their high utilization of noble metals. Here, we report our development of a core–shell structured catalyst, Ru@Pt/C, generated by a novel and facile pulse electrochemical deposition (PED) approach. We demonstrate that compared with a commercial Pt/C catalyst, this novel catalyst achieves over four times higher mass activity towards the anodic oxidation of methanol, and 3.6 times higher mass activity towards the cathodic reduction of oxygen. Importantly, we find thatmore » the intrinsic activity of Pt in this Ru@Pt/C catalyst is doubled due to the formation of the core–shell structure. The catalyst also shows superior stability: even after 2000 scans, it still retains up to 90% of the peak current. As a result, our findings demonstrate that this novel PED approach is a promising method for preparing high-performance core–shell catalysts for fuel cell applications.« less
Charge transfer mediator based systems for electrocatalytic oxygen reduction
Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.
2017-11-07
Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.
Charge transfer mediator based systems for electrocatalytic oxygen reduction
Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.
2017-07-18
Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.
Bimetallic platinum group metal-free catalysts for high power generating microbial fuel cells
NASA Astrophysics Data System (ADS)
Kodali, Mounika; Santoro, Carlo; Herrera, Sergio; Serov, Alexey; Atanassov, Plamen
2017-10-01
M1-M2-N-C bimetallic catalysts with M1 as Fe and Co and M2 as Fe, Co, Ni and Mn were synthesized and investigated as cathode catalysts for oxygen reduction reaction (ORR). The catalysts were prepared by Sacrificial Support Method in which silica was the template and aminoantipyrine (AAPyr) was the organic precursor. The electro-catalytic properties of these catalysts were investigated by using rotating ring disk (RRDE) electrode setup in neutral electrolyte. Fe-Mn-AAPyr outperformed Fe-AAPyr that showed higher performances compared to Fe-Co-AAPyr and Fe-Ni-AAPyr in terms of half-wave potential. In parallel, Fe-Co-AAPyr, Co-Mn-AAPyr and Co-Ni-AAPyr outperformed Co-AAPyr. The presence of Co within the catalyst contributed to high peroxide production not desired for efficient ORR. The catalytic capability of the catalysts integrated in air-breathing cathode was also verified. It was found that Co-based catalysts showed an improvement in performance by the addition of second metal compared to simple Co- AAPyr. Fe-based bimetallic materials didn't show improvement compared to Fe-AAPyr with the exception of Fe-Mn-AAPyr catalyst that had the highest performance recorded in this study with maximum power density of 221.8 ± 6.6 μWcm-2. Activated carbon (AC) was used as control and had the lowest performances in RRDE and achieved only 95.6 ± 5.8 μWcm-2 when tested in MFC.
Paper-Based Analytical Devices Relying on Visible-Light-Enhanced Glucose/Air Biofuel Cells.
Wu, Kaiqing; Zhang, Yan; Wang, Yanhu; Ge, Shenguang; Yan, Mei; Yu, Jinghua; Song, Xianrang
2015-11-04
A strategy that combines visible-light-enhanced biofuel cells (BFCs) and electrochemical immunosensor into paper-based analytical devices was proposed for sensitive detection of the carbohydrate antigen 15-3 (CA15-3). The gold nanoparticle modified paper electrode with large surface area and good conductibility was applied as an effective matrix for primary antibodies. The glucose dehydrogenase (GDH) modified gold-silver bimetallic nanoparticles were used as bioanodic biocatalyst and signal magnification label. Poly(terthiophene) (pTTh), a photoresponsive conducting polymer, served as catalyst in cathode for the reduction of oxygen upon illumination by visible light. In the bioanode, electrons were generated through the oxidation of glucose catalyzed by GDH. The amount of electrons is determined by the amount of GDH, which finally depended on the amount of CA15-3. In the cathode, electrons from the bioanode could combine with the generated holes in the HOMO energy level of cathode catalysts pTTh. Meanwhile, the high energy level photoexcited electrons were generated in the LUMO energy level and involved in the oxygen reduction reaction, finally resulting in an increasing current and a decreasing overpotential. According to the current signal, simple and efficient detection of CA15-3 was achieved.
Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.
This paper presents a computational model of a single chamber, air-cathode MFC. The model considers losses due to mass transport, as well as biological and electrochemical reactions, in both the anode and cathode half-cells. Computational fluid dynamics and Monod-Nernst analysis are incorporated into the reactions for the anode biofilm and cathode Pt catalyst and biofilm. The integrated model provides a macro-perspective of the interrelation between the anode and cathode during power production, while incorporating microscale contributions of mass transport within the anode and cathode layers. Model considerations include the effects of pH (H +/OH – transport) and electric field-driven migrationmore » on concentration overpotential, effects of various buffers and various amounts of buffer on the pH in the whole reactor, and overall impacts on the power output of the MFC. The simulation results fit the experimental polarization and power density curves well. Further, this model provides insight regarding mass transport at varying current density regimes and quantitative delineation of overpotentials at the anode and cathode. Altogether, this comprehensive simulation is designed to accurately predict MFC performance based on fundamental fluid and kinetic relations and guide optimization of the MFC system.« less
Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell
Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; ...
2017-02-23
This paper presents a computational model of a single chamber, air-cathode MFC. The model considers losses due to mass transport, as well as biological and electrochemical reactions, in both the anode and cathode half-cells. Computational fluid dynamics and Monod-Nernst analysis are incorporated into the reactions for the anode biofilm and cathode Pt catalyst and biofilm. The integrated model provides a macro-perspective of the interrelation between the anode and cathode during power production, while incorporating microscale contributions of mass transport within the anode and cathode layers. Model considerations include the effects of pH (H +/OH – transport) and electric field-driven migrationmore » on concentration overpotential, effects of various buffers and various amounts of buffer on the pH in the whole reactor, and overall impacts on the power output of the MFC. The simulation results fit the experimental polarization and power density curves well. Further, this model provides insight regarding mass transport at varying current density regimes and quantitative delineation of overpotentials at the anode and cathode. Altogether, this comprehensive simulation is designed to accurately predict MFC performance based on fundamental fluid and kinetic relations and guide optimization of the MFC system.« less
Yang, Tingting; Li, Kexun; Pu, Liangtao; Liu, Ziqi; Ge, Baochao; Pan, Yajun; Liu, Ying
2016-12-15
The hollow-spherical Co/N-C nanoparticle, which is synthesized via a simple hydrothermal reaction followed by heat treatment, is firstly used as electrocatalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cell (MFC). The maximum power density of MFC with 10% Co/N-C air-cathode is as high as 2514±59mWm(-2), which is almost 174% higher than the control. The exchange current density (i0) of cathode equipped with 10% Co/N-C is 238% higher than that of untreated AC. While the total resistance of treated samples decreases from 13.017 to 10.255Ω. The intensity ratio of Raman D to G band (ID/IG) decreases from 0.93 (N-C) to 0.73 (Co/N-C), indicating the catalyst forms graphite structure. Both XRD and XPS testify that Co is bonded to N within graphitic sheets and serves as the active sites in ORR. The four-electron pathway of the Co/N-C also plays a crucial role in electrochemical catalytic activity. As a result, it can be expected that the as-synthesized Co/N-C, with extraordinary electro-catalytic performance towards ORR, will be a promising alternative to the state-of-the-art non-precious metal ORR electro-catalysts for electrochemical energy applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Vinodh, Rajangam; Sangeetha, Dharmalingam
2013-08-01
The present study is aimed at synthesizing a novel anion exchange composite membrane from quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene [QPSEBS] and functionalized multi walled carbon nanotubes (f-MWCNT) by solution casting method. The characteristic properties of the QPSEBS/f-MWCNT composite membranes were investigated using Fourier transform infrared (FTIR), UV-Visible spectroscopy, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD) studies and Raman spectroscopy. The water uptake, ion exchange capacity, ionic conductivity, methanol permeability and selectivity ratio of the membranes were also studied. The prepared composite membranes were tested in an in-house fabricated alkaline membrane fuel cell (AMFC) set up using Pt/C as the common anode catalyst and three different cathode catalysts namely Pt/C, Pd-Ni/C and Ag/C. Among all the three cathode catalysts, Pt/C for QPSEBS/5% f-MWCNT is found to show the maximum power density and open circuit voltage (OCV) of 187 mW cm(-2) and 0.73 V respectively. For direct methanol alkaline membrane fuel cells (DMAMFC), the OCV of QPSEBS/5% f-MWCNT is found to be 0.76 V and the maximum power density of 59.5 mW cm(-2) is achieved at a current density of 175 mA cm(-2).
NASA Astrophysics Data System (ADS)
Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.
2016-10-01
X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.
Jing, Y; Qin, H; Liu, Q; Singh, M; Zhu, B
2012-06-01
Low temperature solid oxide fuel cell (LTSOFC, 300-600 degrees C) is developed with advantages compared to conventional SOFC (800-1000 degrees C). The electrodes with good catalytic activity, high electronic and ionic conductivity are required to achieve high power output. In this work, a LiNiCuZn oxides as anode and cathode catalyst is prepared by slurry method. The structure and morphology of the prepared LiNiCuZn oxides are characterized by X-ray diffraction and field emission scanning electron microscopy. The LiNiCuZn oxides prepared by slurry method are nano Li0.28Ni0.72O, ZnO and CuO compound. The nano-crystallites are congregated to form ball-shape particles with diameter of 800-1000 nm. The LiNiCuZn oxides electrodes exhibits high ion conductivity and low polarization resistance to hydrogen oxidation reaction and oxygen reduction reaction at low temperature. The LTSOFC using the LiNiCuZn oxides electrodes demonstrates good cell performance of 1000 mW cm(-2) when it operates at 470 degrees C. It is considered that nano-composite would be an effective way to develop catalyst for LTSOFC.
Nitrogen-doped fullerene as a potential catalyst for hydrogen fuel cells.
Gao, Feng; Zhao, Guang-Lin; Yang, Shizhong; Spivey, James J
2013-03-06
We examine the possibility of nitrogen-doped C60 fullerene (N-C60) as a cathode catalyst for hydrogen fuel cells. We use first-principles spin-polarized density functional theory calculations to simulate the electrocatalytic reactions on N-C60. The first-principles results show that an O2 molecule can be adsorbed and partially reduced on the N-C complex sites (Pauling sites) of N-C60 without any activation barrier. Through a direct pathway, the partially reduced O2 can further react with H(+) and additional electrons and complete the water formation reaction (WFR) with no activation energy barrier. In the indirect pathway, reduced O2 reacts with H(+) and additional electrons to form H2O molecules through a transition state (TS) with a small activation barrier (0.22-0.37 eV). From an intermediate state to a TS, H(+) can obtain a kinetic energy of ∼0.95-3.68 eV, due to the Coulomb electric interaction, and easily overcome the activation energy barrier during the WFR. The full catalytic reaction cycles can be completed energetically, and N-C60 fullerene recovers to its original structure for the next catalytic reaction cycle. N-C60 fullerene is a potential cathode catalyst for hydrogen fuel cells.
Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells.
Xia, Xue; Tokash, Justin C; Zhang, Fang; Liang, Peng; Huang, Xia; Logan, Bruce E
2013-02-19
Oxygen-reducing biocathodes previously developed for microbial fuel cells (MFCs) have required energy-intensive aeration of the catholyte. To avoid the need for aeration, the ability of biocathodes to function with passive oxygen transfer was examined here using air cathode MFCs. Two-chamber, air cathode MFCs with biocathodes produced a maximum power density of 554 ± 0 mW/m(2), which was comparable to that obtained with a Pt cathode (576 ± 16 mW/m(2)), and 38 times higher than that produced without a catalyst (14 ± 3 mW/m(2)). The maximum current density with biocathodes in this air-cathode MFC was 1.0 A/m(2), compared to 0.49 A/m(2) originally produced in a two-chamber MFC with an aqueous cathode (with cathode chamber aeration). Single-chamber, air-cathode MFCs with the same biocathodes initially produced higher voltages than those with Pt cathodes, but after several cycles the catalytic activity of the biocathodes was lost. This change in cathode performance resulted from direct exposure of the cathodes to solutions containing high concentrations of organic matter in the single-chamber configuration. Biocathode performance was not impaired in two-chamber designs where the cathode was kept separated from the anode solution. These results demonstrate that direct-air biocathodes can work very well, but only under conditions that minimize heterotrophic growth of microorganisms on the cathodes.
Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.; ...
2018-02-09
An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.
An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodali, Mounika; Santoro, Carlo; Serov, Alexey
Here we discuss the oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electrochemical performance, and then integrated into an air-breathing cathode to be tested in “clean” environment and in a working microbial fuel cell (MFC). Their performances were also compared to activated carbon (AC) based cathode under similar conditions. Results showedmore » that the addition of Mn, Fe, Co and Ni to AAPyr increased the performances compared to AC. Fe-AAPyr showed the highest open circuit potential (OCP) that was 0.307 ± 0.001 V (vs. Ag/AgCl) and the highest electrocatalytic activity at pH 7.5. On the contrary, AC had an OCP of 0.203 ± 0.002 V (vs. Ag/AgCl) and had the lowest electrochemical activity. In MFC, Fe-AAPyr also had the highest output of 251 ± 2.3 μWcm –2, followed by Co-AAPyr with 196 ± 1.5 μWcm –2, Ni-AAPyr with 171 ± 3.6 μWcm –2, Mn-AAPyr with 160 ± 2.8 μWcm –2 and AC 129 ± 4.2 μWcm –2. The best performing catalyst (Fe-AAPyr) was then tested in MFC with increasing solution conductivity from 12.4 mScm –1 to 63.1 mScm –1. A maximum power density of 482 ± 5 μWcm –2 was obtained with increasing solution conductivity, which is one of the highest values reported in the field.« less
Kodali, Mounika; Santoro, Carlo; Serov, Alexey; ...
2017-02-07
Here we discuss the oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electrochemical performance, and then integrated into an air-breathing cathode to be tested in “clean” environment and in a working microbial fuel cell (MFC). Their performances were also compared to activated carbon (AC) based cathode under similar conditions. Results showedmore » that the addition of Mn, Fe, Co and Ni to AAPyr increased the performances compared to AC. Fe-AAPyr showed the highest open circuit potential (OCP) that was 0.307 ± 0.001 V (vs. Ag/AgCl) and the highest electrocatalytic activity at pH 7.5. On the contrary, AC had an OCP of 0.203 ± 0.002 V (vs. Ag/AgCl) and had the lowest electrochemical activity. In MFC, Fe-AAPyr also had the highest output of 251 ± 2.3 μWcm –2, followed by Co-AAPyr with 196 ± 1.5 μWcm –2, Ni-AAPyr with 171 ± 3.6 μWcm –2, Mn-AAPyr with 160 ± 2.8 μWcm –2 and AC 129 ± 4.2 μWcm –2. The best performing catalyst (Fe-AAPyr) was then tested in MFC with increasing solution conductivity from 12.4 mScm –1 to 63.1 mScm –1. A maximum power density of 482 ± 5 μWcm –2 was obtained with increasing solution conductivity, which is one of the highest values reported in the field.« less
Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, Branko N.; Weidner, John
2016-01-07
The goal of this project is to synthesize a low cost PEM fuel cell cathode catalyst and support with optimized average mass activity, stability of mass activity, initial high current density performance under H 2/air (power density), and catalyst and support stability able to meet 2017 DOE targets for electrocatalysts for transportation applications. Pt*/ACCS-2 catalyst was synthesized according to a novel methodology developed at USC through: (i) surface modification, (ii) metal catalyzed pyrolysis and (iii) chemical leaching to remove excess meal used to dope the support. Pt* stands for suppressed platinum catalyst synthesized with Co doped platinum. The procedure resultsmore » in increasing carbon graphitization, inclusion of cobalt in the bulk and formation of non-metallic active sites on the carbon surface. Catalytic activity of the support shows an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass transfer regions and 2.5% H 2O 2 production. Pt*/ACCS-2 catalyst durability under 0.6-1.0 V potential cycling and support stability under 1.0-1.5 V potential cycling was evaluated. The results indicated excellent catalyst and support performance under simulated start-up/shut down operating conditions (1.0 – 1.5 V, 5000 cycles) which satisfy DOE 2017 catalyst and support durability and activity. The 30% Pt*/ACCS-2 catalyst showed high initial mass activity of 0.34 A/mg PGM at 0.9 ViR-free and loss of mass activity of 45% after 30,000 cycles (0.6-1.0 V). The catalyst performance under H 2-air fuel cell operating conditions showed only 24 mV (iR-free) loss at 0.8 A/cm 2 with an ECSA loss of 42% after 30,000 cycles (0.6-1.0 V). The support stability under 1.0-1.5 V potential cycling showed mass activity loss of 50% and potential loss of 8 mV (iR-free) at 1.5 A/cm 2. The ECSA loss was 22% after 5,000 cycles. Furthermore, the Pt*/ACCS-2 catalyst showed an initial power density (rated) of 0.174 g PGM/kW. Excellent activity and stability of the catalyst are due to synergistic effect of the catalytic activity and stability of ACCS-2, its enhanced hydrophobicity as well as activity of compressive Pt* lattice catalysts. For the first time, we report a carbon based support which is stable under simulated start-up/shut down operating conditions. Five 25cm 2 MEA’s were fabricated at USC using Pt*/ACCS-2 cathode catalyst for independent evaluation at National Renewable Energy. In the Final NREL report they summarize their results as follow: (1) Initial ORR activity and performance of the USC MEA’s Pt*/ACCS-2 under oxygen air, evaluated at NREL were comparable to that measured and reported by USC in their report: (2) Cyclic durability studies indicate that Pt*/ACCS-2 catalysts has minimal losses in activity and performant under 1-1.5 V potential cycling indicating a robust corrosion resistant support.« less
Electrochemical Hydrogen Peroxide Generator
NASA Technical Reports Server (NTRS)
Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.
2010-01-01
Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials needed are water and oxygen or air. 2. The product is pure and can therefore be used in disinfection applications directly or after proper dilution with water. 3. Oxygen generated in the anode compartment is used in the electrochemical reduction process; in addition, external oxygen is used to establish a high flow rate in the cathode compartment to remove the desired product efficiently. Exiting oxygen can be recycled after separation of liquid hydrogen peroxide product, if so desired. 4. The process can be designed for peroxide generation under microgravity conditions. 5. High concentrations of the order of 6-7 wt% can be generated by this method. This method at the time of this reporting is superior to what other researchers have reported. 6. The cell design allows for stacking of cells to increase the hydrogen peroxide production. 7. The catalyst mix containing a diquaternary ammonium compound enabled not only higher concentration of hydrogen peroxide but also higher current efficiency, improved energy efficiency, and catalyst stability. 8. The activity of the catalyst is maintained even after repeated periods of system shutdown. 9. The catalyst system can be extended for fuel-cell cathodes with suitable modifications.
The reasons for the high power density of fuel cells fabricated with directly deposited membranes
NASA Astrophysics Data System (ADS)
Vierrath, Severin; Breitwieser, Matthias; Klingele, Matthias; Britton, Benjamin; Holdcroft, Steven; Zengerle, Roland; Thiele, Simon
2016-09-01
In a previous study, we reported that polymer electrolyte fuel cells prepared by direct membrane deposition (DMD) produced power densities in excess of 4 W/cm2. In this study, the underlying origins that give rise to these high power densities are investigated and reported. The membranes of high power, DMD-fabricated fuel cells are relatively thin (12 μm) compared to typical benchmark, commercially available membranes. Electrochemical impedance spectroscopy, at high current densities (2.2 A/cm2) reveals that mass transport resistance was half that of reference, catalyst-coated-membranes (CCM). This is attributed to an improved oxygen supply in the cathode catalyst layer by way of a reduced propensity of flooding, and which is facilitated by an enhancement in the back diffusion of water from cathode to anode through the thin directly deposited membrane. DMD-fabricated membrane-electrode-assemblies possess 50% reduction in ionic resistance (15 mΩcm2) compared to conventional CCMs, with contributions of 9 mΩcm2 for the membrane resistance and 6 mΩcm2 for the contact resistance of the membrane and catalyst layer ionomer. The improved mass transport is responsible for 90% of the increase in power density of the DMD fuel cell, while the reduced ionic resistance accounts for a 10% of the improvement.
Chandran, Priji; Ghosh, Arpita; Ramaprabhu, Sundara
2018-02-26
The integration of polymer electrolyte membrane fuel cell (PEMFC) stack into vehicles necessitates the replacement of high-priced platinum (Pt)-based electrocatalyst, which contributes to about 45% of the cost of the stack. The implementation of high-performance and durable Pt metal-free catalyst for both oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) could significantly enable large-scale commercialization of fuel cell-powered vehicles. Towards this goal, a simple, scalable, single-step synthesis method was adopted to develop palladium-cobalt alloy supported on nitrogen-doped reduced graphene oxide (Pd 3 Co/NG) nanocomposite. Rotating ring-disk electrode (RRDE) studies for the electrochemical activity towards ORR indicates that ORR proceeds via nearly four-electron mechanism. Besides, the mass activity of Pd 3 Co/NG shows an enhancement of 1.6 times compared to that of Pd/NG. The full fuel cell measurements were carried out using Pd 3 Co/NG at the anode, cathode in conjunction with Pt/C and simultaneously at both anode and cathode. A maximum power density of 68 mW/cm 2 is accomplished from the simultaneous use of Pd 3 Co/NG as both anode and cathode electrocatalyst with individual loading of 0.5 mg/cm 2 at 60 °C without any backpressure. To the best of our knowledge, the present study is the first of its kind of a fully non-Pt based PEM full cell.
Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C
2013-12-01
In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m2 was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.
Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C
2013-12-01
In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m(2) was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.
Tian, Pei; Liu, Di; Li, Kexun; Yang, Tingting; Wang, Junjie; Liu, Yi; Zhang, Song
2017-11-01
Metal-organic framework Cu 3 (BTC) 2 , prepared by an easy hydrothermal method, was used as the oxygen-based catalyst in microbial fuel cell (MFC). The maximum power density of Cu 3 (BTC) 2 modified air-cathode MFC was 1772±15mWm -2 , almost 1.8 times higher than the control. BET results disclosed high specific surface area of 2159.7m 2 g -1 and abundant micropores structure. Regular octahedron and porous surface of Cu 3 (BTC) 2 were observed in SEM. XPS testified the existence of divalent copper in the extended 3D frameworks, which importantly acted as the Lewis-acid sites or redox centers in ORR. Additionally, the total resistance decreased by 42% from 17.60 to 10.24Ω compared with bare AC electrode. The rotating disk electrode test results showed a four-electron transfer pathway for Cu 3 (BTC) 2 , which was crucial for electrochemical catalytic activity. All the structural and electrochemical advantages make Cu 3 (BTC) 2 a promising catalyst for ORR in MFC. Copyright © 2017. Published by Elsevier Ltd.
Conducting metal oxide and metal nitride nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiSalvo, Jr., Francis J.; Subban, Chinmayee V.
Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst supportmore » in a fuel cell.« less
Vankova, Svetoslava; Francia, Carlotta; Amici, Julia; Zeng, Juqin; Bodoardo, Silvia; Penazzi, Nerino; Collins, Gillian; Geaney, Hugh; O'Dwyer, Colm
2017-02-08
Fundamental research on Li-O 2 batteries remains critical, and the nature of the reactions and stability are paramount for realising the promise of the Li-O 2 system. We report that indium tin oxide (ITO) nanocrystals with supported 1-2 nm oxygen evolution reaction (OER) catalyst Ru/RuO x nanoparticles (NPs) demonstrate efficient OER processes, reduce the recharge overpotential of the cell significantly and maintain catalytic activity to promote a consistent cycling discharge potential in Li-O 2 cells even when the ITO support nanocrystals deteriorate from the very first cycle. The Ru/RuO x nanoparticles lower the charge overpotential compared with those for ITO and carbon-only cathodes and have the greatest effect in DMSO electrolytes with a solution-processable F-free carboxymethyl cellulose (CMC) binder (<3.5 V) instead of polyvinylidene fluoride (PVDF). The Ru/RuO x /ITO nanocrystalline materials in DMSO provide efficient Li 2 O 2 decomposition from within the cathode during cycling. We demonstrate that the ITO is actually unstable from the first cycle and is modified by chemical etching, but the Ru/RuO x NPs remain effective OER catalysts for Li 2 O 2 during cycling. The CMC binders avoid PVDF-based side-reactions and improve the cyclability. The deterioration of the ITO nanocrystals is mitigated significantly in cathodes with a CMC binder, and the cells show good cycle life. In mixed DMSO-EMITFSI [EMITFSI=1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide] ionic liquid electrolytes, the Ru/RuO x /ITO materials in Li-O 2 cells cycle very well and maintain a consistently very low charge overpotential of 0.5-0.8 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gong, Jian; Liu, Wei; Du, Xu; Liu, Congmin; Zhang, Zhe; Sun, Feifei; Yang, Le; Xu, Dong; Guo, Hua; Deng, Yulin
2017-02-08
In this paper, a biomass flow fuel cell to directly convert wheat straw to electricity at low temperature (80-90 °C) and atmospheric pressure is presented. Two redox ion pairs, Fe 3+ /Fe 2+ and VO 2 + /VO 2+ , acting as redox catalysts and charge carriers, were used in the anode and cathode flow tanks, respectively. The wheat straw was first oxidized by Fe 3+ in the anode tank at approximately 100 °C. The reduced Fe 2+ in the anode was used to construct a fuel cell with VO 2 + in the cathode. The VO 2 + ions were reduced to VO 2+ and regenerated to VO 2 + by oxygen oxidation. The wheat straw flow fuel cell showed a power output of 100 mW cm -2 . Mediated with liquid Fe 3+ carriers, the solid powder of wheat straw could be gradually degraded into low-molecular-weight organic molecules and even oxidized to CO 2 at the anode without using noble-metal catalysts. The overpotential for the electrodes of the flow fuel cell was examined and the energy cost was estimated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High performance platinum single atom electrocatalyst for oxygen reduction reaction
NASA Astrophysics Data System (ADS)
Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan
2017-07-01
For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.
High performance platinum single atom electrocatalyst for oxygen reduction reaction
Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan
2017-01-01
For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm−2 at 80 °C with a low platinum loading of 0.09 mgPt cm−2, corresponding to a platinum utilization of 0.13 gPt kW−1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction. PMID:28737170
Si, Fengzhan; Zhang, Guoguang; Huang, Kevin
2016-04-09
Here, the present study investigates the mass loading effect of an infiltrated La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) nanoparticles (NPs) catalyst on the area-specific polarization resistance (Rp) of a screen-printed porous LSCF cathode for solid oxide fuel cells. The results show that R p of the LSCF-NPs decorated LSCF cathode can be substantially reduced by as much as 89.3% after a single-step impregnation of 1.5 M nitrate solution containing La:Sr:Co:Fe = 0.6:0.4:0.2:0.8 with a mass loading of 3 wt%.
Non-precious metal catalysts prepared from precursors comprising cyanamide and polyaniline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Hoon Taek; Zelenay, Piotr
A catalyst for oxygen reduction reaction (ORR) for a fuel cell was prepared by pyrolyzing a mixture of polyaniline, cyanamide, carbon black, and a non-precious metal salt under an inert atmosphere. The pyrolyzed product was treated to remove acid soluble components and then pyrolyzed again. The resulting powder was used to prepare a cathode for a membrane electrode assembly that was used in a fuel cell. When iron(III) chloride was used as the salt, the resulting catalyst was porous with a web-shaped structure. It displayed a maximum power density of 0.79 W/cm at 0.4 V in H.sub.2/O.sub.2 at 1.0 barmore » back pressure.« less
Prediction of electrocatalytic activity of boron nanostructures
NASA Astrophysics Data System (ADS)
Owens, Frank J.
2018-01-01
The dissociation of O2 and HO2 are important reactions that occur at the cathode of fuel cells producing H2O and use platinum as a catalyst. There is a need to replace platinum with less expensive catalysts. Here the possibility of boron nanostructures as catalysts for the reactions is considered using density functional theory. The calculations show that the bond dissociation energies to remove O and OH from O2 and O2H bonded to boron nanostructures are less than those necessary to dissociate free O2 and O2H indicating that some of the boron nanostructures could be catalysts for the dissociation of O2 and HO2.
Kongkanand, Anusorn; Mathias, Mark F
2016-04-07
Substantial progress has been made in reducing proton-exchange membrane fuel cell (PEMFC) cathode platinum loadings from 0.4-0.8 mgPt/cm(2) to about 0.1 mgPt/cm(2). However, at this level of cathode Pt loading, large performance loss is observed at high-current density (>1 A/cm(2)), preventing a reduction in the overall stack cost. This next developmental step is being limited by the presence of a resistance term exhibited at these lower Pt loadings and apparently due to a phenomenon at or near the catalyst surface. This issue can be addressed through the design of catalysts with high and stable Pt dispersion as well as through development and implementation of ionomers designed to interact with Pt in a way that does not constrain oxygen reduction reaction rates. Extrapolating from progress made in past decades, we are optimistic that the concerted efforts of materials and electrode designers can resolve this issue, thus enabling a large step toward fuel cell vehicles that are affordable for the mass market.
Feng, Ningning; Mu, Xiaowei; Zheng, Mingbo; Wang, Chaoqiang; Lin, Zixia; Zhang, Xueping; Shi, Yi; He, Ping; Zhou, Haoshen
2016-09-09
Aprotic Li-O2 batteries have attracted a huge amount of interest in the past decade owing to their extremely high energy density. However, identifying a desirable cathodic catalyst for this promising battery system is one of the biggest challenges at present. In this work, a multi-layered Fe2O3/graphene nanosheets (Fe2O3/GNS) composite with sandwich structure was synthesized using an easy thermal casting method, and served as a cathodic catalyst for aprotic Li-O2 batteries. The aprotic Li-O2 cell with the Fe2O3/GNS catalyst demonstrated a better reversibility, lower overpotential for oxygen evolution, and a higher Coulombic efficiency (close to 100%) than those of pure GNS. An excellent rate performance and good cycle stability were also confirmed. The results, characterized by ex and in situ methods, revealed that the dominant discharge product Li2O2 was decomposed below 4.35 V. This superior electrochemical performance is mainly attributed to the unique sandwich structure of the Fe2O3/GNS catalyst with mesopores, which can provide substantially more catalytic sites and prevent direct contact between carbon and Li2O2.
Corrosion test cell for bipolar plates
Weisbrod, Kirk R.
2002-01-01
A corrosion test cell for evaluating corrosion resistance in fuel cell bipolar plates is described. The cell has a transparent or translucent cell body having a pair of identical cell body members that seal against opposite sides of a bipolar plate. The cell includes an anode chamber and an cathode chamber, each on opposite sides of the plate. Each chamber contains a pair of mesh platinum current collectors and a catalyst layer pressed between current collectors and the plate. Each chamber is filled with an electrolyte solution that is replenished with fluid from a much larger electrolyte reservoir. The cell includes gas inlets to each chamber for hydrogen gas and air. As the gases flow into a chamber, they pass along the platinum mesh, through the catalyst layer, and to the bipolar plate. The gas exits the chamber through passageways that provide fluid communication between the anode and cathode chambers and the reservoir, and exits the test cell through an exit port in the reservoir. The flow of gas into the cell produces a constant flow of fresh electrolyte into each chamber. Openings in each cell body is member allow electrodes to enter the cell body and contact the electrolyte in the reservoir therein. During operation, while hydrogen gas is passed into one chamber and air into the other chamber, the cell resistance is measured, which is used to evaluate the corrosion properties of the bipolar plate.
NASA Astrophysics Data System (ADS)
Ward, David B.; Gunn, Natasha L. O.; Uwigena, Nadine; Davies, Trevor J.
2018-01-01
The direct reduction of oxygen in conventional polymer electrolyte fuel cells (PEFCs) is seen by many researchers as a key challenge in PEFC development. Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells offer an alternative approach via the indirect reduction of oxygen, improving durability and reducing cost. These systems substitute gaseous oxygen for a liquid catalyst that is reduced at the cathode then oxidised in a regeneration vessel via air bubbling. A key component of a CRRC system is the liquid catalyst or catholyte. To date, phosphomolybdovanadium polyoxometalates with empirical formula H3+nPVnMo12-nO40 have shown the most promise for CRRC PEFC systems. In this work, four catholyte formulations are studied and compared against each other. The catholytes vary in vanadium content, pH and counter ion, with empirical formulas H6PV3Mo9O40, H7PV4Mo8O40, Na3H3PV3Mo9O40 and Na4H3PV4Mo8O40. Thermodynamic properties, cell performance and regeneration rates are measured, generating new insights into how formulation chemistry affects the components of a CRRC system. The results include the best CRRC PEFC performance reported to date, with noticeable advantages over conventional PEFCs. The optimum catholyte formulation is then determined via steady state tests, the results of which will guide further optimization of the catholyte formulation.
You, Dae Jong; Pak, Chanho; Jin, Seon-Ah; Lee, Kang Hee; Kwon, Kyungjung; Choi, Kyoung Hwan; Heo, Pil Won; Jang, Hongchul; Kim, Jun Young; Kim, Ji Man
2016-05-01
Palladium-cobalt-phosphorus (PdCoP) catalysts supported on carbon (Ketjen Black) were investigated as a cathode catalyst for oxygen reduction reaction (ORR) in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The PdCoP catalyst was synthesized via a modified polyol process in teflon-sealed reactor by microwave-heating. From X-ray diffraction and transmission electron microscopic analysis, the PdCoP catalyst exhibits a face-centered cubic structure, similar to palladium (Pd), which is attributed to form a good solid solution of Co atoms and P atoms in the Pd lattice. The PdCoP nanoparticles with average diameter of 2.3 nm were uniformly distributed on the carbon support. The electrochemical surface area (ECSA) and ORR activity of PdP, PdCo and PdCoP catalysts were measured using a rotating disk electrode technique with cyclic voltammetry and the linear sweep method. The PdCoP catalysts showed the highest performances for ECSA and ORR, which might be attributed both to formation of small nanoparticle by phosphorus atom and to change in lattice constant of Pd by cobalt atom. Furthermore, The HT-PEMFCs single cell performance employing PdCoP catalyst exhibited an enhanced cell performance compared to a single cell using the PdP and PdCo catalysts. This result indicates the importance of electric and geometric control of Pd alloy nanoparticles that can improve the catalytic activity. This synergistic combination of Co and P with Pd could provide the direction of development of non-Pt catalyst for fuel cell system.
Development of a Stochastically-driven, Forward Predictive Performance Model for PEMFCs
NASA Astrophysics Data System (ADS)
Harvey, David Benjamin Paul
A one-dimensional multi-scale coupled, transient, and mechanistic performance model for a PEMFC membrane electrode assembly has been developed. The model explicitly includes each of the 5 layers within a membrane electrode assembly and solves for the transport of charge, heat, mass, species, dissolved water, and liquid water. Key features of the model include the use of a multi-step implementation of the HOR reaction on the anode, agglomerate catalyst sub-models for both the anode and cathode catalyst layers, a unique approach that links the composition of the catalyst layer to key properties within the agglomerate model and the implementation of a stochastic input-based approach for component material properties. The model employs a new methodology for validation using statistically varying input parameters and statistically-based experimental performance data; this model represents the first stochastic input driven unit cell performance model. The stochastic input driven performance model was used to identify optimal ionomer content within the cathode catalyst layer, demonstrate the role of material variation in potential low performing MEA materials, provide explanation for the performance of low-Pt loaded MEAs, and investigate the validity of transient-sweep experimental diagnostic methods.
Wang, Jing; Huang, Zhengqing; Liu, Wei; Chang, Chunran; Tang, Haolin; Li, Zhijun; Chen, Wenxing; Jia, Chunjiang; Yao, Tao; Wei, Shiqiang; Wu, Yuen; Li, Yadong
2017-12-06
We develop a host-guest strategy to construct an electrocatalyst with Fe-Co dual sites embedded on N-doped porous carbon and demonstrate its activity for oxygen reduction reaction in acidic electrolyte. Our catalyst exhibits superior oxygen reduction reaction performance, with comparable onset potential (E onset , 1.06 vs 1.03 V) and half-wave potential (E 1/2 , 0.863 vs 0.858 V) than commercial Pt/C. The fuel cell test reveals (Fe,Co)/N-C outperforms most reported Pt-free catalysts in H 2 /O 2 and H 2 /air. In addition, this cathode catalyst with dual metal sites is stable in a long-term operation with 50 000 cycles for electrode measurement and 100 h for H 2 /air single cell operation. Density functional theory calculations reveal the dual sites is favored for activation of O-O, crucial for four-electron oxygen reduction.
Non-Faradaic electrochemical promotion of catalytic methane reforming for methanol production
Fan, Qinbai
2016-11-22
A method of converting methane to methanol at low temperatures utilizes a reactor including an anode, a cathode, a membrane separator between the anode and cathode, a metal oxide catalyst at the anode and a hydrogen recovery catalyst at the cathode. The method can convert methane to methanol at as rate exceeding the theoretical Faradaic rate due to the contribution of an electrochemical reaction occurring in tandem with a Faradaic reaction.
Serov, Alexey; Halevi, Barr; Artyushkova, Kateryna; Atanassov, Plamen B; Martinez, Ulises A
2017-04-25
A method of preparing M-N--C catalysts utilizing a sacrificial support approach and inexpensive and readily available polymer precursors as the source of nitrogen and carbon is disclosed. Exemplary polymer precursors include non-porphyrin precursors with no initial catalytic activity. Examples of suitable non-catalytic non-porphyrin precursors include, but are not necessarily limited to low molecular weight precursors that form complexes with iron such as 4-aminoantipirine, phenylenediamine, hydroxysuccinimide, ethanolamine, and the like.
Ge, Baochao; Li, Kexun; Fu, Zhou; Pu, Liangtao; Zhang, Xi
2015-11-01
Commercial Co3O4 and ortho-hexagon spinel nano-Co3O4 (OHSNC) were doped in the AC at a different percentage (5%, 10% and 15%) to enhance the performance of microbial fuel cell (MFC). The maximum power density of MFC with 10% OHSNC doped cathode was 1500±14 mW m(-2), which was 97.36% and 41.24% higher than that with the bare AC air cathode and commercial Co3O4 respectively. The electrocatalytic behavior for their better performance was discussed in detail with the help of various structural and electrochemical techniques. The OHSNC was characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The results showed that the improved performance owed to the enhancement of both kinetics activity and the number of electron transfer in the ORR, and the internal resistance was largely reduced. Therefore, OHSNC was proved to be an excellent cathodic catalyst in AC air cathode MFC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation parameters for the alkaline fuel cell oxygen electrode
NASA Technical Reports Server (NTRS)
Singer, J.; Srinivasan, V.
1985-01-01
Studies were made of Pt- and Au-catalyzed porous electrodes, designed for the cathode of the alkaline H2/O2 fuel cell, employing cyclic voltammetry and the floating half-cell method. The purpose was to obtain parameters from the cyclic voltammograms which could predict performance in the fuel cell. It was found that a satisfactory relationship between these two types of measurement could not be established; however, useful observations were made of relative performance of several types of carbon used as supports for noble metal catalysts and of some Au catalysts. The best half-cell performance with H2/O2 in a 35 percent KOH electrolyte at 80 C was given by unsupported fine particle Au on Teflon; this electrode is used in the Orbiter fuel cell.
NASA Technical Reports Server (NTRS)
Feigenbaum, H.; Kaufman, A.; Wang, C. L.; Werth, J.; Whelan, J. A.
1983-01-01
Operating experience with a 5kW methanol-air integrated system is described. On-going test results for a 24-cell, two-sq ft (4kW) stack are reported. The main activity for this stack is currently the evaluation of developmental non-metalic cooling plates. Single-cell test results are presented for a promising developmental cathode catalyst.
Impact of electrode sequence on electrochemical removal of trichloroethylene from aqueous solution
Rajic, Ljiljana; Fallahpour, Noushin; Alshawabkeh, Akram N.
2015-01-01
The electrode sequence in a mixed flow-through electrochemical cell is evaluated to improve the hydrodechlorination (HDC) of trichloroethylene (TCE) in aqueous solutions. In a mixed (undivided) electrochemical cell, oxygen generated at the anode competes with the transformation of target contaminants at the cathode. In this study, we evaluate the effect of placing the anode downstream from the cathode and using multiple electrodes to promote TCE reduction. Experiments with a cathode followed by an anode (C→A) and an anode followed by a cathode (A→C) were conducted using mixed metal oxide (MMO) and iron as electrode materials. The TCE removal rates when the anode is placed downstream of the cathode (C→A) were 54% by MMO→MMO, 64% by MMO→Fe and 87% by Fe→MMO sequence. Removal rates when the anode is placed upstream of the cathode (A→C) were 38% by MMO→MMO, 58% by Fe→MMO and 69% by MMO→Fe sequence. Placing the anode downstream of the cathode positively improves (by 26%) the degradation of aqueous TCE in a mixed flow-through cell as it minimizes the influence of oxygen generated at the MMO anode on TCE reduction at the cathode. Furthermore, placing the MMO anode downstream of the cathode neutralizes pH and redox potential of the treated solution. Higher flow velocity under the C→A setup increases TCE mass flux reduction rate. Using multiple cathodes and an iron foam cathode up stream of the anode increase the removal rate by 1.6 and 2.4 times, respectively. More than 99% of TCE was removed in the presence of Pd catalyst on carbon and as an iron foam coating. Enhanced reaction rates found in this study imply that a mixed flow-through electrochemical cell with multiple cathodes up stream of an anode is an effective method to promote the reduction of TCE in groundwater. PMID:25931774
Dogan, Didem C; Cho, Seonghun; Hwang, Sun-Mi; Kim, Young-Min; Guim, Hwanuk; Yang, Tae-Hyun; Park, Seok-Hee; Park, Gu-Gon; Yim, Sung-Dae
2016-10-10
Supportless Pt catalysts have several advantages over conventional carbon-supported Pt catalysts in that they are not susceptible to carbon corrosion. However, the need for high Pt loadings in membrane electrode assemblies (MEAs) to achieve state-of-the-art fuel cell performance has limited their application in proton exchange membrane fuel cells. Herein, we report a new approach to the design of a supportless Pt catalyst in terms of catalyst layer architecture, which is crucial for fuel cell performance as it affects water management and oxygen transport in the catalyst layers. Large Pt hollow spheres (PtHSs) 100 nm in size were designed and prepared using a carbon template method. Despite their large size, the unique structure of the PtHSs, which are composed of a thin-layered shell of Pt nanoparticles (ca. 7 nm thick), exhibited a high surface area comparable to that of commercial Pt black (PtB). The PtHS structure also exhibited twice the durability of PtB after 2000 potential cycles (0-1.3 V, 50 mV/s). A MEA fabricated with PtHSs showed significant improvement in fuel cell performance compared to PtB-based MEAs at high current densities (>800 mA/cm 2 ). This was mainly due to the 2.7 times lower mass transport resistance in the PtHS-based catalyst layers compared to that in PtB, owing to the formation of macropores between the PtHSs and high porosity (90%) in the PtHS catalyst layers. The present study demonstrates a successful example of catalyst design in terms of catalyst layer architecture, which may be applied to a real fuel cell system.
Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di-Jia
2015-01-01
Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A⋅cm−3 at 0.9 V or 450 A⋅cm−3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed. PMID:26261338
Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; ...
2015-08-25
Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report heremore » a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A∙cm -3 at 0.9 V or 450 A∙cm -3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.« less
Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di-Jia
2015-08-25
Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A ⋅ cm(-3) at 0.9 V or 450 A ⋅ cm(-3) extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.
Deactivation of Pt/VC proton exchange membrane fuel cell cathodes by SO2, H2S and COS
NASA Astrophysics Data System (ADS)
Gould, Benjamin D.; Baturina, Olga A.; Swider-Lyons, Karen E.
Sulfur contaminants in air pose a threat to the successful operation of proton exchange membrane fuel cells (PEMFCs) via poisoning of the Pt-based cathodes. The deactivation behavior of commercial Pt on Vulcan carbon (Pt/VC) membrane electrode assemblies (MEAs) is determined when exposed to 1 ppm (dry) of SO 2, H 2S, or COS in air for 3, 12, and 24 h while held at a constant potential of 0.6 V. All the three sulfur compounds cause the same deactivation behavior in the fuel cell cathodes, and the polarization curves of the poisoned MEAs have the same decrease in performance. Sulfur coverages after multiple exposure times (3, 12, and 24 h) are determined by cyclic voltammetry (CV). As the exposure time to sulfur contaminants increases from 12 to 24 h, the sulfur coverage of the platinum saturates at 0.45. The sulfur is removed from the cathodes and their activity is partially restored both by cyclic voltammetry, as shown by others, and by successive polarization curves. Complete recovery of fuel cell performance is not achieved with either technique, suggesting that sulfur species permanently affect the surface of the catalyst.
Improved Cathode Structure for a Direct Methanol Fuel Cell
NASA Technical Reports Server (NTRS)
Valdez, Thomas; Narayanan, Sekharipuram
2005-01-01
An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been demonstrated to mitigate the effects of crossover and decrease the airflow required.
Performance of a passive direct ethanol fuel cell
NASA Astrophysics Data System (ADS)
Pereira, J. P.; Falcão, D. S.; Oliveira, V. B.; Pinto, A. M. F. R.
2014-06-01
Ethanol emerges as an attractive fuel since it is less toxic and has higher energy density than methanol and can be produced from biomass. Direct ethanol fuel cells (DEFCs) appear as a good choice for producing sustainable energy for portable applications. However, they are still far from attaining acceptable levels of power output, since their performance is affected by the slow electrochemical ethanol oxidation and water and ethanol crossover. In the present work, an experimental study on the performance of a passive DEFC is described. Tailored MEAs (membrane electrode assembly) with different catalyst loadings, anode diffusion layers and membranes were tested in order to select optimal working conditions at high ethanol concentrations and low ethanol crossover. The performance increased with an increase of membrane and anode diffusion layer thicknesses and anode catalyst loading. A maximum power density of 1.33 mW cm-2, was obtained using a Nafion 117 membrane, 4 mg cm-2 of Pt-Ru and 2 mg cm-2 of Pt on the anode and cathode catalyst layers, ELAT as anode diffusion layer, carbon cloth as cathode diffusion layer and an ethanol concentration of 2 M. As far as the authors are aware this is the first work reporting an experimental optimization of passive DEFCs.
NASA Astrophysics Data System (ADS)
Kim, Gil-Pyo; Lim, Dongwook; Park, Inyeong; Park, Hyelee; Shim, Sang Eun; Baeck, Sung-Hyeon
2016-08-01
Manganite (MnOOH) is one of the most effective electrocatalysts for oxygen reduction reaction (ORR), and RuO2 nanoparticles exhibit high activity for oxygen evolution reaction (OER). We herein report a facile means of producing well dispersed RuO2/MnOOH on Ketjen black (RuO2/MnOOH/C) as a bifunctional catalyst for lithium-air (Li-air) batteries. RuO2/MnOOH/C was simply synthesized using a hydrothermal/precipitation based method, and was used as a cathode for a Li-air battery using a Swagelok-type cell. The importance of dispersing active catalysts on a carbon support was clearly demonstrated by textural, charge-discharge voltammetric, and electrochemical impedance spectroscopic (EIS) analyses, comparing results with a catalyst produced by physically mixing RuO2/MnOOH with carbon (RuO2/MnOOH + C). RuO2/MnOOH/C showed low overpotential and stable cycleability up to 170th cycles with 1000 mAh g-1 of charge-discharge capacity, which was attributed to its enhanced active surface area and low charge-transfer resistance. The results obtained suggest that this strategy can be widely applied to bifunctional electrocatalysis, such as secondary batteries and regenerative fuel cell (RFC).
NASA Astrophysics Data System (ADS)
Liu, Yan; Shu, Chengyong; Fang, Yuan; Chen, Yuanzhen; Liu, Yongning
2017-09-01
Two NiCo2O4 bimetallic oxides were synthesized via a facile hydrothermal method. SEM and TEM observations show that these materials have three-dimensional (3D) dandelion-like (DL) and flower-like (FL) morphologies. Their large specific surface areas (90.68 and 19.8 m2·g-1) and porous structures provide many active sites and effective transport pathways for the oxygen reduction reaction (ORR). Electrochemical measurements with a rotating ring-disc electrode (RRDE) indicate that the electron transfer numbers of the NiCo2O4-DL and NiCo2O4-FL catalysts for ORR in an alkaline solution are 3.97 and 3.91, respectively. Fuel cells were assembled with the bimetallic oxides, PtRu/C and a polymer fiber membrane (PFM) as cathode catalysts, anode catalyst and electrolyte film, respectively. For NiCo2O4-DL, the peak power density reaches up to 73.5 mW·cm-2 at 26 °C, which is the highest room-temperature value reported to date. The high catalytic activity of NiCo2O4 is mainly attributed to the presence of many Co3+ cations that directly donate electrons to O2 to reduce it via a more efficient and effective route. Furthermore, the catalytic performance of NiCo2O4-DL is superior to that of NiCo2O4-FL because it has a higher specific surface area and is less crystalline.
Full scale phosphoric acid fuel cell stack technology development
NASA Technical Reports Server (NTRS)
Christner, L.; Faroque, M.
1984-01-01
The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.
Graphene supported heterogeneous catalysts for Li-O2 batteries
NASA Astrophysics Data System (ADS)
Alaf, M.; Tocoglu, U.; Kartal, M.; Akbulut, H.
2016-09-01
In this study production and characterization of free-standing and flexible (i) graphene, (ii) α-MnO2/graphene, (iii) Pt/graphene (iv) α-MnO2/Pt/graphene composite cathodes for Li-air batteries were reported. Graphene supported heterogeneous catalysts were produced by a facile method. In order to prevent aggregation of graphene sheets and increase not only interlayer distance but also surface area, a trace amount multi-wall carbon nano tube (MWCNT) was introduced to the composite structure. The obtained composite catalysts were characterized by SEM, X-ray diffraction, N2 adsorption-desorption analyze and Raman spectroscopy. The electrochemical characterization tests including galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurement of catalyst were carried out by using an ECC-Air test cell. These highly active graphene supported heterogeneous composite catalysts provide competitive properties relative to other catalyst materials for Li-air batteries.
NASA Astrophysics Data System (ADS)
Liu, Jiandi; Zhao, Yanyan; Li, Xin; Wang, Chunge; Zeng, Yaping; Yue, Guanghui; Chen, Qiang
2018-06-01
Rechargeable lithium-oxygen batteries have been considered as a promising energy storage technology because of their ultra-high theoretical energy densities which are comparable to gasoline. In order to improve the electrochemical properties of lithium-oxygen batteries (LOBs), especially the cycling performance, a high-efficiency cathode catalyst is the most important component. Hence, we aim to demonstrate that CuCr2O4@rGO (CCO@rGO) nanocomposites, which are synthesized using a facile hydrothermal method and followed by a series of calcination processes, are an effective cathode catalyst. The obtained CCO@rGO nanocomposites which served as the cathode catalyst of the LOBs exhibited an outstanding cycling performance for over 100 cycles with a fixed capacity of 1000 mAh g-1 at a current density of 200 mA g-1. The enhanced properties were attributed to the synergistic effect between the high catalytic efficiency of the spinel-structured CCO nanoparticles, the high specific surface area, and high conductivity of the rGO.[Figure not available: see fulltext.
Apparatus and methods for direct conversion of gaseous hydrocarbons to liquids
Kong, Peter C.; Lessing, Paul A.
2006-04-25
A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.
Method for direct conversion of gaseous hydrocarbons to liquids
Kong, Peter C.; Lessing, Paul A.
2006-03-07
A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.
High performance platinum single atom electrocatalyst for oxygen reduction reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jing; Jiao, Menggai; Lu, Lanlu
For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm –2 at 80 °C with a low platinum loading of 0.09 mgPt cm –2, corresponding to a platinum utilization of 0.13 gPt kWmore » –1 in the fuel cell. Good fuel cell durability is also observed. As a result, theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.« less
High performance platinum single atom electrocatalyst for oxygen reduction reaction
Liu, Jing; Jiao, Menggai; Lu, Lanlu; ...
2017-07-24
For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm –2 at 80 °C with a low platinum loading of 0.09 mgPt cm –2, corresponding to a platinum utilization of 0.13 gPt kWmore » –1 in the fuel cell. Good fuel cell durability is also observed. As a result, theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korovin, N.V.; Kozlova, N.I.; Kumenko, M.V.
This work is concerned with the effect of oxidation on the activity of Raney nickel catalyst in cathodic hydrogen evolution. The superficial Raney nickel catalyst (nickel SRC) was prepared by a previously described procedure. The surface of the nickel SRC was oxidized by applying an anodic sweep over the potential range from 0.25 to 1.00 V with a potential sweep rate of 1 mV/sec. The rate of cathodic hydrogen evolution increases after pretreatment of the surface of nickel SRC by application of an anodic pulse. A significant increase in the reaction rate most probably is due to oxygen adsorption onmore » the nickel SRC surface. The largest increase in the amount of weakly bound hydrogen corresponds to the most active electrode. Oxidation of the nickel surface by an anodic pulse causes both an acceleration and a retardation of the cathodic hydrogen evolution reaction.« less
NASA Astrophysics Data System (ADS)
Guzman Blas, Rolando Pedro
This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the carbon-platinum-cerium has better catalytic activity than platinum-carbon. Due to the hybridization behavior of C and Ce could arise charge transfer, both carbon and cerium to the Platinum. Ce-C→Pt charge transfer could occur at the Ce-C/Pt interface. Thus, results in an increase in the catalytic activity of platinum-cerium-carbon when compared with carbon-platinum.
Yuan, Xianxia; Li, Lin; Ma, Zhong; Yu, Xuebin; Wen, Xiufang; Ma, Zi-Feng; Zhang, Lei; Wilkinson, David P.; Zhang, Jiujun
2016-01-01
A novel nanowire-structured polypyrrole-cobalt composite, PPy-CTAB-Co, is successfully synthesized with a surfactant of cetyltrimethylammounium bromide (CTAB). As an electro-catalyst towards oxygen reduction reaction (ORR) in alkaline media, this PPy-CTAB-Co demonstrates a superior ORR performance when compared to that of granular PPy-Co catalyst and also a much better durability than the commercial 20 wt% Pt/C catalyst. Physiochemical characterization indicates that the enhanced ORR performance of the nanowire PPy-CTAB-Co can be attributed to the high quantity of Co-pyridinic-N groups as ORR active sites and its large specific surface area which allows to expose more active sites for facilitating oxygen reduction reaction. It is expected this PPy-CTAB-Co would be a good candidate for alkaline fuel cell cathode catalyst. PMID:26860889
Pt monolayer shell on nitrided alloy core — A path to highly stable oxygen reduction catalyst
Hu, Jue; Kuttiyiel, Kurian A.; Sasaki, Kotaro; ...
2015-07-22
The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC). Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared Pt MLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability ofmore » the Pt MLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.« less
Tan, Guoqiang; Chong, Lina; Amine, Rachid; ...
2017-04-12
To promote lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport, and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electro-active zones possible; furthermore, the colander-like porous electrode facilitates themore » oxygen diffusion, catalytic reaction, and stable deposition of discharge products. Finally, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less
A fundamental study of chromium deposition on solid oxide fuel cell cathode materials
NASA Astrophysics Data System (ADS)
Tucker, Michael C.; Kurokawa, Hideto; Jacobson, Craig P.; De Jonghe, Lutgard C.; Visco, Steven J.
Chromium contamination of metal oxides and SOFC cathode catalysts is studied in the range 700-1000 °C. Samples are exposed to a moist air atmosphere saturated with volatile Cr species in the presence and absence of direct contact between the sample and ferritic stainless steel powder. Chromium contamination of the samples is observed to occur via two separate pathways: surface diffusion from the stainless steel surface and vapor deposition from the atmosphere. Surface diffusion dominates in all cases. Surface diffusion is found to be a significant source of Cr contamination for LSM and LSCF at 700, 800, and 1000 °C. Vapor deposition of Cr onto LSCF was observed at each of these temperatures, but was not observed for LSM at 700 or 800 °C. Comparison of the behavior for LSM, LSCF, and single metal oxides suggests that Mn and Co, respectively, are responsible for the Cr contamination of these catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Guoqiang; Chong, Lina; Amine, Rachid
For the promotion of lithium oxygen batteries available for :practical applications, the development of advanced cathode catalysts with low-high activity, and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@grapbene Multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium oxygen cells. 'The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electroactive zones possible; furthermore the colander-like porousmore » electrode facilitates the oxygen diffusion, catalytic reaction,and stable deposition of discharge products. As a result, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Guoqiang; Chong, Lina; Amine, Rachid
To promote lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport, and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electro-active zones possible; furthermore, the colander-like porous electrode facilitates themore » oxygen diffusion, catalytic reaction, and stable deposition of discharge products. Finally, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less
Tan, Guoqiang; Chong, Lina; Amine, Rachid; Lu, Jun; Liu, Cong; Yuan, Yifei; Wen, Jianguo; He, Kun; Bi, Xuanxuan; Guo, Yuanyuan; Wang, Hsien-Hau; Shahbazian-Yassar, Reza; Al Hallaj, Said; Miller, Dean J; Liu, Dijia; Amine, Khalil
2017-05-10
For the promotion of lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity, and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electroactive zones possible; furthermore, the colander-like porous electrode facilitates the oxygen diffusion, catalytic reaction, and stable deposition of discharge products. As a result, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.
NASA Astrophysics Data System (ADS)
Litkohi, Hajar Rajaei; Bahari, Ali; Ojani, Reza
2017-08-01
In order to use carbon nanotube (CNT)-supported catalyst as fuel cell electrodes, Pt-Ni-Fe/CNT/carbon paper (CP) electrode was prepared using an ethylene glycol reduction method. CNTs were directly synthesized on Ni-impregnated carbon paper, plain carbon cloth, and Teflonized carbon cloth using chemical vapor deposition. FESEM and TEM images and thermogravimetric analysis indicated that in situ CNT on carbon paper (ICNT/CP) possesses more appropriate structural quality and stronger adhesion to the substrate than other substrates. The contact angle analysis demonstrated that the degree of ICNT/CP surface hydrophobicity encountered a 24% increase in comparison to CP and promoted to superhydrophobicity from hydrophobicity. The polarization curves and electrochemical impedance spectroscopy results of the loaded Pt-Ni-Fe on in situ and ex situ CNT/CP illustrated that the power density increased and charge transfer resistance reduced compared to commercial Pt/C loaded on CP. The results can be attributed to the outstanding properties of CNTs and high catalytic activity of triple catalysts causing alloying of Pt with Ni and Fe, which makes them a proper candidate to be used as cathode electrodes in proton exchange membrane fuel cells.
NASA Astrophysics Data System (ADS)
Jurzinsky, Tilman; Kurzhals, Philipp; Cremers, Carsten
2018-06-01
The oxygen reduction reaction is in research focus since several decades due to its importance for the overall fuel cell performance. In direct methanol fuel cells, the crossover of methanol and its subsequent parasitic oxidation are main issues when it comes to preventing fuel cell performance losses. In this work, we present a novel differential electrochemical mass spectrometry method to evaluate oxygen reduction reaction catalysts on their tolerance to methanol being present at the cathode. Besides this, the setup allows to measure under more realistic fuel cell conditions than typical rotating disc electrode measurements, because the oxygen reduction reaction is evaluated in gaseous phase and a gas diffusion electrode is used as working electrode. Due to the new method, it was possible to investigate the oxygen reduction reaction on two commonly used catalysts (Pt/C and Pt3Co/C) in absence and presence of methanol. It was found, that Pt3Co/C is less prone to parasitic current losses due to methanol oxidation reaction. By connecting a mass spectrometer to the electrochemical cell, the new method allows to determine the products formed on the catalysts due to parasitic methanol electrooxidation.
Advanced technology lightweight fuel cell program
NASA Technical Reports Server (NTRS)
Martin, R. E.
1981-01-01
The potential of the alkaline electrolyte fuel cell as the power source in a multi hundred kilowatt orbital energy storage system was studied. The total system weight of an electrolysis cell energy storage system was determined. The tests demonstrated: (1) the performance stability of a platinum on carbon anode catalyst configuration after 5000 hours of testing has no loss in performance; (2) capability of the alkaline fuel cell to operate to a cyclical load profile; (3) suitability of a lightweight graphite electrolyte reservoir plate for use in the alkaline fuel cell; (4) long life potential of a hybrid polysulfone cell edge frame construction; and (5) long term stability of a fiber reinforced potassium titanate matrix structure. The power section tested operates with passive water removal eliminating the requirement for a dynamic hydrogen pump water separator thereby allowing a powerplant design with reduced weight, lower parasite power, and a potential for high reliability and extended endurance. It is concluded that two perovskites are unsuitable for use as a catalyst or as a catalyst support at the cathode of an alkaline fuel cell.
Stabilizing platinum in phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Remick, R. J.
1981-01-01
The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst supported on a carbon substrate. During operation, the small platinum crystallites sinter, causing loss in cell performance. A support was developed that stabilizes platinum in the high surface area condition by retarding or preventing the sintering process. The approach is to form etch pits in the carbon by oxidizing the carbon in the presence of a metal oxide catalyst, remove the metal oxide by an acid wash, and then deposit platinum in these pits. Results confirm the formation of etch pits in each of the three supports chosen for investigation: Vulcan XC-72R, Vulcan XC-72 that was graphized at 2500 C, and Shawinigan Acetylene Black.
Kamino, Takeo; Yaguchi, Toshie; Shimizu, Takahiro
2017-10-01
Polymer electrolyte fuel cells hold great potential for stationary and mobile applications due to high power density and low operating temperature. However, the structural changes during electrochemical reactions are not well understood. In this article, we detail the development of the sample holder equipped with gas injectors and electric conductors and its application to a membrane electrode assembly of a polymer electrolyte fuel cell. Hydrogen and oxygen gases were simultaneously sprayed on the surfaces of the anode and cathode catalysts of the membrane electrode assembly sample, respectively, and observation of the structural changes in the catalysts were simultaneously carried out along with measurement of the generated voltages.
DE-FG02-08ER64658 (OASIS) - Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharman, Jonathan
Project OASIS (Operation of Advanced Structures, Interfaces and Sub-components for MEAs) was a 12 month project that ran from 1st September 2008 to 31st August 2009, and was managed by the Department of Energy Office of Science, Chicago Office, as Award No DE-FG02-08ER64658, with Johnson Matthey Fuel Cells Inc. as the sole contractor. The project was completed on schedule, with technical successes (details below) and payment of the full grant award made by DOE. The aim of the project was the development of membrane electrode assemblies (MEAs) for H2/air polymer electrolyte membrane (PEM) fuel cells that would give higher performancemore » under hot/dry and dry operating conditions, ideally with no loss of performance under wet conditions. Reducing or eliminating the need for humidifying the incoming gases will allow significant system cost and size reduction for many fuel cell applications including automotive, stationary and back-up power, and portable systems. Portable systems are also of particular interest in military markets. In previous work Johnson Matthey Fuel Cells had developed very stable, corrosion-resistant catalysts suitable for resisting degradation by carbon corrosion in particular. These materials were applied within the OASIS project as they are considered necessary for systems such as automotive where multiple start-stop events are experienced. These catalysts were contrasted with more conventional materials in the design of catalyst layers and novel microporous layers (MPLs) and gas diffusion layer (GDL) combinations were also explored. Early on in the work it was shown how much more aggressive high temperature operation is than dry operation. At the same humidity, tests at 110?C caused much more dehydration than tests at 80?C and the high temperature condition was much more revealing of improvements made to MEA design. Alloy catalysts were introduced and compared with Pt catalysts with a range of particle sizes. It was apparent that the larger particle sizes of the alloy catalysts led to a reduction in performance that offset much of their kinetic advantage. The Pt-only materials clearly showed that small particles are beneficial to good performance under hot/dry conditions, because of their higher surface area, although they are known to be less stable to cyclic operation. An ex-situ water vapour sorption technique was developed that showed a very clear correlation with in-cell performance: catalyst powders that absorbed more water gave better performance in-cell. It was shown that alloy catalysts could give a 25 mV advantage over Pt-only at 1 Acm-2. GDL design was also shown to influence performance and more permeable GDLs on the anode allowed better membrane hydration and therefore conductivity. A very impermeable GDL on the cathode caused cathode flooding even under dry conditions, but a novel cathode MPL incorporating ionomer and operating at 110?C, 33/17% RH showed a 150 mV gain at 800 mAcm-2 over the conventional MPL. This project has increased the understanding of the factors that influence performance loss under dry conditions, including the development of an insightful ex-situ characterisation technique (Dynamic Vapour Sorption). All the approaches investigated can be readily implemented in state-of the-art MEAs, although optimisation would be needed to integrate the new designs with existing MEA types and to tune to the exact range of operating conditions. The work is thus expected to benefit the public by feeding through more condition-tolerant production MEAs to a range of applications and thereby accelerate the commercialisation of fuel cell technology. In summary, a number of specific catalyst, catalyst layer, MPL and GDL improvements were made during this project. Often the best designs under dry conditions translated to some performance loss under wet conditions, but compromise situations were also found where dry performance was improved with no loss of wet performance.« less
Characteristics of Subfreezing Operation of Polymer Electrolyte Membrane Fuel Cells
NASA Astrophysics Data System (ADS)
Mishler, Jeffrey Harris
Polymer Electrolyte Membrane (PEM) Fuel Cells are capable of high efficiency operation, and are free of NOx, SOx, and CO2 emissions when using hydrogen fuel, and ideally suited for use in transportation applications due to their high power density and low operating temperatures. However, under subfreezing conditions which may be encountered during winter seasons in some areas, product water will freeze within the membrane, cathode side catalyst layer and gas diffusion media, leading to voltage loss and operation failure. Experiments were undertaken in order to characterize the amount and location of water during fuel cell operation. First, in-situ neutron radiography was undertaken on the fuel cells at a normal operating temperature for various operating current densities, inlet relative humidities, and diffusion media hydrophobicities. It was found that more hydrophobic cathode microporous layer (MPL) or hydrophilic anode MPL may result in a larger amount of water transporting back to the anode. The water profiles along the channels were measured and the point of liquid water emergence, where two phase flow begins, was compared to previous models. Secondly, under subfreezing temperatures, neutron imaging showed that water ice product accumulates because of lack of a water removal mechanism. Water was observed under both the lands and channels, and increased almost linearly with time. It is found that most ice exists in the cathode side. With evidence from experimental observation, a cold start model was developed and explained, following existing approaches in the literature. Three stages of cold start are explained: membrane saturation, ice storage in catalyst layer pores, and then ice melting. The voltage losses due to temperature change, increased transport resistance, and reduced electrochemical surface area. The ionic conductivity of the membrane at subfreezing temperatures was modeled. Voltage evolution over time for isothermal cold starts was predicted and validated against experimental data. The ice coverage coefficient was shown to be a key variable in matching with experimental data. From model analysis, it appears that the coulombs of charge passed before operation failure is an important parameter characterizing PEM fuel cell cold start. To investigate the coulombs of charge and its determining factors, PEM fuel cells were constructed to measure the effects of membrane configuration (thickness and initial state), catalyst layer configuration (thickness and ionomer-carbon ratio), current density, and temperature on the quantity. It was found that subfreezing temperature, ionomer-catalyst ratio, and catalyst-layer thickness significantly affect the amount of charge transferred before operational failure, whereas the membrane thickness and initial hydration level have limited effect for the considered cases. In addition, degradation of the catalyst layer was observed and quantified. These results improve the fundamental understanding of characteristics of subfreezing operation and thus are valuable for automobile applications of PEM fuel cells. The model directly relates the material properties to voltage loss, and predicts voltage evolution, thus providing a way for material optimization and diagnostics. Additionally, insights into component design and operating conditions can be used to better optimize the fuel cell for cold start-up of the vehicle.
Hassan, Ayaz; Ticianelli, Edson A
2018-01-01
Studies aiming at improving the activity and stability of dispersed W and Mo containing Pt catalysts for the CO tolerance in proton exchange membrane fuel cell (PEMFC) anodes are revised for the following catalyst systems: (1) a carbon supported PtMo electrocatalyst submitted to heat treatments; (2) Pt and PtMo nanoparticles deposited on carbon-supported molybdenum carbides (Mo2C/C); (3) ternary and quaternary materials formed by PtMoFe/C, PtMoRu/C and PtMoRuFe/C and; (4) Pt nanoparticles supported on tungsten carbide/carbon catalysts and its parallel evaluation with carbon supported PtW catalyst. The heat-treated (600 oC) Pt-Mo/C catalyst showed higher hydrogen oxidation activity in the absence and in the presence of CO and better stability, compared to all other Mo-containing catalysts. PtMoRuFe, PtMoFe, PtMoRu supported on carbon and Pt supported on Mo2C/C exhibited similar CO tolerances but better stability, as compared to as-prepared PtMo supported on carbon. Among the tungsten-based catalysts, tungsten carbide supported Pt catalyst showed reasonable performance and reliable stability in comparison to simple carbon supported PtW catalyst, though an uneven level of catalytic activity towards H2 oxidation in presence of CO is observed for the former as compared to Mo containing catalyst. However, a small dissolution of Mo, Ru, Fe and W from the anodes and their migration toward cathodes during the cell operation is observed. These results indicate that the fuel cell performance and stability has been improved but not yet totally resolved.
Shui, Jiang-Lan; Karan, Naba K; Balasubramanian, Mahalingam; Li, Shu-You; Liu, Di-Jia
2012-10-10
Atomically dispersed Fe/N/C composite was synthesized and its role in controlling the oxygen evolution reaction during Li-O(2) battery charging was studied by use of a tetra(ethylene glycol) dimethyl ether-based electrolyte. Li-O(2) cells using Fe/N/C as the cathode catalyst showed lower overpotentials than α-MnO(2)/carbon catalyst and carbon-only material. Gases evolved during the charge step contained only oxygen for Fe/N/C cathode catalyst, whereas CO(2) was also detected in the case of α-MnO(2)/C or carbon-only material; this CO(2) was presumably generated from electrolyte decomposition. Our results reiterate the catalytic effect in reducing overpotentials, which not only enhances battery efficiency but also improves its lifespan by reducing or eliminating electrolyte decomposition. The structure of the Fe/N/C catalyst was characterized by transmission electron microscopy, scanning transmission electron microscopy, inductively coupled plasma optical emission spectroscopy, and X-ray absorption spectroscopy. Iron was found to be uniformly distributed within the carbon matrix, and on average, Fe was coordinated by 3.3 ± 0.6 and 2.2 ± 0.3 low Z elements (C/N/O) at bond distances of ~1.92 and ~2.09 Å, respectively.
A novel membrane-less direct alcohol fuel cell
NASA Astrophysics Data System (ADS)
Yi, Qingfeng; Chen, Qinghua; Yang, Zheng
2015-12-01
Membrane-less fuel cell possesses such advantages as simplified design and lower cost. In this paper, a membrane-less direct alcohol fuel cell is constructed by using multi-walled carbon nanotubes (MWCNT) supported Pd and ternary PdSnNi composites as the anode catalysts and Fe/C-PANI composite, produced by direct pyrolysis of Fe-doped polyaniline precursor, as the oxygen reduction reaction (ORR) catalyst. The alcohols investigated in the present study are methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol and sec-butanol. The cathode catalyst Fe/C-PANI is electrochemically inactive to oxidation of the alcohols. The performance of the cell with various alcohols in 1 mol L-1 NaOH solution on either Pd/MWCNT or PdSnNi/MWCNT catalyst has been evaluated. In any case, the performance of the cell using the anode catalyst PdSnNi/MWCNT is considerably better than Pd/MWCNT. For the PdSnNi/MWCNT, the maximum power densities of the cell using methanol (0.5 mol L-1), ethanol (0.5 mol L-1), n-propanol (0.5 mol L-1), iso-propanol (0.5 mol L-1), n-butanol (0.2 mol L-1), iso-butanol (0.2 mol L-1) and sec-butanol (0.2 mol L-1) are 0.34, 1.03, 1.07, 0.44, 0.50, 0.31 and 0.15 mW cm-2, respectively.
NASA Astrophysics Data System (ADS)
Renzi, M.; D'Angelo, G.; Marassi, R.; Nobili, F.
2016-09-01
The catalytic activity of commercial Pt nanoparticles mixed with mesoporous polyoxometalate Cs3H2PMo10V2O40 towards oxygen reduction reaction is evaluated. The polyoxometalate co-catalyst is prepared by titration of an aqueous solution of phosphovanadomolibdic acid. SEM micrography shows reduction particle size to less than 300 nm, while XRD confirms that the resulting salt maintains the Kegging structure. The composite catalyst is prepared by mixing the POM salt with Pt/C by sonication. RRDE studies show better kinetics for ORR with low Pt loading at the electrode surface. A MEA is assembled by using a Pt/POM-based cathode, in order to assess performance in a working fuel cell. Current vs. potential curves reveals comparable or better performances at 100%, 62% and 17% relative humidity for the POM-modified MEA with respect to a commercial MEA with higher Pt loading at the cathode. Electrochemical impedance spectroscopy (EIS) confirms better kinetics at low relative humidity. Finally, an accelerated stress test (AST) with square wave (SW) between 0.4 V and 0.8 V is performed to evaluate MEA stability for at least 100 h and make predictions about lifetime, showing that after initial losses the catalytic system can retain stable performance and good morphological stability.
Insights into PEMFC Performance Degradation from HCl in Air
DOE Office of Scientific and Technical Information (OSTI.GOV)
O Baturina; A Epshteyn; P Northrup
2011-12-31
The performance degradation of a proton exchange membrane fuel cell (PEMFC) is studied in the presence of HCl in the air stream. The cathode employing carbon-supported platinum nanoparticles (Pt/C) was exposed to 4 ppm HCl in air while the cell voltage was held at 0.6 V. The HCl poisoning results in generation of chloride and chloroplatinate ions on the surface of Pt/C catalyst as determined by a combination of electrochemical tests and ex-situ chlorine K-edge X-Ray absorption near-edge structure (XANES) spectroscopy. The chloride ions inhibit the oxygen reduction reaction (ORR) and likely affect the wetting properties of diffusion media/catalyst layer,more » while the chloroplatinate ions are responsible for enhanced platinum particle growth most likely due to platinum dissolution-redeposition. The chloride ions can cause corrosion of the Pt nanoparticles in the presence of aqueous HCl in air even if no potential is applied. Although the majority of chloride ions are desorbed from the Pt surface by hydrogen treatment of the cathode, they partially remain in the system and re-adsorb on platinum at cell voltages of 0.5-0.9 V. Chloride ions are removed from the system and fuel cell performance at 0.5-0.7 V is restored by multiple exposures to low potentials.« less
Zhou, Yingjie; Bai, Kyoung
2018-01-01
Despite great progress in the development of nonprecious metal catalysts (NPMCs) over the past several decades, the performance and stability of these promising catalysts have not yet achieved commercial readiness for proton exchange membrane fuel cells (PEMFCs). Through rational design of the cathode catalyst layer (CCL), we demonstrate the highest reported performance for an NPMC-based membrane electrode assembly (MEA), achieving a peak power of 570 mW/cm2 under air. This record performance is achieved using a precommercial catalyst for which nearly all pores are <3 nm in diameter, challenging previous beliefs regarding the need for larger catalyst pores to achieve high current densities. This advance is achieved at industrially relevant scales (50 cm2 MEA) using a precommercial NPMC. In situ electrochemical analysis of the CCLs is also used to help gain insight into the degradation mechanism observed during galvanostatic testing. Overall, the performance of this NPMC-based MEA has achieved commercial readiness and will be introduced into an NPMC-based product for portable power applications. PMID:29582018
Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan
2011-12-15
Decolorization of dye wastewater before discharge is pivotal because of its immense color and toxicities. In this study, a granular activated carbon based microbial fuel cell (GACB-MFC) was used without using any expensive materials like Nafion membrane and platinum catalyst for simultaneous decolorization of real dye wastewater and bioelectricity generation. After 48 hours of GACB-MFC operation, 73% color was removed at anode and 77% color was removed at cathode. COD removal was 71% at the anode and 76% at the cathode after 48 hours. Toxicity measurements showed that cathode effluent was almost nontoxic after 24 hours. The anode effluent was threefold less toxic compared to original dye wastewater after 48 hours. The GACB-MFC produced a power density of 1.7 W/m(3) with an open circuit voltage 0.45 V. One of the advantages of the GACB-MFC system is that pH was automatically adjusted from 12.4 to 7.2 and 8.0 at the anode and cathode during 48 hours operation. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhang, Xi; Li, Kexun; Yan, Pengyu; Liu, Ziqi; Pu, Liangtao
2015-01-01
A novel n-type Cu2O doped activated carbon (AC) air cathode (Cu/AC) was developed as an alternative to Pt electrode for oxygen reduction in microbial fuel cells (MFCs). The maximum power density of MFCs using this novel air cathode was as high as 1390±76mWm(-2), almost 59% higher than the bare AC air cathode. Specifically, the resistance including total resistance and charge transfer resistance significantly decreased comparing to the control. Tafel curve also showed the faster electro-transfer kinetics of Cu/AC with exchange current density of 1.03×10(-3)Acm(-2), which was 69% higher than the control. Ribbon-like Cu2O was deposited on the surface of AC with the mesopore surface area increasing. Cubic Cu2O crystals exclusively expose (111) planes with the interplanar crystal spacing of 2.48Å, which was the dominate active sites for oxygen reduction reaction (ORR). N-type Cu2O with oxygen vacancies played crucial roles in electrochemical catalytic activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Torres, César I; Lee, Hyung-Sool; Rittmann, Bruce E
2008-12-01
Anodes of biological fuel cells (BFCs) normally must operate at a near-neutral pH in the presence of various ionic species required for the function of the biological catalyst (e.g., substrate, nutrients, and buffers). These ionic species are in higher concentration than protons (H+) and hydroxides (OH-); slow transport of H+ and OH- equivalents between anode and cathode compartments can lead to a large pH gradient that can inhibit the function of biological components, decrease voltage efficiency in BFCs, or both. We evaluate the use of carbonate species as OH- carriers from the cathode to the anode compartment. This is achieved by adding CO2 to the influent air in the cathode. CO2 is an acid that combines with OH- in the cathode to produce bicarbonate and carbonate. These species can migrate to the anode compartment as OH- carriers at a rate much greater than can OH- itself when the pH is not extremely high in the cathode compartment We demonstrate this concept by feeding different air/CO2 mixtures to the cathode of a dual-chamber microbial fuel cell (MFC) fed with acetate as substrate. Our results show a 45% increase in power density (from 1.9 to 2.8 W/m2) by feeding air augmented with 2-10% CO2. The cell voltage increased by as much as 120 mV, indicating that the pH gradient decreased by as much as 2 pH units. Analysis of the anode effluent showed an average increase of 4.9 mM in total carbonate, indicating that mostly carbonate was transferred from the cathode compartment This process provides a simple way to minimize potential losses in BFCs due to pH gradients between anode and cathode compartments.
MEMS-based thin-film fuel cells
Jankowksi, Alan F.; Morse, Jeffrey D.
2003-10-28
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
NASA Astrophysics Data System (ADS)
Jablonski, Andrzej; Kulesza, Pawel J.; Lewera, Adam
2011-05-01
We investigate oxygen permeation through Nafion 117 membrane in a direct ethanol fuel cell and elucidate how it affects the fuel cell efficiency. An obvious symptom of oxygen permeation is the presence of significant amounts of acetaldehyde and acetic acid in the mixture leaving anode when no current was drawn from the fuel cell (i.e. under the open circuit conditions). This parasitic process severely lowers efficiency of the fuel cell because ethanol is found to be directly oxidized on the surface of catalyst by oxygen coming through membrane from cathode in the absence of electric current flowing in the external circuit. Three commonly used carbon-supported anode catalysts are investigated, Pt, Pt/Ru and Pt/Sn. Products of ethanol oxidation are determined qualitatively and quantitatively at open circuit as a function of temperature and pressure, and we aim at determining whether the oxygen permeation or the catalyst's activity limits the parasitic ethanol oxidation. Our results strongly imply the need to develop more selective membranes that would be less oxygen permeable.
Xu, Xin; Dai, Ying; Yu, Jia; Hao, Liang; Duan, Yaqiang; Sun, Ye; Zhang, Yanhong; Lin, Yuhui; Zou, Jinlong
2017-03-29
The critical issues in practical application of microbial fuel cells (MFCs) for wastewater treatment are the high cost and poor activity and durability of precious metal catalysts. To alleviate the activity loss and kinetic barriers for oxygen reduction reaction (ORR) on cathode, (Fe)/Fe 3 O 4 /FeS/N-doped graphitic carbon ((Fe)/Fe 3 O 4 /FeS/NGC) is prepared as ORR catalyst through a one-step method using waste pomelo skins as carbon source. Various characterization techniques and electrochemical analyses are conducted to illustrate the correlation between structural characteristics and catalytic activity. MFCs with Fe/Fe 3 O 4 /FeS/NGC (900 °C) cathode produces the maximum power density of 930 ± 10 mW m -2 (Pt/C of 489 mW m -2 ) and maintains a good long-term durability, which only declines 18% after 90 day operation. Coulombic efficiency (22.2%) obtained by Fe/Fe 3 O 4 /FeS/NGC (900 °C) cathode is significantly higher than that of Pt/C (17.3%). Metallic state FeS anchored in porous NGC skeleton can boost electron transport through the interconnected channels in spongelike structure to improve catalytic activity. Charge delocalization of C atoms can be strengthened by N atoms incorporation into carbon skeleton, which correspondingly contributes to the O 2 chemisorptions and O-O bond weakening during ORR. Energetically existed active components (Fe and N species) are more efficient than Pt to trap and consume electrons in catalyzing ORR in wastewater containing Pt-poisoning substances (bacterial metabolites). (Fe)/Fe 3 O 4 /FeS/NGC catalysts with the advantages of durable power outputs and environmental-friendly raw material can cover the shortages of Pt/C and provide an outlook for further applications of these catalysts.
Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability
NASA Astrophysics Data System (ADS)
Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida
2017-02-01
Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance.
Catalyst surfaces for the chromous/chromic redox couple
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K. J. (Inventor)
1981-01-01
An electricity producing cell of the reduction-oxidation (REDOX) type divided into two compartments by a membrane is disclosed. A ferrous/ferric couple in a chloride solution serves as a cathode fluid to produce a positive electric potential. A chromic/chromous couple in a chloride solution serves as an anode fluid to produce a negative potential. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which has been added to the anode fluid. If the REDOX cell is then discharged, the lead deplates from the negative electrode and the metal coating on the electrode acts as a catalyst to increase current density.
Reduced size fuel cell for portable applications
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor); Frank, Harvey A. (Inventor)
2004-01-01
A flat pack type fuel cell includes a plurality of membrane electrode assemblies. Each membrane electrode assembly is formed of an anode, an electrolyte, and an cathode with appropriate catalysts thereon. The anode is directly into contact with fuel via a wicking element. The fuel reservoir may extend along the same axis as the membrane electrode assemblies, so that fuel can be applied to each of the anodes. Each of the fuel cell elements is interconnected together to provide the voltage outputs in series.
NASA Astrophysics Data System (ADS)
Yi, Lanhua; Wei, Wei; Zhao, Caixian; Tian, Li; Liu, Jing; Wang, Xianyou
2015-07-01
Carbon supported Au-Fe bimetallic nanocatalysts (Au-Fe/C) are facilely prepared via a modified NaBH4 reduction method in aqueous solution at room temperature, and used as the anode electrocatalyst of direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the Au-Fe/C electrocatalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), rotating disc electrode (RDE) voltammetry, chronoamperometry (CA), chronopotentiometry (CP), and fuel cell test. The results show that Au-Fe/C catalysts display higher catalytic activity for the direct electrooxidation of BH4- than carbon supported pure Au nanocatalyst (Au/C), especially Au50Fe50/C catalyst presents the highest catalytic activity among all as-prepared catalysts. Besides, the single DBHFC with Au50Fe50/C anode and Au/C cathode obtains the maximum power density as high as 34.9 mW cm-2 at 25 °C.
NASA Astrophysics Data System (ADS)
Hossen, Md Mosaddek; Artyushkova, Kateryna; Atanassov, Plamen; Serov, Alexey
2018-01-01
In this article, three different Fe-N-C oxygen reduction reaction (ORR) catalysts derived from different organic molecules i.e. Fe-NMG, Fe-NMP, Fe-MBZ have been synthesized, characterized by physical-chemical methods and studied in the reaction of oxygen reduction (ORR). It is found that Fe-NMG shows higher ORR performance than Fe-NMP and Fe-MBZ, by both rotating ring disk electrode (RRDE) and fuel cell tests. From characterization and surface analysis, it can be explained that the presence of higher amount of surface oxides and pyridinic nitrogen is the main reason for better performance towards ORR in alkaline media. To achieve the highest performance in alkaline exchange membrane fuel cell (AEMFC), the optimization of catalyst layer composition using various concentrations of ionomer (Tokuyama, AS4) was performed. At the optimum cathode layer configuration utilizing Fe-NMG produces the peak power density of 218 mWcm-2, which is one of the highest values presented in the open literature.
Cathode catalyst for primary phosphoric fuel cells
NASA Technical Reports Server (NTRS)
Walsh, F.
1980-01-01
Alkylation of Vulcan XC-72 provided the most stable bond type for linking CoTAA to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA has catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available PTFE was shown to be stable for four months in 200 C 85% phosphoric acid based on lack of change in surface wetting properties, IR and physical characteristics. When stressed electrochemically in 150 C 85% phosphoric acid, PTFE also showed no changes after one month.
Reversibility of Noble Metal-Catalyzed Aprotic Li-O₂ Batteries.
Ma, Shunchao; Wu, Yang; Wang, Jiawei; Zhang, Yelong; Zhang, Yantao; Yan, Xinxiu; Wei, Yang; Liu, Peng; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan; Xu, Ye; Peng, Zhangquan
2015-12-09
The aprotic Li-O2 battery has attracted a great deal of interest because, theoretically, it can store far more energy than today's batteries. Toward unlocking the energy capabilities of this neotype energy storage system, noble metal-catalyzed high surface area carbon materials have been widely used as the O2 cathodes, and some of them exhibit excellent electrochemical performances in terms of round-trip efficiency and cycle life. However, whether these outstanding electrochemical performances are backed by the reversible formation/decomposition of Li2O2, i.e., the desired Li-O2 electrochemistry, remains unclear due to a lack of quantitative assays for the Li-O2 cells. Here, noble metal (Ru and Pd)-catalyzed carbon nanotube (CNT) fabrics, prepared by magnetron sputtering, have been used as the O2 cathode in aprotic Li-O2 batteries. The catalyzed Li-O2 cells exhibited considerably high round-trip efficiency and prolonged cycle life, which could match or even surpass some of the best literature results. However, a combined analysis using differential electrochemical mass spectrometry and Fourier transform infrared spectroscopy, revealed that these catalyzed Li-O2 cells (particularly those based on Pd-CNT cathodes) did not work according to the desired Li-O2 electrochemistry. Instead the presence of noble metal catalysts impaired the cells' reversibility, as evidenced by the decreased O2 recovery efficiency (the ratio of the amount of O2 evolved during recharge/that consumed in the preceding discharge) coupled with increased CO2 evolution during charging. The results reported here provide new insights into the O2 electrochemistry in the aprotic Li-O2 batteries containing noble metal catalysts and exemplified the importance of the quantitative assays for the Li-O2 reactions in the course of pursuing truly rechargeable Li-O2 batteries.
NASA Astrophysics Data System (ADS)
Zhang, Jian; Luan, Yanping; Lyu, Zhiyang; Wang, Liangjun; Xu, Leilei; Yuan, Kaidi; Pan, Feng; Lai, Min; Liu, Zhaolin; Chen, Wei
2015-09-01
A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery cathode. Here, we report a controllable approach to synthesize hierarchical porous δ-MnO2 nanoboxes by using Prussian blue analogues as the precursors. The obtained products possess hierarchical pore size and an extremely large surface area (249.3 m2 g-1), which would favour oxygen transportation and provide more catalytically active sites to promote ORR and OER as the Li-O2 battery cathode. The battery shows enhanced discharge capacity (4368 mA h g-1@0.08 mA cm-2), reduced overpotential (270 mV), improved rate performance and excellent cycle stability (248 cycles@500 mA h g-1 and 112 cycles@1000 mA h g-1), in comparison with the battery with a VX-72 carbon cathode. The superb performance of the hierarchical porous δ-MnO2 nanoboxes, together with a convenient fabrication method, presents an alternative to develop advanced cathode catalysts for the Li-O2 battery.A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery cathode. Here, we report a controllable approach to synthesize hierarchical porous δ-MnO2 nanoboxes by using Prussian blue analogues as the precursors. The obtained products possess hierarchical pore size and an extremely large surface area (249.3 m2 g-1), which would favour oxygen transportation and provide more catalytically active sites to promote ORR and OER as the Li-O2 battery cathode. The battery shows enhanced discharge capacity (4368 mA h g-1@0.08 mA cm-2), reduced overpotential (270 mV), improved rate performance and excellent cycle stability (248 cycles@500 mA h g-1 and 112 cycles@1000 mA h g-1), in comparison with the battery with a VX-72 carbon cathode. The superb performance of the hierarchical porous δ-MnO2 nanoboxes, together with a convenient fabrication method, presents an alternative to develop advanced cathode catalysts for the Li-O2 battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02983j
NASA Astrophysics Data System (ADS)
Ko, Y. D.; Yang, H. N.; Züttel, Andreas; Kim, S. D.; Kim, W. J.
2017-11-01
The Pt-supported hollow structured Pt-HZrO2 with the shell thickness of 27 nm is successfully synthesized. The water retention ability of Pt-HZrO2 is significantly enhanced compared with that of SiO2@ZrO2 due to the hydrophilic hollow structured HZrO2with high BET surface area. Pt-C and Pt-HZrO2 are combined with different weight fractions to prepare the double catalyst electrode (DCE). The membrane electrode assembly with the DCE is fabricated and applied to both anode and cathode or anode side only. The water flooding and thus rapid voltage drop is affected by the presence/or absence of the DCE at the cathode side. The cell test and visual experiment suggests that the Pt-HZrO2 layer adsorb the water molecules generated by the oxygen reduction reaction (ORR), preventing the water flooding. The power generation under RH 0% strongly suggests the back-diffusion of water molecules generated by the ORR. The flow rate to the cathode significantly affects the water flooding and cell performance. Higher flow rate to the cathode is advantageous to expel the water generated by the ORR, thus preventing water flooding and enhancing the cell performance. Therefore, the weight fraction of Pt-C to Pt-HZrO2 and the flow rate to the cathode should be well balanced.
Development of a 300 Amp-hr high rate lithium thionyl chloride cell
NASA Technical Reports Server (NTRS)
Boyle, Gerard H.
1991-01-01
The development of a high-rate lithium thionyl chloride cylindrical cell with parallel plate electrodes is discussed. The development was divided into three phases: phase 1, a 150 Amp/hour low rate (1 mA/sq cm) design; phase 2, a 25 Amp/hour high rate (5 mA/sq cm) design; and phase 3, a 300 Amp/hour high rate (5 mA/sq cm) design. The basic design is the same for all three cells. The electrodes are perpendicular to the axis of the cylinder. Multiple electrodes are bussed up the side of the cylinder, 180 deg apart allowing excellent anode and cathode utilization. It is a lithium limited design with excess electrolyte. The cathode is Shawinigan or Gulf Acetylene black with no catalyst. The electrolyte is 1.8 Molar lithium tetrachloroaluminate (LiAlCl4) in thionyl chloride. All cell cases are 304L Stainless Steel with a BS&B burst disc.
The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.
Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor
2015-12-08
Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.
The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells
Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor
2015-01-01
Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature. PMID:26670258
Simplifying microbial electrosynthesis reactor design.
Giddings, Cloelle G S; Nevin, Kelly P; Woodward, Trevor; Lovley, Derek R; Butler, Caitlyn S
2015-01-01
Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membrane separating the anode and cathode was investigated with biofilms of Sporomusa ovata. S. ovata reduces carbon dioxide to acetate and acts as the microbial catalyst for plain graphite stick cathodes as the electron donor. In traditional 'H-cell' reactors, where the anode and cathode chambers were separated with a proton-selective membrane, the rates and columbic efficiencies of microbial electrosynthesis remained high when electron delivery at the cathode was powered with a direct current power source rather than with a potentiostat-poised cathode utilized in previous studies. A membrane-less reactor with a direct-current power source with the cathode and anode positioned to avoid oxygen exposure at the cathode, retained high rates of acetate production as well as high columbic and energetic efficiencies. The finding that microbial electrosynthesis is feasible without a membrane separating the anode from the cathode, coupled with a direct current power source supplying the energy for electron delivery, is expected to greatly simplify future reactor design and lower construction costs.
Electronic states of carbon alloy catalysts and nitrogen substituent effects on catalytic activity
NASA Astrophysics Data System (ADS)
Hata, Tomoyuki; Ushiyama, Hiroshi; Yamashita, Koichi
2013-03-01
In recent years, Carbon Alloy Catalysts (CACs) are attracting attention as a candidate for non-platinum-based cathode catalysts in fuel cells. Oxygen reduction reactions at the cathode are divided into two elementary processes, electron transfer and oxygen adsorption. The electron transfer reaction is the rate-determining, and by comparison of energy levels, catalytic activity can be evaluated quantitatively. On the other hand, to begin with, adsorption mechanism is obscure. The purpose of this study is to understand the effect of nitrogen substitution and oxygen adsorption mechanism, by first-principle electronic structure calculations for nitrogen substituted models. To reproduce the elementary processes of oxygen adsorption, we assumed that the initial structures are formed based on the Pauling model, a CACs model and nitrogen substituted CACs models in which various points are replaced with nitrogen. When we try to focus only on the DOS peaks of oxygen, in some substituted model that has high adsorption activity, a characteristic partial occupancy state was found. We conclude that this state will affect the adsorption activity, and discuss on why partially occupied states appear with simplification by using an orbital correlation diagram.
Calcined polyaniline-iron composite as a high efficient cathodic catalyst in microbial fuel cells.
Lai, Bin; Wang, Peng; Li, Haoran; Du, Zhuwei; Wang, Lijuan; Bi, Sichao
2013-03-01
A new type of carbon-nitrogen-metal catalyst, PANI-Fe-C, was synthesized by calcination process. According to the results of FT-IR and XPS analysis, polyaniline chain was broken by calcination. Small nitrogen-contained molecular fragments were gasified during calcination process, while the remaining nitrogen atoms were enchased in the new produced multiple carbon rings by C-N and CN bonds and performed as the catalytic active sites and the covalent centers for soluble iron components. Calculated from the polarization curves, a maximum power density of 10.17W/m(3) for the MFC with the synthetic catalyst was obtained, which was slightly higher than the MFC with Pt/C catalyst of 9.56W/m(3). All the results obtained in this paper proved that the newly synthetic nitrogen-carbon-metal catalyst would be a potential alternative to the expensive Pt/C catalyst in the field of MFC. Copyright © 2012 Elsevier Ltd. All rights reserved.
Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell
NASA Astrophysics Data System (ADS)
Devrim, Yilser; Albostan, Ayhan
2016-08-01
The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.
The Au Cathode in the System Li2CO3-CO2-CO at 800 to 900 C
NASA Technical Reports Server (NTRS)
Hagedorn, Norman H.
1991-01-01
Gold is one of several metals being evaluated at NASA Lewis Research Center as positive electrode catalysts for an alkali metal/molten alkali metal carbonate/carbon dioxide electrochemical cell. Such a cell is proposed for CO2-rich planetary atmospheres such as those of Mars and Venus. Its application could be as a primary power supply, as a secondary power supply recharged either 'chemically' by replenishment of the alkali metal or electrochemically from a central station power source, or as a converter of carbon dioxide to oxygen via a complete electrochemical cycle. For the work being reported, lithium was assumed to be the alkali metal of choice for the negative electrode of the cell, and therefore molten lithium carbonate was the electrolyte used in the Au electrode experiments. Cathodic linear sweep voltammetry (LSV) was the primary analytical technique for evaluating the performance of the Au cathode. interest comprised the cell temperature and the total pressure and composition of the reactant gas. In the absence of operational difficulties, the effect of bubbling the reactant gas through the melt was also determined. On the basis of the variation of electrode performance with changes in these parameters, inferences have been made concerning the electrochemical and chemical processes at and near the electrode. The results of post-test micrographic analyses of the Au cathode are also presented. An attempt is then made to project from the experimental results to some relevant conclusions pertaining to a gold cathode in a practical alkali metal - carbon dioxide cell.
NASA Astrophysics Data System (ADS)
Liu, Yi; Zhao, Yong; Li, Kexun; Wang, Zhong; Tian, Pei; Liu, Di; Yang, Tingting; Wang, Junjie
2018-02-01
Chitosan with rich of nitrogen is used as carbon precursor to synthesis activated carbon through directly heating method in this study. The obtained carbon is activated by different amount of KOH at different temperatures, and then prepared as air cathodes for microbial fuel cells. Carbon sample treated with double amount of KOH at 850 °C exhibits maximum power density (1435 ± 46 mW m-2), 1.01 times improved, which ascribes to the highest total surface area, moderate micropore and mesoporous structure and the introduction of nitrogen. The electrochemical impedance spectroscopy and powder resistivity state that carbon treated with double amount of KOH at 850 °C possesses lower resistance. The other electrochemical measurements demonstrate that the best kinetic activity make the above treated sample to show the best oxygen reduction reaction activity. Besides, the degree of graphitization of samples increases with the activated temperature increasing, which is tested by Raman. According to elemental analysis and X-ray photoelectron spectroscopy, all chitosan samples are nitrogen-doped carbon, and high content nitrogen (pyridinic-N) improves the electrochemical activity of carbon treated with KOH at 850 °C. Thus, carbon materials derived from chitosan would be an optimized catalyst for oxygen reduction reaction in microbial fuel cell.
NASA Astrophysics Data System (ADS)
Liang, Huagen; Su, Huaneng; Pollet, Bruno G.; Pasupathi, Sivakumar
2015-08-01
Membrane electrode assembly (MEA), which contains cathode and anode catalytic layer, gas diffusion layers (GDL) and electrolyte membrane, is the key unit of a PEMFC. An attempt to develop MEA for ABPBI membrane based high temperature (HT) PEMFC is conducted in this work by catalyst coating membrane (CCM) method. The structure and performance of the MEA are examined by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and I-V curve. Effects of the CCM preparation method, Pt loading and binder type are investigated for the optimization of the single cell performance. Under 160 °C and atmospheric pressure, the peak power density of the MEA, with Pt loading of 0.5 mg cm-2 and 0.3 mg cm-2 for the cathode and the anode, can reach 277 mW cm-2, while a current density of 620 A cm-2 is delivered at the working voltage of 0.4 V. The MEA prepared by CCM method shows good stability operating in a short term durability test: the cell voltage maintained at ∼0.45 V without obvious drop when operated at a constant current density of 300 mA cm-2 and 160 °C under ambient pressure for 140 h.
NASA Astrophysics Data System (ADS)
Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar
2014-12-01
This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.
Gold nanoparticles: novel catalyst for the preparation of direct methanol fuel cell.
Kuralkar, Mayuri; Ingle, Avinash; Gaikwad, Swapnil; Gade, Aniket; Rai, Mahendra
2015-04-01
The authors report the biosynthesis of gold nanoparticles (Au-NPs) using plant pathogenic Phoma glomerata (MTCC 2210). The synthesis of nanoparticles was characterised by visual observation followed UV-visible spectrophotometric analysis, Fourier transform infrared spectroscopy and nanoparticle tracking analysis. Later, direct methanol fuel cell (DMFC) was constructed using two chambers (anodic chamber and cathodic chamber). These Au-NPs as catalysts have various advantages over the other catalysts that are used in the DMFC. Most importantly, it is cheaper as compared with other catalysts like platinum, and showed higher catalytic activity because of its effective surface structure. Being nano in size, it provides more surface area for the attachment of reactant molecules (methanol molecules). The DMFC catalysed by Au-NPs are found to be suitable to replace lithium ion battery technology in consumer electronics like cell phones, laptops and so on due to the fact that they can produce a high amount of energy in a small space. As long as fuel and air are supplied to the DMFC, it will continue to produce power, so it does not need to be recharged. The use of Au-NPs as catalyst in DMFC has not been reported in the past; it is reported here the first time.
Kim, Kyoung-Yeol; Yang, Wulin; Logan, Bruce E
2018-06-07
While nickel is a good alternative to platinum as a catalyst for the hydrogen evolution reaction, it is desirable to reduce the amount of nickel needed for cathodes in microbial electrolysis cells (MECs). Activated carbon (AC) was investigated as a cathode base structure for Ni as it is inexpensive and an excellent adsorbent for Ni, and it has a high specific surface area. AC nickel-functionalized electrodes (AC-Ni) were prepared by incorporating Ni salts into AC by adsorption, followed by cathode fabrication using a phase inversion process using a poly(vinylidene fluoride) (PVDF) binder. The AC-Ni cathodes had significantly higher (∼50%) hydrogen production rates than controls (plain AC) in smaller MECs (static flow conditions) over 30 days of operation, with no performance decrease over time. In larger MECs with catholyte recirculation, the AC-Ni cathode produced a slightly higher hydrogen production rate (1.1 ± 0.1 L-H 2 /L reactor /day) than MECs with Ni foam (1.0 ± 0.1 L-H 2 /L reactor /day). Ni dissolution tests showed that negligible amounts of Ni were lost into the electrolyte at pHs of 7 or 12, and the catalytic activity was restored by simple readsorption using a Ni salt solution when Ni was partially removed by an acid wash.
Okamoto, Akihiro; Hashimoto, Kazuhito; Nealson, Kenneth H
2014-10-06
The iron-reducing bacterium Shewanella oneidensis MR-1 has a dual directional electronic conduit involving 40 heme redox centers in flavin-binding outer-membrane c-type cytochromes (OM c-Cyts). While the mechanism for electron export from the OM c-Cyts to an anode is well understood, how the redox centers in OM c-Cyts take electrons from a cathode has not been elucidated at the molecular level. Electrochemical analysis of live cells during switching from anodic to cathodic conditions showed that altering the direction of electron flow does not require gene expression or protein synthesis, but simply redox potential shift about 300 mV for a flavin cofactor interacting with the OM c-Cyts. That is, the redox bifurcation of the riboflavin cofactor in OM c-Cyts switches the direction of electron conduction in the biological conduit at the cell-electrode interface to drive bacterial metabolism as either anode or cathode catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Arunchander, A.; Peera, S. Gouse; Sahu, A. K.
2017-06-01
Nanostructured transition metal chalcogenides (TMCs) have significant interest towards electrochemical devices such as fuel cells, metal-ion batteries, due to their unique physical and electrochemical properties. Herein, we report a facile hydrothermal synthesis of flower-like nanostructured molybdenum sulphide and its incorporation on to graphene as a potential oxygen reduction reaction catalyst in alkaline medium. The phase purity and morphological evolution of MoS2 is systematically studied through X-ray diffraction and scanning electron microscopic techniques. The electronic states of metal and non-metallic species are deeply studied by X-ray photoelectron spectroscopy. The effect of annealing temperatures and TMC concentrations are also investigated by electrochemical techniques such as cyclic and linear sweep voltammograms. The optimised electrocatalyst (MoS2/G-500) delivers significant ORR activity with onset and half-wave potentials of 0.91 and 0.80 V (vs. RHE), respectively. Superior durability compared to state-of-art Pt/C catalyst is ascertained by repeating potential cycles for about 5000 times and also by chronoamperometric technique. Finally, the hybrid catalyst is evaluated in AEMFC as cathode catalyst which delivers peak power density of about 29 mW cm-2 under ambient temperature and pressure. The present findings emphasis that MoS2/G catalyst is promising as cost-effective and alternative to noble metal-based catalysts for fuel cell applications.
Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun
2018-01-31
The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.
NASA Astrophysics Data System (ADS)
Shintani, Haruhiko; Kojima, Yuya; Kakinuma, Katsuyoshi; Watanabe, Masahiro; Uchida, Makoto
2015-10-01
We propose a new strategy for alleviating the reverse current phenomenon using a unique ;atmospheric resistive switching mechanism; (ARSM) of a metal oxide semiconductor support, such that the electrical resistivity changes depending on the gas atmosphere. The membrane-electrode assembly (MEA) using Ta-doped TiO2-supported platinum (Pt/Ta-TiO2) as the anode catalyst showed approximately one order of magnitude greater resistance in air than in hydrogen. The overpotential of the hydrogen oxidation reaction was negligible up to at least 1.5 A cm-2. The losses of electrochemically active surface area and carbon corrosion of the cathode catalyst during air/air startup cycling were significantly suppressed by the use of the Pt/Ta-TiO2 anode. The decrease in the degradation is attributed to a reduction of the reverse current due to a low oxygen reduction reaction rate at the anode, which showed high resistivity in air. These results demonstrate the effectiveness of the ARSM in mitigating cathode catalyst degradation during air/air startup cycling.
NASA Astrophysics Data System (ADS)
Reshetenko, Tatyana; Odgaard, Madeleine; Schlueter, Debbie; Serov, Alexey
2018-01-01
Membrane electrode assemblies (MEAs) for anion exchange membrane fuel cells (AEMFCs) were manufactured from commercial materials: Pt/C catalyst, A201 AEM and AS4 ionomer by using an industrial mass-production digital printing method. The MEA designs selected are close to those recommended by US Department of Energy, including low loading of platinum on the cathode side (0.2 mg cm-2). Polarization curves and electrochemical impedance spectroscopy (EIS) were applied for MEA evaluation in fuel cell conditions with variation of gas humidification and oxygen partial pressure (air vs oxygen). The typical impedance curves recorded at H2/O2 gas configuration consist of high- and medium-frequency arcs responsible for hydrogen oxidation and oxygen reduction, respectively. Operation with air as a cathode feed gas resulted in a decrease in AEMFC performance due to possible CO2 poisoning and mass transfer losses. At the same time, EIS demonstrated formation of a low frequency loop due to diffusion limitations. Despite the low loading of platinum on the cathode (0.2 mg cm-2), a peak power density of ∼330 mW cm-2 was achieved (at 50/50% of RH on anode and cathode), which is substantially higher performance than for AEMFC MEAs tested at similar conditions.
Performance of MnO2 Crystallographic Phases in Rechargeable Lithium-Air Oxygen Cathode
NASA Astrophysics Data System (ADS)
Oloniyo, Olubukun; Kumar, Senthil; Scott, Keith
2012-05-01
Manganese dioxide (MnO2) has been shown to be effective for improving the efficiency of cathodes in lithium-air cells. Different crystallographic phases including α-, β-, and γ-MnO2 nanowires, α-MnO2 nanospheres, and α-MnO2 nanowires on carbon ( α-MnO2/C) were synthesized using the hydrothermal method. Their physical properties were examined using x-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area measurements, and scanning electron microscopy (SEM) and found to be in agreement with the literature. Electrochemical properties of the synthesized catalyst particles were investigated by fabricating cathodes and testing them in a lithium-air cell with lithium hexafluorophosphate in propylene carbonate (LiPF6/PC) and tetra(ethylene glycol)dimethyl ether (LiTFSi/TEGDME) electrolytes. α-MnO2 had the highest discharge capacity in the LiTFSi/TEGDME electrolyte (2500 mAh/g), whilst α-MnO2/C in LiPF6/PC showed a significantly higher discharge capacity of 11,000 mAh/g based on total mass of the catalytic cathode. However, the latter showed poor capacity retention compared with γ-MnO2 nanowires, which was stable for up to 30 cycles. The reported discharge capacity is higher than recorded in previous studies on lithium-air cells.
Li, Chao; Guo, Ziyang; Pang, Ying; Sun, Yunhe; Su, Xiuli; Wang, Yonggang; Xia, Yongyao
2016-11-23
The Li-O 2 battery is receiving much recent attention because of its superhigh theoretical energy density. However, its performance is limited by the irreversible formation/decomposition of Li 2 O 2 on the cathode and the undesired electrolyte decomposition. In this work, low-cost three-dimensional ordered macroporous (3DOM) FePO 4 is synthesized by using polystyrene (PS) spheres template in a facile experimental condition and applied as a high-efficiency catalyst for rechargeable Li-O 2 batteries, including good rate performance, high specific capacity, and perfect cycling stability. The superior performances can be attributed to the unique structure of 3DOM FePO 4 cathodes, which can provide an efficient buffer space for O 2 /Li 2 O 2 conversion. In addition, it is demonstrated that the Li + intercalation/deintercalation behavior of 3DOM FePO 4 in ether-based electrolyte can contribute to capacity for Li-O 2 batteries over cycling. As a result, when there is no O 2 in the environment, the Li-O 2 cell can also be operated as a rechargeable Li-FePO 4 cell with a perfect cycle capability.
Development of advanced fuel cell system
NASA Technical Reports Server (NTRS)
Grevstad, P. E.
1972-01-01
Weight, life and performance characteristics optimization of hydrogen-oxygen fuel cell power systems were considered. A promising gold alloy cathode catalyst was identified and tested in a cell for 5,000 hours. The compatibility characteristics of candidate polymer structural materials were measured after exposure to electrolyte and water vapor for 8,000 hours. Lightweight cell designs were prepared and fabrication techniques to produce them were developed. Testing demonstrated that predicted performance was achieved. Lightweight components for passive product water removal and evaporative cooling of cells were demonstrated. Systems studies identified fuel cell powerplant concepts for meeting the requirements of advanced spacecraft.
Electrode Modification and Optimization in Air-Cathode Single-Chamber Microbial Fuel Cells.
Wang, Yanhua; Wu, Jiayan; Yang, Shengke; Li, Huihui; Li, Xiaoping
2018-06-27
Due to the known problems of microbial fuel cells (MFCs), such as low electricity generation performance and high cost of operation, we modified the electrode with graphene and polyaniline (PANI) is a single-chamber air-cathode MFC and then evaluated the effects of electrode modification on MFC electricity generation performance. Carbon cloth electrodes (unmodified, CC; graphene-modified, G/CC; and polyaniline-graphene-modified, PANI-G/CC) were prepared using the impregnation method. Sulfonated cobalt phthalocyanine (CoPcS) was then introduced as a cathode catalyst. The Co-PANI-G/CC cathode showed higher catalytic activity toward oxygen reduction compared with other electrodes. The maximum power density of the MFC with Co-PANI-G/CC cathode was 32.2 mW/m², which was 1.8 and 6.1 times higher than the value obtained with Co-G/CC and Co/CC cathodes, respectively. This indicates a significant improvement in the electricity generation of single-chamber MFCs and provides a simple, effective cathode modification method. Furthermore, we constructed single-chamber MFCs using the modified anode and cathode and analyzed electricity generation and oxytetracycline (OTC) degradation with different concentrations of OTC as the fuel. With increasing added OTC concentration, the MFC performance in both electricity generation and OTC degradation gradually decreased. However, when less than 50 mg/L OTC was added, the 5-day degradation rate of OTC reached more than 90%. It is thus feasible to process OTC-containing wastewater and produce electricity using single-chamber MFCs, which provides a new concept for wastewater treatment.
Evaluation of porous carbon felt as an aerobic biocathode support in terms of hydrogen peroxide
NASA Astrophysics Data System (ADS)
Milner, Edward M.; Scott, Keith; Head, Ian M.; Curtis, Tom; Yu, Eileen Hao
2017-07-01
Aerobic biocathodes provide a low-cost and sustainable substitute for expensive precious metal catalysts at the cathode of Microbial Fuel Cells (MFCs). However, the abiotic formation of peroxide, which is catalyzed by the porous carbon support at certain cathode potentials, may be detrimental to their activity. Two different carbon felt supports, one treated with nitric acid, the other untreated, were characterized electrochemically through a series of chronoamperometry (CA) experiments using a novel 4-electrode electrochemical setup, in order to determine the potential at which peroxide is initially formed. Peroxide was detected at a potential of -0.2 V (all potentials are against Ag/AgCl) for the untreated carbon felt electrode and at a potential of -0.05 V for the nitric acid treated carbon felt. Given these results, two half-cells poised at -0.2 and -0.1 V were setup in order to study biocathode formation. The half-cell poised at -0.2 V did not develop an aerobic biocathode, whereas the half-cell poised at -0.1 V developed an aerobic biocathode. This study shows that to develop aerobic biocathodes on carbon felt, cathode electrode potentials more positive than -0.2 V must be applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wessel, Silvia; Harvey, David
2013-06-28
The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifyingmore » the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on performance/catalyst degradation. The key accomplishments of this project are: • The development of a molecular-dynamics based description of the carbon supported-Pt and ionomer system • The development of a composition-based, 1D-statistical Unit Cell Performance model • A modified and improved multi-pathway ORR model • An extension of the existing micro-structural catalyst model to transient operation • The coupling of a Pt Dissolution model to the modified ORR pathway model • The Development A Semi-empirical carbon corrosion model • The integration and release of an open-source forward predictive MEA performance and degradation model • Completion of correlations of BOT (beginning of test) and EOT (end of test) performance loss breakdown with cathode catalyst layer composition, morphology, material properties, and operational conditions • Catalyst layer durability windows and design curves • A design flow path of interactions from materials properties and catalyst layer effective properties to performance loss breakdown for virgin and degraded catalyst layers In order to ensure the best possible user experience we will perform a staged release of the software leading up to the webinar scheduled in October 2013. The release schedule will be as follows (please note that the manual will be released with the beta release as direct support is provided in Stage 1): • Stage 0 - Internal Ballard Release o Cross check of compilation and installation to ensure machine independence o Implement code on portable virtual machine to allow for non-UNIX use (pending) • Stage 1 - Alpha Release o The model code will be made available via a GIT, sourceforge, or other repository (under discussion at Ballard) for download and installation by a small pre-selected group of users o Users will be given three weeks to install, apply, and evaluate features of the code, providing feedback on issues or software bugs that require correction prior to beta release • Stage 2 - Beta Release o The model code repository is opened to the general public on a beta release concept, with a mechanism for bug tracking and feedback from a large user group o Code will be tracked and patched for any discovered bugs or relevant feedback from the user community, upon the completion of three months without a major bug submission the code will be moved to a full version release • Stage 3 - Full Version Release o Code is version to revision 1.0 and that version is frozen in development/patching« less
Lithium-air batteries, method for making lithium-air batteries
Vajda, Stefan; Curtiss, Larry A.; Lu, Jun; Amine, Khalil; Tyo, Eric C.
2016-11-15
The invention provides a method for generating Li.sub.2O.sub.2 or composites of it, the method uses mixing lithium ions with oxygen ions in the presence of a catalyst. The catalyst comprises a plurality of metal clusters, their alloys and mixtures, each cluster consisting of between 3 and 18 metal atoms. The invention also describes a lithium-air battery which uses a lithium metal anode, and a cathode opposing the anode. The cathode supports metal clusters, each cluster consisting of size selected clusters, taken from a range of between approximately 3 and approximately 18 metal atoms, and an electrolyte positioned between the anode and the cathode.
Microstructural Analysis and Transport Resistances of Low-Platinum-Loaded PEFC Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetinbas, Firat C.; Wang, Xiaohua; Ahluwalia, Rajesh K.
In this study, we present microstructural characterization for polymer electrolyte fuel cell (PEFC) cathodes with low platinum loadings (low-PGM). The characterization results are used to quantify the contribution of mass transport resistances to cell voltage losses observed in polarization curve data. Three-dimensional pore morphology and ionomer distribution are resolved using nano-scale X-ray computed tomography (nano-CT). Electrode structural properties are reported along with analysis of the impact of microstructure on the effective charge and reactant transport properties. These characterizations are incorporated with a two-dimensional multi-physics model that accounts for energy, charge, and mass transport along with the effect of liquid watermore » flooding. Defining a total mass transport resistance for the whole polarization curve, contributions of transport mechanisms are identified. Analysis of the experimental polarization curves at different operating pressures and temperatures indicates that the mass transport resistance in the cathode is dominated by the transport processes in the electrode. It is shown that flooding in the electrode is a major contributor to transport losses especially at elevated operating pressures while the pressure-independent resistance at the catalyst surface due to transport through the ionomer film plays a significant role, especially at low temperatures and low catalyst loading. In addition, by performing a parametric study for varying catalyst loadings, the importance of electrode roughness (i.e, electrochemically-active surface area/geometric electrode area) in determining the mass transport losses is highlighted.« less
Microstructural Analysis and Transport Resistances of Low-Platinum-Loaded PEFC Electrodes
Cetinbas, Firat C.; Wang, Xiaohua; Ahluwalia, Rajesh K.; ...
2017-12-09
In this study, we present microstructural characterization for polymer electrolyte fuel cell (PEFC) cathodes with low platinum loadings (low-PGM). The characterization results are used to quantify the contribution of mass transport resistances to cell voltage losses observed in polarization curve data. Three-dimensional pore morphology and ionomer distribution are resolved using nano-scale X-ray computed tomography (nano-CT). Electrode structural properties are reported along with analysis of the impact of microstructure on the effective charge and reactant transport properties. These characterizations are incorporated with a two-dimensional multi-physics model that accounts for energy, charge, and mass transport along with the effect of liquid watermore » flooding. Defining a total mass transport resistance for the whole polarization curve, contributions of transport mechanisms are identified. Analysis of the experimental polarization curves at different operating pressures and temperatures indicates that the mass transport resistance in the cathode is dominated by the transport processes in the electrode. It is shown that flooding in the electrode is a major contributor to transport losses especially at elevated operating pressures while the pressure-independent resistance at the catalyst surface due to transport through the ionomer film plays a significant role, especially at low temperatures and low catalyst loading. In addition, by performing a parametric study for varying catalyst loadings, the importance of electrode roughness (i.e, electrochemically-active surface area/geometric electrode area) in determining the mass transport losses is highlighted.« less
Increasing round trip efficiency of hybrid Li-air battery with bifunctional catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, K; Li, YF; Xing, YC
2013-07-30
Previously it was shown that Pt as cathode catalyst ha's a large overpotential during charge in rechargeable hybrid Li-air battery with sulfuric acid catholyte. This article demonstrates that a bifunctional catalyst composed of Pt and IrO2 supported on carbon nanotubes can address this problem. The specially designed and synthesized bifunctional catalyst showed significant overpotential reduction and achieved a round trip energy efficiency of 81% after 10 cycles, higher than many achieved in aprotic Li-O-2 batteries. The hybrid Li-air battery was discharged and recharged for 20 cycles at 0.2 mA/cm(2), showing a fairly stable cell performance. A specific capacity of 306more » mAh/g and a specific energy of 1110 Wh/kg were obtained for the hybrid Li-air battery in terms of acid weight. (c) 2013 Elsevier Ltd. All rights reserved.« less
Development of advanced fuel cell system, phase 3
NASA Technical Reports Server (NTRS)
Handley, L. M.; Meyer, A. P.; Bell, W. F.
1975-01-01
A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Gradual wetting of the anode structure and subsequent long-term performance loss was determined to be caused by deposition of a silicon-containing material on the anode. This deposit was attributed to degradation of the asbestos matrix, and attention was therefore placed on development of a substitute matrix of potassium titanate. An 80 percent gold 20 percent platinum catalyst cathode was developed which has the same performance and stability as the standard 90 percent gold - 10 percent platinum cathode but at half the loading. A hybrid polysulfone/epoxy-glass fiber frame was developed which combines the resistance to the cell environment of pure polysulfone with the fabricating ease of epoxy-glass fiber laminate. These cell components were evaluated in various configurations of full-size cells. The ways in which the baseline engineering model system would be modified to accommodate the requirements of the space tug application are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yanjuan; College of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012; Li, Nan, E-mail: lin@jlu.edu.cn
2015-05-15
Highlights: • Highly crystalline RuS{sub 2} nanoparticles have been first synthesized by a “one-step” hydrothermal method. • The product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} with average particle size of 14.8 nm. • RuS{sub 2} nanoparticles were used as cathodic catalysts in methanol fuel cell and hydrochloric acid electrolysis. • The catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}. - Abstract: Highly crystalline ruthenium sulfide (RuS{sub 2}) nanoparticles have been first synthesized by a “one-step” hydrothermal method at 400 °C, using ruthenium chloride and thiourea as reactants. The products were characterized bymore » powder X-ray diffraction (XRD), scanning electron microscopy/energy disperse spectroscopy (SEM/EDS), thermo gravimetric-differential thermal analyze (TG-DTA), transmission electron microscopy equipped with selected area electron diffraction (TEM/SAED). Fourier transform infrared spectra (IR), and X-ray photoelectron spectroscopy (XPS). XRD result illustrates that the highly crystalline product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} and the average particle size is 14.8 nm. SEM and TEM images display the products have irregular shape of 6–25 nm. XPS analyst indicates that the sulfur exists in the form of S{sub 2}{sup 2−}. Cyclic voltammetry (CV), rotating disk electrode (RDE), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements are conducted to evaluate the electrocatalytic activity and stability of the highly crystalline RuS{sub 2} nanoparticles in oxygen reduction reaction (ORR) for methanol fuel cell and hydrochloric acid electrolysis. The results illustrate that RuS{sub 2} is active towards oxygen reduction reaction. Although the activity of RuS{sub 2} is lower than that of Pt/C, the RuS{sub 2} catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}.« less
Cheon, Jae Yeong; Kim, Taeyoung; Choi, YongMan; Jeong, Hu Young; Kim, Min Gyu; Sa, Young Jin; Kim, Jaesik; Lee, Zonghoon; Yang, Tae-Hyun; Kwon, Kyungjung; Terasaki, Osamu; Park, Gu-Gon; Adzic, Radoslav R.; Joo, Sang Hoon
2013-01-01
The high cost of the platinum-based cathode catalysts for the oxygen reduction reaction (ORR) has impeded the widespread application of polymer electrolyte fuel cells. We report on a new family of non-precious metal catalysts based on ordered mesoporous porphyrinic carbons (M-OMPC; M = Fe, Co, or FeCo) with high surface areas and tunable pore structures, which were prepared by nanocasting mesoporous silica templates with metalloporphyrin precursors. The FeCo-OMPC catalyst exhibited an excellent ORR activity in an acidic medium, higher than other non-precious metal catalysts. It showed higher kinetic current at 0.9 V than Pt/C catalysts, as well as superior long-term durability and MeOH-tolerance. Density functional theory calculations in combination with extended X-ray absorption fine structure analysis revealed a weakening of the interaction between oxygen atom and FeCo-OMPC compared to Pt/C. This effect and high surface area of FeCo-OMPC appear responsible for its significantly high ORR activity. PMID:24056308
Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; ...
2015-10-13
The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure. [1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt. [5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application. [10-12] A potential strategy tomore » address this tremendous challenge is alloying Pt NPs with the transition metals (TM). [13-16]« less
Solid oxide MEMS-based fuel cells
Jankowksi, Alan F.; Morse, Jeffrey D.
2007-03-13
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
Solid polymer MEMS-based fuel cells
Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Pleasant Hill, CA
2008-04-22
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
Method of forming catalyst layer by single step infiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerdes, Kirk; Lee, Shiwoo; Dowd, Regis
Provided herein is a method for electrocatalyst infiltration of a porous substrate, of particular use for preparation of a cathode for a solid oxide fuel cell. The method generally comprises preparing an electrocatalyst infiltrate solution comprising an electrocatalyst, surfactant, chelating agent, and a solvent; pretreating a porous mixed ionic-electric conductive substrate; and applying the electrocatalyst infiltration solution to the porous mixed ionic-electric conductive substrate.
Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries.
Wang, Kai-Xue; Zhu, Qian-Cheng; Chen, Jie-Sheng
2018-05-11
Rechargeable aprotic lithium (Li)-O 2 batteries with high theoretical energy densities are regarded as promising next-generation energy storage devices and have attracted considerable interest recently. However, these batteries still suffer from many critical issues, such as low capacity, poor cycle life, and low round-trip efficiency, rendering the practical application of these batteries rather sluggish. Cathode catalysts with high oxygen reduction reaction (ORR) and evolution reaction activities are of particular importance for addressing these issues and consequently promoting the application of Li-O 2 batteries. Thus, the rational design and preparation of the catalysts with high ORR activity, good electronic conductivity, and decent chemical/electrochemical stability are still challenging. In this Review, the strategies are outlined including the rational selection of catalytic species, the introduction of a 3D porous structure, the formation of functional composites, and the heteroatom doping which succeeded in the design of high-performance cathode catalysts for stable Li-O 2 batteries. Perspectives on enhancing the overall electrochemical performance of Li-O 2 batteries based on the optimization of the properties and reliability of each part of the battery are also made. This Review sheds some new light on the design of highly active cathode catalysts and the development of high-performance lithium-O 2 batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentil, Solène; Lalaoui, Noémie; Dutta, Arnab
A biomimetic nickel bis-diphosphine complex incorporating the amino-acid arginine in the outer coordination sphere, was immobilized on modified single-wall carbon nanotubes (SWCNTs) through electrostatic interactions. The sur-face-confined catalyst is characterized by a reversible 2-electron/2-proton redox process at potentials close to the equibrium potential of the H+/H2 couple. Consequently, the functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2/2H+ interconversion over a broad range of pH. This system exhibits catalytic bias, analogous to hydrogenases, resulting in high turnover frequencies at low overpotentials for electrocatalytic H2 oxida-tion between pH 0 and 7. This allowed integrating such bio-inspired nanomaterial together with amore » multicopper oxi-dase at the cathode side in a hybrid bioinspired/enzymatic hydrogen fuel cell. This device delivers ~2 mW cm–2 with an open-circuit voltage of 1.0 V at room temperature and pH 5, which sets a new efficiency record for a bio-related hydrogen fuel cell with base metal catalysts.« less
Solar energy conversion in a photoelectrochemical biofuel cell.
Hambourger, Michael; Kodis, Gerdenis; Vaughn, Michael D; Moore, Gary F; Gust, Devens; Moore, Ana L; Moore, Thomas A
2009-12-07
A photoelectrochemical biofuel cell has been developed which incorporates aspects of both an enzymatic biofuel cell and a dye-sensitized solar cell. Photon absorption at a porphyrin-sensitized n-type semiconductor electrode gives rise to a charge-separated state. Electrons and holes are shuttled to appropriate cathodic and anodic catalysts, respectively, allowing the production of electricity, or a reduced fuel, via the photochemical oxidation of a biomass-derived substrate. The operation of this device is reviewed. The use of alternate anodic redox mediators provides insight regarding loss mechanisms in the device. Design strategies for enhanced performance are discussed.
Nb doped TiO2 as a Cathode Catalyst Support Material for Polymer Electrolyte Membrane Fuel Cells
NASA Astrophysics Data System (ADS)
O'Toole, Alexander W.
In order to reduce the emissions of greenhouse gases and reduce dependence on the use of fossil fuels, it is necessary to pursue alternative sources of energy. Transportation is a major contributor to the emission of greenhouse gases due to the use of fossil fuels in the internal combustion engine. To reduce emission of these pollutants into the atmosphere, research is needed to produce alternative solutions for vehicle transportation. Low temperature polymer electrolyte membrane fuel cells are energy conversion devices that provide an alternative to the internal combustion engine, however, they still have obstacles to overcome to achieve large scale implementation. T he following work presents original research with regards to the development of Nb doped TiO2 as a cathode catalyst support material for low temperature polymer electrolyte membrane fuel cells. The development of a new process to synthesize nanoparticles of Nb doped TiO2 with controlled compositions is presented as well as methods to scale up the process and optimize the synthesis for the aforementioned application. In addition to this, comparison of both electrochemical activity and durability with current state of the art Pt on high surface area carbon black (Vulcan XC-72) is investigated. Effects of the strong metal-support interaction on the electrochemical behavior of these materials is also observed and discussed.
Durability of Polymer Electrolyte Membrane Fuel Cells Operated at Subfreezing Temperatures
Macauley, Natalia; Lujan, Roger W.; Spernjak, Dusan; ...
2016-09-15
The structure, composition, and interfaces of membrane electrode assemblies (MEA) and gas-diffusion layers (GDLs) have a significant effect on the performance of single-proton-exchange-membrane (PEM) fuel cells operated isothermally at subfreezing temperatures. During isothermal constant-current operation at subfreezing temperatures, water forming at the cathode initially hydrates the membrane, then forms ice in the catalyst layer and/or GDL. This ice formation results in a gradual decay in voltage. High-frequency resistance initially decreases due to an increase in membrane water content and then increases over time as the contact resistance increases. The water/ice holding capacity of a fuel cell decreases with decreasing subfreezingmore » temperature (-10°C vs. -20°C vs. -30°C) and increasing current density (0.02 A cm -2 vs. 0.04 A cm -2). Ice formation monitored using in-situ high-resolution neutron radiography indicated that the ice was concentrated near the cathode catalyst layer at low operating temperatures (≈-20°C) and high current densities (0.04 A cm -2). Significant ice formation was also observed in the GDLs at higher subfreezing temperatures (≈-10°C) and lower current densities (0.02 A cm -2). These results are in good agreement with the long-term durability observations that show more severe degradation at lower temperatures (-20°C and -30°C).« less
Cai, Weiwei; Liu, Wenzong; Han, Jinglong; Wang, Aijie
2016-06-15
In comparison to precious metal catalyst especially Platinum (Pt), nickel foam (NF) owned cheap cost and unique three-dimensional (3D) structure, however, it was scarcely applied as cathode material in microbial electrolysis cell (MEC) as the intrinsic laggard electrochemical activity for hydrogen recovery. In this study, a self-assembly 3D nickel foam-graphene (NF-G) cathode was fabricated by facile hydrothermal approach for hydrogen evolution in MECs. Electrochemical analysis (linear scan voltammetry and electrochemical impedance spectroscopy) revealed the improved electrochemical activity and effective mass diffusion after coating with graphene. NF-G as cathode in MEC showed a significant enhancement in hydrogen production rate compared with nickel foam at a variety of biases. Noticeably, NF-G showed a comparable averaged hydrogen production rate (1.31 ± 0.07 mL H2 mL(-1) reactor d(-1)) to Platinum/carbon (Pt/C) (1.32 ± 0.07 mL H2 mL(-1) reactor d(-1)) at 0.8 V. Profitable energy recovery could be achieved by NF-G cathode at higher applied voltage, which performed the best hydrogen yield of 3.27 ± 0.16 mol H2 mol(-1) acetate at 0.8 V and highest energy efficiency of 185.92 ± 6.48% at 0.6 V. Copyright © 2016 Elsevier B.V. All rights reserved.
Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram
2016-03-01
In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Metal-supported solid oxide fuel cells operated in direct-flame configuration
Tucker, Michael C.; Ying, Andrew S.
2017-08-19
Metal-supported solid oxide fuel cells (MS-SOFC) with infiltrated catalysts on both anode and cathode side are operated in direct-flame configuration, with a propane flame impinging on the anode. Placing thermal insulation on the cathode dramatically increases cell temperature and performance. The optimum burner-to-cell gap height is a strong function of flame conditions. Cell performance at the optimum gap is determined within the region of stable non-coking conditions, with equivalence ratio from 1 to 1.9 and flow velocity from 100 to 300 cm s -1. In this region, performance is most strongly correlated to flow velocity and open circuit voltage. Themore » highest peak power density achieved is 633 mW cm -2 at 833°C, for equivalence ratio of 1.8 and flow velocity of 300 cm s -1. The cell starts to produce power within 10 s of being placed in the flame, and displays stable performance over 10 extremely rapid thermal cycles. The cell provides stable performance for >20 h of semi-continuous operation.« less
Hoskins, Daniel L; Zhang, Xiaoyuan; Hickner, Michael A; Logan, Bruce E
2014-11-01
Separators are used to protect cathodes from biofouling and to avoid electrode short-circuiting, but they can adversely affect microbial fuel cell (MFC) performance. A spray method was used to apply a polyvinyl alcohol (PVA) separator to the cathode. Power densities were unaffected by the PVA separator (339±29mW/m(2)), compared to a control lacking a separator in a low conductivity solution (1mS/cm) similar to wastewater. Power was reduced with separators in solutions typical of laboratory tests (7-13mS/cm), compared to separatorless controls. The PVA separator produced more power in a separator assembly (SEA) configuration (444±8mW/m(2)) in the 1mS/cm solution, but power was reduced if a PVA or wipe separator was used in higher conductivity solutions with either Pt or activated carbon catalysts. Spray and cast PVA separators performed similarly, but the spray method is preferred as it was easier to apply and use. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Baitao; Wang, Mian; Zhou, Xiuxiu; Wang, Xiujun; Liu, Bingchuan; Li, Baikun
2015-10-01
A novel platinum (Pt)-free cathodic materials binuclear-cobalt-phthalocyanine (Bi-CoPc) pyrolyzed at different temperatures (300-1000 °C) were examined as the oxygen reduction reaction (ORR) catalysts, and compared with unpyrolyzed Bi-CoPc/C and Pt cathode in single chamber microbial fuel cells (SCMFCs). The results showed that the pyrolysis process increased the nitrogen abundance on Bi-CoPc and changed the nitrogen types. The Bi-CoPc pyrolyzed at 800 °C contained a significant amount of pyrrolic-N, and exhibited a high electrochemical catalytic activity. The power density and current density increased with temperature: Bi-CoPc/C-800 > Bi-CoPc/C-1000 > Bi-CoPc/C-600 > Bi-CoPc/C-300 > Bi-CoPc/C. The SCMFC with Bi-CoPc/C-800 cathode had a maximum power density of 604 mW m(-2). The low cost Bi-CoPc compounds developed in this study showed a potential in air-breathing MFC systems, with the proper pyrolysis temperature being chosen. Copyright © 2015 Elsevier Ltd. All rights reserved.
An improved alkaline direct formate paper microfluidic fuel cell.
Galvan, Vicente; Domalaon, Kryls; Tang, Catherine; Sotez, Samantha; Mendez, Alex; Jalali-Heravi, Mehdi; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A
2016-02-01
Paper-based microfluidic fuel cells (MFCs) are a potential replacement for traditional FCs and batteries due to their low cost, portability, and simplicity to operate. In MFCs, separate solutions of fuel and oxidant migrate through paper due to capillary action and laminar flow and, upon contact with each other and catalyst, produce electricity. In the present work, we describe an improved microfluidic paper-based direct formate FC (DFFC) employing formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. The dimensions of the lateral column, current collectors, and cathode were optimized. A maximum power density of 2.53 mW/cm(2) was achieved with a DFFC of surface area 3.0 cm(2) , steel mesh as current collector, 5% carbon to paint mass ratio for cathode electrode and, 30% hydrogen peroxide. The longevity of the MFC's detailed herein is greater than eight hours with continuous flow of streams. In a series configuration, the MFCs generate sufficient energy to power light-emitting diodes and a handheld calculator. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
White, Robin T.; Wu, Alex; Najm, Marina; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik
2017-05-01
A four-dimensional visualization approach, featuring three dimensions in space and one dimension in time, is proposed to study local electrode degradation effects during voltage cycling in fuel cells. Non-invasive in situ micro X-ray computed tomography (XCT) with a custom fuel cell fixture is utilized to track the same cathode catalyst layer domain throughout various degradation times from beginning-of-life (BOL) to end-of-life (EOL). With this unique approach, new information regarding damage features and trends are revealed, including crack propagation and catalyst layer thinning being quantified by means of image processing and analysis methods. Degradation heterogeneities as a result of local environmental variations under land and channel are also explored, with a higher structural degradation rate under channels being observed. Density and compositional changes resulting from carbon corrosion and catalyst layer collapse and thinning are observed by changes in relative X-ray attenuation from BOL to EOL, which also indicate possible vulnerable regions where crack initiation and propagation may occur. Electrochemical diagnostics and morphological features observed by micro-XCT are correlated by additionally collecting effective catalyst surface area, double layer capacitance, and polarization curves prior to imaging at various stages of degradation.
NASA Astrophysics Data System (ADS)
Fathi, H.; Raoof, A.; Mansouri, S. H.
2017-05-01
The production of liquid water in cathode catalyst layer, CCL, is a significant barrier to increase the efficiency of proton exchange membrane fuel cell. Here we present, for the first time, a direct three-dimensional pore-scale modelling to look at the complex immiscible two-phase flow in CCL. After production of the liquid water at the surface of CCL agglomerates due to the electrochemical reactions, water spatial distribution affects transport of oxygen through the CCL as well as the rate of reaction at the agglomerate surfaces. To explore the wettability effects, we apply hydrophilic and hydrophobic properties using different surface contact angles. Effective diffusivity is calculated under several water saturation levels. Results indicate larger diffusive transport values for hydrophilic domain compared to the hydrophobic media where the liquid water preferentially floods the larger pores. However, hydrophobic domain showed more available surface area and higher oxygen consumption rate at the reaction sites under various saturation levels, which is explained by the effect of wettability on pore-scale distribution of water. Hydrophobic domain, with a contact angle of 150, reveals efficient water removal where only 28% of the pore space stays saturated. This condition contributes to the enhanced available reaction surface area and oxygen diffusivity.
Comparing shut-down strategies for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Oyarce, Alejandro; Zakrisson, Erik; Ivity, Matthew; Lagergren, Carina; Ofstad, Axel Baumann; Bodén, Andreas; Lindbergh, Göran
2014-05-01
Application of system strategies for mitigating carbon corrosion of the catalyst support in proton exchange fuel cells (PEMFCs) is a requirement for PEMFC systems, especially in the case of systems for transport application undergoing thousands of start-ups and shut-downs (SU/SD) during its lifetime. This study compares several of the most common shut-down strategies for 1100 cycles SU/SD cycles at 70 °C and 80% RH using commercially available fuel cell components. Each cycle simulates a prolonged shut-down, i.e. finishing each cycle with air filled anode and cathode. Furthermore, all start-ups are unprotected, i.e. introducing the H2 rich gas into an air filled anode. Finally, each cycle also includes normal fuel cell operation at 0.5 A cm-2 using synthetic reformate/air. H2 purge of the cathode and O2 consumption using a load were found to be the most effective strategies. The degradation rate using the H2 purge strategy was 23 μV cycle-1 at 0.86 A cm-2 using H2 and air at the anode and cathode, respectively. This degradation rate may be regarded as a generally low value, especially considering that this value also includes the degradation rate caused by unprotected start-ups.
A direct ascorbate fuel cell with an anion exchange membrane
NASA Astrophysics Data System (ADS)
Muneeb, Omar; Do, Emily; Tran, Timothy; Boyd, Desiree; Huynh, Michelle; Ghosn, Gregory; Haan, John L.
2017-05-01
Ascorbic Acid (Vitamin C) is investigated as a renewable alternative fuel for alkaline direct liquid fuel cells (DLFCs). The environmentally- and biologically-friendly compound, L-ascorbic acid (AA) has been modeled and studied experimentally under acidic fuel cell conditions. In this work, we demonstrate that ascorbic acid is a more efficient fuel in alkaline media than in acidic media. An operating direct ascorbate fuel cell is constructed with the combination of L-ascorbic acid and KOH as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, metal or carbon black anode materials and metal cathode catalyst. Operation of the fuel cell at 60 °C using 1 M AA and 1 M KOH as the anode fuel and electrolyte, respectively, and oxygen gas at the cathode, produces a maximum power density of 73 mW cm-2, maximum current density of 497 mA cm-2 and an open circuit voltage of 0.90 V. This performance is significantly greater than that of an ascorbic acid fuel cell with a cation exchange membrane, and it is competitive with alkaline DLFCs fueled by alcohols.
Alkaline polymer electrolyte fuel cells stably working at 80 °C
NASA Astrophysics Data System (ADS)
Peng, Hanqing; Li, Qihao; Hu, Meixue; Xiao, Li; Lu, Juntao; Zhuang, Lin
2018-06-01
Alkaline polymer electrolyte fuel cells are a new class of polymer electrolyte fuel cells that fundamentally enables the use of nonprecious metal catalysts. The cell performance mostly relies on the quality of alkaline polymer electrolytes, including the ionic conductivity and the chemical/mechanical stability. For a long time, alkaline polymer electrolytes are thought to be too weak in stability to allow the fuel cell to be operated at elevated temperatures, e.g., above 60 °C. In the present work, we report a progress in the state-of-the-art alkaline polymer electrolyte fuel cell technology. By using a newly developed alkaline polymer electrolyte, quaternary ammonia poly (N-methyl-piperidine-co-p-terphenyl), which simultaneously possesses high ionic conductivity and excellent chemical/mechanical stability, the fuel cell can now be stably operated at 80 °C with high power density. The peak power density reaches ca. 1.5 W/cm2 at 80 °C with Pt/C catalysts used in both the anode and the cathode. The cell works stably in a period of study over 100 h.
Recent advances in solid polymer electrolyte fuel cell technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ticianelli, E.A.; Srinivasan, S.; Gonzalez, E.R.
1988-01-01
With methods used to advance solid polymer electrolyte fuel cell technology, we are close to obtaining the goal of 1 A/cm/sup 2/ at 0.7. Higher power densities have been reported (2 A/cm/sup 2/ at 0.5 V) but only with high catalyst loading electrodes (2 mg/cm/sup 2/ and 4 mg/cm/sup 2/ at anode and cathode, respectively) and using a Dow membrane with a better conductivity and water retention characteristics. Work is in progress to ascertain performances of cells with Dow membrane impregnated electrodes and Dow membrane electrolytes. 5 refs., 6 figs.
Advanced catalyst supports for PEM fuel cell cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Lei; Shao, Yuyan; Sun, Junming
2016-11-01
Electrocatalyst support materials are key components for polymer exchange membrane (PEM) fuel cells, which play a critical role in determining electrocatalyst durability and activity, mass transfer and water management. The commonly-used supports, e.g. porous carbon black, cannot meet all the requirements under the harsh operation condition of PEM fuel cells. Great efforts have been made in the last few years in developing alternative support materials. In this paper, we selectively review recent progress on three types of important support materials: carbon, non-carbon and hybrid carbon-oxides nanocomposites. A perspective on future R&D of electrocatalyst support materials is also provided.
Simulation and Experimental Study of Bipolar Plate on the Performance PEM Fuel cell
NASA Astrophysics Data System (ADS)
Chinnasa, Pornchai; Khamsuk, Pattama; Seechalee, Sarunya; Swatsitang, Ekaphan
2017-09-01
This research is a simulated and experimental study on effects of bipolar electrodes of a PEM fuel cell on its power conversion efficiency. The PEM fuel cell structure consists of bipolar electrodes, proton exchange membrane with catalysts, flow channels of gases. This research used fuel cell of 49 cm2 in active area as a research sample and the Comsol 4.4 was employed to simulate flow channels which are serpentine pattern for anode and parallel pattern for cathode. The parameters used were calculated effects of such parameters using Comsol 4.4. After the calculation has been completed, the prototype of the PEM fuel cell were fabricated using graphite plate as electrodes which had the channel height of 0.20 cm, proton exchange membrane using carbon-platinum catalyst. Finally, further it was found that the effect of temperature on the power conversion efficiency is not severely. And for anode, the concentration of hydrogen gas was reduced 64 wt% due to the reaction whereas in parallel channel of cathode the oxygen concentration was reduced by only 6 wt% from 23 wt% at the entrance to 17 wt% at the end. The maximum power output of the prototype operated under such condition was 0.28 W/cm2 calculated from maximum power output voltage (Vmp) of 0.70 V and maximum power output current density of 0.42 A/cm2 which was in good agreement with that simulated using Comsol 4.4 which revealed the power output of 0.29 W/cm2.
NASA Astrophysics Data System (ADS)
Banham, Dustin; Kishimoto, Takeaki; Sato, Tetsutaro; Kobayashi, Yoshikazu; Narizuka, Kumi; Ozaki, Jun-ichi; Zhou, Yingjie; Marquez, Emil; Bai, Kyoung; Ye, Siyu
2017-03-01
The activity of non-precious metal catalysts (NPMCs) has now reached a stage at which they can be considered as possible alternatives to Pt for some proton exchange membrane fuel cell (PEMFC) applications. However, despite significant efforts over the past 50 years on catalyst development, only limited studies have been performed on NPMC-based cathode catalyst layer (CCL) designs. In this work, an extensive ionomer study is performed to investigate the impact of ionomer equivalent weight on performance, which has uncovered two crucial findings. Firstly, it is demonstrated that beyond a critical CCL conductance, no further improvement in performance is observed. The procedure used to determine this critical conductance can be used by other researchers in this field to aid in their design of high performing NPMC-based CCLs. Secondly, it is shown that the stability of NPMC-based CCLs can be improved through the use of low equivalent weight ionomers. This represents a completely unexplored pathway for further stability improvements, and also provides new insights into the possible degradation mechanisms occurring in NPMC-based CCLs. These findings have broad implications on all future NPMC-based CCL designs.
Theoretical studies of Pt-Ti nanoparticles for potential use as PEMFC electrocatalysts.
Jennings, Paul C; Pollet, Bruno G; Johnston, Roy L
2012-03-07
A theoretical investigation is presented of alloying platinum with titanium to form binary Pt-Ti nanoalloys as an alternative to the expensive pure platinum catalysts commonly used for Proton Exchange Membrane Fuel Cell cathode electrocatalysts. Density Functional Theory calculations are performed to investigate compositional effects on structural properties as well as Oxygen Reduction Reaction kinetics and poisoning effects. High symmetry A(32)-B(6) clusters are studied to investigate structural properties. From these structures binding energies of hydroxyl and carbon monoxide are studied on a range of sites on the surface of the clusters. Promising results are obtained suggesting that the bimetallic Pt-Ti nanoalloys may exhibit enhanced properties compared to pure platinum catalysts.
NASA Astrophysics Data System (ADS)
Orellana, Walter
2012-07-01
The covalent functionalization of metallic single-walled carbon nanotubes (CNTs) with transition metal phthalocyanines (MPc, with M = Mn, Fe and Co) are addressed by density functional calculations. The CNT-MPc catalytic activity toward the oxygen reduction reaction (ORR) is investigated through the O2 stretching frequency adsorbed on the phthalocyanine metal center. We find better reduction abilities when the CNT functionalization occurs through sp2-like bonds. Multiple stable-spin states for the M-O2 adduct are also found for M = Mn and Fe, suggesting higher ORR rates. The CNT-MPc complexes show metallic characteristics, suggesting favorable conditions to work as ORR cathode catalysts in fuel cells.
Catalyst surfaces for the chromous/chromic redox couple
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K. J. (Inventor)
1980-01-01
An electricity producing cell of the reduction-oxidation (REDOX) type is described. The cell is divided into two compartments by a membrane, each compartment containing a solid inert electrode. A ferrous/ferric couple in a chloride solution serves as a cathode fluid which is circulated through one of the compartments to produce a positive electric potential disposed therein. A chromic/chromous couple in a chloride solution serves as an anode fluid which is circulated through the second compartment to produce a negative potential on an electrode disposed therein. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which was added to the anode fluid. If the REDOX cell is then discharged, the current flows between the electrodes causing the lead to deplate from the negative electrode and the metal coating on the electrode will act as a catalyst to cause increased current density.
NASA Astrophysics Data System (ADS)
Tabe, Yutaka; Aoyama, Yusuke; Kadowaki, Kazumasa; Suzuki, Kengo; Chikahisa, Takemi
2015-08-01
In polymer electrolyte membrane fuel cells, a gas diffusion layer (GDL) with a micro-porous layer (MPL) gives better anti-flooding performance than GDLs without an MPL. To investigate the function and mechanism of the MPL to suppress water flooding, the liquid water distribution at the cathode catalyst layer (CL) surface are observed by a freezing method; in the method liquid water is immobilized in ice form by rapid freezing, followed by disassembling the cell for observations. The ice covered area is quantified by image processing and cells with and without an MPL are compared. The results show that the MPL suppresses water accumulation at the interface due to smaller pore size and finer contact with the CL, and this results in less water flooding. Investigation of ice formed after -10 °C cold start shutdowns and the temporary performance deterioration at ordinary temperatures also indicates a significant influence of the liquid water accumulating at the interface. The importance of the fine contact between CL and MPL, the relative absence of gaps, is demonstrated by a gas diffusion electrode (GDE) which is directly coated with catalyst ink on the surface of the MPL achieving finer contact of the layers.
Cathode catalysts for primary phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
1981-01-01
Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.
Reactant gas composition for fuel cell potential control
Bushnell, Calvin L.; Davis, Christopher L.
1991-01-01
A fuel cell (10) system in which a nitrogen (N.sub.2) gas is used on the anode section (11) and a nitrogen/oxygen (N.sub.2 /O.sub.2) gaseous mix is used on the cathode section (12) to maintain the cathode at an acceptable voltage potential during adverse conditions occurring particularly during off-power conditions, for example, during power plant shutdown, start-up and hot holds. During power plant shutdown, the cathode section is purged with a gaseous mixture of, for example, one-half percent (0.5%) oxygen (O.sub.2) and ninety-nine and a half percent (99.5%) nitrogen (N.sub.2) supplied from an ejector (21) bleeding in air (24/28) into a high pressure stream (27) of nitrogen (N.sub.2) as the primary or majority gas. Thereafter the fuel gas in the fuel processor (31) and the anode section (11) is purged with nitrogen gas to prevent nickel (Ni) carbonyl from forming from the shift catalyst. A switched dummy electrical load (30) is used to bring the cathode potential down rapidly during the start of the purges. The 0.5%/99.5% O.sub.2 /N.sub.2 mixture maintains the cathode potential between 0.3 and 0.7 volts, and this is sufficient to maintain the cathode potential at 0.3 volts for the case of H.sub.2 diffusing to the cathode through a 2 mil thick electrolyte filled matrix and below 0.8 volts for no diffusion at open circuit conditions. The same high pressure gas source (20) is used via a "T" juncture ("T") to purge the anode section and its associated fuel processor (31).
NASA Astrophysics Data System (ADS)
Pivac, Ivan; Šimić, Boris; Barbir, Frano
2017-10-01
Representation of fuel cell processes by equivalent circuit models, involving resistance and capacitance elements representing activation losses on both anode and cathode in series with resistance representing ohmic losses, cannot capture and explain the inductive loop that may show up at low frequencies in Nyquist diagram representation of the electrochemical impedance spectra. In an attempt to explain the cause of the low-frequency inductive loop and correlate it with the processes within the fuel cell electrodes, a novel equivalent circuit model of a Proton Exchange Membrane (PEM) fuel cell has been proposed and experimentally verified here in detail. The model takes into account both the anode and the cathode, and has an additional resonant loop on each side, comprising of a resistance, capacitance and inductance in parallel representing the processes within the catalyst layer. Using these additional circuit elements, more accurate and better fits to experimental impedance data in the wide frequency range at different current densities, cell temperatures, humidity of gases, air flow stoichiometries and backpressures were obtained.
Microbial fuel cells: From fundamentals to applications. A review.
Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis
2017-07-15
In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.
Microbial fuel cells: From fundamentals to applications. A review
NASA Astrophysics Data System (ADS)
Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis
2017-07-01
In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.
A Glucose Fuel Cell for Implantable Brain–Machine Interfaces
Rapoport, Benjamin I.; Kedzierski, Jakub T.; Sarpeshkar, Rahul
2012-01-01
We have developed an implantable fuel cell that generates power through glucose oxidation, producing steady-state power and up to peak power. The fuel cell is manufactured using a novel approach, employing semiconductor fabrication techniques, and is therefore well suited for manufacture together with integrated circuits on a single silicon wafer. Thus, it can help enable implantable microelectronic systems with long-lifetime power sources that harvest energy from their surrounds. The fuel reactions are mediated by robust, solid state catalysts. Glucose is oxidized at the nanostructured surface of an activated platinum anode. Oxygen is reduced to water at the surface of a self-assembled network of single-walled carbon nanotubes, embedded in a Nafion film that forms the cathode and is exposed to the biological environment. The catalytic electrodes are separated by a Nafion membrane. The availability of fuel cell reactants, oxygen and glucose, only as a mixture in the physiologic environment, has traditionally posed a design challenge: Net current production requires oxidation and reduction to occur separately and selectively at the anode and cathode, respectively, to prevent electrochemical short circuits. Our fuel cell is configured in a half-open geometry that shields the anode while exposing the cathode, resulting in an oxygen gradient that strongly favors oxygen reduction at the cathode. Glucose reaches the shielded anode by diffusing through the nanotube mesh, which does not catalyze glucose oxidation, and the Nafion layers, which are permeable to small neutral and cationic species. We demonstrate computationally that the natural recirculation of cerebrospinal fluid around the human brain theoretically permits glucose energy harvesting at a rate on the order of at least 1 mW with no adverse physiologic effects. Low-power brain–machine interfaces can thus potentially benefit from having their implanted units powered or recharged by glucose fuel cells. PMID:22719888
Corrosion testing of candidates for the alkaline fuel cell cathode
NASA Technical Reports Server (NTRS)
Singer, Joseph; Fielder, William L.
1989-01-01
Current/voltage data was obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consists of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to fully evaluate this approach to corrosion screening. Corrosion test screening of candidates for the oxygen reduction electrode of the alkaline fuel cell was applied to two substances, the pyrochlore Pb2Ru2O6.5 and the spinel NiCo2O4. The substrate gold screen and a sample of the IFC Orbiter Pt-Au performance electrode were included as blanks. The pyrochlore data indicate relative stability, although nothing yet can be said about long term stability. The spinel was plainly unstable. For this type of testing to be validated, comparisons will have to be made with long term performance tests.
Zhai, Dengyun; Lau, Kah Chun; Wang, Hsien-Hau; ...
2015-12-02
Rechargeable lithium-air (Li-O 2) batteries have drawn much interest owing to their high energy density. We report on the effect of deliberately introducing potassium impurities into the cathode material on the electrochemical performance of a Li-O 2 battery. Small amounts of potassium introduced into the activated carbon (AC) cathode material in the synthesis process are found to have a dramatic effect on the performance of the Li-O 2 cell. An increased amount of potassium significantly increases capacity, cycle life, and round-trip efficiency. This improved performance is probably due to a larger amount of LiO 2 in the discharge product, whichmore » is a mixture of LiO 2 and Li 2O 2, resulting from the increase in the amount of potassium present. No substantial correlation with porosity or surface area in an AC cathode is found. Lastly, experimental and computational studies indicate that potassium can act as an oxygen reduction catalyst, which can account for the dependence of performance on the amount of potassium.« less
Wang, Xin; Ye, Ke; Sun, Ce; Zhang, Hongyu; Zhu, Kai; Cheng, Kui; Wang, Guiling; Cao, Dianxue
2017-07-15
Pd-Au/TiC electrodes with various three-dimensional structures are obtained by the pulsed potential electro-deposition in PdCl 2 /HAuCl 4 electrolytes. The morphologies of Pd-Au/TiC composite catalysts are significantly dependent on the component of deposited solutions. The surface appearance of Pd-Au catalysts changes from rime-shaped structure, to feather-like construction, then to pineapple root-like structure and finally to flower-like configuration with the increase of PdCl 2 content in electrolytes. These particular three-dimensional structures may be very suitable for H 2 O 2 electro-reduction, which assures a high utilization of Pd-Au catalysts and provides a large specific surface area. The electro-catalytic activities of H 2 O 2 reduction on the Pd-Au/TiC electrodes improve as increasing the Pd content in Pd-Au alloy catalysts. The pineapple root-like Pd 5 Au 1 /TiC electrode reveals remarkably excellent electrochemical property and desirable stability for catalyzing H 2 O 2 reduction in acid media. The direct peroxide-peroxide fuel cells with a 10 cm 3 min -1 flow rate display the open circuit voltage (OCV) of 0.85V and the peak power density of 56.5mWcm -2 at 155mAcm -2 with desirable cell stability, which is much higher than those previously reported. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Workman, Michael J.; Dzara, Michael; Ngo, Chilan; Pylypenko, Svitlana; Serov, Alexey; McKinney, Sam; Gordon, Jonathan; Atanassov, Plamen; Artyushkova, Kateryna
2017-04-01
Development of platinum group metal free catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs) requires understanding of the interactions between surface chemistry and performance, both of which are strongly dependent on synthesis conditions. To elucidate these complex relationships, a set of Fe-N-C catalysts derived from the same set of precursor materials is fabricated by varying several key synthetic parameters under controlled conditions. The results of physicochemical characterization are presented and compared with the results of rotating disk electrode (RDE) analysis and fuel cell testing. We find that electrochemical performance is strongly correlated with three key properties related to catalyst composition: concentrations of 1) atomically dispersed Fe species, 2) species in which N is bound to Fe, and 3) surface oxides. Not only are these factors related to performance, these types of chemical species are shown to correlate with each other. This study provides evidence supporting the role of iron coordinated with nitrogen as an active species for the ORR, and offers synthetic pathways to increase the density of atomically dispersed iron species and surface oxides for optimum performance.
Novel RuCoSe as non-platinum catalysts for oxygen reduction reaction in microbial fuel cells
NASA Astrophysics Data System (ADS)
Rozenfeld, Shmuel; Schechter, Michal; Teller, Hanan; Cahan, Rivka; Schechter, Alex
2017-09-01
Microbial electrochemical cells (MECs) are explored for the conversion of acetate directly to electrical energy. This device utilizes a Geobacter sulfurreducens anode and a novel RuCoSe air cathode. RuCoSe synthesized in selected compositions by a borohydride reduction method produces amorphous structures of powdered agglomerates. Oxygen reduction reaction (ORR) was measured in a phosphate buffer solution pH 7 using a rotating disc electrode (RDE), from which the kinetic current (ik) was measured as a function of potential and composition. The results show that ik of RuxCoySe catalysts increases in the range of XRu = 0.25 > x > 0.7 and y < 0.15 for all tested potentials. A poisoning study of RuCoSe and Pt catalysts in a high concentration acetate solution shows improved tolerance of RuCoSe to this fuel at acetate concentration ≥500 mM. MEC discharge plots under physiological conditions show that ∼ RuCo2Se (sample S3) has a peak power density of 750 mW cm-2 which is comparable with Pt 900 mW cm-2.
Combined goal gasifier and fuel cell system and method
Gmeindl, Frank D.; Geisbrecht, Rodney A.
1990-01-01
A molten carbonate fuel cell is combined with a catalytic coal or coal char gasifier for providing the reactant gases comprising hydrogen, carbon monoxide and carbon dioxide used in the operation of the fuel cell. These reactant gases are stripped of sulfur compounds and particulate material and are then separated in discrete gas streams for conveyance to appropriate electrodes in the fuel cell. The gasifier is arranged to receive the reaction products generated at the anode of the fuel cell by the electricity-producing electrochemical reaction therein. These reaction products from the anode are formed primarily of high temperature steam and carbon dioxide to provide the steam, the atmosphere and the heat necessary to endothermically pyrolyze the coal or char in the presence of a catalyst. The reaction products generated at the cathode are substantially formed of carbon dioxide which is used to heat air being admixed with the carbon dioxide stream from the gasifier for providing the oxygen required for the reaction in the fuel cell and for driving an expansion device for energy recovery. A portion of this carbon dioxide from the cathode may be recycled into the fuel cell with the air-carbon dioxide mixture.
Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung
2016-11-09
Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.
NASA Astrophysics Data System (ADS)
Seo, Min Ho; Choi, Sung Mook; Lee, Dong Un; Kim, Won Bae; Chen, Zhongwei
2015-12-01
The oxygen reduction reaction, ORR, performances of graphene-supported palladium (Pd) and palladium alloys (Pd3X: X = Ag, Co and Fe) catalysts with highly dispersed catalyst particles are investigated in acidic and alkaline conditions using a rotating disk electrode, RDE. Graphene nanosheet, GNS, supported Pd based catalysts are fabricated without surfactant through the impregnation of Pd and 2nd metal precursors on GNS, leading to small and uniformly dispersed nanoparticles, even when high metal loading of up to 60 wt.% are deposited on supports. The ab-initio density functional theory, DFT, calculations, which are based on the d-band center theory, have been applied to correlate with the results of the ORR performances obtained by half-cell tests. Additionally, the cohesive energy, Ecoh, and dissolution potential, Um, for the Pd nanoparticles have been calculated to understand thermodynamic stability. To elucidate the d-band center shift, the Pd 3d5/2 core-level binding energies for Pd/GNS, Pd3Ag/GNS, Pd3Fe/GNS and Pd3Co/GNS have been investigated by X-ray photoelectron spectroscopy, XPS. The GNS-supported Pd, or Pd-based alloy-nanoparticle catalyst shows good ORR activity under acidic and alkaline conditions, suggesting it may offer potential replacement for Pt for use in cathode electrodes of anion-exchange membrane fuel cell, AEMFC, and acid based polymer electrolyte fuel cell, PEMFC.
NASA Astrophysics Data System (ADS)
Li, Bing; Ge, Xiaoming; Goh, F. W. Thomas; Hor, T. S. Andy; Geng, Dongsheng; Du, Guojun; Liu, Zhaolin; Zhang, Jie; Liu, Xiaogang; Zong, Yun
2015-01-01
An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm-2) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications.An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm-2) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications. Electronic supplementary information (ESI) available: TGA curves of as electrospun Co(ii)-PAN fiber and C-CoPAN900 EDX and XPS spectra of the C-CoPAN900 photo of a home-built Zn-air cell and the preparation method of conventional catalyst electrode; polarization curves and corresponding power density plots of the battery using conventional type cathode of C-CoPN900 and commercial Pt/C catalyst; the electrocatalytic properties of hybrid CNFs obtained from varied weight ratios of PAN to cobalt acetate, e.g. 16 : 1 and 8 : 1, and their corresponding TGA curves; a comparison of the Zn-air battery performance of this work with recent literatures. See DOI: 10.1039/c4nr05988c
Nanosized IrO2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer
NASA Astrophysics Data System (ADS)
Cruz, J. C.; Baglio, V.; Siracusano, S.; Ornelas, R.; Ortiz-Frade, L.; Arriaga, L. G.; Antonucci, V.; Aricò, A. S.
2011-04-01
Nanosized IrO2 electrocatalysts ( d 7-9 nm) with specific surface area up to 100 m2 g-1 were synthesized and characterized for the oxygen evolution reaction in a solid polymer electrolyte (SPE) electrolyzer. The catalysts were prepared by a colloidal method in aqueous solution and a subsequent thermal treatment. An iridium hydroxide hydrate precursor was obtained at 100 °C, which was, successively, calcined at different temperatures from 200 to 500 °C. The physico-chemical characterization was carried out by X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC) and transmission electron microscopy (TEM). IrO2 catalysts were sprayed onto a Nafion 115 membrane up to a loading of 3 mg cm-2. A Pt catalyst was used at the cathode compartment with a loading of 0.6 mg cm-2. The electrochemical activity for water electrolysis of the membrane-electrode assemblies (MEAs) was investigated in a single cell SPE electrolyzer by steady-state polarization curves, impedance spectroscopy and chrono-amperometric measurements. A maximum current density of 1.3 A cm-2 was obtained at 1.8 V and 80 °C for the IrO2 catalyst calcined at 400 °C for 1 h. A stable performance was recorded in single cell for this anode catalyst at 80 °C. The suitable catalytic activity and stability of the most performing catalyst were interpreted in terms of proper combination between nanostructure and suitable morphology.
2007-12-01
Justthebasics.html [Accessed September 29, 2007]. [8] Smithsonian National Museum of American History . “ Proton Exchange Membrame (PEM) Fuel Cell...hydrogen-rich fuel, is fed to the anode where a catalyst separates hydrogen’s negatively charged electrons from the positively charged protons ...The protons are conducted through the electrolyte to the cathode, whereas the electrons are forced to travel in an external circuit, due to the
Chemical recycling of cell phone Li-ion batteries: Application in environmental remediation.
Gonçalves, Mariana C Abreu; Garcia, Eric M; Taroco, Hosane A; Gorgulho, Honória F; Melo, Júlio O F; Silva, Rafael R A; Souza, Amauri G
2015-06-01
This paper presents, for the first time, the recycling and use of spent Li-ion battery cathode tape as a catalyst in the degradation of an organic dye. In our proposal, two major environmental problems can be solved: the secure disposal of cell phone batteries and the treatment of effluents with potentially toxic organic dyes. The spent Li-ion battery cathode investigated in this paper corresponds to 29% of the mass of Li-ion batteries and is made up of 83% LiCoO2, 14.5% C and less than 2.5% Al, Al2O3 and Co3O4. The use of spent Li-ion battery cathode tape increased the degradation velocity constant of methylene blue in the absence of light by about 200 times in relation to pure H2O2. This increase can be explained by a reduction in the activation energy from 83 kJ mol(-1) to 26 kJ mol(-1). The mechanism of degradation promoted by LiCoO2 is probably related to the generation of superoxide radical (O2(-)). The rupture of the aromatic rings of methylene blue was analyzed by ESI-MS. Copyright © 2015. Published by Elsevier Ltd.
Ren, Yaoyu; Cheng, Yuan; Gorte, Raymond J.; ...
2017-04-05
The oxygen reduction reaction (ORR) activity of a series of composite cathodes consisting of a porous Gd 0.20Ce 0.80O 2-δ (GDC) scaffold infiltrated with Sr-, Co-, and Y-nitrate solutions has been systematically investigated in this study. The results show that such infiltrated cathodes if calcined at low temperatures such as 350°C exhibit low polarization resistance (RP) in the temperature range of 450–700°C, even though XRD analysis reveals that the calcined product is virtually a mixture of Co 3O 4 and SrCO 3. A further study by design-of-experiment suggests that the true ORR-active species is Co 3O 4, whereas SrCO 3more » serves as a sintering inhibitor to preserve the high surface area of Co 3O 4. The findings and understanding in this study present a new strategy for future development of active cathodes for intermediate-temperature solid oxide fuel cells (SOFCs).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Yaoyu; Cheng, Yuan; Gorte, Raymond J.
The oxygen reduction reaction (ORR) activity of a series of composite cathodes consisting of a porous Gd 0.20Ce 0.80O 2-δ (GDC) scaffold infiltrated with Sr-, Co-, and Y-nitrate solutions has been systematically investigated in this study. The results show that such infiltrated cathodes if calcined at low temperatures such as 350°C exhibit low polarization resistance (RP) in the temperature range of 450–700°C, even though XRD analysis reveals that the calcined product is virtually a mixture of Co 3O 4 and SrCO 3. A further study by design-of-experiment suggests that the true ORR-active species is Co 3O 4, whereas SrCO 3more » serves as a sintering inhibitor to preserve the high surface area of Co 3O 4. The findings and understanding in this study present a new strategy for future development of active cathodes for intermediate-temperature solid oxide fuel cells (SOFCs).« less
An XAS experimental approach to study low Pt content electrocatalysts operating in PEM fuel cells.
Principi, Emiliano; Witkowska, Agnieszka; Dsoke, Sonia; Marassi, Roberto; Di Cicco, Andrea
2009-11-21
We present an X-ray absorption spectroscopy (XAS) study of a low Pt content catalyst layer (Pt loading 0.1 mg cm(-2)) operating at the cathode of a proton exchange membrane fuel cell (PEMFC). This catalyst is based on the use of a mesoporous inorganic matrix as a support for the catalyst Pt nanoparticles. Due to the high Pt dilution, in situ measurements of its structural properties by XAS are challenging and suitable experimental strategies must be devised for this purpose. In particular, we show that accurate XAS in situ fluorescence measurements can be obtained using an optimized fuel cell, suitable protocols for alignment of a focused X-ray beam and an appropriate filter for the background signal of the other atomic species contained in the electrodes. Details, advantages and limitations of the XAS technique for in situ measurements are discussed. Analysis of the near-edge XAS and EXAFS (extended X-ray absorption fine structure) data, corroborated by a HRTEM (high-resolution transmission electron microscopy) study, shows that the Pt particles have a local structure compatible with that of bulk Pt (fcc) and coordination numbers match those expected for particles with typical sizes in the 1.5-2.0 nm range. Substantial changes in the oxidation state and in local atomic arrangement of the Pt particles are found for different applied potentials. The catalyst support, containing W atoms, exhibits a partial reduction upon PEMFC activation, thus mimicking the catalyst behavior. This indicates a possible role of the mesoporous matrix in favouring the oxygen reduction reaction (ORR) and stimulates further research on active catalyst supports.
Surface area loss mechanisms of Pt3Co nanocatalysts in proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Rasouli, S.; Ortiz Godoy, R. A.; Yang, Z.; Gummalla, M.; Ball, S. C.; Myers, D.; Ferreira, P. J.
2017-03-01
Pt3Co catalyst nanoparticles of 4.9 nm size present on the cathode side of a PEMFC membrane-electrode assembly (MEA) were analyzed by transmission electron microscopy after 10 K voltage cycles under different operating conditions. The operating conditions include baseline (0.4-0.95 V, 80° C, 100% Relative Humidity (RH)), high potential (0.4-1.05 V, 80° C, 100% RH), high temperature (0.4-0.95 V, 90° C, 100% RH), and low humidity (0.4-0.95 V, 80° C, 30% RH). Particle growth and particle loss to the membrane is more severe in the high potential sample than in the high temperature and baseline MEAs, while no significant particle growth and particle precipitation in the membrane can be observed in the low humidity sample. Particles with different morphologies were seen in the cathode including: 1-Spherical individual particles resulting from modified electro-chemical Ostwald ripening and 2-aggregated and coalesced particles resulting from either necking of two or more particles or preferential deposition of Pt between particles with consequent bridging. The difference in the composition of these morphologies results in composition variations through the cathode from cathode/diffusion media (DM) to the cathode/membrane interface.
NASA Astrophysics Data System (ADS)
Sun, Ling; Liu, Danxian
2018-07-01
To elevate power performance is crucial for commercally potential metal air fuel cells. Non-precious metal oxide-based oxygen reduction catalytic electrode is much desirable. Rational combination with low-dimension nanomaterials are greatly expected as the supports. Herein, carbon nanotubes (CNTs)-graphene supported manganese oxides composite catalysts (CMnCs) were obtained through activating commercial CNTs, namely, immersing them in acidic KMnO4 solution at room condition. It avoided conventional hydrothermal process and template surfactants. CMnCs-based air cathodes were made via pilot manufacture technology and equipped in fuel cells. Through characterizations, CNTs was found structurally defective and their outer walls suffered cracking into graphene nano pieces during processing, which further enhanced oxygen reduction reaction (ORR). Nano sized manganese oxide flakes were simulataneously grown on the CNTs-graphene surfaces, identified as the manganite. The areal distribution was found closely related to the additive amount of KMnO4 with regard to CNTs, somewhat influencing catalytic performance. The ORR activities of these CMnCs exceeded raw CNTs and referred manganese catalysts under identical conditions, and also the CMnCs air fuel cells were capable of outputting ∼15% more power at 100 mA/cm2. This reseach provided an inspiring pilot evidence for updating air fuel cell power from economical carbon as well as industrialization.
Porous graphene nanocages for battery applications
Amine, Khalil; Lu, Jun; Du, Peng; Wen, Jianguo; Curtiss, Larry A.
2017-03-07
An active material composition includes a porous graphene nanocage and a source material. The source material may be a sulfur material. The source material may be an anodic material. A lithium-sulfur battery is provided that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode of the lithium-sulfur battery includes a porous graphene nanocage and a sulfur material and at least a portion of the sulfur material is entrapped within the porous graphene nanocage. Also provided is a lithium-air battery that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode includes a porous graphene nanocage and where the cathode may be free of a cathodic metal catalyst.
Optimizing membrane electrode assembly of direct methanol fuel cells for portable power
NASA Astrophysics Data System (ADS)
Liu, Fuqiang
Direct methanol fuel cells (DMFCs) for portable power applications require high power density, high-energy conversion efficiency and compactness. These requirements translate to fundamental properties of high methanol oxidation and oxygen reduction kinetics, as well as low methanol and water crossover. In this thesis a novel membrane electrode assembly (MEA) for direct methanol fuel cells has been developed, aiming to improve these fundamental properties. Firstly, methanol oxidation kinetics has been enhanced and methanol crossover has been minimized by proper control of ionomer crystallinity and its swelling in the anode catalyst layer through heat-treatment. Heat-treatment has a major impact on anode characteristics. The short-cured anode has low ionomer crystallinity, and thus swells easily when in contact with methanol solution to create a much denser anode structure, giving rise to higher methanol transport resistance than the long-cured anode. Variations in interfacial properties in the anode catalyst layer (CL) during cell conditioning were also characterized, and enhanced kinetics of methanol oxidation and severe limiting current phenomenon were found to be caused by a combination of interfacial property variations and swelling of ionomer over time. Secondly, much effort has been expended to develop a cathode CL suitable for operation under low air stoichiometry. The effects of fabrication procedure, ionomer content, and porosity distribution on the microstructure and cathode performance under low air stoichiometry are investigated using electrochemical and surface morphology characterizations to reveal the correlation between microstructure and electrochemical behavior. At the same time, computational fluid dynamics (CFD) models of DMFC cathodes have been developed to theoretically interpret the experimental results, to investigate two-phase transport, and to elucidate mechanism of cathode mixed potential due to methanol crossover. Thirdly, a MEA with low water crossover has been developed by employing a highly-hydrophobic microporous layer (MPL) to build up hydraulic pressure at the cathode, promoting product water permeation from the cathode to anode to offset water dragged by electro-osmosis. Water crossover through the MEA is further reduced by an anode hydrophobic MPL through facilitating water back diffusion. Under different current densities, the MEA with hydrophobic MPL has consistently low alpha, several times smaller than those with hydrophilic or without MPL. A simulation study of anode water transport by a two-phase model shows that anode MPL wettability strongly determines liquid saturation in the anode, and thus is identified as playing a crucial role in promoting water back diffusion. Finally, direct feed of highly-concentrated methanol using the optimized MEA has been successfully demonstrated by a face-feed anode plate, which minimizes methanol crossover by controlling the fuel delivery rate. Using 10 M methanol, a steady-state power density of ˜67mW/cm2 is reached at 60°C and 175mA/cm2, which is almost identical to that with 2M methanol.
High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell
NASA Technical Reports Server (NTRS)
Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville
2009-01-01
A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon dioxide-saturated water or bicarbonate solution. The anode side of the cell is supplied with sodium hydroxide solution. The solutions are circulated past the electrodes in the electrochemical cell using pumps. A regulated power supply provides the electrical energy required for the reactions. Photovoltaic cells can be used to better mimic the photosynthetic reaction. The current flowing through the electrochemical cell, and the cell voltage, are monitored during experimentation. The products of the electrochemical reduction of carbon dioxide are allowed to accumulate in the cathode reservoir. Samples of the cathode solution are withdrawn for product analysis. Oxygen is generated on the anode side and is allowed to vent out of the reservoir.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.
One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. But, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. We show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O 2 batteries. The heme’s oxygen binding capability facilitates battery recharge by accepting and releasingmore » dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. Our study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage.« less
Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; Li, Jinyang; Schwab, Mark J.; Brudvig, Gary W.; Taylor, André D.
2016-01-01
One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. Here, we show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O2 batteries. The heme's oxygen binding capability facilitates battery recharge by accepting and releasing dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. This study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage. PMID:27759005
Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; ...
2016-10-19
One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. But, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. We show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O 2 batteries. The heme’s oxygen binding capability facilitates battery recharge by accepting and releasingmore » dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. Our study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage.« less
Jhong, Huei-Ru Molly; Tornow, Claire E; Smid, Bretislav; Gewirth, Andrew A; Lyth, Stephen M; Kenis, Paul J A
2017-03-22
We report characterization of a non-precious metal-free catalyst for the electrochemical reduction of CO 2 to CO; namely, a pyrolyzed carbon nitride and multiwall carbon nanotube composite. This catalyst exhibits a high selectivity for production of CO over H 2 (approximately 98 % CO and 2 % H 2 ), as well as high activity in an electrochemical flow cell. The CO partial current density at intermediate cathode potentials (V=-1.46 V vs. Ag/AgCl) is up to 3.5× higher than state-of-the-art Ag nanoparticle-based catalysts, and the maximum current density is 90 mA cm -2 . The mass activity and energy efficiency (up to 48 %) were also higher than the Ag nanoparticle reference. Moving away from precious metal catalysts without sacrificing activity or selectivity may significantly enhance the prospects of electrochemical CO 2 reduction as an approach to reduce atmospheric CO 2 emissions or as a method for load-leveling in relation to the use of intermittent renewable energy sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis and Characterization of Mixed-Conducting Corrosion Resistant Oxide Supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramani, Vijay K.
An extensive search and evaluation of electrochemically stable catalyst supports (including metal oxides like RuO2-SiO2, RuO2-TiO2, and ITO was perfomed during the 4 years of the project. The suports were also catalyzed by deposition of Pt and tested for its performance and electrochemical stability in RDE and fuel cell experiments. For testing the electrochemical stability and fuel cell performance of the catalysts and supports, we have employed the protocols in use at the Department of Energy and Nissan Technological Center North America (NTCNA). The use of such procedures allows a precise and reproducible estimation of the performance and stability ofmore » the materials and permits comparisons among laboratories and DOE funded projects. RuO2-SiO2 catalyst supports showed no loss in surface area during start-stop stability tests that were performed by cycling the electrode potential between 0 V to 1.8 V for 1000 cycles. Catalyzed support (40% Pt/RuO2-SiO2; 1:1 mole ratio) were tested in a PEFC, resulting in a current density of 750 mA/cm2 at 0.6 Volts, and a maximum power density of 570 mW/cm2. Measurements were conducted at 80 ºC with 75% relative humidity of the inlet gases (H2/O2); Pt loadings were 0.4 mg/cm2 at the cathode and 0.2 mg/cm2 at the anode. Start-stop stability tests for support and catalyzed support performed in RDE and PEFC set-ups have confirmed RuO2-TiO2 support stability. The beginning of life performance was exactly equal to end of life performance (in an MEA that has been subjected to severe start-stop cycling for 10,000 start/stop cycles between 1 V to 1.5 V). This result was in sharp contrast to baseline Pt/C catalyst that showed significant performance deterioration after accelerated stability tests. The Pt/TRO showed minimal loss in performance upon exposure to start-stop cycles. The loss in cell voltage at 1 A/cm2 at 100% RH was almost 700 mV for Pt/C whereas it was only ca. 15 mV for Pt/TRO. 40% RH data (of inlet gases) revealed a similar trend in terms of stability – exceptional stability for Pt/TRO as opposed to very poor stability for Pt/HSAC. These observations were attributed to the much higher stability of the TRO support compared to Carbon. The carbon dioxide concentration in the cathode exit stream during the accelerated degradation test with Pt/TRO (start-stop protocol) was extremely low (between 3 to 10 ppm of CO2). In contrast, the CO2 emission levels from a conventional Pt/C catalyst were found to be approx. 200 ppm. This observation was a clear indicator that the main source of carbon being oxidized to carbon dioxide in an MEA was the carbon catalyst support, and not the gas diffusion layer or the graphite flow fields. Indium tin oxide (ITO) was also evaluated as a catalyst support for PEFCs. Pt/ITO was very stable under start-up/shutdown accelerated degradation protocol (RDE tests in perchloric acid). The ECSA change was less than 4% over 10,000 cycles. The load cycling accelerated protocol (from 0.6 to 0.95 V vs. RHE) resulted in a loss of approximately 34% of the initial ECSA after 10,000 cycles. However, fuel cell testing resulted in a very low performing catalyst. XPS spectroscopy was employed to investigate the changes in the catalysts occuring during fuel cell operation. It was observed a shift of In 3d5/2 and In 3d3/2 peaks towards higher binding energies. This can be explained by the formation of hydroxides or oxy-hydroxides in the surface of the catalyst. O1s spectrum for Pt/ITO catalyst after being operated in the fuel cell, also confirmed the formation of significant amounts of surface hydroxides (12 to 16%). The presence of surface hydroxides in the catalyst increased the electrode resistivity affecting fuel cell performance. NTCNA performed a detailed analysis of transport phenomena (reactants and products to/from the Pt active sites) in both commercial catalyst and Pt/RTO (in order to have a better understanding at the basic level). The proton resistance (Rionomer) in Pt/C and Pt/RTO cathode catalyst layers were 150 and 12 mΩ-cm2, respectively. Pt/RTO catalyst layer has about an order or magnitude lower proton transfer resistance than Pt/C catalyst layer. Since the ionomer/support ratio that was used in formulating the ink for both catalysts was the same (0.9), it is expected that the volumetric coverage of ionomer of both catalysts will be significantly different due to the disparity in the surface areas (Pt/C had ~ 800 m2/g, while Pt/RTO had ~ 50 m2/g). The differences in the ionomer volumetric coverage and the ionomer film thickness may explain the significantly higher proton conductivity in the Pt/RTO catalyst layer when compared to Pt/HSAC. It is therefore very important to optimize the ionomer loadings when synthesizing new catalyst supports (and never rely on values for carbon-based commercial catalysts). Finally, NTCNA has elaborated a cost model for non-carbon support materials considering their durability benefits. Material costs for production of Pt/ RuO2-TiO2 electrodes were compared to Pt/C. RuO2-TiO2 support was more expensive than carbon but the total material cost was still dominated by platinum cost. Though ruthenium is considered a precious metal, its cost is far less than platinum. It should also be noted that ruthenium only makes up 38% of the mass of the support, while the rest is inexpensive TiO2. After considering the durability advantages of Pt/RTO, cost model showed that even with almost double the Pt loading (0.35 vs 0.18 mgPt/cm2), Pt/RTO ($22.7/kWnet) is only slightly more expensive than Pt/C ($21.9/kWnet).« less
Highly Dispersed Alloy Catalyst for Durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vivek S. Murthi; Izzo, Elise; Bi, Wu
2013-01-08
Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them withmore » existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.« less
Preliminary Design Options for Meteor Burst Communications Systems Buoy Relays
1986-12-01
FIELDS BRAYTON OTTO ELECTROSTATIC FIELDS SUPERCRITICAL Figure 5.1. Structure of current power source technology for ocean applications. 32 L / P 9 t ~A...As in the sulphur dioxide cell, a low weight, high surface area, carbon positive elec- trode acts as a catalyst for the reduction of the cathode...Operating Transmit Power No. (Relay/Service) Type Covert Covert Mode Duty Cycle (watts) 2.1 Trans Ocean Relay Shore/Ship No Yes Remote 20 Msg/hr 0.9
NASA Technical Reports Server (NTRS)
Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.
1985-01-01
Two 25 cell stacks of the 13 inch x 23 inch cell size (about 4kW) remain on test after 4000 hours and 2900 hours, respectively, using simulated reformate fuel. These tests are focusing on the durability of fuel cell stack components developed through the end of 1983. Also, these stacks are serving as forerunners of a 25kW stack that will contain 175 cells of the same size and will employ the same technology base. The stack technology development program has focused on a new, low cost bipolar plate edge seal technique and evaluation of advanced cathode catalysts, an electrolyte replenishment system, and nonmetallic cooling plates in small stacks.
Novel catalysts and photoelectrochemical system for solar fuel production
NASA Astrophysics Data System (ADS)
Zhang, Yan
Solar fuel production from abundant raw chemicals such as CO2 and water is highly desired as a clean renewable energy solution for the future. Developing photoelectrochemical cells is viewed as a promising approach to realize this energy conversion and storage process. Efficient and robust oxygen evolution catalyst made from non-precious materials remains a major challenge for such a system. This thesis basically consists of three parts of work, including studies on enhancing the photocatalytic oxygen evolution activity of cobalt-based spinel nanoparticles by manganese3+ substitution, in situ formation of cobalt oxide nanocubanes as highly active catalyst for photocatalytic oxygen evolution reaction, and development of a photoanode-driven photoelectrochemical cell for CO2 reduction with water. The first part of this thesis work devotes efforts in the development and study on cobalt and other transition metal oxide based oxygen evolution catalyst. Photocatalytic oxygen evolution is a critical step for solar fuel production from abundant sources. It poses a significant challenge because it requires an efficient catalyst to bridge the one-electron photon capture process with the four-electron oxygen reaction. Among all the metal oxides, Co3O4 spinel exhibits a high activity as an oxygen evolution catalyst. The results of this work demonstrate that the photocatalytic oxygen evolution activity of Co3O4 spinel can be further enhanced by substituting Co with Mn in the spinel structure. Using a facile hydrothermal approach, Co3O4 spinel nanoparticles as well as Mn-substituted and Ni-substituted Co3O4 spinel nanoparticles with a typical particle size of 5-7 nm were successfully synthesized. The morphology and crystal structures of the as-synthesized nanoparticle catalysts have been carefully examined using various structural characterization techniques, including powder x-ray diffraction (PXRD), transmission electron microscope (TEM), gas adsorption, and x-ray absorption spectroscopy (XAS). The photocatalytic activities of as-made nanoparticles were investigated using a well-studied visible light driven [Ru(bpy)3]2+-persulfate system. In both Clark electrode and reactor/gas chromatography (GC) systems, Mn-substituted Co3O 4 nanoparticles exhibited the highest turnover frequency (TOF) among all the three kinds of catalysts. The data presented in this paper suggest that the photocatalytic oxygen evolution activity of Co3O 4 spinel catalyst can be further enhanced by Mn3+ substitution at the octahedral sites. The second part of this piece of work was carried out to further investigate cobalt oxide based photocatalytic oxygen evolution catalyst. A new strategy was developed to synthesize nonsupported cobalt oxide nanocubanes through an in situ phase transformation mechanism using a layered Co(OH)(OCH3) precursor. Under sonication, the precursor was exfoliated and transformed into cobalt oxide nanocubanes in the presence of NaHCO 3-Na2SiF6 buffer solution. The resulting cobalt catalyst with an average particle size less than 2 nm exhibited a turnover frequency of 0.0023 per second per cobalt in photocatalytic oxygen evolution reaction. X-ray absorption results suggested that a unique nanocubane structure, where 13 cobalt atoms fully coordinated with oxygen atoms and hydroxide groups in an octahedral arrangement to form 8 Co4O4 cubanes, may be responsible for the exceptionally high oxygen evolution catalysis activity. This thesis work is completed with the development of a photoanode-driven photoelectrochemical cell for CO2 reduction. A NiOx decorated Si photoanode and nanoporous Ag cathode were employed. With an external bias of 2.0 V, a current density at cathode of 10 mA/cm2 and Faradaic efficiency of 70% for CO2 to CO was achieved. Compared to a normal electrochemical cell, the photoelectrochemical cell saves 0.4 V electrical energy by absorbing photo-energy. In addition, post-test photoanodes were carefully characterized by SEM, XAS, and XPS analysis.
Zhang, Dongdong; Li, Zhiling; Zhang, Chunfang; Zhou, Xue; Xiao, Zhixing; Awata, Takanori; Katayama, Arata
2017-03-01
A microbial fuel cell (MFC), with graphite electrodes as both the anode and cathode, was operated with a soil-free anaerobic consortium for phenol degradation. This phenol-degrading MFC showed high efficiency with a current density of 120 mA/m 2 and a coulombic efficiency of 22.7%, despite the lack of a platinum catalyst cathode and inoculation of sediment/soil. Removal of planktonic bacteria by renewing the anaerobic medium did not decrease the performance, suggesting that the phenol-degrading MFC was not maintained by the planktonic bacteria but by the microorganisms in the anode biofilm. Cyclic voltammetry analysis of the anode biofilm showed distinct oxidation and reduction peaks. Analysis of the microbial community structure of the anode biofilm and the planktonic bacteria based on 16S rRNA gene sequences suggested that Geobacter sp. was the phenol degrader in the anode biofilm and was responsible for current generation. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Wang, Xin; Gao, Ningshengjie; Zhou, Qixing; Dong, Heng; Yu, Hongbing; Feng, Yujie
2013-09-01
Activated carbon (AC) is a high performing and cost effective catalyst for oxygen reduction reactions (ORRs) of air-cathodes in microbial fuel cells (MFCs). Acidic (HNO3) and alkaline (KOH) pretreatments on AC at low temperature (85°C) are conducted to enhance the performance of MFCs. The alkaline pretreatment increased the power density by 16% from 804±70 to 957±31 mW m(-2), possibly due to the decrease of ohmic resistance (from 20.58 to 19.20 Ω) and the increase of ORR activities provided by the adsorbed hydroxide ion and extra micropore area/volume after alkaline pretreatment. However, acidic pretreatment decreased the power output to 537±36 mW m(-2), which can be mainly attributed to the corrosion by adsorbed proton at the interface of AC powder and stainless steel mesh and the decreased pore area. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Srouji, A. K.; Zheng, L. J.; Dross, R.; Aaron, D.; Mench, M. M.
2017-10-01
Limiting current measurements are used to evaluate oxygen transport resistance in the catalyst layer of a polymer electrolyte fuel cell (PEFC). The pressure independent oxygen transport resistance in the electrode is quantified for two cell architectures and two cathode Pt loadings (0.4 and 0.07 mgPt.cm-2). The compounded effect of the flow field and Pt loading is used to shed light on the nature of the observed transport resistance, especially its response to fundamentally different flow fields, which is shown to directly or indirectly scale with Pt loading in the open literature. By varying gas pressure and using low oxygen concentrations, the total oxygen transport resistance is divided into intermolecular gas diffusion (a pressure-dependent component) and a pressure independent component, which can be attributed to Knudsen diffusion or dissolution film resistance. The pressure-independent oxygen transport resistance in the catalyst layer varies between 13.3 and 34.4 s/m. It is shown that the pressure independent oxygen transport resistance increases with reduced Pt loading, but that effect is greatly exacerbated by using conventional channel/lands. The results indicate that open metallic element architecture improves the oxygen transport resistance in ultra-low Pt loading electrodes, likely due to enhanced water management at the catalyst layer.
Ramakrishnan, Prakash; Shanmugam, Sangaraju; Kim, Jae Hyun
2017-04-10
Cost-effective dual heteroatom-doped 3D carbon nanofoam-wrapped FeS nanoparticles (NPs), FeS-C, act as efficient bifunctional catalysts for Li-O 2 batteries. This cathode exhibits a maximum deep discharge capacity of 14 777.5 mA h g -1 with a 98.1 % columbic efficiency at 0.1 mA cm -2 . The controlled capacity (500 mA h g -1 ) test of this cathode delivers a minimum polarization gap of 0.73 V at 0.1 mA cm -2 and is sustained for 100 cycles with an energy efficiency of approximately 64 % (1st cycle) and 52 % (100th cycle) at 0.3 mA cm -2 , under the potential window of 2.0-4.5 V. X-ray photoelectron spectroscopy reveals the substantial reversible formation and complete decomposition of Li 2 O 2 . The excellent recharging ability, high rate performance, and cycle stability of this catalyst is attributed to the synergistic effect of FeS catalytic behavior and textural properties of heteroatom-doped carbon nanostructures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mesoporous Nitrogen Doped Carbon-Glass Ceramic Cathode for High Performance Lithium-Oxygen Battery
2012-06-01
dry room with controlled moisture content. Composite 3 films on nickel foam were used as working cathodes along with lithium metal as anode and the...cathode formulation [6,7,8,9,10], efficient oxygen reduction catalysts [11,12], electrolyte compositions [13,14], effect of moisture [15], etc...specimens. Structure and purity of these materials were performed by powder X-ray diffraction (XRD) on a Rigaku D/MAX-2250 diffractometer fitted with CuKα
Situ treatment of contaminated groundwater
McNab, Jr., Walt W.; Ruiz, Roberto; Pico, Tristan M.
2001-01-01
A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.
Cao, Chun; Wei, Liling; Zhai, Qiran; Ci, Jiliang; Li, Weiwei; Wang, Gang; Shen, Jianquan
2017-07-12
In this work, we presented a novel, facile, and template-free strategy for fabricating graphene-like N-doped carbon as oxygen reduction catalyst in sustainable microbial fuel cells (MFCs) by using an ion-inducing and spontaneous gas-flow tailoring effect from a unique nitrogen-rich polymer gel precursor which has not been reported in materials science. Remarkably, by introduction of trace platinum- and cobalt- precursor in polymer gel, highly dispersed sub-10 nm PtCo nanoalloys can be in situ grown and anchored on graphene-like carbon. The as-prepared catalysts were investigated by a series of physical characterizations, electrochemical measurements, and microbial fuel cell tests. Interestingly, even with a low Pt content (5.13 wt %), the most active Co/N codoped carbon supported PtCo nanoalloys (Co-N-C/Pt) exhibited dramatically improved catalytic activity toward oxygen reduction reaction coupled with superior output power density (1008 ± 43 mW m -2 ) in MFCs, which was 29.40% higher than the state of the art Pt/C (20 wt %). Notability, the distinct catalytic activity of Co-N-C/Pt was attributed to the highly efficient synergistic catalytic effect of Co-Nx-C and PtCo nanoalloys. Therefore, Co-N-C/Pt should be a promising oxygen reduction catalyst for application in MFCs. Further, the novel strategy for graphene-like carbon also can be widely used in many other energy conversion and storage devices.
A novel alcohol/iron (III) fuel cell
NASA Astrophysics Data System (ADS)
Yi, Qingfeng; Zou, Tao; Zhang, Yuanyuan; Liu, Xiaoping; Xu, Guorong; Nie, Huidong; Zhou, Xiulin
2016-07-01
A novel alcohol fuel cell is constructed by using Fe3+ as the oxidation agent instead of the conventional O2. Various alcohols as the fuels are tested, including methanol, ethanol, n-propanol and iso-propanol. In this fuel cell, the anode catalysts tested are PdSn/β-cd-CNT, PdSn/CNT, Pd/β-cd-CNT, Pd/CNT and Pd/β-cd-C, prepared by using multi-walled carbon nanotube (CNT) and carbon powder (C), as well as β-cyclodexdrin (β-cd) modified CNT (β-cd-CNT) and β-cd modified C (β-cd-C), as the substrates to immobilize PdSn and Pd nanoparticles in glycol solvent. The as-synthesized PdSn/β-cd-CNT catalyst presents significantly higher electroactivity for alcohol oxidation than the conventional Pd/C catalyst. Fe3+ reduction reaction is carried out on the cathode made of carbon powder. The anolyte (alcohols in 1 mol L-1 NaOH) and catholyte (Fe3+ in 0.5 mol L-1 NaCl) are separated with a Nafion 117 membrane. Open circuit voltage (OCV) of the cell with the anode PdSn/β-cd-CNT is 1.14-1.22 V, depending upon the used alcohol. The maximum power densities with methanol, ethanol, n-propanol and iso-propanol fuels are 15.2, 16.1, 19.9 and 12.2 mW cm-2, respectively.
NASA Astrophysics Data System (ADS)
Epting, William K.; Litster, Shawn
2016-02-01
Although polymer electrolyte fuel cells (PEFCs) offer promise as efficient, low emission power sources, the large amount of platinum catalyst used for the cathode's oxygen reduction (ORR) results in high costs. One approach to using less Pt is to increase the oxygen concentration at the catalyst by reducing the oxygen transport resistances. An important resistance is that of the diffusion media (DM). The DM are highly heterogeneous porous carbon fiber substrates with a graded composition of additives across their thickness. In this work we use an oxygen microsensor with a micro-positioning system to measure the oxygen concentration and presence of liquid water in the pores at discrete points across the thickness of a commercial carbon felt DM in operating PEFCs. Under conditions with no liquid water, the DM accounts for 60% of the oxygen depletion, with 60-70% of that depletion being due to the thin microporous layer (MPL) on the catalyst layer (CL) side. Using concentration gradient data, we quantify the non-uniform local transport resistance across the DM and relate it to high resolution 3D X-ray computed tomography of the same DM.
Study of catalysis for solid oxide fuel cells and direct methanol fuel cells
NASA Astrophysics Data System (ADS)
Jiang, Xirong
Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading. For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a typical solid oxide electrolyte, with patterned (octadecyltrichlorosilane) ODTS self-assembled monolayers (SAMs), Pt thin films were grown selectively on the SAM-free surface regions. Features with sizes as small as 2 mum were deposited by this combined ALD-muCP method. The micro-patterned Pt structure deposited by area selective ALD was applied to SOFCs as a current collector grid/patterned catalyst. An improvement in the fuel cell performance by a factor of 10 was observed using the Pt current collector grids/patterned catalyst integrated onto cathodic La0.6Sr 0.4Co0.2Fe0.8O3-delta. For possible catalytic anodes in DMFCs employing a 1:1 stoichiometric methanol-water reforming mixture, two strategies were employed in this thesis. One approach is to fabricate skin catalysts, where ALD Pt films of various thicknesses were used to coat sputtered Ru films forming Pt skin catalysts for study of methanol oxidation. Another strategy is to replace or alloy Pt with Ru; for this effort, both dc-sputtering and atomic layer deposition were employed to fabricate Pt-Ru catalysts of various Ru contents. The electrochemical behavior of all of the Pt skin catalysts, the DC co-sputtered Pt-Ru catalysts and the ALD co-deposited Pt-Ru catalysts were evaluated at room temperature for methanol oxidation using cyclic voltammetry and chronoamperometry in highly concentrated 16.6 M MeOH, which corresponds to the stoichiometric fuel that will be employed in next generation DMFCs that are designed to minimize or eliminate methanol crossover. The catalytic activity of sputtered Ru catalysts toward methanol oxidation is strongly enhanced by the ALD Pt overlayer, with such skin layer catalysts displaying superior catalytic activity over pure Pt. For both the DC co-sputtered catalysts and ALD co-deposited catalysts, the electrochemical studies illustrate that the optimal stoichiometry ratio for Pt to Ru is approximately 1:1, which is in good agreement with most literature.
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Dobley, Arthur; Seymour, Frasier W.
2014-01-01
Lithium-air (Li-air) primary batteries have a theoretical specific capacity of 11,400 Wh/kg, the highest of any common metal-air system. NASA is developing Li-air technology for a Mobile Oxygen Concentrator for Spacecraft Emergencies, an application which requires an extremely lightweight primary battery that can discharge over 24 hours continuously. Several vendors were funded through the NASA SBIR program to develop Li-air technology to fulfill the requirements of this application. New catalysts and carbon cathode structures were developed to enhance the oxygen reduction reaction and increase surface area to improve cell performance. Techniques to stabilize the lithium metal anode surface were explored. Experimental results for prototype laboratory cells are given. Projections are made for the performance of hypothetical cells constructed from the materials that were developed.
NASA Astrophysics Data System (ADS)
Park, Hyanjoo; Choe, Seunghoe; Kim, Hoyoung; Kim, Dong-Kwon; Cho, GeonHee; Park, YoonSu; Jang, Jong Hyun; Ha, Don-Hyung; Ahn, Sang Hyun; Kim, Soo-Kil
2018-06-01
Pt catalysts for water electrolysis were prepared on carbon paper by using both direct current and pulse electrodeposition. Controlling the mass transfer of Pt precursor in the electrolyte by varying the deposition potential enables the formation of various Pt particle shapes such as flower-like and polyhedral particles. Further control of the deposition parameters for pulse electrodeposition resulted in changes to the particle size and density. In particular, the upper potential of pulse was found to be the critical parameter controlling the morphology of the particles and their catalytic activity. In addition to the typical electrochemical measurements, Pt samples deposited on carbon paper were used as cathodes for a proton exchange membrane water electrolyser. This single cell test revealed that our Pt particle samples have exceptional mass activity while being cost effective.
Da Han; Liu, Xuejiao; Zeng, Fanrong; Qian, Jiqin; Wu, Tianzhi; Zhan, Zhongliang
2012-01-01
Tremendous efforts to develop high-efficiency reduced-temperature (≤ 600°C) solid oxide fuel cells are motivated by their potentials for reduced materials cost, less engineering challenge, and better performance durability. A key obstacle to such fuel cells arises from sluggish oxygen reduction reaction kinetics on the cathodes. Here we reported that an oxide hybrid, featuring a nanoporous Sm0.5Sr0.5CoO3−δ (SSC) catalyst coating bonded onto the internal surface of a high-porosity La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) backbone, exhibited superior catalytic activity for oxygen reduction reactions and thereby yielded low interfacial resistances in air, e.g., 0.021 Ω cm2 at 650°C and 0.043 Ω cm2 at 600°C. We further demonstrated that such a micro-nano porous hybrid, adopted as the cathode in a thin LSGM electrolyte fuel cell, produced impressive power densities of 2.02 W cm−2 at 650°C and 1.46 W cm−2 at 600°C when operated on humidified hydrogen fuel and air oxidant. PMID:22708057
NASA Astrophysics Data System (ADS)
Cetinbas, Firat C.; Ahluwalia, Rajesh K.; Kariuki, Nancy; De Andrade, Vincent; Fongalland, Dash; Smith, Linda; Sharman, Jonathan; Ferreira, Paulo; Rasouli, Somaye; Myers, Deborah J.
2017-03-01
The cost and performance of proton exchange membrane fuel cells strongly depend on the cathode electrode due to usage of expensive platinum (Pt) group metal catalyst and sluggish reaction kinetics. Development of low Pt content high performance cathodes requires comprehensive understanding of the electrode microstructure. In this study, a new approach is presented to characterize the detailed cathode electrode microstructure from nm to μm length scales by combining information from different experimental techniques. In this context, nano-scale X-ray computed tomography (nano-CT) is performed to extract the secondary pore space of the electrode. Transmission electron microscopy (TEM) is employed to determine primary C particle and Pt particle size distributions. X-ray scattering, with its ability to provide size distributions of orders of magnitude more particles than TEM, is used to confirm the TEM-determined size distributions. The number of primary pores that cannot be resolved by nano-CT is approximated using mercury intrusion porosimetry. An algorithm is developed to incorporate all these experimental data in one geometric representation. Upon validation of pore size distribution against gas adsorption and mercury intrusion porosimetry data, reconstructed ionomer size distribution is reported. In addition, transport related characteristics and effective properties are computed by performing simulations on the hybrid microstructure.
Young, Michelle N; Links, Mikaela J; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I
2016-12-08
A microbial peroxide producing cell (MPPC) for H 2 O 2 production at the cathode was systematically optimized with minimal energy input. First, the stability of H 2 O 2 was evaluated using different catholytes, membranes, and catalyst materials. On the basis of these results, a flat-plate MPPC fed continuously using 200 mm NaCl catholyte at a 4 h hydraulic retention time was designed and operated, producing H 2 O 2 for 18 days. H 2 O 2 concentration of 3.1 g L -1 H 2 O 2 with 1.1 Wh g -1 H 2 O 2 power input was achieved in the MPPC. The high H 2 O 2 concentration was a result of the optimum materials selected. The small energy input was largely the result of the 0.5 cm distance between the anode and cathode, which reduced ionic transport losses. However, >50 % of operational overpotentials were due to the 4.5-5 pH unit difference between the anode and cathode chambers. The results demonstrate that a MPPC can continuously produce H 2 O 2 at high concentration by selecting compatible materials and appropriate operating conditions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
FePO4 based single chamber air-cathode microbial fuel cell for online monitoring levofloxacin.
Zeng, Libin; Li, Xinyong; Shi, Yueran; Qi, Yefei; Huang, Daqiong; Tadé, Moses; Wang, Shaobin; Liu, Shaomin
2017-05-15
A bio-electrochemical strategy was developed for constructing a simple and sensitive levofloxacin (LEV) sensor based on a single chamber microbial fuel cell (SC-MFC) using FePO 4 nanoparticles (NPs) as the cathode catalyst instead of traditional Pt/C. In this assembled sensor device, FePO 4 NPs dramatically promoted the electrooxidation of oxygen on the cathode, which helps to accelerate the voltage output from SC-MFC and can provide a powerful guarantee for LEV detection. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to fully characterize the FePO 4 NPs. Under the optimized COD condition (3mM), the LEV with a concentration range of 0.1-1000µg/L could be detected successfully, and exhibited the excellent linear interval in the concentration range of 0.1-100µg/L. During this range of concentrations of LEV, a temporary effect on the anode of exoelectrogenic bacterial in less than 10min could occur, and then came back to the normal. It exhibited a long-term stability, maintaining the stable electricity production for 14 months of continuous running. Besides, the detection mechanism was investigated by quantum chemical calculation using density functional theory (DFT). Copyright © 2016. Published by Elsevier B.V.
A Single-Chamber Microbial Fuel Cell without an Air Cathode
Nimje, Vanita Roshan; Chen, Chien-Cheng; Chen, Hau-Ren; Chen, Chien-Yen; Tseng, Min-Jen; Cheng, Kai-Chien; Shih, Ruey-Chyuan; Chang, Young-Fo
2012-01-01
Microbial fuel cells (MFCs) represent a novel technology for wastewater treatment with electricity production. Electricity generation with simultaneous nitrate reduction in a single-chamber MFC without air cathode was studied, using glucose (1 mM) as the carbon source and nitrate (1 mM) as the final electron acceptor employed by Bacillus subtilis under anaerobic conditions. Increasing current as a function of decreased nitrate concentration and an increase in biomass were observed with a maximum current of 0.4 mA obtained at an external resistance (Rext) of 1 KΩ without a platinum catalyst of air cathode. A decreased current with complete nitrate reduction, with further recovery of the current immediately after nitrate addition, indicated the dependence of B. subtilis on nitrate as an electron acceptor to efficiently produce electricity. A power density of 0.0019 mW/cm2 was achieved at an Rext of 220 Ω. Cyclic voltammograms (CV) showed direct electron transfer with the involvement of mediators in the MFC. The low coulombic efficiency (CE) of 11% was mainly attributed to glucose fermentation. These results demonstrated that electricity generation is possible from wastewater containing nitrate, and this represents an alternative technology for the cost-effective and environmentally benign treatment of wastewater. PMID:22489190
Vukmirovic, Miomir B.; Kuttiyiel, Kurian A.; Meng, Hui; ...
2016-09-13
Reducing the amount of Pt, the most costly component of both anode and cathode fuel cell catalysts, has attracted considerable attention from the research community. An approach is reported herein to deposit sub-monolayer to multilayer amounts of Pt and other noble metals on metal oxides and oxidized carbon materials. The process is exemplified by Pt deposition on RuO 2(110). The Pt deposit consists of Pt atoms arranged in a c(2×2) array, that is, a 0.25 monolayer (ML). The deposit has lower catalytic activity for the oxygen reduction reaction (ORR) and similar activity for the hydrogen oxidation reaction compared to Pt(111).more » These activities are explained by a large calculated upshift of the d-band center of Pt atoms and larger Pt–Pt interatomic distances than those of Pt(111). A catalyst with Pt coverage larger than 0.25 ML on oxide surfaces and oxidized carbon materials is shown to be active for the ORR as well as for other electrocatalytic reactions. A PtRhSnO 2/C catalyst shows high activity for ethanol oxidation as a result of its ability to effectively cleave the C–C bond in ethanol. Furthermore, Pt deposited on reduced graphene oxide shows high Pt mass ORR activity and good stability.« less
Tian, Xinlong; Adzic, Radoslav R.; Luo, Junming; ...
2016-02-10
Here, the main challenges to the commercial viability of polymer electrolyte membrane fuel cells are (i) the high cost associated with using large amounts of Pt in fuel cell cathodes to compensate for the sluggish kinetics of the oxygen reduction reaction, (ii) catalyst degradation, and (iii) carbon-support corrosion. To address these obstacles, our group has focused on robust, carbon-free transition metal nitride materials with low Pt content that exhibit tunable physical and catalytic properties. Here, we report on the high performance of a novel catalyst with low Pt content, prepared by placing several layers of Pt atoms on nanoparticles ofmore » titanium nickel binary nitride. For the ORR, the catalyst exhibited a more than 400% and 200% increase in mass activity and specific activity, respectively, compared with the commercial Pt/C catalyst. It also showed excellent stability/durability, experiencing only a slight performance loss after 10,000 potential cycles, while TEM results showed its structure had remained intact. The catalyst’s outstanding performance may have resulted from the ultrahigh dispersion of Pt (several atomic layers coated on the nitride nanoparticles), and the excellent stability/durability may have been due to the good stability of nitride and synergetic effects between ultrathin Pt layer and the robust TiNiN support.« less
Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells.
Johánek, Viktor; Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír
2016-01-01
The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions.
Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells
Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír
2016-01-01
The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions. PMID:28042492
High performance spiral wound microbial fuel cell with hydraulic characterization.
Haeger, Alexander; Forrestal, Casey; Xu, Pei; Ren, Zhiyong Jason
2014-12-01
The understanding and development of functioning systems are crucial steps for microbial fuel cell (MFC) technology advancement. In this study, a compact spiral wound MFC (swMFC) was developed and hydraulic residence time distribution (RTD) tests were conducted to investigate the flow characteristics in the systems. Results show that two-chamber swMFCs have high surface area to volume ratios of 350-700m(2)/m(3), and by using oxygen cathode without metal-catalysts, the maximum power densities were 42W/m(3) based on total volume and 170W/m(3) based on effective volume. The hydraulic step-input tracer study identified 20-67% of anodic flow dead space, which presents new opportunities for system improvement. Electrochemical tools revealed very low ohmic resistance but high charge transfer and diffusion resistance due to catalyst-free oxygen reduction. The spiral wound configuration combined with RTD tool offers a holistic approach for MFC development and optimization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lin, Hongjian; Wu, Xiao; Nelson, Chad; Miller, Curtis; Zhu, Jun
2016-01-01
Air-cathode microbial fuel cells (MFCs) are widely tested to recover electrical energy from waste streams containing organic matter. When high-strength wastewater, such as liquid animal manure, is used as a medium, inhibition on anode and cathode catalysts potentially impairs the effectiveness of MFC performance in power generation and pollutant removal. This study evaluated possible inhibitive effects of liquid swine manure components on MFC power generation, improved liquid manure-fed MFCs performance by pretreatment (dilution and selective adsorption), and modeled the kinetics of organic matter and nutrients removal kinetics. Parameters monitored included pH, conductivity, chemical oxygen demand (COD), volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), nitrite, nitrate, and phosphate concentrations. The removals of VFA and TAN were efficient, indicated by the short half-life times of 4.99 and 7.84 d, respectively. The mechanism for phosphate decrease was principally the salt precipitation on cathode, but the removal was incomplete after 42-d operation. MFC with an external resistor of 2.2 kΩ and fed with swine wastewater generated relatively small power (28.2 μW), energy efficiency (0.37%) and Coulombic efficiency (1.5%). Dilution of swine wastewater dramatically improved the power generation as the inhibitory effect was decreased. Zeolite and granular activated carbon were effective in the selective adsorption of ammonia or organic matter in swine wastewater, and so substantially improved the power generation, energy efficiency, and Coulombic efficiency. A smaller external resistor in the circuit was also observed to promote the organic matter degradation and thus to shorten the treatment time. Overall, air-cathode MFCs are promising for generating electrical power from livestock wastewater and meanwhile reducing the level of organic matter and nutrients.
NASA Astrophysics Data System (ADS)
Kim, Byoungsu; Hillman, Febrian; Ariyoshi, Miho; Fujikawa, Shigenori; Kenis, Paul J. A.
2016-04-01
With the development of better catalysts, mass transport limitations are becoming a challenge to high throughput electrochemical reduction of CO2 to CO. In contrast to optimization of electrodes for fuel cells, optimization of gas diffusion electrodes (GDE) - consisting of a carbon fiber substrate (CFS), a micro porous layer (MPL), and a catalyst layer (CL) - for CO2 reduction has not received a lot of attention. Here, we studied the effect of the MPL and CFS composition on cathode performance in electroreduction of CO2 to CO. In a flow reactor, optimized GDEs exhibited a higher partial current density for CO production than Sigracet 35BC, a commercially available GDE. By performing electrochemical impedance spectroscopy in a CO2 flow reactor we determined that a loading of 20 wt% PTFE in the MPL resulted in the best performance. We also investigated the influence of the thickness and wet proof level of CFS with two different feeds, 100% CO2 and the mixture of 50% CO2 and N2, determining that thinner and lower wet proofing of the CFS yields better cathode performance than when using a thicker and higher wet proof level of CFS.
Teng, Xue; Wang, Jianying; Ji, Lvlv; Lv, Yaokang; Chen, Zuofeng
2018-05-17
The design of cost-efficient earth-abundant catalysts with superior performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely important for future renewable energy production. Herein, we report a facile strategy for constructing Ni nanotube arrays (NTAs) on a Ni foam (NF) substrate through cathodic deposition of NiCu alloy followed by anodic stripping of metallic Cu. Based on Ni NTAs, the as-prepared NiSe2 NTA electrode by NiSe2 electrodeposition and the NiFeOx NTA electrode by dipping in Fe3+ solution exhibit excellent HER and OER performance in alkaline conditions. In these systems, Ni NTAs act as a binder-free multifunctional inner layer to support the electrocatalysts, offer a large specific surface area and serve as a fast electron transport pathway. Moreover, an alkaline electrolyzer has been constructed using NiFeOx NTAs as the anode and NiSe2 NTAs as the cathode, which only demands a cell voltage of 1.78 V to deliver a water-splitting current density of 500 mA cm-2, and demonstrates remarkable stability during long-term electrolysis. This work provides an attractive method for the design and fabrication of nanotube array-based catalyst electrodes for highly efficient water-splitting.
Kang, Jin Soo; Kim, Jin; Lee, Myeong Jae; Son, Yoon Jun; Jeong, Juwon; Chung, Dong Young; Lim, Ahyoun; Choe, Heeman; Park, Hyun S; Sung, Yung-Eun
2017-05-04
Photoelectrochemical (PEC) cells are promising tools for renewable and sustainable solar energy conversion. Currently, their inadequate performance and high cost of the noble metals used in the electrocatalytic counter electrode have postponed the practical use of PEC cells. In this study, we report the electrochemical synthesis of nanoporous tungsten carbide and its application as a reduction catalyst in PEC cells, namely, dye-sensitized solar cells (DSCs) and PEC water splitting cells, for the first time. The method employed in this study involves the anodization of tungsten foil followed by post heat treatment in a CO atmosphere to produce highly crystalline tungsten carbide film with an interconnected nanostructure. This exhibited high catalytic activity for the reduction of cobalt bipyridine species, which represent state-of-the-art redox couples for DSCs. The performance of tungsten carbide even surpassed that of Pt, and a substantial increase (∼25%) in energy conversion efficiency was achieved when Pt was substituted by tungsten carbide film as the counter electrode. In addition, tungsten carbide displayed decent activity as a catalyst for the hydrogen evolution reaction, suggesting the high feasibility for its utilization as a cathode material for PEC water splitting cells, which was also verified in a two-electrode water photoelectrolyzer.
Ding, Wei; Li, Li; Xiong, Kun; Wang, Yao; Li, Wei; Nie, Yao; Chen, Siguo; Qi, Xueqiang; Wei, Zidong
2015-04-29
Herein, we report a "shape fixing via salt recrystallization" method to efficiently synthesize nitrogen-doped carbon material with a large number of active sites exposed to the three-phase zones, for use as an ORR catalyst. Self-assembled polyaniline with a 3D network structure was fixed and fully sealed inside NaCl via recrystallization of NaCl solution. During pyrolysis, the NaCl crystal functions as a fully sealed nanoreactor, which facilitates nitrogen incorporation and graphitization. The gasification in such a closed nanoreactor creates a large number of pores in the resultant samples. The 3D network structure, which is conducive to mass transport and high utilization of active sites, was found to have been accurately transferred to the final N-doped carbon materials, after dissolution of the NaCl. Use of the invented cathode catalyst in a proton exchange membrane fuel cell produces a peak power of 600 mW cm(-2), making this among the best nonprecious metal catalysts for the ORR reported so far. Furthermore, N-doped carbon materials with a nanotube or nanoshell morphology can be realized by the invented method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehrabadi, Bahareh Alsadat Tavakoli; Dinh, Huyen N.; Bender, Guido
The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) contaminants was identified via a combination of experimental data and a mathematical model. The experiments were designed to study the influence of organic contaminants (e.g. those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a mathematical model was developed that allowed us to separate these competing resistances from the data collected on an operating fuel cell. For this reason, based on the functional groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl ether (DGMEE), diethylene glycol monoethyl ethermore » acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of the fuel cell. The cell voltage and high frequency impedance resistance was measured as a function of time. The contaminant feed was then discontinued and voltage recovery was measured. It was determined that compounds with ion exchange properties like 2,6-DAT can cause voltage loss with non-reversible recovery, so this compound was studied in more detail. Finally, the degree of voltage loss increased with an increase in concentration, and/or infusion time, and increased with a decrease in catalyst loadings.« less
Robust Platinum-Based Electrocatalysts for Fuel Cell Applications
NASA Astrophysics Data System (ADS)
Coleman, Eric James
Polymer electrolyte fuel cells (PEMFCs) are energy conversion devices that exploit the energetics of the reaction between hydrogen fuel and O 2 to generate electricity with water as the only byproduct. PEMFCs have attracted substantial attention due to their high conversion efficiency, high energy density, and low carbon footprint. However, PEMFC performance is hindered by the high activation barrier and slow reaction rates at the cathode where O2 undergoes an overall 4-electron reduction to water. The most efficient oxygen reduction reaction (ORR) catalyst materials to date are Pt group metals due to their high catalytic activity and stability in a wide range of operating conditions. Before fuel cells can become economically viable, efforts must be taken to decrease Pt content while maintaining a high level of ORR activity. This work describes the design and synthesis of a Pt-Cu electrocatalyst with ORR activity exceeding that of polycrystalline Pt. Production of this novel catalyst is quite simple and begins with synthesis of a porous Cu substrate, formed by etching Al from a Cu-Al alloy. The porous Cu substrate is then coated with a Pt layer via a spontaneous electrochemical process known as galvanic replacement. The Pt layer enhances the ORR activity (as measured by a rotating ring-disk electrode (RRDE)) and acts as a barrier towards corrosion of the Cu understructure. Growth of the Pt layer can be manipulated by time, temperature, concentration of Pt precursor, and convection rate during galvanic replacement. Data from analytical and electrochemical techniques confirm multiple Pt loadings have been achieved via the galvanic replacement process. The boost in ORR activity for the PtCu catalyst was determined to be a result of its lower affinity towards (site-blocking) OH adsorption. A unique catalyst degradation study explains the mechanism of initial catalyst ORR deactivation for both monometallic and bimetallic Pt-based catalysts. Finally, a rigorous and pioneering examination of how Pt surface passivation affects ORR dynamics is presented.
NASA Technical Reports Server (NTRS)
1983-01-01
Satisfactory performance is reported for the first three 12-cell sub-stacks of the 5 kW stack rebuild. Early general conclusions are presented from an economic study. Results are reported on a successful 700-hour test of a 3-cell stack in the full-sized configuration (0.33m x 0.56m). Construction of a 5 kW equivalent methanol/steam reformer based on a commercial shell-and-tube heat exchanger was completed. Several test runs are summarized. Preliminary conclusions are presented on the technical and economic aspects of fuel cell/HVAC interaction. Physical data are presented on several dense graphite materials which are candidates for gas-distribution plates. Performance of a new cathode catalyst is reported.
NASA Astrophysics Data System (ADS)
Gyenge, E. L.
The Quraishi-Fahidy method [Can. J. Chem. Eng. 59 (1981) 563] was employed to derive characteristic dimensionless numbers for the membrane-electrolyte, cathode catalyst layer and gas diffuser, respectively, based on the model presented by Bernardi and Verbrugge for polymer electrolyte fuel cells [AIChE J. 37 (1991) 1151]. Monomial correlations among dimensionless numbers were developed and tested against experimental and mathematical modeling results. Dimensionless numbers comparing the bulk and surface-convective ionic conductivities, the electric and viscous forces and the current density and the fixed surface charges, were employed to describe the membrane ohmic drop and its non-linear dependence on current density due to membrane dehydration. The analysis of the catalyst layer yielded electrode kinetic equivalents of the second Damköhler number and Thiele modulus, influencing the penetration depth of the oxygen reduction front based on the pseudohomogeneous film model. The correlating equations for the catalyst layer could describe in a general analytical form, all the possible electrode polarization scenarios such as electrode kinetic control coupled or not with ionic and/or oxygen mass transport limitation. For the gas diffusion-backing layer correlations are presented in terms of the Nusselt number for mass transfer in electrochemical systems. The dimensionless number-based correlating equations for the membrane electrode assembly (MEA) could provide a practical approach to quantify single-cell polarization results obtained under a variety of experimental conditions and to implement them in models of the fuel cell stack.
Chevallier, Laure; Bauer, Alexander; Cavaliere, Sara; Hui, Rob; Rozière, Jacques; Jones, Deborah J
2012-03-01
Crystalline microspheres of Nb-doped TiO(2) with a high specific surface area were synthesized using a templating method exploiting ionic interactions between nascent inorganic components and an ionomer template. The microspheres exhibit a porosity gradient, with a meso-macroporous kernel, and a mesoporous shell. The material has been investigated as cathode electrocatalyst support for polymer electrolyte membrane (PEM) fuel cells. A uniform dispersion of Pt particles on the Nb-doped TiO(2) support was obtained using a microwave method, and the electrochemical properties assessed by cyclic voltammetry. Nb-TiO(2) supported Pt demonstrated very high stability, as after 1000 voltammetric cycles, 85% of the electroactive Pt area remained compared to 47% in the case of commercial Pt on carbon. For the oxygen reduction reaction (ORR), which takes place at the cathode, the highest stability was again obtained with the Nb-doped titania-based material even though the mass activity calculated at 0.9 V vs RHE was slightly lower. The microspherical structured and mesoporous Nb-doped TiO(2) is an alternative support to carbon for PEM fuel cells. © 2012 American Chemical Society
Alternative Sources of Energy - An Introduction to Fuel Cells
Merewether, E.A.
2003-01-01
Fuel cells are important future sources of electrical power and could contribute to a reduction in the amount of petroleum imported by the United States. They are electrochemical devices similar to a battery and consist of a container, an anode, a cathode, catalysts, an intervening electrolyte, and an attached electrical circuit. In most fuel cell systems, hydrogen is supplied to the anode and oxygen to the cathode which results in the production of electricity, water, and heat. Fuel cells are comparatively efficient and reliable, have no moving parts, operate without combustion, and are modular and scale-able. Their size and shape are flexible and adaptable. In operation, they are nearly silent, are relatively safe, and generally do not pollute the environment. During recent years, scientists and engineers have developed and refined technologies relevant to a variety of fuel cells. Types of fuel cells are commonly identified by the composition of their electrolyte, which could be either phosphoric acid, an alkaline solution, a molten carbonate, a solid metal oxide, or a solid polymer membrane. The electrolyte in stationary power plants could be phosphoric acid, molten carbonates, or solid metal oxides. For vehicles and smaller devices, the electrolyte could be an alkaline solution or a solid polymer membrane. For most fuel cell systems, the fuel is hydrogen, which can be extracted by several procedures from many hydrogen-bearing substances, including alcohols, natural gas (mainly methane), gasoline, and water. There are important and perhaps unresolved technical problems associated with using fuel cells to power vehicles. The catalysts required in several systems are expensive metals of the platinum group. Moreover, fuel cells can freeze and not work in cold weather and can be damaged by impacts. Storage tanks for the fuels, particularly hydrogen, must be safe, inexpensive, of a reasonable size, and contain a supply sufficient for a trip of several hundred miles. Additional major problems will be the extensive and costly changes in the national infrastructure to obtain, store, and distribute large amounts of the fuels, and in related manufacturing
Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst
NASA Astrophysics Data System (ADS)
Sumboja, Afriyanti; Ge, Xiaoming; Zheng, Guangyuan; Goh, F. W. Thomas; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin
2016-11-01
Neutral chloride-based electrolyte and directly grown manganese oxide on carbon paper are used as the electrolyte and air cathode respectively for rechargeable Zn-air batteries. Oxygen reduction and oxygen evolution reactions on manganese oxide show dependence of activities on the pH of the electrolyte. Zn-air batteries with chloride-based electrolyte and manganese oxide catalyst exhibit satisfactory voltage profile (discharge and charge voltage of 1 and 2 V at 1 mA cm-2) and excellent cycling stability (≈90 days of continuous cycle test), which is attributed to the reduced carbon corrosion on the air cathode and decreased carbonation in neutral electrolyte. This work describes a robust electrolyte system that improves the cycle life of rechargeable Zn-air batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takagi, Yasumasa, E-mail: ytakagi@ims.ac.jp; Uemura, Yohei; Yokoyama, Toshihiko
2014-09-29
We have constructed an ambient pressure X-ray photoelectron spectroscopy instrument that uses hard X-ray radiation at the high-performance undulator beamline BL36XU of SPring-8. The dependence of the Au 4f peak intensity from Au foil on the ambient N{sub 2} pressure was measured. At a photon energy of 7.94 keV, the Au 4f peak intensity maintained 40% at 3000 Pa compared with that at high vacuum. We designed a polymer electrolyte fuel cell that allows us to perform X-ray photoelectron spectroscopy measurements of an electrode under working conditions. The oxidized Pt peaks were observed in the Pt 3d{sub 5/2} level of Pt nanoparticlesmore » in the cathode, and the peaks clearly depended on the applied voltage between the anode and cathode. Our apparatus can be applied as a valuable in situ tool for the investigation of the electronic states and adsorbed species of polymer electrolyte fuel cell electrode catalysts under the reaction conditions.« less
Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells.
Huggins, Tyler M; Pietron, Jeremy J; Wang, Heming; Ren, Zhiyong Jason; Biffinger, Justin C
2015-11-01
Graphitic biochar (BC) was generated using high temperature gasification and alkaline post-treatment (BCw) of wood-based biomass. The BCw was evaluated as a manganese oxide electrocatalytic support (MnO/BCw) and microbial fuel cell (MFC) air cathode. Nano-structured MnO2 crystals were successfully immobilized on biomass-based graphitic sheets and characterized using physical, chemical, and electrochemical analyses. Cyclic voltammetry of MnO/BCw/Nafion inks showed electrochemical features typical of β-MnO2 with a current density of 0.9 mA cm(-2). BC showed satisfactory maximum power densities of 146.7 mW m(-2) (BCw) and 187.8 W m(-2) (MnO/BCw), compared with Vulcan Carbon (VC) (156.8 mW m(-2)) and manganese oxide VC composites (MnO/VC) (606.1 mW m(-2)). These materials were also tested as oxygen reduction reaction (ORR) catalysts for single chamber MFCs inoculated with anaerobic sludge. Our results demonstrate that BC can serve as an effective, low cost, and scalable material for MFC application. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Allioux, Francois-Marie; Holland, Brendan J.; Kong, Lingxue; Dumée, Ludovic F.
2017-07-01
Biodiesel is a growing alternative to petroleum fuels and is produced by the catalysed transesterification of fats in presence of an alcohol base. Transesterification processes using homogeneous catalysts are considered to be amongst the most efficient methods but rely on the feedstock quality and low water content in order to avoid undesirable saponification reactions. In this work, the electro-catalytic conversion of canola oil to biodiesel in a 1% aqueous methanolic and ethanolic reaction mixture was performed without the addition of external catalyst or co-solvent. An inexpensive stainless steel electrode and a hybrid stainless steel electrode coated with an ion-exchange resin catalyst were used as cathode materials while the anode was composed of a plain carbon paper. The cell voltages were varied from 10 to 40 V and the reaction temperature maintained at 20 or 40°C. The canola oil conversion rates were found to be superior at 40°C without saponification reactions for cell voltages below 30 V. The conversion rates were as high as 87% for the hybrid electrode and 81% for the plain stainless steel electrode. This work could inspire new process development for the conversion of high water content feedstock for the production of second-generation biodiesel.
Wang, Hao; Cao, Yingjie; Sun, Cheng; Zou, Guifu; Huang, Jianwen; Kuai, Xiaoxiao; Zhao, Jianqing; Gao, Lijun
2017-09-22
High-performance and affordable electrocatalysts from earth-abundant elements are desirably pursued for water splitting involving hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Here, a bifunctional electrocatalyst of highly crystalline Mo 2 C nanoparticles supported on carbon sheets (Mo 2 C/CS) was designed toward overall water splitting. Owing to the highly active catalytic nature of Mo 2 C nanoparticles, the high surface area of carbon sheets and efficient charge transfer in the strongly coupled composite, the designed catalysts show excellent bifunctional behavior with an onset potential of -60 mV for HER and an overpotential of 320 mV to achieve a current density of 10 mA cm -2 for OER in 1 m KOH while maintaining robust stability. Moreover, the electrolysis cell using the catalyst only requires a low cell voltage of 1.73 V to achieve a current density of 10 mA cm -2 and maintains the activity for more than 100 h when employing the Mo 2 C/CS catalyst as both anode and cathode electrodes. Such high performance makes Mo 2 C/CS a promising electrocatalyst for practical hydrogen production from water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kundu, Sumit; Fowler, Michael W.; Simon, Leonardo C.; Abouatallah, Rami; Beydokhti, Natasha
Fuel cell material durability is an area of extensive research today. Chemical degradation of the ionomer membrane is one important degradation mechanism leading to overall failure of fuel cells. This study examined the effects of relative humidity on the chemical degradation of the membrane during open circuit voltage testing. Five Gore™ PRIMEA ® series 5510 catalyst coated membranes were degraded at 100%, 75%, 50%, and 20% RH. Open circuit potential and cumulative fluoride release were monitored over time. Additionally scanning electron microscopy images were taken at end of the test. The results showed that with decreasing RH fluoride release rate increased as did performance degradation. This was attributed to an increase in gas crossover with a decrease in RH. Further, it is also shown that interruptions in testing may heavily influence cumulative fluoride release measurements where frequent stoppages in testing will cause fluoride release to be underestimated. SEM analysis shows that degradation occurred in the ionomer layer close to the cathode catalyst. A chemical degradation model of the ionomer membrane was used to model the results. The model was able to predict fluoride release trends, including the effects of interruptions, showing that changes in gas crossover with RH could explain the experimental results.
Singh, Santosh K; Dhavale, Vishal M; Kurungot, Sreekumar
2015-09-30
The most vital component of the fuel cells and metal-air batteries is the electrocatalyst, which can facilitate the oxygen reduction reaction (ORR) at a significantly reduced overpotential. The present work deals with the development of surface-tuned cobalt oxide (Co3O4) nanoparticles dispersed on nitrogen-doped graphene as a potential ORR electrocatalyst possessing some unique advantages. The thermally reduced nitrogen-doped graphene (NGr) was decorated with three different morphologies of Co3O4 nanoparticles, viz., cubic, blunt edged cubic, and spherical, by using a simple hydrothermal method. We found that the spherical Co3O4 nanoparticle supported NGr catalyst (Co3O4-SP/NGr-24h) has acquired a significant activity makeover to display the ORR activity closely matching with the state-of-the-art Pt supported carbon (PtC) catalyst in alkaline medium. Subsequently, the Co3O4-SP/NGr-24h catalyst has been utilized as the air electrode in a Zn-air battery, which was found to show comparable performance to the system derived from PtC. Co3O4-SP/NGr-24h catalyst has shown several hours of flat discharge profile at the discharge rates of 10, 20, and 50 mA/cm(2) with a specific capacity and energy density of ~590 mAh/g-Zn and ~840 Wh/kg-Zn, respectively, in the primary Zn-air battery system. In conjunction, Co3O4-SP/NGr-24h has outperformed as an air electrode in mechanical rechargeable Zn-air battery as well, which has shown consistent flat discharge profile with minimal voltage loss at a discharge rate of 50 mA/cm(2). The present results, thus demonstrate that the proper combination of the tuned morphology of Co3O4 with NGr will be a promising and inexpensive material for efficient and ecofriendly cathodes for Zn-air batteries.
NASA Astrophysics Data System (ADS)
Wei, Z. H.; Zhao, T. S.; Zhu, X. B.; Tan, P.
2016-02-01
Manganese dioxide (MnO2) has been recognized as an effective catalyst for the oxygen reduction and oxygen evolution reactions in non-aqueous lithium-oxygen batteries. However, a further improvement in battery performance with the MnO2 catalyst is limited by its low electronic conductivity and catalytic activity, which strongly depend on the morphology and composition. In this work, we develop a carbon- and binder-free MnO2-x nanosheets/stainless steel (SS) cathode via a simple and effective electrodeposition-solvothermal route. The created Mn(III) and oxygen vacancy in MnO2-x nanosheets allows an significant increase in the electronic conductivity and catalytic activity. It is experimentally shown that the use of the present nanostructure MnO2-x/SS cathode in a non-aqueous lithium-oxygen battery results in a rechargeable specific capacity of 7300 mAh g-1 at a current density of 200 mA g-1, which is 39% higher than that with the MnO2/SS cathode. In addition, the specific capacities at 400 mA g-1 and 800 mA g-1 reach 5249 mAh g-1 and 2813 mAh g-1, respectively, which are over 30% higher than that with the MnO2/SS cathode. Furthermore, the discharge/charge cycle test shows no degradation for 120 cycles. All the results show that the present nanostructure MnO2-x/SS cathode is a promising candidate for high-performance lithium-oxygen batteries.
Catalysts for ultrahigh current density oxygen cathodes for space fuel cell applications
NASA Technical Reports Server (NTRS)
Tryk, D.; Yeager, E.; Shingler, M.; Aldred, W.; Wang, C.
1990-01-01
The objective of this research was to identify promising electrocatalyst/support systems for the oxygen cathode in alkaline fuel cells operating at relatively high temperatures, O2 pressures and current densities. A number of materials were prepared, including Pb-Ru and Pb-Ir pyrochlores, RuO2 and Pt-doped RuO2, and lithiated NiO. Several of these were prepared using techniques that had not been previously used to prepare them. Particularly interesting is the use of the alkaline solution technique to prepare the Pt-doped Pb-Ru pyrochlore in high area form. Well-crystallized Pb(2)Ru(2)O(7-y) was used to fabricate high performance O2 cathodes with relatively good stability in room temperature KOH. This material was also found to be stable over a useful potential range at approximately 140 C in concentrated KOH. Other pyrochlores were found to be either unstable (amorphous samples) or the fabrication of the gas-fed electrodes could not be fully optimized during this project period. Future work may be directed at this problem. High area platinum supported on conductive metal oxide supports produced mixed results: small improvements in O2 reduction performance for Pb(2)Ru(2)O(7-y) but a large improvement for Li-doped NiO at room temperature. Nearly reversible behavior was observed for the O2/OH couple for Li-doped NiO at approximately 200 C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, R. K.; Wang, X.; Peng, J. -K.
Here, the durability of de-alloyed platinum-nickel catalysts supported on high-surface area carbon (d-PtNi/C) in optimized electrodes and membrane electrode assemblies (MEAs) under an accelerated stress test (AST) protocol is investigated with the objective of developing a quantitative understanding of the degradation mechanisms and their relationship to the electrode structure, pre-conditioning, and operating conditions. It is found that the cell degradation can be mitigated by controlling the voltage cycle, acid washing the MEA to remove Ni contaminants that enter the electrode and membrane during fabrication, and monitoring the operating conditions. For example, the electrochemical surface area (ECSA) loss is <25% aftermore » 30,000 triangle cycles with 0.925 V upper potential limit if the MEA is acid washed and extensive diagnostics are avoided. The parameters that exacerbate the cell degradation also accelerate the rate at which Ni leaches out from the catalyst. A mechanistic model is presented for the degradation in performance of d-PtNi/C electrodes. The model correlates a) the degradation in ORR mass and specific activities with ECSA and Ni losses, b) the decrease in limiting current density ( iL), which is inversely proportional to the O 2 mass transport resistance, with the degradation in catalyst roughness factor, and c) the increase in mass transfer overpotentials with the reduced current density, i/iL .« less
Christwardana, Marcelinus; Kim, Ki Jae; Kwon, Yongchai
2016-07-18
Mediatorless and membraneless enzymatic biofuel cells (EBCs) employing new catalytic structure are fabricated. Regarding anodic catalyst, structure consisting of glucose oxidase (GOx), poly(ethylenimine) (PEI) and carbon nanotube (CNT) is considered, while three cathodic catalysts consist of glutaraldehyde (GA), laccase (Lac), PEI and CNT that are stacked together in different ways. Catalytic activities of the catalysts for glucose oxidation and oxygen reduction reactions (GOR and ORR) are evaluated. As a result, it is confirmed that the catalysts work well for promotion of GOR and ORR. In EBC tests, performances of EBCs including 150 μm-thick membrane are measured as references, while those of membraneless EBCs are measured depending on parameters like glucose flow rate, glucose concentration, distance between two electrodes and electrolyte pH. With the measurements, how the parameters affect EBC performance and their optimal conditions are determined. Based on that, best maximum power density (MPD) of membraneless EBC is 102 ± 5.1 μW · cm(-2) with values of 0.5 cc · min(-1) (glucose flow rate), 40 mM (glucose concentration), 1 mm (distance between electrodes) and pH 3. When membrane and membraneless EBCs are compared, MPD of the membraneless EBC that is run at the similar operating condition to EBC including membrane is speculated as about 134 μW · cm(-2).
NASA Astrophysics Data System (ADS)
Christwardana, Marcelinus; Kim, Ki Jae; Kwon, Yongchai
2016-07-01
Mediatorless and membraneless enzymatic biofuel cells (EBCs) employing new catalytic structure are fabricated. Regarding anodic catalyst, structure consisting of glucose oxidase (GOx), poly(ethylenimine) (PEI) and carbon nanotube (CNT) is considered, while three cathodic catalysts consist of glutaraldehyde (GA), laccase (Lac), PEI and CNT that are stacked together in different ways. Catalytic activities of the catalysts for glucose oxidation and oxygen reduction reactions (GOR and ORR) are evaluated. As a result, it is confirmed that the catalysts work well for promotion of GOR and ORR. In EBC tests, performances of EBCs including 150 μm-thick membrane are measured as references, while those of membraneless EBCs are measured depending on parameters like glucose flow rate, glucose concentration, distance between two electrodes and electrolyte pH. With the measurements, how the parameters affect EBC performance and their optimal conditions are determined. Based on that, best maximum power density (MPD) of membraneless EBC is 102 ± 5.1 μW · cm-2 with values of 0.5 cc · min-1 (glucose flow rate), 40 mM (glucose concentration), 1 mm (distance between electrodes) and pH 3. When membrane and membraneless EBCs are compared, MPD of the membraneless EBC that is run at the similar operating condition to EBC including membrane is speculated as about 134 μW · cm-2.
Ahluwalia, R. K.; Wang, X.; Peng, J. -K.; ...
2018-04-25
Here, the durability of de-alloyed platinum-nickel catalysts supported on high-surface area carbon (d-PtNi/C) in optimized electrodes and membrane electrode assemblies (MEAs) under an accelerated stress test (AST) protocol is investigated with the objective of developing a quantitative understanding of the degradation mechanisms and their relationship to the electrode structure, pre-conditioning, and operating conditions. It is found that the cell degradation can be mitigated by controlling the voltage cycle, acid washing the MEA to remove Ni contaminants that enter the electrode and membrane during fabrication, and monitoring the operating conditions. For example, the electrochemical surface area (ECSA) loss is <25% aftermore » 30,000 triangle cycles with 0.925 V upper potential limit if the MEA is acid washed and extensive diagnostics are avoided. The parameters that exacerbate the cell degradation also accelerate the rate at which Ni leaches out from the catalyst. A mechanistic model is presented for the degradation in performance of d-PtNi/C electrodes. The model correlates a) the degradation in ORR mass and specific activities with ECSA and Ni losses, b) the decrease in limiting current density ( iL), which is inversely proportional to the O 2 mass transport resistance, with the degradation in catalyst roughness factor, and c) the increase in mass transfer overpotentials with the reduced current density, i/iL .« less