Science.gov

Sample records for cell cathode catalyst

  1. Cathode catalyst for primary phosphoric fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, F.

    1980-01-01

    Alkylation of Vulcan XC-72 provided the most stable bond type for linking CoTAA to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA has catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available PTFE was shown to be stable for four months in 200 C 85% phosphoric acid based on lack of change in surface wetting properties, IR and physical characteristics. When stressed electrochemically in 150 C 85% phosphoric acid, PTFE also showed no changes after one month.

  2. Methanol-tolerant cathode catalyst composite for direct methanol fuel cells

    DOEpatents

    Zhu, Yimin; Zelenay, Piotr

    2006-09-05

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  3. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    DOEpatents

    Zhu, Yimin; Zelenay, Piotr

    2006-03-21

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  4. Development of gold alloy catalyst cathode for alkaline electrolyte fuel cells

    NASA Technical Reports Server (NTRS)

    Freed, M. S.; Lawrance, R. J.

    1975-01-01

    A program for the development of improved catalyst and Teflon-bonded electrode structures using this improved catalyst is described, for use in fuel cell cathodes. It was found that Au-Pt was superior to the traditional platinum black as a catalyst. The impetus to the program was provided by the discovery that a life-limiting mechanism on the old catalyst was the gradual dissolution of platinum from the cathode and subsequent redeposition in the electrolyte-containing matrix.

  5. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    NASA Astrophysics Data System (ADS)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  6. Electricity generation by microbial fuel cell using microorganisms as catalyst in cathode.

    PubMed

    Jang, Jae Kyung; Kan, Jinjun; Bretschger, Orianna; Gorby, Yuri A; Hsu, Lewis; Kim, Byung Hong; Nealson, Kenneth H

    2013-12-01

    The cathode reaction is one of the most seriously limiting factors in a microbial fuel cell (MFC). The critical dissolved oxygen (DO) concentration of a platinum-loaded graphite electrode was reported as 2.2 mg/l, about 10-fold higher than an aerobic bacterium. A series of MFCs were run with the cathode compartment inoculated with activated sludge (biotic) or not (abiotic) on platinum-loaded or bare graphite electrodes. At the beginning of the operation, the current values from MFCs with a biocathode and abiotic cathode were 2.3 ± 0.1 and 2.6 ± 0.2 mA, respectively, at the air-saturated water supply in the cathode. The current from MFCs with an abiotic cathode did not change, but that of MFCs with a biotic cathode increased to 3.0 mA after 8 weeks. The coulomb efficiency was 59.6% in the MFCs with a biotic cathode, much higher than the value of 15.6% of the abiotic cathode. When the DO supply was reduced, the current from MFCs with an abiotic cathode decreased more sharply than in those with a biotic cathode. When the respiratory inhibitor azide was added to the catholyte, the current decreased in MFCs with a biotic cathode but did not change in MFCs with an abiotic cathode. The power density was higher in MFCs with a biotic cathode (430 W/m(3) cathode compartment) than the abiotic cathode MFC (257 W/m(3) cathode compartment). Electron microscopic observation revealed nanowire structures in biofilms that developed on both the anode and on the biocathode. These results show that an electron consuming bacterial consortium can be used as a cathode catalyst to improve the cathode reaction.

  7. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Chen, Guang; Hickner, Michael A.; Logan, Bruce E.

    2012-11-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst binder and diffusion layer, and compared to cathodes of the same structure having a Nafion binder. With PDMS binder, copper mesh cathodes produced a maximum power of 1710 ± 1 mW m-2, while SS mesh had a slightly lower power of 1680 ± 12 mW m-2, with both values comparable to those obtained with Nafion binder. Cathodes with PDMS binder had stable power production of 1510 ± 22 mW m-2 (copper) and 1480 ± 56 mW m-2 (SS) over 15 days at cycle 15, compared to a 40% decrease in power with the Nafion binder. Cathodes with the PDMS binder had lower total cathode impedance than those with Nafion. This is due to a large decrease in diffusion resistance, because hydrophobic PDMS effectively prevented catalyst sites from filling up with water, improving oxygen mass transfer. The cost of PDMS is only 0.23% of that of Nafion. These results showed that PDMS is a very effective and low-cost alternative to Nafion binder that will be useful for large scale construction of these cathodes for MFC applications.

  8. Enhanced stability of multilayer graphene-supported catalysts for polymer electrolyte membrane fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Marinkas, A.; Hempelmann, R.; Heinzel, A.; Peinecke, V.; Radev, I.; Natter, H.

    2015-11-01

    One of the biggest challenges in the field of polymer electrolyte membrane fuel cells (PEMFC) is to enhance the lifetime and the long-term stability of PEMFC electrodes, especially of cathodes, furthermore, to reduce their platinum loading, which could lead to a cost reduction for efficient PEMFCs. These demands could be achieved with a new catalyst support architecture consisting of a composite of carbon structures with significant different morphologies. A highly porous cathode catalyst support layer is prepared by addition of various carbon types (carbon black particles, multi-walled carbon nanotubes (MWCNT)) to multilayer graphene (MLG). The reported optimized cathodes shows extremely high durability and similar performance to commercial standard cathodes but with 89% lower Pt loading. The accelerated aging protocol (AAP) on the membrane electrode assemblies (MEA) shows that the presence of MLG increases drastically the durability and the Pt-extended electrochemical surface area (ECSA). In fact, after the AAP slightly enhanced performance can be observed for the MLG-containing cathodes instead of a performance loss, which is typical for the commercial carbon-based cathodes. Furthermore, the presence of MLG drastically decreases the ECSA loss rate. The MLG-containing cathodes show up to 6.8 times higher mass-normalized Pt-extended ECSA compared to the commercial standard systems.

  9. Cathode catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.

  10. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.

    PubMed

    Wang, L; Chen, Y; Ye, Y; Lu, B; Zhu, S; Shen, S

    2011-01-01

    As an ideal fuel due to the advantages of no pollution, high combustion heat and abundant sources, hydrogen gas can be produced from organic matter through the electrohydrogenesis process in microbial electrolysis cells. But in many MECs, platinum is often used as catalyst, which limits the practical applications of MECs. To reduce the cost of the MECs, Ni-based alloy cathodes were developed by electrodepositing. In this paper hydrogen production using Ni-W-P cathode was studied for the first time in a single-chamber membrane-free MEC. At an applied voltage of 0.9 V, MECs with Ni-W-P cathodes obtained a hydrogen production rate of 1.09 m3/m3/day with an cathodic hydrogen recovery of 74%, a Coulombic efficiency of 56% and an electrical energy efficiency relative to electrical input of 139%, which was the best result of reports in this study. The Ni-W-P cathode demonstrated a better electrocatalytic activity than the Ni-Ce-P cathode and achieved a comparable performance to the Pt cathode in terms of hydrogen production rate, Coulombic efficiency, cathodic hydrogen recovery and electrical energy efficiency at 0.9 V.

  11. Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Bing; Yan, Zeyu; Higgins, Drew C.; Yang, Daijun; Chen, Zhongwei; Ma, Jianxin

    2014-09-01

    Carbon-supported platinum nanowires (PtNW/C) are successfully synthesized by a simple and inexpensive template-free methodology and demonstrated as novel, suitable cathode electrode materials for proton exchange membrane fuel cell (PEMFC) applications. The synthesis conditions, such as the amount of reducing agent and reaction time, were investigated to investigate the effect on the nanostructures and activities of the PtNW/C catalysts. High-resolution transmission electron microscopy (TEM) results show that the formic acid facilitated reduction is capable of producing uniformly distributed 1-dimensional PtNW with an average cross-sectional diameter of 4.0 ± 0.2 nm and length of 20-40 nm. Investigation of the electrocatalytic activity by half-cell electrochemical testing reveals that PtNW/C catalyst demonstrates significant oxygen reduction reaction (ORR) activity, superior to that of commercially available Pt/C. Using a loading of 0.4 mgPt cm-2 PtNW/C as the cathode catalyst, a maximum power density of 748.8 mW cm-2 in a 50 cm2 single cell of commercial Pt/C. In addition, accelerated degradation testing (ADT) showed that the PtNW/C catalyst exhibits better durability than commercial Pt/C, rendering PtNW/C as a promising replacement to conventional Pt/C as cathode electrocatalysts for PEMFCs applications.

  12. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    DOEpatents

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  13. Manganese dioxide as a new cathode catalyst in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Hu, Boxun; Suib, Steven; Lei, Yu; Li, Baikun

    This study focused on manganese oxides with a cryptomelane-type octahedral molecular sieve (OMS-2) structure to replace platinum as a cathode catalyst in microbial fuel cells (MFCs). Undoped (ud-OSM-2) and three catalysts doped with cobalt (Co-OMS-2), copper (Cu-OMS-2), and cerium (Ce-OMS-2) to enhance their catalytic performances were investigated. The novel OMS-2 cathodes were examined in granular activated carbon MFC (GACMFC) with sodium acetate as the anode reagent and oxygen in air as the cathode reagent. The results showed that after 400 h of operation, the Co-OMS-2 and Cu-OMS-2 exhibited good catalytic performance in an oxygen reduction reaction (ORR). The voltage of the Co-OMS-2 GACMFC was 217 mV, and the power density was 180 mW m -2. The voltage of the Cu-OMS-2 GACMFC was 214 mV and the power density was 165 mW m -2. The internal resistance (R in) of the OMS-2 GACMFCs (18 ± 1 Ω) was similar to that of the platinum GACMFCs (17 Ω). Furthermore, the degradation rates of organic substrates in the OMS-2 GACMFCs were twice those in the platinum GACMFCs, which enhance their wastewater treatment efficiencies. This study indicated that using OMS-2 manganese oxides to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs.

  14. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells.

    PubMed

    Proietti, Eric; Jaouen, Frédéric; Lefèvre, Michel; Larouche, Nicholas; Tian, Juan; Herranz, Juan; Dodelet, Jean-Pol

    2011-08-02

    H(2)-air polymer-electrolyte-membrane fuel cells are electrochemical power generators with potential vehicle propulsion applications. To help reduce their cost and encourage widespread use, research has focused on replacing the expensive Pt-based electrocatalysts in polymer-electrolyte-membrane fuel cells with a lower-cost alternative. Fe-based cathode catalysts are promising contenders, but their power density has been low compared with Pt-based cathodes, largely due to poor mass-transport properties. Here we report an iron-acetate/phenanthroline/zeolitic-imidazolate-framework-derived electrocatalyst with increased volumetric activity and enhanced mass-transport properties. The zeolitic-imidazolate-framework serves as a microporous host for phenanthroline and ferrous acetate to form a catalyst precursor that is subsequently heat treated. A cathode made with the best electrocatalyst from this work, tested in H(2)-O(2,) has a power density of 0.75 W cm(-2) at 0.6 V, a meaningful voltage for polymer-electrolyte-membrane fuel cells operation, comparable with that of a commercial Pt-based cathode tested under identical conditions.

  15. Nonactivated and activated biochar derived from bananas as alternative cathode catalyst in microbial fuel cells.

    PubMed

    Yuan, Haoran; Deng, Lifang; Qi, Yujie; Kobayashi, Noriyuki; Tang, Jiahuan

    2014-01-01

    Nonactivated and activated biochars have been successfully prepared by bananas at different thermotreatment temperatures. The activated biochar generated at 900°C (Biochar-act900) exhibited improved oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performances in alkaline media, in terms of the onset potential and generated current density. Rotating disk electron result shows that the average of 2.65 electrons per oxygen molecule was transferred during ORR of Biochar-act900. The highest power density of 528.2 mW/m(2) and the maximum stable voltage of 0.47 V were obtained by employing Biochar-act900 as cathode catalyst, which is comparable to the Pt/C cathode. Owning to these advantages, it is expected that the banana-derived biochar cathode can find application in microbial fuel cell systems.

  16. Controlling the morphology and uniformity of a catalyst-infiltrated cathode for solid oxide fuel cells by tuning wetting property

    NASA Astrophysics Data System (ADS)

    Lou, Xiaoyuan; Liu, Ze; Wang, Shizhong; Xiu, Yonghao; Wong, C. P.; Liu, Meilin

    Infiltration has been widely used in surface modification of porous electrodes in solid oxide fuel cells (SOFCs). The stability and performance of a porous electrode infiltrated with a catalyst depend sensitively on the composition, morphology, and nanostructure of the catalyst. In this contribution, we report our findings on investigation into the effect of wetting property on the formation of catalyst coatings through an infiltration process. It is observed that aqueous solutions containing catalyst precursors wet SOFC electrolyte materials (e.g., yttria-stabilized zirconia or YSZ) better than cathode materials (e.g., La 0.6Sr 0.4Co 0.2Fe 0.8O 3- δ or LSCF). Controlling the wetting of catalyst precursor solutions on porous electrode backbones can dramatically improve the uniformity of the infiltrated catalyst layer on porous cathode backbone, thus enhancing the electrochemical performance of infiltrated cathodes, especially at low operating temperatures.

  17. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells.

    PubMed

    Zhang, Lixia; Liu, Chengshuai; Zhuang, Li; Li, Weishan; Zhou, Shungui; Zhang, Jintao

    2009-05-15

    In this paper, three manganese dioxide materials, alpha-MnO(2), beta-MnO(2), gamma-MnO(2) were tested as alternative cathodic catalysts to platinum (Pt) in air-cathode microbial fuel cells (MFCs). Prepared via hydrothermal method, the manganese dioxides were characterized by X-ray powder diffraction patterns (XRD), the Brunauer-Emmett-Teller (BET) method and their average oxidation states (AOS) were determined by the potential voltammetric titration method. The electro-catalytic activity of MnO(2) in neutral pH solution was determined by linear sweep voltammetry (LSV) and the results showed that all manganese dioxides can catalyze oxygen reduction reaction (ORR) in neutral medium with different catalytic activities. beta-MnO(2) appeared to hold the highest catalytic activity due to its highest BET surface area and AOS. Beta-MnO(2) was further used as cathode catalyst in both cube and tube air-cathode MFCs, in which using Klebsiella pneumoniae (K. pneumoniae) biofilm as biocatalyst and utilizing glucose as a substrate in the anode chamber. It was found that tube MFC produced higher output power, with the maximum volumetric power density of 3773+/-347 mW/m(3), than cube MFC. This study suggests that using beta-MnO(2) instead of Pt could potentially improve the feasibility of scaling up MFC designs for real applications by lowering production cost.

  18. Effects of operating conditions on durability of polymer electrolyte membrane fuel cell Pt cathode catalyst layer

    NASA Astrophysics Data System (ADS)

    Ohyagi, Shinsuke; Matsuda, Toshihiko; Iseki, Yohei; Sasaki, Tatsuyoshi; Kaito, Chihiro

    In this study, we investigated the effects of humidity and oxygen reduction on the degradation of the catalyst of a polymer electrolyte membrane fuel cell (PEMFC) in a voltage cycling test. To elucidate the effect of humidity on the voltage cycling corrosion of a carbon-supported Pt catalyst with 3 nm Pt particles, voltage cycling tests based on 10,000 cycles were conducted using 100% relative humidity (RH) hydrogen as anode gas and nitrogen of varying humidities as cathode gas. The degradation rate of an electrochemical surface area (ECSA) was almost 50% under 189% RH nitrogen atmosphere and the Pt average particle diameter after 10,000 cycles under these conditions was about 2.3 times that of a particle of fresh catalyst because of the agglomeration of Pt particles. The oxygen reduction reaction (ORR) that facilitated Pt catalyst agglomeration when oxygen was employed as the cathode gas also demonstrated that Pt agglomeration was prominent in higher concentrations of oxygen. The ECSA degradation figure in 100% RH oxygen was similar to that in 189% RH nitrogen. It was concluded that liquid water, which was dropped under a supersaturated condition or generated by ORR, accelerated Pt agglomeration. In this paper, we suggest that the Pt agglomeration degradation occurs in a flooding area in a cell plane.

  19. High Temperature Membrane & Advanced Cathode Catalyst Development

    SciTech Connect

    Protsailo, Lesia

    2006-04-20

    Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

  20. Membrane fuel cell cathode catalysts based on titanium oxide supported platinum nanoparticles.

    PubMed

    Gebauer, Christian; Jusys, Zenonas; Wassner, Maximilian; Hüsing, Nicola; Behm, R Jürgen

    2014-07-21

    The potential of platinum catalysts supported on pure, nitrogen-, or carbon-doped titania for application in the oxygen reduction reaction (ORR), as a cathode catalyst in polymer electrolyte membrane fuel cells, is investigated. The oxide supports are synthesized by using a sol-gel route. Modification with nitrogen and carbon doping is achieved by thermal decomposition of urea and the structure-directing agent P123. Platinum nanoparticles are prepared by reduction of a Pt(IV) salt in ethylene glycol and subsequently immobilized on different support materials. Structural and electronic properties of the support materials and the resulting catalysts are characterized by various methods, including X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. These results and electrochemical characterization of the support materials and platinum nanoparticle catalysts indicate distinct support effects in the catalysts. The electrocatalytic performance of these catalysts in the ORR, as determined in rotating ring disc electrode measurements, is promising. Also here, distinct support effects can be identified. Correlations with the structural/electronic and the electrochemical properties are discussed, as well as the role of metal-support interactions.

  1. Advanced catalyst supports for PEM fuel cell cathodes

    SciTech Connect

    Du, Lei; Shao, Yuyan; Sun, Junming; Yin, Geping; Liu, Jun; Wang, Yong

    2016-11-01

    Electrocatalyst support materials are key components for polymer exchange membrane (PEM) fuel cells, which play a critical role in determining electrocatalyst durability and activity, mass transfer and water management. The commonly-used supports, e.g. porous carbon black, cannot meet all the requirements under the harsh operation condition of PEM fuel cells. Great efforts have been made in the last few years in developing alternative support materials. In this paper, we selectively review recent progress on three types of important support materials: carbon, non-carbon and hybrid carbon-oxides nanocomposites. A perspective on future R&D of electrocatalyst support materials is also provided.

  2. Final Report - Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    SciTech Connect

    Debe, Mark

    2012-09-28

    The principal objectives of the program were development of a durable, low cost, high performance cathode electrode (catalyst and support), that is fully integrated into a fuel cell membrane electrode assembly with gas diffusion media, fabricated by high volume capable processes, and is able to meet or exceed the 2015 DOE targets. Work completed in this contract was an extension of the developments under three preceding cooperative agreements/grants Nos. DE-FC-02-97EE50473, DE-FC-99EE50582 and DE-FC36- 02AL67621 which investigated catalyzed membrane electrode assemblies for PEM fuel cells based on a fundamentally new, nanostructured thin film catalyst and support system, and demonstrated the feasibility for high volume manufacturability.

  3. Methodology for the design of accelerated stress tests for non-precious metal catalysts in fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Sharabi, Ronit; Wijsboom, Yair Haim; Borchtchoukova, Nino; Finkelshtain, Gennadi; Elbaz, Lior

    2016-12-01

    In this work we propose systematic methods for testing non-precious group metal catalysts and support degradation alkaline fuel cell cathodes. In this case study, we used a cathode composed of a pyrolyzed non-precious metal catalyst (NPMC) on activated carbon. The vulnerabilities of the cathode components were studied in order to develop the methodology and design an accelerated stress test (AST) for NPMC-based cathode in alkaline environment. Cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (EIS) were used to characterize the electrochemical behavior of the cathode and to follow the changes that occur as a result of exposing the cathodes to extreme operating conditions. Rotating ring disk electrode (RRDE) was used to study the cathodes kinetics; Raman spectroscopy and X-ray fluorescence (XRF) were used to study the structural changes in the electrode surface as well as depletion of the catalysts' active sites from the electrode. The changes in the composition of the electrode and catalyst were detected using X-ray diffraction (XRD). For the first time, we show that NPMC degrade rapidly at low operating potentials whereas the support degrades at high operating potentials and developed a tailor-made AST to take these into account.

  4. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    NASA Astrophysics Data System (ADS)

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-10-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m‑3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells.

  5. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications.

    PubMed

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-10-13

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m(-3) and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells.

  6. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    PubMed Central

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-01-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945

  7. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

    SciTech Connect

    Popov, Branko N.; Weidner, John

    2016-01-07

    The goal of this project is to synthesize a low cost PEM fuel cell cathode catalyst and support with optimized average mass activity, stability of mass activity, initial high current density performance under H2/air (power density), and catalyst and support stability able to meet 2017 DOE targets for electrocatalysts for transportation applications. Pt*/ACCS-2 catalyst was synthesized according to a novel methodology developed at USC through: (i) surface modification, (ii) metal catalyzed pyrolysis and (iii) chemical leaching to remove excess meal used to dope the support. Pt* stands for suppressed platinum catalyst synthesized with Co doped platinum. The procedure results in increasing carbon graphitization, inclusion of cobalt in the bulk and formation of non-metallic active sites on the carbon surface. Catalytic activity of the support shows an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass transfer regions and 2.5% H2O2 production. Pt*/ACCS-2 catalyst durability under 0.6-1.0 V potential cycling and support stability under 1.0-1.5 V potential cycling was evaluated. The results indicated excellent catalyst and support performance under simulated start-up/shut down operating conditions (1.0 – 1.5 V, 5000 cycles) which satisfy DOE 2017 catalyst and support durability and activity. The 30% Pt*/ACCS-2 catalyst showed high initial mass activity of 0.34 A/mgPGM at 0.9 ViR-free and loss of mass activity of 45% after 30,000 cycles (0.6-1.0 V). The catalyst performance under H2-air fuel cell operating conditions showed only 24 mV (iR-free) loss at 0.8 A/cm2 with an ECSA loss of 42% after 30,000 cycles (0.6-1.0 V). The support stability under 1.0-1.5 V potential cycling showed mass activity loss of 50% and potential loss of 8 mV (iR-free) at 1.5 A/cm2. The ECSA loss was 22% after 5,000 cycles. Furthermore, the Pt*/ACCS-2 catalyst showed an

  8. Hydrothermal synthesis of nanostructured manganese oxide as cathodic catalyst in a microbial fuel cell fed with leachate.

    PubMed

    Haoran, Yuan; Lifang, Deng; Tao, Lu; Yong, Chen

    2014-01-01

    Much effort has been devoted to the synthesis of novel nanostructured MnO2 materials because of their unique properties and potential applications as cathode catalyst in Microbial fuel cell. Hybrid MnO2 nanostructures were fabricated by a simple hydrothermal method in this study. Their crystal structures, morphology, and electrochemical characters were carried out by FESEM, N2-adsorption-desorption, and CV, indicating that the hydrothermally synthesized MnO2 (HSM) was structured by nanorods of high aspect ratio and multivalve nanoflowers and more positive than the naturally synthesized MnO2 (NSM), accompanied by a noticeable increase in oxygen reduction peak current. When the HSM was employed as the cathode catalyst in air-cathode MFC which fed with leachate, a maximum power density of 119.07 mW/m(2) was delivered, 64.68% higher than that with the NSM as cathode catalyst. Furthermore, the HSM via a 4-e pathway, but the NSM via a 2-e pathway in alkaline solution, and as 4-e pathway is a more efficient oxygen reduction reaction, the HSM was more positive than NSM. Our study provides useful information on facile preparation of cost-effective cathodic catalyst in air-cathode MFC for wastewater treatment.

  9. Hydrothermal Synthesis of Nanostructured Manganese Oxide as Cathodic Catalyst in a Microbial Fuel Cell Fed with Leachate

    PubMed Central

    Haoran, Yuan; Lifang, Deng; Tao, Lu; Yong, Chen

    2014-01-01

    Much effort has been devoted to the synthesis of novel nanostructured MnO2 materials because of their unique properties and potential applications as cathode catalyst in Microbial fuel cell. Hybrid MnO2 nanostructures were fabricated by a simple hydrothermal method in this study. Their crystal structures, morphology, and electrochemical characters were carried out by FESEM, N2-adsorption-desorption, and CV, indicating that the hydrothermally synthesized MnO2 (HSM) was structured by nanorods of high aspect ratio and multivalve nanoflowers and more positive than the naturally synthesized MnO2 (NSM), accompanied by a noticeable increase in oxygen reduction peak current. When the HSM was employed as the cathode catalyst in air-cathode MFC which fed with leachate, a maximum power density of 119.07 mW/m2 was delivered, 64.68% higher than that with the NSM as cathode catalyst. Furthermore, the HSM via a 4-e pathway, but the NSM via a 2-e pathway in alkaline solution, and as 4-e pathway is a more efficient oxygen reduction reaction, the HSM was more positive than NSM. Our study provides useful information on facile preparation of cost-effective cathodic catalyst in air-cathode MFC for wastewater treatment. PMID:24723824

  10. Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells.

    PubMed

    Yang, Wulin; Logan, Bruce E

    2016-08-23

    Applications of microbial fuel cells (MFCs) are limited in part by low power densities mainly due to cathode performance. Successful immobilization of an Fe-N-C co-catalyst on activated carbon (Fe-N-C/AC) improved the oxygen reduction reaction to nearly a four-electron transfer, compared to a twoelectron transfer achieved using AC. With acetate as the fuel, the maximum power density was 4.7±0.2 W m(-2) , which is higher than any previous report for an air-cathode MFC. With domestic wastewater as a fuel, MFCs with the Fe-N-C/AC cathode produced up to 0.8±0.03 W m(-2) , which was twice that obtained with a Pt-catalyzed cathode. The use of this Fe-N-C/AC catalyst can therefore substantially increase power production, and enable broader applications of MFCs for renewable electricity generation using waste materials.

  11. Application of graphene-based nanomaterials as novel cathode catalysts for improving power generation in single chamber microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Valipour, Alireza; Ayyaru, Sivasankaran; Ahn, Youngho

    2016-09-01

    The low catalytic activity, limited resources, complexity and costs, and non-environmentally friendly nature are key factors limiting the application of non-precious metals and their composites at the cathode in microbial fuel cells (MFCs). This study evaluated the feasibility of graphene-based nanomaterials (RGOHI-AcOH vs. RGO/Ni nanoparticle composite) as novel cathode catalysts in single chamber air-cathode MFCs. A series of MFCs with different catalyst loadings were produced. The electrochemical behavior of the MFCs were evaluated by cyclic voltammetry (CV) and impedance spectroscopy (EIS). As a result, the MFCs with the RGOHI-AcOH cathodes showed greater maximum power densities (>37%) than those with the RGO/Ni nanoparticle cathodes. In the MFCs, the highest maximum power density of 1683 ± 23 mW/m2 (CE = 72 ± 3%), which covers 77% of that estimated for Pt/C (2201 ± 45 mW/m2, CE = 81 ± 4%), was obtained from the double loading RGOHI-AcOH cathodes. Among the MFCs with the RGO/Ni nanoparticle composite cathodes, those loaded with a double catalyst (1015 ± 28 mW/m2, CE = 70 ± 2%) showed better power performance than the others. Both CV and EIS showed good agreement with the MFC results. This study suggests that the RGOHI-AcOH cathode, particularly with a double catalyst loading, is promising for sustainable low-cost green materials, stable power generation and the long-term operation of MFCs.

  12. Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells.

    PubMed

    Xia, Xue; Zhang, Fang; Zhang, Xiaoyuan; Liang, Peng; Huang, Xia; Logan, Bruce E

    2013-08-28

    Activated carbon (AC) is a cost-effective catalyst for the oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). To enhance the catalytic activity of AC cathodes, AC powders were pyrolyzed with iron ethylenediaminetetraacetic acid (FeEDTA) at a weight ratio of FeEDTA:AC = 0.2:1. MFCs with FeEDTA modified AC cathodes and a stainless steel mesh current collector produced a maximum power density of 1580 ± 80 mW/m(2), which was 10% higher than that of plain AC cathodes (1440 ± 60 mW/m(2)) and comparable to Pt cathodes (1550 ± 10 mW/m(2)). Further increases in the ratio of FeEDTA:AC resulted in a decrease in performance. The durability of AC-based cathodes was much better than Pt-catalyzed cathodes. After 4.5 months of operation, the maximum power density of Pt cathode MFCs was 50% lower than MFCs with the AC cathodes. Pyridinic nitrogen, quaternary nitrogen and iron species likely contributed to the increased activity of FeEDTA modified AC. These results show that pyrolyzing AC with FeEDTA is a cost-effective and durable way to increase the catalytic activity of AC.

  13. Binary and ternary nano-catalysts as cathode materials in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Trimm, Bryan Dunning

    The need for alternative energy, in order to reduce dependence on petroleum based fuels, has increased in recent years. Public demand is at an all-time high for low emitting or none polluting energy sources, driving the research for cleaner technology. Lithium batteries and fuel cells have the ability to produce this alternative energy with much cleaner standards, while allowing for portability and high energy densities. This work focuses on the performance of nanocatalysts in Proton Exchange Membrane Fuel Cell or PEMFC. A key technical challenge is the sluggish rate for oxygen reduction reaction at the cathode of PEMFC, which requires highly-active and stable catalysts. Our investigation is directed at increasing stability and durability as well as reducing high loading of noble metals in these catalyst materials. Binary and ternary structured nanomaterials, e.g., Pt51V1Co48/C and Pd xCu1-x/C, have been synthesized and tested in a PEMFC, in order to gain a better understanding of their durability and efficiency. In addition to electrochemical characterization, synchrotron x-ray techniques at the Advance Photon Source in Argonne National Lab have also been used for the structural characterization.

  14. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.

    PubMed

    Mahmoud, Mohamed; Gad-Allah, Tarek A; El-Khatib, K M; El-Gohary, Fatma

    2011-11-01

    This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs.

  15. Double-chamber microbial fuel cell with a non-platinum-group metal Fe-N-C cathode catalyst.

    PubMed

    Santoro, Carlo; Serov, Alexey; Narvaez Villarrubia, Claudia W; Stariha, Sarah; Babanova, Sofia; Schuler, Andrew J; Artyushkova, Kateryna; Atanassov, Plamen

    2015-03-01

    Non-Pt-group metal (non-PGM) materials based on transition metal-nitrogen-carbon (M-N-C) and derived from iron salt and aminoantipyrine (Fe-AAPyr) of mebendazole (Fe-MBZ) were studied for the first time as cathode catalysts in double-chamber microbial fuel cells (DCMFCs). The pH value of the cathode chamber was varied from 6 to 11 to elucidate the activity of those catalysts in acidic to basic conditions. The Fe-AAPyr- and Fe-MBZ-based cathodes were compared to a Pt-based cathode used as a baseline. Pt cathodes performed better at pH 6-7.5 and had similar performances at pH 9 and a substantially lower performance at pH 11 at which Fe-AAPyr and Fe-MBZ demonstrated their best electrocatalytic activity. The power density achieved with Pt constantly decreased from 94-99 μW cm(-2) at pH 6 to 55-57 μW cm(-2) at pH 11. In contrast, the power densities of DCMFs using Fe-AAPyr and Fe-MBZ were 61-68 μW cm(-2) at pH 6, decreased to 51-58 μW cm(-2) at pH 7.5, increased to 65-75 μW cm(-2) at pH 9, and the highest power density was achieved at pH 11 (68-80 μW cm(-2) ). Non-PGM cathode catalysts can be manufactured at the fraction of the cost of the Pt-based ones. The higher performance and lower cost indicates that non-PGM catalysts may be a viable materials choice in large-scale microbial fuel cells.

  16. X-ray photoemission spectroscopy analysis of N-containing carbon-based cathode catalysts for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Niwa, Hideharu; Kobayashi, Masaki; Horiba, Koji; Harada, Yoshihisa; Oshima, Masaharu; Terakura, Kiyoyuki; Ikeda, Takashi; Koshigoe, Yuka; Ozaki, Jun-ichi; Miyata, Seizo; Ueda, Shigenori; Yamashita, Yoshiyuki; Yoshikawa, Hideki; Kobayashi, Keisuke

    We report on the electronic structure of three different types of N-containing carbon-based cathode catalysts for polymer electrolyte fuel cells observed by hard X-ray photoemission spectroscopy. Prepared samples are derived from: (1) melamine and poly(furfuryl alcohol), (2) nitrogen-doped carbon black and (3) cobalt phthalocyanine and phenolic resin. C 1 s spectra show the importance of sp 2 carbon network formation for the oxygen reduction reaction (ORR) activity. N 1 s spectra of the carbon-based cathode catalysts are decomposed into four components identified as pyridine-like, pyrrole- or cyanide-like, graphite-like, and oxide nitrogen. Samples having high oxygen reduction reaction activity in terms of oxygen reduction potential contain high concentration of graphite-like nitrogen. O 1 s spectra are similar among carbon-based cathode catalysts of different oxygen reduction reaction activity. There is no correlation between the ORR activity and oxygen content. Based on a quantitative analysis of our results, the oxygen reduction reaction activity of the carbon-based cathode catalysts will be improved by increasing concentration of graphite-like nitrogen in a developed sp 2 carbon network.

  17. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer.

    PubMed

    Liu, Weifeng; Cheng, Shaoan; Sun, Dan; Huang, Haobin; Chen, Jie; Cen, Kefa

    2015-10-15

    The inevitable growth of aerobic bacteria on the surface of air cathodes is an important factor reducing the performance stability of air cathode single-chamber membrane-free microbial fuel cells (MFCs). Thus searching for effective methods to inhibit the cathodic microbial growth is critical for the practical application of MFCs. In this study, enrofloxacin (ENR), a broad spectrum fluoroquinolone antibiotic, was incorporated into the catalyst layer of activated carbon air cathodes (ACACs) to inhibit the cathodic microbial growth. The biomass content on ACACs was substantially reduced by 60.2% with ENR treatment after 91 days of MFCs operation. As a result of the inhibited microbial growth, the oxygen reduction catalytic performance of the ENR treated ACACs was much stable compared to the fast performance decline of the untreated control. Consequently, a quite stable electricity production was obtained for the MFCs with the ENR treated ACACs, in contrast with a 22.5% decrease in maximum power density of the MFCs with the untreated cathode. ENR treatment of ACACs showed minimal effects on the anode performance. These results indicate that incorporating antibiotics into ACACs should be a simple and effective strategy to inhibit the microbial growth and improve the long-term stability of the performance of air cathode and the electricity production of MFCs.

  18. Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells.

    PubMed

    Cheng, Shaoan; Wu, Jiancheng

    2013-08-01

    A cathode is a critical factor that limits the practical application of microbial fuel cells (MFCs) in terms of cost and power generation. To develop a cost-effective cathode, we investigate a cathode preparation technique using nickel foam as a current collector, activated carbon as a catalyst and PTFE as a binder. The effects of the type and loading of conductive carbon, the type and loading of activated carbon, and PTFE loading on cathode performance are systematically studied by linear sweep voltammetry (LSV). The nickel foam cathode MFC produces a power density of 1190±50 mW m(-2), comparable with 1320 mW m(-2) from a typical carbon cloth Pt cathode MFC. However, the cost of a nickel foam activated carbon cathode is 1/30 of that of carbon cloth Pt cathode. The results indicate that a nickel foam cathode could be used in scaling up the MFC system.

  19. Chalcogen catalysts for polymer electrolyte fuel cell

    DOEpatents

    Zelenay, Piotr; Choi, Jong-Ho; Alonso-Vante, Nicolas; Wieckowski, Andrzej; Cao, Dianxue

    2010-08-24

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  20. Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells.

    PubMed

    Kim, Jung Rae; Kim, Jy-Yeon; Han, Sang-Beom; Park, Kyung-Won; Saratale, G D; Oh, Sang-Eun

    2011-01-01

    Co-naphthalocyanine (CoNPc) was prepared by heat treatment for cathode catalysts to be used in microbial fuel cells (MFCs). Four different catalysts (Carbon black, NPc/C, CoNPc/C, Pt/C) were compared and characterized using XPS, EDAX and TEM. The electrochemical characteristics of oxygen reduction reaction (ORR) were compared by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The Co-macrocyclic complex improves the catalyst dispersion and oxygen reduction reaction of CoNPc/C. The maximum power of CoNPc/C was 64.7 mW/m(2) at 0.25 mA as compared with 81.3 mW/m(2) of Pt/C, 29.7 mW/m(2) of NPc/C and 9.3 mW/m(2) of carbon black when the cathodes were implemented in H-type MFCs. The steady state cell, cathode and anode potential of MFC with using CoNPc/C were comparable to those of Pt/C.

  1. Synthesis and application of polypyrrole/carrageenan nano-bio composite as a cathode catalyst in microbial fuel cells.

    PubMed

    Esmaeili, Chakavak; Ghasemi, Mostafa; Heng, Lee Yook; Hassan, Sedky H A; Abdi, Mahnaz M; Daud, Wan Ramli Wan; Ilbeygi, Hamid; Ismail, Ahmad Fauzi

    2014-12-19

    A novel nano-bio composite polypyrrole (PPy)/kappa-carrageenan(KC) was fabricated and characterized for application as a cathode catalyst in a microbial fuel cell (MFC). High resolution SEM and TEM verified the bud-like shape and uniform distribution of the PPy in the KC matrix. X-ray diffraction (XRD) has approved the amorphous structure of the PPy/KC as well. The PPy/KC nano-bio composites were then studied as an electrode material, due to their oxygen reduction reaction (ORR) ability as the cathode catalyst in the MFC and the results were compared with platinum (Pt) as the most common cathode catalyst. The produced power density of the PPy/KC was 72.1 mW/m(2) while it was 46.8 mW/m(2) and 28.8 mW/m(2) for KC and PPy individually. The efficiency of the PPy/KC electrode system is slightly lower than a Pt electrode (79.9 mW/m(2)) but due to the high cost of Pt electrodes, the PPy/KC electrode system has potential to be an alternative electrode system for MFCs.

  2. Application of nitrogen-doped carbon powders as low-cost and durable cathodic catalyst to air-cathode microbial fuel cells.

    PubMed

    Shi, Xinxin; Feng, Yujie; Wang, Xin; Lee, He; Liu, Jia; Qu, Youpeng; He, Weihua; Kumar, S M Senthil; Ren, Nanqi

    2012-03-01

    Given few in-depth studies available on the application of nitrogen-doped carbon powders (NDCP) to air-cathode microbial fuel cells (ACMFCs), a low-cost and durable catalyst of NDCP was prepared and used as cathodic catalyst of ACMFCs. Compared to the untreated carbon powders, the N-doped treatment significantly increased the maximum power density (MPD) of ACMFC. A two-step pretreatment of heat treatment and hydrochloric acid immersion can further obviously increase the MPD. With a reasonably large loading of catalyst, the MPD of NDCP based ACMFC was comparable to that of carbon-supported platinum (Pt/C) based ACMFC, while the cost was dramatically reduced. The pretreatment increased the key nitrogen functional groups, pyridinic-like and pyrrolic-like nitrogen. A third new key nitrogen functional group, nitrogen oxide, was discovered and the mechanism of its contribution was explained. Compared to the inherent deterioration problem of Pt/C, NDCP exhibited high stability and was superior for long-term operation of ACMFCs.

  3. A robust fuel cell cathode catalyst assembled with nitrogen-doped carbon nanohorn and platinum nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Linwei; Zheng, Ning; Gao, Ang; Zhu, Chunmei; Wang, Zhiyong; Wang, Yuan; Shi, Zujin; Liu, Yan

    2012-12-01

    A highly durable and active nanocomposite cathode catalyst (Pt/NSWCNH) is assembled with “unprotected” Pt nanoclusters and nitrogen-doped single-wall carbon nanohorns (NSWCNH) as building blocks by a convenient process. The specific catalytic activity and mass catalytic activity for the oxygen reduction reaction over Pt/NSWCNH is 1.60 and 1.75 times as high as those over a commercial Pt/C catalyst, respectively. There is no obvious loss in the catalytic activity of Pt/NSWCNH after potential cycling from 0.6 to 1.1 V versus RHE for 15,000 cycles at 30 °C, under the oxidizing conditions for the electrochemically catalytic reduction of O2. TEM characterization results reveal that, during the accelerated aging tests, Pt nanoparticles in Pt/NSWCNH are more stable than that in Pt/C-JM, showing a low increase in the particle size.

  4. Carbon supported cobalt oxide nanoparticles-iron phthalocyanine as alternative cathode catalyst for oxygen reduction in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ahmed, Jalal; Yuan, Yong; Zhou, Lihua; Kim, Sunghyun

    2012-06-01

    The high cost and limited resources of precious metals as oxygen reduction catalysts (ORR) hindered the widespread use of microbial fuel cells (MFCs) in practice. Here, the feasibility of metal oxide assisted metal macrocyclic complex was investigated as a catalyst for ORR in an air-cathode MFC. Electrochemical results revealed that cobalt oxide (CoOx) incorporation increased the ORR activity of iron phthalocyanine (FePc). In MFCs, the maximum power density of 654 ± 32 mW m-2 was achieved from the C-CoOx-FePc cathode, which was 37% higher than the power density of carbon supported FePc (C-FePc). The voltage output of the MFC only decreased to 85% of its initial voltage after 50 cycles, suggesting that the synthesized catalyst showed acceptable long-term stability. The voltage drop partially resulted from the covering of biofilm on the catalyst layer. This work provided a potential alternative to Pt in MFCs for sustainable energy generation.

  5. [Performance of microbial fuel cells with Fe/C catalyst carbon felt air-cathode for treating landfill leachate].

    PubMed

    Tang, Yu-Lan; Peng, Man; Yu, Yan; He, Ya-Ting; Fu, Jin-Xiang; Zhao, Yu-Hua

    2012-06-01

    Ferric nitrate/activated carbon powder catalyst was obtained through impregnation and Fe/C catalyst was adsorbed on carbon felt as air cathode electrodes. Effects of activated carbon powder dosage and ferric nitrate concentration on electricity generation of MFC with landfill leachate as fuel were measured. Performances of cathodes obtained at different ferric nitrate concentrations were evaluated by cyclic voltammetry tests. The results showed that with the increase of activated carbon powder dosage or the iron nitrate concentration, MFC produce electrical properties showed a decreasing trend after the first rise. When the activated carbon powder dosage was 1 g and the iron nitrate concentration was 0.25 mol x L(-1), it was proved to be an optimum cell performance for 4199.8 mW x m(-3) output power and 465 omega apparent resistance. Under the optimal ratio rang between ferric nitrate and activated carbon powder, MFC apparent resistance decreased and the power density increased respectively with the increase of catalyst total dosage. The best produce electrical properties of MFC with Fe/C catalyst for 0.25 mol x L(-1) iron nitrate and 1 g activated carbon powder dosage was observed by cyclic voltammetry tests. The output power of MFC and the removal quantity increased with the concentration of inlet and the maximum values were respectively 5478.92 mW x m(-3) and 1505.2 mg x L(-1). the maximum removal rates of COD achieved at 89.1%.

  6. Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells.

    PubMed

    Wu, Haibin; Chen, Wei

    2011-10-05

    Copper nitride nanocubes are synthesized in a facile one-phase process. The crystal size could be tuned easily by using different primary amines as capping agents. Such Pt-free nanocrystals exhibit electrocatalytic activity toward oxygen reduction and appear to be promising cathodic electrocatalysts in alkaline fuel cells.

  7. Potential of porous Co3O4 nanorods as cathode catalyst for oxygen reduction reaction in microbial fuel cells.

    PubMed

    Kumar, Ravinder; Singh, Lakhveer; Zularisam, A W; Hai, Faisal I

    2016-11-01

    This study aims to investigate the potential of porous Co3O4 nanorods as the cathode catalyst for oxygen reduction reaction (ORR) in aqueous air cathode microbial fuel cells (MFCs). The porous Co3O4 nanorods were synthesized by a facile and cost-effective hydrothermal method. Three different concentrations (0.5mg/cm(2), 1mg/cm(2), and 2mg/cm(2)) of Co3O4 nanorods coated on graphite electrodes were used to test its performance in MFCs. The results showed that the addition of porous Co3O4 nanorods enhanced the electrocatalytic activity and ORR kinetics significantly and the overall resistance of the system was greatly reduced. Moreover, the MFC with a higher concentration of the catalyst achieved a maximum power density of 503±16mW/m(2), which was approximately five times higher than the bare graphite electrode. The improved catalytic activity of the cathodes could be due to the porous properties of Co3O4 nanorods that provided the higher number of active sites for oxygen.

  8. Same-View Nano-XAFS/STEM-EDS Imagings of Pt Chemical Species in Pt/C Cathode Catalyst Layers of a Polymer Electrolyte Fuel Cell.

    PubMed

    Takao, Shinobu; Sekizawa, Oki; Samjeské, Gabor; Nagamatsu, Shin-ichi; Kaneko, Takuma; Yamamoto, Takashi; Higashi, Kotaro; Nagasawa, Kensaku; Uruga, Tomoya; Iwasawa, Yasuhiro

    2015-06-04

    We have made the first success in the same-view imagings of 2D nano-XAFS and TEM/STEM-EDS under a humid N2 atmosphere for Pt/C cathode catalyst layers in membrane electrode assemblies (MEAs) of polymer electrolyte fuel cells (PEFCs) with Nafion membrane to examine the degradation of Pt/C cathodes by anode gas exchange cycles (start-up/shut-down simulations of PEFC vehicles). The same-view imaging under the humid N2 atmosphere provided unprecedented spatial information on the distribution of Pt nanoparticles and oxidation states in the Pt/C cathode catalyst layer as well as Nafion ionomer-filled nanoholes of carbon support in the wet MEA, which evidence the origin of the formation of Pt oxidation species and isolated Pt nanoparticles in the nanohole areas of the cathode layer with different Pt/ionomer ratios, relevant to the degradation of PEFC catalysts.

  9. Iron-nitrogen-activated carbon as cathode catalyst to improve the power generation of single-chamber air-cathode microbial fuel cells.

    PubMed

    Pan, Yajun; Mo, Xiaoping; Li, Kexun; Pu, Liangtao; Liu, Di; Yang, Tingting

    2016-04-01

    In order to improve the performance of microbial fuel cell (MFC), iron-nitrogen-activated carbon (Fe-N-C) as an excellent oxygen reduction reaction (ORR) catalyst was prepared here using commercial activated carbon (AC) as matrix and employed in single chamber MFC. In MFC, the maximum power density increased to 2437±55 mW m(-2), which was 2 times of that with AC. The open circuit potential (OCP) of Fe-N-C cathode (0.47) was much higher than that of AC cathode (0.21 V). The R0 of Fe-N-C decreased by 47% from 14.36 Ω (AC) to 7.6 Ω (Fe-N-C). From X-ray photoelectron spectroscopy (XPS), pyridinic nitrogen, quaternary nitrogen and iron species were present, which played an important role in the ORR performance of Fe-N-C. These results demonstrated that the as-prepared Fe-N-C material provided a potential alternative to Pt in AC air cathode MFC for relatively desirable energy generation and wastewater treatment.

  10. High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application.

    PubMed

    Santoro, Carlo; Serov, Alexey; Narvaez Villarrubia, Claudia W; Stariha, Sarah; Babanova, Sofia; Artyushkova, Kateryna; Schuler, Andrew J; Atanassov, Plamen

    2015-11-13

    For the first time, a new generation of innovative non-platinum group metal catalysts based on iron and aminoantipyrine as precursor (Fe-AAPyr) has been utilized in a membraneless single-chamber microbial fuel cell (SCMFC) running on wastewater. Fe-AAPyr was used as an oxygen reduction catalyst in a passive gas-diffusion cathode and implemented in SCMFC design. This catalyst demonstrated better performance than platinum (Pt) during screening in "clean" conditions (PBS), and no degradation in performance during the operation in wastewater. The maximum power density generated by the SCMFC with Fe-AAPyr was 167 ± 6 μW cm(-2) and remained stable over 16 days, while SCMFC with Pt decreased to 113 ± 4 μW cm(-2) by day 13, achieving similar values of an activated carbon based cathode. The presence of S(2-) and showed insignificant decrease of ORR activity for the Fe-AAPyr. The reported results clearly demonstrate that Fe-AAPyr can be utilized in MFCs under the harsh conditions of wastewater.

  11. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    PubMed

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  12. High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application

    NASA Astrophysics Data System (ADS)

    Santoro, Carlo; Serov, Alexey; Villarrubia, Claudia W. Narvaez; Stariha, Sarah; Babanova, Sofia; Artyushkova, Kateryna; Schuler, Andrew J.; Atanassov, Plamen

    2015-11-01

    For the first time, a new generation of innovative non-platinum group metal catalysts based on iron and aminoantipyrine as precursor (Fe-AAPyr) has been utilized in a membraneless single-chamber microbial fuel cell (SCMFC) running on wastewater. Fe-AAPyr was used as an oxygen reduction catalyst in a passive gas-diffusion cathode and implemented in SCMFC design. This catalyst demonstrated better performance than platinum (Pt) during screening in “clean” conditions (PBS), and no degradation in performance during the operation in wastewater. The maximum power density generated by the SCMFC with Fe-AAPyr was 167 ± 6 μW cm-2 and remained stable over 16 days, while SCMFC with Pt decreased to 113 ± 4 μW cm-2 by day 13, achieving similar values of an activated carbon based cathode. The presence of S2- and showed insignificant decrease of ORR activity for the Fe-AAPyr. The reported results clearly demonstrate that Fe-AAPyr can be utilized in MFCs under the harsh conditions of wastewater.

  13. Highly stable precious metal-free cathode catalyst for fuel cell application

    NASA Astrophysics Data System (ADS)

    Serov, Alexey; Workman, Michael J.; Artyushkova, Kateryna; Atanassov, Plamen; McCool, Geoffrey; McKinney, Sam; Romero, Henry; Halevi, Barr; Stephenson, Thomas

    2016-09-01

    A platinum group metal-free (PGM-free) oxygen reduction reaction (ORR) catalyst engineered for stability has been synthesized using the sacrificial support method (SSM). This catalyst was comprehensively characterized by physiochemical analyses and tested for performance and durability in fuel cell membrane electrode assemblies (MEAs). This catalyst, belonging to the family of Fe-N-C materials, is easily scalable and can be manufactured in batches up to 200 g. The fuel cell durability tests were performed in a single cell configuration at realistic operating conditions of 0.65 V, 1.25 atmgauge air, and 90% RH for 100 h. In-depth characterization of surface chemistry and morphology of the catalyst layer before and after durability tests were performed. The failure modes of the PGM-free electrodes were derived from structure-to-property correlations. It is suggested that under constant voltage operation, the performance loss results from degradation of the electrode pore structure, while under carbon corrosion accelerated test protocols the failure mode is catalyst corrosion.

  14. Bifunctional Ag/Fe/N/C Catalysts for Enhancing Oxygen Reduction via Cathodic Biofilm Inhibition in Microbial Fuel Cells.

    PubMed

    Dai, Ying; Chan, Yingzi; Jiang, Baojiang; Wang, Lei; Zou, Jinlong; Pan, Kai; Fu, Honggang

    2016-03-23

    Limitation of the oxygen reduction reaction (ORR) in single-chamber microbial fuel cells (SC-MFCs) is considered an important hurdle in achieving their practical application. The cathodic catalysts faced with a liquid phase are easily primed with the electrolyte, which provides more surface area for bacterial overgrowth, resulting in the difficulty in transporting protons to active sites. Ag/Fe/N/C composites prepared from Ag and Fe-chelated melamine are used as antibacterial ORR catalysts for SC-MFCs. The structure-activity correlations for Ag/Fe/N/C are investigated by tuning the carbonization temperature (600-900 °C) to clarify how the active-constituents of Ag/Fe and N-species influence the antibacterial and ORR activities. A maximum power density of 1791 mW m(-2) is obtained by Ag/Fe/N/C (630 °C), which is far higher than that of Pt/C (1192 mW m(-2)), only having a decline of 16.14% after 90 days of running. The Fe-bonded N and the cooperation of pyridinic N and pyrrolic N in Ag/Fe/N/C contribute equally to the highly catalytic activity toward ORR. The ·OH or O2(-) species originating from the catalysis of O2 can suppress the biofilm growth on Ag/Fe/N/C cathodes. The synergistic effects between the Ag/Fe heterojunction and N-species substantially contribute to the high power output and Coulombic efficiency of Ag/Fe/N/C catalysts. These new antibacterial ORR catalysts show promise for application in MFCs.

  15. Load cycle durability of a graphitized carbon black-supported platinum catalyst in polymer electrolyte fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Takei, Chikara; Kakinuma, Katsuyoshi; Kawashima, Kazuhito; Tashiro, Keisuke; Watanabe, Masahiro; Uchida, Makoto

    2016-08-01

    We focus on Pt degradation occurring during fuel cell vehicle (FCV) combined drive cycles involving load and open circuit voltage (OCV) just after startup and during idling. Load cycle durability is evaluated as a function of OCV/load holding time, load rate and relative humidity (RH) with a graphitized carbon black-supported platinum catalyst (Pt/GCB) in the cathode. The degradation of Pt/GCB is suppressed for shorter OCV holding times, lower load rates and lower RH. Scanning ion microscopy (SIM) images of membrane cross-sections indicate that the amount of Pt deposited in the membrane decreases during drive cycles involving load with short OCV holding times. Investigations of the Pt distribution in the cathode catalyst layer (CL) by using scanning TEM-EDX show that the dissolution of Pt is suppressed on the membrane side in the CL. The Pt dissolution is accelerated by the high Pt oxidation due to the long OCV holding time. A load cycle with both long OCV holding time and low load inhibits the Pt2+ migration into the membrane but accelerates the Pt particle growth due to electrochemical Ostwald ripening; meanwhile, a load cycle with long OCV holding time at lower RH prevents both the Pt dissolution and particle growth.

  16. Development of high-performance cathode catalyst of polypyrrole modified carbon supported CoOOH for direct borohydride fuel cell

    NASA Astrophysics Data System (ADS)

    He, Yan; Zhu, Cai; Chen, Kaijian; Wang, Juan; Qin, Haiying; Liu, Jiabin; Yan, Shuai; Yang, Ke; Li, Aiguo

    2017-01-01

    Polypyrrole modified carbon supported CoOOH electrocatalyst (CoOOH-PPy-C) is prepared by impregnation-chemical method, and the catalytic properties for the oxygen reduction reaction (ORR) in alkaline media are investigated. The X-ray diffraction and transmission electron microscopy results confirm the presence of the expected CoOOH. The electrochemical tests show that the CoOOH-PPy-C catalyst exhibits good electrocatalytic activity towards ORR. The direct borohydride fuel cell using CoOOH-PPy-C as the cathode catalyst demonstrates a good stability performance. There is only 4% decrease of the cell voltage after 80-h operation. The ORR occurs an average 4-electron transfer pathway on the CoOOH-PPy-C catalyst. The good catalytic activity towards ORR benefits from the Cosbnd N bond, which is identified by X-ray photoelectron spectroscopy test. X-ray absorption fine structure experiments further show that two nearest O atoms are substituted by two N atoms bonding to Co ion at a distance of 1.64 Å. The CoOOH-PPy-C exhibits better electrochemical properties than the Co(OH)2 counterpart even though the valence state of Co ion is +3 in CoOOH-PPy-C. Those results indicate that the bonding of Co ion with N atoms should be a key issue regardless the valence of Co ion.

  17. Final Report: Cathode Catalysis in Hydrogen/Oxygen Fuel Cells: New Catalysts, Mechanism, and Characterization

    SciTech Connect

    Gewirth, Andrew A.; Kenis, Paul J.; Nuzzo, Ralph G.; Rauchfuss, Thomas B.

    2016-01-18

    In this research, we prosecuted a comprehensive plan of research directed at developing new catalysts and new understandings relevant to the operation of low temperature hydrogen-oxygen fuel cells. The focal point of this work was one centered on the Oxygen Reduction Reaction (ORR), the electrochemical process that most fundamentally limits the technological utility of these environmentally benign energy conversion devices. Over the period of grant support, we developed new ORR catalysts, based on Cu dimers and multimers. In this area, we developed substantial new insight into design rules required to establish better ORR materials, inspired by the three-Cu active site in laccase which has the highest ORR onset potential of any material known. We also developed new methods of characterization for the ORR on conventional (metal-based) catalysts. Finally, we developed a new platform to study the rate of proton transfer relevant to proton coupled electron transfer (PCET) reactions, of which the ORR is an exemplar. Other aspects of work involved theory and prototype catalyst testing.

  18. Catalysts for ultrahigh current density oxygen cathodes for space fuel cell applications

    NASA Technical Reports Server (NTRS)

    Tryk, D.; Yeager, E.; Shingler, M.; Aldred, W.; Wang, C.

    1990-01-01

    The objective of this research was to identify promising electrocatalyst/support systems for the oxygen cathode in alkaline fuel cells operating at relatively high temperatures, O2 pressures and current densities. A number of materials were prepared, including Pb-Ru and Pb-Ir pyrochlores, RuO2 and Pt-doped RuO2, and lithiated NiO. Several of these were prepared using techniques that had not been previously used to prepare them. Particularly interesting is the use of the alkaline solution technique to prepare the Pt-doped Pb-Ru pyrochlore in high area form. Well-crystallized Pb(2)Ru(2)O(7-y) was used to fabricate high performance O2 cathodes with relatively good stability in room temperature KOH. This material was also found to be stable over a useful potential range at approximately 140 C in concentrated KOH. Other pyrochlores were found to be either unstable (amorphous samples) or the fabrication of the gas-fed electrodes could not be fully optimized during this project period. Future work may be directed at this problem. High area platinum supported on conductive metal oxide supports produced mixed results: small improvements in O2 reduction performance for Pb(2)Ru(2)O(7-y) but a large improvement for Li-doped NiO at room temperature. Nearly reversible behavior was observed for the O2/OH couple for Li-doped NiO at approximately 200 C.

  19. Catalysts for ultrahigh current density oxygen cathodes for space fuel cell applications

    NASA Astrophysics Data System (ADS)

    Tryk, D.; Yeager, E.; Shingler, M.; Aldred, W.; Wang, C.

    1990-06-01

    The objective of this research was to identify promising electrocatalyst/support systems for the oxygen cathode in alkaline fuel cells operating at relatively high temperatures, O2 pressures and current densities. A number of materials were prepared, including Pb-Ru and Pb-Ir pyrochlores, RuO2 and Pt-doped RuO2, and lithiated NiO. Several of these were prepared using techniques that had not been previously used to prepare them. Particularly interesting is the use of the alkaline solution technique to prepare the Pt-doped Pb-Ru pyrochlore in high area form. Well-crystallized Pb(2)Ru(2)O(7-y) was used to fabricate high performance O2 cathodes with relatively good stability in room temperature KOH. This material was also found to be stable over a useful potential range at approximately 140 C in concentrated KOH. Other pyrochlores were found to be either unstable (amorphous samples) or the fabrication of the gas-fed electrodes could not be fully optimized during this project period. Future work may be directed at this problem. High area platinum supported on conductive metal oxide supports produced mixed results: small improvements in O2 reduction performance for Pb(2)Ru(2)O(7-y) but a large improvement for Li-doped NiO at room temperature. Nearly reversible behavior was observed for the O2/OH couple for Li-doped NiO at approximately 200 C.

  20. Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells.

    PubMed

    Wen, Qing; Wang, Shaoyun; Yan, Jun; Cong, Lijie; Chen, Ye; Xi, Hongyuan

    2014-02-01

    Porous nitrogen-doped carbon nanosheet on graphene (PNCN) was used as an alternative cathode catalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). Here we report a novel, low-cost, scalable, synthetic method for preparation of PNCN via the carbonization of graphite oxide-polyaniline hybrid (GO-PANI), subsequently followed by KOH activation treatment. Due to its high concentration of nitrogen and high specific surface area, PNCN exhibited an excellent catalytic activity for ORR. As a result, the maximum power density of 1159.34mWm(-2) obtained with PNCN catalyst was higher than that of Pt/C catalyst (858.49mWm(-2)) in a MFC. Therefore, porous nitrogen-doped carbon nanosheet could be a good alternative to Pt catalyst in MFCs.

  1. PRELIMINARY IN-SITU X-RAY ABSORPTION FINE STRUCTURE EXAMINATION OF PT/C AND PTCO/C CATHODE CATALYSTS IN AN OPERATIONAL POLYMER ELECTROLYTE FUEL CELL

    SciTech Connect

    Phelan, B.T.; Myers, D.J.; Smith, M.C.

    2009-01-01

    State-of-the-art polymer electrolyte fuel cells require a conditioning period to reach optimized cell performance. There is insuffi cient understanding about the behavior of catalysts during this period, especially with regard to the changing environment of the cathode electrocatalyst, which is typically Pt nanoparticles supported on high surface area Vulcan XC-72 carbon (Pt/C). The purpose of this research was to record preliminary observations of the changing environment during the conditioning phase using X-Ray Absorption Fine Structure (XAFS) spectroscopy. XAFS was recorded for a Pt/C cathode at the Pt L3-edge and a PtCo/C cathode at both the Pt L3-edge and Co K-edge. Using precision machined graphite cell-blocks, both transmission and fl uorescence data were recorded at Sector 12-BM-B of Argonne National Laboratory’s Advanced Photon Source. The fl uorescence and transmission edge steps allow for a working description of the changing electrocatalyst environment, especially water concentration, at the anode and cathode as functions of operating parameters. These features are discussed in the context of how future analysis may correlate with potential, current and changing apparent thickness of the membrane electrode assembly through loss of catalyst materials (anode, cathode, carbon support). Such direct knowledge of the effect of the conditioning protocol on the electrocatalyst may lead to better catalyst design. In turn, this may lead to minimizing, or even eliminating, the conditioning period.

  2. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater.

    PubMed

    Liu, Xian-Wei; Li, Wen-Wei; Yu, Han-Qing

    2014-11-21

    Bioelectrochemical systems (BESs), in which microorganisms are utilized as a self-regenerable catalyst at the anode of an electrochemical cell to directly extract electrical energy from organic matter, have been widely recognized as a promising technology for energy-efficient wastewater treatment or even for net energy generation. However, currently BES performance is constrained by poor cathode reaction kinetics. Thus, there is a strong impetus to improve the cathodic catalysis performance through proper selection and design of catalysts. This review introduces the fundamentals and current development status of various cathodic catalysts (including electrocatalysts, photoelectrocatalysts and bioelectrocatalysts) in BES, identifies their limitations and influential factors, compares their catalytic performances in terms of catalytic efficiency, stability, selectivity, etc., and discusses the possible optimization strategies and future research directions. Special focus is given on the analysis of how the catalytic performance of different catalysts can be improved by fine tuning their physicochemical or physiological properties.

  3. A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen.

    PubMed

    Chae, Kyu-Jung; Choi, Mi-Jin; Kim, Kyoung-Yeol; Ajayi, Folusho F; Chang, In-Seop; Kim, In S

    2009-12-15

    This paper reports successful hydrogen evolution using a dye-sensitized solar cell (DSSC)-powered microbial electrolysis cell (MEC) without a Pt catalyst on the cathode, indicating a solution for the inherent drawbacks of conventional MECs, such as the need for an external bias and catalyst. DSSCs fabricated by assembling a ruthenium dye-loaded TiO(2) film and platinized FTO glass with an I(-)/I(3)(-) redox couple were demonstrated as an alternative bias (V(oc) = 0.65 V). Pt-loaded (0.3 mg Pt/cm(2)) electrodes with a Pt/C nanopowder showed relatively faster hydrogen production than the Pt-free electrodes, particularly at lower voltages. However, once the applied photovoltage exceeded a certain level (0.7 V), platinum did not have any additional effect on hydrogen evolution in the solar-powered MECs: hydrogen conversion efficiency was almost comparable for either the plain (71.3-77.0%) or Pt-loaded carbon felt (79.3-82.0%) at >0.7 V. In particular, the carbon nanopowder-coated electrode without Pt showed significantly enhanced performance compared to the plain electrode, which indicates efficient electrohydrogenesis, even without Pt by enhancing the surface area. As the applied photovoltage was increased, anodic methanogenesis decreased gradually, resulting in increasing hydrogen yield.

  4. Pore development in carbonized hemoglobin by concurrently generated MgO template for activity enhancement as fuel cell cathode catalyst.

    PubMed

    Maruyama, Jun; Hasegawa, Takahiro; Amano, Taiji; Muramatsu, Yasuji; Gullikson, Eric M; Orikasa, Yuki; Uchimoto, Yoshiharu

    2011-12-01

    Various carbon materials with a characteristic morphology and pore structure have been produced using template methods in which a carbon-template composite is once formed and the characteristic features derived from the template are generated after the template removal. In this study, hemoglobin, which is a natural compound that could be abundantly and inexpensively obtained, was used as the carbon material source to produce a carbonaceous noble-metal-free fuel cell cathode catalyst. Magnesium oxide was used as the template concurrently generated with the hemoglobin carbonization from magnesium acetate mixed with hemoglobin as the starting material mixture to enable pore development for improving the activity of the carbonized hemoglobin for the cathodic oxygen reduction. After removal of the MgO template, the substantially developed pores were generated in the carbonized hemoglobin with an amorphous structure observed by total-electron-yield X-ray absorption. The extended X-ray absorption fine structure at the Fe-K edge indicated that Fe was coordinated with four nitrogen atoms (Fe-N(4) moiety) in the carbonized hemoglobin. The oxygen reduction activity of the carbonized hemoglobin evaluated using rotating disk electrodes was dependent on the pore structure. The highly developed pores led to an improved activity.

  5. Catalysts for ultrahigh current density oxygen cathodes for space fuel cell applications

    NASA Technical Reports Server (NTRS)

    Tryk, Donald A.; Yeager, E.

    1992-01-01

    The objective was to identify promising electrocatalyst/support systems for oxygen cathodes capable of operating at ultrahigh current densities in alkaline fuel cells. Such cells will require operation at relatively high temperatures and O2 pressures. A number of materials were prepared, including Pb-Ru and Pb-Ir pyrochlores, RuO2 and Pt-doped RuO2, lithiated NiO and La-Ni perovskites. Several of these materials were prepared using techniques that had not been previously used to prepare them. Particularly interesting was the use of the alkaline solution technique to prepare Pt-doped and Pb-Ru pyrochlores in high area form. Also interesting was the use of the fusion (melt) method for preparing the Pb-Ru pyrochlore. Several of the materials were also deposited with platinum. Well-crystallized Pb2Ru2O(7-y) was used to fabricate very high performance O2 cathodes with good stability in room temperature KOH. This material was also found to be stable over a useful potential range at approx. 140 C in concentrated KOH. For some of the samples, fabrication of the gas-fed electrodes could not be fully optimized during this project period. Future work may be directed at this problem. Pyrochlores that were not well-crystallized were found to be unstable in alkaline solution. Very good O2 reduction performance and stability were observed with Pb2RuO(7-y) in a carbon-based gas-fed electrode with an anion-conducting membrane placed on the electrolyte side of the electrode. The performance came within a factor of about two of that observed without carbon. High area platinum and gold supported on several conductive metal oxide supports were examined. Only small improvements in O2 reduction performance at room temperature were observed for Pb2Ru2O(7-y) as a support because of the high intrinsic activity of the pyrochlore. In contrast, a large improvement was observed for Li-doped NiO as a support for Pt. Very poor performance was observed for Au deposited on Li-NiO at approx. 150 C

  6. Calcined polyaniline-iron composite as a high efficient cathodic catalyst in microbial fuel cells.

    PubMed

    Lai, Bin; Wang, Peng; Li, Haoran; Du, Zhuwei; Wang, Lijuan; Bi, Sichao

    2013-03-01

    A new type of carbon-nitrogen-metal catalyst, PANI-Fe-C, was synthesized by calcination process. According to the results of FT-IR and XPS analysis, polyaniline chain was broken by calcination. Small nitrogen-contained molecular fragments were gasified during calcination process, while the remaining nitrogen atoms were enchased in the new produced multiple carbon rings by C-N and CN bonds and performed as the catalytic active sites and the covalent centers for soluble iron components. Calculated from the polarization curves, a maximum power density of 10.17W/m(3) for the MFC with the synthetic catalyst was obtained, which was slightly higher than the MFC with Pt/C catalyst of 9.56W/m(3). All the results obtained in this paper proved that the newly synthetic nitrogen-carbon-metal catalyst would be a potential alternative to the expensive Pt/C catalyst in the field of MFC.

  7. Biofouling inhibition and enhancing performance of microbial fuel cell using silver nano-particles as fungicide and cathode catalyst.

    PubMed

    Noori, Md T; Jain, Sumat C; Ghangrekar, M M; Mukherjee, C K

    2016-11-01

    Morphological analysis of biofouling developed on cathode surface in an air-cathode microbial fuel cell (MFC) was performed. For sustaining power production and enhancing Coulombic efficiency (CE) of MFC, studies were conducted to inhibit cathode biofouling using different loadings of silver nanoparticles (Ag-NPs) with 5% and 10% Ag in carbon black powder. In MFC without using Ag-NPs in cathode (MFC-C), cathode biofouling increased the charge transfer resistance (Rct) from 1710Ω.cm(2) to 2409Ω.cm(2), and reduced CE by 32%; whereas in MFC with 10% Ag in cathode Rct increased by only 5%. Power density of 7.9±0.5W/m(3) in MFC using 5% Ag and 9.8±0.3W/m(3) in MFC using 10% Ag in cathode was 4.6 and 5.7-folds higher than MFC-C. These results suggest that the Ag-NPs effectively inhibit the fungal biofouling on cathode surface of MFCs and enhanced the power recovery and CE by improving cathode kinetics.

  8. Perovskite-type oxides La 1- xSr xMnO 3 for cathode catalysts in direct ethylene glycol alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kohei; Sugimura, Naotsugu; Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi

    Carbon-supported La 1- xSr xMnO 3 (LSM/C) was prepared by reversible homogeneous precipitation method, and its catalytic activities for oxygen reduction under the existence of ethylene glycol (EG) were investigated by using rotating disk electrode. LSM/C exhibited the high activity for oxygen reduction irrespective with the presence of EG, indicating that EG is not oxidized by LSM/C at the cathode side in the present system. Consequently, LSM/C can serve as a cathode catalyst in alkaline direct alcohol fuel cells with no crossover problem. Performance test for fuel cells operation also supported these results and showed cathodic polarization curves were not affected by the concentration of EG supplied to anode even at 5 mol dm -3.

  9. Insights on the extraordinary tolerance to alcohols of Fe-N-C cathode catalysts in highly performing direct alcohol fuel cells

    DOE PAGES

    Sebastian, David; Serov, Alexey; Matanovic, Ivana; ...

    2017-02-21

    Direct alcohol fuel cells (DAFCs) represent the best alternative to batteries for portable and auxiliary power units application due to the high energy density of short chain alcohols. Currently, the utilization of the best platinum group metal (PGM) cathode catalysts is limited, not only by a high cost and scarce resources, but also by the inefficient oxygen reduction reaction (ORR) when permeated alcohols adsorb on the catalytic active sites. In this work, a highly active Fe-N-C catalyst derived from the pyrolysis of nicarbazin (a nitrogen charge transfer organic salt) and an iron precursor has been investigated to get insights onmore » the extraordinary tolerance to the presence of alcohols (methanol and ethanol) of such a PGM-free catalyst. Density functional theory (DFT) calculations demonstrate for the first time that Fe-N4 and Fe-N2C2 active sites preferentially adsorb oxygen with much higher energy than methanol, ethanol and products of partial ethanol oxidation (0.73–1.16 eV stronger adsorption), while nitrogen-carbon related sites (pyridinic and graphitic nitrogen) are much less selective towards ORR. Half-cell electrochemical characterization showed that the Fe-N-C catalyst overcomes Pt ORR activity in acidic medium with methanol or ethanol concentrations as low as 0.01 M. The feasibility of DAFCs operation based on high methanol (up to 17 M) and ethanol (up to 5 M) concentration thanks to the utilization of Fe-N-C cathode catalyst is demonstrated. Lastly, a new strategy is proposed for DAFCs where using Pt only at the anode and Fe-N-C at the cathode allows extending the device energy density compared to PGM-based catalysts at both electrodes.« less

  10. Platinum oxidation responsible for degradation of platinum-cobalt alloy cathode catalysts for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Hidai, Shoichi; Kobayashi, Masaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Nakamori, Yoji; Aoki, Tsutomu

    2012-10-01

    Platinum oxidation of Pt-Co alloy catalysts for polymer electrolyte fuel cells was investigated for a series of Pt-Co alloy catalysts with different specification. The chemical state of platinum evaluated by soft X-ray photoemission spectroscopy was compared with the electrochemical properties to elucidate the origin of catalyst degradation. Increase in the particle size of Pt-Co alloy catalysts caused the decrease in the concentration of platinum hydroxide and improved the catalyst durability. Applying potential cycling below 1.0 V, only platinum hydroxide was observed, while platinum oxides, PtO and PtO2, appeared after potential cycling up to 1.2 V. The peak shift of Pt 4f spectra after the potential cycling implies that these platinum hydroxide and oxide are dissolved and deposited on another platinum catalyst in a reduced metallic state, which causes the catalyst degradation.

  11. Development of ternary alloy cathode catalysts for phosphoric acid fuel cells: Final report

    SciTech Connect

    Jalan, V.; Kosek, J.; Giner, J.; Taylor, E. J.; Anderson, E.; Bianchi, V.; Brooks, C.; Cahill, K.; Cropley, C.; Desai, M.; Frost, D.; Morriseau, B.; Paul, B.; Poirier, J.; Rousseau, M.; Swette, L.; Waterhouse, R.

    1988-11-01

    The overall objective of the program was the identification development and incorporation of high activity platinum ternary alloys on corrosion resistant supports, for use in advanced phosphoric acid fuel cells. Two high activity ternary alloys, Pr-Cr-Ce and Pt-Ni-Co, both supported on Vulcan XC-72, were identified during the course of the program. The Pr-Ni-Co system was selected for optimization, including preparation and evaluation on corrosion resistant supports such as 2700/degree/C heat-treated Vulcan XC-72 and 2700/degree/ heat-treated Black Pearls 2000. A series of tests identified optimum metal ratios, heat-treatment temperatures and heat-treatment atmospheres for the Pr-Ni-Co system. During characterization testing, it was discovered that approximately 50% of the nickel and cobalt present in the starting material could be removed, subsequent to alloy formation, without degrading performance. Extremely stable full cell performance was observed for the Pt-Ni-Co system during a 10,000 hour atmosphere pressure life test. Several theories are proposed to explain the enhancement in activity due to alloy formation. Recommendations are made for future research in this area. 62 refs., 23 figs., 27 tabs.

  12. Experimental results with fuel cell start-up and shut-down. Impact of type of carbon for cathode catalyst support

    DOE PAGES

    Lottin, Olivier; Dillet, Jerome; Maranzana, Gael; ...

    2015-09-14

    Separate testing protocols for fuel cell startups and shutdowns were developed to distinguish between their effects on reverse currents and CO2 evolution. The internal currents and the local potentials were measured with different membrane-electrode assemblies (MEAs): we examined the influence of the type of carbon for cathode catalyst support as well as the mitigating effect of low anode Pt loading. In conclusion, significant differences were observed and the experiments also confirmed previous results that the evolved CO2 accounts for less than 25% of the total exchanged charge.

  13. Experimental results with fuel cell start-up and shut-down. Impact of type of carbon for cathode catalyst support

    SciTech Connect

    Lottin, Olivier; Dillet, Jerome; Maranzana, Gael; Abbou, Sofyane; Didierjean, Sophie; Lamibrac, Adrien; Borup, Rodney L.; Mukundan, Rangachary; Spernjak, Dusan

    2015-09-14

    Separate testing protocols for fuel cell startups and shutdowns were developed to distinguish between their effects on reverse currents and CO2 evolution. The internal currents and the local potentials were measured with different membrane-electrode assemblies (MEAs): we examined the influence of the type of carbon for cathode catalyst support as well as the mitigating effect of low anode Pt loading. In conclusion, significant differences were observed and the experiments also confirmed previous results that the evolved CO2 accounts for less than 25% of the total exchanged charge.

  14. Analyzing Structural Changes of Fe-N-C Cathode Catalysts in PEM Fuel Cell by Mößbauer Spectroscopy of Complete Membrane Electrode Assemblies.

    PubMed

    Kramm, Ulrike I; Lefèvre, Michel; Bogdanoff, Peter; Schmeißer, Dieter; Dodelet, Jean-Pol

    2014-11-06

    The applicability of analyzing by Mößbauer spectroscopy the structural changes of Fe-N-C catalysts that have been tested at the cathode of membrane electrode assemblies in proton exchange membrane (PEM) fuel cells is demonstrated. The Mößbauer characterization of powders of the same catalysts was recently described in our previous publication. A possible change of the iron species upon testing in fuel cell was investigated here by Mößbauer spectroscopy, energy-dispersive X-ray cross-sectional imaging, and neutron activation analysis. Our results show that the absorption probability of γ rays by the iron nuclei in Fe-N-C is strongly affected by the presence of Nafion and water content. A detailed investigation of the effect of an oxidizing treatment (1.2 V) of the non-noble cathode in PEM fuel cell indicates that the observed activity decay is mainly attributable to carbon oxidation causing a leaching of active iron sites hosted in the carbon matrix.

  15. Activities and Stabilities of Au-Modified Stepped-Pt Single-Crystal Electrodes as Model Cathode Catalysts in Polymer Electrolyte Fuel Cells.

    PubMed

    Kodama, Kensaku; Jinnouchi, Ryosuke; Takahashi, Naoko; Murata, Hajime; Morimoto, Yu

    2016-03-30

    The purpose of this study is to test the concept of protecting vulnerable sites on cathode catalysts in polymer electrolyte fuel cells. Pt single-crystal surfaces were modified by depositing Au atoms selectively on (100) step sites and their electrocatalytic activities for oxygen reduction reaction (ORR) and stabilities against potential cycles were examined. The ORR activities were raised by 70% by the Au modifications, and this rise in the activity was ascribed to enhanced local ORR activities on Pt(111) terraces by the surface Au atoms. The Au modifications also stabilized the Pt surfaces against potential cycles by protecting the low-coordinated (100) step sites from surface reorganizations. Thus, the surface modification by selective Au depositions on vulnerable sites is a promising method to enhance both the ORR activity and durability of the catalysts.

  16. Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode.

    PubMed

    Lee, Hyung-Sool; Torres, César I; Parameswaran, Prathap; Rittmann, Bruce E

    2009-10-15

    With the goal of maximizing the H2-harvesting efficiency, we designed an upflow single-chamber microbial electrolysis cell (MEC) by placing the cathode on the top of the MEC and carried out a program to track the fate of H2 and electron equivalents in batch experiments. When the initial acetate concentration was 10 mM in batch-evaluation experiments lasting 32 h, the cathodic conversion efficiency (CCE) from coulombs (i.e., electron equivalents in current from the anode to the cathode) to H2 was 98 +/- 2%, the Coulombic efficiency (CE) was 60 +/- 1%, the H2 yield was 59 +/- 2%, and methane production was negligible. However, longer batch reaction time (approximately 7 days) associated with higher initial acetate concentrations (30 or 80 mM) led to significant H2 loss due to CH4 accumulation: up to 14 +/- 1% and 16 +/- 2% of the biogas at 30 and 80 mM of acetate, respectively. Quantitative PCR proved that no acetoclastic methanogens were present, but that hydrogenotrophic methanogens (i.e., Methanobacteriales) were present on both electrodes. The hydrogenotrophic methanogens decreased the CCE by diverting H2 generated at the cathode to CH4 in the upflow single-chamber MEC. In some experiments, the CE was greater than 100%. The cause was anode-respiring bacteria oxidizing H2 and producing current which recycled H2 between the cathode and the anodes, increasing CE to over 100%, but with a concomitant decline in CCE, despite negligible CH4 formation.

  17. Performance and durability of Pt/C cathode catalysts with different kinds of carbons for polymer electrolyte fuel cells characterized by electrochemical and in situ XAFS techniques.

    PubMed

    Nagasawa, Kensaku; Takao, Shinobu; Higashi, Kotaro; Nagamatsu, Shin-ichi; Samjeské, Gabor; Imaizumi, Yoshiaki; Sekizawa, Oki; Yamamoto, Takashi; Uruga, Tomoya; Iwasawa, Yasuhiro

    2014-06-07

    The electrochemical activity and durability of Pt nanoparticles on different kinds of carbon supports in oxygen reduction reactions (ORR) were investigated using rotating disc electrodes (RDE) and the membrane electrode assemblies (MEA) of polymer electrolyte fuel cells (PEFC). The mass activity of Pt/C catalysts (ORR activity per 1 mg of Pt) at the RDE decreased, according to the type of carbon support, in the following order; Ketjenblack (KB) > acetylene black (AB) > graphene > multiwall carbon nanotube (MW-CNT) > carbon black (CB), whereas the average size of the Pt nanoparticles and the surface specific activity (ORR activity per electrochemical surface area) did not vary significantly between these carbon supports. These results indicate that the different mass activities of the Pt/C catalysts may originate from the differences in the fraction of Pt on the carbon supports which is available for utilization. The durability of the MEAs of the top two active catalysts Pt/KB and Pt/AB among the five catalysts was examined based on ORR performance, TEM and in situ XAFS. It was found that the performance of the Pt/KB cathode catalyst in PEFC MEA decreased significantly over 500 accelerated durability test (ADT) cycles, whereas the performance of the Pt/AB cathode catalyst in PEFC MEA did not decrease significantly during 500 ADT cycles, it was also found that the Pt/AB possesses 8 times higher durability compared with the Pt/KB. In situ Pt LIII-edge XAFS data in the ADT cycles and stepwise potential operations revealed the different oxidation-reduction behaviors of the Pt nanoparticles on the KB and AB supports. The Pt/KB was oxidized to form surface PtO layers more easily than the Pt/AB in the increasing potential operation from 0.4 VRHE to 1.4 VRHE, and the surface PtO layers of the Pt/AB were reduced to the metallic Pt state more readily than those of the Pt/KB in the decreasing potential operation from 1.4 VRHE to 0.4 VRHE. The XAFS analysis for the Pt valences

  18. Highly-dispersed Ta-oxide catalysts prepared by electrodeposition in a non-aqueous plating bath for polymer electrolyte fuel cell cathodes.

    PubMed

    Seo, Jeongsuk; Cha, Dongkyu; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2012-09-18

    The Ta-oxide cathode catalysts were prepared by electrodeposition in a non-aqueous solution. These catalysts showed excellent catalytic activity and have an onset potential of 0.92 V(RHE) for the oxygen reduction reaction (ORR). The highly-dispersed Ta species at the nanometer scale on the carbon black was an important contributor to the high activity.

  19. Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped graphene and its application as cathode catalyst in microbial fuel cells.

    PubMed

    Feng, Leiyu; Chen, Yinguang; Chen, Lang

    2011-12-27

    Nitrogen-doped graphene (NG), with unique electronic properties, is showing great promise for a wide range of practical applications. However, the reported approaches for NG synthesis are usually complex, require high temperatures, produce lower atomic ratios of nitrogen to carbon (N/C), and do not deliver products in a reasonably large quantity. Here we report an easy-to-operate and low-temperature method to synthesize NG in gram-scale quantities with a denotation process. High-resolution transmission electron microscopy, Raman spectroscopy, and X-ray diffraction characterization suggested that the synthesized NG films were uniformly multilayered and had a high crystalline quality. In the graphene sheets the existence of nitrogen substitution with an atomic ratio of N/C 12.5%, which was greater than those reported in the literature, was confirmed by X-ray photoelectron spectroscopic analysis. In the neutral phosphate buffer solution, the synthesized NG was demonstrated to act as a metal-free electrode with excellent electrocatalytic activity and long-term operation stability for oxygen reduction via a combination of two-electron and four-electron pathways. When the NG was applied as the cathode catalyst of microbial fuel cells (MFCs), the obtained maximum power density was comparable to that of conventional platinum catalyst. More importantly, MFCs with NG produced power more stably and less expensively than those with Pt catalyst, indicating that the synthesized NG might be used as a good alternative to Pt catalyst in MFCs with a long run.

  20. Air breathing cathodes for microbial fuel cell using Mn-, Fe-, Co- and Ni-containing platinum group metal-free catalysts

    DOE PAGES

    Kodali, Mounika; Santoro, Carlo; Serov, Alexey; ...

    2017-02-07

    Here we discuss the oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electrochemical performance, and then integrated into an air-breathing cathode to be tested in “clean” environment and in a working microbial fuel cell (MFC). Their performances were also compared to activated carbon (AC) based cathode under similar conditions. Results showedmore » that the addition of Mn, Fe, Co and Ni to AAPyr increased the performances compared to AC. Fe-AAPyr showed the highest open circuit potential (OCP) that was 0.307 ± 0.001 V (vs. Ag/AgCl) and the highest electrocatalytic activity at pH 7.5. On the contrary, AC had an OCP of 0.203 ± 0.002 V (vs. Ag/AgCl) and had the lowest electrochemical activity. In MFC, Fe-AAPyr also had the highest output of 251 ± 2.3 μWcm–2, followed by Co-AAPyr with 196 ± 1.5 μWcm–2, Ni-AAPyr with 171 ± 3.6 μWcm–2, Mn-AAPyr with 160 ± 2.8 μWcm–2 and AC 129 ± 4.2 μWcm–2. The best performing catalyst (Fe-AAPyr) was then tested in MFC with increasing solution conductivity from 12.4 mScm–1 to 63.1 mScm–1. A maximum power density of 482 ± 5 μWcm–2 was obtained with increasing solution conductivity, which is one of the highest values reported in the field.« less

  1. H2O2 detection analysis of oxygen reduction reaction on cathode and anode catalysts for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Kishi, Akira; Shironita, Sayoko; Umeda, Minoru

    2012-01-01

    The generation percentage of H2O2 during oxygen reduction reaction (ORR) at practical powder electrocatalysts was evaluated using a scanning electrochemical microscope (SECM). We employed a porous microelectrode that contains electrocatalysts, namely, Pt/C, Pt-Co/C, and Pt-Ru/C as the oxygen reduction electrode of the SECM, and the Pt microelectrode was used as the H2O2 detector. First, the H2O2 generation amount at Pt/Cs was measured by changing the Pt loading amount. A Pt/C with a higher Pt loading has a higher ORR activity and generates a larger amount of H2O2. However, the percentage of H2O2 generated with respect to the ORR is the same regardless of the Pt loading amount. Next, H2O2 generation is markedly suppressed at the Pt-Co/C and Pt-Ru/C in the potential ranges of practical fuel cell cathode and anode, respectively. This explains that the Pt-Co/C is effective when used as a cathode, and the anode Pt-Ru/C enables the reduction of the H2O2 generation even if O2 crossleak occurs in the practical polymer electrolyte fuel cell.

  2. Nitrogen-doped graphene/CoNi alloy encased within bamboo-like carbon nanotube hybrids as cathode catalysts in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hou, Yang; Yuan, Heyang; Wen, Zhenhai; Cui, Shumao; Guo, Xiaoru; He, Zhen; Chen, Junhong

    2016-03-01

    Cost-effective catalysts are of key importance to the successful deployment of microbial fuel cells (MFCs) for electricity generation from organic wastes. Herein, a novel catalyst prepared by one-step synthesis strategy is reported. The catalyst features N-doped bamboo-like carbon nanotube (BCNT) in which CoNi-alloy is encapsulated at the end and/or the middle section of the tube with many graphene layers inside inner cavities of BCNT (N-G@CoNi/BCNT). The prepared N-G@CoNi/BCNT exhibits a high oxygen reduction reaction (ORR) activity with an early onset potential of 0.06 V vs. Ag/AgCl and a comparable exchange current density to that of commercial Pt/C. The excellent catalytic activity is further evidenced by a high electron transfer number of 3.63. When being applied in MFCs, the N-G@CoNi/BCNT yields an average current density of 6.7 A m-2, slightly lower than that of Pt/C but with a less mass transfer potential loss. The cost of the N-G@CoNi/BCNT for constructing a 1-m2 cathode electrode is 200 times lower than that of Pt/C. With such a competitive price and excellent electrocatalytic-activity resulting from its unique morphology, CoNi-alloy/nitrogen dopants, considerable specific surface area, and carbon-coated alloy/graphene hybridization, the present catalyst is a promising candidate for ORR catalysts in MFCs for energy recovery from wastes.

  3. Study on the electronic properties and molecule adsorption of W18O49 nanowires as a catalyst support in the cathodes of direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Karim, N. A.; Kamarudin, S. K.; Shyuan, L. K.; Yaakob, Z.; Daud, W. R. W.; Kadhum, A. A. H.

    2015-08-01

    Catalyst supports have been used to increase the catalytic activity of reactions in the cathode of Direct Methanol Fuel Cells (DMFCs). The properties of tungsten oxide (W18O49) nanowires were studied, and their adsorption capability was evaluated using density functional theory. The electronic properties of the bulk material and two different diameter nanowires were calculated. Moreover, the molecules involved in adsorption were carbon monoxide, methanol, oxygen and hydrogen peroxide. The results showed that the high adsorption energy produced is primarily the result of the adsorption of methanol, followed by that of hydrogen peroxide, carbon monoxide and oxygen. The negative adsorption energies obtained showed that the adsorption reactions were exothermic, and only oxygen was stable. Therefore, a new surface model was described where cobalt atoms were adsorbed on tungsten atoms on the surface of a 12 Å nanowire. In this new nanowire doped with cobalt atoms, the adsorption energy was reduced.

  4. Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell.

    PubMed

    Jing, Y; Qin, H; Liu, Q; Singh, M; Zhu, B

    2012-06-01

    Low temperature solid oxide fuel cell (LTSOFC, 300-600 degrees C) is developed with advantages compared to conventional SOFC (800-1000 degrees C). The electrodes with good catalytic activity, high electronic and ionic conductivity are required to achieve high power output. In this work, a LiNiCuZn oxides as anode and cathode catalyst is prepared by slurry method. The structure and morphology of the prepared LiNiCuZn oxides are characterized by X-ray diffraction and field emission scanning electron microscopy. The LiNiCuZn oxides prepared by slurry method are nano Li0.28Ni0.72O, ZnO and CuO compound. The nano-crystallites are congregated to form ball-shape particles with diameter of 800-1000 nm. The LiNiCuZn oxides electrodes exhibits high ion conductivity and low polarization resistance to hydrogen oxidation reaction and oxygen reduction reaction at low temperature. The LTSOFC using the LiNiCuZn oxides electrodes demonstrates good cell performance of 1000 mW cm(-2) when it operates at 470 degrees C. It is considered that nano-composite would be an effective way to develop catalyst for LTSOFC.

  5. Importance of OH(-) transport from cathodes in microbial fuel cells.

    PubMed

    Popat, Sudeep C; Ki, Dongwon; Rittmann, Bruce E; Torres, César I

    2012-06-01

    Cathodic limitation in microbial fuel cells (MFCs) is considered an important hurdle towards practical application as a bioenergy technology. The oxygen reduction reaction (ORR) needs to occur in MFCs under significantly different conditions compared to chemical fuel cells, including a neutral pH. The common reason cited for cathodic limitation is the difficulty in providing protons to the catalyst sites. Here, we show that it is not the availability of protons, but the transport of OH(-) from the catalyst layer to the bulk liquid that largely governs cathodic potential losses. OH(-) is a product of an ORR mechanism that has not been considered dominant before. The accumulation of OH(-) at the catalyst sites results in an increase in the local cathode pH, resulting in Nernstian concentration losses. For Pt-based gas-diffusion cathodes, using polarization curves developed in unbuffered and buffered solutions, we quantified this loss to be >0.3 V at a current density of 10 Am(-2) . We show that this loss can be partially overcome by replacing the Nafion binder used in the cathode catalyst layer with an anion-conducting binder and by providing additional buffer to the cathode catalyst directly in the form of CO(2) , which results in enhanced OH(-) transport. Our results provide a comprehensive analysis of cathodic limitations in MFCs and should allow researchers to develop and select materials for the construction of MFC cathodes and identify operational conditions that will help minimize Nernstian concentration losses due to pH gradients.

  6. Surface-Regulated Nano-SnO2/Pt3Co/C Cathode Catalysts for Polymer Electrolyte Fuel Cells Fabricated by a Selective Electrochemical Sn Deposition Method.

    PubMed

    Nagasawa, Kensaku; Takao, Shinobu; Nagamatsu, Shin-ichi; Samjeské, Gabor; Sekizawa, Oki; Kaneko, Takuma; Higashi, Kotaro; Yamamoto, Takashi; Uruga, Tomoya; Iwasawa, Yasuhiro

    2015-10-14

    We have achieved significant improvements for the oxygen reduction reaction activity and durability with new SnO2-nanoislands/Pt3Co/C catalysts in 0.1 M HClO4, which were regulated by a strategic fabrication using a new selective electrochemical Sn deposition method. The nano-SnO2/Pt3Co/C catalysts with Pt/Sn = 4/1, 9/1, 11/1, and 15/1 were characterized by STEM-EDS, XRD, XRF, XPS, in situ XAFS, and electrochemical measurements to have a Pt3Co core/Pt skeleton-skin structure decorated with SnO2 nanoislands at the compressive Pt surface with the defects and dislocations. The high performances of nano-SnO2/Pt3Co/C originate from efficient electronic modification of the Pt skin surface (site 1) by both the Co of the Pt3Co core and surface nano-SnO2 and more from the unique property of the periphery sites of the SnO2 nanoislands at the compressive Pt skeleton-skin surface (more active site 2), which were much more active than expected from the d-band center values. The white line peak intensity of the nano-SnO2/Pt3Co/C revealed no hysteresis in the potential up-down operations between 0.4 and 1.0 V versus RHE, unlike the cases of Pt/C and Pt3Co/C, resulting in the high ORR performance. Here we report development of a new class of cathode catalysts with two different active sites for next-generation polymer electrolyte fuel cells.

  7. Catalyst-infiltrated supporting cathode for thin-film SOFCs

    SciTech Connect

    Yamahara, Keiji; Jacobson, Craig P.; Visco, Steven J.; De Jonghe,Lutgard C.

    2004-04-12

    The fabrication and electrochemical performance of co-fired,LSM-SYSZ [i.e., La0.65Sr0.30MnO3 (LSM) - (Sc2O3)0.1(Y2O3)0.01(ZrO2)0.89] supported thin-film cells were examined using humidified hydrogen as a fuel. Co-firing of bi-layers and tri-layers was successful at 1250 C by optimizing the amount of carbon pore formers. A power density of a factor of 2.5 higher than that recently reported for the same type of cell at 800 C [3] was obtained for a cell with cobalt infiltration into the supporting cathode: the peak power densities were 455, 389, 285, 202, 141mW/cm2 at 800, 750, 700, 650, 600 C, respectively, and in most cases power densities at 0.7V exceeded more than 90 percent of the peak output. Increasing the cathode porosity from 43 to 53 percent improved peak power densities by as much as 1.3, shifting the diffusion limitation to high current densities. Cobalt infiltration into the support improved those by as much as a factor of 2 due to a significant reduction in non-ohmic resistance. These results demonstrate that cobalt catalyst-infiltrated LSM can be effective and low-cost supporting electrodes for reduced temperature, thin film SOFCs.

  8. Hydrothermal synthesis of highly crystalline RuS{sub 2} nanoparticles as cathodic catalysts in the methanol fuel cell and hydrochloric acid electrolysis

    SciTech Connect

    Li, Yanjuan; Li, Nan; Yanagisawa, Kazumichi; Li, Xiaotian; Yan, Xiao

    2015-05-15

    Highlights: • Highly crystalline RuS{sub 2} nanoparticles have been first synthesized by a “one-step” hydrothermal method. • The product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} with average particle size of 14.8 nm. • RuS{sub 2} nanoparticles were used as cathodic catalysts in methanol fuel cell and hydrochloric acid electrolysis. • The catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}. - Abstract: Highly crystalline ruthenium sulfide (RuS{sub 2}) nanoparticles have been first synthesized by a “one-step” hydrothermal method at 400 °C, using ruthenium chloride and thiourea as reactants. The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy/energy disperse spectroscopy (SEM/EDS), thermo gravimetric-differential thermal analyze (TG-DTA), transmission electron microscopy equipped with selected area electron diffraction (TEM/SAED). Fourier transform infrared spectra (IR), and X-ray photoelectron spectroscopy (XPS). XRD result illustrates that the highly crystalline product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} and the average particle size is 14.8 nm. SEM and TEM images display the products have irregular shape of 6–25 nm. XPS analyst indicates that the sulfur exists in the form of S{sub 2}{sup 2−}. Cyclic voltammetry (CV), rotating disk electrode (RDE), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements are conducted to evaluate the electrocatalytic activity and stability of the highly crystalline RuS{sub 2} nanoparticles in oxygen reduction reaction (ORR) for methanol fuel cell and hydrochloric acid electrolysis. The results illustrate that RuS{sub 2} is active towards oxygen reduction reaction. Although the activity of RuS{sub 2} is lower than that of Pt/C, the RuS{sub 2} catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}.

  9. Formic acid fuel cells and catalysts

    DOEpatents

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  10. Highly durable and active non-precious air cathode catalyst for zinc air battery

    NASA Astrophysics Data System (ADS)

    Chen, Zhu; Choi, Ja-Yeon; Wang, Haijiang; Li, Hui; Chen, Zhongwei

    The electrochemical stability of non-precious FeCo-EDA and commercial Pt/C cathode catalysts for zinc air battery have been compared using accelerated degradation test (ADT) in alkaline condition. Outstanding oxygen reduction reaction (ORR) stability of the FeCo-EDA catalyst was observed compared with the commercial Pt/C catalyst. The FeCo-EDA catalyst retained 80% of the initial mass activity for ORR whereas the commercial Pt/C catalyst retained only 32% of the initial mass activity after ADT. Additionally, the FeCo-EDA catalyst exhibited a nearly three times higher mass activity compared to that of the commercial Pt/C catalyst after ADT. Furthermore, single cell test of the FeCo-EDA and Pt/C catalysts was performed where both catalysts exhibited pseudolinear behaviour in the 12-500 mA cm -2 range. In addition, 67% higher peak power density was observed from the FeCo-EDA catalyst compared with commercial Pt/C. Based on the half cell and single cell tests the non-precious FeCo-EDA catalyst is a very promising ORR electrocatalyst for zinc air battery.

  11. Structural kinetics of a Pt/C cathode catalyst with practical catalyst loading in an MEA for PEFC operating conditions studied by in situ time-resolved XAFS.

    PubMed

    Ishiguro, Nozomu; Saida, Takahiro; Uruga, Tomoya; Sekizawa, Oki; Nagasawa, Kensaku; Nitta, Kiyofumi; Yamamoto, Takashi; Ohkoshi, Shin-ichi; Yokoyama, Toshihiko; Tada, Mizuki

    2013-11-21

    The structural kinetics of surface events on a Pt/C cathode catalyst in a membrane electrode assembly (MEA) with a practical catalyst loading (0.5 mgPt cm(-2)) for a polymer electrolyte fuel cell were investigated by in situ time-resolved X-ray absorption fine structure analysis (XAFS; time resolution: 100 ms) for the first time. The rate constants of structural changes in the Pt/C cathode catalyst in the MEA during voltage cycling were successfully estimated. For voltage-cycling processes, all reactions (electrochemical reactions and structural changes in the Pt catalyst) in the MEA were found to be much faster than those in an MEA with a thick cathode catalyst layer, but the in situ time-resolved XAFS analysis revealed that significant time lags similarly existed between the electrochemical reactions and the structural changes in the Pt cathode catalyst. The time-resolved XAFS also revealed differences in the structural kinetics of the Pt/C cathode catalyst for the voltage-cycling processes under N2 and air flows at the cathode.

  12. Fuel cell development for transportation: Catalyst development

    SciTech Connect

    Doddapaneni, N.

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  13. Highly Durable Supportless Pt Hollow Spheres Designed for Enhanced Oxygen Transport in Cathode Catalyst Layers of Proton Exchange Membrane Fuel Cells.

    PubMed

    Dogan, Didem C; Cho, Seonghun; Hwang, Sun-Mi; Kim, Young-Min; Guim, Hwanuk; Yang, Tae-Hyun; Park, Seok-Hee; Park, Gu-Gon; Yim, Sung-Dae

    2016-10-10

    Supportless Pt catalysts have several advantages over conventional carbon-supported Pt catalysts in that they are not susceptible to carbon corrosion. However, the need for high Pt loadings in membrane electrode assemblies (MEAs) to achieve state-of-the-art fuel cell performance has limited their application in proton exchange membrane fuel cells. Herein, we report a new approach to the design of a supportless Pt catalyst in terms of catalyst layer architecture, which is crucial for fuel cell performance as it affects water management and oxygen transport in the catalyst layers. Large Pt hollow spheres (PtHSs) 100 nm in size were designed and prepared using a carbon template method. Despite their large size, the unique structure of the PtHSs, which are composed of a thin-layered shell of Pt nanoparticles (ca. 7 nm thick), exhibited a high surface area comparable to that of commercial Pt black (PtB). The PtHS structure also exhibited twice the durability of PtB after 2000 potential cycles (0-1.3 V, 50 mV/s). A MEA fabricated with PtHSs showed significant improvement in fuel cell performance compared to PtB-based MEAs at high current densities (>800 mA/cm(2)). This was mainly due to the 2.7 times lower mass transport resistance in the PtHS-based catalyst layers compared to that in PtB, owing to the formation of macropores between the PtHSs and high porosity (90%) in the PtHS catalyst layers. The present study demonstrates a successful example of catalyst design in terms of catalyst layer architecture, which may be applied to a real fuel cell system.

  14. Evaluation of bimetallic catalyst PtAg/C as a glucose-tolerant oxygen reduction cathode

    NASA Astrophysics Data System (ADS)

    Guerra-Balcázar, M.; Cuevas-Muñiz, F. M.; Álvarez-Contreras, L.; Arriaga, L. G.; Ledesma-García, J.

    2012-01-01

    PtAg/C nanoparticles were synthesized by chemical reduction and evaluated for the oxygen reduction reaction (ORR) in the absence and presence of glucose. PtAg/C catalyst formed onion-like layered structures, which are uniformly distributed on the support. PtAg/C showed activity comparable to that of Pt/C ETEK for ORR. Further, the catalyst exhibited high selectivity for ORR in the presence of glucose. PtAg/C was evaluated as cathode in a microfluidic fuel cell operated with high concentration of glucose (100 mM) as fuel. The results demonstrated that the use of PtAg/C as cathode electrode achieved higher selectivity and better performance compared with Pt/C catalyst.

  15. High performance, high durability non-precious metal fuel cell catalysts

    DOEpatents

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  16. An insight into cathode options for microbial fuel cells.

    PubMed

    Lefebvre, O; Al-Mamun, A; Ooi, W K; Tang, Z; Chua, D H C; Ng, H Y

    2008-01-01

    Microbial fuel cell (MFC) is an emerging and promising technology, particularly in the field of wastewater treatment. The MFC capability of achieving organic removal and generating in situ electricity could make it an attractive alternative wastewater treatment technology over conventional treatment technologies. However, MFC is still far from being economically viable, especially because of the cost of the platinum (Pt) catalyst that makes possible the reaction at the cathode. In this study, we tested alternative cathode catalysts, namely sputter-deposited Cobalt (Co) and denitrifying bacteria (biocathode). The performance of these innovative cathodes was compared with that of classic Pt-cathodes. Co competed well with Pt, but further research is still required for biocathodes. However, biocathodes MFC have showed promise.

  17. Effect of Particle Size and Operating Conditions on Pt3Co PEMFC Cathode Catalyst Durability

    DOE PAGES

    Gummalla, Mallika; Ball, Sarah; Condit, David; ...

    2015-05-29

    The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC) cathodes with Pt3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm) with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA) and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes with themore » smallest Pt3Co particle size was the highest and that of the largest Pt3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s), the relative improvement in performance of the cathode based on 8.1 nm Pt3Co over the 4.9 nm Pt3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA) of the decayed membrane-electrode assembly (MEA) showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.« less

  18. Ex situ testing method to characterize cathode catalysts degradation under simulated start-up/shut-down conditions - A contribution to polymer electrolyte membrane fuel cell benchmarking

    NASA Astrophysics Data System (ADS)

    Marcu, A.; Toth, G.; Kundu, S.; Colmenares, L. C.; Behm, R. J.

    2012-10-01

    The paper introduces a novel ex situ test procedure that was developed to quantify the ageing of catalyst layers under critical automotive fuel cell conditions during start-up/shut-down phases. It is based on liquid electrolyte measurements, using a thin film catalyst electrode. The overall degradation under start-up/shut-down conditions is assessed by the decay in electrochemically active surface area. Furthermore, contributions from different processes leading to catalyst degradation such as Pt dissolution and Pt particle growth/agglomeration can be separated. Finally, using a differential electrochemical mass spectrometry (DEMS) set-up, also the extent and role of carbon corrosion under these conditions is accessible. The potential of this, compared to in situ fuel cell stack tests, rather fast and less costly ex situ test procedure is demonstrated in measurements using a commercial, graphitized carbon-supported Pt catalyst. The results of the degradation test and in particular the contributions from different degradation processes such as Pt dissolution, Pt particle growth/agglomeration and carbon corrosion during different stages of catalyst ageing are discussed.

  19. N-type Cu2O doped activated carbon as catalyst for improving power generation of air cathode microbial fuel cells.

    PubMed

    Zhang, Xi; Li, Kexun; Yan, Pengyu; Liu, Ziqi; Pu, Liangtao

    2015-01-01

    A novel n-type Cu2O doped activated carbon (AC) air cathode (Cu/AC) was developed as an alternative to Pt electrode for oxygen reduction in microbial fuel cells (MFCs). The maximum power density of MFCs using this novel air cathode was as high as 1390±76mWm(-2), almost 59% higher than the bare AC air cathode. Specifically, the resistance including total resistance and charge transfer resistance significantly decreased comparing to the control. Tafel curve also showed the faster electro-transfer kinetics of Cu/AC with exchange current density of 1.03×10(-3)Acm(-2), which was 69% higher than the control. Ribbon-like Cu2O was deposited on the surface of AC with the mesopore surface area increasing. Cubic Cu2O crystals exclusively expose (111) planes with the interplanar crystal spacing of 2.48Å, which was the dominate active sites for oxygen reduction reaction (ORR). N-type Cu2O with oxygen vacancies played crucial roles in electrochemical catalytic activity.

  20. Simple fabrication of pineapple root-like palladium-gold catalysts as the high-efficiency cathode in direct peroxide-peroxide fuel cells.

    PubMed

    Wang, Xin; Ye, Ke; Sun, Ce; Zhang, Hongyu; Zhu, Kai; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2017-07-15

    Pd-Au/TiC electrodes with various three-dimensional structures are obtained by the pulsed potential electro-deposition in PdCl2/HAuCl4 electrolytes. The morphologies of Pd-Au/TiC composite catalysts are significantly dependent on the component of deposited solutions. The surface appearance of Pd-Au catalysts changes from rime-shaped structure, to feather-like construction, then to pineapple root-like structure and finally to flower-like configuration with the increase of PdCl2 content in electrolytes. These particular three-dimensional structures may be very suitable for H2O2 electro-reduction, which assures a high utilization of Pd-Au catalysts and provides a large specific surface area. The electro-catalytic activities of H2O2 reduction on the Pd-Au/TiC electrodes improve as increasing the Pd content in Pd-Au alloy catalysts. The pineapple root-like Pd5Au1/TiC electrode reveals remarkably excellent electrochemical property and desirable stability for catalyzing H2O2 reduction in acid media. The direct peroxide-peroxide fuel cells with a 10 cm(3) min(-1) flow rate display the open circuit voltage (OCV) of 0.85V and the peak power density of 56.5mWcm(-2) at 155mAcm(-2) with desirable cell stability, which is much higher than those previously reported.

  1. Direct fabrication of metal-free hollow graphene balls with a self-supporting structure as efficient cathode catalysts of fuel cell

    NASA Astrophysics Data System (ADS)

    Lu, Yanqi; Liu, Mingda; Nie, Huagui; Gu, Cancan; Liu, Ming; Yang, Zhi; Yang, Keqin; Chen, Xi'an; Huang, Shaoming

    2016-06-01

    Despite the good progress in developing carbon catalysts for oxygen reduction reaction (ORR), the current metal-free carbon catalysts are still far from satisfactory for large-scale applications of fuel cell. Developing hollow graphene balls with a self-supporting structure is considered to be an ideal method to inhibit graphene stacking and improve their catalytic performance. Herein, we fabricated metal-free hollow graphene balls with a self-supporting structure, through using a new strategy that involves direct metal-free catalytic growth from assembly of SiO2 spheres. To our knowledge, although much researches involving the synthesis of graphene balls have been reported, investigations into the direct metal-free catalytic growth of hollow graphene balls are rare. Furthermore, the electrocatalytic performance shows that the resulting hollow graphene balls have significantly high catalytic activity. More importantly, such catalysts also possess much improved stability and better methanol tolerance in alkaline media during the ORR compared with commercial Pt/C catalysts. The outstanding performances coupled with an easy and inexpensive preparing method indicated the great potential of the hollow graphene balls with a self-supporting structure in large-scale applications of fuel cell.

  2. Catalyst and electrode research for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; King, R. B.

    1987-01-01

    An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.

  3. Cathode for aluminum producing electrolytic cell

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  4. An improved palladium-based DMFCs cathode catalyst.

    PubMed

    Li, Huanqiao; Xin, Qin; Li, Wenzhen; Zhou, Zhenhua; Jiang, Luhua; Yang, Shaohua; Sun, Gongquan

    2004-12-07

    A novel carbon-supported palladium-rich Pd3Pt1/C catalyst prepared by a modified polyol process showed a better cell performance than Pt/C in direct methanol fuel cells, which may be attributed to palladium's inactivity to methanol electro-oxidation while exhibiting good performance to oxygen reduction reaction.

  5. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Ahn, Yongtae; Zhang, Fang; Logan, Bruce E.

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m-2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation.

  6. Catalyst morphology matters for lithium-oxygen battery cathodes

    NASA Astrophysics Data System (ADS)

    Oakes, Landon; Muralidharan, Nitin; Cohn, Adam P.; Pint, Cary L.

    2016-12-01

    The effectiveness of using catalyst nanoparticles to reduce the overpotential and energy efficiency of lithium-oxygen (or lithium-air) batteries (LOBs) is usually attributed to the inherent catalytic properties of individual nanoparticles. Here, we demonstrate that the morphology of the catalyst layer is equally important in maintaining integrity of the catalyst coating during product formation in LOBs. We demonstrate this by comparing the performance of smooth, conformal coated Mn2O3 catalyst nanoparticles prepared by electric field-assisted deposition, and more irregular coatings using conventional film assembly techniques both on three-dimensional mesh substrates. Smooth coatings lead to an improved overpotential of 50 mV during oxygen reduction and 130 mV during oxygen evolution in addition to a nearly 2X improvement in durability compared to the more irregular films. In situ electrochemical impedance spectroscopy combined with imaging studies elucidates a mechanism of morphology-directed deactivation of catalyst layers during charging and discharging that must be overcome at practical electrode scales to achieve cell-level performance targets in LOBs.

  7. Impact of liquid water on oxygen reaction in cathode catalyst layer of proton exchange membrane fuel cell: A simple and physically sound model

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxian; Gao, Yuan

    2016-06-01

    When cells work at high current density, liquid water accumulates in their catalyst layer (CL) and the gaseous oxygen could dissolve into the water and the ionomer film simultaneously; their associated dissolved concentrations in equilibrium with the gaseous oxygen are also different. Based on a CL acquired using tomography, we present new methods in this paper to derive agglomerate models for partly saturated CL by viewing the movement and reaction of the dissolved oxygen in the two liquids (water and ionomer) and the agglomerate as two independent random processes. Oxygen dissolved in the water moves differently from oxygen dissolved in the ionomer, and to make the analysis tractable, we use an average distribution function to describe the average movement of all dissolved oxygen. A formula is proposed to describe this average distribution function, which, in combination with the exponential distribution assumed in the literature for oxygen reaction, leads to a simple yet physically sound agglomerate model. The model has three parameters which can be directly calculated from CL structure rather than by calibration. We explain how to calculate these parameters under different water contents for a given CL structure, and analyse the impact of liquid water on cell performance.

  8. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, Fraser

    1987-01-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  9. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Walsh, Fraser

    1987-03-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  10. Cathode for molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Mrazek, Franklin C.

    1990-01-01

    A porous sintered cathode for a molten carbonate fuel cell and method of making same, the cathode including a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell, the cathode having a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.

  11. Fuel cell development for transportation: Catalyst development

    SciTech Connect

    Doddapaneni, N.; Ingersoll, D.

    1996-12-31

    Fuel cells are being considered as alternative power sources for transportation and stationary applications. The degradation of commonly used electrode catalysts (e.g. Pt, Ag, and others) and corrosion of carbon substrates are making commercialization of fuel cells incorporating present day technologies economically problematic. Furthermore, due to the instability of the Pt catalyst, the performance of fuel cells declines on long-term operation. When methanol is used as the fuel, a voltage drop, as well as significant thermal management problems can be encountered, the later being due to chemical oxidation of methanol at the platinized carbon at the cathode. Though extensive work was conducted on platinized electrodes for both the oxidation and reduction reactions, due to the problems mentioned above, fuel cells have not been fully developed for widespread commercial use. Several investigators have previously evaluated metal macrocyclic complexes as alternative catalysts to Pt and Pt/Ru in fuel cells. Unfortunately, though they have demonstrated catalytic activity, these materials were found to be unstable on long term use in the fuel cell environment. In order to improve the long-term stability of metal macrocyclic complexes, we have chemically bonded these complexes to the carbon substrate, thereby enhancing their catalytic activity as well as their chemical stability in the fuel cell environment. We have designed, synthesized, and evaluated these catalysts for O{sub 2} reduction, H{sub 2} oxidation, and direct methanol oxidation in Proton Exchange Membrane (PEM) and aqueous carbonate fuel cells. These catalysts exhibited good catalytic activity and long-term stability. In this paper we confine our discussion to the initial performance results of some of these catalysts in H{sub 2}/O{sub 2} PEM fuel cells, including their long-term performance characteristics as well as CO poisoning effects on these catalysts.

  12. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect

    Lei Yang; Ze Liu; Shizhone Wang; Jaewung Lee; Meilin Liu

    2008-04-30

    The main objective of this DOE project is to demonstrate that the performance and long-term stability of the state-of-the-art LSCF cathode can be enhanced by a catalytically active coating (e.g., LSM or SSC). We have successfully developed a methodology for reliably evaluating the intrinsic surface catalytic properties of cathode materials. One of the key components of the test cell is a dense LSCF film, which will function as the current collector for the electrode material under evaluation to eliminate the effect of ionic and electronic transport. Since it is dense, the effect of geometry would be eliminated as well. From the dependence of the electrode polarization resistance on the thickness of a dense LSCF electrode and on partial pressure of oxygen, we have confirmed that the surface catalytic activity of LSCF limits the performances of LSCF-based cathodes. Further, we have demonstrated, using test cells of different configurations, that the performance of LSCF-based electrodes can be significantly enhanced by infiltration of a thin film of LSM or SSC. In addition, the stability of LSCF-based cathodes was also improved by infiltration of LSM or SSC. While the concept feasibility of the electrode architecture is demonstrated, many details are yet to be determined. For example, it is not clear how the surface morphology, composition, and thickness of the coatings change under operating conditions over time, how these changes influence the electrochemical behavior of the cathodes, and how to control the microscopic details of the coatings in order to optimize the performance. The selection of the catalytic materials as well as the detailed microstructures of the porous LSCF and the catalyst layer may critically impact the performance of the proposed cathodes. Further, other fundamental questions still remain; it is not clear why the degradation rates of LSCF cathodes are relatively high, why a LSM coating improves the stability of LSCF cathodes, which catalysts

  13. Fuel cell cathode air filters: Methodologies for design and optimization

    NASA Astrophysics Data System (ADS)

    Kennedy, Daniel M.; Cahela, Donald R.; Zhu, Wenhua H.; Westrom, Kenneth C.; Nelms, R. Mark; Tatarchuk, Bruce J.

    Proton exchange membrane (PEM) fuel cells experience performance degradation, such as reduction in efficiency and life, as a result of poisoning of platinum catalysts by airborne contaminants. Research on these contaminant effects suggests that the best possible solution to allowing fuel cells to operate in contaminated environments is by filtration of the harmful contaminants from the cathode air. A cathode air filter design methodology was created that connects properties of cathode air stream, filter design options, and filter footprint, to a set of adsorptive filter parameters that must be optimized to efficiently operate the fuel cell. Filter optimization requires a study of the trade off between two causal factors of power loss: first, a reduction in power production due to poisoning of the platinum catalyst by chemical contaminants and second, an increase in power requirements to operate the air compressor with a larger pressure drop from additional contaminant filtration. The design methodology was successfully applied to a 1.2 kW fuel cell using a programmable algorithm and predictions were made about the relationships between inlet concentration, breakthrough time, filter design, pressure drop, and compressor power requirements.

  14. Effect of Particle Size and Operating Conditions on Pt3Co PEMFC Cathode Catalyst Durability

    SciTech Connect

    Gummalla, Mallika; Ball, Sarah; Condit, David; Rasouli, Somaye; Yu, Kang; Ferreira, Paulo; Myers, Deborah; Yang, Zhiwei

    2015-05-29

    The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC) cathodes with Pt3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm) with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA) and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes with the smallest Pt3Co particle size was the highest and that of the largest Pt3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s), the relative improvement in performance of the cathode based on 8.1 nm Pt3Co over the 4.9 nm Pt3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA) of the decayed membrane-electrode assembly (MEA) showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis

  15. Catalyst inks and method of application for direct methanol fuel cells

    DOEpatents

    Zelenay, Piotr; Davey, John; Ren, Xiaoming; Gottesfeld, Shimshon; Thomas, Sharon C.

    2004-02-24

    Inks are formulated for forming anode and cathode catalyst layers and applied to anode and cathode sides of a membrane for a direct methanol fuel cell. The inks comprise a Pt catalyst for the cathode and a Pt--Ru catalyst for the anode, purified water in an amount 4 to 20 times that of the catalyst by weight, and a perfluorosulfonic acid ionomer in an amount effective to provide an ionomer content in the anode and cathode surfaces of 20% to 80% by volume. The inks are prepared in a two-step process while cooling and agitating the solutions. The final solution is placed in a cooler and continuously agitated while spraying the solution over the anode or cathode surface of the membrane as determined by the catalyst content.

  16. Cells having cathodes containing polycarbon disulfide materials

    DOEpatents

    Okamoto, Yoshi; Skotheim, Terje A.; Lee, Hung S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS.sub.x).sub.n, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode.

  17. Cells having cathodes containing polycarbon disulfide materials

    DOEpatents

    Okamoto, Y.; Skotheim, T.A.; Lee, H.S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS{sub x}){sub n}, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode. 5 figs.

  18. Cathodes for lithium-air battery cells with acid electrolytes

    SciTech Connect

    Xing, Yangchuan; Huang, Kan; Li, Yunfeng

    2016-07-19

    In various embodiments, the present disclosure provides a layered metal-air cathode for a metal-air battery. Generally, the layered metal-air cathode comprises an active catalyst layer, a transition layer bonded to the active catalyst layer, and a backing layer bonded to the transition layer such that the transition layer is disposed between the active catalyst layer and the backing layer.

  19. Electrical performance of low cost cathodes prepared by plasma sputtering deposition in microbial fuel cells.

    PubMed

    Lefebvre, Olivier; Tang, Zhe; Fung, Martin P H; Chua, Daniel H C; Chang, In Seop; Ng, How Y

    2012-01-15

    Microbial fuel cells (MFCs) could potentially be utilized for a variety of applications in the future from biosensors to wastewater treatment. However, the amount of costly platinum (Pt) used as a catalyst should be minimized via innovative deposition methods such as sputtering. In addition, alternative and low-cost catalysts, such as cobalt (Co), should be sought. In this study, ultra low Pt or Co cathodes (0.1 mg cm(-2)) were manufactured by plasma sputtering deposition and scanning electron micrographs revealed nano-clusters of metal catalyst in a porous structure favorable to the three-phase heterogeneous catalytic reaction. When operated in single-chamber air-cathode MFCs, sputtered-Co cathodes generated on average the same power as sputtered-Pt cathodes (0.27 mW cell(-1)) and only 27% less than conventional Pt-ink cathodes with a catalyst load 5 times higher (0.5 mg cm(-2)). Finally, microscopy and molecular analyses showed evidence of biocatalysis activity on metal-free cathodes.

  20. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    DOE PAGES

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; ...

    2016-03-10

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explainmore » elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect we considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). We found simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.« less

  1. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-05-01

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). Simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.

  2. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    SciTech Connect

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-03-10

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect we considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). We found simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.

  3. Improved Cathode Structure for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been

  4. A review on air cathodes for zinc-air fuel cells

    NASA Astrophysics Data System (ADS)

    Neburchilov, Vladimir; Wang, Haijiang; Martin, Jonathan J.; Qu, Wei

    This paper reviews the compositions, design and methods of fabrication of air cathodes for alkali zinc-air fuel cells (ZAFCs), one of the few successfully commercialized fuel cells. The more promising compositions for air cathodes are based on individual oxides, or mixtures of such, with a spinel, perovskite, or pyrochlore structure: MnO 2, Ag, Co 3O 4, La 2O 3, LaNiO 3, NiCo 2O 4, LaMnO 3, LaNiO 3, etc. These compositions provide the optimal balance of ORR activity and chemical stability in an alkali electrolyte. The sol-gel and reverse micelle methods supply the most uniform distribution of the catalyst on carbon and the highest catalyst BET surface area. It is shown that the design of the air cathode, including types of carbon black, binding agents, current collectors, Teflon membranes, thermal treatment of the GDL, and catalyst layers, has a strong effect on performance.

  5. Electricity generation in a microbial fuel cell with a microbially catalyzed cathode.

    PubMed

    Zhang, Jin-Na; Zhao, Qing-Liang; Aelterman, Peter; You, Shi-Jie; Jiang, Jun-Qiu

    2008-10-01

    A microbial fuel cell using aerobic microorganisms as the cathodic catalysts is described. By using anaerobic sludge in the anode and aerobic sludge in the cathode as inocula, the microbial fuel cell could be started up after a short lag time of 9 days, generating a stable voltage of 0.324 V (R (ex) = 500 Omega). At an aeration rate of 300 ml min(-1) in the cathode, a maximum volumetric power density of up to 24.7 W m(-3) (117.2 A m(-3)) was reached. This research demonstrates an economic system for recovering electrical energy from organic compounds.

  6. Hydrogen production in a microbial electrolysis cell with nickel-based gas diffusion cathodes

    NASA Astrophysics Data System (ADS)

    Manuel, M.-F.; Neburchilov, V.; Wang, H.; Guiot, S. R.; Tartakovsky, B.

    Gas diffusion cathodes with Ni alloy and Ni catalysts manufactured by chemical deposition were tested for H 2 production in a microbial electrolysis cell (MEC). In a continuous flow MEC, multi-component cathodes containing Ni, Mo, Cr, and Fe, at a total catalyst load of 1 mg cm -2 on carbon support demonstrated stable H 2 production at rates of 2.8 - 3.7 L LR-1 d-1 with only 5% methane in the gas stream. Furthermore, a Ni-only gas diffusion cathode, with a Ni load of 0.6 mg cm -2, demonstrated a H 2 production rate of 4.1 L LR-1 d-1 . Overall, H 2 production was found to be proportional to the Ni load implying that inexpensive gas diffusion cathodes prepared by chemical deposition of Ni can be successfully used for continuous production of H 2 in a MEC.

  7. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    PubMed Central

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries. PMID:25563733

  8. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    NASA Astrophysics Data System (ADS)

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries.

  9. On the actual cathode mixed potential in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Zago, M.; Bisello, A.; Baricci, A.; Rabissi, C.; Brightman, E.; Hinds, G.; Casalegno, A.

    2016-09-01

    Methanol crossover is one of the most critical issues hindering commercialization of direct methanol fuel cells since it leads to waste of fuel and significantly affects cathode potential, forming a so-called mixed potential. Unfortunately, due to the sluggish anode kinetics, it is not possible to obtain a reliable estimation of cathode potential by simply measuring the cell voltage. In this work we address this limitation, quantifying the mixed potential by means of innovative open circuit voltage (OCV) tests with a methanol-hydrogen mixture fed to the anode. Over a wide range of operating conditions, the resulting cathode overpotential is between 250 and 430 mV and is strongly influenced by methanol crossover. We show using combined experimental and modelling analysis of cathode impedance that the methanol oxidation at the cathode mainly follows an electrochemical pathway. Finally, reference electrode measurements at both cathode inlet and outlet provide a local measurement of cathode potential, confirming the reliability of the innovative OCV tests and permitting the evaluation of cathode potential up to typical operating current. At 0.25 A cm-2 the operating cathode potential is around 0.85 V and the Ohmic drop through the catalyst layer is almost 50 mV, which is comparable to that in the membrane.

  10. Modeling of PEM fuel cell Pt/C catalyst degradation

    NASA Astrophysics Data System (ADS)

    Bi, Wu; Fuller, Thomas F.

    Pt/C catalyst degradation remains as one of the primary limitations for practical applications of proton exchange membrane (PEM) fuel cells. Pt catalyst degradation mechanisms with the typically observed Pt nanoparticle growth behaviors have not been completely understood and predicted. In this work, a physics-based Pt/C catalyst degradation model is proposed with a simplified bi-modal particle size distribution. The following catalyst degradation processes were considered: (1) dissolution of Pt and subsequent electrochemical deposition on Pt nanoparticles in cathode; (2) diffusion of Pt ions in the membrane electrode assembly (MEA); and (3) Pt ion chemical reduction in membrane by hydrogen permeating through the membrane from the negative electrode. Catalyst coarsening with Pt nanoparticle growth was clearly demonstrated by Pt mass exchange between small and large particles through Pt dissolution and Pt ion deposition. However, the model is not adequate to predict well the catalyst degradation rates including Pt nanoparticle growth, catalyst surface area loss and cathode Pt mass loss. Additional catalyst degradation processes such as new Pt cluster formation on carbon support and neighboring Pt clusters coarsening was proposed for further simulative investigation.

  11. Low temperature aluminum reduction cell using hollow cathode

    DOEpatents

    Brown, Craig W.; Frizzle, Patrick B.

    2002-08-20

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. A plurality of non-consumable anodes are disposed substantially vertically in the electrolyte along with a plurality of monolithic hollow cathodes. Each cathode has a top and bottom and the cathodes are disposed vertically in the electrolyte and the anodes and the cathodes are arranged in alternating relationship. Each of the cathodes is comprised of a first side facing a first opposing anode and a second side facing a second opposing anode. The first and second sides are joined by ends to form a reservoir in the hollow cathode for collecting aluminum therein deposited at the cathode.

  12. Cathode for an electrochemical cell

    DOEpatents

    Bates, John B.; Dudney, Nancy J.; Gruzalski, Greg R.; Luck, Christopher F.

    2001-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  13. A cobalt polypyrrole composite catalyzed cathode for the direct borohydride fuel cell

    NASA Astrophysics Data System (ADS)

    Qin, H. Y.; Liu, Z. X.; Yin, W. X.; Zhu, J. K.; Li, Z. P.

    A cobalt polypyrrole carbon (Co-PPY-C) composite has been attempted for use as a cathode catalyst in a direct borohydride fuel cell (DBFC). A Co-PPY-C composite has been fabricated in laboratory and characterized by the field emission scanning electron microscopy, transmission electron microscopy, as well as X-ray photoemission spectroscopy. Fabricated Co-PPY-C catalyst demonstrates good short-term durability and activity which are comparable to those obtained from the Pt/C catalyst. A maximum power density of 65 mW cm -2 has been achieved at ambient conditions. This research concludes that metallo-organic coordination compounds would be potential candidates for use as cathode catalysts in the DBFC.

  14. Performance and stability of different cathode base materials for use in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Janicek, Anthony; Fan, Yanzhen; Liu, Hong

    2015-04-01

    Metal supporting materials are increasingly being used as base materials for microbial fuel cell (MFC) cathodes. However, the potential for corrosion may limit their use as base materials of MFCs during scale-up and long-term operation. In this study, the electrochemical performance, power generation in MFCs, hydrostatic pressure tolerance, and stability of activated carbon (catalyst) cathodes with carbon cloth or different size metal mesh as base materials are investigated. Electrochemical testing results show that the finest stainless steel mesh (250 × 250 openings per inch) outperforms carbon cloth cathodes by 10-40% at current densities ranging from 6 to 11.2 A m-2 over the typical cathode operating range of 0.1 V-0 V. When tested in MFCs, however, carbon cloth based cathodes out perform all stainless steel mesh cathodes by as much as 34%, reaching 1.72 W m-2; probably due to the corrosion and salt build-up on the surface of the stainless steel mesh cathodes. Carbon cloth cathodes also maintained high static pressure heads of 1.9 m. The high electrochemical performance, hydrostatic pressure tolerance, and corrosion resistance of carbon cloth suggest that carbon fiber based materials may be more suitable than metal based materials for use as MFC cathodes base material for some applications.

  15. Biotic conversion of sulphate to sulphide and abiotic conversion of sulphide to sulphur in a microbial fuel cell using cobalt oxide octahedrons as cathode catalyst.

    PubMed

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli; Kumar, Senthil

    2017-02-08

    Varying chemical oxygen demand (COD) and sulphate concentrations in substrate were used to determine reaction kinetics and mass balance of organic matter and sulphate transformation in a microbial fuel cell (MFC). MFC with anodic chamber volume of 1 L, fed with wastewater having COD of 500 mg/L and sulphate of 200 mg/L, could harvest power of 54.4 mW/m(2), at a Coulombic efficiency of 14%, with respective COD and sulphate removals of 90 and 95%. Sulphide concentration, even up to 1500 mg/L, did not inhibit anodic biochemical reactions, due to instantaneous abiotic oxidation to sulphur, at high inlet sulphate. Experiments on abiotic oxidation of sulphide to sulphur revealed maximum oxidation taking place at an anodic potential of -200 mV. More than 99% sulphate removal could be achieved in a MFC with inlet COD/sulphate of 0.75, giving around 1.33 kg/m(3) day COD removal. Bioelectrochemical conversion of sulphate facilitating sulphur recovery in a MFC makes it an interesting pollution abatement technique.

  16. 15N solid-state nuclear magnetic resonance study of pyrolyzed metal-polyaniline cathode catalysts for oxygen reduction in fuel cells

    NASA Astrophysics Data System (ADS)

    Kuroki, Shigeki; Hosaka, Yo; Yamauchi, Chiharu; Nagata, Shinsuke; Sonoda, Mayu

    2015-09-01

    The oxygen reduction reaction (ORR) activity of pyrolyzed metal-free and metal (Mn, Fe, Co, Ni and Cu)-containing polyaniline (PANI) in polymer electrolyte fuel cell (PEFC) was studied. The metal-free PANI800 shows quite poor ORR catalytic activity, whilst the metal-containing PANIMe800 display a better ORR activity. The 15N CP/MAS NMR spectra of PANINi800 and PANICu800 show one weak peak at 118 ppm and there is no peak observed in PANIFe800, against that of PANI800, PANIMn800, PANICo800 and PANINi800 show two peaks at 273 and 118 ppm assigned to the pyridinic and pyridinium nitrogens. It is because of the paramagnetic effect of metal ions. The 15N spin-echo NMR spectra of PANIMe800 with fast recycle delay show the peaks at 140 and 270 ppm assigned to the graphitic and pyridinic nitrogens, against that of PANI800 shows no peak. The spectra of PANIMn800, PANICo800, PANINi800 and PANICu600 also contain a very broaden peak at 430 ppm assigned to the nitrogen with Fermi-contact effect from metal ions. The spectra of PANIFe800 show some spinning side bands and the average Fe3+-15N distance can be calculated. The some amount of iron ion are relieved and average Fe3+-15N distance increase after acid washing and the ORR activity decreases.

  17. High surface area stainless steel brushes as cathodes in microbial electrolysis cells.

    PubMed

    Call, Douglas F; Merrill, Matthew D; Logan, Bruce E

    2009-03-15

    Microbial electrolysis cells (MECs) are an efficient technology for generating hydrogen gas from organic matter, but alternatives to precious metals are needed for cathode catalysts. We show here that high surface area stainless steel brush cathodes produce hydrogen at rates and efficiencies similar to those achieved with platinum-catalyzed carbon cloth cathodes in single-chamber MECs. Using a stainless steel brush cathode with a specific surface area of 810 m2/m3, hydrogen was produced at a rate of 1.7 +/- 0.1 m3-H2/m3-d (current density of 188 +/- 10 A/m3) at an applied voltage of 0.6 V. The energy efficiency relative to the electrical energy input was 221 +/- 8%, and the overall energy efficiency was 78 +/- 5% based on both electrical energy and substrate utilization. These values compare well to previous results obtained using platinum on flat carbon cathodes in a similar system. Reducing the cathode surface area by 75% decreased performance from 91 +/- 3 A/m3 to 78 +/- 4 A/m3. A brush cathode with graphite instead of stainless steel and a specific surface area of 4600 m2/m3 generated substantially less current (1.7 +/- 0.0 A/m3), and a flat stainless steel cathode (25 m2/m3) produced 64 +/- 1 A/m3, demonstrating that both the stainless steel and the large surface area contributed to high current densities. Linear sweep voltammetry showed that the stainless steel brush cathodes both reduced the overpotential needed for hydrogen evolution and exhibited a decrease in overpotential over time as a result of activation. These results demonstrate for the first time that hydrogen production can be achieved at rates comparable to those with precious metal catalysts in MECs without the need for expensive cathodes.

  18. Proton exchange membrane fuel cell cathode contamination - Acetylene

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; St-Pierre, Jean

    2015-04-01

    Acetylene adsorption on PEMFC electrodes and contamination in single cells are investigated with 300 ppm acetylene at a cathode held at 80 °C. The results of adsorption experiments suggest that acetylene adsorbs readily on electrodes and is reduced to ethylene and ethane under an open circuit potential of H2/N2, as the adsorbates can be electro-oxidized at high potentials. The cell voltage response shows that 300 ppm acetylene results in a cell performance loss of approximately 88%. The voltage degradation curve is divided into two stages by an inflection point, which suggests that potential-dependent processes are involved in acetylene poisoning. These potential-dependent processes may include acetylene oxidation and reduction as well as accumulation of intermediates on the electrode surface. Electrochemical impedance spectroscopy analysis suggests that acetylene affects the oxygen reduction reaction and may also affect mass transport processes. Acetylene also may be reduced in the steady poisoning state of the operating cell. After neat air operation, the cyclic voltammetry results imply that the cathode catalyst surface is almost completely restored, with no contaminant residues remaining in the MEA. Linear scanning voltammetry measurements show no change in hydrogen crossover caused by contamination, and polarization curves confirm complete recovery of cell performance.

  19. Fuel cell applications for novel metalloporphyrin catalysts

    SciTech Connect

    Ryba, G.; Shelnutt, J.; Doddapaneni, N.; Zavadil, K.

    1997-04-01

    This project utilized Computer-Aided Molecular Design (CAMD) to develop a new class of metalloporphyrin materials for use as catalysts for two fuel cell reactions. The first reaction is the reduction of oxygen at the fuel cell cathode, and this reaction was the main focus of the research. The second reaction we attempted to catalyze was the oxidation of methanol at the anode. Two classes of novel metalloporphyrins were developed. The first class comprised the dodecaphenylporphyrins whose steric bulk forces them into a non-planar geometry having a pocket where oxygen or methanol is more tightly bound to the porphyrin than it is in the case of planar porphyrins. Significant improvements in the catalytic reduction of oxygen by the dodecaphenyl porphyrins were measured in electrochemical cells. The dodecaphenylporphyrins were further modified by fluorinating the peripheral phenyl groups to varying degrees. The fluorination strongly affected their redox potential, but no effect on their catalytic activity towards oxygen was observed. The second class of porphyrin catalysts was a series of hydrogen-bonding porphyrins whose interaction with oxygen is enhanced. Enhancements in the interaction of oxygen with the porphyrins having hydrogen bonding groups were observed spectroscopically. Computer modeling was performed using Molecular Simulations new CERIUS2 Version 1.6 and a research version of POLYGRAF from Bill Goddard`s research group at the California Institute of Technology. We reoptimized the force field because of an error that was in POLYGRAF and corrected a problem in treatment of the metal in early versions of the program. This improved force field was reported in a J. Am. Chem. Soc. manuscript. Experimental measurements made on the newly developed catalysts included the electrochemical testing in a fuel cell configuration and spectroscopic measurements (UV-Vis, Raman and XPS) to characterize the catalysts.

  20. Deactivation and poisoning of fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Ross, P. N., Jr.

    1985-06-01

    The deactivation and poisoning phenomena reviewed are: the poisoning of anode (fuel electrode) catalyst by carbon monoxide and hydrogen sulfide; the deactivation of the cathode (air electrode) catalyst by sintering; and the deactivation of the cathode by corrosion of the support. The anode catalyst is Pt supported on a conductive, high area carbon black, usually at a loading of 10 w/o. This catalyst is tolerant to some level of carbon monoxide or hydrogen sulfide or both in combination, the level depending on temperature and pressure. Much less is known about hydrogen sulfide poisoning. Typical tolerance levels are 2% CO, and 10 ppM H2S. The cathode catalyst is typically Pt supported on a raphitic carbon black, usually a furnace black heat-treated to 2700 C. The Pt loading is typically 10 w/o, and the dispersion (or percent exposed) as-prepared is typically 30%. The loss of dispersion in use depends on the operational parameters, most especially the cathode potential history, i.e., higher potentials cause more rapid decrease in dispersion. The mechanism of loss of dispersion is not well known. The graphitic carbon support corrodes at a finite rate that is also potential dependent. Support corrosion causes thickening of the electrolyte film between the gas pores and the catalyst particles, which in turn causes increased diffusional resistance and performance loss.

  1. Review on MIEC Cathode Materials for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Burnwal, Suman Kumar; Bharadwaj, S.; Kistaiah, P.

    2016-11-01

    The cathode is one of the most important components of solid oxide fuel cells (SOFCs). The reduction of oxygen at the cathode (traditional cathodes like LSM, LSGM, etc.) is the slow step in the cell reaction at intermediate temperature (600-800∘C) which is one of the key obstacles to the development of SOFCs. The mixed ionic and electronic conducting cathode (MIEC) like LSCF, BSCF, etc., has recently been proposed as a promising cathode material for SOFC due to the improvement of the kinetic of the cathode reaction. The MIEC materials provide not only the electrons for the reduction of oxygen, but also the ionic conduction required to ensure the transport of the formed oxygen ions and thereby improves the overall electrochemical performance of SOFC system. The characteristics of MIEC cathode materials and its comparison with other traditional cathode materials is studied and presented in the paper.

  2. Cathode performance improvement in calcium-thionyl chloride cells

    NASA Astrophysics Data System (ADS)

    Walker, C. W., Jr.; Wade, W. L., Jr.; Binder, M.; Gilman, S.

    1986-08-01

    Carbon cathode performance in calcium-thionyl chloride cells was markedly improved with a cathode comprised of a mixture of high and low surface area carbon blacks. Addition of sulfur dioxide gas to the electrolyte further enhanced cathode performance and electrolyte conductivity. Load potentials and cathode life were nearly equal to that of the analogous lithium based system. The advantage of the calcium based system is its potential for greater safety.

  3. Cathode composition for electrochemical cell

    DOEpatents

    Steunenberg, Robert K.; Martin, Allan E.; Tomczuk, Zygmunt

    1976-01-01

    A high-temperature, secondary electrochemical cell includes a negative electrode containing an alkali metal such as lithium, an electrolyte of molten salt containing ions of that alkali metal and a positive electrode containing a mixture of metallic sulfides. The positive electrode composition is contained within a porous structure that permits permeation of molten electrolyte and includes a mixture of about 5% to 30% by weight Cu.sub.2 S in FeS.

  4. Structural and Electronic Transformations of Pt/C, Pd@Pt(1 ML)/C and Pd@Pt(2 ML)/C Cathode Catalysts in Polymer Electrolyte Fuel Cells during Potential-step Operating Processes Characterized by In-situ Time-resolved XAFS

    NASA Astrophysics Data System (ADS)

    Nagamatsu, Shin-ichi; Takao, Shinobu; Samjeské, Gabor; Nagasawa, Kensaku; Sekizawa, Oki; Kaneko, Takuma; Higashi, Kotaro; Uruga, Tomoya; Gayen, Sirshendu; Velaga, Srihari; Saniyal, Milan K.; Iwasawa, Yasuhiro

    2016-06-01

    The dynamic structural and electronic transformations of Pt/C, Pd@Pt(1 ML)/C, Pd@Pt(2 ML)/C cathode catalysts in polymer electrolyte fuel cells (PEFCs) during the potential-step operating processes between 0.4 and 1.4 VRHE (potential vs RHE) were characterized by in-situ (operando) time-resolved Pt LIII-edge quick-XAFS at 100 ms time-resolution. Potential-dependent surface structures and oxidation states of Pt, Pd@Pt(1 ML) and Pd@Pt(2 ML) nanoparticles on carbon at 0.4 and 1.4 VRHE were also analyzed by in-situ Pt LIII-edge and Pd K-edge quick-XAFS. The Pt, Pd@Pt(1 ML) and Pd@Pt(2 ML) nanoparticle surfaces were restructured and disordered at 1.4 VRHE, which were induced by strong Pt-O bonds as well as alloying effects. The rate constants for the changes of Pt valence, CN(Pt-Pt), CN(Pt-Pd) and CN(Pt-O) (CN: coordination number) in the potential-step operating processes were also determined and discussed in relation to the origin of oxygen reduction reaction (ORR) activities of the Pt/C, Pd@Pt(1 ML)/C and Pd@Pt(2 ML)/C cathode catalysts.

  5. Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells

    SciTech Connect

    Park, Seh K.; Shao, Yuyan; Wan, Haiying; Rieke, Peter C.; Viswanathan, Vilayanur V.; Towne, Silas A.; Saraf, Laxmikant V.; Liu, Jun; Lin, Yuehe; Wang, Yong

    2011-03-01

    A series of cathodes using Pt supported onto graphene sheets with different contents of carbon black in the catalyst layer were prepared and characterized. Carbon black was added as a spacer between two-dimensional graphene sheets in the catalyst layer to study its effect on the performances of proton exchange membrane fuel cell. Electrochemical properties and surface morphology of the cathodes with and without carbon black were characterized using cyclic voltammetry, ac-impedance spectroscopy, electrochemical polarization technique, and scanning electron microscopy. The results indicated that carbon black effectively modifies the array of graphene supports, resulting in more Pt nanoparticles available for electrochemical reaction and better mass transport in the catalyst layer.

  6. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Qi, Zhigang; Ramani, Manikandan; Elter, John F.

    The impacts of unprotected start up and shut down on fuel cell performance degradation was investigated using both single cell and dual cell configurations. It was found that the air/fuel boundary developed at the anode side after a fuel cell shut down or during its restart caused extremely quick degradation of the cathode. The thickness, the electrochemical active surface area, and the performance of the cathode catalyst layer were significantly reduced. By using a dual cell configuration, cathode potential as high as two times of open circuit voltage was measured, and the corrosion current flowing externally between the two cells was detected and quantified. Carbon catalyst-support corrosion/oxidation at such a high potential was largely responsible for the accelerated fuel cell performance degradation.

  7. Electronic modification of Pt via Ti and Se as tolerant cathodes in air-breathing methanol microfluidic fuel cells.

    PubMed

    Ma, Jiwei; Habrioux, Aurélien; Morais, Cláudia; Alonso-Vante, Nicolas

    2014-07-21

    We reported herein on the use of tolerant cathode catalysts such as carbon supported Pt(x)Ti(y) and/or Pt(x)Se(y) nanomaterials in an air-breathing methanol microfluidic fuel cell. In order to show the improvement of mixed-reactant fuel cell (MRFC) performances obtained with the developed tolerant catalysts, a classical Pt/C nanomaterial was used for comparison. Using 5 M methanol concentration in a situation where the fuel crossover is 100% (MRFC-mixed reactant fuel cell application), the maximum power density of the fuel cell with a Pt/C cathodic catalyst decreased by 80% in comparison with what is observed in the laminar flow fuel cell (LFFC) configuration. With Pt(x)Ti(y)/C and Pt(x)Se(y)/C cathode nanomaterials, the performance loss was only 55% and 20%, respectively. The evaluation of the tolerant cathode catalysts in an air-breathing microfluidic fuel cell suggests the development of a novel nanometric system that will not be size restricted. These interesting results are the consequence of the high methanol tolerance of these advanced electrocatalysts via surface electronic modification of Pt. Herein we used X-ray photoelectron and in situ FTIR spectroscopies to investigate the origin of the high methanol tolerance on modified Pt catalysts.

  8. Organic dyestuffs as catalysts for fuel cells.

    PubMed

    Jahnke, H; Schönborn, M; Zimmermann, G

    1976-01-01

    Electrocatalysis in fuel cells requires as well substances capable of catalyzing the anodic oxidation of fuels as catalysts for the cathodic reduction of oxygen. Several dyestuffs that catalyze oxygen reduction are known, but up to now only one has been described as active in anodic reactions. All these dyestuffs are N4-chelates. Comparative studies have shown that chelates with other types of coordination, in particular N202-, 04-, N2S2- and S4-chelates, are able to catalyze the reduction of oxygen, though they are considerably less active than the N4-compounds. With a given type of coordination, the nature of the central atom has a decisive influence on the catalytic activity of the dyestuff, whereas substitution on the organic skeleton has only a slight effect. Thermal pretreatment of the N4-chelates can considerably increase their stability in electrolytes containing sulfuric acid. All the experimental results point to the conclusion that, with electrocatalysts, as with natural oxygen carriers, the interaction essential for catalysis takes place between the oxygen and the central metal ion. Various assumptions may be made as to the nature of the rate-determining step. The cathodic reduction of oxygen can be regarded as redox catalysis, or it can be considered from the standpoint of molecular orbital theory. The models hitherto suggested for the mechanism of oxygen reduction are tested against the experimental results and a modified model based on MO theory is put forward.

  9. High Performance and Durable Low PGM Cathode Catalysts

    SciTech Connect

    Wang, Yong; Liu, Jun; Shao, Yuyan; Cheng, Yingwen; Borup, Rodney L.; Rockward, Tommy; Brosha, Eric Lanich

    2015-08-17

    There is a strong need to decrease the amount of Pt electrocatalyst used in fuel cells and increase its durability for transportation application. Conventional strategies include Pt nanocrystals and Pt alloy with well-controlled structures, durable carbon support, non-carbon support, etc. We have developed the so-called “metal-metal oxide-carbon” triple junction concept to stabilize Pt and protect carbon from corrosion. It also improved the activity of Pt. The good performance was not achieved in fuel cell test mainly because of the transport issue due to the use of 2D graphene. In this project, our main goal is to demonstrate the concept in fuel cell device test using 3D porous graphene as support so that the transport issue could be addressed.

  10. Manganese Detection with a Metal Catalyst Free Carbon Nanotube Electrode: Anodic versus Cathodic Stripping Voltammetry.

    PubMed

    Yue, Wei; Bange, Adam; Riehl, Bill L; Riehl, Bonnie D; Johnson, Jay M; Papautsky, Ian; Heineman, William R

    2012-10-01

    Anodic stripping voltammetry (ASV) and cathodic stripping voltammetry (CSV) were used to determine Mn concentration using metal catalyst free carbon nanotube (MCFCNT) electrodes and square wave stripping voltammetry (SWSV). The MCFCNTs are synthesized using a Carbo Thermal Carbide Conversion method which results in a material that does not contain residual transition metals. Detection limits of 120 nM and 93 nM were achieved for ASV and CSV, respectively, with a deposition time of 60 s. CSV was found to be better than ASV in Mn detection in many aspects, such as limit of detection and sensitivity. The CSV method was used in pond water matrix addition measurements.

  11. Manganese Detection with a Metal Catalyst Free Carbon Nanotube Electrode: Anodic versus Cathodic Stripping Voltammetry

    PubMed Central

    Yue, Wei; Bange, Adam; Riehl, Bill L.; Riehl, Bonnie D.; Johnson, Jay M.; Papautsky, Ian; Heineman, William R.

    2013-01-01

    Anodic stripping voltammetry (ASV) and cathodic stripping voltammetry (CSV) were used to determine Mn concentration using metal catalyst free carbon nanotube (MCFCNT) electrodes and square wave stripping voltammetry (SWSV). The MCFCNTs are synthesized using a Carbo Thermal Carbide Conversion method which results in a material that does not contain residual transition metals. Detection limits of 120 nM and 93 nM were achieved for ASV and CSV, respectively, with a deposition time of 60 s. CSV was found to be better than ASV in Mn detection in many aspects, such as limit of detection and sensitivity. The CSV method was used in pond water matrix addition measurements. PMID:24235806

  12. Porous Perovskite LaNiO3 Nanocubes as Cathode Catalysts for Li-O2 Batteries with Low Charge Potential

    PubMed Central

    Zhang, Jian; Zhao, Yubao; Zhao, Xiao; Liu, Zhaolin; Chen, Wei

    2014-01-01

    Developing efficient catalyst for oxygen evolution reaction (OER) is essential for rechargeable Li-O2 battery. In our present work, porous LaNiO3 nanocubes were employed as electrocatalyst in Li-O2 battery cell. The as-prepared battery showed excellent charging performance with significantly reduced overpotential (3.40 V). The synergistic effect of porous structure, large specific surface area and high electrocatalytic activity of porous LaNiO3 nanocubes ensured the Li-O2 battery with enchanced capacity and good cycle stability. Furthermore, it was found that the lithium anode corrosion and cathode passivation were responsible for the capacity fading of Li-O2 battery. Our results indicated that porous LaNiO3 nanocubes represent a promising cathode catalyst for Li-O2 battery. PMID:25103186

  13. Multiple cathodic reaction mechanisms in seawater cathodic biofilms operating in sediment microbial fuel cells.

    PubMed

    Babauta, Jerome T; Hsu, Lewis; Atci, Erhan; Kagan, Jeff; Chadwick, Bart; Beyenal, Haluk

    2014-10-01

    In this study, multiple reaction mechanisms in cathodes of sediment microbial fuel cells (SMFCs) were characterized by using cyclic voltammetry and microelectrode measurements of dissolved oxygen and pH. The cathodes were acclimated in SMFCs with sediment and seawater from San Diego Bay. Two limiting current regions were observed with onset potentials of approximately +400 mVAg/AgCl for limiting current I and -120 mVAg/AgCl for limiting current II. The appearance of two catalytic waves suggests that multiple cathodic reaction mechanisms influence cathodic performance. Microscale oxygen concentration measurements showed a zero surface concentration at the electrode surface for limiting current II but not for limiting current I, which allowed us to distinguish limiting current II as the conventional oxygen reduction reaction and limiting current I as a currently unidentified cathodic reaction mechanism. Microscale pH measurements further confirmed these results.

  14. Deposition of Fe on graphite felt by thermal decomposition of Fe(CO)5 for effective cathodic preparation of microbial fuel cells.

    PubMed

    Wang, Peng; Lai, Bin; Li, Haoran; Du, Zhuwei

    2013-04-01

    In this paper, an efficient and cost-effective method to prepare cathodes for microbial fuel cells (MFCs) was developed. Fe(CO)5 was decomposed and Fe was deposited on graphite felts for cathodic preparation. The unmodified, Pt modified and Fe modified graphite felts were utilized as cathodes in MFCs and power generation was compared. The maximum power density of MFCs with unmodified, Pt modified and Fe modified cathodes were respectively 288, 866 and 925 mW/m3. The internal resistance of MFCs with unmodified, Pt modified and Fe modified cathodes were respectively 505, 384 and 278Ω. The results of multiple analyses confirmed that Fe on cathode was Fe2O3 and FeOOH and Fe(III) oxides as cathodic catalysts improved the electrochemical activity and promoted power generation. The greatest advantage of new method for cathodic preparation was the replacing manual brushing and Nafion solution and decreasing the cost.

  15. Development of a Dinitrosyl Iron Complex Molecular Catalyst into a Hydrogen Evolution Cathode.

    PubMed

    Chiou, Tzung-Wen; Lu, Tsai-Te; Wu, Ying-Hao; Yu, Yi-Ju; Chu, Li-Kang; Liaw, Wen-Feng

    2015-12-01

    Despite extensive efforts, the electrocatalytic reduction of water using homogeneous/heterogeneous Fe, Co, Ni, Cu, W, and Mo complexes remains challenging because of issues involving the development of efficient, recyclable, stable, and aqueous-compatible catalysts. In this study, evolution of the de novo designed dinitrosyl iron complex DNIC-PMDTA from a molecular catalyst into a solid-state hydrogen evolution cathode, considering all the parameters to fulfill the electronic and structural requirements of each step of the catalytic cycle, is demonstrated. DNIC-PMDTA reveals electrocatalytic reduction of water at neutral and basic media, whereas its deposit on electrode preserves exceptional longevity, 139 h. This discovery will initiate a systematic study on the assembly of [Fe(NO)2] motif into current collector for mass production of H2, whereas the efficiency remains tailored by its molecular precursor [(L)Fe(NO)2].

  16. Polymer coatings as separator layers for microbial fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Watson, Valerie J.; Saito, Tomonori; Hickner, Michael A.; Logan, Bruce E.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production.

  17. Properties of cathode materials in alkaline cells

    NASA Astrophysics Data System (ADS)

    Salkind, A. J.; McBreen, J.; Freeman, R.; Parkhurst, W. A.

    1984-04-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve type silver zinc batteries, a new material - AgNiO2 and several nickel electrodes for nickel cadmium and nickel hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities. After the first discharge AgNiO2 can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)2 largely eliminate this.

  18. Lithium rechargeable cell with a polymer cathode

    NASA Astrophysics Data System (ADS)

    Walker, Charles W., Jr.

    1991-11-01

    Thin films of electropolymerized poly 3-methylthiophene (PMT) were used as a rechargeable cathode in Li(SO2)3AlCl4 electrolyte. Capacity was superior to porous carbon electrodes of like thickness. Pulse power levels of 2 W cm-2 were achieved, and high rate constant current pulses of four-second duration were reproducible over cycles. Cells could be recharged at potentials below 4.0 V, minimizing the formation of chlorine and thereby diminishing the capacity for corrosion. For a primary cell, greater discharge capacity was obtained with thionyl chloride and sulfuryl chloride electrolytes. Since PMT becomes electrically insulating in the reduced state, this could be used as a built-in safety feature to avert the hazards associated with abuse over-discharge.

  19. PEM fuel cell catalyst degradation mechanism and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Bi, Wu

    The durability of carbon-supported platinum oxygen reduction electrocatalysts is one of the limiting factors for their commercial applications in PEM fuel cell cathodes. In this work, we applied both experimental and numerical tools to study Pt/C catalyst degradation mechanisms. An accelerated catalyst degradation protocol through cycling the cathode potential in a square-wave profile was applied to study cell performances, Pt/C catalyst ORR activity, and active surface area losses. Post-mortem analyses of cathode Pt particle size were conducted by X-ray diffraction. Changes of platinum distributions in CCMs were studied by SEM/EDS analyses with surface coated Au as the reference element. The mechanisms of platinum deposition in membrane were investigated. It was confirmed by the SEM/EDS Pt distribution analyses that the deposited Pt atoms originated from the cathode. It was hypothesized that dissolved Pt ions from the cathode diffused into the membrane and were reduced by the permeated hydrogen from the anode. These deposited Pt atoms catalyzed the combustion of permeated oxygen and hydrogen. Pt band was predicted and experimentally confirmed at the location where the permeated hydrogen and oxygen completely reacted with each other. An active research thrust for PEM fuel cells is the development of membranes for high temperature (above 80°C) and low humidity operations. However a large tradeoff the benefits running fuel cell at relatively high temperatures was observed due to the accelerated cathode degradation processes. And at low humidity conditions, the cathode degradation rate decreased due to the slow transport of soluble platinum ions in possible narrowed/limited water (or ionic) channel networks in polymer electrolytes. From the Pt dissolution experiments in 0.5 M HClO4 solution, large positive effects of holding potentials on dissolution rates and soluble Pt concentrations were observed. Without an external holding potential, Pt dissolution rate was

  20. Molten carbonate fuel cell cathode with mixed oxide coating

    DOEpatents

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  1. Challenges and constraints of using oxygen cathodes in microbial fuel cells.

    PubMed

    Zhao, Feng; Harnisch, Falk; Schröder, Uwe; Scholz, Fritz; Bogdanoff, Peter; Herrmann, Iris

    2006-09-01

    The performance of oxygen reduction catalysts (platinum, pyrolyzed iron(ll) phthalocyanine (pyr-FePc) and cobalt tetramethoxyphenylporphyrin (pyr-CoTMPP)) is discussed in light of their application in microbial fuel cells. It is demonstrated that the physical and chemical environment in microbial fuel cells severely affects the thermodynamics and the kinetics of the electrocatalytic oxygen reduction. The neutral pH in combination with low buffer capacities and low ionic concentrations strongly affect the cathode performance and limit the fuel cell power output. Thus, the limiting current density in galvanodyanamic polarization experiments decreases from 1.5 mA cm(-2) to 0.6 mA cm(-2) (pH 3.3, E(cathode) = 0 V) when the buffer concentration is decreased from 500 to 50 mM. The cathode limitations are superposed by the increasing internal resistance of the MFC that substantially contributes to the decrease of power output. For example, the maximum power output of a model MFC decreased by 35%, from 2.3 to 1.5 mW, whereas the difference between the electrode potentials (deltaE = E(anode) - E(cathode)) decreased only by 10%. The increase of the catalyst load of pyr-FePc from 0.25 to 2 mg cm(-2) increased the cathodic current density from 0.4 to 0.97 mA cm(-2) (pH 7, 50 mM phosphate buffer). The increase of the load of such inexpensive catalyst thus represents a suitable means to improve the cathode performance in microbial fuel cells. Due to the low concentration of protons in MFCs in comparison to relatively high alkali cation levels (ratio C(Na+,K+)/C(H+) = 5 x E5 in pH 7, 50 mM phosphate buffer) the transfer of alkali ions through the proton exchange membrane plays a major role in the charge-balancing ion flux from the anodic into the cathodic compartment. This leads to the formation of pH gradients between the anode and the cathode compartment.

  2. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Merrill, Matthew D.; Tokash, Justin C.; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.

    Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m -2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m -3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m -2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes.

  3. Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application.

    PubMed

    Santoro, Carlo; Artyushkova, Kateryna; Babanova, Sofia; Atanassov, Plamen; Ieropoulos, Ioannis; Grattieri, Matteo; Cristiani, Pierangela; Trasatti, Stefano; Li, Baikun; Schuler, Andrew J

    2014-07-01

    Activated carbon (AC) is employed as a cost-effective catalyst for cathodic oxygen reduction in microbial fuel cells (MFC). The fabrication protocols of AC-based cathodes are conducted at different applied pressures (175-3500 psi) and treatment temperatures (25-343°C). The effects of those parameters along with changes in the surface morphology and chemistry on the cathode performances are comprehensively examined. The cathodes are tested in a three-electrode setup and explored in single chamber membraneless MFCs (SCMFCs). The results show that the best performance of the AC-based cathode is achieved when a pressure of 1400 psi is applied followed by heat treatment of 150-200°C for 1h. The influence of the applied pressure and the temperature of the heat treatment on the electrodes and SCMFCs is demonstrated as the result of the variation in the transfer resistance, the surface morphology and surface chemistry of the AC-based cathodes tested.

  4. Continuous flow membrane-less air cathode microbial fuel cell with spunbonded olefin diffusion layer.

    PubMed

    Tugtas, Adile Evren; Cavdar, Pelin; Calli, Baris

    2011-11-01

    The power production performance of a membrane-less air-cathode microbial fuel cell was evaluated for 53 days. Anode and cathode electrodes and the micro-fiber cloth separator were configured by sandwiching the separator between two electrodes. In addition, the air-facing side of the cathode was covered with a spunbonded olefin sheet instead of polytetrafluoroethylene (PTFE) coating to control oxygen diffusion and water loss. The configuration resulted in a low resistance of about 4Ω and a maximum power density of 750 mW/m2. However, as a result of a gradual decrease in the cathode potential, maximum power density decreased to 280 mW/m2. The declining power output was attributed to loss of platinum catalyst (8.26%) and biomass growth (38.44%) on the cathode. Coulombic efficiencies over 55% and no water leakage showed that the spunbonded olefin sheet covering the air-facing side of the cathode can be a cost-effective alternative to PTFE coating.

  5. Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells

    SciTech Connect

    Swartz, Scott

    2015-03-23

    In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontium manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.

  6. Performance of Stainless Steel Mesh Cathode and PVDF-graphite Cathode in Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Huang, Liping; Tian, Ying; Li, Mingliang; He, Gaohong; Li, Zhikao

    2010-11-01

    Inexpensive and conductive materials termed as stainless steel mesh and polyvinylidene fluoride (PVDF)-graphite were currently used as the air cathode electrodes in MFCs for the investigation of power production. By loading PTFE (poly(tetrafluoroethylene)) on the surface of stainless steel mesh, electricity production reached 3 times as high as that of the naked stainless steel. A much high catalytic activity for oxygen reduction was exhibited by Pt based and PTFE loading stainless steel mesh cathode, with an electricity generation of 1144±44 mW/m2 (31±1 W/m3) and a Coulombic efficiency (CE) of 77±2%. When Pt was replaced by an inexpensive transition metal based catalyst (cobalt tetramethylphenylporphyrin, CoTMPP), power production and CE were 845±21 mW/m2 (23±1 W/m3) and 68±1%, respectively. Accordingly, power production from PVDF-graphite (hydrophobic) MFC and PVDF-graphite (hydrophile) MFC were 286±20 mW/m2(8±1 W/m3) and 158±13 mW/m2(4±0.4 W/m3), respectively using CoTMPP as catalyst. These results give us new insight into materials like stainless steel mesh and PVDF-graphite as low cost cathode for reducing the costs of MFCs for wastewater treatment applications.

  7. Performance of practical-sized membrane-electrode assemblies using titanium nitride-supported platinum catalysts mixed with acetylene black as the cathode catalyst layer

    NASA Astrophysics Data System (ADS)

    Shintani, Haruhiko; Kakinuma, Katsuyoshi; Uchida, Hiroyuki; Watanabe, Masahiro; Uchida, Makoto

    2015-04-01

    The performance of practical-sized membrane-electrode assemblies (MEAs) using titanium nitride-supported platinum (Pt/TiN) as the cathode catalysts was evaluated with the use of a practical single cell designed for microscale combined heat and power (CHP) applications. The performance can be controlled by adding acetylene black (AB), with the behavior being dominated by the percolation law. The electrical resistance of the MEAs drastically decreased for AB contents greater than 37 vol%. The Pt utilization percentage was close to 100% for Pt/TiN with percolated AB networks. It was also found that the percolated AB networks supplied effective gas transport pathways, which were not flooded by generated water, thus enhancing the oxygen mass transport. The practical-sized MEA using Pt/TiN + 47 vol% AB showed 1.5 times greater mass activity and a comparable performance under a practical operating condition for micro-CHP applications, compared with the MEA using a commercial graphitized carbon black-supported platinum catalyst.

  8. Microbial Fuel Cell Performance with a Pressurized Cathode Chamber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial fuel cell (MFC) power densities are often constrained by the oxygen reduction reaction rate on the cathode electrode. One important factor for this is the normally low solubility of oxygen in the aqueous cathode solution creating mass transport limitations, which hinder oxygen reduction a...

  9. Effects of Humidity on Solid Oxide Fuel Cell Cathodes

    SciTech Connect

    Hardy, John S.; Stevenson, Jeffry W.; Singh, Prabhakar; Mahapatra, Manoj K.; Wachsman, E. D.; Liu, Meilin; Gerdes, Kirk R.

    2015-03-17

    This report summarizes results from experimental studies performed by a team of researchers assembled on behalf of the Solid-state Energy Conversion Alliance (SECA) Core Technology Program. Team participants employed a variety of techniques to evaluate and mitigate the effects of humidity in solid oxide fuel cell (SOFC) cathode air streams on cathode chemistry, microstructure, and electrochemical performance.

  10. NbSe3 Cathodes For Li Rechargeable Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Ni, Ching-Ion; Distefano, Salvador; Somoano, Robert B.; Bankston, C. Perry

    1990-01-01

    Report describes experimental studies involving preparation, characterization, and measurements of performance of NbSe3, intended for use as cathode material in lithium rechargeable electrochemical cells. Characteristics superior to those of other intercalating cathode materials, including high volumetric and gravimetric energy densities and ability to sustain discharges at high rates.

  11. Advanced Catalysts for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.; Whitacre, Jay; Valdez, T. I.

    2006-01-01

    This viewgraph presentation reviews the development of catalyst for Fuel Cells. The objectives of the project are to reduce the cost of stack components and reduce the amount of precious metal used in fuel cell construction. A rapid combinatorial screening technique based on multi-electrode thin film array has been developed and validated for identifying catalysts for oxygen reduction; focus shifted from methanol oxidation in FY05 to oxygen reduction in FY06. Multi-electrode arrays of thin film catalysts of Pt-Ni and Pt-Ni-Zr have been deposited. Pt-Ni and have been characterized electrochemically and structurally. Pt-Ni-Zr and Pt-Ni films show higher current density and onset potential compared to Pt. Electrocatalytic activity and onset potential are found to be strong function of the lattice constant. Thin film Pt(59)Ni(39)Zr(2) can provide 10 times the current density of thin film Pt. Thin film Pt(59)Ni(39)Zr(2) also shows 65mV higher onset potential than Pt.

  12. Performance of (CoPC)n catalyst in active lithium-thionyl chloride cells

    NASA Technical Reports Server (NTRS)

    Shah, Pinakin M.

    1990-01-01

    An experimental study was conducted with anode limited D size cells to characterize the performance of an active lithium-thionyl chloride (Li/SOCl2) system using the polymeric cobalt phthalocyanine, (CoPC)n, catalyst in carbon cathodes. The author describes the results of this experiment with respect to initial voltage delays, operating voltages, and capacities. The effectiveness of the preconditioning methods evolved to alleviate passivation effects on storage are also discussed. The results clearly demonstrated the superior high rate capability of cells with the catalyst. The catalyst did not adversely impact the performance of cells after active storage for up to 6 months, while retaining its beneficial influences.

  13. Application of electrospun CNx nanofibers as cathode in microfluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Jindal, Amandeep; Basu, Suddhasatwa; Chauhan, Neha; Ukai, Tomofumi; Kumar, D. Sakthi; Samudhyatha, K. T.

    2017-02-01

    Carbon nitride (CNx) nanofibers is successfully utilised as cathode catalyst in microfluidic fuel cell (MFC) using electrospinning technique. The electrochemical measurement for CNx nanofibers as cathode catalyst in MFC is studied and compared with that of Pt and Au cathodes. Formic acid is employed as fuel, KMnO4 as oxidant and H2SO4 as supporting electrolyte. CNx nanofibers is shown to be not active towards formic acid oxidation and as a result, is tolerant to fuel crossover effect as compared to Pt and Au cathode. CNx nanofibers enable MFC to operate at a wider range of flow rates of fuel and oxidant as compared to Pt and Au conventionally used. MFC utilising CNx nanofibers gives higher power density of 3.43 mW cm-2 and the current density of 9.79 mAcm-2, as compared to that utilizes pure Au (2.72 mW cm-2, 6.04 mA cm-2) and Pt (3.09 mW cm-2, 6.18 mA cm-2) as anode.

  14. Testing Metal Chlorides For Use In Sodium-Cell Cathodes

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald

    1992-01-01

    Cyclic voltammetric curves of transition-metal wires in molten NaAlCl4 electrolyte used to eliminate suitability of transition metals as cathodes in sodium cells. Cyclic voltammetry used in conjunction with measurement of galvanostatic polarization curves determines whether given metal chloride suitable as cathode material in such cell. Cells useful in such high-energy-density and high-power-density applications as leveling loads on electric-power plants, supplying power to electric ground vehicles, and aerospace applications.

  15. Corrosion testing of candidates for the alkaline fuel cell cathode

    NASA Technical Reports Server (NTRS)

    Singer, Joseph; Fielder, William L.

    1989-01-01

    Current/voltage data was obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consists of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to fully evaluate this approach to corrosion screening. Corrosion test screening of candidates for the oxygen reduction electrode of the alkaline fuel cell was applied to two substances, the pyrochlore Pb2Ru2O6.5 and the spinel NiCo2O4. The substrate gold screen and a sample of the IFC Orbiter Pt-Au performance electrode were included as blanks. The pyrochlore data indicate relative stability, although nothing yet can be said about long term stability. The spinel was plainly unstable. For this type of testing to be validated, comparisons will have to be made with long term performance tests.

  16. Conducting polymer-doped polyprrrole as an effective cathode catalyst for Li-O{sub 2} batteries

    SciTech Connect

    Zhang, Jinqiang; Sun, Bing; Ahn, Hyo-Jun; Wang, Chengyin; Wang, Guoxiu

    2013-12-15

    Graphical abstract: - Highlights: • Doped polypyrrole as cathode catalysts for Li-O{sub 2} batteries. • Polypyrrole has an excellent redox capability to activate oxygen reduction. • Chloride doped polypyrrole demonstrated an improved catalytic performance in Li-O{sub 2} batteries. - Abstract: Polypyrrole conducting polymers with different dopants have been synthesized and applied as the cathode catalyst in Li-O{sub 2} batteries. Polypyrrole polymers exhibited an effective catalytic activity towards oxygen reduction in lithium oxygen batteries. It was discovered that dopant significantly influenced the electrochemical performance of polypyrrole. The polypyrrole doped with Cl{sup −} demonstrated higher capacity and more stable cyclability than that doped with ClO{sub 4}{sup −}. Polypyrrole conducting polymers also exhibited higher capacity and better cycling performance than that of carbon black catalysts.

  17. Fuel cells and fuel cell catalysts

    DOEpatents

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  18. Copper Chloride Cathode For Liquid-Sodium Cell

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Nagasubramanian, Ganesan; Bankston, Clyde P.

    1990-01-01

    Rechargeable liquid-sodium cell with copper chloride cathode offers substantial increase in energy density over cells made with other cathode materials. Unit has theoretical maximum energy density of 1135 W.h/kg. Generates electricity by electrochemical reaction of molten sodium and solid copper chloride immersed in molten electrolyte, sodium tetrachloroaluminate at temperature of equal to or greater than 200 degrees C. Wall of alumina tube separates molten electrolyte from molten sodium anode. Copper chloride cathode embedded in pores of sintered nickel cylinder or directly sintered.

  19. Nitrogen-Doped Carbon Nanoparticle-Carbon Nanofiber Composite as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction Reaction.

    PubMed

    Panomsuwan, Gasidit; Saito, Nagahiro; Ishizaki, Takahiro

    2016-03-23

    Metal-free nitrogen-doped carbon materials are currently considered at the forefront of potential alternative cathode catalysts for the oxygen reduction reaction (ORR) in fuel cell technology. Despite numerous efforts in this area over the past decade, rational design and development of a new catalyst system based on nitrogen-doped carbon materials via an innovative approach still present intriguing challenges in ORR catalysis research. Herein, a new kind of nitrogen-doped carbon nanoparticle-carbon nanofiber (NCNP-CNF) composite with highly efficient and stable ORR catalytic activity has been developed via a new approach assisted by a solution plasma process. The integration of NCNPs and CNFs by the solution plasma process can lead to a unique morphological feature and modify physicochemical properties. The NCNP-CNF composite exhibits a significantly enhanced ORR activity through a dominant four-electron pathway in an alkaline solution. The enhancement in ORR activity of NCNP-CNF composite can be attributed to the synergistic effects of good electron transport from highly graphitized CNFs as well as abundance of exposed catalytic sites and meso/macroporosity from NCNPs. More importantly, NCNP-CNF composite reveals excellent long-term durability and high tolerance to methanol crossover compared with those of a commercial 20 wt % supported on Vulcan XC-72. We expect that NCNP-CNF composite prepared by this synthetic approach can be a promising metal-free cathode catalyst candidate for ORR in fuel cells and metal-air batteries.

  20. Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2017-04-01

    This paper presents a computational model of a single chamber, air-cathode MFC. The model considers losses due to mass transport, as well as biological and electrochemical reactions, in both the anode and cathode half-cells. Computational fluid dynamics and Monod-Nernst analysis are incorporated into the reactions for the anode biofilm and cathode Pt catalyst and biofilm. The integrated model provides a macro-perspective of the interrelation between the anode and cathode during power production, while incorporating microscale contributions of mass transport within the anode and cathode layers. Model considerations include the effects of pH (H+/OH- transport) and electric field-driven migration on concentration overpotential, effects of various buffers and various amounts of buffer on the pH in the whole reactor, and overall impacts on the power output of the MFC. The simulation results fit the experimental polarization and power density curves well. Further, this model provides insight regarding mass transport at varying current density regimes and quantitative delineation of overpotentials at the anode and cathode. Overall, this comprehensive simulation is designed to accurately predict MFC performance based on fundamental fluid and kinetic relations and guide optimization of the MFC system.

  1. Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell

    DOE PAGES

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; ...

    2017-02-23

    This paper presents a computational model of a single chamber, air-cathode MFC. The model considers losses due to mass transport, as well as biological and electrochemical reactions, in both the anode and cathode half-cells. Computational fluid dynamics and Monod-Nernst analysis are incorporated into the reactions for the anode biofilm and cathode Pt catalyst and biofilm. The integrated model provides a macro-perspective of the interrelation between the anode and cathode during power production, while incorporating microscale contributions of mass transport within the anode and cathode layers. Model considerations include the effects of pH (H+/OH– transport) and electric field-driven migration on concentrationmore » overpotential, effects of various buffers and various amounts of buffer on the pH in the whole reactor, and overall impacts on the power output of the MFC. The simulation results fit the experimental polarization and power density curves well. Further, this model provides insight regarding mass transport at varying current density regimes and quantitative delineation of overpotentials at the anode and cathode. Altogether, this comprehensive simulation is designed to accurately predict MFC performance based on fundamental fluid and kinetic relations and guide optimization of the MFC system.« less

  2. Cathodic and anodic biofilms in Single Chamber Microbial Fuel Cells.

    PubMed

    Cristiani, P; Carvalho, M L; Guerrini, E; Daghio, M; Santoro, C; Li, B

    2013-08-01

    The oxygen reduction due to microaerophilic biofilms grown on graphite cathodes (biocathodes) in Single Chamber Microbial Fuel Cells (SCMFCs) is proved and analysed in this paper. Pt-free cathode performances are compared with those of different platinum-loaded cathodes, before and after the biofilm growth. Membraneless SCMFCs were operating in batch-mode, filled with wastewater. A substrate (fuel) of sodium acetate (0.03 M) was periodically added and the experiment lasted more than six months. A maximum of power densities, up to 0.5 W m(-2), were reached when biofilms developed on the electrodes and the cathodic potential decreased (open circuit potential of 50-200 mV vs. SHE). The power output was almost constant with an acetate concentration of 0.01-0.05 M and it fell down when the pH of the media exceeded 9.5, independently of the Pt-free/Pt-loading at the cathodes. Current densities varied in the range of 1-5 Am(-2) (cathode area of 5 cm(2)). Quasi-stationary polarization curves performed with a three-electrode configuration on cathodic and anodic electrodes showed that the anodic overpotential, more than the cathodic one, may limit the current density in the SCMFCs for a long-term operation.

  3. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOEpatents

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1997-07-22

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two. 12 figs.

  4. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOEpatents

    Gay, Eddie C.; Miller, William E.; Laidler, James J.

    1997-01-01

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two.

  5. Corrosion testing of candidates for the alkaline fuel cell cathode

    NASA Technical Reports Server (NTRS)

    Singer, Joseph; Fielder, William L.

    1989-01-01

    It is desirable to employ a corrosion screening test for catalyst or support candidates for the fuel cell cathode before entering upon optimization of the candidate or of the catalytic electrode. To this end, corrosion test electrodes, intended for complete immersion and maximum wetting, have been made with 30 to 40 vol. pct Teflon; with perovskites this is about 10 to 15 pct. The candidates were synthesized by methods intended for single-phase product without special emphasis on high surface area, although the substances tested were no coarser than 2 m squared/g. A typical loading was 25 mg/cm sq of the pure substance, usually on gold screen, a few mm squared of which were left bare for contacting. Contact to the gold lead wire was made by welding with a micro-torch or a spot-welder. Corrosion testing consisted of obtaining current-voltage data under flowing inert gas in the potential region for reduction of O2. The electrode was immersed in 30 pct KOH. Observations were made at 20 C and 80 C, and the results compared with data from gold standards. Results with some perovskites, pyrochlores, spinels, and interstitial compounds will be discussed.

  6. Facile and gram-scale synthesis of metal-free catalysts: toward realistic applications for fuel cells.

    PubMed

    Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun

    2015-03-02

    Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells.

  7. Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells

    NASA Astrophysics Data System (ADS)

    Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun

    2015-03-01

    Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells.

  8. Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells

    PubMed Central

    Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun

    2015-01-01

    Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells. PMID:25728910

  9. Tolerant chalcogenide cathodes of membraneless micro fuel cells.

    PubMed

    Gago, Aldo Saul; Gochi-Ponce, Yadira; Feng, Yong-Jun; Esquivel, Juan Pablo; Sabaté, Neus; Santander, Joaquin; Alonso-Vante, Nicolas

    2012-08-01

    The most critical issues to overcome in micro direct methanol fuel cells (μDMFCs) are the lack of tolerance of the platinum cathode and fuel crossover through the polymer membrane. Thus, two novel tolerant cathodes of a membraneless microlaminar-flow fuel cell (μLFFC), Pt(x)S(y) and CoSe(2), were developed. The multichannel structure of the system was microfabricated in SU-8 polymer. A commercial platinum cathode served for comparison. When using 5 M CH(3)OH as the fuel, maximum power densities of 6.5, 4, and 0.23 mW cm(-2) were achieved for the μLFFC with Pt, Pt(x)S(y), and CoSe(2) cathodes, respectively. The Pt(x)S(y) cathode outperformed Pt in the same fuel cell when using CH(3)OH at concentrations above 10 M. In a situation where fuel crossover is 100 %, that is, mixing the fuel with the reactant, the maximum power density of the micro fuel cell with Pt decreased by 80 %. However, for Pt(x)S(y) this decrease corresponded to 35 % and for CoSe(2) there was no change in performance. This result is the consequence of the high tolerance of the chalcogenide-based cathodes. When using 10 M HCOOH and a palladium-based anode, the μLFFC with a CoSe(2) cathode achieved a maxiumum power density of 1.04 mW cm(-2). This micro fuel cell does not contain either Nafion membrane or platinum. We report, for the first time, the evaluation of Pt(x)S(y)- and CoSe(2)-based cathodes in membraneless micro fuel cells. The results suggest the development of a novel system that is not size restricted and its operation is mainly based on the selectivity of its electrodes.

  10. Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors.

    PubMed

    Zhang, Fang; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A; Logan, Bruce E

    2010-02-15

    A new and simplified approach for making cathodes for microbial fuel cells (MFCs) was developed by using metal mesh current collectors and inexpensive polymer/carbon diffusion layers (DLs). Rather than adding a current collector to a cathode material such as carbon cloth, we constructed the cathode around the metal mesh itself, thereby avoiding the need for the carbon cloth or other supporting material. A base layer of poly(dimethylsiloxane) (PDMS) and carbon black was applied to the air-side of a stainless steel mesh, and Pt on carbon black with Nafion binder was applied to the solution-side as catalyst for oxygen reduction. The PDMS prevented water leakage and functioned as a DL by limiting oxygen transfer through the cathode and improving coulombic efficiency. PDMS is hydrophobic, stable, and less expensive than other DL materials, such as PTFE, that are commonly applied to air cathodes. Multiple PDMS/carbon layers were applied in order to optimize the performance of the cathode. Two PDMS/carbon layers achieved the highest maximum power density of 1610 +/- 56 mW/m(2) (normalized to cathode projected surface area; 47.0 +/- 1.6 W/m(3) based on liquid volume). This power output was comparable to the best result of 1635 +/- 62 mW/m(2) obtained using carbon cloth with three PDMS/carbon layers and a Pt catalyst. The coulombic efficiency of the mesh cathodes reached more than 80%, and was much higher than the maximum of 57% obtained with carbon cloth. These findings demonstrate that cathodes can be constructed around metal mesh materials such as stainless steel, and that an inexpensive coating of PDMS can prevent water leakage and lead to improved coulombic efficiencies.

  11. Performance equations for a polymer electrolyte membrane fuel cell with unsaturated cathode feed

    NASA Astrophysics Data System (ADS)

    Hsuen, Hsiao-Kuo; Yin, Ken-Ming

    A mathematical formulation for the cathode of a membrane electrode assembly of a polymer electrolyte membrane fuel cell is proposed, in which the effect of unsaturated vapor feed in the cathode is considered. This mechanistic model formulates the water saturation front within the gas diffusion layer with an explicit analytical expression as a function of operating conditions. The multi-phase flows of gaseous species and liquid water are correlated with the established capillary pressure equilibrium in the medium. In addition, less than fully hydrated water contents in the polymer electrolyte and catalyst layers are considered, and are integrated with the relevant liquid and vapor transfers in the gas diffusion layer. The developed performance equations take into account the influences of all pertinent material properties on cell performance using first principles. The mathematical approach is logical and concise in terms of revealing the underlying physical significance in comparison with many other empirical data fitting models.

  12. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect

    YongMan Choi; Meilin Liu

    2006-09-30

    This DOE SECA project focused on both experimental and theoretical understanding of oxygen reduction processes in a porous mixed-conducting cathode in a solid oxide fuel cell (SOFC). Elucidation of the detailed oxygen reduction mechanism, especially the rate-limiting step(s), is critical to the development of low-temperature SOFCs (400 C to 700 C) and to cost reduction since much less expensive materials may be used for cell components. However, cell performance at low temperatures is limited primarily by the interfacial polarization resistances, specifically by those associated with oxygen reduction at the cathode, including transport of oxygen gas through the porous cathode, the adsorption of oxygen onto the cathode surface, the reduction and dissociation of the oxygen molecule (O{sub 2}) into the oxygen ion (O{sup 2-}), and the incorporation of the oxygen ion into the electrolyte. In order to most effectively enhance the performance of the cathode at low temperatures, we must understand the mechanism and kinetics of the elementary processes at the interfaces. Under the support of this DOE SECA project, our accomplishments included: (1) Experimental determination of the rate-limiting step in the oxygen reduction mechanism at the cathode using in situ FTIR and Raman spectroscopy, including surface- and tip-enhanced Raman spectroscopy (SERS and TERS). (2) Fabrication and testing of micro-patterned cathodes to compare the relative activity of the TPB to the rest of the cathode surface. (3) Construction of a mathematical model to predict cathode performance based on different geometries and microstructures and analyze the kinetics of oxygen-reduction reactions occurring at charged mixed ionic-electronic conductors (MIECs) using two-dimensional finite volume models with ab initio calculations. (4) Fabrication of cathodes that are graded in composition and microstructure to generate large amounts of active surface area near the cathode/electrolyte interface using a

  13. Oxide Fiber Cathode Materials for Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Rice, Catherine E.; Welker, Mark F.

    2008-01-01

    LiCoO2 and LiNiO2 fibers have been investigated as alternatives to LiCoO2 and LiNiO2 powders used as lithium-intercalation compounds in cathodes of rechargeable lithium-ion electrochemical cells. In making such a cathode, LiCoO2 or LiNiO2 powder is mixed with a binder [e.g., poly(vinylidene fluoride)] and an electrically conductive additive (usually carbon) and the mixture is pressed to form a disk. The binder and conductive additive contribute weight and volume, reducing the specific energy and energy density, respectively. In contrast, LiCoO2 or LiNiO2 fibers can be pressed and sintered to form a cathode, without need for a binder or a conductive additive. The inter-grain contacts of the fibers are stronger and have fewer defects than do those of powder particles. These characteristics translate to increased flexibility and greater resilience on cycling and, consequently, to reduced loss of capacity from cycle to cycle. Moreover, in comparison with a powder-based cathode, a fiber-based cathode is expected to exhibit significantly greater ionic and electronic conduction along the axes of the fibers. Results of preliminary charge/discharge-cycling tests suggest that energy densities of LiCoO2- and LiNiO2-fiber cathodes are approximately double those of the corresponding powder-based cathodes.

  14. Metal-catalyst-free carbohydrazide fuel cells with three-dimensional graphene anodes.

    PubMed

    Qi, Ji; Benipal, Neeva; Wang, Hui; Chadderdon, David J; Jiang, Yibo; Wei, Wei; Hu, Yun Hang; Li, Wenzhen

    2015-04-13

    As a potential solution to concerns on sustainable energy, the wide spread commercialization of fuel cell has long been hindered by limited reserves and relatively high costs of metal catalysts. 3D graphene, a carbon-only catalyst prepared by reduction of carbon monoxide with lithium oxide, is found to electrochemically catalyze carbohydrazide oxidation reaction efficiently. A prototype of a completely metal-catalyst-free anion exchange membrane fuel cell (AEMFC) with a 3D graphene anode catalyst and an N-doped CNT (N-CNT) cathode catalyst generate a peak power density of 24.9 mW cm(-2) . The average number of electrons electrochemically extracted from one carbohydrazide molecule is 4.9, indicating the existence of CN bond activation, which is a key factor contributing to high fuel utilization efficiency.

  15. Photoconductive Cathode Interlayer for Highly Efficient Inverted Polymer Solar Cells.

    PubMed

    Nian, Li; Zhang, Wenqiang; Zhu, Na; Liu, Linlin; Xie, Zengqi; Wu, Hongbin; Würthner, Frank; Ma, Yuguang

    2015-06-10

    A highly photoconductive cathode interlayer was achieved by doping a 1 wt % light absorber, such as perylene bisimide, into a ZnO thin film, which absorbs a very small amount of light but shows highly increased conductivity of 4.50 × 10(-3) S/m under sunlight. Photovoltaic devices based on this kind of photoactive cathode interlayer exhibit significantly improved device performance, which is rather insensitive to the thickness of the cathode interlayer over a broad range. Moreover, a power conversion efficiency as high as 10.5% was obtained by incorporation of our photoconductive cathode interlayer with the PTB7-Th:PC71BM active layer, which is one of the best results for single-junction polymer solar cells.

  16. Cathode including a non fluorinated linear chain polymer as the binder, method of making the cathode, and lithium electrochemical cell containing the cathode

    NASA Astrophysics Data System (ADS)

    Plichta, Edward J.; Salomon, Mark

    1986-08-01

    A cathode suitable for use in a lithium electrochemical cell is made from a mixture of active cathode material, carbon, and non fluorinated linear chain polymer by a method including the following steps: (1) dissolving the non fluorinated linear polymer in a non polar solvent at a temperature near the melting point of the polymer; (2) adding the active cathode material and carbon and evaporating the solvent; and (3) grinding the dried mixture into a fine powder and making it into a cathode by pressing the powdered mixture onto both sides of an expanded metal screen and then cutting to the desired dimensions. The cathode can be combined with lithium as the anode and a solution of 0.8 mol/cu dm LiAlCl4 in a mixed organic solvent of 24 mass percent 4-butyrolactone in 1, 2 dimethoxyethane as the electrolyte to provide a mechanically stable, relatively inexpensive lithium electrochemical cell having good cell performance.

  17. Cathode preparation method for molten carbonate fuel cell

    DOEpatents

    Smith, James L.; Sim, James W.; Kucera, Eugenia H.

    1988-01-01

    A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.

  18. Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Du, Guojun; Liu, Xiaogang; Zong, Yun; Hor, T. S. Andy; Yu, Aishui; Liu, Zhaolin

    2013-05-01

    We report the preparation of MnO2 nanotubes functionalized with Co3O4 nanoparticles and their use as bifunctional air cathode catalysts for oxygen reduction reaction and oxygen evolution reaction in rechargeable zinc-air batteries. These hybrid MnO2/Co3O4 nanomaterials exhibit enhanced catalytic reactivity toward oxygen evolution reaction under alkaline conditions compared with that in the presence of MnO2 nanotubes or Co3O4 nanoparticles alone.We report the preparation of MnO2 nanotubes functionalized with Co3O4 nanoparticles and their use as bifunctional air cathode catalysts for oxygen reduction reaction and oxygen evolution reaction in rechargeable zinc-air batteries. These hybrid MnO2/Co3O4 nanomaterials exhibit enhanced catalytic reactivity toward oxygen evolution reaction under alkaline conditions compared with that in the presence of MnO2 nanotubes or Co3O4 nanoparticles alone. Electronic supplementary information (ESI) available: Zinc-air cell device, XPS survey scan and power density of the cell. See DOI: 10.1039/c3nr00300k

  19. Magnetron cathodes in plasma electrode Pockels cells

    DOEpatents

    Rhodes, M.A.

    1995-04-25

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal. 5 figs.

  20. Magnetron cathodes in plasma electrode pockels cells

    DOEpatents

    Rhodes, Mark A.

    1995-01-01

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

  1. Membrane catalyst layer for fuel cells

    DOEpatents

    Wilson, Mahlon S.

    1993-01-01

    A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

  2. Numerical study of the cathode electrode in the Microfluidic Fuel Cell using agglomerate model

    NASA Astrophysics Data System (ADS)

    Moein-Jahromi, M.; Movahed, S.; Kermani, M. J.

    2015-03-01

    Simulation of the cathode electrode of a Microfluidic Fuel Cell (hereafter MFC) is performed with focus on the electrochemical reaction. Oxygen transport phenomena are modeled from the microchannel inlet to the reaction sites surface (on the platinum particles) in the catalyst layer. The dissolved oxygen in sulfuric acid and the formic acid are considered as the oxidant and the fuel, respectively. The cathode catalyst layer is modeled using the agglomerate model versus the homogenous model which is incapable of predicting concentration loss at high current densities. The results are validated versus the experiments of Choban et al. published in 2004. A set of parametric study is performed to investigate the influence of operating and structural parameters on the cell performance; at the end, a sensitivity analysis is implemented to rank the studied parameters with rank 1 for the most influential parameters. The results indicate that oxygen concentration at the inlet of microchannel within the range 0.1 M-0.7 M is the most influential parameter, and the cell performance can enhance by 2.615 W m-2 at the studied range. The results could be used by the microfluidic fuel cell manufacturers to overcome the current drawbacks of the MFCs.

  3. Membrane-electrode structures for molecular catalysts for use in fuel cells and other electrochemical devices

    DOEpatents

    Kerr, John B.; Zhu, Xiaobing; Hwang, Gi Suk; Martin, Zulima; He, Qinggang; Driscoll, Peter; Weber, Adam; Clark, Kyle

    2016-09-27

    Water soluble catalysts, (M)meso-tetra(N-Methyl-4-Pyridyl)Porphinepentachloride (M=Fe, Co, Mn & Cu), have been incorporated into the polymer binder of oxygen reduction cathodes in membrane electrode assemblies used in PEM fuel cells and found to support encouragingly high current densities. The voltages achieved are low compared to commercial platinum catalysts but entirely consistent with the behavior observed in electroanalytical measurements of the homogeneous catalysts. A model of the dynamics of the electrode action has been developed and validated and this allows the MEA electrodes to be optimized for any chemistry that has been demonstrated in solution. It has been shown that improvements to the performance will come from modifications to the structure of the catalyst combined with optimization of the electrode structure and a well-founded pathway to practical non-platinum group metal catalysts exists.

  4. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.

    PubMed

    Yuan, Heyang; He, Zhen

    2017-04-04

    Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low-grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost-effective. A variety of noble-metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS2 , carbon-based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications.

  5. Cathode side hardware for carbonate fuel cells

    DOEpatents

    Xu, Gengfu; Yuh, Chao-Yi

    2011-04-05

    Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of Perovskite AMeO.sub.3, wherein A is at least one of lanthanum and a combination of lanthanum and strontium and Me is one or more of transition metals, lithiated NiO (Li.sub.xNiO, where x is 0.1 to 1) and X-doped LiMeO.sub.2, wherein X is one of Mg, Ca, and Co.

  6. Transport phenomena within the porous cathode for a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Liu, Juanfang; Oshima, Nobuyuki; Kurihara, Eru; Saha, Litan Kumar

    A two-phase, one-dimensional steady model is developed to analyze the coupled phenomena of cathode flooding and mass-transport limiting for the porous cathode electrode of a proton exchange membrane fuel cell. In the model, the catalyst layer is treated not as an interface between the membrane and gas diffusion layer, but as a separate computational domain with finite thickness and pseudo-homogenous structure. Furthermore, the liquid water transport across the porous electrode is driven by the capillary force based on Darcy's law. And the gas transport is driven by the concentration gradient based on Fick's law. Additionally, through Tafel kinetics, the transport processes of gas and liquid water are coupled. From the numerical results, it is found that although the catalyst layer is thin, it is very crucial to better understand and more correctly predict the concurrent phenomena inside the electrode, particularly, the flooding phenomena. More importantly, the saturation jump at the interface of the gas diffusion layer and catalyst layers is captured, when the continuity of the capillary pressure is imposed on the interface. Elsewise, the results show further that the flooding phenomenon in the CL is much more serious than that in the GDL, which has a significant influence on the mass transport of the reactants. Moreover, the saturation level inside the cathode is determined, to a great extent, by the surface overpotential, the absolute permeability of the porous electrode, and the boundary value of saturation at the gas diffusion layer-gas channel interface. In order to prevent effectively flooding, it should remove firstly the liquid water accumulating inside the CL and keep the boundary value of liquid saturation as low as possible.

  7. Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode.

    PubMed

    Kakarla, Ramesh; Min, Booki

    2014-12-01

    Microbial fuel cell (MFC) and its cathode performances were compared with use of carbon fiber brush and plain carbon paper cathode electrodes in algae aeration. The MFC having carbon fiber brush cathode exhibited a voltage of 0.21 ± 0.01 V (1,000 Ω) with a cathode potential of around -0.14 ± 0.01 V in algal aeration, whereas MFC with plain carbon paper cathode resulted in a voltage of 0.06 ± 0.005 V with a cathode potential of -0.39 ± 0.01 V. During polarizations, MFC equipped with carbon fiber brush cathode showed a maximum power density of 30 mW/m(2), whereas the MFC equipped with plain carbon paper showed a power density of 4.6 mW/m(2). In algae aeration, the internal resistance with carbon fiber brush cathode was 804 Ω and with plain carbon paper it was 1,210 Ω. The peak currents of MFC operation with carbon fiber brush and plain carbon paper cathodes were -31 mA and -850 µA, respectively.

  8. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts.

    PubMed

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO₃ and MnO₂, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm⁻² has been achieved at 65°C, which increases by a factor of 1.7-3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC.

  9. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts

    PubMed Central

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO3 and MnO2, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm−2 has been achieved at 65°C, which increases by a factor of 1.7–3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC. PMID:22880160

  10. Influence of the cathode architecture in the frequency response of self-breathing proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ferreira-Aparicio, P.; Chaparro, A. M.

    2014-12-01

    Self-breathing proton exchange membrane fuel cells are apparently simple devices, but efficient water management is critical for their performance. The cathode configuration should guarantee balanced rates between O2 accessibility from the circumventing air and H2O removal, and a good electric contact between catalyst layers and current collectors at the same time. By applying progressive modifications to the initial concept of a conventional PEMFC, the effect of the cathode architecture on cell performance has been analyzed. Frequency response analyses of the cell during steady-state potentiostatic stepping have yielded relevant information regarding limitations originated by the cathode impedance under high current load conditions. The primitive cell design has been optimized for self-breathing operation by means of this diagnostic tool. The thickness of the perforated plate in the cathode has been found to be one of the main factors contributing to limit oxygen accessibility when a high current load is demanded. Adequate cathode architecture is critical for reducing mass transport limitations in the catalytic layer and enhancing performance under self-breathing conditions.

  11. Molybdenum In Cathodes Of Sodium/Metal Chloride Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald

    1992-01-01

    Cyclic voltammetric curves of molybdenum wire in NaAlCl4 melt indicate molybdenum chloride useful as cathode material in rechargeable sodium/metal chloride electrochemical cells. Batteries used in electric vehicles, for electric-power load leveling, and other applications involving high energy and power densities.

  12. Inert Anode/Cathode Program: Fiscal Year 1986 annual report. [For Hall-Heroult cells

    SciTech Connect

    Brenden, B.B.; Davis, N.C.; Koski, O.H.; Marschman, S.C.; Pool, K.H.; Schilling, C.H.; Windisch, C.F.; Wrona, B.J.

    1987-06-01

    Purpose of the program is to develop long-lasting, energy-efficient anodes, cathodes, and ancillary equipment for Hall-Heroult cells used by the aluminum industry. The program is divided into four tasks: Inert Anode Development, Cathode Materials Evaluation, Cathode Bonding Development, and Sensor Development. To devise sensors to control the chemistry of Hall-Heroult cells using stable anodes and cathodes. This report highlights the major FY86 technical accomplishments, which are presented in the following sections: Management, Materials Development, Materials Evaluation, Thermodynamic Evaluation, Laboratory Cell Tests, Large-Scale Tests, Cathode Materials Evaluation, Cathode Bonding Development, and Sensor Development.

  13. Electrocatalysis for dioxygen reduction by a μ-oxo decavanadium complex in alkaline medium and its application to a cathode catalyst in air batteries

    NASA Astrophysics Data System (ADS)

    Dewi, Eniya Listiani; Oyaizu, Kenichi; Nishide, Hiroyuki; Tsuchida, Eishun

    The redox behavior of a decavanadium complex [(VO) 10(μ 2-O) 9(μ 3-O) 3(C 5H 7O 2) 6] ( 1) was studied using cyclic voltammetry under acidic and basic conditions. The reduction potential of V(V) was found at less positive potentials for higher pH electrolyte solutions. The oxygen reduction at complex 1 immobilized on a modified electrode was examined using cyclic voltammetry and rotating ring-disk electrode techniques in the 1 M KOH solutions. On the basis of measurements using a rotating disk electrode (RDE), the complex 1 was found to be highly active for the direct four-electron reduction of dioxygen at -0.2 V versus saturated calomel electrode (SCE). The complex 1 as a reduction catalyst of O 2 with a high selectivity was demonstrated using rotating ring-disk voltammograms in alkaline solutions. The application of complex 1 as an oxygen reduction catalyst at the cathode of zinc-air cell was also examined. The zinc-air cell with the modified electrode showed a stable discharge potential at approximately 1 V with discharge capacity of 80 mAh g -1 which was about five times larger than that obtained with the commonly used manganese dioxide catalyst.

  14. Perchlorate reduction in microbial electrolysis cell with polyaniline modified cathode.

    PubMed

    Li, Jia-Jia; Gao, Ming-Ming; Zhang, Gang; Wang, Xin-Hua; Wang, Shu-Guang; Song, Chao; Xu, Yan-Yan

    2015-02-01

    Excellent perchlorate reduction was obtained under various initial concentrations in a non-membrane microbial electrolysis cell with polyaniline (PANI) modified graphite cathode as sole electron donor. PANI modification is conducive to the formation of biofilm due to its porous structure and good electrocatalytic performance. Compared with cathode without biofilm, over 12% higher reduction rates were acquired in the presence of biocathode. The study demonstrates that, instead of perchlorate reduction, the main contribution of biofilm is involved in facilitate electron transfer from cathode to electrolyte. Interestingly, hairlike structure, referred as to pili-like, was observed in the biofilm as well as in the electrolyte. Additionally, the results show that pili were prone to formation under the condition of external electron field as sole electron donor. Analysis of microbial community suggests that perchlorate reduction bacteria community was most consistent with Azospiraoryzae strain DSM 13638 in the subdivision of the class Proteobacteria.

  15. Cells having cathodes with thiocyanogen-containing cathode-active materials

    SciTech Connect

    Rao, B.M.

    1980-03-11

    An electric current-producing cell which contains: (A) an anode metal higher than hydrogen in the electromotive series and having an atomic number no greater than 30; (B) a cathode material containing thiocyanogen, said material being selected from the group consisting of: (I) thiocyanogen of the formula: (ScN)/sub 2/ (II) parathiocyanogen of the formula: (ScN)/sub x/ wherein X is greater than 2; (III) halothiocyanogen of the formula: YScN wherein Y is a halogen selected from the group consisting of F, Cl, Br and I; (IV) parahalothiocyanogen of the formula: (YScN)/sub y/ wherein Y is as described above and wherein Y is equal to or greater than 2; (V) perthiocyanogen complex of an amine; (VI) perthiocyanogen complex of an ammonium ion; (VII) thiocyanogen complex of a metal cation which is the same as the metal cation in the anode; (VIII) thiocyanogen complex of a metal cation which is higher in the electromotive series than the metal cation in the anode; (IX) cathode intercalated material having halothiocyanogen of paragraph (III) above intercalated therein; (X) cathode intercalated material having parahalothiocyanogen of paragraph (IV) above intercalated therein; (XI) polymeric thiocyanogen-containing material obtained from oxidation of a polyvinyl thiocyanate; (XII) ammonium thiocyanate salt complex of thiocyanogen of paragraph (I) above; (XIII) ammonium thiocyanate salt complex of parathiocyanogen of paragraph (II) above; (XIV) ammonium thiocyanate salt complex of halothiocyanogen of paragraph (III) above; and (XV) ammonium thiocyanate salt complex of parahalothiocyanogen of paragraph (IV) above; and (C) an electrolyte which is chemically inert with respect to said anode and said cathode.

  16. Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells.

    PubMed

    Zhuang, Li; Zhou, Shungui; Wang, Yueqiang; Liu, Chengshuai; Geng, Shu

    2009-08-15

    One of the main challenges for scaling up microbial fuel cell (MFC) technologies is developing low-cost cathode architectures that can generate high power output. This study developed a simple method to convert non-conductive material (canvas cloth) into an electrically conductive and catalytically active cloth cathode assembly (CCA) in one step. The membrane-less CCA was simply constructed by coating the cloth with conductive paint (nickel-based or graphite-based) and non-precious metal catalyst (MnO(2)). Under the fed-batch mode, the tubular air-chamber MFCs equipped with Ni-CCA and graphite-CCA generated the maximum power densities of 86.03 and 24.67 mW m(-2) (normalized to the projected cathode surface area), or 9.87 and 2.83 W m(-3) (normalized to the reactor liquid volume), respectively. The higher power output of Ni-CCA-MFC was associated with the lower volume resistivity of Ni-CCA (1.35 x 10(-2)Omega cm) than that of graphite-CCA (225 x 10(-2)Omega cm). At an external resistance of 100 Omega, Ni-CCA-MFC and graphite-CCA-MFC removed approximately 95% COD in brewery wastewater within 13 and 18d, and achieved coulombic efficiencies of 30.2% and 19.5%, respectively. The accumulated net water loss through the cloth by electro-osmotic drag exhibited a linear correlation (R(2)=0.999) with produced coulombs. With a comparable power production, such CCAs only cost less than 5% of the previously reported membrane cathode assembly. The new cathode configuration here is a mechanically durable, economical system for MFC scalability.

  17. Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell.

    PubMed

    Luo, Yong; Zhang, Renduo; Liu, Guangli; Li, Jie; Qin, Bangyu; Li, Mingchen; Chen, Shanshan

    2011-02-01

    In this study, the microbial fuel cell (MFC) was combined with the Fenton-like technology to simultaneously generate electricity and degrade refractory contaminants in both anode and cathode chambers. The maximum power density achieved was 15.9 W/m(3) at an initial pH of 3.0 in the MFC. In the anode chamber, approximately 100% of furfural and 96% COD were removed at the end of a cycle. In the cathode chamber, the Fenton-like reaction with FeVO(4) as a catalyst enhanced the removal of AO7 and COD. The removal rates of AO7 and COD reached 89% and 81%, respectively. The optimal pH value and FeVO(4) dosage toward degrading AO7 were about 3.0 and 0.8 g, respectively. Furthermore, a two-way catalyst mechanism of FeVO(4) and the contaminant degradation pathway in the MFC were explored.

  18. Enzymatic Fuel Cells: Integrating Flow-Through Anode and Air-Breathing Cathode into a Membrane-Less Biofuel Cell Design (Postprint)

    DTIC Science & Technology

    2011-06-01

    with poly- methylene green (poly-MG) catalyst for biofuel cell anode fabrication. A fungal laccase that catalyzes oxygen reduction via direct electron...enzyme, Poly- methylene green, Membrane-less U U U UU 6 Glenn R. Johnson Reset This article appeared in a journal published by Elsevier. The attached copy...2011 Keywords: Biofuel cell Flow-through Air-breathing cathode NAD+-dependent enzyme Poly- methylene green Membrane-less a b s t r a c t One

  19. Extended Platinum Nanotubes as Fuel Cell Catalysts

    SciTech Connect

    Alia, S.; Pivovar, B. S.; Yan, Y.

    2012-01-01

    Energy consumption has relied principally on fossil fuels as an energy source; fuel cells, however, can provide a clean and sustainable alternative, an answer to the depletion and climate change concerns of fossil fuels. Within proton exchange membrane fuel cells, high catalyst cost and poor durability limit the commercial viability of the device. Recently, platinum nanotubes (PtNTs) were studied as durable, active catalysts, providing a platform to meet US Department of Energy vehicular activity targets.[1] Porous PtNTs were developed to increase nanotube surface area, improving mass activity for oxygen reduction without sacrificing durability.[2] Subsurface platinum was then replaced with palladium, forming platinum-coated palladium nanotubes.[3] By forming a core shell structure, platinum utilization was increased, reducing catalyst cost. Alternative substrates have also been examined, modifying platinum surface facets and increasing oxygen reduction specific activity. Through modification of the PtNT platform, catalyst limitations can be reduced, ensuring a commercially viable device.

  20. Fuel Cell Cathode Contamination: Comparison of Prevention Strategies and their Viability

    NASA Astrophysics Data System (ADS)

    Tejaswi, Arjun

    Fuel cells are a major area of research in ongoing efforts to find alternate sources of energy. Today these efforts have become ever the more necessary in the face of spiraling costs of conventional sources of energy and concerns about global warming. Most fuel cells consume hydrogen to produce, for the most part, only water in their exhaust. They are also capable of achieving significantly higher efficiencies than conventional automobile internal combustion engines. Since cost still remains one of the most intractable challenges to the advent of fuel cells, it is imperative that every effort be made to lower the costs of fuel cell production, operation and maintenance as well as improving overall efficiency. The air circulation system of a fuel cell is designed to provide oxygen to the cathode of the fuel cell. Air taken from the surroundings, however, often contains pollutants including dust, SO2, NO 2 and various other gases. These gases may severely degrade various components of system, especially for polymer electrolyte membrane (PEM) type fuel cells, including the catalyst, membrane electrode assembly and other components. Moreover, these pollutants may lead to specific behavior based on ambient air composition at the test site thereby confusing researchers. In order to address these issues, this study seeks to identify these pollutants and examine the mitigation strategies to mitigate them. Also discussed is whether these pollutants have an effect debilitating enough to justify the extra cost and potential parasitic losses associated with these mitigation strategies. Adsorptive filtration is identified as the most appropriate cathode side air quality system for fuel cells. Performance of cathode side fuel cell filters are examined under varying relative humidity, temperature, air flow rate and pollutant concentration conditions. An estimated filter survival time under realistic conditions is also suggested.

  1. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries.

    PubMed

    Jung, Kyu-Nam; Jung, Jong-Hyuk; Im, Won Bin; Yoon, Sukeun; Shin, Kyung-Hee; Lee, Jong-Won

    2013-10-23

    Rechargeable metal-air batteries have attracted a great interest in recent years because of their high energy density. The critical challenges facing these technologies include the sluggish kinetics of the oxygen reduction-evolution reactions on a cathode (air electrode). Here, we report doped lanthanum nickelates (La2NiO4) with a layered perovskite structure that serve as efficient bifunctional electrocatalysts for oxygen reduction and evolution in an aqueous alkaline electrolyte. Rechargeable lithium-air and zinc-air batteries assembled with these catalysts exhibit remarkably reduced discharge-charge voltage gaps (improved round-trip efficiency) as well as high stability during cycling.

  2. Efficient Pt catalysts for polymer electrolyte fuel cells

    SciTech Connect

    Fournier, J.; Gaubert, G.; Tilquin, J.Y.

    1996-12-31

    Commercialization of polymer electrolyte fuel cells (PEFCs) requires an important decrease in their production cost. Cost reduction for the electrodes principally concerns the decrease in the amount of Pt catalyst necessary for the functioning of the PEFC without affecting cell performance. The first PEFCs used in the Gemini Space Program had a loading of 4-10 mg pt/cm{sup 2}. The cost of the electrodes was drastically reduced when pure colloidal Pt was replaced by Pt supported on carbon (Pt/C) with a Pt content of 0.4 Mg/cm{sup 2}. Since the occurrence of that breakthrough, many studies have been aimed at further lowering the Pt loading. Today, the lowest loadings reported for oxygen reduction are of the order of 0.05 mg pt/cm{sup 2}. The carbon support of commercial catalysts is Vulcan XC-72 from Cabot, a carbon black with a specific area of 254 m{sup 2}/g. Graphites with specific areas ranging from 20 to 305 m{sup 2}/g are now available from Lonza. The first aim of the present study was to determine the catalytic properties for 02 reduction of Pt supported on these high specific area graphites. The second aim was to use Pt inclusion synthesis on these high area graphites, and to measure the catalytic performances of these materials. Lastly, this same Pt-inclusion synthesis was extended even for use with Vulcan and Black Pearls as substrates (two carbon blacks from Cabot). All these catalysts have been labelled Pt-included materials to distinguish them from the Pt-supported ones. It will be shown that the reduced Pt content Pt-included materials obtained with high specific area substrates a are excellent catalysts for oxygen reduction, especially at high currents. Therefore, Pt inclusion synthesis appears to be a new method to decrease the cathodic Pt loading.

  3. Lithium-ferrate-based cathodes for molten carbonate fuel cells

    SciTech Connect

    Lanagan, M.T.; Bloom, I.; Kaun, T.D.

    1996-12-31

    Argonne National Laboratory is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC) at {approximately}650{degrees}C. To be economically viable for stationary power generation, molten carbonate fuel cells must have lifetimes of more than 25,000 h while exhibiting superior cell performance. In the present technology, lithiated NiO is used as the cathode. Over the lifetime of the cell, however, N{sup 2+} ions tend to transport to the anode, where they are reduced to metallic Ni. With increased CO{sub 2} partial pressure, the transport of Ni increases because of the increased solubility of NiO in the carbonate electrolyte. Although this process is slow in MCFCs operated at 1 atm and a low CO{sub 2} partial pressure (about 0.1 atm), transport of nickel to the anode may be excessive at a higher pressure (e.g., 3 atm) and a high CO{sub 2} partial pressure (e.g., about 0.3 arm). This transport is expected to lead eventually to poor MCFC performance and/or short circuiting. Several alternative cathode compositions have been explored to reduce cathode solubility in the molten salt electrolyte. For example, LiCoO{sub 2} has been studied extensively as a potential cathode material. The LiCoO{sub 2} cathode has a low resistivity, about 10-cm, and can be used as a direct substitute for NiO. Argonne is developing advanced cathodes based on lithium ferrate (LiFeO{sub 2}), which is attractive because of its very low solubility in the molten (Li,K){sub 2}CO{sub 3} electrolyte. Because of its high resistivity (about 3000-cm), however, LiFeO{sub 2} cannot be used as a direct substitute for NiO. Cation substitution is, therefore, necessary to decrease resistivity. We determined the effect of cation substitution on the resistivity and deformation of LiFeO{sub 2}. The substituents were chosen because their respective oxides as well as LiFeO{sub 2} crystallize with the rock-salt structure.

  4. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells

    EPA Science Inventory

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2...

  5. Catalysts compositions for use in fuel cells

    DOEpatents

    Chuang, Steven S.C.

    2015-12-01

    The present invention generally relates to the generation of electrical energy from a solid-state fuel. In one embodiment, the present invention relates to a solid-oxide fuel cell for generating electrical energy from a carbon-based fuel, and to catalysts for use in a solid-oxide fuel cell.

  6. Performance equations for cathodes in polymer electrolyte fuel cells with non-uniform water flooding in gas diffusers

    NASA Astrophysics Data System (ADS)

    Hsuen, Hsiao-Kuo

    The performance equations for cathodes of polymer electrolyte fuel cells (PEFCs) that describe the dependence of cathode potential on current density are developed. Formulation of the performance equations starts from the reduction of a one-dimensional model that considers, in detail, the potential losses pertinent to the limitations of electron conduction, oxygen diffusion, proton migration, and the oxygen reduction reaction. In particular, non-uniform accumulation of liquid water in the gas diffuser, which partially blocks the gas channels and imposes a greater resistance for oxygen transport, is taken into account. Reduction of the one-dimensional model is implemented by approximating the oxygen concentration profile in the catalyst layer with a parabolic polynomial or a piecewise parabolic one determined by the occurrence of oxygen depletion. The final forms of the equations are obtained by applying the method of weighted residuals over the catalyst layer. The weighting function is selected in such a way that the weighted residuals can be analytically integrated. Potential losses caused by the various limiting processes can be quantitatively estimated by the performance equations. Thus, they provide a convenient diagnostic tool for the cathode performance. Computational results reveal that the performance equations agree well with the original one-dimensional model over an extensive range of parameter values. This indicates that the present performance equations can be used as a substitute for the one-dimensional model to provide quantitatively correct predictions for the cathode performance of PEFCs.

  7. Effects of Membrane- and Catalyst-layer-thickness Nonuniformitiesin Polymer-electrolyte Fuel Cells

    SciTech Connect

    Weber, Adam Z.; Newman, John

    2006-09-01

    In this paper, results from mathematical, pseudo 2-D simulations are shown for four different along-the-channel thickness distributions of both the membrane and cathode catalyst layer. The results and subsequent analysis clearly demonstrate that for the membrane thickness distributions, cell performance is affected a few percent under low relative-humidity conditions and that the position along the gas channel is more important than the local thickness variations. However, for the catalyst-layer thickness distributions, global performance is not impacted, although for saturated conditions there is a large variability in the local temperature and performance depending on the thickness.

  8. Enhanced catalytic activity and inhibited biofouling of cathode in microbial fuel cells through controlling hydrophilic property

    NASA Astrophysics Data System (ADS)

    Li, Da; Liu, Jia; Wang, Haiman; Qu, Youpeng; Zhang, Jie; Feng, Yujie

    2016-11-01

    The hydrophilicity of activated carbon cathode directly determines the distribution of three-phase interfaces where oxygen reduction occurs. In this study, activated carbon cathodes are fabricated by using hydrophobic polytetrafluoroethylene (PTFE) and amphiphilic LA132 at various weight ratio to investigate the effect of hydrophilic property on cathode performance. Contact angle tests confirm the positive impact of LA132 content on hydrophilicity. Cathode with 67 wt% LA132 content shows the highest electrochemical activity as exchange current density increases by 71% and charge transfer resistance declines by 44.6% compared to that of PTFE cathode, probably due to the extended reaction interfaces by optimal hydrophilicity of cathode so that oxygen reduction is facilitated. As a result, the highest power density of 1171 ± 71 mW m-2 is obtained which is 14% higher than PTFE cathode. In addition to the hydrophilicity, this cathode had more negative charged surface of catalyst layer, therefore the protein content of cathodic biofilm decreased by 47.5%, indicating the effective bacterial inhibition when 67 wt% LA132 is used. This study shows that the catalytic activity of cathode is improved by controlling proper hydrophilicity of cathode, and that biofilm can be reduced by increasing hydrophilicity and lowering the surface potential.

  9. Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana; Serov, Alexey; Artyushkova, Kateryna; Matanovic, Ivana; Sarah Stariha; Atanassov, Plamen

    2016-08-01

    The effects of major airborne contaminants (SO2, NO2 and CO) on the spatial performance of Fe/N/C cathode membrane electrode assemblies were studied using a segmented cell system. The injection of 2-10 ppm SO2 in air stream did not cause any performance decrease and redistribution of local currents due to the lack of stably adsorbed SO2 molecules on Fe-Nx sites, as confirmed by density functional theory (DFT) calculations. The introduction of 5-20 ppm of CO into the air stream also did not affect fuel cell performance. The exposure of Fe/N/C cathodes to 2 and 10 ppm NO2 resulted in performance losses of 30 and 70-75 mV, respectively. DFT results showed that the adsorption energies of NO2 and NO were greater than that of O2, which accounted for the observed voltage decrease and slight current redistribution. The cell performance partially recovered when the NO2 injection was stopped. The long-term operation of the fuel cells resulted in cell performance degradation. XPS analyses of Fe/N/C electrodes revealed that the performance decrease was due to catalyst degradation and ionomer oxidation. The latter was accelerated in the presence of air contaminants. The details of the spatial performance and electrochemical impedance spectroscopy results are presented and discussed.

  10. An investigation of Pt alloy oxygen reduction catalysts in phosphoric acid doped PBI fuel cells

    NASA Astrophysics Data System (ADS)

    Mamlouk, M.; Scott, K.

    A study of a phosphoric acid doped polybenzimidazole (PBI) membrane fuel cell using commercial carbon supported, Pt alloy oxygen reduction catalysts is reported. The cathodes were made from PTFE bonded carbon supported Pt alloys without PBI but with phopshoric acid added to the electrode for ionic conductivity. Polarisation data for fuel cells with cathodes made with alloys of Pt with Ni, Co, Ru and Fe are compared with those with Pt alone as cathode at temperatures between 120 and 175 °C. With the same loading of Pt enhancement in cell performance was achieved with all alloys except Pt-Ru, in the low current density activation kinetics region of operation. The extent of enhancement depended upon the operating temperature and also the catalyst loading. In particular a Pt-Co alloy produced performance significantly better than Pt alone, e.g. a peak power, with low pressure air, of 0.25 W cm -2 with 0.2 mg Pt cm -2 of a 20 wt% Pt-Co catalyst.

  11. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    SciTech Connect

    Allan J. Jacobson

    2006-06-30

    Operation of SOFCs at intermediate temperatures (500-800 C) requires new combinations of electrolyte and electrode materials that will provide both rapid ion transport across the electrolyte and electrode-electrolyte interfaces and efficient electrocatalysis of the oxygen reduction and fuel oxidation reactions. This project concentrates on materials and issues associated with cathode performance that are known to become limiting factors as the operating temperature is reduced. The specific objectives of the proposed research are to develop cathode materials that meet the electrode performance targets of 1.0 W/cm{sup 2} at 0.7 V in combination with YSZ at 700 C and with GDC, LSGM or bismuth oxide based electrolytes at 600 C. The performance targets imply an area specific resistance of {approx}0.5 {Omega}cm{sup 2} for the total cell. The research strategy is to investigate both established classes of materials and new candidates as cathodes, to determine fundamental performance parameters such as bulk diffusion, surface reactivity and interfacial transfer, and to couple these parameters to performance in single cell tests. In this report, further measurements of the oxygen deficient double perovskite PrBaCo{sub 2}O{sub 5.5+{delta}} are reported. The high electronic conductivity and rapid diffusion and surface exchange kinetics of PBCO suggest its application as cathode material in intermediate temperature solid oxide fuel cells. Preliminary measurements in symmetric cells have shown low ASR values at 600 C. Here we describe the first complete cell measurements on Ni/CGO/CGO/PBCO/CGO cells.

  12. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect

    Harry Abernathy; Meilin Liu

    2006-12-31

    One primary suspected cause of long-term performance degradation of solid oxide fuels (SOFCs) is the accumulation of chromium (Cr) species at or near the cathode/electrolyte interface due to reactive Cr molecules originating from Cr-containing components (such as the interconnect) in fuel cell stacks. To date, considerable efforts have been devoted to the characterization of cathodes exposed to Cr sources; however, little progress has been made because a detailed understanding of the chemistry and electrochemistry relevant to the Cr-poisoning processes is still lacking. This project applied multiple characterization methods - including various Raman spectroscopic techniques and various electrochemical performance measurement techniques - to elucidate and quantify the effect of Cr-related electrochemical degradation at the cathode/electrolyte interface. Using Raman microspectroscopy the identity and location of Cr contaminants (SrCrO{sub 4}, (Mn/Cr){sub 3}O{sub 4} spinel) have been observed in situ on an LSM cathode. These Cr contaminants were shown to form chemically (in the absence of current flowing through the cell) at temperatures as low as 625 C. While SrCrO{sub 4} and (Mn/Cr){sub 3}O{sub 4} spinel must preferentially form on LSM, since the LSM supplies the Sr and Mn cations necessary for these compounds, LSM was also shown to be an active site for the deposition of Ag{sub 2}CrO{sub 4} for samples that also contained silver. In contrast, Pt and YSZ do not appear to be active for formation of Cr-containing phases. The work presented here supports the theory that Cr contamination is predominantly chemically-driven and that in order to minimize the effect, cathode materials should be chosen that are free of cations/elements that could preferentially react with chromium, including silver, strontium, and manganese.

  13. Pseudohomogeneous catalyst layer model for polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Springer, T. E.; Gottesfeld, S.

    We have developed a relatively simple one-dimensional model for the cathode catalyst layer. This model explains certain observed polarization curve features at higher current densities. These features include a change in linear slope, instead of a sharp limiting current feature, and a lower than expected ratio of current density measured using O2 relative to air. Diffusional paths, ionic resistance, and catalyst sites are intimately coupled in a pseudohomogeneous layer using 'effective' parameters.

  14. Electricity generation of microbial fuel cell with waterproof breathable membrane cathode

    NASA Astrophysics Data System (ADS)

    Xing, Defeng; Tang, Yu; Mei, Xiaoxue; Liu, Bingfeng

    2015-12-01

    Simplification of fabrication and reduction of capital cost are important for scale-up and application of microbial electrochemical systems (MES). A fast and inexpensive method of making cathode was developed via assembling stainless steel mesh (SSM) with waterproof breathable membrane (WBM). Three assemble types of cathodes were fabricated; Pt@SSM/WBM (SSM as cathode skeleton, WBM as diffusion layer, platinum (Pt) catalyst applied on SSM), SSM/Pt@WBM and Pt@WBM. SSM/Pt@WBM cathode showed relatively preferable with long-term stability and favorable power output (24.7 W/m3). Compared to conventional cathode fabrication, air-cathode was made for 0.5 h. The results indicated that the novel fabrication method could remarkably reduce capital cost and simplify fabrication procedures with a comparable power output, making MFC more prospective for future application.

  15. Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications

    NASA Technical Reports Server (NTRS)

    Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.

    2013-01-01

    Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.

  16. A liquid-gas phase mixed-reactant fuel cell with a RuSeW cathode electrocatalyst

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Yuan, W.; Scott, K.

    Some data in mixed-reactant fuel cells (MRFC) at Newcastle using formic acid, methanol and ethanol are reported. The importance of using a fuel-tolerant selective cathode catalyst has been identified. The influence of fuel and oxidant conditions and feeding patterns has been evaluated. The cell performance using air, oxygen and hydrogen peroxide is reported. The highest peak power density of 16 mW cm -2 was obtained with formic acid. The MRFC gave power densities approximately half those of a conventional, un-mixed-reactant fuel cell.

  17. A Materials-Based Mitigation Strategy for SU/SD in PEM Fuel Cells: Properties and Performance-Specific Testing of IrRu OER Catalysts.

    SciTech Connect

    Atanasoski, Radoslav; Cullen, David A; Vernstrom, George; Haugen, Gregory; Atanasoska, Liliana

    2013-01-01

    Catalysts that enable proton exchange membrane fuel cells to weather the damaging conditions experienced during transient periods of fuel starvation have been developed. The addition of minute amounts of iridium and ruthenium to the cathode enhances the oxygen evolution reaction (OER) during start-up/shutdown events, thus lowering the peak cell voltage closer to the onset of water oxidation. The catalyst loadings ranged from 1 to 10 g/cm2, but showed surprisingly high activity and durability. At such low loadings, it is possible to fully integrate the OER catalysts with negligible interference on fuel cell performance and a marginal increase in catalyst cost.

  18. A miniature origami biofuel cell based on a consumed cathode.

    PubMed

    Yu, You; Han, Yujie; Lou, Baohua; Zhang, Lingling; Han, Lei; Dong, Shaojun

    2016-11-10

    Considerable interest has been focused on miniature biofuel cells (BFCs) because of their portability and possibility to be implantable. Origami devices with hollow channels will provide novel insight into the assembly methods of miniature BFCs. Herein a miniature origami BFC has been fabricated from a MnO2-graphite flake consumed solid-state cathode. For further practical applications, miniature origami BFCs can directly generate energy from soft drinks.

  19. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells.

    PubMed

    Ter Heijne, Annemiek; Hamelers, Hubertus V M; De Wilde, Vinnie; Rozendal, René A; Buisman, Cees J N

    2006-09-01

    There is a need for alternative catalysts for oxygen reduction in the cathodic compartment of a microbial fuel cell (MFC). In this study, we show that a bipolar membrane combined with ferric iron reduction on a graphite electrode is an efficient cathode system in MFCs. A flat plate MFC with graphite felt electrodes, a volume of 1.2 L and a projected surface area of 290 cm2 was operated in continuous mode. Ferric iron was reduced to ferrous iron in the cathodic compartment according to Fe(3+) + e(-) --> Fe2+ (E0 = +0.77 V vs NHE, normal hydrogen electrode). This reversible electron transfer reaction considerably reduced the cathode overpotential. The low catholyte pH required to keep ferric iron soluble was maintained by using a bipolar membrane instead of the commonly used cation exchange membrane. For the MFC with cathodic ferric iron reduction, the maximum power density was 0.86 W/m2 at a current density of 4.5 A/m2. The Coulombic efficiency and energy recovery were 80-95% and 18-29% respectively.

  20. Galvanic Cells: Anodes, Cathodes, Signs and Charges

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2011-01-01

    Electrochemistry is a difficult subject for students at school and beyond and even for their teachers. This article explores the difficult "truth" that, when a current flows from a galvanic cell, positive ions within the cell electrolyte move towards the electrode labelled positive. This seems to contravene the basic rule that like charges repel…

  1. Method of depositing a catalyst on a fuel cell electrode

    DOEpatents

    Dearnaley, Geoffrey; Arps, James H.

    2000-01-01

    Fuel cell electrodes comprising a minimal load of catalyst having maximum catalytic activity and a method of forming such fuel cell electrodes. The method comprises vaporizing a catalyst, preferably platinum, in a vacuum to form a catalyst vapor. A catalytically effective amount of the catalyst vapor is deposited onto a carbon catalyst support on the fuel cell electrode. The electrode preferably is carbon cloth. The method reduces the amount of catalyst needed for a high performance fuel cell electrode to about 0.3 mg/cm.sup.2 or less.

  2. Cathode for use in high energy primary thionyl chloride cell systems and high energy primary thionyl chloride cell systems including the cathode

    NASA Astrophysics Data System (ADS)

    Walker, C. W., Jr.; Wade, W. L., Jr.; Binder, M.; Gilman, S.

    1985-08-01

    A cathode is provided for use in high energy primary lithium-thionyl chloride cell systems or calcium-thionyl chloride cell systems. The cathode comprises an expanded metallic current collector screen into which has been pasted a mixture of a low surface area conductive carbon black and a high surface area conductive carbon black previously mixed with a binder.

  3. Effect of catalyst layer defects on local membrane degradation in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Tavassoli, Arash; Lim, Chan; Kolodziej, Joanna; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik

    2016-08-01

    Aiming at durability issues of fuel cells, this research is dedicated to a novel experimental approach in the analysis of local membrane degradation phenomena in polymer electrolyte fuel cells, shedding light on the potential effects of manufacturing imperfections on this process. With a comprehensive review on historical failure analysis data from field operated fuel cells, local sources of iron oxide contaminants, catalyst layer cracks, and catalyst layer delamination are considered as potential candidates for initiating or accelerating the local membrane degradation phenomena. Customized membrane electrode assemblies with artificial defects are designed, fabricated, and subjected to membrane accelerated stress tests followed by extensive post-mortem analysis. The results reveal a significant accelerating effect of iron oxide contamination on the global chemical degradation of the membrane, but dismiss local traces of iron oxide as a potential stressor for local membrane degradation. Anode and cathode catalyst layer cracks are observed to have negligible impact on the membrane degradation phenomena. Notably however, distinct evidence is found that anode catalyst layer delamination can accelerate local membrane thinning, while cathode delamination has no apparent effect. Moreover, a substantial mitigating effect for platinum residuals on the site of delamination is observed.

  4. Influence of the microporous layer on carbon corrosion in the catalyst layer of a polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Spernjak, Dusan; Fairweather, Joseph; Mukundan, Rangachary; Rockward, Tommy; Borup, Rodney L.

    2012-09-01

    Corrosion of the catalyst support reduces PEM fuel cell performance via catalyst layer (CL) degradation (loss of porosity, catalyst connectivity, and active catalyst surface area). Carbon corrosion was investigated in a segmented cell for cathode gas diffusion layers (GDLs) with and without a microporous layer (MPL) to investigate the spatial aspects of GDL effect on corrosion. The cells were aged in situ using an accelerated stress test (AST) for carbon-support corrosion consisting of consecutive holds at 1.3 V. Carbon corrosion was quantified by measuring CO2 evolution during the AST. Performance degradation was substantial both with and without cathode MPL, but the degradation of the CL after prolonged corrosion was lower in the presence of an MPL. This was corroborated by better cell performance, higher remaining Pt active area, lower kinetic losses and smaller Pt particle size. The cell with an MPL showed increasingly nonuniform current distribution with corrosion time, which is correlated to the distribution of the Pt particle growth across the active area. This cell also showed an increase in mass-transport resistance due to MPL degradation. Without an MPL, GDL carbon fibers caused localized thinning in the cathode CL, originating from the combined effects of compression and corrosion.

  5. Moderate temperature sodium cells. I - Transition metal disulfide cathodes

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Pitts, L.; Schiff, R.

    1980-01-01

    TiS2, VS2, and Nb(1.1)S2 transition metal disulfides were evaluated as cathode materials for a moderate temperature rechargeable Na cell operating at 130 C. The 1st discharge of TiS2 results in a capacity of 0.85 eq/mole; approximately half of the Na in the 1st phase spanning the Na range from zero to 0.30 and almost all the Na in the 2nd phase spanning the 0.37 to 0.80 range are rechargeable. VS2 intercalates up to one mole of Na/mole of VS2 in the 1st discharge; the resulting Na(x)VS2 ternary consists of 3 phases in the 3 ranges of Na from zero to 1. Niobium disulfide undergoes a phase change in the 1st discharge; the average rechargeable capacity in extended cycling of this cathode is 0.50 eq/mole.

  6. Carbon Nanohorn-Derived Graphene Nanotubes as a Platinum-Free Fuel Cell Cathode.

    PubMed

    Unni, Sreekuttan M; Illathvalappil, Rajith; Bhange, Siddheshwar N; Puthenpediakkal, Hasna; Kurungot, Sreekumar

    2015-11-04

    Current low-temperature fuel cell research mainly focuses on the development of efficient nonprecious electrocatalysts for the reduction of dioxygen molecule due to the reasons like exorbitant cost and scarcity of the current state-of-the-art Pt-based catalysts. As a potential alternative to such costly electrocatalysts, we report here the preparation of an efficient graphene nanotube based oxygen reduction electrocatalyst which has been derived from single walled nanohorns, comprising a thin layer of graphene nanotubes and encapsulated iron oxide nanoparticles (FeGNT). FeGNT shows a surface area of 750 m(2)/g, which is the highest ever reported among the metal encapsulated nanotubes. Moreover, the graphene protected iron oxide nanoparticles assist the system to attain efficient distribution of Fe-Nx and quaternary nitrogen based active reaction centers, which provides better activity and stability toward the oxygen reduction reaction (ORR) in acidic as well as alkaline conditions. Single cell performance of a proton exchange membrane fuel cell by using FeGNT as the cathode catalyst delivered a maximum power density of 200 mW cm(-2) with Nafion as the proton exchange membrane at 60 °C. The facile synthesis strategy with iron oxide encapsulated graphitic carbon morphology opens up a new horizon of hope toward developing Pt-free fuel cells and metal-air batteries along with its applicability in other energy conversion and storage devices.

  7. The performance and mechanism of modified activated carbon air cathode by non-stoichiometric nano Fe3O4 in the microbial fuel cell.

    PubMed

    Fu, Zhou; Yan, Litao; Li, Kexun; Ge, Baochao; Pu, Liangtao; Zhang, Xi

    2015-12-15

    Cathodic catalyst is one of the key materials in microbial fuel cell (MFC). The addition of non-stoichiometric nano Fe3O4 in activated carbon (NSFe3O4/AC) air cathode was beneficial to boosting the charge transfer of the cathode accompanying with the enhancement of power performance in MFC. The air cathode modified by NSFe3O4 (5%, Wt%) increased the maximum power density by 83.3% from 780 mW/m(2) to 1430 mW/m(2) compared with bare air cathode. The modified cathodes showed enhanced electrochemical properties and appeared the maximum exchange current density of 18.71×10(-4) A/cm(2) for oxygen reduction reaction. The mechanism of oxygen reduction for the NSFe3O4/AC catalyst was a 4-electron pathway. The oxygen vacancy of the NSFe3O4 played a crucial role in electrochemical catalytic activity. The great catalytic performance made NSFe3O4 have a promising outlook applied in MFC.

  8. Poly(vinylidene fluoride-co-hexafluoropropylene) phase inversion coating as a diffusion layer to enhance the cathode performance in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Wulin; Zhang, Fang; He, Weihua; Liu, Jia; Hickner, Michael A.; Logan, Bruce E.

    2014-12-01

    A low cost poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) phase inversion coating was developed as a cathode diffusion layer to enhance the performance of microbial fuel cells (MFCs). A maximum power density of 1430 ± 90 mW m-2 was achieved at a PVDF-HFP loading of 4.4 mg cm-2 (4:1 polymer:carbon black), with activated carbon as the oxygen reduction cathode catalyst. This power density was 31% higher than that obtained with a more conventional platinum (Pt) catalyst on carbon cloth (Pt/C) cathode with a poly(tetrafluoroethylene) (PTFE) diffusion layer (1090 ± 30 mW m-2). The improved performance was due in part to a larger oxygen mass transfer coefficient of 3 × 10-3 cm s-1 for the PVDF-HFP coated cathode, compared to 1.7 × 10-3 cm s-1 for the carbon cloth/PTFE-based cathode. The diffusion layer was resistant to electrolyte leakage up to water column heights of 41 ± 0.5 cm (4.4 mg cm-2 loading of 4:1 polymer:carbon black) to 70 ± 5 cm (8.8 mg cm-2 loading of 4:1 polymer:carbon black). This new type of PVDF-HFP/carbon black diffusion layer could reduce the cost of manufacturing cathodes for MFCs.

  9. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    NASA Astrophysics Data System (ADS)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  10. Temporal variations of cathode performance in air-cathode single-chamber microbial fuel cells with different separators

    NASA Astrophysics Data System (ADS)

    Ma, Jinxing; Wang, Zhiwei; Suor, Denis; Liu, Shumeng; Li, Jiaqi; Wu, Zhichao

    2014-12-01

    An ideal separator is essential for efficient power production from air-cathode single-chamber microbial fuel cells (MFCs). In this study, we use different kinds of membranes as separators, including Nafion 117 proton exchange membrane, polyethersulfone and poly(vinylidene fluoride) microfiltration membranes. Temporal variations of cathode performance are monitored during the experiment. Results show that MFCs with microfiltration membranes present higher power output but deterioration is still observed after about 600-h operation. With the utilization of appropriate separators (e.g., polyethersulfone membrane), biofouling, cation fouling and chemical scale fouling of the cathodes are alleviated while reaction fouling seems inevitable. Moreover, it is found that Coulombic efficiency (CE) and energy efficiency (EE) are also related to the cathode performance. Despite relatively high oxygen diffusivity (1.49 × 10-5 cm2 s-1), CE and EE of the MFC with 0.1 μm pore-size polyethersulfone membrane can reach 92.8% and 13.7%, respectively, when its average power density registers 403.5 mW m-2. This phenomenon might be attributed to the finding that the overall substrate consumption rate due to oxygen reduction and respiration is almost constant in the air-cathode MFCs. Oxygen leakage into the electrolyte can be inhibited due to the efficient oxygen reduction reaction on the surface of the cathode.

  11. Polybenzimidazole (PBI) functionalized nanographene as highly stable catalyst support for polymer Electrolyte membrane fuel cells (PEMFCs)

    DOE PAGES

    Xin, Le; Yang, Fan; Qiu, Yang; ...

    2016-08-25

    Nanoscale graphenes were used as cathode catalyst supports in proton exchange membrane fuel cells (PEMFCs). Surface-initiated polymerization that covalently bonds polybenzimidazole (PBI) polymer on the surface of graphene supports enables the uniform distribution of the Pt nanoparticles, as well as allows the sealing of the unterminated carbon bonds usually present on the edge of graphene from the chemical reduction of graphene oxide. The nanographene effectively shortens the length of channels and pores for O2 diffusion/water dissipation and significantly increases the primary pore volume. Further addition of p-phenyl sulfonic functional graphitic carbon particles as spacers, increases the specific volume of themore » secondary pores and greatly improves O2 mass transport within the catalyst layers. The developed composite cathode catalyst of Pt/PBI-nanographene (50 wt%) + SO3H-graphitic carbon black demonstrates a higher beginning of life (BOL) PEMFC performance as compared to both Pt/PBI-nanographene (50 wt%) and Pt/PBI-graphene (50 wt%) + SO3H-graphitic carbon black (GCB). Accelerated stress tests show excellent support durability compared to that of traditional Pt/Vulcan XC72 catalysts, when subjected to 10,000 cycles from 1.0 V to 1.5 V. As a result, this study suggests the promise of using PBI-nanographene + SO3H-GCB hybrid supports in fuel cells to achieve the 2020 DOE targets for transportation applications.« less

  12. Polybenzimidazole (PBI) functionalized nanographene as highly stable catalyst support for polymer Electrolyte membrane fuel cells (PEMFCs)

    SciTech Connect

    Xin, Le; Yang, Fan; Qiu, Yang; Uzunoglu, Aytekin; Rockward, Tommy; Borup, Rodney L.; Stanciu, Lia A.; Li, Wenzhen; Xie, Jian

    2016-08-25

    Nanoscale graphenes were used as cathode catalyst supports in proton exchange membrane fuel cells (PEMFCs). Surface-initiated polymerization that covalently bonds polybenzimidazole (PBI) polymer on the surface of graphene supports enables the uniform distribution of the Pt nanoparticles, as well as allows the sealing of the unterminated carbon bonds usually present on the edge of graphene from the chemical reduction of graphene oxide. The nanographene effectively shortens the length of channels and pores for O2 diffusion/water dissipation and significantly increases the primary pore volume. Further addition of p-phenyl sulfonic functional graphitic carbon particles as spacers, increases the specific volume of the secondary pores and greatly improves O2 mass transport within the catalyst layers. The developed composite cathode catalyst of Pt/PBI-nanographene (50 wt%) + SO3H-graphitic carbon black demonstrates a higher beginning of life (BOL) PEMFC performance as compared to both Pt/PBI-nanographene (50 wt%) and Pt/PBI-graphene (50 wt%) + SO3H-graphitic carbon black (GCB). Accelerated stress tests show excellent support durability compared to that of traditional Pt/Vulcan XC72 catalysts, when subjected to 10,000 cycles from 1.0 V to 1.5 V. As a result, this study suggests the promise of using PBI-nanographene + SO3H-GCB hybrid supports in fuel cells to achieve the 2020 DOE targets for transportation applications.

  13. Phase change in the cathode side of a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Khajeh-Hosseini-Dalasm, N.; Fushinobu, Kazuyoshi; Okazaki, Ken

    A three-dimensional steady state two-phase non-isothermal model which highly couples the water and thermal management has been developed to numerically investigate the spatial distribution of the interfacial mass transfer phase-change rate in the cathode side of a proton exchange membrane fuel cell (PEMFC). A non-equilibrium evaporation-condensation phase change rate was incorporated in the model which allowed supersaturation and undersaturation take place. The most significant effects of phase-change rate on liquid saturation and temperature distributions are highlighted. A parametric study was also carried out to investigate the effects of operating conditions; namely as the channel inlet humidity, cell operating temperature, and inlet mass flow rate on the phase-change rate. It was also found that liquid phase assumption for produced water in the cathode catalyst layer (CL) changed the local distribution of phase-change rate. The maximum evaporation rate zone (above the channel near the CL) coincided with the maximum temperature zone and resulted in lowering the liquid saturation level. Furthermore, reduction of the channel inlet humidity and an increase of the operation temperature and inlet mass flow rate increased the evaporation rate and allowed for dehydration process of the gas diffusion layer (GDL) to take place faster.

  14. Pt-free carbon-based fuel cell catalyst prepared from spherical polyimide for enhanced oxygen diffusion.

    PubMed

    Nabae, Yuta; Nagata, Shinsuke; Hayakawa, Teruaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Isoda, Ayano; Matsunaga, Atsushi; Tanaka, Kazuhisa; Aoki, Tsutomu

    2016-03-18

    The development of a non-precious metal (NPM) fuel cell catalyst is extremely important to achieve globalization of polymer electrolyte fuel cells due to the cost and scarcity of platinum. Here, we report on a NPM cathode catalyst prepared by the pyrolysis of spherical polyimide nanoparticles that contain small amounts of Fe additive. 60 nm diameter Fe-containing polyimide nanoparticles were successfully synthesized by the precipitation polymerization of pyromellitic acid dianhydride and 1,3,5-tris(4-aminophenyl)benzene with Fe(acac)3 (acac = acetylacetonate) as an additive. The particles were subsequently carbonized by multistep pyrolysis to obtain the NPM catalyst while retaining the small particle size. The catalyst has good performance and promising durability for fuel cell applications. The fuel cell performance under a 0.2 MPa air atmosphere at 80 °C of 1.0 A cm(-2) at 0.46 V is especially remarkable and better than that previously reported.

  15. Fuel Cell Stations Automate Processes, Catalyst Testing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  16. Electrochemical and fuel cell evaluation of Co based catalyst for oxygen reduction in anion exchange polymer membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Mamlouk, M.; Kumar, S. M. Senthil; Gouerec, Pascal; Scott, Keith

    Co based catalyst were evaluated for oxygen reduction (ORR) in liquid KOH and alkaline anion exchange membrane fuel cells (AAEMFCs). In liquid KOH solution the catalyst exhibited good performance with an onset potential 120 mV more negative than platinum and a Tafel slope of ca. 120 mV dec -1. The hydrogen peroxide generated, increased from 5 to 50% as the electrode potential decreased from 175 to -300 mV vs. SHE. In an AAEMFC environment, one catalyst (GP2) showed promising performance for ORR, i.e. at 50 mA cm -2 the differences in cell potential between the stable performance for platinum (more positive) and cobalt cathodes with air and oxygen, were only 45 and 67 mV respectively. The second catalyst (GP4) achieved the same stable power density as with platinum, of 200 and 145 mW cm -2, with air at 1 bar (gauge) pressure and air (atm) cathode feed (60 °C), respectively. However the efficiency was lower (i.e. cell voltage was lower) i.e. 40% in comparison to platinum 47.5%.

  17. Highly Dispersed Metal Catalyst for Fuel Cell Electrodes

    SciTech Connect

    2009-03-01

    This factsheet describes a study that will bring industrial catalyst experience to fuel cell research. Specifically, industrial catalysts, such as those used in platforming, utilize precious metal platinum as an active component in a finely dispersed form.

  18. Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell.

    PubMed

    Yang, Tingting; Li, Kexun; Pu, Liangtao; Liu, Ziqi; Ge, Baochao; Pan, Yajun; Liu, Ying

    2016-12-15

    The hollow-spherical Co/N-C nanoparticle, which is synthesized via a simple hydrothermal reaction followed by heat treatment, is firstly used as electrocatalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cell (MFC). The maximum power density of MFC with 10% Co/N-C air-cathode is as high as 2514±59mWm(-2), which is almost 174% higher than the control. The exchange current density (i0) of cathode equipped with 10% Co/N-C is 238% higher than that of untreated AC. While the total resistance of treated samples decreases from 13.017 to 10.255Ω. The intensity ratio of Raman D to G band (ID/IG) decreases from 0.93 (N-C) to 0.73 (Co/N-C), indicating the catalyst forms graphite structure. Both XRD and XPS testify that Co is bonded to N within graphitic sheets and serves as the active sites in ORR. The four-electron pathway of the Co/N-C also plays a crucial role in electrochemical catalytic activity. As a result, it can be expected that the as-synthesized Co/N-C, with extraordinary electro-catalytic performance towards ORR, will be a promising alternative to the state-of-the-art non-precious metal ORR electro-catalysts for electrochemical energy applications.

  19. Advanced electro-Fenton degradation of biologically-treated coking wastewater using anthraquinone cathode and Fe-Y catalyst.

    PubMed

    Li, Haitao; Li, Yuping; Cao, Hongbin; Li, Xingang; Zhang, Yi

    2011-01-01

    The electrocatalytic activity of bare and 2-ethyl anthraquinone-modified graphite felt (2-EAQ/GF) toward oxygen reduction was investigated using a cyclic voltammetry technique in a neutral solution. The prepared cathodes were tested for electrogeneration of H2O2 and electro-Fenton oxidation (EFO) treatment of neutral coking wastewater (CW) after biological process, using a graphite anode and Fezeolite Y catalyst. The results showed that (i) H2O2 yield and current efficiency greatly depended on cathodic potential and materials; (ii) hydroxyl radicals, generated from Fe-zeolite Y-catalyzed H2O2 decomposition, played a great role in EFO treatment, while anodic direct and indirect oxidation was insignificant; (iii) chemical oxygen demand, total organic carbon (TOC) and acute toxicity of wastewater decreased by 40-50, 30-40 and 50-60%, respectively, and biodegradability increased after 1 h of EFO treatment. Due to the free-pH adjustment, EFO presents a potential engineering application for advanced treatment of CW.

  20. Enhanced Performance of non-PGM Catalysts in Air Operated PEM-Fuel Cells

    DOE PAGES

    Barkholtz, Heather M.; Chong, Lina; Kaiser, Zachary Brian; ...

    2016-10-13

    Here a non-platinum group metal (non-PGM) oxygen reduction catalyst was prepared from “support-free” zeolitic imidazolate framework (ZIF) precursor and tested in the proton exchange membrane fuel cell with air as the cathode feed. The iron nitrogen and carbon composite (FeeNeC) based catalyst has high specific surface area decorated uniformly with active sites, which redefines the triple phase boundary (TPB) and requires re-optimization of the cathodic membrane electrode fabrication to ensure efficient mass and charge transports to the catalyst surface. This study reports an effort in optimizing catalytic ink formulation for the membrane electrode preparation and its impact to the fuelmore » cell performance under air. Through optimization, the fuel cell areal current density as high as 115.2 mA/cm2 at 0.8 V or 147.6 mA/cm2 at 0.8 ViR-free has been achieved under one bar air. We also investigated impacts on fuel cell internal impedance and the water formation.« less

  1. Enhanced Performance of non-PGM Catalysts in Air Operated PEM-Fuel Cells

    SciTech Connect

    Barkholtz, Heather M.; Chong, Lina; Kaiser, Zachary Brian; Xu, Tao; Liu, Di-Jia

    2016-10-13

    Here a non-platinum group metal (non-PGM) oxygen reduction catalyst was prepared from “support-free” zeolitic imidazolate framework (ZIF) precursor and tested in the proton exchange membrane fuel cell with air as the cathode feed. The iron nitrogen and carbon composite (FeeNeC) based catalyst has high specific surface area decorated uniformly with active sites, which redefines the triple phase boundary (TPB) and requires re-optimization of the cathodic membrane electrode fabrication to ensure efficient mass and charge transports to the catalyst surface. This study reports an effort in optimizing catalytic ink formulation for the membrane electrode preparation and its impact to the fuel cell performance under air. Through optimization, the fuel cell areal current density as high as 115.2 mA/cm2 at 0.8 V or 147.6 mA/cm2 at 0.8 ViR-free has been achieved under one bar air. We also investigated impacts on fuel cell internal impedance and the water formation.

  2. Efficient Oxygen Evolution Reaction Catalysts for Cell Reversal and Start/Stop Tolerance in Fuel Cells

    SciTech Connect

    Atanasoski, Radoslav; Atanasoska, Liliana; Cullen, David A

    2013-01-01

    Minute amounts of ruthenium and iridium on platinum nanostructured thin films have been evaluated in an effort to reduce carbon corrosion and Pt dissolution during transient conditions in proton exchange membrane fuel cells. Electrochemical tests showed the catalysts had a remarkable oxygen evolution reaction (OER) activity, even greater than that of bulk, metallic thin films. Stability tests within a fuel cell environment showed that rapid Ru dissolution could be managed with the addition of Ir. Membrane electrode assemblies containing a Ru to Ir atomic ratio of 1:9 were evaluated under startup/shutdown and cell reversal conditions for OER catalyst loadings ranging from 1 to 10 g/cm2. These tests affirmed that electrode potentials can be controlled through the addition of OER catalysts without impacting the oxygen reduction reaction on the cathode or the hydrogen oxidation reaction on the anode. The morphology and chemical structure of the thin OER layers were characterized by scanning transmission electron microscopy and X-ray photoelectron spectroscopy in an effort to establish a correlation between interfacial properties and electrochemical behavior.

  3. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells.

    PubMed

    Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2015-05-07

    Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In this report, we present the development of a highly active, stable and low-cost non-precious metal ORR catalyst by direct synthesis under autogenic-pressure conditions. Transmission electron microscopy studies show highly porous Fe-N-C and Co-N-C structures, which were further confirmed by Brunauer-Emmett-Teller surface area measurements. The surface areas of the Fe-N-C and Co-N-C catalysts were found to be 377.5 and 369.3 m(2) g(-1), respectively. XPS results show the possible existence of N-C and M-Nx structures, which are generally proposed to be the active sites in non-precious metal catalysts. The Fe-N-C electrocatalyst exhibits an ORR half-wave potential 20 mV higher than the reference Pt/C catalyst. The cycling durability test for Fe-N-C over 5000 cycles shows that the half-wave potential lost only 4 mV, whereas the half-wave potential of the Pt/C catalyst lost about 50 mV. The Fe-N-C catalyst exhibited an improved activity and stability compared to the reference Pt/C catalyst and it possesses a direct 4-electron transfer pathway for the ORR process. Further, the Fe-N-C catalyst produces extremely low HO2(-) content, as confirmed by the rotating ring-disk electrode measurements. In the alkaline fuel single cell tests, maximum power densities of 75 and 80 mW cm(-2) were observed for the Fe-N-C and Pt/C cathodes, respectively. Durability studies (100 h) showed that decay of the fuel cell current was more prominent for the Pt/C cathode catalyst compared to the Fe-N-C cathode catalyst. Therefore, the Fe-N-C catalyst appears to be a promising new class of non-precious metal catalysts prepared by an autogenic synthetic method.

  4. A single-chamber microbial fuel cell without an air cathode.

    PubMed

    Nimje, Vanita Roshan; Chen, Chien-Cheng; Chen, Hau-Ren; Chen, Chien-Yen; Tseng, Min-Jen; Cheng, Kai-Chien; Shih, Ruey-Chyuan; Chang, Young-Fo

    2012-01-01

    Microbial fuel cells (MFCs) represent a novel technology for wastewater treatment with electricity production. Electricity generation with simultaneous nitrate reduction in a single-chamber MFC without air cathode was studied, using glucose (1 mM) as the carbon source and nitrate (1 mM) as the final electron acceptor employed by Bacillus subtilis under anaerobic conditions. Increasing current as a function of decreased nitrate concentration and an increase in biomass were observed with a maximum current of 0.4 mA obtained at an external resistance (R(ext)) of 1 KΩ without a platinum catalyst of air cathode. A decreased current with complete nitrate reduction, with further recovery of the current immediately after nitrate addition, indicated the dependence of B. subtilis on nitrate as an electron acceptor to efficiently produce electricity. A power density of 0.0019 mW/cm(2) was achieved at an R(ext) of 220 Ω. Cyclic voltammograms (CV) showed direct electron transfer with the involvement of mediators in the MFC. The low coulombic efficiency (CE) of 11% was mainly attributed to glucose fermentation. These results demonstrated that electricity generation is possible from wastewater containing nitrate, and this represents an alternative technology for the cost-effective and environmentally benign treatment of wastewater.

  5. Anion-Intercalating Cathodes for High-Energy-Density Cells

    NASA Technical Reports Server (NTRS)

    West, William

    2006-01-01

    A report discusses physicochemical issues affecting a fluoride-intercalating cathode that operates in conjunction with a lithium ion-intercalating anode in a rechargeable electrochemical cell described in a cited prior report. The instant report also discusses corresponding innovations made in solvent and electrolyte compositions since the prior report. The advantages of this cell, relative to other lithium-ion-based cells, are said to be greater potential (5 V vs. 4 V), and greater theoretical cathode specific capacity (0.9 to 2.2 A-h/g vs. about 0.18 A-h/g). The discussion addresses a need for the solvent to be unreactive toward the lithium anode and to resist anodic oxidation at potentials greater than about 4.5 V vs. lithium; the pertinent innovation is the selection of propylene carbonate (PC) as a solvent having significantly more stability, relative to other solvents that have been tried. The discussion also addresses the need for an electrolyte additive, denoted an anion receptor, to complex the fluoride ion; the pertinent innovation is the selection of tris(hexafluoroisopropyl) borate as a superior alternative to the prior anion receptor, which was tris(pentafluorophenyl) borate.

  6. Ex-situ and In-situ Stability Studies of PEM Fuel Cell Catalysts: the effect of carbon type and humidification on the thermal degradation of carbon supported catalysts

    SciTech Connect

    Haugen, G. M.; Stevens, D. A.; Hicks, M. T.; Dahn, J. R.

    2005-11-01

    One of the most significant challenges for proton exchange membrane fuel cells in stationary power generation systems is lifetime, where 40,000 hours of operation with less than 10% decay in performance is desired. There are several different membrane electrode assembly (MEA) associated degradation mechanisms inhibiting MEAs from obtaining their desired lifetime targets. The focus of this research is on the loss of cathode surface area over time, which results in MEA performance losses, since MEA performance is proportional to cathode catalyst surface area. Two proposed mechanisms, support oxidation and platinum dissolution, are studied using different accelerated tests. These results are compared to cathode catalyst surface area loss data from real-time fuel cell tests in order to decouple the two degradation mechanisms.

  7. Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode.

    PubMed

    Cai, Weiwei; Liu, Wenzong; Han, Jinglong; Wang, Aijie

    2016-06-15

    In comparison to precious metal catalyst especially Platinum (Pt), nickel foam (NF) owned cheap cost and unique three-dimensional (3D) structure, however, it was scarcely applied as cathode material in microbial electrolysis cell (MEC) as the intrinsic laggard electrochemical activity for hydrogen recovery. In this study, a self-assembly 3D nickel foam-graphene (NF-G) cathode was fabricated by facile hydrothermal approach for hydrogen evolution in MECs. Electrochemical analysis (linear scan voltammetry and electrochemical impedance spectroscopy) revealed the improved electrochemical activity and effective mass diffusion after coating with graphene. NF-G as cathode in MEC showed a significant enhancement in hydrogen production rate compared with nickel foam at a variety of biases. Noticeably, NF-G showed a comparable averaged hydrogen production rate (1.31 ± 0.07 mL H2 mL(-1) reactor d(-1)) to Platinum/carbon (Pt/C) (1.32 ± 0.07 mL H2 mL(-1) reactor d(-1)) at 0.8 V. Profitable energy recovery could be achieved by NF-G cathode at higher applied voltage, which performed the best hydrogen yield of 3.27 ± 0.16 mol H2 mol(-1) acetate at 0.8 V and highest energy efficiency of 185.92 ± 6.48% at 0.6 V.

  8. Mixed cellulose ester filter as a separator for air-diffusion cathode microbial fuel cells.

    PubMed

    Wang, Zejie; Lim, Bongsu

    2017-04-01

    Separator is important to prevent bio-contamination of the catalyst layer of air-diffusion cathode microbial fuel cells (MFCs). Mixed cellulose ester filter (MCEF) was examined as a separator for an air-cathode MFC in the present study. The MCEF-MFC produced a maximum power density of 780.7 ± 18.7 mW/m(2), which was comparable to 770.9 ± 35.9 mW/m(2) of MFC with Nafion membrane (NFM) as a separator. Long-term examination demonstrated a more stable performance of the MCEF-MFC than NFM-MFC. After 25 cycles, the maximum voltage of the MCEF-MFC decreased by only 1.3% from 425.1 ± 4.3 mV (initial 5 cycles) to 419.5 ± 2.3 mV (last 5 cycles). However, it was decreased by 9.1% from 424.8 ± 5.7 to 386 ± 2.5 mV for the NFM-MFC. The coulombic efficiency (CE) of the MCEF-MFC did not change (from 3.11 ± 0.09% to 3.13 ± 0.02%), while it decreased by 9.12% from 3.18 ± 0.04% to 2.89 ± 0.02% for the NFM-MFC. The MCEF separator was with less biofouling than the NFM separator over 60 days' operation, which might be the reason for the more table long-term performance of the MCEF-MFC. The results demonstrated that MCEF was feasible as a separator to set up good-performing and cost-effective air-diffusion cathode MFC.

  9. EFFECT OF PRETREATMENT ON PT-CO/C CATHODE CATALYSTS FOR THE OXYGEN-REDUCTION REACTION

    SciTech Connect

    Fox, E.

    2009-05-13

    In order to reduce the precious metal loading without sacrificing activity and stability, a new method for the preparation of bimetallic catalysts is proposed. Currently, Pt-alloy particles, with 2 to 3 nm in diameter, are loaded on high surface area carbon supports. Of the Pt loaded, only the surface atoms interact with the reactants. In order to increase the Pt utilization per metal particle the new process for catalyst preparation will incorporate a non-noble transition metal core coated with a skin layer of Pt deposited on high surface area carbon. The effect of reducing agent strength during synthesis was also explored. It was determined that the Co addition has a higher impact on catalyst when used with NaBH4 as reducing agent as compared to NaCOOH.

  10. Discharge characteristics of lithium/molten nitrate thermal battery cells using silver salts as solid cathode materials

    NASA Astrophysics Data System (ADS)

    McManis, G. E.; Miles, M. H.; Fletcher, A. N.

    1985-12-01

    Thermal battery cells using molten nitrate electrolytes and liquid lithium anodes have been evaluated using several silver salts with low solubility in molten nitrates as solid cathode materials. These cathode materials do not readily diffuse into the anolyte and, thus, do not have parasitic reactions with the lithium anode. Furthermore, the solid cathode materials have voltammetric characteristics as favorable as many soluble silver salt cathodes. This paper presents the effects of temperature, current density, and cathode material on cell discharge characteristics.

  11. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Park, Young-Chul; Tokiwa, Haruki; Kakinuma, Katsuyoshi; Watanabe, Masahiro; Uchida, Makoto

    2016-05-01

    We investigate the effects of the carbon supports on the Pt distribution, ionomer coverage and cathode performance of carbon-supported Pt catalysts, by using STEM observation, N2 adsorption analysis and electrochemical characterization. According to the STEM observation, the effective Pt surface area (S(e)Pt), which is determined by the location and size of the Pt particles on the supports, increases in the following order: c-Pt/CB < c-Pt/GCB < n-Pt/AB800 < n-Pt/AB250. The N2 adsorption analyses show that the Pt particles observed in the interior of the CB and AB800-supported Pt catalysts during the STEM observation could be ascribed to the hollow structures inside the carbon supports, which decrease their effective Pt surface areas. The S(e)Pt values are in good agreement with the cell performance in the high current density region. In spite of the highest Pt utilization (UPt) value (>90%) and uniform ionomer coverage, the c-Pt/CB catalyst shows the lowest cell performance due to the lower S(e)Pt value. On the other hand, the n-Pt/AB250 catalyst, for which all of the Pt particles exist only on the exterior surface, is found to be the most attractive in order to generate the large current densities required by actual fuel cell operation.

  12. Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Jin, Zhiping; Nie, Huagui; Yang, Zhi; Zhang, Jing; Liu, Zheng; Xu, Xiangju; Huang, Shaoming

    2012-09-01

    The ongoing search for new non-precious-metal catalysts (NPMCs) with excellent electrocatalytic performance to replace Pt-based catalysts has been viewed as an important strategy to promote the development of fuel cells. Recent studies have proven that carbon materials doped with atoms which have a relatively small atomic size (e.g. N, B, P or S), have also shown pronounced catalytic activity. Herein, we demonstrate the successful fabrication of CNT/graphene doped with Se atoms, which has a relatively large atomic size, by a simple, economical, and scalable approach. The electrocatalytic performance of the resulting Se-doped CNT-graphene catalyst exhibits excellent catalytic activity, long-term stability, and a high methanol tolerance compared to commercial Pt/C catalysts. Our results confirmed that combining CNTs with graphene is an effective strategy to synergistically improve ORR activity. More importantly, it is also suggested that the development of graphite materials doped with Se or other heteroatoms of large size will open up a new route to obtain ideal NPMCs with realistic value for fuel cell applications.The ongoing search for new non-precious-metal catalysts (NPMCs) with excellent electrocatalytic performance to replace Pt-based catalysts has been viewed as an important strategy to promote the development of fuel cells. Recent studies have proven that carbon materials doped with atoms which have a relatively small atomic size (e.g. N, B, P or S), have also shown pronounced catalytic activity. Herein, we demonstrate the successful fabrication of CNT/graphene doped with Se atoms, which has a relatively large atomic size, by a simple, economical, and scalable approach. The electrocatalytic performance of the resulting Se-doped CNT-graphene catalyst exhibits excellent catalytic activity, long-term stability, and a high methanol tolerance compared to commercial Pt/C catalysts. Our results confirmed that combining CNTs with graphene is an effective strategy to

  13. Deactivation of Pt/VC proton exchange membrane fuel cell cathodes by SO2, H2S and COS

    NASA Astrophysics Data System (ADS)

    Gould, Benjamin D.; Baturina, Olga A.; Swider-Lyons, Karen E.

    Sulfur contaminants in air pose a threat to the successful operation of proton exchange membrane fuel cells (PEMFCs) via poisoning of the Pt-based cathodes. The deactivation behavior of commercial Pt on Vulcan carbon (Pt/VC) membrane electrode assemblies (MEAs) is determined when exposed to 1 ppm (dry) of SO 2, H 2S, or COS in air for 3, 12, and 24 h while held at a constant potential of 0.6 V. All the three sulfur compounds cause the same deactivation behavior in the fuel cell cathodes, and the polarization curves of the poisoned MEAs have the same decrease in performance. Sulfur coverages after multiple exposure times (3, 12, and 24 h) are determined by cyclic voltammetry (CV). As the exposure time to sulfur contaminants increases from 12 to 24 h, the sulfur coverage of the platinum saturates at 0.45. The sulfur is removed from the cathodes and their activity is partially restored both by cyclic voltammetry, as shown by others, and by successive polarization curves. Complete recovery of fuel cell performance is not achieved with either technique, suggesting that sulfur species permanently affect the surface of the catalyst.

  14. PEMFC catalyst layers: the role of micropores and mesopores on water sorption and fuel cell activity.

    PubMed

    Soboleva, Tatyana; Malek, Kourosh; Xie, Zhong; Navessin, Titichai; Holdcroft, Steven

    2011-06-01

    The effects of carbon microstructure and ionomer loading on water vapor sorption and retention in catalyst layers (CLs) of PEM fuel cells are investigated using dynamic vapor sorption. Catalyst layers based on Ketjen Black and Vulcan XC-72 carbon blacks, which possess distinctly different surface areas, pore volumes, and microporosities, are studied. It is found that pores <20 nm diameter facilitate water uptake by capillary condensation in the intermediate range of relative humidities. A broad pore size distribution (PSD) is found to enhance water retention in Ketjen Black-based CLs whereas the narrower mesoporous PSD of Vulcan CLs is shown to have an enhanced water repelling action. Water vapor sorption and retention properties of CLs are correlated to electrochemical properties and fuel cell performance. Water sorption enhances electrochemical properties such as the electrochemically active surface area (ESA), double layer capacitance and proton conductivity, particularly when the ionomer content is very low. The hydrophilic properties of a CL on the anode and the cathode are adjusted by choosing the PSD of carbon and the ionomer content. It is shown that a reduction of ionomer content on either cathode or anode of an MEA does not necessarily have a significant detrimental effect on the MEA performance compared to the standard 30 wt % ionomer MEA. Under operation in air and high relative humidity, a cathode with a narrow pore size distribution and low ionomer content is shown to be beneficial due to its low water retention properties. In dry operating conditions, adequate ionomer content on the cathode is crucial, whereas it can be reduced on the anode without a significant impact on fuel cell performance.

  15. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Li, Yihong; Gemmen, Randall; Liu, Xingbo

    In recent years, various models have been developed for describing the reaction mechanisms in solid oxide fuel cell (SOFC) especially for the cathode electrode. However, many fundamental issues regarding the transport of oxygen and electrode kinetics have not been fully understood. This review tried to summarize the present status of the SOFC cathode modeling efforts, and associated experimental approaches on this topic. In addition, unsolved problems and possible future research directions for SOFC cathode kinetics had been discussed.

  16. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes

    SciTech Connect

    Li YH, Gemmen R, Liu XB

    2010-06-01

    In recent years, various models have been developed for describing the reaction mechanisms in solid oxide fuel cell (SOFC) especially for the cathode electrode. However, many fundamental issues regarding the transport of oxygen and electrode kinetics have not been fully understood. This review tried to summarize the present status of the SOFC cathode modeling efforts, and associated experimental approaches on this topic. In addition, unsolved problems and possible future research directions for SOFC cathode kinetics had been discussed

  17. Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers

    SciTech Connect

    Yoon, Wonseok; Weber, Adam Z.

    2011-01-01

    The cathode catalyst layer within a proton-exchange-membrane fuel cell is the most complex and critical, yet least understood, layer within the cell. The exact method and equations for modeling this layer are still being revised and will be discussed in this paper, including a 0.8 reaction order, existence of Pt oxides, possible non-isopotential agglomerates, and the impact of a film resistance towards oxygen transport. While the former assumptions are relatively straightforward to understand and implement, the latter film resistance is shown to be critically important in explaining increased mass-transport limitations with low Pt-loading catalyst layers. Model results demonstrate agreement with experimental data that the increased oxygen flux and/or diffusion pathway through the film can substantially decrease performance. Also, some scale-up concepts from the agglomerate scale to the more macroscopic porous-electrode scale are discussed and the resulting optimization scenarios investigated.

  18. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    SciTech Connect

    Allan J. Jacobson

    2006-09-30

    Operation of SOFCs at intermediate temperatures (500-800 C) requires new combinations of electrolyte and electrode materials that will provide both rapid ion transport across the electrolyte and electrode-electrolyte interfaces and efficient electrocatalysis of the oxygen reduction and fuel oxidation reactions. This project concentrates on materials and issues associated with cathode performance that are known to become limiting factors as the operating temperature is reduced. The specific objectives of the proposed research are to develop cathode materials that meet the electrode performance targets of 1.0 W/cm{sup 2} at 0.7 V in combination with YSZ at 700 C and with GDC, LSGM or bismuth oxide based electrolytes at 600 C. The performance targets imply an area specific resistance of {approx}0.5 {Omega}cm{sup 2} for the total cell. The research strategy is to investigate both established classes of materials and new candidates as cathodes, to determine fundamental performance parameters such as bulk diffusion, surface reactivity and interfacial transfer, and to couple these parameters to performance in single cell tests. The initial choices for study were perovskite oxides based on substituted LaFeO{sub 3} (P1 compositions), where significant data in single cell tests exist at PNNL for example, for La{sub 0.8}Sr{sub 0.2}FeO{sub 3} cathodes on both YSZ and CSO/YSZ. The materials selection was then extended to La{sub 2}NiO{sub 4} compositions (K1 compositions), and then in a longer range task we evaluated the possibility of completely unexplored group of materials that are also perovskite related, the ABM{sub 2}O{sub 5+{delta}}. A key component of the research strategy was to evaluate for each cathode material composition, the key performance parameters, including ionic and electronic conductivity, surface exchange rates, stability with respect to the specific electrolyte choice, and thermal expansion coefficients. In the initial phase, we did this in parallel with

  19. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.

    PubMed

    Butler, Caitlyn S; Nerenberg, Robert

    2010-05-01

    Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.

  20. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    NASA Astrophysics Data System (ADS)

    He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.

    2016-11-01

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  1. Carbon and binder free rechargeable Li-O2 battery cathode with Pt/Co3O4 flake arrays as catalyst

    NASA Astrophysics Data System (ADS)

    Zhao, Guangyu; Lv, Jixian; Xu, Zhanming; Zhang, Li; Sun, Kening

    2014-02-01

    Pt nanoparticles modified Co3O4 flake arrays are prepared by an electrochemically assisted method and the subsequent cool sputtering, a carbon and binder free approach. When used as the cathode catalysts of Li-O2 batteries, these porous films supply the O2 transport adequate channels by the macropores surrounded by Co3O4 flakes, which endow the cathodes stable two-phase interface in discharge/charge processes. The superior ability of Pt catalyzing O2 evolution leads the batteries showing a much lower overpotential (3.2 V) in charge process compared with those using pristine Co3O4 arrays as catalysts (4.0 V). The enhancement of decomposing the discharging precipitate promotes the Li-O2 batteries' reversibility obviously, which realize more than 30 discharge/charge cycles.

  2. The use of air fuel cell cathodes to remove contaminants from spent chromium plating solutions.

    PubMed

    Huang, K L; Holsen, T M; Chou, T C; Yang, M C

    2004-01-01

    Results from experiments using an impregnation-reduction (I-R) Pt / Nafion membrane electrode assembly (MEA) in an air fuel cell cathode to remove contaminants (Cu(II), Ni(II), and Fe(III)) from spent chromium electroplating baths are presented in this study. A platinum-carbon (Pt-C) / Nafion MEA and a Pb planar cathode were also used for comparison. The average removal rates of Cu(II) and Ni(II) were almost the same (0.39 and 0.40 mM hr(-1) (or 0.117 and 0.12 mmol hr(-1)), respectively) but higher than that of Fe(III) (0.16 mM hr(-1), or 0.048 mmol hr(-1)) in accordance with the Nernst-Planck flux equation. The removal rates for the same cation were independent of the cathode used. The average removal rate of each impurity was approximately proportional to the product of its initial concentration and separator area/anolyte volume ratio using Pb cathodes. Under constant current conditions the system using the Pt-C / Nafion cathode needed the highest cell voltage, about 3 V more than needed for the system with the Pt / Nafion cathode. The cell voltage required using the Pt / Nafion cathode was similar to that using the conventional planar Pb cathode. Analyses of cathode deposits by SEM/EDS and XPS techniques indicated they were minimal on the Pb and Pt / Nafion cathode and more apparent on the Pt-C / Nafion cathode. The primary deposits on the Pb cathode were chromium oxides (e.g., Cr2O3) with minor amount of lead chromate (lead dichromate or lead trichromate) and other chromium solids (Cr black). As expected, the dominant deposit on the lead anode surface was PbO2.

  3. Post-mortem analysis of a long-term tested proton exchange membrane fuel cell stack under low cathode humidification conditions

    NASA Astrophysics Data System (ADS)

    Kim, Nam-In; Seo, Yongho; Kim, Ki Buem; Lee, Naesung; Lee, Jin-Hwa; Song, Inseob; Choi, Hanshin; Park, Jun-Young

    2014-05-01

    During continuous power operation for 2740 h, the major mechanisms and patterns of performance degradation in a polymer electrolyte membrane fuel cell (PEMFC) stack are investigated under low cathode humidification with simulated reformate fuel gases through the use of various physicochemical and electrochemical analysis tools. As operating time increases, the operating voltages and open-circuit voltages (OCVs) of the stack decrease with the large voltage distributions. In the post-mortem analysis of the stack, the delamination of the catalyst layer (CL) of unstable operating membrane electrode assemblies (MEAs) is significant near the cathode gas inlets. This observation is in agreement with the results of OCV, hydrogen crossover current, and anode off-gas measurements. This phenomenon may be due to the acceleration of carbon corrosion in the cathode during the frequent start-up and shut-down process, because the local cathode potential can reach more than 1.5 V in the air/fuel boundary. Additionally, the frequent membrane hydration and dehydration by the accumulation of excess water (through electrochemical reaction) and faster water evaporation (under dry-air cathode conditions and high operating temperatures) may accelerate the interface delamination between the membrane and cathode CL with a substantially uneven distribution of water.

  4. Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO₂ Catalyst.

    PubMed

    Kharkwal, Shailesh; Tan, Yi Chao; Lu, Min; Ng, How Yong

    2017-01-28

    A novel microbial fuel cell (MFC)-based biosensor was designed for continuous monitoring of biochemical oxygen demand (BOD) in real wastewater. To lower the material cost, manganese dioxide (MnO₂) was tested as an innovative cathode catalyst for oxygen reduction in a single chamber air-cathode MFC, and two different crystalline structures obtained during synthesis of MnO₂ (namely β- and γ-MnO₂) were compared. The BOD sensor was studied in a comprehensive way, using both sodium acetate solution and real domestic wastewater (DWW). The optimal performance of the sensor was obtained with a β-MnO₂ catalyst, with R² values of 0.99 and 0.98 using sodium acetate solution and DWW, respectively. The BOD values predicted by the β-MnO₂ biosensor for DWW were in agreement with the BOD₅ values, determined according to standard methods, with slight variations in the range from 3% to 12%. Finally, the long-term stability of the BOD biosensor was evaluated over 1.5 years. To the best of our knowledge, this is the first report of an MFC BOD sensor using an MnO₂ catalyst at the cathode; the feasibility of using a low-cost catalyst in an MFC for online measurement of BOD in real wastewater broadens the scope of applications for such devices.

  5. Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO2 Catalyst

    PubMed Central

    Kharkwal, Shailesh; Tan, Yi Chao; Lu, Min; Ng, How Yong

    2017-01-01

    A novel microbial fuel cell (MFC)-based biosensor was designed for continuous monitoring of biochemical oxygen demand (BOD) in real wastewater. To lower the material cost, manganese dioxide (MnO2) was tested as an innovative cathode catalyst for oxygen reduction in a single chamber air-cathode MFC, and two different crystalline structures obtained during synthesis of MnO2 (namely β- and γ-MnO2) were compared. The BOD sensor was studied in a comprehensive way, using both sodium acetate solution and real domestic wastewater (DWW). The optimal performance of the sensor was obtained with a β-MnO2 catalyst, with R2 values of 0.99 and 0.98 using sodium acetate solution and DWW, respectively. The BOD values predicted by the β-MnO2 biosensor for DWW were in agreement with the BOD5 values, determined according to standard methods, with slight variations in the range from 3% to 12%. Finally, the long-term stability of the BOD biosensor was evaluated over 1.5 years. To the best of our knowledge, this is the first report of an MFC BOD sensor using an MnO2 catalyst at the cathode; the feasibility of using a low-cost catalyst in an MFC for online measurement of BOD in real wastewater broadens the scope of applications for such devices. PMID:28134838

  6. Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications.

    PubMed

    Huang, Sheng-Yang; Ganesan, Prabhu; Park, Sehkyu; Popov, Branko N

    2009-10-07

    A significant decrease in performance was observed for commercial Pt/C due to electrochemical oxidation of the carbon support and subsequent detachment and agglomeration of Pt particles. The Pt/TiO(2) cathode catalyst exhibited excellent fuel cell performance and ultrahigh stability under accelerated stress test conditions and can be considered as a promising alternative for improving the reliability and durability of PEMFCs.

  7. Catalyst layers for proton exchange membrane fuel cells prepared by electrospray deposition on Nafion membrane

    NASA Astrophysics Data System (ADS)

    Chaparro, A. M.; Ferreira-Aparicio, P.; Folgado, M. A.; Martín, A. J.; Daza, L.

    The electrospray deposition method has been used for preparation of catalyst layers for proton exchange membrane fuel cells (PEMFC) on Nafion membrane. Deposition of Pt/C + ionomer suspensions on Nafion 212 gives rise to layers with a globular morphology, in contrast with the dendritic growth observed for the same layers when deposited on the gas diffusion layer, GDL (microporous carbon black layer on carbon cloth) or on metallic Al foils. Such a change is discussed in the light of the influence of the Nafion substrate on the electrospray deposition process. Nafion, which is a proton conductor and electronic insulator, gives rise to the discharge of particles through proton release and transport towards the counter electrode, compared with the direct electron transfer that takes place when depositing on an electronic conductor. There is also a change in the electric field distribution in the needle to counter-electrode gap due to the presence of Nafion, which may alter conditions for the electrospray effect. If discharging of particles is slow enough, for instances with a low membrane protonic conductivity, the Nafion substrate may be charged positively yielding a change in the electric field profile and, with it, in the properties of the film. Single cell characterization is carried out with Nafion 212 membranes catalyzed by electrospray on the cathode side. It is shown that the internal resistance of the cell decreases with on-membrane deposited cathodic catalyst layers, with respect to the same layers deposited on GDL, giving rise to a considerable improvement in cell performance. The lower internal resistance is due to higher proton conductivity at the catalyst layer-membrane interface resulting from on-membrane deposition. On the other hand, electroactive area and catalyst utilization appear little modified by on-membrane deposition, compared with on-GDL deposition.

  8. A membraneless alkaline direct liquid fuel cell (DLFC) platform developed with a catalyst-selective strategy

    NASA Astrophysics Data System (ADS)

    Yu, Xingwen; Pascual, Emilio J.; Wauson, Joshua C.; Manthiram, Arumugam

    2016-11-01

    With a logical management of the catalyst selectivity, we present a scalable, membraneless alkaline direct liquid fuel cell (DLFC) platform. The uniqueness of this innovation is that the inexpensive (non-platinum) cathode catalysts, based on strongly coupled transition-metal-oxide nanocrystals and nano-structured carbon materials (e. g., NiCo2O4 nano-particles on a nitrogen-doped graphene and MnNiCoO4 nano-particles on a nitrogen-doped multi-wall carbon nanotube), exhibit high activity for the oxygen reduction reaction (ORR) but without activity for the anode fuel oxidation reaction (FOR). Therefore, operation of the DLFCs allows the anode fuel to freely enter the cathode. This strategy avoids the reliance on expensive or difficult-to-develop cation- or anion-exchange membranes and circumvents the scalability concerns of the conventional membraneless DLFCs that are operated under a laminar-flow principle. With proper catalyst selectivity, a variety of organic liquids can be used as anode fuels. The high power density delivered by the membraneless DLFCs with inexpensive components and safe fuels can enable the development of not only small-scale portable power sources but also large-scale energy generation systems for transportation and stationary storage.

  9. Development of Lanthanum Ferrite SOFC Cathodes

    SciTech Connect

    Simner, Steve P.; Bonnett, Jeff F.; Canfield, Nathan L.; Meinhardt, Kerry D.; Shelton, Jayne P.; Sprenkle, Vince L.; Stevenson, Jeffry W.

    2003-01-01

    A number of studies have been conducted concerning compositional/microstructural modifications of a Sr-doped lanthanum ferrite (LSF) cathode and protective Sm-doped ceria (SDC) layer in an anode supported solid oxide fuel cell (SOFC). Emphasis was placed on achieving enhanced low temperature (700-800 degrees C) performance, and long-term cell stability. Investigations involved manipulation of the lanthanum ferrite chemistry, addition of noble metal oxygen reduction catalysts, incorporation of active cathode layer compositions containing Co, Fe and higher Sr contents, and attempts to optimize the ceria barrier layer between the LSF cathode and YSZ electrolyte.

  10. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2015-04-01

    Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In this report, we present the development of a highly active, stable and low-cost non-precious metal ORR catalyst by direct synthesis under autogenic-pressure conditions. Transmission electron microscopy studies show highly porous Fe-N-C and Co-N-C structures, which were further confirmed by Brunauer-Emmett-Teller surface area measurements. The surface areas of the Fe-N-C and Co-N-C catalysts were found to be 377.5 and 369.3 m2 g-1, respectively. XPS results show the possible existence of N-C and M-Nx structures, which are generally proposed to be the active sites in non-precious metal catalysts. The Fe-N-C electrocatalyst exhibits an ORR half-wave potential 20 mV higher than the reference Pt/C catalyst. The cycling durability test for Fe-N-C over 5000 cycles shows that the half-wave potential lost only 4 mV, whereas the half-wave potential of the Pt/C catalyst lost about 50 mV. The Fe-N-C catalyst exhibited an improved activity and stability compared to the reference Pt/C catalyst and it possesses a direct 4-electron transfer pathway for the ORR process. Further, the Fe-N-C catalyst produces extremely low HO2- content, as confirmed by the rotating ring-disk electrode measurements. In the alkaline fuel single cell tests, maximum power densities of 75 and 80 mW cm-2 were observed for the Fe-N-C and Pt/C cathodes, respectively. Durability studies (100 h) showed that decay of the fuel cell current was more prominent for the Pt/C cathode catalyst compared to the Fe-N-C cathode catalyst. Therefore, the Fe-N-C catalyst appears to be a promising new class of non-precious metal catalysts prepared by an autogenic synthetic method.Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In

  11. Elucidating the degradation mechanism of the cathode catalyst of PEFCs by a combination of electrochemical methods and X-ray fluorescence spectroscopy.

    PubMed

    Monzó, J; van der Vliet, D F; Yanson, A; Rodriguez, P

    2016-08-10

    In this study, we report a methodology which enables the determination of the degradation mechanisms responsible for catalyst deterioration under different accelerated stress protocols (ASPs) by combining measurements of the electrochemical surface area (ECSA) and Pt content (by X-ray fluorescence). The validation of this method was assessed on high surface area unsupported Pt nanoparticles (Pt-NPs), Pt nanoparticles supported on TaC (Pt/TaC) and Pt nanoparticles supported on Vulcan carbon (Pt/Vulcan). In the load cycle protocol, the degradation of Pt-NPs and Pt/Vulcan follows associative processes (e.g. agglomeration) in the first 2000 cycles, however, in successive cycles the degradation goes through dissociative processes such as Pt dissolution, as is evident from a similar decay of ECSA and Pt content. In contrast, the degradation mechanism for Pt nanoparticles dispersed on TaC occurs continuously through the dissociative processes (e.g. Pt dissolution or particle detachment), with similar decay rates of both Pt content and ECSA. In the start-up/shut-down protocol, high surface area Pt-NPs follow associative processes (e.g. Ostwald ripening) in the first 4000 cycles, after which the degradation continues through dissociative processes. On the other hand, dissociative mechanisms always govern the degradation of Pt/TaC under start-up/shut-down protocol conditions. Finally, we report that Pt nanoparticles supported on TaC exhibit the highest catalytic activity and long term durability of the three nanoparticle systems tested. This makes Pt/TaC a potentially valuable catalyst system for application in polymer electrolyte fuel cell cathodes.

  12. Bipolar Electrochemistry for Concurrently Evaluating the Stability of Anode and Cathode Electrocatalysts and the Overall Cell Performance during Long-Term Water Electrolysis.

    PubMed

    Eßmann, Vera; Barwe, Stefan; Masa, Justus; Schuhmann, Wolfgang

    2016-09-06

    Electrochemical efficiency and stability are among the most important characteristics of electrocatalysts. These parameters are usually evaluated separately for the anodic and cathodic half-cell reactions in a three-electrode system or by measuring the overall cell voltage between the anode and cathode as a function of current or time. Here, we demonstrate how bipolar electrochemistry can be exploited to evaluate the efficiency of electrocatalysts for full electrochemical water splitting while simultaneously and independently monitoring the individual performance and stability of the half-cell electrocatalysts. Using a closed bipolar electrochemistry setup, all important parameters such as overvoltage, half-cell potential, and catalyst stability can be derived from a single galvanostatic experiment. In the proposed experiment, none of the half-reactions is limiting on the other, making it possible to precisely monitor the contribution of the individual half-cell reactions on the durability of the cell performance. The proposed approach was successfully employed to investigate the long-term performance of a bifunctional water splitting catalyst, specifically amorphous cobalt boride (Co2B), and the durability of the electrocatalyst at the anode and cathode during water electrolysis. Additionally, by periodically alternating the polarization applied to the bipolar electrode (BE) modified with a bifunctional oxygen electrocatalyst, it was possible to explicitly follow the contributions of the oxygen reduction (ORR) and the oxygen evolution (OER) half-reactions on the overall long-term durability of the bifunctional OER/ORR electrocatalyst.

  13. Cathode for a hall-heroult type electrolytic cell for producing aluminum

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum from alumina in an electrolytic cell including using a cathode comprised of a base material having low electrical conductivity and wettable with molten aluminum to form a reaction layer having a high electrical conductivity on said base layer and a cathode bar extending from said reaction layer through said base material to conduct electrical current from said reaction layer.

  14. Oxygen-hydrogen fuel cell with an iodine-iodide cathode - A concept

    NASA Technical Reports Server (NTRS)

    Javet, P.

    1970-01-01

    Fuel cell uses a porous cathode through which is fed a solution of iodine in aqueous iodide solution, the anode is a hydrogen electrode. No activation polarization appears on the cathode because of the high exchange-current density of the iodine-iodide electrode.

  15. The swelling mechanism of cathodes in Li/(CFx)(sub n) cells

    NASA Technical Reports Server (NTRS)

    Margalit, Nehemiah; Baxam, Carl C.

    1992-01-01

    Active material particles spatial arrangement in combination with the nature of the electrochemical reduction mechanism were found to be the major cause of excessive swelling in cathodes in Li/(CF(x))n cells. A better understanding of the chemical reaction mechanism, a possible new role for the carbon, and a model for cathode growth are discussed.

  16. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells IV. On the Ohmic loss in anode supported button cells with LSM or LSCF cathodes

    SciTech Connect

    Lu, Zigui; Zhou, Xiao Dong; Templeton, Jared W.; Stevenson, Jeffry W.

    2010-05-08

    Anode-supported solid oxide fuel cells (SOFC) with a variety of YSZ electrolyte thicknesses were fabricated by tape casting and lamination. The preparation of the YSZ electrolyte tapes with various thicknesses was accomplished by using doctor blades with different gaps between the precision machined, polished blade and the casting surface. The green tape was cut into discs, sintered at 1385°C for 2 h, and subsequently creep-flattened at 1350°C for 2 h. Either LSCF with an SDC interlayer or LSM+YSZ composite was used as the cathode material for the fuel cells. The ohmic resistances of these anode-supported fuel cells were characterized by electrochemical impedance spectroscopy at temperatures from 500°C to 750°C. A linear relationship was found between the ohmic resistance of the fuel cell and the YSZ electrolyte thickness at all the measuring temperatures for both LSCF and LSM+YSZ cathode fuel cells. The ionic conductivities of the YSZ electrolyte, derived for the fuel cells with LSM+YSZ or LSCF cathodes, were independent of the cathode material and cell configuration. The ionic conductivities of the YSZ electrolyte was slightly lower than that of the bulk material, possibly due to Ni-doping into the electrolyte. The fuel cell with a SDC interlayer and LSCF cathode showed larger intercept resistance than the fuel cell with LSM+YSZ cathode, which was possibly due to the imperfect contact between the SDC interlayer and the YSZ electrolyte and the migration of Zr into the SDC interlayer to form an insulating solid solution during cell fabrication. Calculations of the contribution of the YSZ electrolyte to the total ohmic resistance showed that YSZ was still a satisfactory electrolyte at temperatures above 650°C. Explorations should be directed to reduce the intercept resistance to achieve significant improvement in cell performance.

  17. New liquid cathode electrolytes in high rate cells

    NASA Astrophysics Data System (ADS)

    Bailey, Jean W.; Kalisz, David W.; Blomgren, George E.

    1990-03-01

    The power limitations of liquid oxyhalide batteries were explored by examining the physical and electrical properties of new electrolytes. Conductivity, kinematic viscosity, and specific gravity of electrolytes were measured inside a specially adapted argon filled drybox. Liquid cathode oxyhalide electrolytes designed to enhance power density were tested first in demountable test cells and then, the most promising, in hermetically sealed high rate F size jellyroll cells. For F cells, the capacity on constant current discharge was measured at 3.5 and 12.5 mA/sq cm for fresh cells at 21 C and at 3.5 mA/sq cm for cells stored 4 weeks at 54 C then discharged at -30 C. An optimized cell design with thicker electrodes was developed for testing electrolytes with higher conductivity than LiAlCl4-SOCl2. The best capacity at 2A was achieved with LiGaCl4-SOCl2 or LiAlCl4-SOCl2. The best capacity at 7A was achieved with LiGaCl4-SOCl2. LiGaCl4 in SOCl2 was found to discharge at higher temperatures than LiAlCl4 in SOCl2. Imidazolium, aralkylammonium, and sulfonium chlorides were found to have high solubility and conductivity in thionyl chloride, but lithium was found to be passive in contact with these solutions and most metals corroded excessively. These salts mixed with aluminum chloride were much less aggressive and when mixed with lithium salts in addition gave high conductivity and test cell capacities.

  18. Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells.

    PubMed

    Renslow, Ryan; Donovan, Conrad; Shim, Matthew; Babauta, Jerome; Nannapaneni, Srilekha; Schenk, James; Beyenal, Haluk

    2011-12-28

    Sediment microbial fuel cells (SMFCs) have been used as renewable power sources for sensors in fresh and ocean waters. Organic compounds at the anode drive anodic reactions, while oxygen drives cathodic reactions. An understanding of oxygen reduction kinetics and the factors that determine graphite cathode performance is needed to predict cathodic current and potential losses, and eventually to estimate the power production of SMFCs. Our goals were to (1) experimentally quantify the dependence of oxygen reduction kinetics on temperature, electrode potential, and dissolved oxygen concentration for the graphite cathodes of SMFCs and (2) develop a mechanistic model. To accomplish this, we monitored current on polarized cathodes in river and ocean SMFCs. We found that (1) after oxygen reduction is initiated, the current density is linearly dependent on polarization potential for both SMFC types; (2) current density magnitude increases linearly with temperature in river SMFCs but remains constant with temperature in ocean SMFCs; (3) the standard heterogeneous rate constant controls the current density temperature dependence; (4) river and ocean SMFC graphite cathodes have large potential losses, estimated by the model to be 470 mV and 614 mV, respectively; and (5) the electrochemical potential available at the cathode is the primary factor controlling reduction kinetic rates. The mechanistic model based on thermodynamic and electrochemical principles successfully fit and predicted the data. The data, experimental system, and model can be used in future studies to guide SMFC design and deployment, assess SMFC current production, test cathode material performance, and predict cathode contamination.

  19. Nano-structured composite cathodes for intermediate temperature solid oxide fuel cells via an infiltration/impregnation technique

    SciTech Connect

    Jiang, Zhiyi; Xia, Changrong; Chen, Fanglin

    2010-02-12

    Solid oxide fuel cells (SOFCs) are high temperature energy conversion devices working efficiently and environmental friendly. SOFC requires a functional cathode with high electrocatalytic activity for the electrochemical reduction of oxygen. The electrode is often fabricated at high temperature to achieve good bonding between the electrode and electrolyte. The high temperature not only limits material choice but also results in coarse particles with low electrocatalytic activity. Nano-structured electrodes fabricated at low temperature by an infiltration/impregnation technique have shown many advantages including superior activity and wider range of material choices. The impregnation technique involves depositing nanoparticle catalysts into a pre-sintered electrode backbone. Two basic types of nano-structures are developed since the electrode is usually a composite consists of an electrolyte and an electrocatalyst. One is infiltrating electronically conducting nano-catalyst into a single phase ionic conducting backbone, while the other is infiltrating ionically conducting nanoparticles into a single phase electronically conducting backbone. In addition, nanoparticles of the electrocatalyst, electrolyte and other oxides have also been infiltrated into mixed conducting backbones. These nano-structured cathodes are reviewed here regarding the preparation methods, their electrochemical performance, and stability upon thermal cycling.

  20. Sustainable energy recovery in wastewater treatment by microbial fuel cells: stable power generation with nitrogen-doped graphene cathode.

    PubMed

    Liu, Yuan; Liu, Hong; Wang, Chuan; Hou, Shuang-Xia; Yang, Nuan

    2013-12-03

    Microbial fuel cells (MFCs) recover energy sustainably in wastewater treatment. Performance of non-noble cathode catalysts with low cost in neutral medium is vital for stable power generation. Nitrogen-doped graphene (NG) as cathode catalyst was observed to exhibit high and durable activity at buffered pH 7.0 during electrochemical measurements and in MFCs with respect to Pt/C counterpart. Electrochemical measurements showed that the oxygen reduction reaction (ORR) on NG possessed sustained activity close to the state-of-art Pt/C in terms of onset potential and electron transfer number. NG-MFCs displayed maximum voltage output of 650 mV and maximum power density of 776 ± 12 mW m(-2), larger than 610 mV and 750 ± 19 mW m(-2) of Pt/C-MFCs, respectively. Furthermore, long-time test lasted over 90 days, during which the maximum power density of NG-MFCs declined by 7.6%, with stability comparable to Pt/C-MFCs. Structure characterization of NG implied that the relatively concentrated acidic oxygen-containing groups improved such long-time stability by repelling the protons due to the same electrostatic force, and thus the C-N active centers for ORR were left undestroyed. These findings demonstrated the competitive advantage of NG to advance the application of MFCs for recovering biomass energy in treatment of wastewater with neutral pH.

  1. Sputtered cathodes for polymer electrolyte fuel cells: insights into potentials, challenges and limitations.

    PubMed

    Schwanitz, Bernhard; Rabis, Annett; Horisberger, Michael; Scherer, Günther G; Schmidt, Thomas J

    2012-01-01

    The level of Pt loadings in polymer electrolyte fuel cells (PEFC) is still one of the main hindrances for implementation of PEFCs into the market. Therefore, new catalyst and electrode preparation methods such as sputtering are of current interest, because they allow thin film production and have many cost saving advantages for electrode preparation. This paper summarises some of the most important studies done for sputtered PEFCs, including non carbon supported electrodes. Furthermore, it will be shown that an understanding of the main morphological differences between sputtered and ink-based electrodes is crucial for a better understanding of the resulting fuel cell performance. Especially, the electrochemical surface area (ECSA) plays a key role for a further increase in PEFC performance of sputtered electrodes. The higher surface specific activities i(k,spec) of sputtered compared to ink-based electrodes will be discussed as advantage of the thin film formation. The so- called particle size effect, known in literature for several years, will be discussed as reason for the higher i(k,spec) of sputtered electrodes. Therefore, a model system on a rotating disc electrode (RDE) was studied. For sputtered PEFC cathodes Pt loadings were lowered to 100 μg(Pt)/cm(2), yet with severe performance losses compared to ink-based electrodes. Still, for Pt sputtered electrodes on a carbon support structure remarkably high current densities of 0.46 A/cm(2) at 0.6 V could be achieved.

  2. The Corrosion of PEM Fuel Cell Catalyst Supports and Its Implications for Developing Durable Catalysts

    SciTech Connect

    Shao, Yuyan; Wang, Jun; Kou, Rong; Engelhard, Mark H.; Liu, Jun; Wang, Yong; Lin, Yuehe

    2009-01-03

    Studying the corrosion behavior of catalyst support materials is of great significance for understanding the degradation of PEM fuel cell performance and developing durable catalysts. The oxidation of Vulcan carbon black (the most widely-used catalyst support for PEM fuel cells) was investigated using various electrochemical stressing methods (fixed-potential holding vs. potential step cycling), among which the potential step cycling was considered to mimic more closely the real drive cycle operation of vehicle PEM fuel cells. The oxidation of carbon was accelerated under potential step conditions as compared with the fixed-potential holding condition. Increasing potential step frequency or decreasing the lower potential limit in the potential step can further accelerate the corrosion of carbon. The accelerated corrosion of carbon black was attributed to the cycle of consumption/regeneration of some easily oxidized species. These findings are being employed to develop a test protocol for fast screening durable catalyst support.

  3. Nitrogen-doped fullerene as a potential catalyst for hydrogen fuel cells.

    PubMed

    Gao, Feng; Zhao, Guang-Lin; Yang, Shizhong; Spivey, James J

    2013-03-06

    We examine the possibility of nitrogen-doped C60 fullerene (N-C60) as a cathode catalyst for hydrogen fuel cells. We use first-principles spin-polarized density functional theory calculations to simulate the electrocatalytic reactions on N-C60. The first-principles results show that an O2 molecule can be adsorbed and partially reduced on the N-C complex sites (Pauling sites) of N-C60 without any activation barrier. Through a direct pathway, the partially reduced O2 can further react with H(+) and additional electrons and complete the water formation reaction (WFR) with no activation energy barrier. In the indirect pathway, reduced O2 reacts with H(+) and additional electrons to form H2O molecules through a transition state (TS) with a small activation barrier (0.22-0.37 eV). From an intermediate state to a TS, H(+) can obtain a kinetic energy of ∼0.95-3.68 eV, due to the Coulomb electric interaction, and easily overcome the activation energy barrier during the WFR. The full catalytic reaction cycles can be completed energetically, and N-C60 fullerene recovers to its original structure for the next catalytic reaction cycle. N-C60 fullerene is a potential cathode catalyst for hydrogen fuel cells.

  4. Photoregenerative I-/I3- couple as a liquid cathode for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Wang, Yadong; Ai, Xinping; Tu, Wenmao; Pan, Mu

    2014-10-01

    A photoassisted oxygen reduction reaction (ORR) through I-/I3- redox couple was investigated for proton exchange membrane (PEM) fuel cell cathode reaction. The I-/I3--based liquid cathode was used to replace conventional oxygen cathode, and its discharge product I- was regenerated to I3- by photocatalytic oxidation with the participation of oxygen. This new and innovative approach may provide a strategy to eliminate the usage of challenging ORR electrocatalysts, resulting in an avenue for developing low-cost and high-efficiency PEM fuel cells.

  5. Improving the flexibility of microbial desalination cells through spatially decoupling anode and cathode.

    PubMed

    Ping, Qingyun; He, Zhen

    2013-09-01

    To improve the flexibility of microbial desalination cell (MDC) construction and operation, a new configuration with decoupled anode and cathode was developed and examined in this study. A higher salt concentration resulted in higher current generation, as well as a higher salt removal rate. The effect of the distance between the anode and the cathode on the MDC performance was not obvious, likely due to a sufficient conductivity in the salt solution. Because the cathode was identified as a limiting factor, adding one more cathode unit increased the current generation from 72.3 to 116.0 A/m(3), while installing additional anode units did not obviously alter the MDC current production. Changing the position of the anode/cathode units exhibited a weak influence on the MDC performance. Parallel connection of electrical circuits generally produced more current than the individual connections, and a strong competition was observed between multiple units sharing the same opposite unit.

  6. Ceria catalyst for inert-substrate-supported tubular solid oxide fuel cells running on methane fuel

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Kim, Bok-Hee; Du, Yanhai; Xu, Qing; Ahn, Byung-Guk

    2016-05-01

    A ceria catalyst is applied to an inert-substrate supported tubular single cell for direct operation on methane fuel. The tubular single cell comprises a porous yttria-stabilized zirconia (YSZ) supporter, a Ni-Ce0.8Sm0.2O1.9 anode, a YSZ/Ce0.8Sm0.2O1.9 bi-layer electrolyte, and a La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. The ceria catalyst is incorporated into the porous YSZ supporter layer by a cerium nitrate impregnation. The effects of ceria on the microstructure and electrochemical performance of the tubular single cell are investigated with respect to the number of impregnations. The optimum number of impregnations is determined to be four based on the maximum power density and polarization property of the tubular single cell in hydrogen and methane fuels. At 700 °C, the tubular single cell shows similar maximum power densities of ˜260 mW cm-2 in hydrogen and methane fuels, respectively. Moreover, the ceria catalyst significantly improves the performance stability of the cell running on methane fuel. At a current density of 350 mA cm-2, the single cell shows a low degradation rate of 2.5 mV h-1 during the 13 h test in methane fuel. These results suggest the feasibility of applying the ceria catalyst to the inert-substrate supported tubular single cell for direct operation on methane fuel.

  7. Degradation analyses of Ru85Se15 catalyst layer in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zheng, Qiaoming; Cheng, Xuan; Jao, Ting-Chu; Weng, Fang-Bor; Su, Ay; Chiang, Yu-Chun

    2012-11-01

    Accelerated degradation tests (ADTs) for the H2/air single cell are carried out at 65 °C and ambient pressure by cycling the cell between 0 and 200 mA cm-2 up to 6000 cycles. Membrane electrode assemblies (MEAs) are prepared using the Nafion 212 membrane and the carbon supported platinum as an anode catalyst, as well as the carbon supported Ru85Se15 as a cathode catalyst prepared with five selected Nafion contents and Ru loads to represent the optimized (33% Nafion and 0.27 mg Ru cm-2), overloaded (43% Nafion and 0.61 mg Ru cm-2) and underloaded (20% Nafion and 0.14 mg Ru cm-2) conditions. The lowest cell performance loss of 44% in terms of peak power density is achieved with 33% Nafion and 0.27 mg Ru cm-2. Very severe losses of 80% and 82% are found for 20% and 43% Nafion contents, respectively, while relatively moderate losses of 57% and 64% for 0.14 and 0.61 mg Ru cm-2, respectively. Dissolution and migration of Se/Ru and corrosion of carbon support from the catalyst, together with the shrinkage and release of sulfonic acid from the membrane are identified and correlated to decayed cell performances.

  8. Novel anode catalyst for direct methanol fuel cells.

    PubMed

    Basri, S; Kamarudin, S K; Daud, W R W; Yaakob, Z; Kadhum, A A H

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.

  9. Novel Anode Catalyst for Direct Methanol Fuel Cells

    PubMed Central

    Basri, S.; Kamarudin, S. K.; Daud, W. R. W.; Yaakob, Z.; Kadhum, A. A. H.

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst. PMID:24883406

  10. The Impact of Cathode Material and Shape on Current Density in an Aluminum Electrolysis Cell

    NASA Astrophysics Data System (ADS)

    Song, Yang; Peng, Jianping; Di, Yuezhong; Wang, Yaowu; Li, Baokuan; Feng, Naixiang

    2016-02-01

    A finite element model was developed to determine the impact of cathode material and shape on current density in an aluminum electrolysis cell. For the cathode material, results show that increased electrical resistivity leads to a higher cathode voltage drop; however, the horizontal current is reduced in the metal. The horizontal current magnitude for six different cathode materials in decreasing order is graphitized, semi-graphitized, full graphitic, 50% anthracite (50% artificial graphite), 70% anthracite (30% artificial graphite), 100% anthracite. The modified cathode shapes with an inclined cathode surface, higher collector bar and cylindrical protrusions are intended to improve horizontal current and flow resistance. Compared to a traditional cathode, modified collector bar sizes of 70 mm × 230 mm and 80 mm × 270 mm can reduce horizontal current density component Jx by 10% and 19%, respectively, due to better conductivity of the steel. The horizontal current in the metal decreases with increase of cathode inclination. The peak value of Jx can be approximately reduced by 20% for a 2° change in inclination. Cylindrical protrusions lead to local horizontal current increase on their tops, but the average current is less affected and the molten metal is effectively slowed down.

  11. Quantifying the Water Content in the Cathode of Enzyme Fuel Cells via Neutron Imaging

    SciTech Connect

    Aaron, D; Borole, Abhijeet P; Hussey , Daniel; Jacobson, David; Yiacoumi, Sotira; Tsouris, Costas

    2011-01-01

    Neutron imaging was used to study cathode water content over time in a three-dimensional-cathode enzyme fuel cell (EFC). A porous carbon felt cathode allowed air to flow through the electrode. A solution with laccase and a mediator formed an aqueous layer on the electrode surface. Water loss was observed in situ via neutron imaging for varying experimental conditions, including flow rates of hydrogen and air, cathode inlet humidity, volume of enzyme solution, and its composition. Cathode water loss occurred for all experimental conditions, but the loss rate was noticeably reduced when a high-salt-concentration enzyme solution was used in the cathode in conjunction with increased humidity in the air feed stream. Results from neutron imaging and power density analysis were used in analyzing the causes that could contribute to EFC water loss. An increase in temperature due to the exothermic cathode reaction is considered a plausible cause of cathode water loss via evaporation. This is the first reported application of neutron imaging as a technique to study EFC water management. The results suggest that neutron imaging can be employed to provide a better understanding of EFC phenomena and thereby contribute to design and operational improvements of EFCs.

  12. Iron-based perovskite cathodes for solid oxide fuel cells

    DOEpatents

    Ralph, James M.; Rossignol, Cecile C.R.; Vaughey, John T.

    2007-01-02

    An A and/or A' site deficient perovskite of general formula of (A.sub.1-xA'.sub.x).sub.1-yFeO.sub.3-.delta. or of general formula A.sub.1-x-yA'.sub.xFeO.sub.3-67, wherein A is La alone or with one or more of the rare earth metals or a rare earth metal other than Ce alone or a combination of rare earth metals and X is in the range of from 0 to about 1; A' is Sr or Ca or mixtures thereof and Y is in the range of from about 0.01 to about 0.3; .delta. represents the amount of compensating oxygen loss. If either A or A' is zero the remaining A or A' is deficient. A fuel cell incorporating the inventive perovskite as a cathode is disclosed as well as an oxygen separation membrane. The inventive perovskite is preferably single phase.

  13. Electricity generation and nutrients removal from high-strength liquid manure by air-cathode microbial fuel cells.

    PubMed

    Lin, Hongjian; Wu, Xiao; Nelson, Chad; Miller, Curtis; Zhu, Jun

    2016-01-01

    Air-cathode microbial fuel cells (MFCs) are widely tested to recover electrical energy from waste streams containing organic matter. When high-strength wastewater, such as liquid animal manure, is used as a medium, inhibition on anode and cathode catalysts potentially impairs the effectiveness of MFC performance in power generation and pollutant removal. This study evaluated possible inhibitive effects of liquid swine manure components on MFC power generation, improved liquid manure-fed MFCs performance by pretreatment (dilution and selective adsorption), and modeled the kinetics of organic matter and nutrients removal kinetics. Parameters monitored included pH, conductivity, chemical oxygen demand (COD), volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), nitrite, nitrate, and phosphate concentrations. The removals of VFA and TAN were efficient, indicated by the short half-life times of 4.99 and 7.84 d, respectively. The mechanism for phosphate decrease was principally the salt precipitation on cathode, but the removal was incomplete after 42-d operation. MFC with an external resistor of 2.2 kΩ and fed with swine wastewater generated relatively small power (28.2 μW), energy efficiency (0.37%) and Coulombic efficiency (1.5%). Dilution of swine wastewater dramatically improved the power generation as the inhibitory effect was decreased. Zeolite and granular activated carbon were effective in the selective adsorption of ammonia or organic matter in swine wastewater, and so substantially improved the power generation, energy efficiency, and Coulombic efficiency. A smaller external resistor in the circuit was also observed to promote the organic matter degradation and thus to shorten the treatment time. Overall, air-cathode MFCs are promising for generating electrical power from livestock wastewater and meanwhile reducing the level of organic matter and nutrients.

  14. Thin Film Catalyst Layers for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.

  15. Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells.

    PubMed

    Huggins, Tyler M; Pietron, Jeremy J; Wang, Heming; Ren, Zhiyong Jason; Biffinger, Justin C

    2015-11-01

    Graphitic biochar (BC) was generated using high temperature gasification and alkaline post-treatment (BCw) of wood-based biomass. The BCw was evaluated as a manganese oxide electrocatalytic support (MnO/BCw) and microbial fuel cell (MFC) air cathode. Nano-structured MnO2 crystals were successfully immobilized on biomass-based graphitic sheets and characterized using physical, chemical, and electrochemical analyses. Cyclic voltammetry of MnO/BCw/Nafion inks showed electrochemical features typical of β-MnO2 with a current density of 0.9 mA cm(-2). BC showed satisfactory maximum power densities of 146.7 mW m(-2) (BCw) and 187.8 W m(-2) (MnO/BCw), compared with Vulcan Carbon (VC) (156.8 mW m(-2)) and manganese oxide VC composites (MnO/VC) (606.1 mW m(-2)). These materials were also tested as oxygen reduction reaction (ORR) catalysts for single chamber MFCs inoculated with anaerobic sludge. Our results demonstrate that BC can serve as an effective, low cost, and scalable material for MFC application.

  16. Layered Nickel Oxide-Based Cathodes for Lithium Cells: Analysis ofPerformance Loss Mechanisms

    SciTech Connect

    Kerlau, Marie; Reimer, Jeffrey A.; Cairns, Elton J.

    2004-10-01

    Spectroscopic and electrochemical diagnostic measurements are reported for the cell components of a Generation 2 (Gen 2) Li-Ion cell from the US Department of Energy's Advanced Technology Development (ATD) project. The cells are composed of LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} positive electrodes (cathode), carbon graphite anodes and electrolyte consisting of 1.2 M LiPF{sub 6} in EC:EMC 3:7. Fluorophosphates were observed by {sup 19}F and {sup 31}P NMR in the electrolyte obtained from a Gen 2 cell aged 72 weeks at 45 C and presenting 50% power fade. These electrolyte decomposition products were also observed by {sup 31}P solid-state NMR on the surface of the cathode of the same cell. Samples were cut from the aged cathode from the original cell, subjected to different treatments (ultrasonic washing in anhydrous DMC, pressing, ultrasonic washing and pressing), and subsequently reassembled into small lab cells for electrochemical characterization. These treatments recovered the capacity of the electrodes to within a few percent of the original value, with the most improvement being obtained with the washed and pressed cathode. The impedance of the cathodes was also lowered after the ultrasonic washing and pressing treatments. Electron microscopy revealed that the ultrasonic washing of the aged Gen 2 cathode material resulted in the removal of small particles covering the surface of the active cathode. These findings are interpreted in terms of a model whereby capacity loss, and thus power capability, is restored by removing the fluorophosphate deposit and restoring electronic contact to the active cathode material.

  17. Study of superhydrophobic electrosprayed catalyst layers using a localized reference electrode technique

    NASA Astrophysics Data System (ADS)

    Chaparro, A. M.; Ferreira-Aparicio, P.; Folgado, M. A.; Brightman, E.; Hinds, G.

    2016-09-01

    The performance of electrosprayed cathode catalyst layers in a polymer electrolyte membrane fuel cell (PEMFC) is studied using a localized reference electrode technique. Single cells with an electrosprayed cathode catalyst layer show an increase of >20% in maximum power density under standard testing conditions, compared with identical cells assembled with a conventional, state-of-the-art, gas diffusion cathode. When operated at high current density (1.2 A cm-2) the electrosprayed catalyst layers show more homogeneous distribution of the localized cathode potential, with a standard deviation from inlet to outlet of <50 mV, compared with 79 mV for the conventional gas diffusion cathode. Higher performance and homogeneity of cell response is attributed to the superhydrophobic nature of the macroporous electrosprayed catalyst layer structure, which enhances the rate of expulsion of liquid water from the cathode. On the other hand, at low current densities (<0.5 A cm-2), the electrosprayed layers exhibit more heterogeneous distribution of cathode potential than the conventional cathodes; this behavior is attributed to less favorable kinetics for oxygen reduction in very hydrophobic catalyst layers. The optimum performance may be obtained with electrosprayed catalyst layers employing a high Pt/C catalyst ratio.

  18. Catalyst supports for polymer electrolyte fuel cells.

    PubMed

    Subban, Chinmayee; Zhou, Qin; Leonard, Brian; Ranjan, Chinmoy; Edvenson, Heather M; Disalvo, F J; Munie, Semeret; Hunting, Janet

    2010-07-28

    A major challenge in obtaining long-term durability in fuel cells is to discover catalyst supports that do not corrode, or corrode much more slowly than the current carbon blacks used in today's polymer electrolyte membrane fuel cells. Such materials must be sufficiently stable at low pH (acidic conditions) and high potential, in contact with the polymer membrane and under exposure to hydrogen gas and oxygen at temperatures up to perhaps 120 degrees C. Here, we report the initial discovery of a promising class of doped oxide materials for this purpose: Ti(1-x)M(x)O(2), where M=a variety of transition metals. Specifically, we show that Ti(0.7)W(0.3)O(2) is electrochemically inert over the appropriate potential range. Although the process is not yet optimized, when Pt nanoparticles are deposited on this oxide, electrochemical experiments show that hydrogen is oxidized and oxygen reduced at rates comparable to those seen using a commercial Pt on carbon black support.

  19. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Z. H.; Wang, C. Y.; Chen, K. S.

    Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Single- and two-phase regimes of water distribution and transport are classified by a threshold current density corresponding to first appearance of liquid water at the membrane/cathode interface. When the cell operates above the threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multicomponent mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone of the hydrophilic structure. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A cm -2 for dry inlet air.

  20. Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts.

    PubMed

    Li, Shuang; Cheng, Chong; Thomas, Arne

    2017-02-01

    Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast-emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon-based materials can function as catalysts for the oxygen-reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon-based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon-electrode-based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described.

  1. Collaboration between primitive cell membranes and soluble catalysts.

    PubMed

    Adamala, Katarzyna P; Engelhart, Aaron E; Szostak, Jack W

    2016-03-21

    One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg(2+), which is required for ribozyme activity and RNA synthesis. Thus, protocells capable of such catalytic transformations would have enjoyed a selective advantage over other protocells in high Mg(2+) environments. The synthetic transformation requires both the catalyst and vesicles that solubilize the water-insoluble precursor lipid. We suggest that similar modified lipids could have played a key role in early life, and that primitive lipid membranes and encapsulated catalysts, such as ribozymes, may have acted in conjunction with each other, enabling otherwise-impossible chemical transformations within primordial cells.

  2. Collaboration between primitive cell membranes and soluble catalysts

    PubMed Central

    Adamala, Katarzyna P.; Engelhart, Aaron E.; Szostak, Jack W.

    2016-01-01

    One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg2+, which is required for ribozyme activity and RNA synthesis. Thus, protocells capable of such catalytic transformations would have enjoyed a selective advantage over other protocells in high Mg2+ environments. The synthetic transformation requires both the catalyst and vesicles that solubilize the water-insoluble precursor lipid. We suggest that similar modified lipids could have played a key role in early life, and that primitive lipid membranes and encapsulated catalysts, such as ribozymes, may have acted in conjunction with each other, enabling otherwise-impossible chemical transformations within primordial cells. PMID:26996603

  3. Organic photovoltaic solar cells with cathode modified by ZnO.

    PubMed

    Kim, Hyeong Pil; Yusoff, Abd Rashid Bin Mohd; Jang, Jin

    2013-07-01

    Solution processed cathode organic photovoltaic cells (OPVs) utilizing thin layer of ZnO with 27% increase in power conversion efficiency (PCE) to control devices have been demonstrated. Devices without the presence of ZnO layer have much lower PCE than the ones with ZnO layer. Cathode modification layer can be used to reduce photogenerated excitions and finally improve the performance of the OPVs. The successful demonstrations of OPVs with an introduction of ZnO cathode layer give promise of further device progresses.

  4. Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells.

    PubMed

    Chen, Shuiliang; Chen, Yu; He, Guanghua; He, Shuijian; Schröder, Uwe; Hou, Haoqing

    2012-04-15

    In this communication, we report a binder-free oxygen reduction cathode for microbial fuel cells. The binder-free cathode is prepared by growth of nitrogen-doped carbon nanofibers (NCNFs) on stainless steel mesh (SSM) via simple pyrolysis of pyridine. The interaction force between NCNFs and SSM surface is very strong which is able to tolerate water flush. The NCNFs/SSM cathode shows high and stable electrocatalytic activity for oxygen reduction reaction, which is comparable to that of Pt/SSM and ferricyanide cathode. This study proposes a promising low-cost binder-free cathode for microbial fuel cells.

  5. Performance analysis of new cathode materials for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Paoletti, C.; Carewska, M.; Presti, R. Lo; Phail, S. Mc; Simonetti, E.; Zaza, F.

    The slow dissolution of the lithiated nickel oxide cathode represents one of the main causes of performance degradation in molten carbonate fuel cells (MCFC). Two main approaches were studied in ENEA laboratories to overcome this problem: protecting the nickel cathode covering it by a thin layer of a material with a low solubility in molten carbonate and stabilizing the nickel cathode doping it with iron and magnesium. Among several materials, due to its low solubility and good conductivity, lithium cobaltite was chosen to cover the nickel cathode and slow down its dissolution. A nickel electrode covered with a thin layer of lithium cobaltite doped with magnesium, was fabricated by complex sol-gel process. To simplify electrode preparation, no thermal treatments were made after covering to produce lithium cobaltite, and during the cell start-up LiMg 0.05Co 0.95O 2 was obtained in situ. To stabilize the nickel cathode, metal oxides Fe 2O 3 and MgO were chosen as dopant additives to be mixed with NiO powder in a tape-casting process (Mg 0.05Fe 0.01Ni 0.94O). On the prepared materials TGA analysis, morphological analysis by scanning electron microscopy (SEM-EDS) and electrical conductivity measurements were carried out. A conventional nickel cathode, the nickel cathode covered by lithium cobaltite precursors and the nickel cathode stabilized by iron and magnesium oxides were each tested in a 100 cm 2 fuel cell. Polarization curves and internal resistance (iR) measurements were acquired during the cell lifetime (1000 h) and the effect of gas composition variation on the cell performance was studied. From a comparison with the conventional nickel cathode it can be observed that the new materials have similar performance and show a good potential stability during the cell operating time. From the post-test analysis both the nickel cathode covered by lithium cobaltite and the nickel cathode doped with iron and magnesium seem to succeed in reducing nickel dissolution.

  6. Platinum-cobalt catalysts for the oxygen reduction reaction in high temperature proton exchange membrane fuel cells - Long term behavior under ex-situ and in-situ conditions

    NASA Astrophysics Data System (ADS)

    Schenk, Alexander; Grimmer, Christoph; Perchthaler, Markus; Weinberger, Stephan; Pichler, Birgit; Heinzl, Christoph; Scheu, Christina; Mautner, Franz-Andreas; Bitschnau, Brigitte; Hacker, Viktor

    2014-11-01

    Platinum cobalt catalysts (Pt-Co) have attracted much interest as cathode catalysts for proton exchange membrane fuel cells (PEMFCs) due to their high activity toward oxygen reduction reaction (ORR). Many of the reported catalysts show outstanding performance in ex-situ experiments. However, the laborious synthesis protocols of these Pt-Co catalysts disable an efficient and economic production of membrane electrode assemblies (MEAs). We present an economic, flexible and continuous Pt-M/C catalyst preparation method as part of a large scale membrane electrode assembly manufacturing. In comparison, the as-prepared Pt-Co/C based high temperature (HT)-PEM MEA showed an equal performance to a commercially available HT-PEM MEA during 600 h of operation under constant load, although the commercial one had a significantly higher Pt loading at the cathode.

  7. Novel strategy to mitigate cathode catalyst degradation during air/air startup cycling via the atmospheric resistive switching mechanism of a hydrogen anode with a platinum catalyst supported on tantalum-doped titanium dioxide

    NASA Astrophysics Data System (ADS)

    Shintani, Haruhiko; Kojima, Yuya; Kakinuma, Katsuyoshi; Watanabe, Masahiro; Uchida, Makoto

    2015-10-01

    We propose a new strategy for alleviating the reverse current phenomenon using a unique "atmospheric resistive switching mechanism" (ARSM) of a metal oxide semiconductor support, such that the electrical resistivity changes depending on the gas atmosphere. The membrane-electrode assembly (MEA) using Ta-doped TiO2-supported platinum (Pt/Ta-TiO2) as the anode catalyst showed approximately one order of magnitude greater resistance in air than in hydrogen. The overpotential of the hydrogen oxidation reaction was negligible up to at least 1.5 A cm-2. The losses of electrochemically active surface area and carbon corrosion of the cathode catalyst during air/air startup cycling were significantly suppressed by the use of the Pt/Ta-TiO2 anode. The decrease in the degradation is attributed to a reduction of the reverse current due to a low oxygen reduction reaction rate at the anode, which showed high resistivity in air. These results demonstrate the effectiveness of the ARSM in mitigating cathode catalyst degradation during air/air startup cycling.

  8. Iron-rich nanoparticle encapsulated, nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Guolong; Zhu, Youlong; Lu, Lu; Xu, Kongliang; Wang, Heming; Jin, Yinghua; Jason Ren, Zhiyong; Liu, Zhenning; Zhang, Wei

    2016-05-01

    Developing efficient, readily available, and sustainable electrocatalysts for oxygen reduction reaction (ORR) in neutral medium is of great importance to practical applications of microbial fuel cells (MFCs). Herein, a porous nitrogen-doped carbon material with encapsulated Fe-based nanoparticles (Fe-Nx/C) has been developed and utilized as an efficient ORR catalyst in MFCs. The material was obtained through pyrolysis of a highly porous organic polymer containing iron(II) porphyrins. The characterizations of morphology, crystalline structure and elemental composition reveal that Fe-Nx/C consists of well-dispersed Fe-based nanoparticles coated by N-doped graphitic carbon layer. ORR catalytic performance of Fe-Nx/C has been evaluated through cyclic voltammetry and rotating ring-disk electrode measurements, and its application as a cathode electrocatalyst in an air-cathode single-chamber MFC has been investigated. Fe-Nx/C exhibits comparable or better performance in MFCs than 20% Pt/C, displaying higher cell voltage (601 mV vs. 591 mV), maximum power density (1227 mW m-2 vs. 1031 mW m-2) and Coulombic efficiency (50% vs. 31%). These findings indicate that Fe-Nx/C is more tolerant and durable than Pt/C in a system with bacteria metabolism and thus holds great potential for practical MFC applications.

  9. Hydrogen production in single chamber microbial electrolysis cells with stainless steel fiber felt cathodes

    NASA Astrophysics Data System (ADS)

    Su, Min; Wei, Liling; Qiu, Zhaozheng; Wang, Gang; Shen, Jianquan

    2016-01-01

    Microbial electrolysis cell (MEC) is a promising technology for sustainable production of hydrogen from biodegradable carbon sources. Employing a low-cost and high efficient cathode to replace platinum catalyzed cathode (Pt/C) for hydrogen generation is a challenge for commercialization of MEC. Here we show that a 3D macroporous stainless steel fiber felt (SSFF) with high electrochemical active surface area has an excellent catalytic activity for hydrogen generation, which is comparable to Pt/C cathode and superior to stainless steel mesh (SSM) cathode in the single-chamber MEC. The SSFF cathode (mean filter rating 100 μm) produces hydrogen at a rate of 3.66 ± 0.43 m3 H2 m-3d-1 (current density of 17.29 ± 1.68 A m-2), with a hydrogen recovery of 76.37 ± 15.04% and overall energy efficiency of 79.61 ± 13.07% at an applied voltage of 0.9 V. The performance of SSFF cathode improves over time due to a decrease in overpotential which caused by corrosion. These results demonstrate that SSFF can be a promising alternative for Pt catalytic cathode in MEC for hydrogen production.

  10. High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer

    PubMed Central

    Tan, Zhan'ao; Li, Shusheng; Wang, Fuzhi; Qian, Deping; Lin, Jun; Hou, Jianhui; Li, Yongfang

    2014-01-01

    Low-work-function active metals are commonly used as cathode in polymer solar cells (PSCs), but sensitivity of the active metals towards moisture and oxygen results in poor stability of the devices. Therefore, solution-proceessable and stable cathode buffer layer is of great importance for the application of PSCs. Here we demonstrate high performance PSCs by employing as-prepared zirconium acetylacetonate (a-ZrAcac) film spin-cast from its ethanol solution as cathode buffer layer. The PSCs based on a low bandgap polymer PBDTBDD as donor and PC60BM as acceptor with a-ZrAcac/Al cathode demonstrated an average power conversion efficiency (PCE) of 8.75% which is significantly improved than that of the devices with traditional Ca/Al cathode. The improved photovoltaic performance is benefitted from the decreased series resistance and enhanced light harvest of the PSCs with the a-ZrAcac/Al cathode. The results indicate that a-ZrAcac is a promising high performance cathode buffer layer for fabricating large area flexible PSCs. PMID:24732976

  11. Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells.

    PubMed

    Kumru, Mert; Eren, Hilal; Catal, Tunc; Bermek, Hakan; Akarsubaşi, Alper Tunga

    2012-09-01

    Five textile azo dyes, as part of an artificial mixture, were treated in single-chamber air-cathode microbial fuel cells while simultaneously utilizing acetate for electricity production. Remazol Black, Remazol Brilliant Blue, Remazol Turquoise Blue, Reactive Yellow and Reactive Red at concentrations of 40 or 80 mg L(-1) were decolorized to a similar extent, at averages of 78, 95, 53, 93 and 74%, respectively, in 24 hours. During the process of decolorization, electricity generation from acetate oxidation continued. Power densities obtained in the presence of textile dyes ranged from 347 to 521 mW m(-2) at the current density range of 0.071 - 0.086 mA cm(-2). Microbial community analyses of cathode biofilm exhibited dynamic changes in abundant species following dye decolorization. Upon the addition of the first dye, a major change (63%) in microbial diversity was observed; however, subsequent addition of other dyes did not affect the community profile significantly. Actinobacteria, Aquamicrobium, Mesorhizobium, Ochrobactrum, Thauera, Paracoccus, Achromobacter and Chelatacoccus affiliated phylotypes were the major phylotypes detected. Our results demonstrate that microbial fuel cells could be a promising alternative for treatment of textile wastewaters and an active bacterial community can rapidly be established for simultaneous azo dye decolorization and sustainable electricity generation.

  12. Electrochemical study of highly durable cathode with Pt supported on ITO-CNT composite for proton exchange membrane fuel cells

    SciTech Connect

    Park, Sehkyu; Shao, Yuyan; Viswanathan, Vilayanur V.; Liu, Jun; Wang, Yong

    2016-10-01

    In this paper, we describe a highly stable cathode containing a Pt catalyst supported on an indium tin oxide (ITO) and carbon nanotube (CNT) composite. The dependence of cathode performance and durability on the ITO content and the diameter of the CNTs were investigated by electrochemical techniques. The cathode with 30 wt% ITO and CNTs with diameters 10–20 nm in the composite offered preferred locations for Pt stabilization and was very resistant to carbon corrosion (i.e., 82.7% ESA retention and 105.7% mass activity retention after an accelerated stress test for 400 h).

  13. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification.

    PubMed

    You, Shi-Jie; Ren, Nan-Qi; Zhao, Qing-Liang; Kiely, Patrick D; Wang, Jing-Yuan; Yang, Feng-Lin; Fu, Lei; Peng, Luo

    2009-08-15

    To reduce the amount of phosphate buffer currently used in Microbial Fuel Cell's (MFC's), we investigated the role of biological nitrification at the cathode in the absence of phosphate buffer. The addition of a nitrifying mixed consortia (NMC) to the cathode compartment and increasing ammonium concentration in the catholyte resulted in an increase of cell voltage from 0.3 V to 0.567 V (external resistance of 100 Omega) and a decrease of catholyte pH from 8.8 to 7.05. A large fraction of ammonium was oxidized to nitrite, as indicated by an increase of nitrate-nitrogen (NO(3)(-)-N). An MFC inoculated with an NMC and supplied with 94.2 mgN/l ammonium to the catholyte could generate a maximum power of 2.1+/-0.14 mW (10.94+/-0.73 W/m(3)). This compared favorably to an MFC supplied with either buffered or non-buffered solution. The buffer-free NMC inoculated cathodic chamber showed the smallest polarization resistance, suggesting that nitrification resulted in improved cathode performance. The improved performances of the phosphate buffer-free cathode and cell are positively related to biological nitrification, in which we suggest additional protons produced from ammonium oxidation facilitated electrochemical reduction of oxygen at cathode.

  14. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    PubMed

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-03

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li(+)Cl(-) catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA.

  15. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    PubMed Central

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  16. CeO2 nanocubes-graphene oxide as durable and highly active catalyst support for proton exchange membrane fuel cell.

    PubMed

    Lei, M; Wang, Z B; Li, J S; Tang, H L; Liu, W J; Wang, Y G

    2014-12-10

    Rapid degradation of cell performance still remains a significant challenge for proton exchange membrane fuel cell (PEMFC). In this work, we develop novel CeO2 nanocubes-graphene oxide nanocomposites as durable and highly active catalyst support for proton exchange membrane fuel cell. We show that the use of CeO2 as the radical scavenger in the catalysts remarkably improves the durability of the catalyst. The catalytic activity retention of Pt-graphene oxide-8 wt.% CeO2 nanocomposites reaches as high as 69% after 5000 CV-cycles at a high voltage range of 0.8-1.23 V, in contrast to 19% for that of the Pt-graphene oxide composites. The excellent durability of the Pt-CeO2 nanocubes-graphene oxide catalyst is attributed to the free radical scavenging activity of CeO2, which significantly slows down the chemical degradation of Nafion binder in catalytic layers, and then alleviates the decay of Pt catalysts, resulting in the excellent cycle life of Pt-CeO2-graphene oxide nanocomposite catalysts. Additionally, the performance of single cell assembled with Nafion 211 membrane and Pt-CeO2-graphene oxide catalysts with different CeO2 contents in the cathode as well as the Pt-C catalysts in the anode are also recorded and discussed in this study.

  17. Phosphorus-doped carbon nanotubes supported low Pt loading catalyst for the oxygen reduction reaction in acidic fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Ziwu; Shi, Qianqian; Zhang, Rufan; Wang, Quande; Kang, Guojun; Peng, Feng

    2014-12-01

    To develop low-cost and efficient cathode electrocatalysts for fuel cells in acidic media, phosphorus-doped carbon nanotubes (P-CNTs) supported low Pt loading catalyst (0.85% Pt) is designed. The as-prepared Pt/P-CNTs exhibit significantly enhanced electrocatalytic oxygen reduction reaction (ORR) activity and long-term stability due to the stronger interaction between Pt and P-CNTs, which is proven by X-ray photoelectron spectroscopic analysis and density functional theory calculations. Moreover, the as-prepared Pt/P-CNTs also display much better tolerance to methanol crossover effects, showing a good potential application for future proton exchange membrane fuel cell devices.

  18. Oxidation-resistant catalyst supports for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Chhina, Harmeet

    In automotive applications, when proton exchange membrane fuel cells (PEMFCs) are subjected to frequent startup-shutdown cycles, a significant drop in performance is observed. One reason for this drop in performance is oxidation of the carbon in the catalyst layer when cathode potential excursions as high as 1.5V are observed. In this work, non-carbon based catalyst support materials were studied. The materials investigated include: tungsten carbide (WC), tungsten oxide (WOx), and niobium (Nb) or tungsten (W) doped titania. Platinum was dispersed on commercial samples of WC and WO x. Stability tests were performed by stepping the materials between 0.6 to 1.8V. Higher stability of both WC and WOx was observed compared to carbon based commercial catalyst (HiSpec 4000). The performance of Pt supported on WC or WOx was found to be lower than that of Pt/C due to poor dispersion of Pt on these low surface area commercial powders. High surface area Nb and W doped titania materials synthesized using sol-gel techniques were subjected to several heat treatments and atmospheres, and their resulting physical properties characterized. The materials' phase changes and their impact on electrical conductivity were evaluated. W doped titania was found to be resistive, and for Nb doped titania, the rutile phase was found to be more conductive than the anatase phase. Conventionally, 10-50 wt% Pt is supported on carbon, but as the non-carbon catalyst support materials have different densities, similar mass ratios of catalyst to support will not result in directly comparable performances. It is recommended that the ratio of Pt surface area to the support surface area should be similar when comparing Pt supported on carbon to Pt supported on a non-carbon support. A normalization approach was investigated in this work, and the ORR performance of 40wt.%Pt/C was found to be similar to that of 10wt.%Pt/Nb-TiO2. Fuel cell performance tests showed significantly higher stability of Pt on Nb

  19. Manufacturing of intermediate-temperature solid oxide fuel cells using novel cathode compositions

    NASA Astrophysics Data System (ADS)

    Torres Garibay, Claudia Isela

    The development of intermediate temperatures solid oxide fuel cells (IT-SOFC) with YSZ electrolytes imposes a double requirement in their manufacturing. First, the electrolyte has to be kept as thin as possible to minimize ohmic polarization losses. Second, the cathode compositions used must exhibit an adequate catalytic activity at the operating temperature (600--800°C). Current methods to manufacture thin YSZ electrolytes require complex processes, and sometimes costly equipment. Cathode compositions traditionally used for high temperature solid oxide fuel cells, such as (La,Sr)MnO3 do not exhibit good catalytic properties at intermediate temperatures. These challenges present areas of opportunity in the development of original manufacturing techniques and new cathode compositions. This study presents a low-cost fabrication procedure for IT-SOFC using tape casting, co-firing and screen printing. The electrochemical performance of the cells is evaluated using a known cathode composition for IT-SOFC, such as La0.6Sr0.4CoO 3-delta (LSC), novel perovskite oxides, such as Nd0.6Sr 0.4CoO3-delta (NSC), and perovskite-related intergrowth oxides compositions, like Sr0.7La0.3Fe1.4Co 0.6O7-delta (SLFCO7) and LaSr3Fe1.5Co 1.5O10-delta (LSFCO10). The impact of conductivity is studied by substituting Fe for Co in the case of the perovskite oxides, with compositions such as La0.6Sr0.4Co0.5Fe0.5O 3-delta (LSCF), and Nd0.6Sr0.4Co0.5Fe 0.5O3-delta (NSCF) and by infiltration of NSCF with silver. The effect of the cathode sintering temperature is studied using LSC and LSCF cathodes. It is found that there is generally a correlation between cell performance and conductivity. However, the microstructure of the cathode is also important in determining cell performance by tailoring the cathode sintering temperature. IT-SOFC with SLFCO7 cathodes show a performance comparable to cells with LSFC cathode. In the case of LSFCO10, the performance loss associated with its lower conductivity

  20. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells

    PubMed Central

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-01-01

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  1. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells.

    PubMed

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-08-15

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  2. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes.

    PubMed

    Wu, Gang; Mack, Nathan H; Gao, Wei; Ma, Shuguo; Zhong, Ruiqin; Han, Jiantao; Baldwin, Jon K; Zelenay, Piotr

    2012-11-27

    In this work, we present a synthesis approach for nitrogen-doped graphene-sheet-like nanostructures via the graphitization of a heteroatom polymer, in particular, polyaniline, under the catalysis of a cobalt species using multiwalled carbon nanotubes (MWNTs) as a supporting template. The graphene-rich composite catalysts (Co-N-MWNTs) exhibit substantially improved activity for oxygen reduction in nonaqueous lithium-ion electrolyte as compared to those of currently used carbon blacks and Pt/carbon catalysts, evidenced by both rotating disk electrode and Li-O(2) battery experiments. The synthesis-structure-activity correlations for the graphene nanostructures were explored by tuning their synthetic chemistry (support, nitrogen precursor, heating temperature, and transition metal type and content) to investigate how the resulting morphology and nitrogen-doping functionalities (e.g., pyridinic, pyrrolic, and quaternary) influence the catalyst activity. In particular, an optimal temperature for heat treatment during synthesis is critical to creating a high-surface-area catalyst with favorable nitrogen doping. The sole Co phase, Co(9)S(8), was present in the catalyst but plays a negligible role in ORR. Nevertheless, the addition of Co species in the synthesis is indispensable for achieving high activity, due to its effects on the final catalyst morphology and structure, including surface area, nitrogen doping, and graphene formation. This new route for the preparation of a nitrogen-doped graphene nanocomposite with carbon nanotube offers synthetic control of morphology and nitrogen functionality and shows promise for applications in nonaqueous oxygen reduction electrocatalysis for Li-O(2) battery cathodes.

  3. Mathematical modelling of the catalyst layer of a polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Shah, A. A.; Kim, Gwang-Soo; Promislow, K.

    2007-06-01

    In this paper, we derive a mathematical model for the cathode catalyst layer of a polymer electrolyte fuel cell. The model explicitly incorporates the restriction placed on oxygen in reaching the reaction sites, capturing the experimentally observed fall in the current density to a limiting value at low cell voltages. Temperature variations and interfacial transfer of O2 between the dissolved and gas phases are also included. Bounds on the solutions are derived from which we provide a rigourous proof that the model admits a solution. Of particular interest are the maximum and minimum attainable values. We perform an asymptotic analysis in several limits inherent in the problem by identifying important groupings of parameters. This analysis reveals a number of key relationships between the solutions, including the current density, and the composition of the layer. A comparison of numerically computed solutions and asymptotic solutions shows very good agreement. Implications of the results are discussed and future work is outlined.

  4. Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Kermani, M. J.; Stockie, J. M.

    2004-02-01

    The transport of three gas species, O2, H2O and N2, through the cathode of a proton exchange membrane (PEM) fuel cell is studied numerically. The diffusion of the individual species is modeled via the Maxwell-Stefan equations, coupled with appropriate conservation equations. Two mechanisms are assumed for the internal energy sources in the system: a volumetric heat source due to the electrical current flowing through the cathode; and heat flow towards the cathode at the cathode-membrane interface due to the exothermic chemical reaction at this interface, in which water is generated. The governing equations of the unsteady fluid motion are written in fully conservative form, and consist of the following: (i) three equations for the mass conservation of the species; (ii) the momentum equation for the mixture, which is approximated using Darcy's Law for flow in porous media; and (iii) an energy equation, written in a form that has enthalpy as the dependent variable.

  5. SOLID OXIDE FUEL CELL CATHODES: Polarization Mechanisms and Modeling of the Electrochemical Performance

    NASA Astrophysics Data System (ADS)

    Fleig, Jurgen

    2003-08-01

    Several recent experimental and numerical investigations have contributed to the improved understanding of the electrochemical mechanisms taking place at solid oxide fuel cell (SOFC) cathodes and yielded valuable information on the relationships between alterable parameters (geometry/material) and the cathodic polarization resistance. Efforts to reduce the polarization resistance in SOFCs can benefit from these results, and some important aspects of the corresponding studies are reviewed. Experimental results, particularly measurements using geometrically well-defined Sr-doped LaMnO3 (LSM) cathodes, are discussed. In regard to simulations, the different levels of sophistication used in SOFC electrode modeling studies are summarized and compared. Exemplary simulations of mixed conducting cathodes that show the capabilities and limits of different modeling levels are described.

  6. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells.

    PubMed

    Sim, Junyoung; An, Junyeong; Elbeshbishy, Elsayed; Ryu, Hodon; Lee, Hyung-Sool

    2015-11-01

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs.

  7. MoO3 Cathodes for High-Temperature Lithium Thin-Film Cells

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay

    2007-01-01

    MoO3 has shown promise as a cathode material that can extend the upper limit of operating temperature of rechargeable lithium thin-film electrochemical cells. Cells of this type are undergoing development for use as energy sources in cellular telephones, wireless medical sensors, and other, similarly sized portable electronic products. The LiCoO2 and LiMn2O4 cathodes heretofore used in these cells exhibit outstanding cycle lives (of the order of hundreds of thousands of cycles) at room temperature, but operation at higher temperatures reduces their cycle lives substantially: for example, at a temperature of 150 C, cells containing LiCoO2 cathodes lose half their capacities in 100 charge/discharge cycles. The superiority of MoO3 as a cathode material was demonstrated in experiments on lithium thin-film cells fabricated on glass slides. Each cell included a layer of Ti (for adhesion to the glass slide), a patterned layer of Pt that served as a cathode current collector, a cathode layer of MoO3, a solid electrolyte layer of Li3.3 PO3.8 N0.22 ("LiPON"), and an anode layer of Li. All the layers were deposited by magnetron sputtering except for the Li layer, which was deposited by thermal evaporation. These cells, along with similar ones containing LiCoO2 cathodes, were subjected to several tests, including measurements of specific capacity in charge/discharge cycling at a temperature of 150 C. The results of these measurements, plotted in the figure, showed that whereas specific capacity of the cells containing LiCoO2 cathodes faded to about half its initial value after only 100 cycles, the specific capacity of the cells containing the MoO3 cathodes faded only slightly during the first few hundred cycles and thereafter not only recovered to its initial value but continued to increase up to at least 5,500 cycles.

  8. Carbon corrosion of proton exchange membrane fuel cell catalyst layers studied by scanning transmission X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, Adam P.; Berejnov, Viatcheslav; Lee, Vincent; West, Marcia; Colbow, Vesna; Dutta, Monica; Wessel, Silvia

    2014-11-01

    Scanning Transmission X-ray Microscopy (STXM) at the C 1s, F 1s and S 2p edges has been used to investigate degradation of proton exchange membrane fuel cell (PEM-FC) membrane electrode assemblies (MEA) subjected to accelerated testing protocols. Quantitative chemical maps of the catalyst, carbon support and ionomer in the cathode layer are reported for beginning-of-test (BOT), and end-of-test (EOT) samples for two types of carbon support, low surface area carbon (LSAC) and medium surface area carbon (MSAC), that were exposed to accelerated stress testing with upper potentials (UPL) of 1.0, 1.2, and 1.3 V. The results are compared in order to characterize catalyst layer degradation in terms of the amounts and spatial distributions of these species. Pt agglomeration, Pt migration and corrosion of the carbon support are all visualized, and contribute to differing degrees in these samples. It is found that there is formation of a distinct Pt-in-membrane (PTIM) band for all EOT samples. The cathode thickness shrinks due to loss of the carbon support for all MSAC samples that were exposed to the different upper potentials, but only for the most aggressive testing protocol for the LSAC support. The amount of ionomer per unit volume significantly increases indicating it is being concentrated in the cathode as the carbon corrosion takes place. S 2p spectra and mapping of the cathode catalyst layer indicates there are still sulfonate groups present, even in the most damaged material.

  9. Dual Heteroatom-Doped Carbon Nanofoam-Wrapped Iron Monosulfide Nanoparticles: An Efficient Cathode Catalyst for Li-O2 Batteries.

    PubMed

    Ramakrishnan, Prakash; Shanmugam, Sangaraju; Kim, Jae Hyun

    2017-02-01

    Cost-effective dual heteroatom-doped 3D carbon nanofoam-wrapped FeS nanoparticles (NPs), FeS-C, act as efficient bifunctional catalysts for Li-O2 batteries. This cathode exhibits a maximum deep discharge capacity of 14 777.5 mA h g(-1) with a 98.1 % columbic efficiency at 0.1 mA cm(-2) . The controlled capacity (500 mA h g(-1) ) test of this cathode delivers a minimum polarization gap of 0.73 V at 0.1 mA cm(-2) and is sustained for 100 cycles with an energy efficiency of approximately 64 % (1st cycle) and 52 % (100th cycle) at 0.3 mA cm(-2) , under the potential window of 2.0-4.5 V. X-ray photoelectron spectroscopy reveals the substantial reversible formation and complete decomposition of Li2 O2 . The excellent recharging ability, high rate performance, and cycle stability of this catalyst is attributed to the synergistic effect of FeS catalytic behavior and textural properties of heteroatom-doped carbon nanostructures.

  10. Design criteria for stable Pt/C fuel cell catalysts

    PubMed Central

    Katsounaros, Ioannis; Witte, Jonathon; Bongard, Hans J; Topalov, Angel A; Baldizzone, Claudio; Mezzavilla, Stefano; Schüth, Ferdi

    2014-01-01

    Summary Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3–4 nm and two Pt@HGS catalysts with different particle size, 1–2 nm and 3–4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS). All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested. PMID:24605273

  11. FePO4 based single chamber air-cathode microbial fuel cell for online monitoring levofloxacin.

    PubMed

    Zeng, Libin; Li, Xinyong; Shi, Yueran; Qi, Yefei; Huang, Daqiong; Tadé, Moses; Wang, Shaobin; Liu, Shaomin

    2017-05-15

    A bio-electrochemical strategy was developed for constructing a simple and sensitive levofloxacin (LEV) sensor based on a single chamber microbial fuel cell (SC-MFC) using FePO4 nanoparticles (NPs) as the cathode catalyst instead of traditional Pt/C. In this assembled sensor device, FePO4 NPs dramatically promoted the electrooxidation of oxygen on the cathode, which helps to accelerate the voltage output from SC-MFC and can provide a powerful guarantee for LEV detection. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to fully characterize the FePO4 NPs. Under the optimized COD condition (3mM), the LEV with a concentration range of 0.1-1000µg/L could be detected successfully, and exhibited the excellent linear interval in the concentration range of 0.1-100µg/L. During this range of concentrations of LEV, a temporary effect on the anode of exoelectrogenic bacterial in less than 10min could occur, and then came back to the normal. It exhibited a long-term stability, maintaining the stable electricity production for 14 months of continuous running. Besides, the detection mechanism was investigated by quantum chemical calculation using density functional theory (DFT).

  12. Effects of Nafion loading in anode catalyst inks on the miniature direct formic acid fuel cell

    NASA Astrophysics Data System (ADS)

    Morgan, Robert D.; Haan, John L.; Masel, Richard I.

    Nafion, within the anode and cathode catalyst layers, plays a large role in the performance of fuel cells, especially during the operation of the direct formic acid fuel cell (DFAFC). Nafion affects the proton transfer in the catalyst layers of the fuel cell, and studies presented here show the effects of three different Nafion loadings, 10 wt.%, 30 wt.% and 50 wt.%. Short term voltage-current measurements using the three different loadings show that 30 wt.% Nafion loading in the anode shows the best performance in the miniature, passive DFAFC. Nafion also serves as a binder to help hold the catalyst nanoparticles onto the proton exchange membrane (PEM). The DFAFC anode temporarily needs to be regenerated by raising the anode potential to around 0.8 V vs. RHE to oxidize CO bound to the surface, but the Pourbaix diagram predicts that Pd will corrode at these potentials. We found that an anode loading of 30 wt.% Nafion showed the best stability, of the three Nafion loadings chosen, for reducing the amount of loss of electrochemically active area due to high regeneration potentials. Only 58% of the area was lost after 600 potential cycles in formic acid compared to 96 and 99% for 10 wt.% and 50 wt.% loadings, respectively. Lastly we present cyclic voltammetry data that suggest that the Nafion adds to the production of CO during oxidation of formic acid for 12 h at 0.3 V vs. RHE. The resulting data showed that an increase in CO coverage was observed with increasing Nafion content in the anode catalyst layer.

  13. DEVELOPMENT OF HIGH TEMPERATURE MEMBRANES AND IMPROVED CATHODE CATALYSTS; PROJECT PERIOD JANUARY 1, 2002 - DECEMBER 31, 2005

    SciTech Connect

    Lesia Protsailo

    2006-04-20

    Polymer Electrolyte Membranes (PEMs) currently available for fuel cell development work are limited to the temperature range of 60-80°C. For mass commercialization in the transportation arena, three important disadvantages that are linked with the relatively low operating temperature range need to be addressed. These three disadvantages are: (a) sluggish cathode kinetics, (b) CO poisoning at the anode and (c) inefficient thermal characteristics. All three of the above mentioned disadvantages could be solved by increasing the operating temperature range to 100-120°C. To understand the issues associated with high temperature PEMFCs operation, UTCFC has teamed with leading research groups that possess competencies in the field of polymer chemistry. The subcontractors on the program were investigating modified Nafion® and new non-Nafion® based, reinforced and non-reinforced membrane systems. Nafion® based PEMs rely on using high temperature inorganic solid conductor fillers like phosphotungstic acid. Hydrocarbon membrane systems are based on poly (arylene ether sulfone) polymers, PEEK, PAN, etc.

  14. Controllable deposition of platinum layers on oxide surfaces for the synthesis of fuel cell catalysts

    SciTech Connect

    Vukmirovic, Miomir B.; Kuttiyiel, Kurian A.; Meng, Hui; Adzic, Radoslav R.

    2016-09-13

    Reducing the amount of Pt, the most costly component of both anode and cathode fuel cell catalysts, has attracted considerable attention from the research community. An approach is reported herein to deposit sub-monolayer to multilayer amounts of Pt and other noble metals on metal oxides and oxidized carbon materials. The process is exemplified by Pt deposition on RuO2(110). The Pt deposit consists of Pt atoms arranged in a c(2×2) array, that is, a 0.25 monolayer (ML). The deposit has lower catalytic activity for the oxygen reduction reaction (ORR) and similar activity for the hydrogen oxidation reaction compared to Pt(111). These activities are explained by a large calculated upshift of the d-band center of Pt atoms and larger Pt–Pt interatomic distances than those of Pt(111). A catalyst with Pt coverage larger than 0.25 ML on oxide surfaces and oxidized carbon materials is shown to be active for the ORR as well as for other electrocatalytic reactions. A PtRhSnO2/C catalyst shows high activity for ethanol oxidation as a result of its ability to effectively cleave the C–C bond in ethanol. Furthermore, Pt deposited on reduced graphene oxide shows high Pt mass ORR activity and good stability.

  15. Controllable deposition of platinum layers on oxide surfaces for the synthesis of fuel cell catalysts

    DOE PAGES

    Vukmirovic, Miomir B.; Kuttiyiel, Kurian A.; Meng, Hui; ...

    2016-09-13

    Reducing the amount of Pt, the most costly component of both anode and cathode fuel cell catalysts, has attracted considerable attention from the research community. An approach is reported herein to deposit sub-monolayer to multilayer amounts of Pt and other noble metals on metal oxides and oxidized carbon materials. The process is exemplified by Pt deposition on RuO2(110). The Pt deposit consists of Pt atoms arranged in a c(2×2) array, that is, a 0.25 monolayer (ML). The deposit has lower catalytic activity for the oxygen reduction reaction (ORR) and similar activity for the hydrogen oxidation reaction compared to Pt(111). Thesemore » activities are explained by a large calculated upshift of the d-band center of Pt atoms and larger Pt–Pt interatomic distances than those of Pt(111). A catalyst with Pt coverage larger than 0.25 ML on oxide surfaces and oxidized carbon materials is shown to be active for the ORR as well as for other electrocatalytic reactions. A PtRhSnO2/C catalyst shows high activity for ethanol oxidation as a result of its ability to effectively cleave the C–C bond in ethanol. Furthermore, Pt deposited on reduced graphene oxide shows high Pt mass ORR activity and good stability.« less

  16. The addition of ortho-hexagon nano spinel Co3O4 to improve the performance of activated carbon air cathode microbial fuel cell.

    PubMed

    Ge, Baochao; Li, Kexun; Fu, Zhou; Pu, Liangtao; Zhang, Xi

    2015-11-01

    Commercial Co3O4 and ortho-hexagon spinel nano-Co3O4 (OHSNC) were doped in the AC at a different percentage (5%, 10% and 15%) to enhance the performance of microbial fuel cell (MFC). The maximum power density of MFC with 10% OHSNC doped cathode was 1500±14 mW m(-2), which was 97.36% and 41.24% higher than that with the bare AC air cathode and commercial Co3O4 respectively. The electrocatalytic behavior for their better performance was discussed in detail with the help of various structural and electrochemical techniques. The OHSNC was characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The results showed that the improved performance owed to the enhancement of both kinetics activity and the number of electron transfer in the ORR, and the internal resistance was largely reduced. Therefore, OHSNC was proved to be an excellent cathodic catalyst in AC air cathode MFC.

  17. Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell.

    PubMed

    Duteanu, N; Erable, B; Senthil Kumar, S M; Ghangrekar, M M; Scott, K

    2010-07-01

    The catalytic activity of modified carbon powder (Vulcan XC-72R) for oxygen reduction reaction (ORR) in an air-breathing cathode of a microbial fuel cell (MFC) has been investigated. Chemical modification was carried out by using various chemicals, namely 5% nitric acid, 0.2N phosphoric acid, 0.2N potassium hydroxide and 10% hydrogen peroxide. Electrochemical study was performed for ORR of these modified carbon materials in the buffer solution pH range of 6-7.5 in the anodic compartment. Although, these treatments influenced the surface properties of the carbon material, as evident from the SEM-EDX analysis, treatment with H(2)PO(4), KOH, and H(2)O(2) did not show significant activity during the electrochemical test. The HNO(3) treated Vulcan demonstrated significant ORR activity and when used in the single-chamber MFC cathode, current densities (1115mA/m(2), at 5.6mV) greater than those for a Pt-supported un-treated carbon cathode were achieved. However, the power density for the latter was higher. Such chemically modified carbon material can be a cheaper alternative for expensive platinum catalyst used in MFC cathode construction.

  18. Membrane patterned by pulsed laser micromachining for proton exchange membrane fuel cell with sputtered ultra-low catalyst loadings

    NASA Astrophysics Data System (ADS)

    Cuynet, S.; Caillard, A.; Kaya-Boussougou, S.; Lecas, T.; Semmar, N.; Bigarré, J.; Buvat, P.; Brault, P.

    2015-12-01

    Proton exchange membranes were nano- and micro-patterned on their cathode side by pressing them against stainless steel molds previously irradiated by a Ti:Sapphire femtosecond laser. The membranes were associated to ultra-low loaded thin catalytic layers (25 μgPt cm-2) prepared by plasma magnetron sputtering. The Pt catalyst was sputtered either on the membrane or on the porous electrode. The fuel cell performance in dry conditions were found to be highly dependent on the morphology of the membrane surface. When nanometric ripples covered by a Pt catalyst were introduced on the surface of the membrane, the fuel cell outperformed the conventional one with a flat membrane. By combining nano- and micro-patterns (nanometric ripples and 11-24 μm deep craters), the performance of the cells was clearly enhanced. The maximum power density achieved by the fuel cell was multiplied by a factor of 3.6 (at 50 °C and 3 bar): 438 mW cm-2 vs 122 mW cm-2. This improvement is due to high catalyst utilization with a high membrane conductivity. When Pt is sputtered on the porous electrode (and not on the membrane), the contribution of the patterned membrane to the fuel cell efficiency was less significant, except in the presence of nanometric ripples. This result suggests that the patterning of the membrane must be consistent with the way the catalyst is synthesized, on the membrane or on the porous electrode.

  19. Simulated coal-gas-fueled molten carbonate fuel cell development program. Topical report: Cathode compatibility tests

    SciTech Connect

    Johnson, W.H.

    1992-07-01

    In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

  20. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode

    SciTech Connect

    Zhi, Mingjia; Lee, Shiwoo; Miller, Nicholas; Menzler, Norbert H.; Wu, Nianqiang

    2012-03-22

    Lanthanum strontium cobalt ferrite (LSCF) nanofibers have been fabricated by the electrospinning method and used as the cathode of an intermediate-temperature solid oxide fuel cell (SOFC) with yttria-stabilized zirconia (YSZ) electrolyte. The three-dimensional nanofiber network cathode has several advantages: (i) high porosity; (ii) high percolation; (iii) continuous pathway for charge transport; (iv) good thermal stability at the operating temperature; and (v) excellent scaffold for infiltration. The fuel cell with the monolithic LSCF nanofiber cathode exhibits a power density of 0.90 W cm-2 at 1.9 A cm-2 at 750 °C. The electrochemical performance of the fuel cell has been further improved by infiltration of 20 wt% of gadolinia-doped ceria (GDC) into the LSCF nanofiber cathode. The fuel cell with the LSCF–20% GDC composite cathode shows a power density of 1.07 W cm-2 at 1.9 A cm-2 at 750 °C. The results obtained show that one-dimensional nanostructures such as nanofibers hold great promise as electrode materials for intermediate-temperature SOFCs.

  1. Direct methanol feed fuel cell with reduced catalyst loading

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor)

    1999-01-01

    Improvements to direct feed methanol fuel cells include new protocols for component formation. Catalyst-water repellent material is applied in formation of electrodes and sintered before application of ionomer. A membrane used in formation of an electrode assembly is specially pre-treated to improve bonding between catalyst and membrane. The improved electrode and the pre-treated membrane are assembled into a membrane electrode assembly.

  2. Cathode bubbles induced by moisture electrolysis in TiO2-x -based resistive switching cells

    NASA Astrophysics Data System (ADS)

    Yin, Qiaonan; Wei, Chunyang; Xia, Yidong; Xu, Bo; Yin, Jiang; Liu, Zhiguo

    2016-03-01

    H2 production has been predicted in some metal-insulator-metal resistive switching devices and similar structures, but experimentally has not yet been reported. Here we discovered cathode bubbles in Pt/TiO2-x /Pt unipolar resistive switching cells when electroforming is implemented in a humid environment. But then these bubbles are absent when cells are operated in an anhydrous environment. The focused ion beam technique was used to observe the deformation of the cell induced by bubbles. These bubbles are deduced to be filled with H2 generated at the cathode by the reduction of protons from adsorbed water. Reduced oxides containing abundant oxygen vacancies facilitate the dissociation of adsorbed water and supply sufficient protons diffusing towards the cathode.

  3. Nitrate as an oxidant in the cathode chamber of a microbial fuel cell for both power generation and nutrient removal purposes.

    PubMed

    Fang, Cheng; Min, Booki; Angelidaki, Irini

    2011-06-01

    Nitrate ions were used as the oxidant in the cathode chamber of a microbial fuel cell (MFC) to generate electricity from organic compounds with simultaneous nitrate removal. The MFC using nitrate as oxidant could generate a voltage of 111 mV (1,000 Ω) with a plain carbon cathode. The maximum power density achieved was 7.2 mW m(-2) with a 470 Ω resistor. Nitrate was reduced from an initial concentration of 49 to 25 mg (NO (3) (-) -N) L(-1) during 42-day operation. The daily removal rate was 0.57 mg (NO (3) (-) -N) L(-1) day(-1) with a voltage generation of 96 mV. In the presence of Pt catalyst dispersed on cathode, the cell voltage was significantly increased up to 450 mV and the power density was 117.7 mW m(-2), which was 16 times higher than the value without Pt catalyst. Significant nitrate removal was also observed with a daily removal rate of 2 mg (NO (3) (-) -N) L(-1) day(-1), which was 3.5 times higher compared with the operation without catalyst. Nitrate was reduced to nitrite and ammonia in the liquid phase at a ratio of 0.6% and 51.8% of the total nitrate amount. These results suggest that nitrate can be successfully used as an oxidant for power generation without aeration and also nitrate removal from water in MFC. However, control of the process would be needed to reduce nitrate to only nitrogen gas, and avoid further reduction to ammonia.

  4. Gas plasmas treatment of cathodes to improve Li/So2 cell performance

    NASA Astrophysics Data System (ADS)

    Bibder, Michael; Mammone, Robert J.; Thurston, Edward P.; Reddy, Thomas B.

    1993-12-01

    Overall performance after storage at 71 C of spirally wound, hermetically sealed, Li/SO2 squat 'D' sized cells discharged at 3 A at -29 C can be improved by exposing the porous carbon cathodes to a room temperature, low pressure gas plasma prior to cell assembly.

  5. Pore Scale Modeling of the Reactive Transport of Chromium in the Cathode of a Solid Oxide Fuel Cell

    SciTech Connect

    Ryan, Emily M.; Tartakovsky, Alexandre M.; Recknagle, Kurtis P.; Khaleel, Mohammad A.; Amon, Cristina

    2011-01-01

    We present a pore scale model of a solid oxide fuel cell (SOFC) cathode. Volatile chromium species are known to migrate from the current collector of the SOFC into the cathode where over time they decrease the voltage output of the fuel cell. A pore scale model is used to investigate the reactive transport of chromium species in the cathode and to study the driving forces of chromium poisoning. A multi-scale modeling approach is proposed which uses a cell level model of the cathode, air channel and current collector to determine the boundary conditions for a pore scale model of a section of the cathode. The pore scale model uses a discrete representation of the cathode to explicitly model the surface reactions of oxygen and chromium with a cathode material. The pore scale model is used to study the reaction mechanisms of chromium by considering the effects of reaction rates, diffusion coefficients, chromium vaporization, and oxygen consumption on chromium’s deposition in the cathode. The study shows that chromium poisoning is most significantly affected by the chromium reaction rates in the cathode and that the reaction rates are a function of the local current density in the cathode.

  6. Microbial fuel cell with an algae-assisted cathode: A preliminary assessment

    NASA Astrophysics Data System (ADS)

    González del Campo, Araceli; Cañizares, Pablo; Rodrigo, Manuel A.; Fernández, Francisco J.; Lobato, Justo

    2013-11-01

    A microbial fuel cell (MFC) with an algae-assisted cathode, i.e., a system where the oxygen required by the cathode is not provided by aeration but by the photosynthetic process of the algae (Chlorella vulgaris), has been studied. The cathode was illuminated for 12 h each day (from 8:00 h to 20:00 h). 25 days was necessary to achieve steady state conditions. The time evolution of dissolved oxygen and cell voltage were assessed over the course of each day. As expected, the dissolved oxygen values were not constant throughout the day, reaching maximum values between 14:00 h and 20:00 h when dark phase reactions began and the algae started to consume oxygen. Cell voltage (Rext 120 Ω) followed the same trend as the oxygen profile. The supply of CO2 in the cathode was also studied, and half an hour was enough time to get the system working properly. During the acclimation stage, power density increased up to 13.5 mW m-2 at steady state conditions. However, impedance analysis showed that polarization resistance was higher at the cathode than at the anode. Nevertheless, it can be concluded that the studied system is a feasible method to treat wastewater in a self-sustainable way.

  7. Nanostructured Double Perovskite Cathode With Low Sintering Temperature For Intermediate Temperature Solid Oxide Fuel Cells.

    PubMed

    Kim, Seona; Jun, Areum; Kwon, Ohhun; Kim, Junyoung; Yoo, Seonyoung; Jeong, Hu Young; Shin, Jeeyoung; Kim, Guntae

    2015-09-21

    This study focuses on reducing the cathode polarization resistance through the use of mixed ionic electronic conductors and the optimization of cathode microstructure to increase the number of electrochemically active sites. Among the available mixed ionic electronic conductors (MIECs), the layered perovskite GdBa0.5 Sr0.5 CoFeO5+δ (GBSCF) was chosen as a cathode material for intermediate temperature solid oxide fuel cells owing to its excellent electrochemical performance and structural stability. The optimized microstructure of a GBSCF-yttria-stabilized zirconia (YSZ) composite cathode was prepared through an infiltration method with careful control of the sintering temperature to achieve high surface area, adequate porosity, and well-organized connection between nanosized particles to transfer electrons. A symmetric cell shows outstanding results, with the cathode exhibiting an area-specific resistance of 0.006 Ω cm(2) at 700 °C. The maximum power density of a single cell using Ce-Pd anode with a thickness of ∼80 μm electrolyte was ∼0.6 W cm(-2) at 700 °C.

  8. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    SciTech Connect

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-08-15

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.

  9. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    DOE PAGES

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; ...

    2016-08-15

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions inmore » a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.« less

  10. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-10-01

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.

  11. External CO2 and water supplies for enhancing electrical power generation of air-cathode microbial fuel cells.

    PubMed

    Ishizaki, So; Fujiki, Itto; Sano, Daisuke; Okabe, Satoshi

    2014-10-07

    Alkalization on the cathode electrode limits the electrical power generation of air-cathode microbial fuel cells (MFCs), and thus external proton supply to the cathode electrode is essential to enhance the electrical power generation. In this study, the effects of external CO2 and water supplies to the cathode electrode on the electrical power generation were investigated, and then the relative contributions of CO2 and water supplies to the total proton consumption were experimentally evaluated. The CO2 supply decreased the cathode pH and consequently increased the power generation. Carbonate dissolution was the main proton source under ambient air conditions, which provides about 67% of total protons consumed for the cathode reaction. It is also critical to adequately control the water content on the cathode electrode of air-cathode MFCs because the carbonate dissolution was highly dependent on water content. On the basis of these experimental results, the power density was increased by 400% (143.0 ± 3.5 mW/m(2) to 575.0 ± 36.0 mW/m(2)) by supplying a humid gas containing 50% CO2 to the cathode chamber. This study demonstrates that the simultaneous CO2 and water supplies to the cathode electrode were effective to increase the electrical power generation of air-cathode MFCs for the first time.

  12. Pt-free carbon-based fuel cell catalyst prepared from spherical polyimide for enhanced oxygen diffusion

    PubMed Central

    Nabae, Yuta; Nagata, Shinsuke; Hayakawa, Teruaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Isoda, Ayano; Matsunaga, Atsushi; Tanaka, Kazuhisa; Aoki, Tsutomu

    2016-01-01

    The development of a non-precious metal (NPM) fuel cell catalyst is extremely important to achieve globalization of polymer electrolyte fuel cells due to the cost and scarcity of platinum. Here, we report on a NPM cathode catalyst prepared by the pyrolysis of spherical polyimide nanoparticles that contain small amounts of Fe additive. 60 nm diameter Fe-containing polyimide nanoparticles were successfully synthesized by the precipitation polymerization of pyromellitic acid dianhydride and 1,3,5-tris(4-aminophenyl)benzene with Fe(acac)3 (acac = acetylacetonate) as an additive. The particles were subsequently carbonized by multistep pyrolysis to obtain the NPM catalyst while retaining the small particle size. The catalyst has good performance and promising durability for fuel cell applications. The fuel cell performance under a 0.2 MPa air atmosphere at 80 °C of 1.0 A cm−2 at 0.46 V is especially remarkable and better than that previously reported. PMID:26987682

  13. Pt-free carbon-based fuel cell catalyst prepared from spherical polyimide for enhanced oxygen diffusion

    NASA Astrophysics Data System (ADS)

    Nabae, Yuta; Nagata, Shinsuke; Hayakawa, Teruaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Isoda, Ayano; Matsunaga, Atsushi; Tanaka, Kazuhisa; Aoki, Tsutomu

    2016-03-01

    The development of a non-precious metal (NPM) fuel cell catalyst is extremely important to achieve globalization of polymer electrolyte fuel cells due to the cost and scarcity of platinum. Here, we report on a NPM cathode catalyst prepared by the pyrolysis of spherical polyimide nanoparticles that contain small amounts of Fe additive. 60 nm diameter Fe-containing polyimide nanoparticles were successfully synthesized by the precipitation polymerization of pyromellitic acid dianhydride and 1,3,5-tris(4-aminophenyl)benzene with Fe(acac)3 (acac = acetylacetonate) as an additive. The particles were subsequently carbonized by multistep pyrolysis to obtain the NPM catalyst while retaining the small particle size. The catalyst has good performance and promising durability for fuel cell applications. The fuel cell performance under a 0.2 MPa air atmosphere at 80 °C of 1.0 A cm‑2 at 0.46 V is especially remarkable and better than that previously reported.

  14. Tungsten materials as durable catalyst supports for fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Perchthaler, M.; Ossiander, T.; Juhart, V.; Mitzel, J.; Heinzl, C.; Scheu, C.; Hacker, V.

    2013-12-01

    Durable platinum catalyst support materials, e.g. tungsten carbide (WC), tungsten oxide (WOx) and self-synthesized tungsten oxide (WOxs) were evaluated for the use in High-Temperature Proton Exchange Fuel Cells (HT-PEM) based on phosphoric acid doped polybenzimidazole as electrolyte. The support materials and the catalyst loaded support materials were characterized ex-situ by cyclic voltammetry in HClO4, potential cycling, CO-stripping, electron microscopy and X-ray diffraction measurements. The tungsten oxide and tungsten carbide based supported catalysts were compared to High Surface Area Carbon (HSAC), each coated with platinum via the same in-house manufacturing procedures. The in-house manufacturing procedures resulted in catalyst particle sizes on HSAC of 3-4 nm with a uniform distribution. The in-situ Potential Cycling experiments of WOx or WOxs supported catalysts showed much lower degradation rates compared to High Surface Area Carbons. The formation of WOx species on WC was proven by ex- and in-situ cyclic voltammetric studies and thermogravimetric analyses. X-ray diffraction, ex-situ cyclic voltammetry and in-situ cyclic voltammetry showed that WOx is formed from WC as starting material under oxidizing conditions. Finally a 1000 h durability test with WOx as catalyst support material on the anode was done in a HT-PEM fuel cell with reformed methanol on the anode.

  15. An efficient approach to cathode operational parameters optimization for microbial fuel cell using response surface methodology

    PubMed Central

    2014-01-01

    Background In the recent study, optimum operational conditions of cathode compartment of microbial fuel cell were determined by using Response Surface Methodology (RSM) with a central composite design to maximize power density and COD removal. Methods The interactive effects of parameters such as, pH, buffer concentration and ionic strength on power density and COD removal were evaluated in two-chamber microbial batch-mode fuel cell. Results Power density and COD removal for optimal conditions (pH of 6.75, buffer concentration of 0.177 M and ionic strength of cathode chamber of 4.69 mM) improve by 17 and 5%, respectively, in comparison with normal conditions (pH of 7, buffer concentration of 0.1 M and ionic strength of 2.5 mM). Conclusions In conclusion, results verify that response surface methodology could successfully determine cathode chamber optimum operational conditions. PMID:24423039

  16. Studies on niobium triselenide cathode material for lithium rechargeable cells

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Ni, C. L.; Distefano, S.; Somoano, R. B.; Bankston, C. P.

    1988-01-01

    NbSe3 exhibits superior characteristics such as high capacity, high volumetric and gravimetric energy densities, and high discharge rate capability, as compared to other intercalating cathodes. This paper reports the preparation, characterization, and performance of NbSe3. Several electrochemical techniques, such as cyclic voltammetry, constant-current/constant-potential discharges, dc potentiodynamic scans, ac impedance, and ac voltammetry, have been used to give insight to the mechanisms of intercalation of three lithiums with NbSe3 and also into the rate determining process in the reduction of NbSe3.

  17. Electrochemical behavior of niobium triselenide cathode in lithium secondary cells

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Di Stefano, S.; Bankston, C. P.

    1988-01-01

    Niobium triselenide cathodes in Li ambient-temperature rechargeable batteries for space applications undergo a topotactic reaction, with three equivalents of Li at high positive potential furnishing high energy density. It also yields good electronic conductivity, a long life cycle, and high diffusivity for Li. An attempt is presently made to characterize the intercalation mechanism between Li and NbSe3 by means of an ac impedance study conducted at various charge stages in the process of SbSe3 reduction. An effort is also made to predict the charge state of NbSe3 nondestructively, on the basis of the impedance parameters.

  18. Percolation in a Proton Exchange Membrane Fuel Cell Catalyst Layer

    SciTech Connect

    Stacy, Stephen; Allen, Jeffrey

    2012-07-01

    Water management in the catalyst layers of proton exchange membrane fuel cells (PEMFC) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. At the present time, the data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited. A method and apparatus for measuring the percolation pressure in the catalyst layer has been developed based upon an experimental apparatus used to test water percolation in porous transport layers (PTL). The experimental setup uses a pseudo Hele-Shaw type testing where samples are compressed and a fluid is injected into the sample. Testing the samples gives percolation pressure plots which show trends in increasing percolation pressure with an increase in flow rate. A decrease in pressure was seen as percolation occurred in one sample, however the pressure only had a rising effect in the other sample.

  19. Composite Cathode for High-Power Density Solid Oxide Fuel Cells

    SciTech Connect

    Ilwon Kim; Scott Barnett; Yi Jiang; Manoj Pillai; Nikkia McDonald; Dan Gostovic; Zhongryang Zhan; Jiang Liu

    2004-01-31

    Reduction of solid oxide fuel cell (SOFC) operating temperature will play a key role in reducing the stack cost by allowing the use of low-cost metallic interconnects and new approaches to sealing, while making applications such as transportation more feasible. Reported results for anode-supported SOFCs show that cathode polarization resistance is the primary barrier to achieving high power densities at operating temperatures of 700 C and lower. This project aims to identify and develop composite cathodes that could reduce SOFC operating temperatures below 700 C. This effort focuses on study and use of (La,Sr)(Co,Fe)O{sub 3} (LSCF) based composite cathodes, which have arguably the best potential to substantially improve on the currently-used, (La,Sr)MnO{sub 3}-Yttria-stabilized Zirconia. During this Phase I, it was successfully demonstrated that high performances can be achieved with LSCF/Gadolinium-Doped Ceria composite cathodes on Ni-based anode supported cells operating at 700 C or lower. We studied electrochemical reactions at LSCF/Yttria-stabilized Zirconia (YSZ) interfaces, and observed chemical reactions between LSCF and YSZ. By using ceria electrolytes or YSZ electrolytes with ceria diffusion barrier layers, the chemical reactions between LSCF and electrolytes were prevented under cathode firing conditions necessary for the optimal adhesion of the cathodes. The protection provided by ceria layer is expected to be adequate for stable long-term cathode performances, but more testing is needed to verify this. Using ceria-based barrier layers, high performance Ni-YSZ anode supported cells have been demonstrated with maximum power densities of 0.8W/cm2 at 700 C and 1.6W/cm{sup 2} at 800 C. Ni-SDC anode supported cells with SDC electrolytes yielded >1W/cm{sup 2} at 600 C. We speculate that the power output of Ni-YSZ anode supported cell at 700 C and lower, was limited by the quality of the Ceria and Ceria YSZ interface. Improvements in the low

  20. Chromium poisoning in (La,Sr)MnO3 cathode: Three-dimensional simulation of a solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Miyoshi, Kota; Iwai, Hiroshi; Kishimoto, Masashi; Saito, Motohiro; Yoshida, Hideo

    2016-09-01

    A three-dimensional numerical model of a single solid oxide fuel cell (SOFC) considering chromium poisoning on the cathode side has been developed to investigate the evolution of the SOFC performance over long-term operation. The degradation model applied in the simulation describes the loss of the cathode electrochemical activity as a decrease in the active triple-phase boundary (TPB) length. The calculations are conducted for two types of cell: lanthanum strontium manganite (LSM)/yttria-stabilized zirconia (YSZ)/Ni-YSZ and LSM-YSZ/YSZ/Ni-YSZ. Their electrode microstructures are acquired by imaging with a focused ion beam scanning-electron microscope (FIB-SEM). The simulation results qualitatively reproduce the trends of chromium poisoning reported in the literature. It has been revealed that the performance degradation by chromium is primarily due to an increase in the cathode activation overpotential. In addition, in the LSM-YSZ composite cathode, TPBs in the vicinity of the cathode-electrolyte interface preferentially deteriorate, shifting the active reaction site towards the cathode surface. This also results in an increase in the cathode ohmic loss associated with oxide ion conduction through the YSZ phase. The effects of the cell temperature, the partial pressure of steam at the chromium source, the cathode microstructure, and the cathode thickness on chromium poisoning are also discussed.

  1. Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes

    SciTech Connect

    Chen, Yu; Ding, Dong; Wei, Tao; Liu, Meilin

    2016-03-31

    The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF

  2. Current status, key challenges and its solutions in the design and development of graphene based ORR catalysts for the microbial fuel cell applications.

    PubMed

    Kannan, M V; Gnana Kumar, G

    2016-03-15

    Microbial fuel cells (MFC) are considered as the futuristic energy device that generates electricity from the catalytic degradation of biodegradable organic wastes using microbes, which exist in waste water. In MFCs, oxygen serves as a cathodic electron acceptor and oxygen reduction kinetics played a significant role in the determination of overall efficiency. A wide range of strategies have been developed for the preparation and substantial modification of oxygen reduction reaction (ORR) catalysts to improve the maximum volumetric power density of MFCs, in which the efforts on graphene based ORR catalysts are highly imperative. Although numerous research endeavors have been achieved in relation with the graphene based ORR catalysts applicable for MFCs, still their collective summary has not been developed, which hinders the acquirement of adequate knowledge on tuning the specific properties of said catalysts. The intension of this review is to outline the significant role of ORR catalysts, factors influencing the ORR activity, strategies behind the modifications of ORR catalysts and update the research efforts devoted on graphene based ORR catalysts. This review can be considered as a pertinent guide to understand the design and developmental strategies of competent graphene based ORR catalysts, which are not only applicable for MFCs but also for number of electrochemical applications.

  3. Method to improve catalyst layer model for modelling proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxian; Gao, Yuan; Ostadi, Hossein; Jiang, Kyle; Chen, Rui

    2015-09-01

    Correctly describing oxygen reduction within the cathode catalyst layer (CL) in modelling proton exchange membrane fuel cell is an important issue remaining unresolved. In this paper we show how to derive an agglomerate model for calculating oxygen reactions by describing dissolved oxygen in the agglomerates using two independent random processes. The first one is the probability that an oxygen molecule, which dissolves in the ionomer film on the agglomerate surface, moves into and then remains in the agglomerates; the second one is the probability of the molecule being consumed in reactions. The first probability depends on CL structure and can be directly calculated; the second one is derived by assuming that the oxygen reduction is first-order kinetic. It is found that the distribution functions of the first process can be fitted to a generalised gamma distribution function, which enables us to derive an analytical agglomerate model. We also expend the model to include oxygen dissolution in the ionomer film, and apply it to simulate cathode electrodes. The results reveal that the resistance to oxygen diffusion in ionomer film and agglomerate in modern CL is minor, and that the main potential loss is due to oxygen dissolution in the ionomer film.

  4. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOEpatents

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  5. Enhanced ambient stability of efficient perovskite solar cells by employing a modified fullerene cathode interlayer

    DOE PAGES

    Zhu, Zonglong; Chueh, Chu -Chen; Lin, Francis; ...

    2016-03-22

    A novel fullerene cathode interlayer is employed to facilitate the fabrication of stable and efficient perovskite solar cells. Here, this modified fullerene surfactant significantly increases air stability of the derived devices due to its hydrophobic characteristics to enable 80% of the initial PCE to be retained after being exposed in ambient condition with 20% relative humidity for 14 days.

  6. Palladium deuteride formation in the cathode of an electrochemical cell: An in situ neutron diffraction study

    SciTech Connect

    Rotella, F.J.; Richardson, J.W. Jr.; Redey, L.; Felcher, G.P.; Hitterman, R.L.; Kleb, R.

    1991-12-31

    In this report, neutron diffraction of palladium cathodes is utilized to reveal palladium deuteride formation within the crystal structure of the metal. The experiment described in this report demonstrates the efficacy of neutron powder diffraction as a tool for structural studies of metal deuterides/hydrides and the feasibility of in situ diffraction measurements from a working electrochemical cell. (JL)

  7. Palladium deuteride formation in the cathode of an electrochemical cell: An in situ neutron diffraction study

    SciTech Connect

    Rotella, F.J.; Richardson, J.W. Jr.; Redey, L.; Felcher, G.P.; Hitterman, R.L.; Kleb, R.

    1991-01-01

    In this report, neutron diffraction of palladium cathodes is utilized to reveal palladium deuteride formation within the crystal structure of the metal. The experiment described in this report demonstrates the efficacy of neutron powder diffraction as a tool for structural studies of metal deuterides/hydrides and the feasibility of in situ diffraction measurements from a working electrochemical cell. (JL)

  8. Uncovering the role of cathode buffer layer in organic solar cells

    PubMed Central

    Qi, Boyuan; Zhang, Zhi-Guo; Wang, Jizheng

    2015-01-01

    Organic solar cells (OSCs) as the third generation photovoltaic devices have drawn intense research, for their ability to be easily deposited by low-cost solution coating technologies. However the cathode in conventional OSCs, Ca, can be only deposited by thermal evaporation and is highly unstable in ambient. Therefore various solution processible cathode buffer layers (CBLs) are synthesized as substitute of Ca and show excellent effect in optimizing performance of OSCs. Yet, there is still no universal consensus on the mechanism that how CBL works, which is evidently a critical scientific issue that should be addressed. In this article detailed studies are targeted on the interfacial physics at the interface between active layer and cathode (with and without treatment of a polar CBL) by using ultraviolet photoelectron spectroscopy, capacitance-voltage measurement, and impedance spectroscopy. The experimental data demonstrate that CBL mainly takes effect in three ways: suppressing surface states at the surface of active layer, protecting the active layer from being damaged by thermally evaporated cathode, and changing the energy level alignment by forming dipole moments with active layer and/or cathode. Our findings here provide a comprehensive picture of interfacial physics in devices with and without CBL. PMID:25588623

  9. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.

    PubMed

    Cheng, Shaoan; Liu, Weifeng; Guo, Jian; Sun, Dan; Pan, Bin; Ye, Yaoli; Ding, Weijun; Huang, Haobin; Li, Fujian

    2014-06-15

    Scaling up of microbial fuel cells (MFCs) without losing power density requires a thorough understanding of the effect of hydraulic pressure on MFC performance. In this work, the performance of an activated carbon air-cathode MFC was evaluated under different hydraulic pressures. The MFC under 100 mmH2O hydraulic pressure produced a maximum power density of 1260 ± 24 mW m(-2), while the power density decreased by 24.4% and 44.7% as the hydraulic pressure increased to 500 mmH2O and 2000 mmH2O, respectively. Notably, the performance of both the anode and the cathode had decreased under high hydraulic pressures. Electrochemical impedance spectroscopy tests of the cathode indicated that both charge transfer resistance and diffusion transfer resistance increased with the increase in hydraulic pressure. Denaturing gradient gel electrophoresis of PCR-amplified partial 16S rRNA genes demonstrated that the similarity among anodic biofilm communities under different hydraulic pressures was ≥ 90%, and the communities of all MFCs were dominated by Geobacter sp. These results suggested that the reduction in power output of the single chamber air-cathode MFC under high hydraulic pressures can be attributed to water flooding of the cathode and suppression the metabolism of anodic exoelectrogenic bacteria.

  10. Air-cathode microbial fuel cell array: a device for identifying and characterizing electrochemically active microbes.

    PubMed

    Hou, Huijie; Li, Lei; de Figueiredo, Paul; Han, Arum

    2011-01-15

    Microbial fuel cells (MFCs) have generated excitement in environmental and bioenergy communities due to their potential for coupling wastewater treatment with energy generation and powering diverse devices. The pursuit of strategies such as improving microbial cultivation practices and optimizing MFC devices has increased power generating capacities of MFCs. However, surprisingly few microbial species with electrochemical activity in MFCs have been identified because current devices do not support parallel analyses or high throughput screening. We have recently demonstrated the feasibility of using advanced microfabrication methods to fabricate an MFC microarray. Here, we extend these studies by demonstrating a microfabricated air-cathode MFC array system. The system contains 24 individual air-cathode MFCs integrated onto a single chip. The device enables the direct and parallel comparison of different microbes loaded onto the array. Environmental samples were used to validate the utility of the air-cathode MFC array system and two previously identified isolates, 7Ca (Shewanella sp.) and 3C (Arthrobacter sp.), were shown to display enhanced electrochemical activities of 2.69 mW/m(2) and 1.86 mW/m(2), respectively. Experiments using a large scale conventional air-cathode MFC validated these findings. The parallel air-cathode MFC array system demonstrated here is expected to promote and accelerate the discovery and characterization of electrochemically active microbes.

  11. Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell.

    PubMed

    Wen, Qing; Wu, Ying; Zhao, Li-xin; Sun, Qian; Kong, Fan-ying

    2010-02-01

    A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was 14.7 h, a relatively high chemical oxygen demand (COD) removal efficiency of 91.7%-95.7% was achieved under long-term stable operation. The MFC displayed an open circuit voltage of 0.434 V and a maximum power density of 830 mW/m(3) at an external resistance of 300 Omega. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anode-cathode MFC constructed with bio-cathode in this experiment could provide a new approach for brewery wastewater treatment.

  12. A mediated glucose/oxygen enzymatic fuel cell based on printed carbon inks containing aldose dehydrogenase and laccase as anode and cathode.

    PubMed

    Jenkins, Peter; Tuurala, Saara; Vaari, Anu; Valkiainen, Matti; Smolander, Maria; Leech, Dónal

    2012-03-10

    Enzyme electrodes show great potential for many applications, as biosensors and more recently as anodes and cathodes in biocatalytic fuel cells for power generation. Enzymes have advantages over metal catalysts, as they provide high specificity and reaction rates, while operating under mild conditions. Here we report on studies related to development of mass-producible, completely enzymatic printed glucose/oxygen biofuel cells. The cells are based on filter paper coated with conducting carbon inks containing mediators and laccase, for reduction of oxygen, or aldose dehydrogenase, for oxidation of glucose. Mediator performance in these printed formats is compared to relative rate constants for the enzyme-mediator reaction in solution, for a range of anode and cathode mediators. The power output and stability of fuels cells using an acidophilic laccase isolated from Trametes hirsuta is greater, at pH 5, than that for cells based on Melanocarpus albomyces laccase, that shows optimal activity closer to neutral pH, at pH 6. Highest power output, although of limited stability, was observed for ThL/ABTS cathodes, providing a maximum power density of 3.5 μWcm(-2) at 0.34 V, when coupled to an ALDH glucose anode mediated by an osmium complex. The stability of cell voltage above a threshold of 200 mV under a moderate 75 kΩ load is used to benchmark printed fuel cell performance. Highest stability was obtained for a printed fuel cell using osmium complexes as mediators of glucose oxidation by aldose dehydrogenase, and oxygen reduction by T. hirsuta laccase, maintaining cell voltage above 200 mV for 137 h at pH 5. These results provide promising directions for further development of mass-producible, completely enzymatic, printed biofuel cells.

  13. Confined-space alloying of nanoparticles for the synthesis of efficient PtNi fuel-cell catalysts.

    PubMed

    Baldizzone, Claudio; Mezzavilla, Stefano; Carvalho, Hudson W P; Meier, Josef Christian; Schuppert, Anna K; Heggen, Marc; Galeano, Carolina; Grunwaldt, Jan-Dierk; Schüth, Ferdi; Mayrhofer, Karl J J

    2014-12-15

    The efficiency of polymer electrolyte membrane fuel cells is strongly depending on the electrocatalyst performance, that is, its activity and stability. We have designed a catalyst material that combines both, the high activity for the decisive cathodic oxygen reduction reaction associated with nanoscale Pt alloys, and the excellent durability of an advanced nanostructured support. Owing to the high specific activity and large active surface area, the catalyst shows extraordinary mass activity values of 1.0 A mgPt(-1). Moreover, the material retains its initial active surface area and intrinsic activity during an extended accelerated aging test within the typical operation range. This excellent performance is achieved by confined-space alloying of the nanoparticles in a controlled manner in the pores of the support.

  14. Analysis of the electrochemical characteristics of a direct methanol fuel cell based on a Pt-Ru/C anode catalyst

    SciTech Connect

    Arico, A.S.; Creti, P.; Mantegna, R.

    1996-12-31

    This paper deals with a vapour-feed direct methanol fuel cell (DMFC) based on a Nafion 117{reg_sign} solid polymer electrolyte. Pt-Ru/C and Pt/C catalysts were employed for methanol oxidation and oxygen reduction, respectively. Structure and surface chemistry of catalysts were investigated by X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Membrane/electrode assembly (M&E) was prepared by using a {open_quotes}paste process{close_quotes} method. Electrical power densities of about 150 mW cm{sup -2} were obtained at 95{degrees} C with Pt loadings of 0.8 and 0.5 mg cm{sup -2} at anode and cathode respectively.

  15. Performance of a scaled-up Microbial Fuel Cell with iron reduction as the cathode reaction

    NASA Astrophysics Data System (ADS)

    Ter Heijne, Annemiek; Liu, Fei; van Rijnsoever, Lucas S.; Saakes, Michel; Hamelers, Hubertus V. M.; Buisman, Cees J. N.

    Scale-up studies of Microbial Fuel Cells are required before practical application comes into sight. We studied an MFC with a surface area of 0.5 m 2 and a volume of 5 L. Ferric iron (Fe 3+) was used as the electron acceptor to improve cathode performance. MFC performance increased in time as a combined result of microbial growth at the bio-anode, increase in iron concentration from 1 g L -1 to 6 g L -1, and increased activity of the iron oxidizers to regenerate ferric iron. Finally, a power density of 2.0 W m -2 (200 W m -3) was obtained. Analysis of internal resistances showed that anode resistance decreased from 109 to 7 mΩ m 2, while cathode resistance decreased from 939 to 85 mΩ m 2. The cathode was the main limiting factor, contributing to 58% of the total internal resistance. Maximum energy efficiency of the MFC was 41%.

  16. Nanostructured MnO2-Based Cathodes for Li-Ion/Polymer Cells

    NASA Technical Reports Server (NTRS)

    Skandan, Ganesh; Singhal, Amit

    2005-01-01

    Nanostructured MnO2-based cathodes for Li-ion/polymer electrochemical cells have been investigated in a continuing effort to develop safe, high-energy-density, reliable, low-toxicity, rechargeable batteries for a variety of applications in NASA programs and in mass-produced commercial electronic equipment. Whereas the energy densities of state-of-the-art lithium-ion/polymer batteries range from 150 to 175 W h/kg, the goal of this effort is to increase the typical energy density to about 250 W h/kg. It is also expected that an incidental benefit of this effort will be increases in power densities because the distances over which Li ions must diffuse through nanostructured cathode materials are smaller than those through solid bulk cathode materials.

  17. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell.

    PubMed

    Cai, Jing; Zheng, Ping; Mahmood, Qaisar

    2016-01-01

    The current investigation reports the effect of cathode electron acceptors on simultaneous sulfide and nitrate removal in two-chamber microbial fuel cells (MFCs). Potassium permanganate and potassium ferricyanide were common cathode electron acceptors and evaluated for substrate removal and electricity generation. The abiotic MFCs produced electricity through spontaneous electrochemical oxidation of sulfide. In comparison with abiotic MFC, the biotic MFC showed better ability for simultaneous nitrate and sulfide removal along with electricity generation. Keeping external resistance of 1,000 Ω, both MFCs showed good capacities for substrate removal where nitrogen and sulfate were the main end products. The steady voltage with potassium permanganate electrodes was nearly twice that of with potassium ferricyanide. Cyclic voltammetry curves confirmed that the potassium permanganate had higher catalytic activity than potassium ferricyanide. The potassium permanganate may be a suitable choice as cathode electron acceptor for enhanced electricity generation during simultaneous treatment of sulfide and nitrate in MFCs.

  18. Low-Work-Function, ITO-Free Transparent Cathodes for Inverted Polymer Solar Cells.

    PubMed

    Xue, Zhichao; Liu, Xingyuan; Lv, Ying; Zhang, Nan; Guo, Xiaoyang

    2015-09-16

    A low-work-function, indium tin oxide (ITO)-free transparent cathode having a tin oxide (SnOX)/Ag/SnOX/bismuth oxide (Bi2O3) (SASB) structure is developed without using annealing treatment. This represents the first time that Bi2O3 has been introduced to lower the work function of transparent electrodes. The SASB transparent cathode exhibits excellent photoelectric properties with a maximum transmittance of ∼88%, a low sheet resistance of ∼9.0 Ω·sq(-1), and a suitable work function of 4.22 eV that matches the lowest unoccupied molecular orbital level of the acceptor for exacting electrons efficiently. The power conversion efficiency of the polymer solar cell with the SASB electrode is 6.21%, which is comparable to that of ITO-based devices. The results indicate that SASB is a good alternative to ITO as transparent cathodes in optoelectronic devices.

  19. Hollow nanoparticle cathode materials for sodium electrochemical cells and batteries

    SciTech Connect

    Shevchenko, Elena; Rajh, Tijana; Johnson, Christopher S.; Koo, Bonil

    2016-07-12

    A cathode comprises, in its discharged state, a layer of hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles disposed between two layers of carbon nanotubes, and preferably including a metallic current collector in contact with one of the layers of carbon nanotubes. Individual particles of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles comprise a crystalline shell of .gamma.-Fe.sub.2O.sub.3 including cation vacancies within the crystal structure of the shell (i.e., iron vacancies of anywhere between 3% to 90%, and preferably 44 to 77% of available octahedral iron sites). Sodium ions are intercalated within at least some of the cation vacancies within the crystalline shell of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles.

  20. Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ma, Ming; You, Shijie; Gong, Xiaobo; Dai, Ying; Zou, Jinlong; Fu, Honggang

    2015-06-01

    Biofilms from anode heterotrophic bacteria are inevitably formed over cathodic catalytic sites, limiting the performances of single-chamber microbial fuel cells (MFCs). Graphitic carbon (GC) - based nano silver/iron oxide (AgNPs/Fe3O4/GC) composites are prepared from waste pomelo skin and used as antibacterial oxygen reduction catalysts for MFCs. AgNPs and Fe3O4 are introduced in situ into the composites by one-step carbothermal reduction, enhancing their conductivity and catalytic activity. To investigate the effects of Fe species on the antibacterial and catalytic properties, AgNPs/Fe3O4/GC is washed with sulfuric acid (1 mol L-1) for 0.5 h, 1 h, and 5 h and marked as AgNPs/Fe3O4/GC-x (x = 0.5 h, 1 h and 5 h, respectively). A maximum power density of 1712 ± 35 mW m-2 is obtained by AgNPs/Fe3O4/GC-1 h, which declines by 4.12% after 17 cycles. Under catalysis of all AgNP-containing catalysts, oxygen reduction reaction (ORR) proceeds via the 4e- pathway, and no toxic effects to anode microorganisms result from inhibiting the cathodic biofilm overgrowth. With the exception of AgNPs/Fe3O4/GC-5 h, the AgNPs-containing composites exhibit remarkable power output and coulombic efficiency through lowering proton transfer resistance and air-cathode biofouling. This study provides a perspective for the practical application of MFCs using these efficient antibacterial ORR catalysts.

  1. A three-dimensional pore-scale model of the cathode electrode in polymer-electrolyte membrane fuel cell by lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Molaeimanesh, G. R.; Akbari, M. H.

    2014-07-01

    High power density, low operation temperature, high efficiency and low emissions have granted proton exchange membrane (PEM) fuel cells the most promising future among all types of fuel cells. The porous electrodes of PEM fuel cells have a complicated, non-homogeneous, anisotropic microstructure. Therefore, pore-scale modeling techniques such as lattice Boltzmann method, which can capture non-homogeneous and anisotropic microstructures, have recently gained a great attention. In the present study, a three-dimensional lattice Boltzmann model of a PEM fuel cell cathode electrode is proposed in which electrochemical reaction on the catalyst layer and microstructure of GDL are taken into account. The model enables us to simulate single-phase, multi-species reactive flow in a heterogeneous, anisotropic gas diffusion layer through an active approach. To show the capability of the proposed model, reactive flow in three reconstructed GDLs with different anisotropic characteristics is simulated to investigate the effects of GDL microstructure on species and current density distributions. The results demonstrate that when carbon fibers are more likely oriented normal to the catalyst layer, species density distribution is thicker and more disturbed. Current density also experiences a larger variation on the catalyst layer in such a case.

  2. Nitrogen- and boron-co-doped core-shell carbon nanoparticles as efficient metal-free catalysts for oxygen reduction reactions in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhong, Shengkui; Zhou, Lihua; Wu, Ling; Tang, Lianfeng; He, Qiyi; Ahmed, Jalal

    2014-12-01

    The most severe bottleneck hindering the widespread application of fuel cell technologies is the difficulty in obtaining an inexpensive and abundant oxygen reduction reaction (ORR) catalyst. The concept of a heteroatom-doped carbon-based metal-free catalyst has recently attracted interest. In this study, a metal-free carbon nanoparticles-based catalyst hybridized with dual nitrogen and boron components was synthesized to catalyze the ORR in microbial fuel cells (MFCs). Multiple physical and chemical characterizations confirmed that the synthetic method enabled the incorporation of both nitrogen and boron dopants. The electrochemical measurements indicated that the co-existence of nitrogen and boron could enhance the ORR kinetics by reducing the overpotential and increasing the current density. The results from the kinetic studies indicated that the nitrogen and boron induced an oxygen adsorption mechanism and a four-electron-dominated reaction pathway for the as-prepared catalyst that was very similar to those induced by Pt/C. The MFC results showed that a maximum power density of ∼642 mW m-2 was obtained using the as-prepared catalyst, which is comparable to that obtained using expensive Pt catalyst. The prepared nitrogen- and boron-co-doped carbon nanoparticles might be an alternative cathode catalyst for MFC applications if large-scale applications and price are considered.

  3. Novel carbon nanostructures as catalyst support for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Natarajan, Sadesh Kumar

    Polymer electrolyte membrane fuel cell (PEMFC) technology has advanced rapidly in recent years, with one of active area focused on improving the long-term performance of carbon supported catalysts, which has been recognized as one of the most important issues to be addressed for the commercialization of PEMFCs. The central part of a PEMFC is the membrane electrode assembly (MEA) which consists of two electrodes (anode and cathode) and a cation exchange membrane. These electrodes are commonly made of carbon black (most often, Vulcan XC-72) supported on carbon paper or carbon cloth backings. It is the primary objective of this thesis to prepare and investigate carbon nanostructures (CNS, licensed to Hydrogen Research Institute -- IRH, Quebec, Canada), the carbon material with more graphite component like carbon nanotubes (CNTs) for use as catalyst support in PEMFCs. High energy ball-milling of activated carbon along with transition metal catalysts under hydrogen atmosphere, followed by heat-treatment leads to nanocrystalline structures of carbon called CNS. However, CNS formed in the quartz tube after heat-treatment is inevitably accompanied by many impurities such as metal particles, amorphous carbon and other carbon nanoparticules. Such impurities are a serious impediment to detailed characterization of the properties of nanostructures. In addition, since the surface of CNS is itself rather inert, it is difficult to control the homogeneity and size distribution of Pt nanoparticules. In this thesis work, we demonstrated a novel mean to purify and functionalize CNS via acid-oxidation under reflux conditions. To investigate and quantify these nanostructures X-ray diffraction, electrical conductivity measurements, specific surface area measurements, thermogravimetric analysis, X-ray photoelectron spectroscopy and transmission electron microscopy studies were used. Cyclic voltammetry studies were performed on different samples to derive estimates for the relationship

  4. A new composite cathode for intermediate temperature solid oxide fuel cells with zirconia-based electrolytes

    NASA Astrophysics Data System (ADS)

    Zhang, Cuijuan; Huang, Kevin

    2017-02-01

    Improving the electrocatalytic activity of electrode materials is vitally important to achieve practically meaningful performance for intermediate temperature solid oxide fuel cells (IT-SOFCs). The present work develops a composite cathode consisting of an electronic conductor Sr-doped LaMnO3 (LSM) and an ionic conductor Y- and Ce- co-doped Bi2O3 (BYC7). BYC7 is an excellent oxide-ion conductor, exhibiting a high and stable ionic conductivity of 0.008 S cm-1 at 500 °C. The polarization resistance of LSM-BYC7 cathode in a symmetrical cell with doped ZrO2 as electrolyte varies from 5.76 at 500 °C to 0.25 Ω cm2 at 650 °C. The surface diffusion and charge transfer at the triple phase boundaries are the rate determining steps based on the dependence of polarization resistance on partial pressure of oxygen. The maximum power density of a ZrO2-based anode-supported cell with LSM-BYC7 composite cathode is 56.4, 154.6, 327.9, and 451.0 mW cm-2 at 500, 550, 600, and 650 °C respectively. AC impedance analysis reveals that the performance of IT-SOFC prepared in this study is actually limited by the anode, not by LSM-BYC7 cathode.

  5. Cathodes for secondary electrochemical power-producing cells. [layers of porous substrates impregnated with S alternate with layers containing electrolyte

    DOEpatents

    Cairns, E.J.; Kyle, M.; Shimotake, H.

    1973-02-13

    A secondary electrochemical power-producing cell includes an anode containing lithium, an electrolyte containing lithium ions, and a cathode containing sulfur. The cathode comprises plates of a porous substrate material impregnated with sulfur alternating with layers (which may also comprise porous substrate plates) containing electrolyte.

  6. Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode.

    PubMed

    Juang, D F; Lee, C H; Hsueh, S C

    2012-11-01

    Electricity generation capabilities of microbial fuel cell with different light power on algae grown cathode were compared. Results showed that microbial fuel cell with 6 and 12W power of light always produced higher voltage and power density than with 18 and 26W. Similarly, microbial fuel cell with 6 and 12W of light power always displayed higher Coulombic efficiency and specific power than the one with 18 and 26W. The results also showed that microbial fuel cell with covered anodic chamber always displayed higher voltage, power density, Coulombic efficiency and specific power than the one without covered anodic chamber. Binary quadratic equations can be used to express the relationships between the light power and the voltage, power density, Coulombic efficiency and specific power. Although lower power of light on algae grown cathode and covering anodic chamber will increase system's electricity production, they will not significantly reduce its internal resistance.

  7. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell.

    PubMed

    Cusick, Roland D; Ullery, Mark L; Dempsey, Brian A; Logan, Bruce E

    2014-05-01

    Microbial electrolysis cells (MECs) can be used to simultaneously convert wastewater organics to hydrogen and precipitate struvite, but scale formation at the cathode surface can block catalytic active sites and limit extended operation. To promote bulk phase struvite precipitation and minimize cathode scaling, a two-chamber MEC was designed with a fluidized bed to produce suspended particles and inhibit scale formation on the cathode surface. MEC operation elevated the cathode pH to between 8.3 and 8.7 under continuous flow conditions. Soluble phosphorus removal using digester effluent ranged from 70 to 85% with current generation, compared to 10-20% for the control (open circuit conditions). At low current densities (≤2 mA/m(2)), scouring of the cathode by fluidized particles prevented scale accumulation over a period of 8 days. There was nearly identical removal of soluble phosphorus and magnesium from solution, and an equimolar composition in the collected solids, supporting phosphorus removal by struvite formation. At an applied voltage of 1.0 V, energy consumption from the power supply and pumping (0.2 Wh/L, 7.5 Wh/g-P) was significantly less than that needed by other struvite formation methods based on pH adjustment such as aeration and NaOH addition. In the anode chamber, current generation led to COD oxidation (1.1-2.1 g-COD/L-d) and ammonium removal (7-12 mM) from digestate amended with 1 g/L of sodium acetate. These results indicate that a fluidized bed cathode MEC is a promising method of sustainable electrochemical nutrient and energy recovery method for nutrient rich wastewaters.

  8. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    SciTech Connect

    R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be

  9. XPS investigations of the proton exchange membrane fuel cell active layers aging: Characterization of the mitigating role of an anodic CO contamination on cathode degradation

    NASA Astrophysics Data System (ADS)

    Parry, Valérie; Berthomé, Grégory; Joud, Jean-Charles; Lemaire, Olivier; Franco, Alejandro A.

    2011-03-01

    This paper presents new results from XPS quantitative characterizations of cathode catalyst layers aged in a PEMFC with an anode operated under pure hydrogen and air and with 5 ppm CO contaminated hydrogen. Both oxygen rich and oxygen poor zones of the cathode catalyst layer were analyzed in order to show up heterogeneous degradation linked with gas distribution. The detailed chemical XPS analysis of the aged samples demonstrates in particular that in our operating conditions, the catalyst layer aging is mainly attributed to the oxidation of the carbon catalyst-support. A loss of the Nafion® ionomer in the cathode is also highlighted by XPS. Furthermore, the characterization of the cathodic catalyst layer chemical composition when CO is introduced in the anode side shows that the catalyst layer degradation is lower. These results are in agreement with the experimental-modeling work by Franco et al. [1] demonstrating that anodic CO contamination decreases the reverse proton pumping effect between the cathode and the anode and enhances the PEMFC durability.

  10. Reduction of hydrogen peroxide production at anode of proton exchange membrane fuel cell under open-circuit conditions using ruthenium-carbon catalyst

    NASA Astrophysics Data System (ADS)

    Jung, Un Ho; Jeong, Seong Uk; Chun, Kook; Park, Ki Tae; Lee, Hyang Mee; Choi, Dong Woong; Kim, Sung Hyun

    This study examines the effect of hydrogen peroxide (H 2O 2) on the open-circuit voltage (OCV) of a proton exchange membrane fuel cell (PEMFC) and the reduction of H 2O 2 in the membrane using a ruthenium/carbon catalyst (Ru/C) at the anode. Each cathode and anode potential of the PEMFC in the presence of H 2O 2 is examined by constructing a half-cell using 1.0 M H 2SO 4 solution as an electrolyte and Ag/AgCl as the reference electrode. H 2O 2 is added to the H 2SO 4 solution and the half-cell potential is measured at each H 2O 2 concentration. The cathode potential is affected by the H 2O 2 concentration while the anode potential remains stable. A Ru catalyst is used to reduce the level of H 2O 2 formation through O 2 cross-over at the interface of a membrane and the anode. The Ru catalyst is known to produce less H 2O 2 through oxygen reduction at the anode of PEMFC than a Pt catalyst. A Ru/C layer is placed between the Nafion ® 112 membrane and anode catalyst layer and the cell voltage under open-circuit condition is measured. A single cell is constructed to compare the OCV of the Pt/C only anode with that of the Ru/C-layered anode. The level of hydrogen cross-over and the OCV are determined after operation at a current density of 1 A cm -2 for 10 h and stabilization at open-circuit for 1 h to obtain an equilibrium state in the cell. Although there is an increase in the OCV of the cell with the Ru/C layer at the anode, excessive addition of Ru/C has an adverse effect on cell performance.

  11. Improving performance of inverted organic solar cells using ZTO nanoparticles as cathode buffer layer

    NASA Astrophysics Data System (ADS)

    Tsai, Meng-Yen; Cheng, Wen-Hui; Jeng, Jiann-Shing; Chen, Jen-Sue

    2016-06-01

    In this study, a low-temperature solution-processed zinc tin oxide (ZTO) films are successfully utilized as the cathode buffer layer in the inverted organic P3HT:PCBM bulk heterojunction solar cells. ZTO film cathode buffer layer with an appropriate Sn-doping concentration outperforms the zinc oxide (ZnO) film with an improved power conversion efficiency (1.96% (ZTO film) vs. 1.56% (ZnO film)). Furthermore, ZTO nanoparticles (NPs) are also synthesized via low-temperature solution route and the device with ZTO NPs buffer layer exhibits a significant improvement in device performance to reach a PCE of 2.60%. The crystallinity of the cathode buffer layer plays an influential factor in the performance. From impedance spectroscopy analysis, a correlation between short circuit current (Jsc), carrier life time (τavg) and, thus, PCE is observed. The interplay between composition and crystallinity of the cathode buffer layers is discussed to find their influences on the solar cell performance.

  12. An investigation of anode and cathode materials in photomicrobial fuel cells.

    PubMed

    Schneider, Kenneth; Thorne, Rebecca J; Cameron, Petra J

    2016-02-28

    Photomicrobial fuel cells (p-MFCs) are devices that use photosynthetic organisms (such as cyanobacteria or algae) to turn light energy into electrical energy. In a p-MFC, the anode accepts electrons from microorganisms that are either growing directly on the anode surface (biofilm) or are free floating in solution (planktonic). The nature of both the anode and cathode material is critical for device efficiency. An ideal anode is biocompatible and facilitates direct electron transfer from the microorganisms, with no need for an electron mediator. For a p-MFC, there is the additional requirement that the anode should not prevent light from perfusing through the photosynthetic cells. The cathode should facilitate the rapid reaction of protons and oxygen to form water so as not to rate limit the device. In this paper, we first review the range of anode and cathode materials currently used in p-MFCs. We then present our own data comparing cathode materials in a p-MFC and our first results using porous ceramic anodes in a mediator-free p-MFC.

  13. Commercial materials as cathode for hydrogen production in microbial electrolysis cell.

    PubMed

    Farhangi, Sara; Ebrahimi, Sirous; Niasar, Mojtaba Shariati

    2014-10-01

    The use of commercial electrodes as cathodes in a single-chamber microbial electrolysis cell has been investigated. The cell was operated in sequencing batch mode and the performance of the electrodes was compared with carbon cloth containing 0.5 mg Pt cm(-2). Overall H2 recovery [Formula: see text] was 66.7 ± 1.4, 58.7 ± 1.1 and 55.5 ± 1.5 % for Pt/CC, Ni and Ti mesh electrodes, respectively. Columbic efficiencies of the three cathodes were in the same range (74.8 ± 1.5, 77.6 ± 1.7 and 75.7 ± 1.2 % for Pt/CC, Ni and Ti mesh electrodes, respectively). A similar performance for the three cathodes under near-neutral pH and ambient temperature was obtained. The commercial electrodes are much cheaper than carbon cloth containing Pt. Low cost and good performance of these electrodes suggest they are suitable cathode materials for large scale application.

  14. Low platinum loading cathode modified with Cs3H2PMo10V2O40 for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Renzi, M.; D'Angelo, G.; Marassi, R.; Nobili, F.

    2016-09-01

    The catalytic activity of commercial Pt nanoparticles mixed with mesoporous polyoxometalate Cs3H2PMo10V2O40 towards oxygen reduction reaction is evaluated. The polyoxometalate co-catalyst is prepared by titration of an aqueous solution of phosphovanadomolibdic acid. SEM micrography shows reduction particle size to less than 300 nm, while XRD confirms that the resulting salt maintains the Kegging structure. The composite catalyst is prepared by mixing the POM salt with Pt/C by sonication. RRDE studies show better kinetics for ORR with low Pt loading at the electrode surface. A MEA is assembled by using a Pt/POM-based cathode, in order to assess performance in a working fuel cell. Current vs. potential curves reveals comparable or better performances at 100%, 62% and 17% relative humidity for the POM-modified MEA with respect to a commercial MEA with higher Pt loading at the cathode. Electrochemical impedance spectroscopy (EIS) confirms better kinetics at low relative humidity. Finally, an accelerated stress test (AST) with square wave (SW) between 0.4 V and 0.8 V is performed to evaluate MEA stability for at least 100 h and make predictions about lifetime, showing that after initial losses the catalytic system can retain stable performance and good morphological stability.

  15. Evaluation of microbial fuel cell coupled with aeration chamber and bio-cathode for organic matter and nitrogen removal from synthetic domestic wastewater.

    PubMed

    Cha, J; Kim, C; Choi, S; Lee, G; Chen, G; Lee, T

    2009-01-01

    For simultaneous carbon and nitrogen removal via single stream, a microbial fuel cell (MFC) coupled with an aeration chamber and a bio-cathode was investigated. Without catalysts and any additional buffer, the MFC produced electricity continuously and the power density reached 1.3 W/m3 at a loading rate of 1.6 kg COD/m3 d. Simultaneously, the COD and the nitrate removal rate were 1.4 kg COD/m3 d and 67 g NO3-N/m3 d, respectively. When the hydraulic retention time was changed from 6 to 0.75 hours, the power density significantly increased from 0.2 to 10.8 W/m3 due to an increase of cathodic potential. When the aeration chamber was removed and the nitrate was injected into the cathode, the power density increased to 3.7 W/m3. At a high recirculation rate of 10 ml/min, the power density and the nitrate removal rate greatly increased to 34 W/m3 and 294 g NO3--N/m3 d, respectively.

  16. A dual-chambered microbial fuel cell with Ti/nano-TiO2/Pd nano-structure cathode

    NASA Astrophysics Data System (ADS)

    Hosseini, Mir Ghasem; Ahadzadeh, Iraj

    2012-12-01

    In this research, Ti/nano-TiO2/Pd nano-structure electrode is prepared, characterized and applied as cathode electrode in a dual-chambered microbial fuel cell with graphite anode and Flemion cation exchange membrane. Prepared nano-structured electrode morphology and mixed-culture biofilm formed on the anode are studied by scanning electron microscopy (SEM). Cell performance is investigated by polarization, cyclic voltammetery (CV) and electrochemical impedance spectroscopy (EIS) methods. Results show that Ti/nano-TiO2/Pd electrode exhibits satisfactory long term performance as a cathode to reduce water dissolved oxygen. The maximum output power of the cell is about 200 mW m-2 normalized to the cathode surface area. Open circuit potential (OCP) of the cell is about 480 mV and value of the short circuit current is 0.21 mA cm-2 of the cathode geometric surface area. Thus this nano-structure cathode can produce comparable output power to that of platinum-based cathodes such as Pt-doped carbon paper; therefore due to the ease of preparation and low cost, this electrode can be applied as alternative to platinum-based cathodes in microbial fuel cells.

  17. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    SciTech Connect

    Kim, Hyo-Joong; Kim, Han-Ki; Lee, Hyun Hwi; Kal, Jinha; Hahn, Jungseok

    2015-10-15

    The characteristics of transparent ITO/Ag-Pd-Cu (APC)/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs). The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of the transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs.

  18. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs).

    PubMed

    Wang, Xin; Feng, Yujie; Liu, Jia; Lee, He; Li, Chao; Li, Nan; Ren, Nanqi

    2010-08-15

    Due to increased discharge of CO(2) is incurring problems, CO(2) sequestration technologies require substantial development. By introducing anodic off gas into an algae grown cathode (Chlorella vulgaris), new microbial carbon capture cells (MCCs) were constructed and demonstrated here to be an effective technology for CO(2) emission reduction with simultaneous voltage output without aeration (610+/-50 mV, 1000 Omega). Maximum power densities increased from 4.1 to 5.6 W/m(3) when the optical density (OD) of cathodic algae suspension increased from 0.21 to 0.85 (658 nm). Compared to a stable voltage of 706+/-21 mV (1000 Omega) obtained with cathodic dissolved oxygen (DO) of 6.6+/-1.0 mg/L in MCC, voltage outputs decreased from 654 to 189 mV over 70 h in the control reactor (no algae) accompanied with a decrease in DO from 7.6 to 0.9 mg/L, indicating that cathode electron acceptor was oxygen. Gas analysis showed that all the CO(2) generated from anode was completely eliminated by catholyte, and the soluble inorganic carbon was further converted into algal biomass. These results showed the possibility of a new method for simultaneous carbon fixing, power generation and biodiesel production during wastewater treatment without aeration.

  19. Comparative analysis of microbial community between different cathode systems of microbial fuel cells for denitrification.

    PubMed

    Li, Chao; Xu, Ming; Lu, Yi; Fang, Fang; Cao, Jiashun

    2016-01-01

    Two types of cathodic biofilm in microbial fuel cells (MFC) were established for comparison on their performance and microbial communities. Complete autotrophic simultaneous nitrification and denitrification (SND) without organics addition was achieved in nitrifying-MFC (N-MFC) with a total nitrogen (TN) removal rate of 0.35 mg/(L·h), which was even higher than that in denitrifying-MFC (D-MFC) at same TN level. Integrated denaturing gradient gel electrophoresis analysis based on both 16S rRNA and nirK genes showed that Alpha-, Gammaproteobacteria were the main denitrifier communities. Some potential autotrophic denitrifying bacteria which can use electrons and reducing power from cathodes, such as Shewanella oneidensis, Shewanella loihica, Pseudomonas aeruginosa, Starkeya novella and Rhodopseudomonas palustris were identified and selectively enriched on cathode biofilms. Further, relative abundance of denitrifying bacteria characterized by nirK/16S ratios was much higher in biofilm than suspended sludge according to real-time polymerase chain reaction. The highest enrichment efficiency for denitrifiers was obtained in N-MFC cathode biofilms, which confirmed autotrophic denitrifying bacteria enrichment is the key factor for a D-MFC system.

  20. Comparison of oxygen and hypochlorite as cathodic electron acceptor in microbial fuel cells.

    PubMed

    Jadhav, D A; Ghadge, A N; Mondal, Debika; Ghangrekar, M M

    2014-02-01

    Effect of oxygen and sodium hypochlorite (NaOCl) as cathodic electron acceptors on performance of a clayware microbial fuel cell (MFC) was evaluated in this study. Maximum power density of 6.57 W/m(3) was obtained with NaOCl as catholyte, which is about 9 times higher than oxygen being used as an electron acceptor. Voltammetry and Tafel analysis further supported the faster reduction kinetics lead to increase in power output and reduction in internal resistance of MFC operated with NaOCl as an electron acceptor. Using NaOCl as catholyte, higher exchange current density of 10.91 and 11.52 mA/m(2) and lower charge transfer resistance of 0.58 and 0.56 kΩ m(2) was observed for anode and cathode, respectively. Higher organic matter removal of about 90% with 25% Coulombic efficiency was achieved using NaOCl as catholyte. Higher internal resistance, lower cathode potential and slow reduction kinetics deteriorated performance of MFC using oxygen as cathodic electron acceptor.

  1. Catalysts of plant cell wall loosening

    PubMed Central

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyloglucan endotransglycosylase/hydrolase (XTH), and pectin methylesterases, and offer a critical assessment of their wall-loosening activity PMID:26918182

  2. Inkjet-Printed Porous Silver Thin Film as a Cathode for a Low-Temperature Solid Oxide Fuel Cell.

    PubMed

    Yu, Chen-Chiang; Baek, Jong Dae; Su, Chun-Hao; Fan, Liangdong; Wei, Jun; Liao, Ying-Chih; Su, Pei-Chen

    2016-04-27

    In this work we report a porous silver thin film cathode that was fabricated by a simple inkjet printing process for low-temperature solid oxide fuel cell applications. The electrochemical performance of the inkjet-printed silver cathode was studied at 300-450 °C and was compared with that of silver cathodes that were fabricated by the typical sputtering method. Inkjet-printed silver cathodes showed lower electrochemical impedance due to their porous structure, which facilitated oxygen gaseous diffusion and oxygen surface adsorption-dissociation reactions. A typical sputtered nanoporous silver cathode became essentially dense after the operation and showed high impedance due to a lack of oxygen supply. The results of long-term fuel cell operation show that the cell with an inkjet-printed cathode had a more stable current output for more than 45 h at 400 °C. A porous silver cathode is required for high fuel cell performance, and the simple inkjet printing technique offers an alternative method of fabrication for such a desirable porous structure with the required thermal-morphological stability.

  3. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  4. Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition.

    PubMed

    Montanini, Roberto; Quattrocchi, Antonino; Piccolo, Sebastiano A; Amato, Alessandra; Trocino, Stefano; Zignani, Sabrina C; Faro, Massimiliano Lo; Squadrito, Gaetano

    2016-09-01

    Electrochemical methods such as voltammetry and electrochemical impedance spectroscopy are effective for quantifying solid oxide fuel cell (SOFC) operational performance, but not for identifying and monitoring the chemical processes that occur on the electrodes' surface, which are thought to be strictly related to the SOFCs' efficiency. Because of their high operating temperature, mechanical failure or cathode delamination is a common shortcoming of SOFCs that severely affects their reliability. Infrared thermography may provide a powerful tool for probing in situ SOFC electrode processes and the materials' structural integrity, but, due to the typical design of pellet-type cells, a complete optical access to the electrode surface is usually prevented. In this paper, a specially designed SOFC is introduced, which allows temperature distribution to be measured over all the cathode area while still preserving the electrochemical performance of the device. Infrared images recorded under different working conditions are then processed by means of a dedicated image processing algorithm for quantitative data analysis. Results reported in the paper highlight the effectiveness of infrared thermal imaging in detecting the onset of cell failure during normal operation and in monitoring cathode activity when the cell is fed with different types of fuels.

  5. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  6. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1980-01-01

    Tungsten carbide, which is known to be active for hydrogen oxidation and CO tolerant has a hexagonal structure. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys Wx-1TixC were prepared and found to be active and CO tolerant. These alloys are of interest as possible phosphoric acid fuel cell catalysts. They also are of interest as opportunities to study the activity of W in a different crystalline environment and to correlate the activities of the surface sites with surface composition.

  7. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Four different samples of the cubic alloys W sub x-1 Ti sub x C sub 1-y were prepared and found to be active and CO tolerant. When the activities of these cubic alloys were weighted by the reciprocal of the square of the W exchange, they displayed magnitudes and dependence on bulk C deficiency comparable to those of highly active forms of WC. It is concluded that they may offer important insight into the nature of the active sites on, and means for improving the performance of, W-C anode catalysts for use in phosphoric acid fuel cells.

  8. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Tungsten carbide, which is active for hydrogen oxidation, is CO tolerant and has a hexagonal structure is discussed. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys W sub x-1Ti sub XC sub 1-y were found to be active and CO tolerant. When the activities of these cubic alloys are weighted by the reciprocal of the square to those of highly forms of WC. They offer important insight into the nature of the active sites on W-C anode catalysts for use in phosphoric acid fuel cells.

  9. NREL Team Creates High-Activity, Durable Platinum Extended Surface Catalyst for Fuel Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    Researchers with NREL's Fuel Cell team showed that platinum can replace copper nanowires in such a way that high-surface-area and high-specific-activity catalysts are produced, potentially allowing for lower-cost catalysts.

  10. Platinum-ruthenium-palladium alloys for use as a fuel cell catalyst

    DOEpatents

    Gorer, Alexander

    2002-01-01

    A noble metal alloy composition for a fuel cell catalyst, a ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  11. Chemical Degradation of the Cathodic Electrical Contact Between Carbon and Cast Iron in Aluminum Production Cells

    NASA Astrophysics Data System (ADS)

    Brassard, Martin; Désilets, Martin; Soucy, Gervais; Bilodeau, Jean-François; Forté, Martin

    2017-02-01

    The cathodic carbon to cast iron electrical contact degradation is one of the factors to consider in the cathode voltage drop (CVD) increase over the lifetime of aluminum production cells. Lab-scale experiments were carried out to study the cast iron to carbon interface chemical degradation and the impact of important cell parameters like temperature and bath chemistry. Laboratory degradation results were compared with industrial samples. A thermoelectric Ansys numerical model was then used to predict the effect of cast iron surface degradation over CVD. Results show that the aluminum formation on the cast iron surface and its subsequent diffusion creates an immiscible mixture of Fe-Al metal alloy and electrolytic bath. Disparities were also observed between industrial samples taken from two different technologies, suggesting that the degradation can be slowed down. Thermoelectric calculations finally revealed that the impact of the contact resistance augmentation is by far greater than the cast iron degradation.

  12. Optically transparent FTO-free cathode for dye-sensitized solar cells.

    PubMed

    Kavan, Ladislav; Liska, Paul; Zakeeruddin, Shaik M; Grätzel, Michael

    2014-12-24

    The woven fabric containing electrochemically platinized tungsten wire is an affordable flexible cathode for liquid-junction dye-sensitized solar cells with the I3(-)/I(-) redox mediator and electrolyte solution consisting of ionic liquids and propionitrile. The fabric-based electrode outperforms the thermally platinized FTO in serial ohmic resistance and charge-transfer resistance for triiodide reduction, and it offers comparable or better optical transparency in the visible and particularly in the near-IR spectral region. The electrode exhibits good stability during electrochemical loading and storage at open circuit. The dye-sensitized solar cells with a C101-sensitized titania photoanode and either Pt-W/PEN or Pt-FTO cathodes show a comparable performance.

  13. Anodic and cathodic microbial communities in single chamber microbial fuel cells.

    PubMed

    Daghio, Matteo; Gandolfi, Isabella; Bestetti, Giuseppina; Franzetti, Andrea; Guerrini, Edoardo; Cristiani, Pierangela

    2015-01-25

    Microbial fuel cells (MFCs) are a rapidly growing technology for energy production from wastewater and biomasses. In a MFC, a microbial biofilm oxidizes organic matter and transfers electrons from reduced compounds to an anode as the electron acceptor by extracellular electron transfer (EET). The aim of this work was to characterize the microbial communities operating in a Single Chamber Microbial Fuel Cell (SCMFC) fed with acetate and inoculated with a biogas digestate in order to gain more insight into anodic and cathodic EET. Taxonomic characterization of the communities was carried out by Illumina sequencing of a fragment of the 16S rRNA gene. Microorganisms belonging to Geovibrio genus and purple non-sulfur (PNS) bacteria were found to be dominant in the anodic biofilm. The alkaliphilic genus Nitrincola and anaerobic microorganisms belonging to Porphyromonadaceae family were the most abundant bacteria in the cathodic biofilm.

  14. Behavior Of NbSe3 Cathode In Rechargeable Li Cell

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Bankston, Clyde P.

    1991-01-01

    Report discusses series of ac impedance measurements of niobium triselenide cathodes in lithium secondary (rechargeable) cells. Reported work done to improve understanding of intercalation of NbSe3 with Li and to find out whether state of charge of NbSe3 determined nondestructively from impedance parameters. Authors conclude impedance parameters of NbSe3 do not vary in sufficiently regular fashion to be useful as indicators of state of charge.

  15. Nano-Engineered Catalysts for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Myung, Nosang; Narayanan, Sekharipuram; Wiberg, Dean

    2008-01-01

    Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity. The present method involves electrodeposition of one or more catalytic metal(s) or a catalytic-metal/polytetrafluoroethylene nanocomposite on an alumina nanotemplate. The alumina nanotemplate is then dissolved, leaving the desired metal or metal/polytetrafluoroethylene-composite catalyst layer. Unlike some prior methods of making fine metal catalysts, this method does not involve processing at elevated temperature; all processing can be done at room temperature. In addition, this method involves fewer steps and is more amenable to scaling up for mass production. Alumina nanotemplates are porous alumina membranes that have been fabricated, variously, by anodizing either pure aluminum or aluminum that has been deposited on silicon by electronbeam evaporation. The diameters of the pores (7 to 300 nm), areal densities of pores (as much as 7 x 10(exp 10)sq cm), and lengths of pores (up to about 100 nm) can be tailored by selection of fabrication conditions. In a given case, the catalytic metal, catalytic metal alloy, or catalytic metal/ polytetrafluoroethylene composite is electrodeposited in the pores of the alumina nanotemplate. The dimensions of the pores, together with the electrodeposition conditions

  16. Fast test for the durability of PEM fuel cell catalysts

    SciTech Connect

    Shao, Yuyan; Kou, Rong; Wang, Jun; Kwak, Ja Hun; Viswanathan, Vilayanur V.; Wang, Yong; Liu, Jun; Lin, Yuehe

    2008-10-12

    ETek Pt/C catalyst was used as standard materials to develop a new test protocol for fast screening durable catalyst for PEM fuel cells. Potential step (Pstep) method with the upper potential of 1.4V and the potential-static (Pstat) holding at 1.4 V or 1.2V are used to degrade the catalyst. The degradation in the electrochemical surface area (ESA) for Pt/C under Pstep conditions is greatly accelerated as compared with other conditions. The durability of Pt/Vulcan and Pt/CNT were studied using the new protocol with the electrochemical stressing of Pstep(1.4V/0.6V), which provided the same results as those tested using conventional protocols: Pt/CNT is more durable than Pt/Vulcan. This confirms that the new protocol works well in screening catalyst in terms of durability. The new protocol can differentiate the durability of electrocatalysts by shortening the test time to several hours. It is reliable and time-efficient.

  17. Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Li, Kexun; Liu, Xianhua

    2014-10-01

    Highly active and low-cost electrocatalysts are of great importance for large-scale commercial applications of microbial fuel cells (MFCs). In this work, we prepared an activated carbon (AC) air cathode containing electrodeposited γ-MnO2 using a potentiostatic method. The results indicated that carnation-like MnO2 crystals were bound to the surface of the AC air cathode after a deposition time of 10 min, which greatly improved the performance of the cathode. BET analysis results demonstrated that the electrodeposition of MnO2 decreased the micropore surface area of the cathode but increased the mesopore surface area. When compared with a bare AC air cathode, the electrodeposited MnO2 cathode exhibited higher catalytic activity for oxygen reduction reaction. The maximum power density of the MFC equipped with the electrodeposited MnO2 AC air cathode was 1554 mW m-2, which is 1.5 times higher than the control cathode.

  18. Optimization of electron transport and cathode materials for efficient organic solar cells

    NASA Astrophysics Data System (ADS)

    Colsmann, Alexander; Junge, Johannes; Wellinger, Thomas; Kayser, Christian; Lemmer, Uli

    2006-04-01

    In this work we discuss improvements of organic solar cells based on poly(3-hexylthiophene-2,5-diyl) : C 61-butyric acid methyl ester (P3HT:PCBM) blends. The polymer layer is combined with various electron transport materials and different cathodes. We were able to utilize the good charge carrier separation and transport properties of the P3HT:PCBM blend together with the flexibility of evaporated heterostructures. The systematic use of different cathodes such as calcium, aluminium/lithiumfluoride and organic intermediate layers resulted in higher fill factors and open circuit voltages compared to simple aluminium cathodes. In particular we studied the influence of additional layers of electron transport layer consisting of C 60, lithium doped bathophenanthroline (BPhen:Li) 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) and 2,9- dimethyl-4,7-diphenyl-1,10-phenantrolene (BCP) on the cell properties. Solar cells with power conversion efficiencies well above 3% have been fabricated.

  19. Numerical Simulation of Current Distribution in Cathode Carbon Block of an Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Tao, Wenju; Li, Tuofu; Wang, Zhaowen; Gao, Bingliang; Shi, Zhongning; Hu, Xianwei; Cui, Jianzhong

    2015-11-01

    Cathode carbon block wear is the main limiting factor for the lifetime of aluminum reduction cells. The wear rate is enhanced by current density. In this article, the current distribution at the surface of carbon block was calculated using a thermoelectric coupled model. Then the effects of effective length ( l e), height of the cathode carbon block ( h c), and width and height of the collector ( w b and h b) on current distribution were investigated. The results show that l e has a great effect on the current distribution. With l e decreasing, the maximum current density increases rapidly and shifts toward the cell center. When the l e decreases from 1.67 m to 1.51 m, the maximum current density increases by 57.9%. Moreover, the maximum current density will be reduced with increasing h c or h b × w b. For h b × w b = 180 mm × 180 mm2, the maximum current density is reduced by 27.8%. However, increasing h c or h b × w b will decrease the temperature in the cathode carbon block. The results of this study may provide the database optimization of cell operation and design.

  20. Oxidation catalyst

    DOEpatents

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  1. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Banham, Dustin; Ye, Siyu; Pei, Katie; Ozaki, Jun-ichi; Kishimoto, Takeaki; Imashiro, Yasuo

    2015-07-01

    A major hurdle to the widespread commercialization of proton exchange membrane fuel cells (PEMFCs) is the high loading of noble metal (Pt/Pt-alloy) catalyst at the cathode, which is necessary to facilitate the inherently sluggish oxygen reduction reaction (ORR). To eliminate the use of Pt/Pt-alloy catalysts at the cathode of PEMFCs and thus significantly reduce the cost, extensive research on non-precious metal catalysts (NPMCs) has been carried out over the past decade. Major advances in improving the ORR activity of NPMCs, particularly Fe- and Co-based NPMCs, have elevated these materials to a level at which they can start to be considered as potential alternatives to Pt/Pt-alloy catalysts. Unfortunately, the stability (performance loss following galvanostatic experiments) of these materials is currently unacceptably low and the durability (performance loss following voltage cycling) remains uncertain. The three primary mechanisms of instability are: (a) Leaching of the metal site, (b) Oxidative attack by H2O2, and (c) Protonation followed by possible anion adsorption of the active site. While (a) has largely been solved, further work is required to understand and prevent losses from (b) and/or (c). Thus, this review is focused on historical progress in (and possible future strategies for) improving the stability/durability of NPMCs.

  2. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    DOEpatents

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  3. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells.

    PubMed

    Gentil, Solène; Lalaoui, Noémie; Dutta, Arnab; Nedellec, Yannig; Cosnier, Serge; Shaw, Wendy J; Artero, Vincent; Le Goff, Alan

    2017-02-06

    A biomimetic nickel bis-diphosphine complex incorporating the amino acid arginine in the outer coordination sphere was immobilized on modified carbon nanotubes (CNTs) through electrostatic interactions. The functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2 /2 H(+) interconversion from pH 0 to 9, with catalytic preference for H2 oxidation at all pH values. The high activity of the complex over a wide pH range allows us to integrate this bio-inspired nanomaterial either in an enzymatic fuel cell together with a multicopper oxidase at the cathode, or in a proton exchange membrane fuel cell (PEMFC) using Pt/C at the cathode. The Ni-based PEMFC reaches 14 mW cm(-2) , only six-times-less as compared to full-Pt conventional PEMFC. The Pt-free enzyme-based fuel cell delivers ≈2 mW cm(-2) , a new efficiency record for a hydrogen biofuel cell with base metal catalysts.

  4. The effect of low concentrations of tetrachloroethylene on H2 adsorption and activation on Pt in a fuel cell catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Jack Z.; Colón-Mercado, Héctor R.; Goodwin, James G.

    2011-10-01

    The poisoning effect of tetrachloroethylene (TTCE) on the activity of a Pt fuel cell catalyst for the adsorption and activation of H2 was investigated at 60 °C and 2 atm using hydrogen surface concentration measurements. The impurity was chosen as a model compound for chlorinated cleaning and degreasing agents that may be introduced into a fuel cell as a contaminant at a fueling station and/or during vehicle maintenance. In the presence of only H2, introduction of up to 540 ppm TTCE in H2 to Pt/C resulted in a reduction of available Pt surface atoms (measured by H2 uptake) by ca. 30%, which was not enough to shift the H2-D2 exchange reaction away from being equilibrium limited. Exposure of TTCE to Pt/C in a mixed redox environment (hydrogen + oxygen), similar to that at the cathode of a fuel cell, resulted in a much more significant loss of Pt surface atom availability, suggesting a role in TTCE decomposition and/or Cl poisoning. Regeneration of catalyst activity of poisoned Pt/C showed the highest level of recovery when regenerated in only H2, with much less recovery in H2 + O2 or O2. The results from this study are in good agreement with those found in a fuel cell study by Martínez-Rodríguez et al. [2] and confirm that the majority of the poisoning from TTCE on fuel cell performance is most likely at the cathode, rather than the anode.

  5. Power generation capabilities of microbial fuel cells with different oxygen supplies in the cathodic chamber.

    PubMed

    Juang, Der-Fong; Lee, Chao-Hsien; Hsueh, Shu-Chun; Chou, Huei-Yin

    2012-06-01

    Two microbial fuel cells (MFCs) inoculated with activated sludge of a wastewater treatment plant were constructed. Oxygen was provided by mechanical aeration in the cathodic chamber of one MFC, whereas it was obtained by the photosynthesis of algae in the other. Electrogenic capabilities of both MFCs were compared under the same operational conditions. Results showed that the MFC with mechanical aeration in the cathodic chamber displayed higher power output than the one with photosynthesis of algae. Good linear relationship between power density and chemical oxygen demand (COD) loading rate was obtained only on the MFC with mechanical aeration. Furthermore, the relationships between power density and effluent COD and between Coulombic efficiency and COD loading rate can only be expressed as binary quadratic equations for the MFC with mechanical aeration and not for the one with photosynthesis of algae.

  6. Molten Carbonate Fuel Cell performance analysis varying cathode operating conditions for carbon capture applications

    NASA Astrophysics Data System (ADS)

    Audasso, Emilio; Barelli, Linda; Bidini, Gianni; Bosio, Barbara; Discepoli, Gabriele

    2017-04-01

    The results of a systematic experimental campaign to verify the impact of real operating conditions on the performance of a complete Molten Carbonate Fuel Cell (MCFC) are presented. In particular, the effects of ageing and composition of water, oxygen and carbon dioxide in the cathodic feeding stream are studied through the analysis of current-voltage curves and Electrochemical Impedance Spectroscopy (EIS). Based on a proposed equivalent electrical circuit model and a fitting procedure, a correlation is found among specific operating parameters and single EIS coefficients. The obtained results suggest a new performance monitoring approach to be applied to MCFC for diagnostic purpose. Particular attention is devoted to operating conditions characteristic of MCFC application as CO2 concentrators, which, by feeding the cathode with exhaust gases, is a promising route for efficient and cheap carbon capture.

  7. The Effect of Cathode Composition on the Thermal Characteristics of Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Rao, Gopalakrishna M.

    1999-01-01

    The specific thermal capacity and heat dissipation rate for lithium ion cells containing LiNiO2 and mixed oxide (75%LiCoO2+ 25%LiNiO2) as cathode materials are compared. The experimental measurements were made using a radiative calorimeter consisting of a copper chamber maintained at -168 C by circulating liquid nitrogen and enclosed in a vacuum bell jar. The specific thermal capacity was determined based on warm-up and cool-down transients. The heat dissipation rate was calculated from the values measured for heat radiated and stored, and the resulting values were corrected for conductive heat dissipation through the leads. The specific heat was 1.117 J/ C-g for the LiNiO2 cell and 0.946 J/ C-g for the 75%LiCoO2,25%LiNiO2 cell. Endothermic cooling at the beginning of charge was very apparent for the cell containing 75%LiCoO2,25%LiNiO2 as the cathode. Exothermic heating began at a higher state of charge for the cell with the 75%LiCoO2,25%LiNiO2 cathode compared to the LiNiO2 cathode cell. During discharge, the rate of heat dissipation increased with increase in the discharge current for both types of cells. The maximum heat dissipated at C/5 discharge was 0.065 W and 0.04 W for the LiNiO2 and 75%LiCoO2,25%LiNiO2 cells, respectively, The thermoneutral potential showed variability toward the end of discharge. The plateau region of the curves was used to calculate average thermoneutral potentials of 3.698 V and 3.837 V for the LiNiO2 cell and the 75%LiCoO2,25%LiNiO2 cell, respectively.

  8. H2 production in membraneless bioelectrochemical cells with optimized architecture: The effect of cathode surface area and electrode distance.

    PubMed

    Rivera, Isaac; Bakonyi, Péter; Buitrón, Germán

    2017-03-01

    In this work we report on the hydrogen production capacity of single-chamber microbial electrohydrogenesis cell (MEC) with optimized design characteristics, in particular cathode surface area and anode-cathode spacing using acetate as substrate. The results showed that the maximal H2 production rates and best energetic performances could be obtained using the smallest, 71 cm(2) stainless steel cathode and 4 cm electrode distances, employing a 60 cm(2) bioanode. Cyclic voltammetric analysis was employed to investigate the dominant electron transfer mechanism of the architecturally optimized system.

  9. Improvement of performance in low temperature solid oxide fuel cells operated on ethanol and air mixtures using Cu-ZnO-Al2O3 catalyst layer

    NASA Astrophysics Data System (ADS)

    Morales, M.; Espiell, F.; Segarra, M.

    2015-10-01

    Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.

  10. In-situ electrochemically active surface area evaluation of an open-cathode polymer electrolyte membrane fuel cell stack

    NASA Astrophysics Data System (ADS)

    Torija, Sergio; Prieto-Sanchez, Laura; Ashton, Sean J.

    2016-09-01

    The ability to evaluate the electrochemically active surface area (ECSA) of fuel cell electrodes is crucial toward characterising designs and component suites in-situ, particularly when evaluating component durability in endurance testing, since it is a measure of the electrode area available to take part in the fuel cell reactions. Conventional methods to obtain the ECSA using cyclic voltammetry, however, rely on potentiostats that cannot be easily scaled to simultaneously evaluate all cells in a fuel cell stack of practical size, which is desirable in fuel cell development. In-situ diagnostics of an open-cathode fuel cell stack are furthermore challenging because the cells do not each possess an enclosed cathode compartment; instead, the cathodes are rather open to the environment. Here we report on a diagnostic setup that allows the electrochemically active surface area of each cell anode or cathode in an open-cathode fuel cell stack to be evaluated in-situ and simultaneously, with high resolution and reproducibility, using an easily scalable chronopotentiometry methodology and a gas-tight stack enclosure.

  11. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells.

    PubMed

    Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung

    2016-11-09

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

  12. Direct deposit of catalyst on the membrane of direct feed fuel cells

    NASA Technical Reports Server (NTRS)

    Chun, William (Inventor); Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Valdez, Thomas I. (Inventor); Linke, Juergen (Inventor)

    2001-01-01

    An improved direct liquid-feed fuel cell having a solid membrane electrolyte for electrochemical reactions of an organic fuel. Catalyst utilization and catalyst/membrane interface improvements are disclosed. Specifically, the catalyst layer is applied directly onto the membrane electrolyte.

  13. Theory and simulation of backbombardment in single-cell thermionic-cathode electron guns

    DOE PAGES

    Edelen, J.  P.; Biedron, S.  G.; Harris, J.  R.; ...

    2015-04-01

    This paper presents a comparison between simulation results and a first principles analytical model of electron back-bombardment developed at Colorado State University for single-cell, thermionic-cathode rf guns. While most previous work on back-bombardment has been specific to particular accelerator systems, this work is generalized to a wide variety of guns within the applicable parameter space. The merits and limits of the analytic model will be discussed. This paper identifies the three fundamental parameters that drive the back-bombardment process, and demonstrates relative accuracy in calculating the predicted back-bombardment power of a single-cell thermionic gun.

  14. Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Han, Jia-Jun; Li, Ning; Zhang, Tian-Yun

    The cyclic voltammetry indicated that the oxygen reduction reaction (ORR) proceeded by the four-electron pathway mechanism on larger Ag particles (174 nm), and that the ORR proceeded by the four-electron pathway and the two-electron pathway mechanisms on finer Ag particles (4.1 nm), simultaneously. The kinetics towards ORR was measured at a rotating disk electrode (RDE) with Ag/C electrode. The number of exchanged electrons for the ORR was found to be close to four on larger Ag particles (174 nm) and close to three on finer Ag particles (4.1 nm). The zinc-air battery with Ag/C catalysts (25.9 nm) was fabricated and examined.

  15. Fuel Cell Animation

    NASA Video Gallery

    Oxygen (O2) and hydrogen (H2) migrate into the fuel cell. The oxygen molecules migrate to the catalyst where the anode strips some of their electrons. This allows them to move through the cathode a...

  16. Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Huang, Liping; Quan, Xie; Li Puma, Gianluca

    2016-03-01

    The performance of carbon rod (CR), titanium sheet (TS), stainless steel woven mesh (SSM) and copper sheet (CS) cathode materials are investigated in microbial fuel cells (MFCs) for simultaneous electricity generation and Cu(II) reduction, in multiple batch cycle operations. After 12 cycles, the MFC with CR exhibits 55% reduction in the maximum power density and 76% increase in Cu(II) removal. In contrast, the TS and SSM cathodes at cycle 12 show maximum power densities of 1.7 (TS) and 3.4 (SSM) times, and Cu(II) removal of 1.2 (TS) and 1.3 (SSM) times higher than those observed during the first cycle. Diffusional resistance in the TS and SSM cathodes is found to appreciably decrease over time due to the copper deposition. In contrast to CR, TS and SSM, the cathode made with CS is heavily corroded in the first cycle, exhibiting significant reduction in both the maximum power density and Cu(II) removal at cycle 2, after which the performance stabilizes. These results demonstrate that the initial deposition of copper on the cathodes of MFCs is crucial for efficient and continuous Cu(II) reduction and electricity generation over prolonged time. This effect is closely associated with the nature of the cathode material. Among the materials examined, the SSM is the most effective and inexpensive cathode for practical use in MFCs.

  17. Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells.

    PubMed

    Wang, Xin; Gao, Ningshengjie; Zhou, Qixing; Dong, Heng; Yu, Hongbing; Feng, Yujie

    2013-09-01

    Activated carbon (AC) is a high performing and cost effective catalyst for oxygen reduction reactions (ORRs) of air-cathodes in microbial fuel cells (MFCs). Acidic (HNO3) and alkaline (KOH) pretreatments on AC at low temperature (85°C) are conducted to enhance the performance of MFCs. The alkaline pretreatment increased the power density by 16% from 804±70 to 957±31 mW m(-2), possibly due to the decrease of ohmic resistance (from 20.58 to 19.20 Ω) and the increase of ORR activities provided by the adsorbed hydroxide ion and extra micropore area/volume after alkaline pretreatment. However, acidic pretreatment decreased the power output to 537±36 mW m(-2), which can be mainly attributed to the corrosion by adsorbed proton at the interface of AC powder and stainless steel mesh and the decreased pore area.

  18. Preparation of a fouling-resistant sustainable cathode for a single-chambered microbial fuel cell.

    PubMed

    Chatterjee, Pritha; Ghangrekar, M M

    2014-01-01

    Two different binder materials of varying water affinity, viz. poly vinyl alcohol (PVA) and poly-tetrafluoroethylene (PTFE), and biocide vanillin were tested for cathode fouling in a single chamber air-cathode microbial fuel cell (MFC) constructed with a low-cost baked clayware cylinder and operated under fed-batch mode. PVA and PTFE loadings of 0.5 mg/cm(2) were used for MFC-1 and MFC-2, respectively as a binder; and a 1:1 mixture of PVA + PTFE was used as binder in MFC-3 with same binder loading. Vanillin was mixed with PVA and also applied at a loading of 0.5 mg/cm(2) for MFC-4. Results showed organic matter removal efficiencies around 90% for all MFCs both before and after fouling. Coulombic efficiency was, however, found to decrease 50% after fouling in the MFC-3 coated with both PVA and PTFE. After 5 weeks of operation, due to fouling 56, 40 and 69% reduction in power densities were observed in MFC-1, MFC-2 and MFC-3, respectively. In the MFC-4 having PVA and vanillin, the least fouling was observed. A consistent volumetric power of 233 mW/m(3) was observed for MFC-4, thus potentially offering a suitable solution to alleviate the problem of fouling in the making of single-chamber air-cathode MFCs.

  19. Computational study of forced air-convection in open-cathode polymer electrolyte fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Sasmito, A. P.; Lum, K. W.; Birgersson, E.; Mujumdar, A. S.

    A mathematical model for a polymer electrolyte fuel cell (PEFC) stack with an open-cathode manifold, where a fan provides the oxidant as well as cooling, is derived and studied. In short, the model considers two-phase flow and conservation of mass, momentum, species and energy in the ambient and PEFC stack, as well as conservation of charge and a phenomenological membrane and agglomerate model for the PEFC stack. The fan is resolved as an interfacial condition with a polynomial expression for the static pressure increase over the fan as a function of the fan velocity. The results suggest that there is strong correlation between fan power rating, the height of cathode flow-field and stack performance. Further, the placement of the fan - either in blowing or suction mode - does not give rise to a discernable difference in stack performance for the flow-field considered (metal mesh). Finally, it is noted that the model can be extended to incorporate other types of flow-fields and, most importantly, be employed for design and optimization of forced air-convection open-cathode PEFC stacks and adjacent fans.

  20. Biological chromium(VI) reduction in the cathode of a microbial fuel cell.

    PubMed

    Tandukar, Madan; Huber, Samuel J; Onodera, Takashi; Pavlostathis, Spyros G

    2009-11-01

    The biocathode of a microbial fuel cell (MFC) offers a promising potential for the reductive treatment of oxidized pollutants. In this study, we demonstrated biological Cr(VI) reduction in the cathode of a MFC and identified putative Cr(VI) reducing microorganisms. The MFC was continuously monitored for Cr(VI) reduction and power generation. Acetate was provided to the anode compartment as substrate and bicarbonate was added to the cathode compartment as the sole external carbon source. The contribution of biomass decay and abiotic processes on Cr(VI) reduction was minimal, confirming that most of the Cr(VI) reduction was assisted by microbial activity in the cathode, which utilizes electrons and protons generated from the oxidation of acetate in the anode compartment. Relatively fast Cr(VI) reduction was observed at initial Cr(VI) concentrations below 80 mg/L. However, at 80 mg Cr(VI)/L, Cr(VI) reduction was extremely slow. A maximum Cr(VI) reduction rate of 0.46 mg Cr(VI)/g VSS.h was achieved, which resulted in a current and power density of 123.4 mA/m(2) and 55.5 mW/m(2), respectively. The reduced chromium was nondetectable in the supernatant of the catholyte which indicated complete removal of chromium as Cr(OH)(3) precipitate. Analysis of the 16S rRNA gene based clone library revealed that the cathode biomass was largely dominated by phylotypes closely related to Trichococcus pasteurii and Pseudomonas aeruginosa, the putative Cr(VI) reducers.

  1. New insights into non-precious metal catalyst layer designs for proton exchange membrane fuel cells: Improving performance and stability

    NASA Astrophysics Data System (ADS)

    Banham, Dustin; Kishimoto, Takeaki; Sato, Tetsutaro; Kobayashi, Yoshikazu; Narizuka, Kumi; Ozaki, Jun-ichi; Zhou, Yingjie; Marquez, Emil; Bai, Kyoung; Ye, Siyu

    2017-03-01

    The activity of non-precious metal catalysts (NPMCs) has now reached a stage at which they can be considered as possible alternatives to Pt for some proton exchange membrane fuel cell (PEMFC) applications. However, despite significant efforts over the past 50 years on catalyst development, only limited studies have been performed on NPMC-based cathode catalyst layer (CCL) designs. In this work, an extensive ionomer study is performed to investigate the impact of ionomer equivalent weight on performance, which has uncovered two crucial findings. Firstly, it is demonstrated that beyond a critical CCL conductance, no further improvement in performance is observed. The procedure used to determine this critical conductance can be used by other researchers in this field to aid in their design of high performing NPMC-based CCLs. Secondly, it is shown that the stability of NPMC-based CCLs can be improved through the use of low equivalent weight ionomers. This represents a completely unexplored pathway for further stability improvements, and also provides new insights into the possible degradation mechanisms occurring in NPMC-based CCLs. These findings have broad implications on all future NPMC-based CCL designs.

  2. Analysis of liquid water formation in polymer electrolyte membrane (PEM) fuel cell flow fields with a dry cathode supply

    NASA Astrophysics Data System (ADS)

    Gößling, Sönke; Klages, Merle; Haußmann, Jan; Beckhaus, Peter; Messerschmidt, Matthias; Arlt, Tobias; Kardjilov, Nikolay; Manke, Ingo; Scholta, Joachim; Heinzel, Angelika

    2016-02-01

    PEM fuel cells can be operated within a wide range of different operating conditions. In this paper, the special case of operating a PEM fuel cell with a dry cathode supply and without external humidification of the cathode, is considered. A deeper understanding of the water management in the cells is essential for choosing the optimal operation strategy for a specific system. In this study a theoretical model is presented which aims to predict the location in the flow field at which liquid water forms at the cathode. It is validated with neutron images of a PEM fuel cell visualizing the locations at which liquid water forms in the fuel cell flow field channels. It is shown that the inclusion of the GDL diffusion resistance in the model is essential to describe the liquid water formation process inside the fuel cell. Good agreement of model predictions and measurement results has been achieved. While the model has been developed and validated especially for the operation with a dry cathode supply, the model is also applicable to fuel cells with a humidified cathode stream.

  3. Investigation of a chemically regenerative redox cathode polymer electrolyte fuel cell using a phosphomolybdovanadate polyoxoanion catholyte

    NASA Astrophysics Data System (ADS)

    Gunn, Natasha L. O.; Ward, David B.; Menelaou, Constantinos; Herbert, Matthew A.; Davies, Trevor J.

    2017-04-01

    Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells (PEFCs), where the direct reduction of oxygen is replaced by an in-direct mechanism occurring outside of the cell, are attractive to study as they offer a solution to the cost and durability problems faced by conventional PEFCs. This study reports the first detailed characterization of a high performance complete CRRC PEFC system, where catholyte is circulated between the cathode side of the cell and an air-liquid oxidation reactor called the ;regenerator;. The catholyte is an aqueous solution of phosphomolybdovanadate polyoxoanion and is assessed in terms of its performance within both a small single cell and corresponding regenerator over a range of redox states. Two methods for determining regeneration rate are proposed and explored. Expressing the regeneration rate as a ;chemical; current is suggested as a useful means of measuring re-oxidation rate with respect to the cell. The analysis highlights the present limitations to the technology and provides an indication of the maximum power density achievable, which is highly competitive with conventional PEFC systems.

  4. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    SciTech Connect

    Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

    2012-09-30

    The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details and stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar

  5. Fabrication of biofuel cell containing enzyme catalyst immobilized by layer-by-layer method

    NASA Astrophysics Data System (ADS)

    Hyun, Kyu Hwan; Han, Sang Won; Koh, Won-Gun; Kwon, Yongchai

    2015-07-01

    Enzymatic biofuel cell (EBC) employing a layer-by-layer (LbL) structure consisting of multiple layers of glucose oxidase (GOx) and poly(ethyleneimine) (PEI) at carbon nanotube (CNT) ([GOx/PEI]n/CNT) is fabricated. The [GOx/PEI]n/CNT serves as anode catalyst for promoting glucose reaction, while Pt is employed as cathode catalyst. To evaluate effect of [GOx/PEI]n/CNT on EBC performance and stability, several characterizations are conducted. The optimal GOx/PEI layer is determined electrochemically, and it turns out that [GOx/PEI]2/CNT is the best. Electron transfer rate constant of the optimal layer is 11.3 s-1, its glucose sensitivity is 83 μAmM-1cm-2, and maximum power density of EBC adopting [GOx/PEI]2/CNT is 1.34 mWcm-2. The values are superior to those of other reference structures, indicating that the [GOx/PEI]2/CNT can produce excellent reactivity, followed by improved EBC performance. In terms of redox reaction mechanism of flavin adenine dinucleotide (FAD) within [GOx/PEI]2/CNT, glucose does not affect the redox reaction of FAD, while oxygen serves as mediator in transferring electrons and protons produced by glucose oxidation into those for reduction reaction of FAD. It is also found that the [GOx/PEI]2/CNT is confined by surface reaction and the reaction is quasi-reversible. Regarding long-term stability, [GOx/PEI]2/CNT maintains ∼83% of initial activity even after two weeks.

  6. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode.

    PubMed

    Zhuang, Li; Zhou, Shungui; Li, Yongtao; Yuan, Yong

    2010-05-01

    In the course of microbial fuel cell (MFC) operation, the acidification of the anode and the alkalization of the cathode inevitably occur, resulting in reduction of the overall performance. In an attempt to reverse the membrane pH gradient, a tubular air-cathode two-chamber MFC was developed that allowed pH adjustment in both compartments. With an anodic pH of 10.0 and a cathodic pH of 2.0, the tubular MFC provided an open circuit voltage of 1.04V and a maximum power density of 29.9W/m(3), which were respectively 1.5 and 3.8 times higher than those obtained in the same MFC working at neutral pH. Particularly, the suppression of methanogenesis at high alkaline anode (pH 10.0) contributed to a significant enhancement in coulombic efficiency. The MFC maintained 74% of its performance after 15 days of operation in continuous-flow mode. The appropriate pH adjustment strategy in both compartments ensures a promising improvement in MFC performance.

  7. The water catalysis at oxygen cathodes of lithium–oxygen cells

    PubMed Central

    Li, Fujun; Wu, Shichao; Li, De; Zhang, Tao; He, Ping; Yamada, Atsuo; Zhou, Haoshen

    2015-01-01

    Lithium–oxygen cells have attracted extensive interests due to their high theoretical energy densities. The main challenges are the low round-trip efficiency and cycling instability over long time. However, even in the state-of-the-art lithium–oxygen cells the charge potentials are as high as 3.5 V that are higher by 0.70 V than the discharge potentials. Here we report a reaction mechanism at an oxygen cathode, ruthenium and manganese dioxide nanoparticles supported on carbon black Super P by applying a trace amount of water in electrolytes to catalyse the cathode reactions of lithium–oxygen cells during discharge and charge. This can significantly reduce the charge overpotential to 0.21 V, and results in a small discharge/charge potential gap of 0.32 V and superior cycling stability of 200 cycles. The overall reaction scheme will alleviate side reactions involving carbon and electrolytes, and shed light on the construction of practical, rechargeable lithium–oxygen cells. PMID:26206379

  8. Degradation mechanisms of Platinum Nanoparticle Catalysts in Proton Exchange Membrane Fuel Cells: The Role of Particle Size

    SciTech Connect

    Yu, Kang; Groom, Daniel J.; Wang, Xiaoping; Yang, Zhiwei; Gummalla, Mallika; Ball, Sarah C.; Myers, Deborah J.; Ferreira, Paulo J.

    2014-10-14

    Five membrane-electrode assemblies (MEAs) with different average sizes of platinum (Pt) nanoparticles (2.2, 3.5, 5.0, 6.7, and 11.3 nm) in the cathode were analyzed before and after potential cycling (0.6 to 1.0 V, 50 mV/s) by transmission electron microscopy. Cathodes loaded with 2.2 nm and 3.5 nm catalyst nanoparticles exhibit the following changes during electrochemical cycling: (i) substantial broadening of the size distribution relative to the initial size distribution, (ii) presence of coalesced particles within the electrode, and (iii) precipitation of sub-micron-sized particles with complex shapes within the membrane. In contrast, cathodes loaded with 5.0 nm, 6.7 nm and 11.3 nm size catalyst nanoparticles are significantly less prone to the aforementioned effects. As a result, the electrochemically-active surface area (ECA) of MEA cathodes loaded with 2.2 nm and 3.5 nm nanoparticle catalysts degrades dramatically within 1,000 cycles of operation, while the electrochemically-active surface area of MEA cathodes loaded with 5.0 nm, 6.7 nm and 11.3 nm nanoparticle catalysts appears to be stable even after 10,000 cycles. The loss in MEA performance for cathodes loaded with 2.2 nm and 3.5 nm nanoparticle catalysts appears to be due to the loss in electrochemically-active surface area concomitant with the observed morphological changes in these nanoparticle catalysts

  9. The excellent performance of nest-like oxygen-deficient Cu1.5Mn1.5O4 applied in activated carbon air-cathode microbial fuel cell.

    PubMed

    Wang, Junjie; Tian, Pei; Li, Kexun; Ge, Baochao; Liu, Di; Liu, Yi; Yang, Tingting; Ren, Rong

    2016-12-01

    This study investigated the performance of nano spinel nest-like oxygen-deficient Cu1.5Mn1.5O4 doping activated carbon (AC) as air cathode in microbial fuel cell (MFC). The Cu1.5Mn1.5O4 was synthesized via hydrothermal method and subsequent annealed. The maximum power density (MPD) of MFC with oxygen-deficient Cu1.5Mn1.5O4 modified cathode was 1928±18mWm(-2), which was 1.53 times higher than the bare cathode. The electrochemical studies showed that Cu1.5Mn1.5O4 doping AC exhibited higher kinetic activity and lower resistance. The mechanism of oxygen reduction for the catalyst was a four electron pathway. The oxygen deficient of Cu1.5Mn1.5O4 played an important role in catalytic activity. So Cu1.5Mn1.5O4 would be an excellent promising catalyst for ORR in MFC.

  10. Particle-in-cell based parameter study of 12-cavity, 12-cathode rising-sun relativistic magnetrons for improved performance

    SciTech Connect

    Majzoobi, A.; Joshi, R. P. Neuber, A. A.; Dickens, J. C.

    2015-10-15

    Particle-in-cell simulations are performed to analyze the efficiency, output power and leakage currents in a 12-Cavity, 12-Cathode rising-sun magnetron with diffraction output (MDO). The central goal is to conduct a parameter study of a rising-sun magnetron that comprehensively incorporates performance enhancing features such as transparent cathodes, axial extraction, the use of endcaps, and cathode extensions. Our optimum results demonstrate peak output power of about 2.1 GW, with efficiencies of ∼70% and low leakage currents at a magnetic field of 0.45 Tesla, a 400 kV bias with a single endcap, for a range of cathode extensions between 3 and 6 centimeters.

  11. One-step fabrication of membraneless microbial fuel cell cathode by electropolymerization of polypyrrole onto stainless steel mesh.

    PubMed

    Feng, Chunhua; Wan, Qunyi; Lv, Zhisheng; Yue, Xianjun; Chen, Yanfeng; Wei, Chaohai

    2011-05-15

    A unique one-step method for fabrication of a membraneless microbial fuel cell (MFC) cathode was developed by coating a conductive polymer onto stainless steel mesh. The resulting polypyrrole/anthraquinone-2-sulfonate (PPy/AQS) film was synthesized via electropolymerization using AQS as the dopants. The scanning electron microscopy results indicated that the PPy/AQS film was uniformly formed on the metal mesh electrode without cracks on its surface and featuring a globular structure. Being equipped with such a cathode that was able to catalyze oxygen reduction and prevent water leakage, the membraneless MFC allowed power generation over 250 h and exhibited a maximum power density of 575 mW m(-2). Increasing film thickness seemed to result in a reduction in power performance due to the increased ohmic resistance of the cathode material and the enhanced difficulty for oxygen diffusion inside the cathode.

  12. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes.

    PubMed

    Zhang, Xiaoyuan; Cheng, Shaoan; Liang, Peng; Huang, Xia; Logan, Bruce E

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75 ± 1 W/m(3). Removing the separator decreased power by 8%. Adding a second cathode increased power to 154 ± 1 W/m(3). Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture.

  13. Performance and durability of carbon black-supported Pd catalyst covered with silica layers in membrane-electrode assemblies of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Fujii, Keitaro; Ito, Mizuki; Sato, Yasushi; Takenaka, Sakae; Kishida, Masahiro

    2015-04-01

    Pd metal particles supported on a high surface area carbon black (Pd/CB) were covered with silica layers to improve the durability under severe cathode condition of proton exchange membrane fuel cells (PEMFCs). The performance and the durability of the silica-coated Pd/CB (SiO2/Pd/CB) were investigated by rotating disk electrode (RDE) in aqueous HClO4 and single cell test of the membrane-electrode assemblies (MEAs). SiO2/Pd/CB showed excellent durability exceeding Pt/CB during potential cycle in single cell test as well as in RDE measurement while Pd/CB significantly degraded. Furthermore, the MEA using SiO2/Pd/CB as the cathode catalyst showed higher performance than that using Pd/CB even in the initial state. The catalytic activity of SiO2/Pd/CB was higher than that of Pd/CB, and the drop of the cell performances due to the inhibition of electron conduction, proton conduction, and oxygen diffusion by the silica layer was not significant. It has been shown that the silica-coating is a very practical technique that can stabilize metal species originally unstable in the cathode condition of PEMFCs without a decrease in the cell performance.

  14. Development of membrane electrode assembly for high temperature proton exchange membrane fuel cell by catalyst coating membrane method

    NASA Astrophysics Data System (ADS)

    Liang, Huagen; Su, Huaneng; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-08-01

    Membrane electrode assembly (MEA), which contains cathode and anode catalytic layer, gas diffusion layers (GDL) and electrolyte membrane, is the key unit of a PEMFC. An attempt to develop MEA for ABPBI membrane based high temperature (HT) PEMFC is conducted in this work by catalyst coating membrane (CCM) method. The structure and performance of the MEA are examined by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and I-V curve. Effects of the CCM preparation method, Pt loading and binder type are investigated for the optimization of the single cell performance. Under 160 °C and atmospheric pressure, the peak power density of the MEA, with Pt loading of 0.5 mg cm-2 and 0.3 mg cm-2 for the cathode and the anode, can reach 277 mW cm-2, while a current density of 620 A cm-2 is delivered at the working voltage of 0.4 V. The MEA prepared by CCM method shows good stability operating in a short term durability test: the cell voltage maintained at ∼0.45 V without obvious drop when operated at a constant current density of 300 mA cm-2 and 160 °C under ambient pressure for 140 h.

  15. Thermodynamic stability of perovskite and lanthanum nickelate-type cathode materials for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cetin, Deniz

    The need for cleaner and more efficient alternative energy sources is becoming urgent as concerns mount about climate change wrought by greenhouse gas emissions. Solid oxide fuel cells (SOFCs) are one of the most efficient options if the goal is to reduce emissions while still operating on fossil energy resources. One of the foremost problems in SOFCs that causes efficiency loss is the polarization resistance associated with the oxygen reduction reaction(ORR) at the cathodes. Hence, improving the cathode design will greatly enhance the overall performance of SOFCs. Lanthanum nickelate, La2NiO4+delta (LNO), is a mixed ionic and electronic conductor that has competitive surface oxygen exchange and transport properties and excellent electrical conductivity compared to perovskite-type oxides. This makes it an excellent candidate for solid oxide fuel cell (SOFC) applications. It has been previously shown that composites of LNO with Sm0.2Ce0.8O2-delta (SDC20) as cathode materials lead to higher performance than standalone LNO. However, in contact with lanthanide-doped ceria, LNO decomposes resulting in free NiO and ceria with higher lanthanide dopant concentration. In this study, the aforementioned instability of LNO has been addressed by compositional tailoring of LNO: lanthanide doped ceria (LnxCe 1-xO2,LnDC)composite. By increasing the lanthanide dopant concentration in the ceria phase close to its solubility limit, the LNO phase has been stabilized in the LNO:LnDC composites. Electrical conductivity of the composites as a function of LNO volume fraction and temperature has been measured, and analyzed using a resistive network model which allows the identification of a percolation threshold for the LNO phase. The thermomechanical compatibility of these composites has been investigated with SOFC systems through measurement of the coefficients of thermal expansion. LNO:LDC40 composites containing LNO lower than 50 vol%and higher than 40 vol% were identified as being

  16. Vertically aligned carbon nanotubes as anode and air-cathode in single chamber microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Amade, R.; Moreno, H. A.; Hussain, S.; Vila-Costa, M.; Bertran, E.

    2016-10-01

    Electrode optimization in microbial fuel cells is a key issue to improve the power output and cell performance. Vertically aligned carbon nanotubes (VACNTs) grown on low cost stainless-steel mesh present an attractive approach to increase the cell performance while avoiding the use of expensive Pt-based materials. In comparison with non-aligned carbon nanotubes (NACNTs), VACNTs increase the oxygen reduction reaction taking place at the cathode by a factor of two. In addition, vertical alignment also increases the power density up to 2.5 times with respect to NACNTs. VACNTs grown at the anode can further improve the cell performance by increasing the electrode surface area and thus the electron transfer between bacteria and the electrode. The maximum power density obtained using VACNTs was 14 mW/m2 and 160 mV output voltage.

  17. Investigation of thermal and electrochemical degradation of fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Cai, Mei; Ruthkosky, Martin S.; Merzougui, Belabbes; Swathirajan, Swathy; Balogh, Michael P.; Oh, Se H.

    A significant problem hindering large-scale implementation of proton exchange membrane (PEM) fuel cell technology is the loss of performance during extended operation and automotive cycling. Recent investigations of the deterioration of cell performance have revealed that a considerable part of the performance loss is due to the degradation of the electrocatalyst. In this study, an attempt is made to experimentally simulate the degradation processes such as carbon corrosion and platinum (Pt) surface area loss using an accelerated thermal sintering protocol. Two types of Tanaka fuel cell catalyst samples were heat-treated at 250 °C in humidified helium (He) gas streams and several oxygen (O 2) concentrations. The catalysts were then cycled electrochemically in pellet electrodes to determine the hydrogen adsorption (HAD) area and its evolution in subsequent electrochemical cycling. Samples that had undergone different degrees of carbon corrosion and Pt sintering were characterized for changes in carbon mass, active Pt surface area, BET (Brunauer, Emmett and Teller) surface area, and Pt crystallite size. Studies of the effect of oxygen and water concentration on two Tanaka catalysts, dispersed on carbon supports with varying BET areas, revealed that carbon oxidation in the presence of Pt follows two pathways: an oxygen pathway that leads to mass loss due to formation of gaseous products, and a water pathway that results in mass gains, especially for high BET area supports. These processes may be assisted by the formation of highly reactive OH and OOH type radicals. Platinum surface area loss, measured at varying oxygen concentrations and as a function of sintering time using X-ray diffraction (XRD), CO chemisorption, and electrochemical hydrogen adsorption, reveal an important role for carbon corrosion rather than an increase in Pt particle size for the surface area loss. Platinum surface area loss during 10 h of thermal degradation was equivalent to electrochemical

  18. Electrocatalytic reduction of O 2 and H 2O 2 by adsorbed cobalt tetramethoxyphenyl porphyrin and its application for fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Liu, Hansan; Zhang, Lei; Zhang, Jiujun; Ghosh, Dave; Jung, Joey; Downing, Bruce W.; Whittemore, Earl

    In this paper, the mechanism and kinetics of oxygen and hydrogen peroxide electrochemical reduction that is catalyzed by an adsorbed cobalt tetramethoxyphenyl porphyrin (CoTMPP) on a graphite electrode were investigated using cyclic voltammetry (CV) and the rotating disk electrode (RDE) technique. The temperature and anion effects on O 2 and H 2O 2 electroreduction processes were also studied. The pH dependencies of cobalt redox centers, and oxygen and hydrogen peroxide reductions were measured for the purpose of exploring the reaction mechanism. In neutral solutions, the oxygen reduction reaction was observed to be a two-electron process, producing H 2O 2 in the low potential polarization range. In the high potential polarization range, an overall four-electron reduction of O 2 to H 2O was found to be the dominating process. The kinetic parameters obtained from the RDE experiments indicate that in a neutral solution, the reduction rate at the step from H 2O 2 to H 2O is faster than that seen from O 2 to H 2O 2. Carbon particle-based air cathodes catalyzed by CoTMPP were fabricated for metal-air fuel cell application. The obtained non-noble catalyst content cathodes show considerably improved performance and stability.

  19. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  20. Pyrite oxidation in the presence of hematite and alumina: II. Effects on the cathodic and anodic half-cell reactions.

    PubMed

    Tabelin, Carlito Baltazar; Veerawattananun, Suchol; Ito, Mayumi; Hiroyoshi, Naoki; Igarashi, Toshifumi

    2017-03-01

    The oxidative dissolution of pyrite is an important process in the redox recycling of iron (Fe) and is well-known for its role in the formation of acid mine drainage (AMD), which is considered as the most serious and widespread problem after the closure of mines and mineral processing operations. Because this process requires the movement of electrons, common metal oxides in nature that have either semiconducting (e.g., hematite) or insulating (e.g., alumina) properties may have strong effects on it. In this study, changes in the electrochemical behavior of pyrite in the presence of hematite and alumina were investigated. Results showed that the formation of surface-bound species directly influenced the anodic and cathodic half-cell reactions as well as the transfer of electrons between these sites. Pyrite pretreated in the air became anodically more reactive than that pretreated in oxygenated water, but the type of oxidizing media had little effect on the cathodic half-cell reaction. The presence of hematite and alumina during pretreatment also had strong effects on the electrochemical properties of pyrite. Chronoamperometry measurements suggest that hematite and alumina enhanced the anodic half-cell reaction but suppressed the cathodic half-cell reaction of pyrite oxidation. Increased anodic half-cell reaction in the presence of hematite could be attributed to electron "bridging" and catalytic effects of this mineral. In contrast, the effects of alumina on the anodic half-cell reaction were indirect and could be explained by the formation of Fe(3+)-oxyhydroxide surface species during pretreatment. Suppression of the cathodic half-cell reaction by both minerals was attributed to their "protective" effect on cathodic sites. Our results also point to the cathodic half-cell reaction as the rate determining-step of the overall oxidative dissolution process.

  1. High Performance and Cost-Effective Direct Methanol Fuel Cells: Fe-N-C Methanol-Tolerant Oxygen Reduction Reaction Catalysts.

    PubMed

    Sebastián, David; Serov, Alexey; Artyushkova, Kateryna; Gordon, Jonathan; Atanassov, Plamen; Aricò, Antonino S; Baglio, Vincenzo

    2016-08-09

    Direct methanol fuel cells (DMFCs) offer great advantages for the supply of power with high efficiency and large energy density. The search for a cost-effective, active, stable and methanol-tolerant catalyst for the oxygen reduction reaction (ORR) is still a great challenge. In this work, platinum group metal-free (PGM-free) catalysts based on Fe-N-C are investigated in acidic medium. Post-treatment of the catalyst improves the ORR activity compared with previously published PGM-free formulations and shows an excellent tolerance to the presence of methanol. The feasibility for application in DMFC under a wide range of operating conditions is demonstrated, with a maximum power density of approximately 50 mW cm(-2) and a negligible methanol crossover effect on the performance. A review of the most recent PGM-free cathode formulations for DMFC indicates that this formulation leads to the highest performance at a low membrane-electrode assembly (MEA) cost. Moreover, a 100 h durability test in DMFC shows suitable applicability, with a similar performance-time behavior compared to common MEAs based on Pt cathodes.

  2. Particle-in-cell simulations for virtual cathode oscillator including foil ablation effects

    SciTech Connect

    Singh, Gursharn; Chaturvedi, S.

    2011-06-15

    We have performed two- and three-dimensional, relativistic, electromagnetic, particle-in-cell simulations of an axially extracted virtual cathode oscillator (vircator). The simulations include, for the first time, self-consistent dynamics of the anode foil under the influence of the intense electron beam. This yields the variation of microwave output power as a function of time, including the role of anode ablation and anode-cathode gap closure. These simulations have been done using locally developed particle-in-cell (PIC) codes. The codes have been validated using two vircator designs available from the literature. The simulations reported in the present paper take account of foil ablation due to the intense electron flux, the resulting plasma expansion and shorting of the anode-cathode gap. The variation in anode transparency due to plasma formation is automatically taken into account. We find that damage is generally higher near the axis. Also, at all radial positions, there is little damage in the early stages, followed by a period of rapid erosion, followed in turn by low damage rates. A physical explanation has been given for these trends. As a result of gap closure due to plasma formation from the foil, the output microwave power initially increases, reaches a near-flat-top and then decreases steadily, reaching a minimum around 230 ns. This is consistent with a typical plasma expansion velocity of {approx}2 cm/{mu}s reported in the literature. We also find a significant variation in the dominant output frequency, from 6.3 to 7.6 GHz. This variation is small as long as the plasma density is small, up to {approx}40 ns. As the AK gap starts filling with plasma, there is a steady increase in this frequency.

  3. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant.

    PubMed

    Rhoads, Allison; Beyenal, Haluk; Lewandowski, Zbigniew

    2005-06-15

    We have operated a microbial fuel cell in which glucose was oxidized by Klebsiella pneumoniae in the anodic compartment, and biomineralized manganese oxides, deposited by Leptothrix discophora, were electrochemically reduced in the cathodic compartment. In the anodic compartment, to facilitate the electron transfer from glucose to the graphite electrode, we added a redox mediator, 2-hydroxy-1,4-naphthoquinone. We did not add any redox mediator to the cathodic compartment because the biomineralized manganese oxides were deposited on the surface of a graphite electrode and were reduced directly by electrons from the electrode. We have demonstrated that biomineralized manganese oxides are superiorto oxygen when used as cathodic reactants in microbial fuel cells. The current density delivered by using biomineralized manganese oxides as the cathodic reactant was almost 2 orders of magnitude higher than that delivered using oxygen. Several fuel cells were operated for 500 h, reaching anodic potentials of -441.5 +/- 31 mVscE and cathodic potentials of +384.5 +/- 64 mVscE. When the electrodes were connected by a 50 Ohms resistor, the fuel cell delivered the peak power density of 126.7 +/- 31.5 mW/m2.

  4. Development of Ni1-xCoxO as the cathode/interconnect contact for solid oxide fuel cells

    SciTech Connect

    Lu, Zigui; Xia, Guanguang; Templeton, Joshua D.; Li, Xiaohong S.; Nie, Zimin; Yang, Zhenguo; Stevenson, Jeffry W.

    2011-06-01

    A new type of material, Ni1-xCoxO, was developed for solid oxide fuel cell (SOFC) cathode/interconnect contact applications. The phase structure, coefficient of thermal expansion, sintering behavior, electrical property, and mechanical bonding strength of these materials were evaluated against the requirements of the SOFC cathode/interconnect contact. A dense cathode/interconnect contact layer was developed through reaction sintering from Ni and Co metal powders. An area specific resistance (ASR) as low as 5.5 mohm.cm2 was observed after 1000 h exposure in air at 800 °C for the LSM/Ni0.33Co0.67O/AISI441 assembly. Average mechanical strengths of 6.8 and 5.0 MPa were obtained for the cathode/contact/cathode and interconnect/contact/interconnect structures, respectively. The significantly low ASR was probably due to the dense structure and therefore improved electrical conductivity of the Ni0.33Co0.67O contact and the good bonding of the interfaces between the contact and the cathode, and between the contact and the interconnect.

  5. Ethane dehydrogenation over nano-Cr 2O 3 anode catalyst in proton ceramic fuel cell reactors to co-produce ethylene and electricity

    NASA Astrophysics Data System (ADS)

    Fu, Xian-Zhu; Luo, Xiao-Xiong; Luo, Jing-Li; Chuang, Karl T.; Sanger, Alan R.; Krzywicki, Andrzej

    Ethane and electrical power are co-generated in proton ceramic fuel cell reactors having Cr 2O 3 nanoparticles as anode catalyst, BaCe 0.8Y 0.15Nd 0.05O 3- δ (BCYN) perovskite oxide as proton conducting ceramic electrolyte, and Pt as cathode catalyst. Cr 2O 3 nanoparticles are synthesized by a combustion method. BaCe 0.8Y 0.15Nd 0.05O 3- δ (BCYN) perovskite oxides are obtained using a solid state reaction. The power density increases from 51 mW cm -2 to 118 mW cm -2 and the ethylene yield increases from about 8% to 31% when the operating temperature of the solid oxide fuel cell reactor increases from 650 °C to 750 °C. The fuel cell reactor and process are stable at 700 °C for at least 48 h. Cr 2O 3 anode catalyst exhibits much better coke resistance than Pt and Ni catalysts in ethane fuel atmosphere at 700 °C.

  6. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.

    PubMed

    Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie

    2015-03-11

    Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode.

  7. Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells

    NASA Astrophysics Data System (ADS)

    Faggion Junior, D.; Haddad, R.; Giroud, F.; Holzinger, M.; Maduro de Campos, C. E.; Acuña, J. J. S.; Domingos, J. B.; Cosnier, S.

    2016-05-01

    Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0.Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone

  8. Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells.

    PubMed

    Bermek, Hakan; Catal, Tunc; Akan, S Süha; Ulutaş, Mehmet Sefa; Kumru, Mert; Özgüven, Mine; Liu, Hong; Özçelik, Beraat; Akarsubaşı, Alper Tunga

    2014-04-01

    Olive mill wastewaters create significant environmental issues in olive-processing countries. One of the most hazardous groups of pollutants in these wastewaters is phenolic compounds. Here, olive mill wastewater was used as substrate and treated in single-chamber air-cathode microbial fuel cells. Olive mill wastewater yielded a maximum voltage of 381 mV on an external resistance of 1 kΩ. Notable decreases in the contents of 3,4-dihydroxybenzoic acid, tyrosol, gallic acid and p-coumaric acid were detected. Chemical oxygen demand removal rates were 65 % while removal of total phenolics by the process was lower (49 %). Microbial community analysis during the olive mill wastewater treating MFC has shown that both exoelectrogenic and phenol-degrading microorganisms have been enriched during the operation. Brevundimonas-, Sphingomonas- and Novosphingobium-related phylotypes were enriched on the anode biofilm, while Alphaproteobacteria and Bacteriodetes dominated the cathode biofilm. As one of the novel studies, it has been demonstrated that recalcitrant olive mill wastewaters could be treated and utilized for power generation in microbial fuel cells.

  9. Chlorobenzene Poisoning and Recovery of Platinum-Based Cathodes in Proton Exchange Membrane Fuel Cells

    PubMed Central

    Zhai, Yunfeng; Baturina, Olga; Ramaker, David; Farquhar, Erik; St-Pierre, Jean; Swider-Lyons, Karen

    2015-01-01

    The platinum electrocatalysts found in proton exchange membrane fuel cells are poisoned both reversibly and irreversibly by air pollutants and residual manufacturing contaminants. In this work, the poisoning of a Pt/C PEMFC cathode was probed by a trace of chlorobenzene in the air feed. Chlorobenzene inhibits the oxygen reduction reaction and causes significant cell performance loss. The performance loss is largely restored by neat air operation and potential cycling between 0.08 V and 1.2 V under H2/N2 (anode/cathode). The analysis of emissions, in situ X-ray absorption spectroscopy and electrochemical impedance spectra show the chlorobenzene adsorption/reaction and molecular orientation on Pt surface depend on the electrode potential. At low potentials, chlorobenzene deposits either on top of adsorbed H atoms or on the Pt surface via the benzene ring and is converted to benzene (ca. 0.1 V) or cyclohexane (ca. 0 V) upon Cl removal. At potentials higher than 0.2 V, chlorobenzene binds to Pt via the Cl atom and can be converted to benzene (less than 0.3 V) or desorbed. Cl− is created and remains in the membrane electrode assembly. Cl− binds to the Pt surface much stronger than chlorobenzene, but can slowly be flushed out by liquid water. PMID:26388963

  10. Kinetic modelling of molten carbonate fuel cells: Effects of cathode water and electrode materials

    NASA Astrophysics Data System (ADS)

    Arato, E.; Audasso, E.; Barelli, L.; Bosio, B.; Discepoli, G.

    2016-10-01

    Through previous campaigns the authors developed a semi-empirical kinetic model to describe MCFC performance for industrial and laboratory simulation. Although effective in a wide range of operating conditions, the model was validated for specific electrode materials and dry feeding cathode compositions. The new aim is to prove that with appropriate improvements it is possible to apply the model to MCFC provided by different suppliers and to new sets of reactant gases. Specifically, this paper describes the procedures to modify the model to switch among different materials and identify a new parameter taking into account the effects of cathode water vapour. The new equation is integrated as the kinetic core within the SIMFC (SIMulation of Fuel Cells) code, an MCFC 3D model set up by the PERT group of the University of Genova, for reliability test. Validation is performed using data collected through tests carried out at the University of Perugia using single cells. The results are discussed giving examples of the simulated performance with varying operating conditions. The final formulation average percentage error obtained for all the simulated cases with respect to experimental results is maintained around 1%, despite the difference between the basic and the new conditions and facilities.

  11. Miniature fuel cell with monolithically fabricated Si electrodes - Alloy catalyst formation -

    NASA Astrophysics Data System (ADS)

    Ogura, Daiki; Suzuki, Takahiro; Katayama, Noboru; Dowaki, Kiyoshi; Hayase, Masanori

    2013-12-01

    A novel Pd-Pt catalyst formation process was proposed for reduction of Pt usage. In our miniature fuel cells, porous Pt was used as the catalyst, and the Pt usage was quite high. To reduce the Pt usage, we have attempted to deposit Pt on porous Pd by galvanic replacement, and relatively large output was demonstrated. In this study, in order to reduce more Pt usage and explore the alloy catalyst formation process, atomic layer deposition by UPD-SLRR (Under Potential Deposition - Surface Limited Redox Replacement) was applied to the Pd-Pt catalyst formation. The new process was verified at each process steps by EDS elemental analysis, and the expected spectra were obtained. Prototype cells were constructed by the new process, and cell output was raised to 420mW/cm2 by the Pd-Pt catalyst from 125mW/cm2 with Pd catalyst.

  12. Interface investigation of the alcohol-/water-soluble conjugated polymer PFN as cathode interfacial layer in organic solar cells

    NASA Astrophysics Data System (ADS)

    Zhong, Shu; Wang, Rui; Ying Mao, Hong; He, Zhicai; Wu, Hongbin; Chen, Wei; Cao, Yong

    2013-09-01

    In this work, in situ ultraviolet photoelectron spectroscopy measurements were used to investigate the working mechanism of an alcohol-/water-soluble conjugated polymer poly [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode interfacial layer in organic solar cells from the view of interfacial energy level alignment. Fullerene (C60) was chosen as the model acceptor material in contact with PFN as well as two other cathode interfacial layers ZnO and TiO2 in the configuration of an inverted solar cell structure. Significant charge transfer between PFN modified ITO (indium tin oxide) electrode and C60 is observed due to the low work function of PFN. This results in the Fermi level of the substrate pinned very close to the lowest unoccupied molecular orbital of C60 as well as an additional electric field at the cathode/acceptor interface. Both of them facilitate the electron extraction from the acceptor C60 to the ITO cathode, as confirmed by the electrical measurements of the electron-only devices with PFN modification. The better electron extraction originated from the Fermi level pinning and the additional interface electric field are believed to contribute to the efficiency enhancement of the inverted organic solar cells employing PFN as cathode interfacial layer.

  13. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell.

    PubMed

    Tao, Hu-Chun; Liang, Min; Li, Wei; Zhang, Li-Juan; Ni, Jin-Ren; Wu, Wei-Min

    2011-05-15

    Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu(2)O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber volume, 1L) with different concentrations of CuSO(4) solution (50.3 ± 5.8, 183.3 ± 0.4, 482.4 ± 9.6, 1007.9 ± 52.0 and 6412.5 ± 26.7 mg Cu(2+)/L) as catholyte at pH 4.7, and different resistors (0, 15, 390 and 1000 Ω) as external load. With glucose as a substrate and anaerobic sludge as an inoculum, the maximum power density generated was 339 mW/m(3) at an initial 6412.5 ± 26.7 mg Cu(2+)/L concentration. High Cu(2+) removal efficiency (>99%) and final Cu(2+) concentration below the USA EPA maximum contaminant level (MCL) for drinking water (1.3mg/L) was observed at an initial 196.2 ± 0.4 mg Cu(2+)/L concentration with an external resistor of 15 Ω, or without an external resistor. X-ray diffraction analysis confirmed that Cu(2+) was reduced to cuprous oxide (Cu(2)O) and metal copper (Cu) on the cathodes. Non-reduced brochantite precipitates were observed as major copper precipitates in the MFC with a high initial Cu(2+) concentration (0.1M) but not in the others. The sustainability of high Cu(2+) removal (>96%) by MFC was further examined by fed-batch mode for eight cycles.

  14. Artificial Neural Network Modeling of Pt/C Cathode Degradation in PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Maleki, Erfan; Maleki, Nasim

    2016-08-01

    Use of computational modeling with a few experiments is considered useful to obtain the best possible result for a final product, without performing expensive and time-consuming experiments. Proton exchange membrane fuel cells (PEMFCs) can produce clean electricity, but still require further study. An oxygen reduction reaction (ORR) takes place at the cathode, and carbon-supported platinum (Pt/C) is commonly used as an electrocatalyst. The harsh conditions during PEMFC operation result in Pt/C degradation. Observation of changes in the Pt/C layer under operating conditions provides a tool to study the lifetime of PEMFCs and overcome durability issues. Recently, artificial neural networks (ANNs) have been used to solve, predict, and optimize a wide range of scientific problems. In this study, several rates of change at the cathode were modeled using ANNs. The backpropagation (BP) algorithm was used to train the network, and experimental data were employed for network training and testing. Two different models are constructed in the present study. First, the potential cycles, temperature, and humidity are used as inputs to predict the resulting Pt dissolution rate of the Pt/C at the cathode as the output parameter of the network. Thereafter, the Pt dissolution rate and Pt ion diffusivity are regarded as inputs to obtain values of the Pt particle radius change rate, Pt mass loss rate, and surface area loss rate as outputs. The networks are finely tuned, and the modeling results agree well with experimental data. The modeled responses of the ANNs are acceptable for this application.

  15. Method for producing electricity using a platinum-ruthenium-palladium catalyst in a fuel cell

    DOEpatents

    Gorer, Alexander

    2004-01-27

    A method for producing electricity using a fuel cell that utilizes a ternary alloy composition as a fuel cell catalyst, the ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  16. Determination of Optimal Parameters for Dual-Layer Cathode of Polymer Electrolyte Fuel Cell Using Computational Intelligence-Aided Design

    PubMed Central

    Chen, Yi; Huang, Weina; Peng, Bei

    2014-01-01

    Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs. PMID:25490761

  17. Determination of optimal parameters for dual-layer cathode of polymer electrolyte fuel cell using computational intelligence-aided design.

    PubMed

    Chen, Yi; Huang, Weina; Peng, Bei

    2014-01-01

    Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference η and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs.

  18. Nanoporous silver cathode surface treated by atomic layer deposition of CeO x for low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chean Neoh, Ke; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Jong Choi, Hyung; Park, Suk Won; Shim, Joon Hyung

    2016-05-01

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO x ) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C-450 °C. Our work confirms that ALD CeO x treatment enhances cathodic performance and thermal stability of the Ag cathode. The performa