Arbulo-Echevarria, Mikel M; Muñoz-Miranda, Juan Pedro; Caballero-García, Andrés; Poveda-Díaz, José L; Fernández-Ponce, Cecilia; Durán-Ruiz, M Carmen; Miazek, Arkadiusz; García-Cózar, Francisco; Aguado, Enrique
2016-08-01
Non-T cell activation linker is an adaptor protein that is tyrosine phosphorylated upon cross-linking of immune receptors expressed on B lymphocytes, NK cells, macrophages, basophils, or mast cells, allowing the recruitment of cytosolic mediators for downstream signaling pathways. Fas receptor acts mainly as a death receptor, and when cross-linked with Fas ligand, many proteins are proteolytically cleaved, including several signaling molecules in T and B cells. Fas receptor triggering also interferes with TCR intracellular signals, probably by means of proteolytic cleavage of several adaptor proteins. We have previously found that the adaptor linker for activation of T cells, evolutionarily related to non-T cell activation linker, is cleaved upon proapoptotic stimuli in T lymphocytes and thymocytes, in a tyrosine phosphorylation-dependent fashion. Here, we describe non-T cell activation linker proteolytic cleavage triggered in human B cells and monocytes by Fas cross-linking and staurosporine treatment. Non-T cell activation linker is cleaved, producing an N-terminal fragment of ∼22 kDa, and such cleavage is abrogated in the presence of caspase 8/granzyme B and caspase 3 inhibitors. Moreover, we have identified an aspartic acid residue at which non-T cell activation linker is cleaved, which similar to linker for activation of T cells, this aspartic acid residue is located close to tyrosine and serine residues, suggesting an interdependence of phosphorylation and proteolytic cleavage. Consistently, induction of non-T cell activation linker phosphorylation by pervanadate inhibits its cleavage. Interestingly, the truncated isoform of non-T cell activation linker, generated after cleavage, has a decreased signaling ability when compared with the full-length molecule. Altogether, our results suggest that cleavage of transmembrane adaptors constitutes a general mechanism for signal termination of immune receptors. © Society for Leukocyte Biology.
Real-time single cell analysis of Bid cleavage and translocation in cisplatin-induced apoptosis
NASA Astrophysics Data System (ADS)
Liu, Lei; Xing, Da; Pei, Yihui; Chen, Wei R.
2007-02-01
Cancer cell apoptosis can be induced by cisplatin, an efficient anticancer agent. However, its mechanism is not fully understood. Bcl-2 homology domain (BH) 3-only proteins couple stress signals to mitochondrial apoptotic pathways. Calpain-mediated cleavage of the BH3-only protein Bid into a 14 kD truncated protein (tBid) has been implicated in cisplatin-induced apoptotic pathway. We utilized a recombinant fluorescence resonance energy transfer (FRET) Bid probe to determine the kinetics of Bid cleavage during cisplatin-induced apoptosis in ASTC-a-1 cells. The cells were also co-transfected with Bid-CFP and DsRed-Mit to dynamically detect tBid translocation. Cells showed a cleavage of the Bid-FRET probe occurring at about 4-5 h after treated with 20 µM cisplatin. Cleavage of the Bid-FRET probe coincided with a translocation of tBid from the cytosolic to the mitochondria, and the translocation lasted about 1.5 h. Using real-time single-cell analysis, we first observed the kinetics of Bid cleavage and translocation to mitochondria in living cells during cisplatin-induced apoptosis.
Surface Antigens Common to Mouse Cleavage Embryos and Primitive Teratocarcinoma Cells in Culture
Artzt, Karen; Dubois, Philippe; Bennett, Dorothea; Condamine, Hubert; Babinet, Charles; Jacob, François
1973-01-01
Syngeneic antisera have been produced in mouse strain 129/Sv-CP males against the primitive cells of teratocarcinoma. These sera react specifically with the primitive cells and are negative on various types of differentiated teratoma cells derived from the same original tumor. They are negative on all other mouse cells tested, with the exception of male germ cells and cleavage-stage embryos. Thus, teratoma cells possess cell-surface antigens in common with normal cleavage-stage embryos. Images PMID:4355379
Specific Cleavage of the Nucleoprotein of Fish Rhabdovirus.
Zhou, G-Z; Yi, Y-J; Chen, Z-Y; Zhang, Q-Y
2015-11-01
Siniperca chuatsi rhabdovirus (SCRV) is one of myriad rhabdoviruses recorded in fish. Preliminary data show that inhibition of the SCRV nucleoprotein (N) could significantly reduce the progeny virus titers in infected Epithelioma papulosum cyprinid (EPC) cells. Here, the authors propose that cleavage of the viral 47-kDa N protein is caspase-mediated based on caspase inhibition experiments, transient expression in EPC transfection, and analysis of cleavage sites. Cleavage of the SCRV N protein in culture was prevented by a pan-caspase inhibitor, z-VAD-FMK (z-Val-Ala-DL-Asp-fluoromethyl ketone). Subsequently, N was transiently expressed in EPC cells, the results of which indicated that the specific cleavage of N also occurred in the cells transfected with N-GFP plasmid. Several truncated fragments of the N gene were constructed and transiently transfected into EPC cells. Immunoblotting results indicated that D324 and D374 are the cleavage sites of N by caspases. The authors also found that z-VAD-FMK could inhibit the cytopathic effect in SCRV-infected EPC cells but not affect the production of infectious progeny, suggesting that the caspase-mediated cleavage of N protein is not required for in vitro SCRV replication. To the authors' knowledge, this is the first report on the cleavage of rhabdovirus proteins. © The Author(s) 2015.
Dumollard, Rémi; Minc, Nicolas; Salez, Gregory; Aicha, Sameh Ben; Bekkouche, Faisal; Hebras, Céline; Besnardeau, Lydia; McDougall, Alex
2017-01-01
The ascidian embryo is an ideal system to investigate how cell position is determined during embryogenesis. Using 3D timelapse imaging and computational methods we analyzed the planar cell divisions in ascidian early embryos and found that spindles in every cell tend to align at metaphase in the long length of the apical surface except in cells undergoing unequal cleavage. Furthermore, the invariant and conserved cleavage pattern of ascidian embryos was found to consist in alternate planar cell divisions between ectoderm and endomesoderm. In order to test the importance of alternate cell divisions we manipulated zygotic transcription induced by β-catenin or downregulated wee1 activity, both of which abolish this cell cycle asynchrony. Crucially, abolishing cell cycle asynchrony consistently disrupted the spindle orienting mechanism underpinning the invariant cleavage pattern. Our results demonstrate how an evolutionary conserved cell cycle asynchrony maintains the invariant cleavage pattern driving morphogenesis of the ascidian blastula. DOI: http://dx.doi.org/10.7554/eLife.19290.001 PMID:28121291
A set of simple cell processes is sufficient to model spiral cleavage.
Brun-Usan, Miguel; Marín-Riera, Miquel; Grande, Cristina; Truchado-Garcia, Marta; Salazar-Ciudad, Isaac
2017-01-01
During cleavage, different cellular processes cause the zygote to become partitioned into a set of cells with a specific spatial arrangement. These processes include the orientation of cell division according to: an animal-vegetal gradient; the main axis (Hertwig's rule) of the cell; and the contact areas between cells or the perpendicularity between consecutive cell divisions (Sachs' rule). Cell adhesion and cortical rotation have also been proposed to be involved in spiral cleavage. We use a computational model of cell and tissue biomechanics to account for the different existing hypotheses about how the specific spatial arrangement of cells in spiral cleavage arises during development. Cell polarization by an animal-vegetal gradient, a bias to perpendicularity between consecutive cell divisions (Sachs' rule), cortical rotation and cell adhesion, when combined, reproduce the spiral cleavage, whereas other combinations of processes cannot. Specifically, cortical rotation is necessary at the 8-cell stage to direct all micromeres in the same direction. By varying the relative strength of these processes, we reproduce the spatial arrangement of cells in the blastulae of seven different invertebrate species. © 2017. Published by The Company of Biologists Ltd.
Reinke, Lennart Michel; Hartleib, Anika; Nehlmeier, Inga; Gierer, Stefanie; Hoffmann, Markus; Hofmann-Winkler, Heike; Winkler, Michael
2017-01-01
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated. PMID:28636671
Reinke, Lennart Michel; Spiegel, Martin; Plegge, Teresa; Hartleib, Anika; Nehlmeier, Inga; Gierer, Stefanie; Hoffmann, Markus; Hofmann-Winkler, Heike; Winkler, Michael; Pöhlmann, Stefan
2017-01-01
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated.
C.C. Black; T. Lobodia; J.-Q Chen; Shi-Jean S. Sung
1995-01-01
Sucrose cleavage is an essential reaction for higher plant cells to initiate intermediary metabolism and to direct its carbon into the host of essential compounds derived therefrom for maintaining the cells of intact plants.This review will focus on: the concentrations of sucrose available to plant cells; some biochemical traits of sucrose cleavage enzymes; the...
Kikuchi, Keiji; Kozuka-Hata, Hiroko; Oyama, Masaaki; Seiki, Motoharu; Koshikawa, Naohiko
2018-01-01
Proteolytic cleavage of membrane proteins can alter their functions depending on the cleavage sites. We recently demonstrated that membrane type 1 matrix metalloproteinase (MT1-MMP ) converts the tumor suppressor EphA2 into an oncogenic signal transducer through EphA2 cleavage. The cleaved EphA2 fragment that remains at the cell surface may be a better target for cancer therapy than intact EphA2. To analyze the cleavage site(s) of EphA2, we purified the fragments from tumor cells expressing MT1-MMP and Myc- and 6× His-tagged EphA2 by two-step affinity purification . The purified fragment was digested with trypsin to generate proteolytic peptides , and the amino acid sequences of these peptides were determined by nano-LC-mass spectrometry to identify the MT1-MMP-mediated cleavage site(s) of EphA2.
Yang, Robert T.; Lim, Glendale L.; Dong, Zhihong; Lee, Arthur M.; Yee, Colin T.; Fuller, Robert S.; Ritchie, Helena H.
2013-01-01
Normal dentin mineralization requires two highly acidic proteins, dentin sialoprotein (DSP) and phosphophoryn (PP). DSP and PP are synthesized as part of a single secreted precursor, DSP-PP, which is conserved in marsupial and placental mammals. Using a baculovirus expression system, we previously found that DSP-PP is accurately cleaved into DSP and PP after secretion into medium by an endogenous, secreted, zinc-dependent Sf9 cell activity. Here we report that mutation of conserved residues near and distant from the G447↓D448 cleavage site in DSP-PP240 had dramatic effects on cleavage efficiency by the endogenous Sf9 cell processing enzyme. We found that: 1) mutation of residues flanking the cleavage site from P4 to P4′ blocked, impaired, or enhanced DSP-PP240 cleavage; 2) certain conserved amino acids distant from the cleavage site were important for precursor cleavage; 3) modification of the C terminus by appending a C-terminal tag altered the pattern of processing; and 4) mutations in DSP-PP240 had similar effects on cleavage by recombinant human BMP1, a candidate physiological processing enzyme, as was seen with the endogenous Sf9 cell activity. An analysis of a partial TLR1 cDNA from Sf9 cells indicates that residues that line the substrate-binding cleft of Sf9 TLR1 and human BMP1 are nearly perfectly conserved, offering an explanation of why Sf9 cells so accurately process mammalian DSP-PP. The fact that several mutations in DSP-PP240 significantly modified the amount of PP240 product generated from DSP-PP240 precursor protein cleavage suggests that such mutation may affect the mineralization process. PMID:23297400
Yang, Robert T; Lim, Glendale L; Dong, Zhihong; Lee, Arthur M; Yee, Colin T; Fuller, Robert S; Ritchie, Helena H
2013-02-22
Normal dentin mineralization requires two highly acidic proteins, dentin sialoprotein (DSP) and phosphophoryn (PP). DSP and PP are synthesized as part of a single secreted precursor, DSP-PP, which is conserved in marsupial and placental mammals. Using a baculovirus expression system, we previously found that DSP-PP is accurately cleaved into DSP and PP after secretion into medium by an endogenous, secreted, zinc-dependent Sf9 cell activity. Here we report that mutation of conserved residues near and distant from the G(447)↓D(448) cleavage site in DSP-PP(240) had dramatic effects on cleavage efficiency by the endogenous Sf9 cell processing enzyme. We found that: 1) mutation of residues flanking the cleavage site from P(4) to P(4)' blocked, impaired, or enhanced DSP-PP(240) cleavage; 2) certain conserved amino acids distant from the cleavage site were important for precursor cleavage; 3) modification of the C terminus by appending a C-terminal tag altered the pattern of processing; and 4) mutations in DSP-PP(240) had similar effects on cleavage by recombinant human BMP1, a candidate physiological processing enzyme, as was seen with the endogenous Sf9 cell activity. An analysis of a partial TLR1 cDNA from Sf9 cells indicates that residues that line the substrate-binding cleft of Sf9 TLR1 and human BMP1 are nearly perfectly conserved, offering an explanation of why Sf9 cells so accurately process mammalian DSP-PP. The fact that several mutations in DSP-PP(240) significantly modified the amount of PP(240) product generated from DSP-PP(240) precursor protein cleavage suggests that such mutation may affect the mineralization process.
Yu, Simei; Jordán-Pla, Antonio; Gañez-Zapater, Antoni; Jain, Shruti; Rolicka, Anna; Östlund Farrants, Ann-Kristin; Visa, Neus
2018-05-31
SWI/SNF complexes associate with genes and regulate transcription by altering the chromatin at the promoter. It has recently been shown that these complexes play a role in pre-mRNA processing by associating at alternative splice sites. Here, we show that SWI/SNF complexes are involved also in pre-mRNA 3' end maturation by facilitating 3' end cleavage of specific pre-mRNAs. Comparative proteomics show that SWI/SNF ATPases interact physically with subunits of the cleavage and polyadenylation complexes in fly and human cells. In Drosophila melanogaster, the SWI/SNF ATPase Brahma (dBRM) interacts with the CPSF6 subunit of cleavage factor I. We have investigated the function of dBRM in 3' end formation in S2 cells by RNA interference, single-gene analysis and RNA sequencing. Our data show that dBRM facilitates pre-mRNA cleavage in two different ways: by promoting the association of CPSF6 to the cleavage region and by stabilizing positioned nucleosomes downstream of the cleavage site. These findings show that SWI/SNF complexes play a role also in the cleavage of specific pre-mRNAs in animal cells.
Davis, David A; Naiman, Nicole E; Wang, Victoria; Shrestha, Prabha; Haque, Muzammel; Hu, Duosha; Anagho, Holda A; Carey, Robert F; Davidoff, Katharine S; Yarchoan, Robert
2015-07-01
Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causative agent of three hyperproliferative disorders: Kaposi's sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman's disease. During viral latency a small subset of viral genes are produced, including KSHV latency-associated nuclear antigen (LANA), which help the virus thwart cellular defense responses. We found that exposure of KSHV-infected cells to oxidative stress, or other inducers of apoptosis and caspase activation, led to processing of LANA and that this processing could be inhibited with the pan-caspase inhibitor Z-VAD-FMK. Using sequence, peptide, and mutational analysis, two caspase cleavage sites within LANA were identified: a site for caspase-3 type caspases at the N-terminus and a site for caspase-1 and-3 type caspases at the C-terminus. Using LANA expression plasmids, we demonstrated that mutation of these cleavage sites prevents caspase-1 and caspase-3 processing of LANA. This indicates that these are the principal sites that are susceptible to caspase cleavage. Using peptides spanning the identified LANA cleavage sites, we show that caspase activity can be inhibited in vitro and that a cell-permeable peptide spanning the C-terminal cleavage site could inhibit cleavage of poly (ADP-ribose) polymerase and increase viability in cells undergoing etoposide-induced apoptosis. The C-terminal peptide of LANA also inhibited interleukin-1 beta (IL-1β) production from lipopolysaccharide-treated THP-1 cells by more than 50%. Furthermore, mutation of the two cleavage sites in LANA led to a significant increase in IL-1β production in transfected THP-1 cells; this provides evidence that these sites function to blunt the inflammasome, which is known to be activated in latently infected PEL cells. These results suggest that specific caspase cleavage sites in KSHV LANA function to blunt apoptosis as well as interfere with the caspase-1-mediated inflammasome, thus thwarting key cellular defense mechanisms.
Trichomonas vaginalis Metalloproteinase Induces mTOR Cleavage of SiHa Cells
Quan, Juan-Hua; Choi, In-Wook; Yang, Jung-Bo; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Ryu, Jae-Sook
2014-01-01
Trichomonas vaginalis secretes a number of proteases which are suspected to be the cause of pathogenesis; however, little is understood how they manipulate host cells. The mammalian target of rapamycin (mTOR) regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. We detected various types of metalloproteinases including GP63 protein from T. vaginalis trophozoites, and T. vaginalis GP63 metalloproteinase was confirmed by sequencing and western blot. When SiHa cells were stimulated with live T. vaginalis, T. vaginalis excretory-secretory products (ESP) or T. vaginalis lysate, live T. vaginalis and T. vaginalis ESP induced the mTOR cleavage in both time- and parasite load-dependent manner, but T. vaginalis lysate did not. Pretreatment of T. vaginalis with a metalloproteinase inhibitor, 1,10-phenanthroline, completely disappeared the mTOR cleavage in SiHa cells. Collectively, T. vaginalis metallopeptidase induces host cell mTOR cleavage, which may be related to survival of the parasite. PMID:25548410
Cell elongation is an adaptive response for clearing long chromatid arms from the cleavage plane
Kotadia, Shaila; Montembault, Emilie; Sullivan, William
2012-01-01
Chromosome segregation must be coordinated with cell cleavage to ensure correct transmission of the genome to daughter cells. Here we identify a novel mechanism by which Drosophila melanogaster neuronal stem cells coordinate sister chromatid segregation with cleavage furrow ingression. Cells adapted to a dramatic increase in chromatid arm length by transiently elongating during anaphase/telophase. The degree of cell elongation correlated with the length of the trailing chromatid arms and was concomitant with a slight increase in spindle length and an enlargement of the zone of cortical myosin distribution. Rho guanine-nucleotide exchange factor (Pebble)–depleted cells failed to elongate during segregation of long chromatids. As a result, Pebble-depleted adult flies exhibited morphological defects likely caused by cell death during development. These studies reveal a novel pathway linking trailing chromatid arms and cortical myosin that ensures the clearance of chromatids from the cleavage plane at the appropriate time during cytokinesis, thus preserving genome integrity. PMID:23185030
Amarnath, Dasari; Kato, Yoko; Tsunoda, Yukio
2007-06-01
The aim of the present study was to examine whether cumulus and fibroblast cell nuclear-transferred oocytes, which have high and low potential to develop into normal calves, respectively, are different in terms of in their patterns of timing of first cleavage and in their relationships between timing of first cleavage and in vitro developmental potential. The timing of first cleavage was similar in both types of nuclear-transferred and in vitro fertilized oocytes. More than 86% of the oocytes cleaved within 24 h after activation or in vitro fertilization; these oocytes contributed to more than 98% of the total number of blastocysts in all three groups. The potential of oocytes that cleaved at different intervals to develop into blastocysts differed among the groups. The developmental potential of the cumulus cell nuclear-transferred oocytes and in vitro fertilized oocytes decreased with the increase in time required for cleavage. Fibroblast cell nuclear-transferred oocytes that cleaved at 20 h, an intermediate cleaving time, had higher potential to develop into blastocysts. The results of the present study suggest that the type of donor nucleus used for nuclear transfer affects the timing of first cleavage.
NASA Astrophysics Data System (ADS)
Jepsen, Morten Leth; Harmsen, Charlotte; Godbole, Adwait Anand; Nagaraja, Valakunja; Knudsen, Birgitta R.; Ho, Yi-Ping
2015-12-01
We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes. Electronic supplementary information (ESI) available: Characterization of the QD-based DNA Nanosensor. See DOI: 10.1039/c5nr06326d
1982-01-01
The surface distribution of concanavalin A (Con A) bound to cell membrane receptors varies dramatically as a function of mitotic phase. The lectin is distributed diffusely on cells labeled and observed between mid-prophase and early anaphase, whereas cells observed in late anaphase or telophase demonstrate a marked accumulation of Con A- receptor complexes over the developing cleavage furrow (Berlin, Oliver, and Walter. 1978. Cell. 15:327-341). In this report, we first use a system based on video intensification fluorescence microscopy to describe the simultaneous changes in cell shape and in lectin-receptor complex topography during progression of single cells through the mitotic cycle. The video analysis establishes that fluorescein succinyl Con A (F-S Con A)-receptor complex redistribution begins coincident with the first appearance of the cleavage furrow and is essentially complete within 2-3 min. This remarkable redistribution of surface fluorescence occurs during only a modest change in cell shape from a sphere to a belted cylinder. It reflects the translocation of complexes and not the accumulation of excess labeled membrane in the cleavage furrow: first, bound fluorescent cholera toxin which faithfully outlines the plasma membrane is not accumulated in the cleavage furrow, and, second, electron microscopy of peroxidase-Con A labeled cells undergoing cleavage shows that there is a high linear density of lectin within the furrow while Con A is virtually eliminated from the poles. The rate of surface movement of F-S Con A was quantitated by photon counting during a repetitive series of laser-excited fluorescence scans across dividing cells. Results were analyzed in terms of two alternative models of movement: a flow model in which complexes moved unidirectionally at constant velocity, and a diffusion model in which complexes could diffuse freely but were trapped at the cleavage furrow. According to these models, the observed rates of accumulation were attainable at either an effective flow velocity of approximately 1 micron/min, or an effective diffusion coefficient of approximately 10(- 9) cm2/s. However, in separate experiments the lectin-receptor diffusion rate measured directly by the method of fluorescence recovery after photobleaching (FRAP) on metaphase cells was only approximately 10(-10) cm2/s. Most importantly, photobleaching experiments during the actual period of F-S Con A accumulation showed that lectin-receptor movement during cleavage occurs unidirectionally. These results rule out diffusion and make a process of oriented flow of ligand-receptor complexes the most likely mechanism for ligand-receptor accumulation in the cleavage furrow. PMID:7119007
Wnt5A Activates the Calpain-Mediated Cleavage of Filamin A
O’Connell, Michael P.; Fiori, Jennifer L.; Baugher, Katherine M.; Indig, Fred E.; French, Amanda D.; Camilli, Tura C.; Frank, Brittany P.; Earley, Rachel; Hoek, Keith S.; Hasskamp, Joanne H.; Elias, E. George; Taub, Dennis D.; Bernier, Michel; Weeraratna, Ashani T.
2009-01-01
We have previously shown that Wnt5A and ROR2, an orphan tyrosine kinase receptor, interact to mediate melanoma cell motility. In other cell types, this can occur through the interaction of ROR2 with the cytoskeletal protein filamin A. Here, we found that filamin A protein levels correlated with Wnt5A levels in melanoma cells. Small interfering RNA (siRNA) knockdown of WNT5A decreased filamin A expression. Knockdown of filamin A also corresponded to a decrease in melanoma cell motility. In metastatic cells, filamin A expression was predominant in the cytoplasm, which western analysis indicated was due to the cleavage of filamin A in these cells. Treatment of nonmetastatic melanoma cells with recombinant Wnt5A increased filamin A cleavage, and this could be prevented by the knockdown of ROR2 expression. Further, BAPTA-AM chelation of intracellular calcium also inhibited filamin A cleavage, leading to the hypothesis that Wnt5A/ROR2 signaling could cleave filamin A through activation of calcium-activated proteases, such as calpains. Indeed, WNT5A knockdown decreased calpain 1 expression, and by inhibiting calpain 1 either pharmacologically or using siRNA, it decreased cell motility. Our results indicate that Wnt5A activates calpain-1, leading to the cleavage of filamin A, which results in a remodeling of the cytoskeleton and an increase in melanoma cell motility. PMID:19177143
Cleavage and shedding of E-cadherin after induction of apoptosis.
Steinhusen, U; Weiske, J; Badock, V; Tauber, R; Bommert, K; Huber, O
2001-02-16
Apoptotic cell death induces dramatic molecular changes in cells, becoming apparent on the structural level as membrane blebbing, condensation of the cytoplasm and nucleus, and loss of cell-cell contacts. The activation of caspases is one of the fundamental steps during programmed cell death. Here we report a detailed analysis of the fate of the Ca(2+)-dependent cell adhesion molecule E-cadherin in apoptotic epithelial cells and show that during apoptosis fragments of E-cadherin with apparent molecular masses of 24, 29, and 84 kDa are generated by two distinct proteolytic activities. In addition to a caspase-3-mediated cleavage releasing the cytoplasmic domain of E-cadherin, a metalloproteinase sheds the extracellular domain from the cell surface during apoptosis. Immunofluorescence analysis confirmed that concomitant with the disappearance of E-cadherin staining at the cell surface, the E-cadherin cytoplasmic domain accumulates in the cytosol. In the presence of inhibitors of caspase-3 and/or metalloproteinases, cleavage of E-cadherin was almost completely blocked. The simultaneous cleavage of the intracellular and extracellular domains of E-cadherin may provide a highly efficient mechanism to disrupt cadherin-mediated cell-cell contacts in apoptotic cells, a prerequisite for cell rounding and exit from the epithelium.
Colombo, Alessio; Wang, Huanhuan; Kuhn, Peer-Hendrik; Page, Richard; Kremmer, Elisabeth; Dempsey, Peter J; Crawford, Howard C; Lichtenthaler, Stefan F
2013-01-01
Proteolytic cleavage of the amyloid precursor protein (APP) by the two proteases α- and β-secretases controls the generation of the amyloid β peptide (Aβ), a key player in Alzheimer's disease pathogenesis. The α-secretase ADAM10 and the β-secretase BACE1 have opposite effects on Aβ generation and are assumed to compete for APP as a substrate, such that their cleavages are inversely coupled. This concept was mainly demonstrated in studies using activation or overexpression of α- and β-secretases. Here, we report that this inverse coupling is not seen to the same extent upon inhibition of the endogenous proteases. Genetic and pharmacological inhibition of ADAM10 and BACE1 revealed that the endogenous, constitutive α-secretase cleavage of APP is largely uncoupled from β-secretase cleavage and Aβ generation in neuroglioma H4 cells and in neuronally differentiated SH-SY5Y cells. In contrast, inverse coupling was observed in primary cortical neurons. However, this coupling was not bidirectional. Inhibition of BACE1 increased ADAM10 cleavage of APP, but a reduction of ADAM10 activity did not increase the BACE1 cleavage of APP in the neurons. Our analysis shows that the inverse coupling of the endogenous α- and β-secretase cleavages depends on the cellular model and suggests that a reduction of ADAM10 activity is unlikely to increase the AD risk through increased β-secretase cleavage. Copyright © 2012 Elsevier Inc. All rights reserved.
Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A
2013-03-07
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na(+)/Ca(2+) exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na(+)/K(+) pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis.
Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A
2013-01-01
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis. PMID:23470534
GPS-CCD: A Novel Computational Program for the Prediction of Calpain Cleavage Sites
Gao, Xinjiao; Ma, Qian; Ren, Jian; Xue, Yu
2011-01-01
As one of the most essential post-translational modifications (PTMs) of proteins, proteolysis, especially calpain-mediated cleavage, plays an important role in many biological processes, including cell death/apoptosis, cytoskeletal remodeling, and the cell cycle. Experimental identification of calpain targets with bona fide cleavage sites is fundamental for dissecting the molecular mechanisms and biological roles of calpain cleavage. In contrast to time-consuming and labor-intensive experimental approaches, computational prediction of calpain cleavage sites might more cheaply and readily provide useful information for further experimental investigation. In this work, we constructed a novel software package of GPS-CCD (Calpain Cleavage Detector) for the prediction of calpain cleavage sites, with an accuracy of 89.98%, sensitivity of 60.87% and specificity of 90.07%. With this software, we annotated potential calpain cleavage sites for hundreds of calpain substrates, for which the exact cleavage sites had not been previously determined. In this regard, GPS-CCD 1.0 is considered to be a useful tool for experimentalists. The online service and local packages of GPS-CCD 1.0 were implemented in JAVA and are freely available at: http://ccd.biocuckoo.org/. PMID:21533053
Magnussen, Synnove Norvoll; Hadler-Olsen, Elin; Costea, Daniela Elena; Berg, Eli; Jacobsen, Cristiane Cavalcanti; Mortensen, Bente; Salo, Tuula; Martinez-Zubiaurre, Inigo; Winberg, Jan-Olof; Uhlin-Hansen, Lars; Svineng, Gunbjorg
2017-05-19
Urokinase plasminogen activator (uPA) receptor (uPAR) is up-regulated at the invasive tumour front of human oral squamous cell carcinoma (OSCC), indicating a role for uPAR in tumour progression. We previously observed elevated expression of uPAR at the tumour-stroma interface in a mouse model for OSCC, which was associated with increased proteolytic activity. The tumour microenvironment regulated uPAR expression, as well as its glycosylation and cleavage. Both full-length- and cleaved uPAR (uPAR (II-III)) are involved in highly regulated processes such as cell signalling, proliferation, migration, stem cell mobilization and invasion. The aim of the current study was to analyse tumour associated factors and their effect on uPAR cleavage, and the potential implications for cell proliferation, migration and invasion. Mouse uPAR was stably overexpressed in the mouse OSCC cell line AT84. The ratio of full-length versus cleaved uPAR as analysed by Western blotting and its regulation was assessed by addition of different protease inhibitors and transforming growth factor - β1 (TGF-β1). The role of uPAR cleavage in cell proliferation and migration was analysed using real-time cell analysis and invasion was assessed using the myoma invasion model. We found that when uPAR was overexpressed a proportion of the receptor was cleaved, thus the cells presented both full-length uPAR and uPAR (II-III). Cleavage was mainly performed by serine proteases and urokinase plasminogen activator (uPA) in particular. When the OSCC cells were stimulated with TGF-β1, the production of the uPA inhibitor PAI-1 was increased, resulting in a reduction of uPAR cleavage. By inhibiting cleavage of uPAR, cell migration was reduced, and by inhibiting uPA activity, invasion was reduced. We could also show that medium containing soluble uPAR (suPAR), and cleaved soluble uPAR (suPAR (II-III)), induced migration in OSCC cells with low endogenous levels of uPAR. These results show that soluble factors in the tumour microenvironment, such as TGF-β1, PAI-1 and uPA, can influence the ratio of full length and uPAR (II-III) and thereby potentially effect cell migration and invasion. Resolving how uPAR cleavage is controlled is therefore vital for understanding how OSCC progresses and potentially provides new targets for therapy.
Inflammatory Caspases: Activation and Cleavage of Gasdermin-D In Vitro and During Pyroptosis.
Zhao, Yue; Shi, Jianjin; Shao, Feng
2018-01-01
Gasdermin-D (also known as GSDMD), the newly identified executioner of pyroptotic cell death, is cleaved by activated caspase-1 downstream of canonical inflammasome activation or caspase-4, 5, and 11 upon their ligation and activation by cytosolic LPS. Upon a single cleavage between the two domains in Gasdermin-D, the N-terminal domain binds to membrane lipids and lyses cells by forming pores of an inner diameter of 10-14 nm within the membrane. The inter-domain cleavage of Gasdermin-D is a reliable marker for the activation of inflammatory caspases and cell pyroptosis. Here, we describe the methods for examining Gasdermin-D cleavage by activated inflammatory caspases in vitro and upon inflammasome activation in vivo.
Telomere lengthening early in development.
Liu, Lin; Bailey, Susan M; Okuka, Maja; Muñoz, Purificación; Li, Chao; Zhou, Lingjun; Wu, Chao; Czerwiec, Eva; Sandler, Laurel; Seyfang, Andreas; Blasco, Maria A; Keefe, David L
2007-12-01
Stem cells and cancer cells maintain telomere length mostly through telomerase. Telomerase activity is high in male germ line and stem cells, but is low or absent in mature oocytes and cleavage stage embryos, and then high again in blastocysts. How early embryos reset telomere length remains poorly understood. Here, we show that oocytes actually have shorter telomeres than somatic cells, but their telomeres lengthen remarkably during early cleavage development. Moreover, parthenogenetically activated oocytes also lengthen their telomeres, thus the capacity to elongate telomeres must reside within oocytes themselves. Notably, telomeres also elongate in the early cleavage embryos of telomerase-null mice, demonstrating that telomerase is unlikely to be responsible for the abrupt lengthening of telomeres in these cells. Coincident with telomere lengthening, extensive telomere sister-chromatid exchange (T-SCE) and colocalization of the DNA recombination proteins Rad50 and TRF1 were observed in early cleavage embryos. Both T-SCE and DNA recombination proteins decrease in blastocyst stage embryos, whereas telomerase activity increases and telomeres elongate only slowly. We suggest that telomeres lengthen during the early cleavage cycles following fertilization through a recombination-based mechanism, and that from the blastocyst stage onwards, telomerase only maintains the telomere length established by this alternative mechanism.
Peptides whose uptake by cells is controllable
Jiang, Tao [San Diego, CA; Tsien, Roger Y [La Jolla, CA
2012-02-07
A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. Cleavage of X allows separation of A from B, unmasking the normal ability of the basic amino acids in B to drag cargo C into cells near the cleavage event. X is cleaved extracellularly, preferably under physiological conditions. D-amino acids are preferred for the A and B portions, to minimize immunogenicity and nonspecific cleavage by background peptidases or proteases.
Peptides whose uptake by cells is controllable
Jiang, Tao [San Diego, CA; Tsien, Roger Y [La Jolla, CA
2008-10-07
A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. Cleavage of X allows separation of A from B, unmasking the normal ability of the basic amino acids in B to drag cargo C into cells near the cleavage event. X is cleaved extracellularly, preferably under physiological conditions. D-amino acids are preferred for the A and B portions, to minimize immunogenicity and nonspecific cleavage by background peptidases or proteases.
Peptides whose uptake by cells is controllable
Jiang, Tao; Tsien, Roger Y
2014-02-04
A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. Cleavage of X allows separation of A from B, unmasking the normal ability of the basic amino acids in B to drag cargo C into cells near the cleavage event. X is cleaved extracellularly, preferably under physiological conditions. D-amino acids are preferred for the A and B portions, to minimize immunogenicity and nonspecific cleavage by background peptidases or proteases.
Anti-amyloid precursor protein antibodies inhibit amyloid-β production by steric hindrance
Thomas, Rhian S.; Liddell, J. Eryl; Kidd, Emma J.
2015-01-01
Summary Cleavage of amyloid precursor protein (APP) by β- and γ-secretases results in the production of amyloid-β (Aβ) in Alzheimer’s disease (AD). We raised two monoclonal antibodies, 2B3 and 2B12, that recognise the β-secretase cleavage site on APP but not Aβ. We hypothesised that these antibodies would reduce Aβ levels via steric hindrance of β-secretase. Both antibodies decreased extracellular Aβ levels from astrocytoma cells, but 2B3 was more potent than 2B12. Levels of soluble sAPPα from the non-amyloidogenic α-secretase pathway and intracellular APP were not affected by either antibody nor were there any effects on cell viability. 2B3 exhibited a higher affinity for APP than 2B12 and its epitope appeared to span the cleavage site while 2B12 bound slightly upstream. Both of these factors probably contribute to its greater effect on Aβ levels. After 60 minutes incubation at pH 4.0, most 2B3 and 2B12 remained bound to their antigen, suggesting that the antibodies will remain bound to APP in the acidic endosomes where β-secretase cleavage probably occurs. Only 2B3 and 2B12, but not control antibodies, inhibited the cleavage of sAPPα by β-secretase in a cell-free assay where effects of antibody internalisation and intracellular degradation were excluded. 2B3 virtually abolished this cleavage. In addition, levels of C-terminal APP fragments, βCTF, generated following β-secretase cleavage, were significantly reduced in cells after incubation with 2B3. These results strongly suggest that anti-cleavage site antibodies can generically reduce Aβ levels via inhibition of β-secretase by steric hindrance and may provide a novel alternative therapy for AD. PMID:21122073
NASA Technical Reports Server (NTRS)
Conrad, A. H.; Jaffredo, T.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)
1995-01-01
Two principal isoforms of cytoplasmic myosin II, A and B (CMIIA and CMIIB), are present in different proportions in different tissues. Isoform-specific monoclonal and polyclonal antibodies to avian CMIIA and CMIIB reveal the cellular distributions of these isoforms in interphase and dividing embryonic avian cardiac, intestinal epithelial, spleen, and dorsal root ganglia cells in primary cell culture. Embryonic cardiomyocytes react with antibodies to CMIIB but not to CMIIA, localize CMIIB in stress-fiber-like-structures during interphase, and markedly concentrate CMIIB in networks in the cleavage furrow during cytokinesis. In contrast, cardiac fibroblasts localize both CMIIA and CMIIB in stress fibers and networks during interphase, and demonstrate slight and independently regulated concentration of CMIIA and CMIIB in networks in their cleavage furrows. V-myc-immortalized cardiomyocytes, an established cell line, have regained the ability to express CMIIA, as well as CMIIB, and localize both CMIIA and CMIIB in stress fibers and networks in interphase cells and in cleavage furrows in dividing cells. Conversely, some intestinal epithelial, spleen, and dorsal root ganglia interphase cells express only CMIIA, organized primarily in networks. Of these, intestinal epithelial cells express both CMIIA and CMIIB when they divide, whereas some dividing cells from both spleen and dorsal root ganglia express only CMIIA and concentrate it in their cleavage furrows. These results suggest that within a given tissue, different cell types express different isoforms of CMII, and that cells expressing either CMIIA or CMIIB alone, or simultaneously, can form a cleavage furrow and divide.
Chymase Cleavage of Stem Cell Factor Yields a Bioactive, Soluble Product
NASA Astrophysics Data System (ADS)
Longley, B. Jack; Tyrrell, Lynda; Ma, Yongsheng; Williams, David A.; Halaban, Ruth; Langley, Keith; Lu, Hsieng S.; Schechter, Norman M.
1997-08-01
Stem cell factor (SCF) is produced by stromal cells as a membrane-bound molecule, which may be proteolytically cleaved at a site close to the membrane to produce a soluble bioactive form. The proteases producing this cleavage are unknown. In this study, we demonstrate that human mast cell chymase, a chymotrypsin-like protease, cleaves SCF at a novel site. Cleavage is at the peptide bond between Phe-158 and Met-159, which are encoded by exon 6 of the SCF gene. This cleavage results in a soluble bioactive product that is 7 amino acids shorter at the C terminus than previously identified soluble SCF. This research shows the identification of a physiologically relevant enzyme that specifically cleaves SCF. Because mast cells express the KIT protein, the receptor for SCF, and respond to SCF by proliferation and degranulation, this observation identifies a possible feedback loop in which chymase released from mast cell secretory granules may solubilize SCF bound to the membrane of surrounding stromal cells. The liberated soluble SCF may in turn stimulate mast cell proliferation and differentiated functions; this loop could contribute to abnormal accumulations of mast cells in the skin and hyperpigmentation at sites of chronic cutaneous inflammation.
High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA.
Chandrananda, Dineika; Thorne, Natalie P; Bahlo, Melanie
2015-06-17
High-throughput sequencing of cell-free DNA fragments found in human plasma has been used to non-invasively detect fetal aneuploidy, monitor organ transplants and investigate tumor DNA. However, many biological properties of this extracellular genetic material remain unknown. Research that further characterizes circulating DNA could substantially increase its diagnostic value by allowing the application of more sophisticated bioinformatics tools that lead to an improved signal to noise ratio in the sequencing data. In this study, we investigate various features of cell-free DNA in plasma using deep-sequencing data from two pregnant women (>70X, >50X) and compare them with matched cellular DNA. We utilize a descriptive approach to examine how the biological cleavage of cell-free DNA affects different sequence signatures such as fragment lengths, sequence motifs at fragment ends and the distribution of cleavage sites along the genome. We show that the size distributions of these cell-free DNA molecules are dependent on their autosomal and mitochondrial origin as well as the genomic location within chromosomes. DNA mapping to particular microsatellites and alpha repeat elements display unique size signatures. We show how cell-free fragments occur in clusters along the genome, localizing to nucleosomal arrays and are preferentially cleaved at linker regions by correlating the mapping locations of these fragments with ENCODE annotation of chromatin organization. Our work further demonstrates that cell-free autosomal DNA cleavage is sequence dependent. The region spanning up to 10 positions on either side of the DNA cleavage site show a consistent pattern of preference for specific nucleotides. This sequence motif is present in cleavage sites localized to nucleosomal cores and linker regions but is absent in nucleosome-free mitochondrial DNA. These background signals in cell-free DNA sequencing data stem from the non-random biological cleavage of these fragments. This sequence structure can be harnessed to improve bioinformatics algorithms, in particular for CNV and structural variant detection. Descriptive measures for cell-free DNA features developed here could also be used in biomarker analysis to monitor the changes that occur during different pathological conditions.
Verification of 2A peptide cleavage.
Szymczak-Workman, Andrea L; Vignali, Kate M; Vignali, Dario A A
2012-02-01
The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. It is now possible to express multiple proteins from a single open reading frame (ORF) using 2A peptide-linked multicistronic vectors. These small sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. The easiest and most effective way to assess 2A cleavage is to perform transient transfection of 293T cells (human embryonic kidney cells) followed by western blot analysis, as described in this protocol. 293T cells are easy to grow and can be efficiently transfected with a variety of vectors. Cleavage can be assessed by detection with antibodies against the target proteins or anti-2A serum.
A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44.
Stoeck, Alexander; Keller, Sascha; Riedle, Svenja; Sanderson, Michael P; Runz, Steffen; Le Naour, Francois; Gutwein, Paul; Ludwig, Andreas; Rubinstein, Eric; Altevogt, Peter
2006-02-01
Ectodomain shedding is a proteolytic mechanism by which transmembrane molecules are converted into a soluble form. Cleavage is mediated by metalloproteases and proceeds in a constitutive or inducible fashion. Although believed to be a cell-surface event, there is increasing evidence that cleavage can take place in intracellular compartments. However, it is unknown how cleaved soluble molecules get access to the extracellular space. By analysing L1 (CD171) and CD44 in ovarian carcinoma cells, we show in the present paper that the cleavage induced by ionomycin, APMA (4-aminophenylmercuric acetate) or MCD (methyl-beta-cyclodextrin) is initiated in an endosomal compartment that is subsequently released in the form of exosomes. Calcium influx augmented the release of exosomes containing functionally active forms of ADAM10 (a disintegrin and metalloprotease 10) and ADAM17 [TACE (tumour necrosis factor a-converting enzyme)] as well as CD44 and L1 cytoplasmic cleavage fragments. Cleavage could also proceed in released exosomes, but only depletion of ADAM10 by small interfering RNA blocked cleavage under constitutive and induced conditions. In contrast, cleavage of L1 in response to PMA occurred at the cell surface and was mediated by ADAM17. We conclude that different ADAMs are involved in distinct cellular compartments and that ADAM10 is responsible for shedding in vesicles. Our findings open up the possibility that exosomes serve as a platform for ectodomain shedding and as a vehicle for the cellular export of soluble molecules.
Glowacka, Ilona; Bertram, Stephanie; Müller, Marcel A.; Allen, Paul; Soilleux, Elizabeth; Pfefferle, Susanne; Steffen, Imke; Tsegaye, Theodros Solomon; He, Yuxian; Gnirss, Kerstin; Niemeyer, Daniela; Schneider, Heike; Drosten, Christian; Pöhlmann, Stefan
2011-01-01
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) can be proteolytically activated by cathepsins B and L upon viral uptake into target cell endosomes. In contrast, it is largely unknown whether host cell proteases located in the secretory pathway of infected cells and/or on the surface of target cells can cleave SARS S. We along with others could previously show that the type II transmembrane protease TMPRSS2 activates the influenza virus hemagglutinin and the human metapneumovirus F protein by cleavage. Here, we assessed whether SARS S is proteolytically processed by TMPRSS2. Western blot analysis revealed that SARS S was cleaved into several fragments upon coexpression of TMPRSS2 (cis-cleavage) and upon contact between SARS S-expressing cells and TMPRSS2-positive cells (trans-cleavage). cis-cleavage resulted in release of SARS S fragments into the cellular supernatant and in inhibition of antibody-mediated neutralization, most likely because SARS S fragments function as antibody decoys. trans-cleavage activated SARS S on effector cells for fusion with target cells and allowed efficient SARS S-driven viral entry into targets treated with a lysosomotropic agent or a cathepsin inhibitor. Finally, ACE2, the cellular receptor for SARS-CoV, and TMPRSS2 were found to be coexpressed by type II pneumocytes, which represent important viral target cells, suggesting that SARS S is cleaved by TMPRSS2 in the lung of SARS-CoV-infected individuals. In summary, we show that TMPRSS2 might promote viral spread and pathogenesis by diminishing viral recognition by neutralizing antibodies and by activating SARS S for cell-cell and virus-cell fusion. PMID:21325420
Kallenberger, Stefan M.; Beaudouin, Joël; Claus, Juliane; Fischer, Carmen; Sorger, Peter K.; Legewie, Stefan; Eils, Roland
2014-01-01
Apoptosis in response to the ligand CD95L (also known as Fas ligand) is initiated by caspase-8, which is activated by dimerization and self-cleavage at death-inducing signaling complexes (DISCs). Previous work indicated that the degree of substrate cleavage by caspase-8 determines whether a cell dies or survives in response to a death stimulus. To determine how a death ligand stimulus is effectively translated into caspase-8 activity, we assessed this activity over time in single cells with compartmentalized probes that are cleaved by caspase-8, and used multiscale modeling to simultaneously describe single-cell and population data with an ensemble of single-cell models. We derived and experimentally validated a minimal model in which cleavage of caspase-8 in the enzymatic domain occurs in an interdimeric manner through interaction between DISCs, whereas prodomain cleavage sites are cleaved in an intradimeric manner within DISCs. Modeling indicated that sustained membrane-bound caspase-8 activity is followed by transient cytosolic activity, which can be interpreted as a molecular timer mechanism reflected by a limited lifetime of active caspase-8. The activation of caspase-8 by combined intra- and interdimeric cleavage ensures weak signaling at low concentrations of CD95L and strongly accelerated activation at higher ligand concentrations, thereby contributing to precise control of apoptosis. PMID:24619646
ADAM13 cleavage of cadherin-11 promotes CNC migration independently of the homophilic binding site.
Abbruzzese, Genevieve; Becker, Sarah F; Kashef, Jubin; Alfandari, Dominique
2016-07-15
The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell-cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration. This cleavage generates a shed extracellular fragment of cadherin-11 (EC1-3) that possesses pro-migratory activity via an unknown mechanism. Cadherin-11 plays an important role in modulating contact inhibition of locomotion (CIL) in the CNC to regulate directional cell migration. Here, we show that while the integral cadherin-11 requires the homophilic binding site to promote CNC migration in vivo, the EC1-3 fragment does not. In addition, we show that increased ADAM13 activity or expression of the EC1-3 fragment increases CNC invasiveness in vitro and blocks the repulsive CIL response in colliding cells. This activity requires the presence of an intact homophilic binding site on the EC1-3 suggesting that the cleavage fragment may function as a competitive inhibitor of cadherin-11 adhesion in CIL but not to promote cell migration in vivo. Copyright © 2015. Published by Elsevier Inc.
Lee, K H; Choi, E Y; Hyun, M S; Jang, B I; Kim, T N; Kim, S W; Song, S K; Kim, J H; Kim, J-R
2007-01-01
Proteolytic shedding of the ectodomain of a variety of transmembrane proteins, including cell-to-cell adhesion molecules, has been observed in solid cancers. We have investigated whether extracellular cleavage of E-cadherin mediated by matrix metalloproteinase-7 (MMP-7) is involved in hepatocyte growth factor (HGF) induced in vitro invasion in stomach cancer cells. The effects of HGF on the expression of E-cadherin/beta-catenin and MMP-7 at both the protein and mRNA levels were assessed in stomach cancer cells, NUGC-3 and MKN-28, and in cells in which the expression of MMP-7 was downregulated by transfection with a MMP-7 short hairpin RNA plasmid. Treatment with HGF increased the extracellular cleavage of E-cadherin and the release of MMP-7 and reduced the level of E-cadherin in a dose- and time-dependent manner. HGF treatment repressed the phosphorylation of beta-catenin in a Triton-soluble fraction, but enhanced this phosphorylation in a Triton-insoluble fraction. The association of E-cadherin with beta-catenin was decreased by HGF treatment in the Triton-soluble fraction. In addition, treatment of MMP-7 short hairpin RNA transfected NUGC-3 cells with HGF resulted in no extracellular cleavage of E-cadherin and also decreased the in vitro cell invasion. These results suggest that incubation with HGF mediated the release of MMP-7, resulting in extracellular cleavage of E-cadherin from stomach cancer cells. This might be a key mechanism in HGF-induced in vitro invasion and metastasis. Copyright 2007 S. Karger AG, Basel.
De Lorenzi, Valentina; Sarra Ferraris, Gian Maria; Madsen, Jeppe B; Lupia, Michela; Andreasen, Peter A; Sidenius, Nicolai
2016-07-01
Components of the plasminogen activation system including urokinase (uPA), its inhibitor (PAI-1) and its cell surface receptor (uPAR) have been implicated in a wide variety of biological processes related to tissue homoeostasis. Firstly, the binding of uPA to uPAR favours extracellular proteolysis by enhancing cell surface plasminogen activation. Secondly, it promotes cell adhesion and signalling through binding of the provisional matrix protein vitronectin. We now report that uPA and plasmin induces a potent negative feedback on cell adhesion through specific cleavage of the RGD motif in vitronectin. Cleavage of vitronectin by uPA displays a remarkable receptor dependence and requires concomitant binding of both uPA and vitronectin to uPAR Moreover, we show that PAI-1 counteracts the negative feedback and behaves as a proteolysis-triggered stabilizer of uPAR-mediated cell adhesion to vitronectin. These findings identify a novel and highly specific function for the plasminogen activation system in the regulation of cell adhesion to vitronectin. The cleavage of vitronectin by uPA and plasmin results in the release of N-terminal vitronectin fragments that can be detected in vivo, underscoring the potential physiological relevance of the process. © 2016 The Authors.
ADAM13 cleavage of cadherin-11 promotes CNC migration independently of the homophilic binding site
Kashef, Jubin; Alfandari, Dominique
2015-01-01
The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell–cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration. This cleavage generates a shed extracellular fragment of cadherin-11 (EC1-3) that possesses pro-migratory activity via an unknown mechanism. Cadherin-11 plays an important role in modulating contact inhibition of locomotion (CIL) in the CNC to regulate directional cell migration. Here, we show that while the integral cadherin-11 requires the homophilic binding site to promote CNC migration in vivo, the EC1-3 fragment does not. In addition, we show that increased ADAM13 activity or expression of the EC1-3 fragment increases CNC invasiveness in vitro and blocks the repulsive CIL response in colliding cells. This activity requires the presence of an intact homophilic binding site on the EC1-3 suggesting that the cleavage fragment may function as a competitive inhibitor of cadherin-11 adhesion in CIL but not to promote cell migration in vivo. PMID:26206614
Oropesa-Ávila, Manuel; Fernández-Vega, Alejandro; de la Mata, Mario; Garrido-Maraver, Juan; Cotán, David; Paz, Marina Villanueva; Pavón, Ana Delgado; Cordero, Mario D; Alcocer-Gómez, Elizabet; de Lavera, Isabel; Lema, Rafael; Zaderenko, Ana Paula; Sánchez-Alcázar, José A
2014-09-01
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath the plasma membrane which plays a critical role in preserving cell morphology and plasma membrane integrity. The aim of this study was to examine the effect of cold/warming exposure on apoptotic microtubules and plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptotic H460 cells that cold/warming exposure disorganized apoptotic microtubules and allowed the access of active caspases to the cellular cortex and the cleavage of essential proteins in the preservation of plasma membrane permeability. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase and calcium ATPase pump (PMCA-4) involved in cell calcium extrusion resulted in increased plasma permeability and calcium overload leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the addition of the pan-caspase inhibitor z-VAD during cold/warming exposure that induces AMN depolymerization avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Likewise, apoptotic microtubules stabilization by taxol during cold/warming exposure also prevented cellular cortex and plasma membrane protein cleavage and secondary necrosis. Furthermore, microtubules stabilization or caspase inhibition during cold/warming exposure was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that cold/warming exposure of apoptotic cells induces secondary necrosis which can be prevented by both, microtubule stabilization or caspase inhibition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argaw, Takele; Wilson, Carolyn A., E-mail: carolyn.wilson@fda.hhs.gov
Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectorsmore » with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. - Highlights: • Env cleavage signal impacts infectivity of gammaretroviruses. • Non-infectious mutants have hyper-glycosylated envelope that bind target cells. • Non-infectious mutants have defects in the formation of the double-stranded DNA. • Env cleavage motif has functions beyond cleavage of the env precursor.« less
Sun, Yuxiao; Kucej, Martin; Fan, Heng-Yu; Yu, Hong; Sun, Qing-Yuan; Zou, Hui
2009-04-03
Sister chromatid separation is triggered by the separase-catalyzed cleavage of cohesin. This process is temporally controlled by cell-cycle-dependent factors, but its biochemical mechanism and spatial regulation remain poorly understood. We report that cohesin cleavage by human separase requires DNA in a sequence-nonspecific manner. Separase binds to DNA in vitro, but its proteolytic activity, measured by its autocleavage, is not stimulated by DNA. Instead, biochemical characterizations suggest that DNA mediates cohesin cleavage by bridging the interaction between separase and cohesin. In human cells, a fraction of separase localizes to the mitotic chromosome. The importance of the chromosomal DNA in cohesin cleavage is further demonstrated by the observation that the cleavage of the chromosome-associated cohesins is sensitive to nuclease treatment. Our observations explain why chromosome-associated cohesins are specifically cleaved by separase and the soluble cohesins are left intact in anaphase.
Activated release of membrane-anchored TGF-alpha in the absence of cytosol
1993-01-01
The ectodomain of proTGF-alpha, a membrane-anchored growth factor, is converted into soluble TGF-alpha by a regulated cellular proteolytic system that recognizes proTGF-alpha via the C-terminal valine of its cytoplasmic tail. In order to define the biochemical components involved in proTGF-alpha cleavage, we have used cells permeabilized with streptolysin O (SLO) that have been extensively washed to remove cytosol. PMA, acting through a Ca(2+)-independent protein kinase C, activates cleavage as efficiently in permeabilized cells as it does in intact cells. ProTGF-alpha cleavage is also stimulated by GTP gamma S through a mechanism whose pharmacological properties suggest the involvement of a heterotrimeric G protein acting upstream of the PMA- sensitive Ca(2+)-independent protein kinase C. Activated proTGF-alpha cleavage is dependent on ATP hydrolysis, appears not to require vesicular traffic, and acts specifically on proTGF-alpha that has reached the cell surface. These results indicate that proTGF-alpha is cleaved from the cell surface by a regulated system whose signaling, recognition, and proteolytic components are retained in cells devoid of cytosol. PMID:8314849
Elshabrawy, Hatem A.; Fan, Jilao; Haddad, Christine S.; Ratia, Kiira; Broder, Christopher C.; Caffrey, Michael
2014-01-01
ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. IMPORTANCE We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug. PMID:24501399
Elshabrawy, Hatem A; Fan, Jilao; Haddad, Christine S; Ratia, Kiira; Broder, Christopher C; Caffrey, Michael; Prabhakar, Bellur S
2014-04-01
Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, N.N.; Kirby, C.M.; Kemphues, K.J.
1995-02-01
Polarized asymmetric divisions play important roles in the development of plants and animals. The first two embryonic cleavages of Caenorhabditis elegans provide an opportunity to study the mechanisms controlling polarized asymmetric divisions. The first cleavage is unequal, producing daughters with different sizes and fates. The daughter blastomeres divide with different orientations at the second cleavage; the anterior blastomere divides equally across the long axis of the egg, whereas the posterior blastomere divides unequally along the long axis. We report here the results of our analysis of the genes par-2 and par-3 with respect to their contribution to the polarity ofmore » these divisions. Strong loss-of-function mutations in both genes lead to an equal first cleavage and an altered second cleavage. Interestingly, the mutations exhibit striking gene-specific differences at the second cleavage. The par-2 mutations lead to transverse spindle orientations in both blastomeres, whereas par-3 mutations lead to longitudinal spindle orientations in both blastomeres. The spindle orientation defects correlate with defects in centrosome movements during both the first and the second cell cycle. Temperature shift experiments with par-2 (it5ts) indicate that the par-2(+) activity is not required after the two-cell stage. Analysis of double mutants shows that par-3 is epistatic to par-2. We propose a model wherein par-2(+) and par-3(+) act in concert during the first cell cycle to affect asymmetric modification of the cytoskeleton. This polar modification leads to different behaviors of centrosomes in the anterior and posterior and leads ultimately to blastomere-specific spindle orientations at the second cleavage. 44 refs., 5 figs., 5 tabs.« less
2016-09-07
sequences of the target mRNA, and a double stranded stem at the 5′ end that forms a stem -loop to function as a forceps to stabilize the secondary...E-mjournal homepage: www.elsevier.com/locate/bbrepDetection of siRNA-mediated target mRNA cleavage activities in human cells by a novel stem -loop...challenges for the accurate and efficient detection and verification of cleavage sites on target mRNAs. Here we used a sensitive stem -loop array reverse
The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.
Murray, Vincent; Chen, Jon K; Tanaka, Mark M
2016-07-01
The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.
Ai, X; Butts, B; Vora, K; Li, W; Tache-Talmadge, C; Fridman, A; Mehmet, H
2011-01-01
Apoptosis research has been significantly aided by the generation of antibodies against caspase-cleaved peptide neo-epitopes. However, most of these antibodies recognize the N-terminal fragment and are specific for the protein in question. The aim of this project was to create antibodies, which could identify caspase-cleaved proteins without a priori knowledge of the cleavage sites or even the proteins themselves. We hypothesized that many caspase-cleavage products might have a common antigenic shape, given that they must all fit into the same active site of caspases. Rabbits were immunized with the eight most prevalent exposed C-terminal tetrapeptide sequences following caspase cleavage. After purification of the antibodies we demonstrated (1) their specificity for exposed C-terminal (but not internal) peptides, (2) their ability to detect known caspase-cleaved proteins from apoptotic cell lysates or supernatants from apoptotic cell culture and (3) their ability to detect a caspase-cleaved protein whose tetrapeptide sequence differs from the eight tetrapeptides used to generate the antibodies. These antibodies have the potential to identify novel neo-epitopes produced by caspase cleavage and so can be used to identify pathway-specific caspase cleavage events in a specific cell type. Additionally this methodology may be applied to generate antibodies against products of other proteases, which have a well-defined and non-promiscuous cleavage activity. PMID:21881607
Global identification of target recognition and cleavage by the Microprocessor in human ES cells
Seong, Youngmo; Lim, Do-Hwan; Kim, Augustine; Seo, Jae Hong; Lee, Young Sik; Song, Hoseok; Kwon, Young-Soo
2014-01-01
The Microprocessor plays an essential role in canonical miRNA biogenesis by facilitating cleavage of stem-loop structures in primary transcripts to yield pre-miRNAs. Although miRNA biogenesis has been extensively studied through biochemical and molecular genetic approaches, it has yet to be addressed to what extent the current miRNA biogenesis models hold true in intact cells. To address the issues of in vivo recognition and cleavage by the Microprocessor, we investigate RNAs that are associated with DGCR8 and Drosha by using immunoprecipitation coupled with next-generation sequencing. Here, we present global protein–RNA interactions with unprecedented sensitivity and specificity. Our data indicate that precursors of canonical miRNAs and miRNA-like hairpins are the major substrates of the Microprocessor. As a result of specific enrichment of nascent cleavage products, we are able to pinpoint the Microprocessor-mediated cleavage sites per se at single-nucleotide resolution. Unexpectedly, a 2-nt 3′ overhang invariably exists at the ends of cleaved bases instead of nascent pre-miRNAs. Besides canonical miRNA precursors, we find that two novel miRNA-like structures embedded in mRNAs are cleaved to yield pre-miRNA-like hairpins, uncoupled from miRNA maturation. Our data provide a framework for in vivo Microprocessor-mediated cleavage and a foundation for experimental and computational studies on miRNA biogenesis in living cells. PMID:25326327
Cao, Jiang; Feng, Hao; Ding, Ning-Ning; Wu, Qing-Yun; Chen, Chong; Niu, Ming-Shan; Chen, Wei; Qiu, Ting-Ting; Zhu, Hong-Hu; Xu, Kai-Lin
2016-11-01
Homoharringtonine combined with aclarubicin and cytarabine (HAA) is a highly effective treatment for acute myeloid leukemia (AML), especially for t(8;21) AML. However, the underlying mechanisms by which HAA kills t(8;21) AML cells remain unclear. In this study, SKNO-1 and Kasumi-1 cells with t(8;21) were used. Compared with individual or pairwise administration of homoharringtonine, aclarubicin, or cytarabine, HAA showed the strongest inhibition of growth and induction of apoptosis in SKNO-1 and Kasumi-1 cells. HAA caused cleavage of the AML1-ETO (AE) oncoprotein to form truncated AE (ΔAE). Pretreatment with the caspase-3 inhibitor caspase-3 inhibitor Q-DEVD-OPh (QDO) not only suppressed HAA-induced apoptosis but also abrogated the cleavage of AE and generation of ΔAE. These results suggest that HAA synergistically induces apoptosis in t(8;21) leukemia cells and triggers caspase-3-mediated cleavage of the AML1-ETO oncoprotein, thus providing direct evidence for the strong activity of HAA toward t(8;21) AML. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Targeting of a chlamydial protease impedes intracellular bacterial growth.
Christian, Jan G; Heymann, Julia; Paschen, Stefan A; Vier, Juliane; Schauenburg, Linda; Rupp, Jan; Meyer, Thomas F; Häcker, Georg; Heuer, Dagmar
2011-09-01
Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Graham, E-mail: gsimmons@bloodsystems.or; Bertram, Stephanie; Glowacka, Ilona
Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a proteasemore » essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation.« less
ERIC Educational Resources Information Center
Hinchliffe, J. R.
1973-01-01
Outlines the advantages of using the readily available eggs of the nematode Rhabditis in studying the early cleavage stages of animal development. Discusses the identification and life history of Rhabditis, how to culture and examine the organism, the cleavage stages and cell lineage, and sources of visual aids. (JR)
ADAM10 is essential for Notch2-dependent marginal zone B cell development and CD23 cleavage in vivo
Gibb, David R.; El Shikh, Mohey; Kang, Dae-Joong; Rowe, Warren J.; El Sayed, Rania; Cichy, Joanna; Yagita, Hideo; Tew, John G.; Dempsey, Peter J.; Crawford, Howard C.
2010-01-01
The proteolytic activity of a disintegrin and metalloproteinase 10 (ADAM10) regulates cell-fate decisions in Drosophila and mouse embryos. However, in utero lethality of ADAM10−/− mice has prevented examination of ADAM10 cleavage events in lymphocytes. To investigate their role in B cell development, we generated B cell–specific ADAM10 knockout mice. Intriguingly, deletion of ADAM10 prevented development of the entire marginal zone B cell (MZB) lineage. Additionally, cleavage of the low affinity IgE receptor, CD23, was profoundly impaired, but subsequent experiments demonstrated that ADAM10 regulates CD23 cleavage and MZB development by independent mechanisms. Development of MZBs is dependent on Notch2 signaling, which requires proteolysis of the Notch2 receptor by a previously unidentified proteinase. Further experiments revealed that Notch2 signaling is severely impaired in ADAM10-null B cells. Thus, ADAM10 critically regulates MZB development by initiating Notch2 signaling. This study identifies ADAM10 as the in vivo CD23 sheddase and an important regulator of B cell development. Moreover, it has important implications for the treatment of numerous CD23- and Notch-mediated pathologies, ranging from allergy to cancer. PMID:20156974
Hirose, M; Kinzie, R A; Hidaka, M
2000-08-01
Some hermatypic corals spawn eggs that contain zooxanthellae. We followed development of zooxanthella-containing eggs of two such species, Pocillopora verrucosa and P. eydouxi. We also documented changes in the distribution pattern of zooxanthellae during development. Oocytes of both species took up zooxanthellae 3 to 4 days before spawning. At first, zooxanthellae were evenly distributed in oocytes, but they later moved to the hemisphere that contained the germinal vesicle. After fertilization, early cleavage events were holoblastic, progressing by furrow formation. The first cleavage furrow started at the hemisphere that contained zooxanthellae, dividing the zooxanthellate complement of the zygote about equally into the two blastomeres. The second division divided each blastomere into one zooxanthellae-rich cell and one with few zooxanthellae. With continued cell division, blastomeres containing zooxanthellae moved into the blastocoel. The blastocoel disappeared at about 5 h after the first cleavage, and the central region of the embryo was filled with cells containing either zooxanthellae or lipid droplets, forming a stereogastrula. Our results suggest that only blastomeres that had been determined to develop into gastrodermal cells receive zooxanthellae during cleavage. This determination appears to take place, at the latest, by the second cell division at the four-cell stage.
Ryner, L C; Takagaki, Y; Manley, J L
1989-01-01
To investigate the role of sequences lying downstream of the conserved AAUAAA hexanucleotide in pre-mRNA cleavage and polyadenylation, deletions or substitutions were constructed in polyadenylation signals from simian virus 40 and adenovirus, and their effects were assayed in both crude and fractionated HeLa cell nuclear extracts. As expected, these sequences influenced the efficiency of both cleavage and polyadenylation as well as the accuracy of the cleavage reaction. Sequences near or upstream of the actual site of poly(A) addition appeared to specify a unique cleavage site, since their deletion resulted, in some cases, in heterogeneous cleavage. Furthermore, the sequences that allowed the simian virus 40 late pre-RNA to be cleaved preferentially by partially purified cleavage activity were also those at the cleavage site itself. Interestingly, sequences downstream of the cleavage site interacted with factors not directly involved in catalyzing cleavage and polyadenylation, since the effects of deletions were substantially diminished when partially purified components were used in assays. In addition, these sequences contained elements that could affect 3'-end formation both positively and negatively. Images PMID:2566911
Cerqueira, Carla; Samperio Ventayol, Pilar; Vogeley, Christian
2015-01-01
ABSTRACT The entry of human papillomaviruses into host cells is a complex process. It involves conformational changes at the cell surface, receptor switching, internalization by a novel endocytic mechanism, uncoating in endosomes, trafficking of a subviral complex to the Golgi complex, and nuclear entry during mitosis. Here, we addressed how the stabilizing contacts in the capsid of human papillomavirus 16 (HPV16) may be reversed to allow uncoating of the viral genome. Using biochemical and cell-biological analyses, we determined that the major capsid protein L1 underwent proteolytic cleavage during entry. In addition to a dispensable cathepsin-mediated proteolysis that occurred likely after removal of capsomers from the subviral complex in endosomes, at least two further proteolytic cleavages of L1 were observed, one of which was independent of the low-pH environment of endosomes. This cleavage occurred extracellularly. Further analysis showed that the responsible protease was the secreted trypsin-like serine protease kallikrein-8 (KLK8) involved in epidermal homeostasis and wound healing. Required for infection, the cleavage was facilitated by prior interaction of viral particles with heparan sulfate proteoglycans. KLK8-mediated cleavage was crucial for further conformational changes exposing an important epitope of the minor capsid protein L2. Occurring independently of cyclophilins and of furin that mediate L2 exposure, KLK8-mediated cleavage of L1 likely facilitated access to L2, located in the capsid lumen, and potentially uncoating. Since HPV6 and HPV18 also required KLK8 for entry, we propose that the KLK8-dependent entry step is conserved. IMPORTANCE Our analysis of the proteolytic processing of incoming HPV16, an etiological agent of cervical cancer, demonstrated that the capsid is cleaved extracellularly by a serine protease active during wound healing and that this cleavage was crucial for infection. The cleavage of L1 is one of at least four structural alterations that prime the virus extracellularly for receptor switching, internalization, and possibly uncoating. This step was also important for HPV6 and HPV18, which may suggest that it is conserved among the papillomaviruses. This study advances the understanding of how HPV16 initially infects cells, strengthens the notion that wounding facilitates infection of epidermal tissue, and may help the development of antiviral measures. PMID:25926655
The Tuberin/mTOR Pathway Promotes Apoptosis of Tubular Epithelial Cells in Diabetes
Velagapudi, Chakradhar; Bhandari, Basant S.; Abboud-Werner, Sherry; Simone, Simona; Abboud, Hanna E.
2011-01-01
Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose (HG) induces apoptosis is not fully understood. Because the tuberin/mTOR pathway can modulate apoptosis, we studied the role of this pathway in apoptosis in type I diabetes and in cultured proximal tubular epithelial (PTE) cells exposed to HG. Compared with control rats, diabetic rats had more apoptotic cells in the kidney cortex. Induction of diabetes also increased phosphorylation of tuberin in association with mTOR activation (measured by p70S6K phosphorylation), inactivation of Bcl-2, increased cytosolic cytochrome c expression, activation of caspase 3, and cleavage of PARP; insulin treatment prevented these changes. In vitro, exposure of PTE cells to HG increased phosphorylation of tuberin and p70S6K, phosphorylation of Bcl-2, expression of cytosolic cytochrome c, and caspase 3 activity. High glucose induced translocation of the caspase substrate YY1 from the cytoplasm to the nucleus and enhanced cleavage of PARP. Pretreatment the cells with the mTOR inhibitor rapamycin reduced the number of apoptotic cells induced by HG and the downstream effects of mTOR activation noted above. Furthermore, gene silencing of tuberin with siRNA decreased cleavage of PARP. These data show that the tuberin/mTOR pathway promotes apoptosis of tubular epithelial cells in diabetes, mediated in part by cleavage of PARP by YY1. PMID:21289215
Clevenger, Tracy N; Luna, Gabriel; Boctor, Daniel; Fisher, Steven K; Clegg, Dennis O
2016-01-01
One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for attachment and biodegradation. Poly(ethylene)-glycol hydrogels containing an Arg-Gly-Asp attachment sequence and a matrix metalloprotease 3/10 cleavage site supported adipose stem cell survival and showed remodeling initiated by adipogenic differentiation. Arg-Gly-Asp-matrix metalloprotease 3/10 cleavage site hydrogels showed an increased number and area of lacunae or holes after adipose stem cell differentiation. Image analysis of adipose stem cells in Arg-Gly-Asp-matrix metalloprotease 3/10 cleavage site hydrogels showed larger Voronoi domains, while cell density remained unchanged. The differentiated adipocytes residing within these newly remodeled spaces express proteins and messenger RNAs indicative of adipocytic differentiation. These engineered scaffolds may provide niches for stem cell differentiation and could prove useful in soft tissue regeneration.
Clevenger, Tracy N; Luna, Gabriel; Boctor, Daniel; Fisher, Steven K; Clegg, Dennis O
2016-01-01
One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for attachment and biodegradation. Poly(ethylene)-glycol hydrogels containing an Arg–Gly–Asp attachment sequence and a matrix metalloprotease 3/10 cleavage site supported adipose stem cell survival and showed remodeling initiated by adipogenic differentiation. Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed an increased number and area of lacunae or holes after adipose stem cell differentiation. Image analysis of adipose stem cells in Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed larger Voronoi domains, while cell density remained unchanged. The differentiated adipocytes residing within these newly remodeled spaces express proteins and messenger RNAs indicative of adipocytic differentiation. These engineered scaffolds may provide niches for stem cell differentiation and could prove useful in soft tissue regeneration. PMID:27733898
PrP(C) homodimerization stimulates the production of PrPC cleaved fragments PrPN1 and PrPC1.
Béland, Maxime; Motard, Julie; Barbarin, Alice; Roucou, Xavier
2012-09-19
An endoproteolytic cleavage termed α-cleavage between residues 111/112 is a characteristic feature of the cellular prion protein (PrP(C)). This cleavage generates a soluble N-terminal fragment (PrPN1) and a glycosylphosphatidylinositol-anchored C-terminal fragment (PrPC1). Independent studies demonstrate that modulating PrP(C) α-cleavage represents a potential therapeutic strategy in prion diseases. The regulation of PrP(C) α-cleavage is unclear. The only known domain that is essential for the α-cleavage to occur is a hydrophobic domain (HD). Importantly, the HD is also essential for the formation of PrP(C) homodimers. To explore the role of PrP(C) homodimerization on the α-cleavage, we used a well described inducible dimerization strategy whereby a chimeric PrP(C) composed of a modified FK506-binding protein (Fv) fused with PrP(C) and termed Fv-PrP is incubated in the presence of a dimerizer AP20187 ligand. We show that homodimerization leads to a considerable increase of PrP(C) α-cleavage in cultured cells and release of PrPN1 and PrPC1. Interestingly, enforced homodimerization increased PrP(C) levels at the plasma membrane, and preventing PrP(C) trafficking to the cell surface inhibited dimerization-induced α-cleavage. These observations were confirmed in primary hippocampal neurons from transgenic mice expressing Fv-PrP. The proteases responsible for the α-cleavage are still elusive, and in contrast to initial studies we confirm more recent investigations that neither ADAM10 nor ADAM17 are involved. Importantly, PrPN1 produced after PrP(C) homodimerization protects against toxic amyloid-β (Aβ) oligomers. Thus, our results show that PrP(C) homodimerization is an important regulator of PrP(C) α-cleavage and may represent a potential therapeutic avenue against Aβ toxicity in Alzheimer's disease.
Garcia, Angelo L; Han, Shan-Kuo; Janssen, William G; Khaing, Zin Z; Ito, Timothy; Glucksman, Marc J; Benson, Deanna L; Salton, Stephen R J
2005-12-16
Distinct intracellular pathways are involved in regulated and constitutive protein secretion from neuronal and endocrine cells, yet the peptide signals and molecular mechanisms responsible for targeting and retention of soluble proteins in secretory granules are incompletely understood. By using confocal microscopy and subcellular fractionation, we examined trafficking of the neuronal and endocrine peptide precursor VGF that is stored in large dense core vesicles and undergoes regulated secretion. VGF cofractionated with secretory vesicle membranes but was not detected in detergent-resistant lipid rafts. Deletional analysis using epitope-tagged VGF suggested that the C-terminal 73-amino acid fragment of VGF, containing two predicted alpha-helical loops and four potential prohormone convertase (PC) cleavage sites, was necessary and sufficient with an N-terminal signal peptide-containing domain, for large dense core vesicle sorting and regulated secretion from PC12 and INS-1 cells. Further transfection analysis identified the sorting sequence as a compact C-terminal alpha-helix and embedded 564RRR566 PC cleavage site; mutation of the 564RRR566 PC site in VGF-(1-65): GFP:VGF-(545-617) blocked regulated secretion, whereas disruption of the alpha-helix had no effect. Mutation of the adjacent 567HFHH570 motif, a charged region that might enhance PC cleavage in acidic environments, also blocked regulated release. Finally, inhibition of PC cleavage in PC12 cells using the membrane-permeable synthetic peptide chloromethyl ketone (decanoyl-RVKR-CMK) blocked regulated secretion of VGF. Our studies define a critical RRR-containing C-terminal domain that targets VGF into the regulated pathway in neuronal PC12 and endocrine INS-1 cells, providing additional support for the proposed role that PCs and their cleavage sites play in regulated peptide secretion.
Global identification of target recognition and cleavage by the Microprocessor in human ES cells.
Seong, Youngmo; Lim, Do-Hwan; Kim, Augustine; Seo, Jae Hong; Lee, Young Sik; Song, Hoseok; Kwon, Young-Soo
2014-11-10
The Microprocessor plays an essential role in canonical miRNA biogenesis by facilitating cleavage of stem-loop structures in primary transcripts to yield pre-miRNAs. Although miRNA biogenesis has been extensively studied through biochemical and molecular genetic approaches, it has yet to be addressed to what extent the current miRNA biogenesis models hold true in intact cells. To address the issues of in vivo recognition and cleavage by the Microprocessor, we investigate RNAs that are associated with DGCR8 and Drosha by using immunoprecipitation coupled with next-generation sequencing. Here, we present global protein-RNA interactions with unprecedented sensitivity and specificity. Our data indicate that precursors of canonical miRNAs and miRNA-like hairpins are the major substrates of the Microprocessor. As a result of specific enrichment of nascent cleavage products, we are able to pinpoint the Microprocessor-mediated cleavage sites per se at single-nucleotide resolution. Unexpectedly, a 2-nt 3' overhang invariably exists at the ends of cleaved bases instead of nascent pre-miRNAs. Besides canonical miRNA precursors, we find that two novel miRNA-like structures embedded in mRNAs are cleaved to yield pre-miRNA-like hairpins, uncoupled from miRNA maturation. Our data provide a framework for in vivo Microprocessor-mediated cleavage and a foundation for experimental and computational studies on miRNA biogenesis in living cells. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
The caspase-generated cleavage product of Ets-1 p51 and Ets-1 p27, Cp17, induces apoptosis.
Choul-Li, Souhaila; Tulasne, David; Aumercier, Marc
2016-11-04
The transcription factor Ets-1 is involved in various physiological processes and invasive pathologies. Human Ets-1 exists under three isoforms: p51, the predominant full-length isoform, p42 and p27, shorter alternatively spliced isoforms. We have previously demonstrated that Ets-1 p51, but not the spliced variant Ets-1 p42, is processed by caspases in vitro and during apoptosis. However, the caspase cleavage of the second spliced variant Ets-1 p27 remains to investigate. In the present study, we demonstrate that Ets-1 p27 is a cleavage substrate of caspases. We show that Ets-1 p27 is processed in vitro by caspase-3, resulting in three C-terminal fragments Cp20, Cp17 and Cp14. Similarly, Ets-1 p27 was cleaved during apoptotic cell death induced by anisomycin, producing fragments consistent with those observed in in vitro cleavage assay. These fragments are generated by cleavage at three sites located in the exon VII-encoded region of Ets-1 p27. As a functional consequences, Cp17 fragment, the major cleavage product generated during apoptosis, induced itself apoptosis when transfected into cells. Our results show that Ets-1 p27 is cleaved in the same manner as Ets-1 p51 within the exon VII-encoded region, thus generating a stable C-terminal fragment that induces cell death by initiating apoptosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Loganathan, R; Selvaduray, K R; Nesaretnam, K; Radhakrishnan, A K
2013-04-01
Tocotrienols and tocopherols are members of the vitamin E family, with similar structures; however, only tocotrienols have been reported to achieve potent anti-cancer effects. The study described here has evaluated anti-cancer activity of vitamin E to elucidate mechanisms of cell death, using human breast cancer cells. Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits. Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis. Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines. © 2013 Blackwell Publishing Ltd.
The extracellular matrix remodeled
Kirmse, Robert; Otto, Hannes
2012-01-01
Membrane Type-1 Matrix Metalloproteinase (MT1-MMP, MMP-14) is regarded as the prototype of a membrane- tethered protease. It drives fundamental biological processes ranging from embryogenesis to cancer metastasis. The proteolytic cleavage of proteins by MT1-MMP can rapidly alter the biophysical properties of a cell’s microenvironment. Cell’s must thus be able to sense and react to these alterations and transduce these effectively in biochemical signals and cell responses. Although many cells react as acutely to such physical stimuli as they do to chemical ones, the regulatory effects of these have been less extensively explored. In order to investigate a possible interdependency of proteolytic matrix cleavage by MT1-MMP and the generation and sensing of force by cells, a model system was established which exploits the properties of a matrix array of parallel collagen-I fibers. The resulting an-isotropy of the matrix with high tensile strength along the fibers and high mobility perpendicular to it allows the convenient detection of bundling and cleavage of the collagen fibers, as well as spreading and durotaxis of the cells. In summary, we have demonstrated that cell adhesion, force generation, and force sensing are vital for the regulation of MT1-MMP for efficient cleavage of collagen-I. PMID:22482015
The Echinoid Mitotic Gradient: Effect of Cell Size on the Micromere Cleavage Cycle
Langelan Duncan, Rosalie E.; Whiteley, Arthur H.
2012-01-01
SUMMARY Like other euechinoids, the fertilized eggs of the sand dollar Dendraster excentricus proceed through cleavages that produce a pattern of macromeres, mesomeres, and micromeres at the 4th division. The 8 cells of the macro-mesomere lineage proceed through 6 additional cleavages before hatching. At the fifth overall division, the 4 micromeres produce a lineage of large micromeres that will divide 3 additional times, and a lineage of small micromeres that will divide once more before hatching. Irrespective of lineage, the length of the cell cycles is closely related to the size of the blastomere; cells of the same size have the same cell cycle time. A consequence is that at the fourth cleavage, there is a gradient of mitotic activity from the fastest dividers at the animal pole and the slowest cleacing micromeres at the vegetal pole. By the time of hatching, which is the 10th division of meso-macromeres, all cells are the same small size, the metachronic pattern of division gives way to asynchrony, and the mitotic gradient along the polar axis is lost. Experimental pre-exposure to sodium dodecyl sulfate (SDS), however, blocks the appearance of the gradients in cell size, the mitotic gradient, and the differential in cell cycle times. It is proposed that the mitotic gradients, cell cycle times, and attainment of a state of asynchrony are functions of cell size. Developmental consequences of the transition are large, and include coordinated activation of transcriptions, synthesis of new patterns of proteins, alterations of metabolism, and onset of morphogenesis. PMID:22006441
Rehm, Markus; Huber, Heinrich J; Dussmann, Heiko; Prehn, Jochen H M
2006-01-01
Activation of effector caspases is a final step during apoptosis. Single-cell imaging studies have demonstrated that this process may occur as a rapid, all-or-none response, triggering a complete substrate cleavage within 15 min. Based on biochemical data from HeLa cells, we have developed a computational model of apoptosome-dependent caspase activation that was sufficient to remodel the rapid kinetics of effector caspase activation observed in vivo. Sensitivity analyses predicted a critical role for caspase-3-dependent feedback signalling and the X-linked-inhibitor-of-apoptosis-protein (XIAP), but a less prominent role for the XIAP antagonist Smac. Single-cell experiments employing a caspase fluorescence resonance energy transfer substrate verified these model predictions qualitatively and quantitatively. XIAP was predicted to control this all-or-none response, with concentrations as high as 0.15 μM enabling, but concentrations >0.30 μM significantly blocking substrate cleavage. Overexpression of XIAP within these threshold concentrations produced cells showing slow effector caspase activation and submaximal substrate cleavage. Our study supports the hypothesis that high levels of XIAP control caspase activation and substrate cleavage, and may promote apoptosis resistance and sublethal caspase activation in vivo. PMID:16932741
Liu, Yanhe; Chapple, Vincent; Feenan, Katie; Roberts, Peter; Matson, Phillip
2015-06-01
To investigate the clinical significance of intercellular contact point (ICCP) in four-cell stage human embryos and the effectiveness of morphology and abnormal cleavage patterns in identifying embryos with low implantation potential. Retrospective cohort study. Private IVF center. A total of 223 consecutive IVF and intracytoplasmic sperm injection treatment cycles, with all resulting embryos cultured in the Embryoscope, and a subset of 207 cycles analyzed for ICCP number where good-quality four-cell embryos were available on day 2 (n = 373 IVF and n = 392 intracytoplasmic sperm injection embryos). None. Morphologic score on day 3, embryo morphokinetic parameters, incidence of abnormal biological events, and known implantation results. Of 765 good-quality four-cell embryos, 89 (11.6%) failed to achieve six ICCPs; 166 of 765 (21.7%) initially had fewer than six ICCPs but were able to establish six ICCPs before subsequent division. Embryos with fewer than six ICCPs at the end of four-cell stage had a lower implantation rate (5.0% vs. 38.5%), with lower embryology performance in both conventional and morphokinetic assessments, compared with embryos achieving six ICCPs by the end of four-cell stage. Deselecting embryos with poor morphology, direct cleavage, reverse cleavage, and fewer than six ICCPs at the four-cell stage led to a significantly improved implantation rate (33.6% vs. 22.4%). Embryos with fewer than six ICCPs at the end of the four-cell stage show compromised subsequent development and reduced implantation potential. Deselection of embryos with poor morphology and abnormal cleavage revealed via time-lapse imaging could provide the basis of a qualitative algorithm for embryo selection. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Proteolytic cleavage and activation of PAK2 during UV irradiation-induced apoptosis in A431 cells.
Tang, T K; Chang, W C; Chan, W H; Yang, S D; Ni, M H; Yu, J S
1998-09-15
Exposure of mammalian cells to ultraviolet (UV) light elicits a cellular response and can also lead to apoptotic cell death. In this report, we show that a 36-kDa myelin basic protein (MBP) kinase detected by an in-gel kinase assay can be dramatically activated during the early stages of UV irradiation-triggered apoptosis of A431 cells. Immunoblot analysis revealed that this 36-kDa MBP kinase could be recognized by an antibody against the C-terminal regions of a family of p21Cdc42/Rac-activated kinases (PAKs). By using this antibody and a PAK2-specific antibody against the N-terminal region of PAK2 as studying tools, we further demonstrated that UV irradiation caused cleavage of PAK2 to generate a 36-kDa C-terminal catalytic fragment and a 30-kDa N-terminal fragment in A431 cells. The appearance of the 36-kDa C-terminal catalytic fragment of PAK2 matched exactly with the activation of the 36-kDa MBP kinase in A431 cells upon UV irradiation. In addition, UV irradiation also led to activation of CPP32/caspase-3, but not ICH-1L/caspase-2 and ICE/caspase-1, in A431 cells and the kinetics of activation of CPP32/caspase-3 appeared to correlate well with that of DNA fragmentation and of cleavage/activation of PAK2, respectively. Moreover, blockage of activation of CPP32/caspase-3 by pretreating the cells with two specific tetrapeptidic inhibitors for caspases (Ac-DEVD-cho and Ac-YVAD-cmk) could significantly attenuate the extent of cleavage/activation of PAK2 induced by UV irradiation. Collectively, the results demonstrate that cleavage and activation of PAK2 can be induced during the early stages of UV irradiation-triggered apoptosis and indicate the involvement of CPP32/caspase-3 in this process.
Cleavage and polyadenylation: Ending the message expands gene regulation
Neve, Jonathan
2017-01-01
ABSTRACT Cleavage and polyadenylation (pA) is a fundamental step that is required for the maturation of primary protein encoding transcripts into functional mRNAs that can be exported from the nucleus and translated in the cytoplasm. 3′end processing is dependent on the assembly of a multiprotein processing complex on the pA signals that reside in the pre-mRNAs. Most eukaryotic genes have multiple pA signals, resulting in alternative cleavage and polyadenylation (APA), a widespread phenomenon that is important to establish cell state and cell type specific transcriptomes. Here, we review how pA sites are recognized and comprehensively summarize how APA is regulated and creates mRNA isoform profiles that are characteristic for cell types, tissues, cellular states and disease. PMID:28453393
Mechanisms for ribotoxin-induced ribosomal RNA cleavage
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Kaiyu; Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824; Zhou, Hui-Ren
The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥ 25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥ 10 ng/ml) and ribosome-inactivating protein ricin (≥ 300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activatedmore » kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Highlights: ► Deoxynivalenol (DON) anisomycin, satratoxin G (SG) and ricin are ribotoxins. ► Ribotoxins induce 18s and 28s rRNA cleavage in the RAW 264.7 macrophage model. ► Ribotoxins induce rRNA cleavage via activation of p53, caspases and cathepsins. ► DON- and anisomycin-triggered rRNA cleavage is p38-dependent. ► SG- and ricin-induced rRNA cleavage is p38-independent.« less
EphA2 cleavage by MT1-MMP triggers single cancer cell invasion via homotypic cell repulsion
Sugiyama, Nami; Gucciardo, Erika; Tatti, Olga; Varjosalo, Markku; Hyytiäinen, Marko; Gstaiger, Matthias
2013-01-01
Changes in EphA2 signaling can affect cancer cell–cell communication and motility through effects on actomyosin contractility. However, the underlying cell–surface interactions and molecular mechanisms of how EphA2 mediates these effects have remained unclear. We demonstrate here that EphA2 and membrane-anchored membrane type-1 matrix metalloproteinase (MT1-MMP) were selectively up-regulated and coexpressed in invasive breast carcinoma cells, where, upon physical interaction in same cell–surface complexes, MT1-MMP cleaved EphA2 at its Fibronectin type-III domain 1. This cleavage, coupled with EphA2-dependent Src activation, triggered intracellular EphA2 translocation, as well as an increase in RhoA activity and cell junction disassembly, which suggests an overall repulsive effect between cells. Consistent with this, cleavage-prone EphA2-D359I mutant shifted breast carcinoma cell invasion from collective to rounded single-cell invasion within collagen and in vivo. Up-regulated MT1-MMP also codistributed with intracellular EphA2 in invasive cells within human breast carcinomas. These results reveal a new proteolytic regulatory mechanism of cell–cell signaling in cancer invasion. PMID:23629968
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follis, Kathryn E.; York, Joanne; Nunberg, Jack H.
The fusogenic potential of Class I viral envelope glycoproteins is activated by proteloytic cleavage of the precursor glycoprotein to generate the mature receptor-binding and transmembrane fusion subunits. Although the coronavirus (CoV) S glycoproteins share membership in this class of envelope glycoproteins, cleavage to generate the respective S1 and S2 subunits appears absent in a subset of CoV species, including that responsible for the severe acute respiratory syndrome (SARS). To determine whether proteolytic cleavage of the S glycoprotein might be important for the newly emerged SARS-CoV, we introduced a furin recognition site at single basic residues within the putative S1-S2 junctionalmore » region. We show that furin cleavage at the modified R667 position generates discrete S1 and S2 subunits and potentiates membrane fusion activity. This effect on the cell-cell fusion activity by the S glycoprotein is not, however, reflected in the infectivity of pseudotyped lentiviruses bearing the cleaved glycoprotein. The lack of effect of furin cleavage on virion infectivity mirrors that observed in the normally cleaved S glycoprotein of the murine coronavirus and highlights an additional level of complexity in coronavirus entry.« less
RacGAP50C is sufficient to signal cleavage furrow formation during cytokinesis.
D'Avino, Pier Paolo; Savoian, Matthew S; Capalbo, Luisa; Glover, David M
2006-11-01
Several studies indicate that spindle microtubules determine the position of the cleavage plane at the end of cell division, but their exact role in triggering the formation and ingression of the cleavage furrow is still unclear. Here we show that in Drosophila depletion of either the GAP (GTPase-activating protein) or the kinesin-like subunit of the evolutionary conserved centralspindlin complex prevents furrowing without affecting the association of astral microtubules with the cell cortex. Moreover, time-lapse imaging indicates that astral microtubules serve to deliver the centralspindlin complex to the equatorial cortex just before furrow formation. However, when the GAP-signaling component was mislocalized around the entire cortex using a membrane-tethering motif, this caused ectopic furrowing even in the absence of its motor partner. Thus, the GAP component of centralspindlin is both necessary and sufficient for furrow formation and ingression and astral microtubules provide a route for its delivery to the cleavage site.
Benoit, Beatrice; He, Chun Hua; Zhang, Fan; Votruba, Sarah M; Tadros, Wael; Westwood, J Timothy; Smibert, Craig A; Lipshitz, Howard D; Theurkauf, William E
2009-03-01
Genetic control of embryogenesis switches from the maternal to the zygotic genome during the maternal-to-zygotic transition (MZT), when maternal mRNAs are destroyed, high-level zygotic transcription is initiated, the replication checkpoint is activated and the cell cycle slows. The midblastula transition (MBT) is the first morphological event that requires zygotic gene expression. The Drosophila MBT is marked by blastoderm cellularization and follows 13 cleavage-stage divisions. The RNA-binding protein Smaug is required for cleavage-independent maternal transcript destruction during the Drosophila MZT. Here, we show that smaug mutants also disrupt syncytial blastoderm stage cell-cycle delays, DNA replication checkpoint activation, cellularization, and high-level zygotic expression of protein coding and micro RNA genes. We also show that Smaug protein levels increase through the cleavage divisions and peak when the checkpoint is activated and zygotic transcription initiates, and that transgenic expression of Smaug in an anterior-to-posterior gradient produces a concomitant gradient in the timing of maternal transcript destruction, cleavage cell cycle delays, zygotic gene transcription, cellularization and gastrulation. Smaug accumulation thus coordinates progression through the MZT.
Hendrickson, Peter G; Doráis, Jessie A; Grow, Edward J; Whiddon, Jennifer L; Lim, Jong-Won; Wike, Candice L; Weaver, Bradley D; Pflueger, Christian; Emery, Benjamin R; Wilcox, Aaron L; Nix, David A; Peterson, C Matthew; Tapscott, Stephen J; Carrell, Douglas T; Cairns, Bradley R
2017-06-01
To better understand transcriptional regulation during human oogenesis and preimplantation development, we defined stage-specific transcription, which highlighted the cleavage stage as being highly distinctive. Here, we present multiple lines of evidence that a eutherian-specific multicopy retrogene, DUX4, encodes a transcription factor that activates hundreds of endogenous genes (for example, ZSCAN4, KDM4E and PRAMEF-family genes) and retroviral elements (MERVL/HERVL family) that define the cleavage-specific transcriptional programs in humans and mice. Remarkably, mouse Dux expression is both necessary and sufficient to convert mouse embryonic stem cells (mESCs) into 2-cell-embryo-like ('2C-like') cells, measured here by the reactivation of '2C' genes and repeat elements, the loss of POU5F1 (also known as OCT4) protein and chromocenters, and the conversion of the chromatin landscape (as assessed by transposase-accessible chromatin using sequencing (ATAC-seq)) to a state strongly resembling that of mouse 2C embryos. Thus, we propose mouse DUX and human DUX4 as major drivers of the cleavage or 2C state.
Irusta, Griselda; Pazos, Maria Camila; Maidana, Camila Pazos; Abramovich, Dalhia; De Zúñiga, Ignacio; Parborell, Fernanda; Tesone, Marta
2013-07-01
Ovarian granulosa cell tumors (GCTs) represent 3%-5% of all ovarian malignancies. Treatments have limited proven efficacy and biologically targeted treatment is lacking. The aim of this study was to investigate the role of Notch signaling in the proliferation, steroidogenesis, apoptosis, and phosphatidylinositol 3-kinase (PI3K)/AKT pathway in a FOXL2-mutated granulosa tumor cell line (KGN) representative of the adult form of GCTs. When Notch signaling is initiated, the receptors expose a cleavage site in the extracellular domain to the metalloproteinase TACE and, following this cleavage, Notch undergoes another cleavage mediated by the presenilin-gamma-secretase complex. To achieve our goal, DAPT, an inhibitor of the gamma-secretase complex, was used to investigate the role of the Notch system in parameters associated with cell growth and death, using a human granulosa cell tumor line (KGN) as an experimental model. We observed that JAGGED1, DLL4, NOTCH1, and NOTCH4 were highly expressed in KGN cells as compared to granulosa-lutein cells obtained from assisted reproductive techniques patients. The proliferation and viability of KGN cells, as well as progesterone and estradiol production, decreased in the presence of 20 μM DAPT. Apoptotic parameters like PARP and caspase 8 cleavages, BAX, and BCLXs increased in KGN cells cultured with DAPT, whereas others such as BCL2, BCLXl, FAS, and FAS ligand did not change. AKT phosphorylation decreased and PTEN protein increased when Notch signaling was inhibited in KGN cells. We conclude that the Notch system acts as a survival pathway in KGN cells, and might be interacting with the PI3K/AKT pathway.
Widjaja, Michael; Berry, Iain J.; Pont, Elsa J.; Padula, Matthew P.; Djordjevic, Steven P.
2015-01-01
Mycoplasma pneumoniae is a significant cause of community acquired pneumonia globally. Despite having a genome less than 1 Mb in size, M. pneumoniae presents a structurally sophisticated attachment organelle that (i) provides cell polarity, (ii) directs adherence to receptors presented on respiratory epithelium, and (iii) plays a major role in cell motility. The major adhesins, P1 (Mpn141) and P30 (Mpn453), are localised to the tip of the attachment organelle by the surface accessible cleavage fragments P90 and P40 derived from Mpn142. Two events play a defining role in the formation of P90 and P40; removal of a leader peptide at position 26 (23SLA↓NTY28) during secretion to the cell surface and cleavage at amino acid 455 (452GPL↓RAG457) generating P40 and P90. Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) analysis of tryptic peptides generated by digesting size-fractionated cell lysates of M. pneumoniae identified 15 cleavage fragments of Mpn142 ranging in mass from 9–84 kDa. Further evidence for the existence of cleavage fragments of Mpn142 was generated by mapping tryptic peptides to proteins recovered from size fractionated eluents from affinity columns loaded with heparin, fibronectin, fetuin, actin, plasminogen and A549 surface proteins as bait. To define the sites of cleavage in Mpn142, neo-N-termini in cell lysates of M. pneumoniae were dimethyl-labelled and characterised by LC-MS/MS. Our data suggests that Mpn142 is cleaved to generate adhesins that are auxiliary to P1 and P30. PMID:28248283
Cleavage of transmembrane junction proteins and their role in regulating epithelial homeostasis
Nava, Porfirio; Kamekura, Ryuta; Nusrat, Asma
2013-01-01
Epithelial tissues form a selective barrier that separates the external environment from the internal tissue milieu. Single epithelial cells are densely packed and associate via distinct intercellular junctions. Intercellular junction proteins not only control barrier properties of the epithelium but also play an important role in regulating epithelial homeostasis that encompasses cell proliferation, migration, differentiation and regulated shedding. Recent studies have revealed that several proteases target epithelial junction proteins during physiological maturation as well as in pathologic states such as inflammation and cancer. This review discusses mechanisms and biological consequences of transmembrane junction protein cleavage. The influence of junction protein cleavage products on pathogenesis of inflammation and cancer is discussed. PMID:24665393
The timing of pronuclear formation, DNA synthesis and cleavage in the human 1-cell embryo.
Capmany, G; Taylor, A; Braude, P R; Bolton, V N
1996-05-01
The timing of pronuclear formation and breakdown, DNA synthesis and cleavage during the first cell cycle of human embryogenesis are described. Pronuclei formed between 3 and 10 h post-insemination (hpi; median 8 hpi). S-phase commenced between 8 and 14 hpi, and was completed between 10 and 18 hpi. M-phase was observed between 22 and 31 hpi (median duration 3 h), and cleavage to the 2-cell stage took place between 25 and 33 hpi. The timing of the same events was determined in 1-cell embryos derived from re-inseminated human oocytes that had failed to fertilize during therapeutic in-vitro fertilization (IVF). In these embryos, pronuclei formed between 3 and 8 h post-re-insemination (hpr-i), coinciding with the beginning of S-phase. While S-phase was completed as early as 10 hpr-i in some embryos, it extended until at least 16 hpr-i in others. Pronuclear breakdown and cleavage occurred from 23 and 26 hpr-i respectively; however, they did not occur in some embryos until after 46 hpr-i. The results demonstrate a markedly greater degree of variation in the timing of these events in embryos derived from re-inseminated oocytes compared with embryos derived from conventional IVF, and thus throw into question the validity of using the former as models for studies of the first cell cycle of human embryogenesis.
Siddiqui, Mohammad Adnan; Mukherjee, Sushovita; Manivannan, Praveen; Malathi, Krishnamurthy
2015-01-01
Autophagy and apoptosis share regulatory molecules enabling crosstalk in pathways that affect cellular homeostasis including response to viral infections and survival of tumor cells. Ribonuclease L (RNase L) is an antiviral endonuclease that is activated in virus-infected cells and cleaves viral and cellular single-stranded RNAs to produce small double-stranded RNAs with roles in amplifying host responses. Activation of RNase L induces autophagy and apoptosis in many cell types. However, the mechanism by which RNase L mediates crosstalk between these two pathways remains unclear. Here we show that small dsRNAs produced by RNase L promote a switch from autophagy to apoptosis by caspase-mediated cleavage of Beclin-1, terminating autophagy. The caspase 3-cleaved C-terminal fragment of Beclin-1 enhances apoptosis by translocating to the mitochondria along with proapoptotic protein, Bax, and inducing release of cytochrome C to the cytosol. Cleavage of Beclin-1 determines switch to apoptosis since expression of caspase-resistant Beclin-1 inhibits apoptosis and sustains autophagy. Moreover, inhibiting RNase L-induced autophagy promotes cell death and inhibiting apoptosis prolongs autophagy in a cross-inhibitory mechanism. Our results demonstrate a novel role of RNase L generated small RNAs in cross-talk between autophagy and apoptosis that impacts the fate of cells during viral infections and cancer. PMID:26263979
Cathepsins limit macrophage necroptosis through cleavage of Rip1 kinase.
McComb, Scott; Shutinoski, Bojan; Thurston, Susan; Cessford, Erin; Kumar, Kriti; Sad, Subash
2014-06-15
It has recently been shown that programmed necrosis, necroptosis, may play a key role in the development of inflammation. Deciphering the regulation of this pathway within immune cells may therefore have implications in pathology associated with inflammatory diseases. We show that treatment of macrophages with the pan caspase inhibitor (zVAD-FMK) results in both increased phosphorylation and decreased cleavage of receptor interacting protein kinase-1 (Rip1), leading to necroptosis that is dependent on autocrine TNF signaling. Stimulation of cells with TLR agonists such as LPS in the presence of zVAD-FMK also induced Rip1-phosphorylation via a TNFR-independent mechanism. Further examination of Rip1 expression under these stimulatory conditions revealed a regulatory cleavage of Rip1 in macrophages that is not apparently attributable to caspase-8. Instead, we provide novel evidence that cysteine family cathepsins, which are highly abundant in myeloid cells, can also cleave Rip1 kinase. Using small interfering RNA knockdown, specific cathepsin inhibitors, and cell-free cleavage assays, we demonstrate that cysteine cathepsins B and S can directly cleave Rip1. Finally, we demonstrate that only through combined inhibition of cathepsins and caspase-8 could a potent induction of macrophage necroptosis be achieved. These data reveal a novel mechanism of regulation of necroptosis by cathepsins within macrophage cells. Copyright © 2014 by The American Association of Immunologists, Inc.
The in vitro cleavage of the hAtg proteins by cell death proteases.
Norman, Joanna M; Cohen, Gerald M; Bampton, Edward T W
2010-11-01
It is becoming increasingly clear that there is crosstalk between the apoptotic and autophagic pathways, with autophagy helping to contribute to cell death by providing energy to allow the energy-requiring programmed cell death process to complete, as well as degrading cellular material in its own right. Recent evidence has suggested that Atg proteins can themselves be targets of caspases, providing potential regulation of autophagy as well as uncovering novel functions for fragments derived from Atg proteins. However, to date there has not been a detailed examination of which Atg proteins may be the targets of which death proteases. We show that the majority of human Atg (hAtg) proteins can be cleaved by calpain 1, which is activated in some apoptotic paradigms, as well as other forms of death. We also show that hAtg3 is cleaved by caspases-3, -6 and -8, hAtg6 (Beclin 1) is cleaved by caspase-3 and -6, while hAtg9, hAtg7 and the hAtg4 homologues can be cleaved by caspase-3. Cleavage of Beclin 1 was also seen in apoptosis of HeLa cells induced by staurosporine and TRAIL, along with cleavage of Atg3 and Atg4C. There were subtle effects of caspase inhibition on GFP-LC3 lipidation but more marked effects on the formation of GFP-LC3 puncta (a marker of autophagosome formation) and p62 degradation, indicating that caspase cleavage of autophagy-related proteins can affect the autophagic process. Notably we show that p62 is a target for caspase-6 and -8 cleavage.
Tan, Sang-Nee; Sim, Sai-Peng
2018-04-12
Chronic rhinosinusitis (CRS) increases the risk of developing nasopharyngeal carcinoma (NPC) while nasopharyngeal reflux is known to be one of the major aetiological factors of CRS. Bile acid (BA), the component of gastric duodenal contents, has been recognised as a carcinogen. BA-induced apoptosis was suggested to be involved in human malignancies. Cells have the potential and tendency to survive apoptosis. However, cells that evade apoptosis upon erroneous DNA repair may carry chromosome rearrangements. Apoptotic nuclease, caspase-activated deoxyribonuclease (CAD) has been implicated in mediating translocation in leukaemia. We hypothesised that BA-induced apoptosis may cause chromosome breaks mediated by CAD leading to chromosome rearrangement in NPC. This study targeted the AF9 gene located at 9p22 because 9p22 is one of the most common deletion sites in NPC. We tested the ability of BA at neutral and acidic pH in inducing phosphatidylserine (PS) externalisation, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) disruption, and caspase 3/7 activity in normal nasopharyngeal epithelial (NP69) and NPC (TWO4) cells. Inverse-PCR (IPCR) was employed to detect AF9 gene cleavages. To investigate the role of CAD in mediating these cleavages, caspase inhibition was performed. IPCR bands representing AF9 cleaved fragments were sequenced. BA-treated cells showed higher levels of PS externalisation, ROS production, MMP loss and caspase 3/7 activity than untreated control cells. The effect of BA in the induction of these intracellular events was enhanced by acid. BA at neutral and acidic pH also induced significant cleavage of the AF9 gene. These BA-induced gene cleavages were inhibited by Z-DEVD-FMK, a caspase-3 inhibitor. Intriguingly, a few chromosome breaks were identified within the AF9 region that was previously reported to participate in reciprocal translocation between the mixed lineage leukaemia (MLL) and AF9 genes in an acute lymphoblastic leukaemia (ALL) patient. These findings suggest a role for BA-induced apoptosis in mediating chromosome rearrangements in NPC. In addition, CAD may be a key player in chromosome cleavages mediated by BA-induced apoptosis. Persistent exposure of sinonasal tract to gastric duodenal refluxate may increase genomic instability in surviving cells.
Sloan, Katherine E.; Bohnsack, Markus T.; Schneider, Claudia; Watkins, Nicholas J.
2014-01-01
During eukaryotic ribosome biogenesis, three of the mature ribosomal (r)RNAs are released from a single precursor transcript (pre-rRNA) by an ordered series of endonucleolytic cleavages and exonucleolytic processing steps. Production of the 18S rRNA requires the removal of the 5′ external transcribed spacer (5′ETS) by endonucleolytic cleavages at sites A0 and A1/site 1. In metazoans, an additional cleavage in the 5′ETS, at site A′, upstream of A0, has also been reported. Here, we have investigated how A′ processing is coordinated with assembly of the early preribosomal complex. We find that only the tUTP (UTP-A) complex is critical for A′ cleavage, while components of the bUTP (UTP-B) and U3 snoRNP are important, but not essential, for efficient processing at this site. All other factors involved in the early stages of 18S rRNA processing that were tested here function downstream from this processing step. Interestingly, we show that the RNA surveillance factors XRN2 and MTR4 are also involved in A′ cleavage in humans. A′ cleavage is largely bypassed when XRN2 is depleted, and we also discover that A′ cleavage is not always the initial processing event in all cell types. Together, our data suggest that A′ cleavage is not a prerequisite for downstream pre-rRNA processing steps and may, in fact, represent a quality control step for initial pre-rRNA transcripts. Furthermore, we show that components of the RNA surveillance machinery, including the exosome and TRAMP complexes, also play key roles in the recycling of excised spacer fragments and degradation of aberrant pre-rRNAs in human cells. PMID:24550520
Protein Kinase C- ɛ Regulates the Apoptosis and Survival of Glioma Cells
Okhrimenko, Hana; Lu, Wei; Xiang, Cunli; Hamburger, Nathan; Kazimirsky, Gila; Brodie, Chaya
2005-01-01
In this study, we examined the role of protein kinase C (PKC)-ɛ in the apoptosis and survival of glioma cells using tumor necrosis factor–related apoptosis inducing ligand (TRAIL)- stimulated cells and silencing of PKCɛ expression. Treatment of glioma cells with TRAIL induced activation, caspase-dependent cleavage, and down-regulation of PKCɛ within 3 to 5 hours of treatment. Overexpression of PKCɛ inhibited the apoptosis induced by TRAIL, acting downstream of caspase 8 and upstream of Bid cleavage and cytochrome c release from the mitochondria. A caspase-resistant PKCɛ mutant (D383A) was more protective than PKCɛ, suggesting that both the cleavage of PKCɛ and its down-regulation contributed to the apoptotic effect of TRAIL. To further study the role of PKCɛ in glioma cell apoptosis, we employed short interfering RNAs directed against the mRNA of PKCɛ and found that silencing of PKCɛ expression induced apoptosis of various glioma cell lines and primary glioma cultures. To delineate the molecular mechanisms involved in the apoptosis induced by silencing of PKCɛ, we examined the expression and phosphorylation of various apoptosis-related proteins. We found that knockdown of PKCɛ did not affect the expression of Bcl2 and Bax or the phosphorylation and expression of Erk1/2, c-Jun-NH2-kinase, p38, or STAT, whereas it selectively reduced the expression of AKT. Similarly, TRAIL reduced the expression of AKT in glioma cells and this decrease was abolished in cells overexpressing PKCɛ. Our results suggest that the cleavage of PKCɛ and its down-regulation play important roles in the apoptotic effect of TRAIL. Moreover, PKCɛ regulates AKT expression and is essential for the survival of glioma cells. PMID:16103081
Phosphoinositide function in cytokinesis.
Brill, Julie A; Wong, Raymond; Wilde, Andrew
2011-11-22
In systems as diverse as yeast, slime mold and animal cells, the levels and distribution of phosphatidylinositol phosphates (PIPs) must be strictly regulated for successful cell cleavage. The precise mechanism by which PIPs function in this process remains unknown. Recent experiments are beginning to shed light on the cellular pathways in which PIPs make key contributions during cytokinesis. In particular, PIPs promote proper actin cytoskeletal organization and direct membrane trafficking in dividing cells. Future research will uncover temporal and spatial regulation of the different PIPs, thus elucidating their role in cytoskeletal and membrane events that drive cell cleavage. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lessard, Christian B; Cottrell, Barbara A; Maruyama, Hiroko; Suresh, Suraj; Golde, Todd E; Koo, Edward H
2015-01-01
The relative increase in Aβ42 peptides from familial Alzheimer disease (FAD) linked APP and PSEN mutations can be related to changes in both ε-cleavage site utilization and subsequent step-wise cleavage. Cleavage at the ε-site releases the amyloid precursor protein (APP) intracellular domain (AICD), and perturbations in the position of ε-cleavage are closely associated with changes in the profile of amyloid β-protein (Aβ) species that are produced and secreted. The mechanisms by which γ-secretase modulators (GSMs) or FAD mutations affect the various γ-secretase cleavages to alter the generation of Aβ peptides have not been fully elucidated. Recent studies suggested that GSMs do not modulate ε-cleavage of APP, but the data were derived principally from recombinant truncated epitope tagged APP substrate. Here, using full length APP from transfected cells, we investigated whether GSMs modify the ε-cleavage of APP under more native conditions. Our results confirmed the previous findings that ε-cleavage is insensitive to GSMs. In addition, fenofibrate, an inverse GSM (iGSM), did not alter the position or kinetics of ε-cleavage position in vitro. APH1A and APH1B, a subunit of the γ-secretase complex, also modulated Aβ42/Aβ40 ratio without any alterations in ε-cleavage, a result in contrast to what has been observed with PS1 and APP FAD mutations. Consequently, GSMs and APH1 appear to modulate γ-secretase activity and Aβ42 generation by altering processivity but not ε-cleavage site utilization.
Live cell interferometry quantifies dynamics of biomass partitioning during cytokinesis.
Zangle, Thomas A; Teitell, Michael A; Reed, Jason
2014-01-01
The equal partitioning of cell mass between daughters is the usual and expected outcome of cytokinesis for self-renewing cells. However, most studies of partitioning during cell division have focused on daughter cell shape symmetry or segregation of chromosomes. Here, we use live cell interferometry (LCI) to quantify the partitioning of daughter cell mass during and following cytokinesis. We use adherent and non-adherent mouse fibroblast and mouse and human lymphocyte cell lines as models and show that, on average, mass asymmetries present at the time of cleavage furrow formation persist through cytokinesis. The addition of multiple cytoskeleton-disrupting agents leads to increased asymmetry in mass partitioning which suggests the absence of active mass partitioning mechanisms after cleavage furrow positioning.
Resistance of Actin to Cleavage during Apoptosis
NASA Astrophysics Data System (ADS)
Song, Qizhong; Wei, Tie; Lees-Miller, Susan; Alnemri, Emad; Watters, Dianne; Lavin, Martin F.
1997-01-01
A small number of cellular proteins present in the nucleus, cytosol, and membrane fraction are specifically cleaved by the interleukin-1β -converting enzyme (ICE)-like family of proteases during apoptosis. Previous results have demonstrated that one of these, the cytoskeletal protein actin, is degraded in rat PC12 pheochromocytoma cells upon serum withdrawal. Extracts from etoposide-treated U937 cells are also capable of cleaving actin. It was assumed that cleavage of actin represented a general phenomenon, and a mechanism coordinating proteolytic, endonucleolytic, and morphological aspects of apoptosis was proposed. We demonstrate here that actin is resistant to degradation in several different human cells induced to undergo apoptosis in response to a variety of stimuli, including Fas ligation, serum withdrawal, cytotoxic T-cell killing, and DNA damage. On the other hand, cell-free extracts from these cells and the ICE-like protease CPP32 were capable of cleaving actin in vitro. We conclude that while actin contains cleavage sites for ICE-like proteases, it is not degraded in vivo in human cells either because of lack of access of these proteases to actin or due to the presence of other factors that prevent degradation.
Microinjection of the monoclonal anti-tubulin antibody YL1/2 inhibits cleavage of sand dollar eggs.
Oka, M T; Arai, T; Hamaguchi, Y
1990-12-01
Two monoclonal antibodies against alpha-tubulin (YL1/2 and D2D6) were microinjected into the egg of the sand dollar Clypeaster japonicus, and their effects on cleavage of the egg were investigated. They had already been shown by immunoblotting to react specifically with egg tubulin and by immunofluorescence to stain the mitotic apparatus [OKA et al., (1990). Cell Motil. Cytoskel. 16:239-250]. Injection of YL1/2 prevented chromosome movement and cleavage, although the cleavage furrow developed in some cases. In all eggs injected at prometaphase, metaphase, or anaphase, the birefringence of the mitotic apparatus disappeared immediately after injection. Injection of D2D6 had no significant effect on mitosis or cleavage of whole eggs injected after nuclear disappearance, although it prevented the disappearance of the nuclear envelope in 54% of the eggs injected before the disappearance. FITC-conjugated D2D6 did not accumulate in the spindle when injected into the dividing sand dollar egg. These results indicate that YL1/2 disassembled microtubules, whereas D2D6 did not bind to microtubules in the living cell.
Feng, Tao; Nyffenegger, Christian; Højrup, Peter; Vidal-Melgosa, Silvia; Yan, Kok-Phen; Fangel, Jonatan Ulrik; Meyer, Anne S; Kirpekar, Finn; Willats, William G; Mikkelsen, Jørn D
2014-12-01
Compared to other plant cell wall-degrading enzymes, proteases are less well understood. In this study, the extracellular metalloprotease Prt1 from Pectobacterium carotovorum (formerly Erwinia carotovora) was expressed in Escherichia coli and characterized with respect to N-terminal processing, thermal stability, substrate targets, and cleavage patterns. Prt1 is an autoprocessing protease with an N-terminal signal pre-peptide and a pro-peptide which has to be removed in order to activate the protease. The sequential cleavage of the N-terminus was confirmed by mass spectrometry (MS) fingerprinting and N-terminus analysis. The optimal reaction conditions for the activity of Prt1 on azocasein were at pH 6.0, 50 °C. At these reaction conditions, K M was 1.81 mg/mL and k cat was 1.82 × 10(7) U M(-1). The enzyme was relatively stable at 50 °C with a half-life of 20 min. Ethylenediaminetetraacetic acid (EDTA) treatment abolished activity; Zn(2+) addition caused regain of the activity, but Zn(2+)addition decreased the thermal stability of the Prt1 enzyme presumably as a result of increased proteolytic autolysis. In addition to casein, the enzyme catalyzed degradation of collagen, potato lectin, and plant extensin. Analysis of the cleavage pattern of different substrates after treatment with Prt1 indicated that the protease had a substrate cleavage preference for proline in substrate residue position P1 followed by a hydrophobic residue in residue position P1' at the cleavage point. The activity of Prt1 against plant cell wall structural proteins suggests that this enzyme might become an important new addition to the toolbox of cell-wall-degrading enzymes for biomass processing.
HEAVY WATER AS A PARTHENOGENIC AGENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spindel, W.; Gross, P.R.
1961-10-01
It was found that D/sub 2/O evokes parthenogenic division of eggs stored therein prior to fertilization. When unfertilized sea urchin eggs are stored in 99+% D/sub 2/O-sea water for 1-2 hours, then washed and returned to normal sea water, they cleave, in remarkably high percentages, at about 35 minutes after removal from D/sub 2/O (21 deg C). These are cleavages without benefit of sperm, and they continue for many hours, most cells becoming disorganized blastulae. The first cleavages are always multiple and irregular in such experiments, and the furrowing pattern is closely related to the distribution of the numerous cytastersmore » which remain and grow after removal of the cells from D/sub 2/O. When the period of immersion is shorter, or the concentration of D/sub 2/O reduced, the time required for the appearance of the first parthenogenic cleavages increases rapidly; hence, for a ten-minute storage period, the first cleavage interval is 3-4 hours, and the final yield of divided cells is smaller. Parthenogenesis cannot be produced if the concentration of D/sub 2/O falls to 70% or less. The striking effects of prolonged storage in D/sub 2/O are not results of aging alone, since controls stored for the same intervals in normal sea water do not divide. The effect appears to depend upon the formation of stable cytasters, which begins in 99+% D/sub 2/Osea water after 10 minutes of storage for unfertilized eggs. Thus, eggs stored in D/sub 2/O and then fertilized show normal cleavage in the absence of cytasters, but multiple cleavage when cytasters persist in the cytoplasm after removal of D/sub 2/O. (auth)« less
Kobayashi, T; Kato, Y; Tsunoda, Y
2004-09-01
The present study examined whether the timing of the first cleavage has an effect on the in vitro and in vivo developmental potential of nuclear-transferred mouse oocytes receiving embryonic stem cells. First, the timing of the first cleavage and the developmental potential of nuclear-transferred oocytes were examined every hour from 12 to 24 h after the start of culture and compared with in vitro-fertilized oocytes. The developmental potential of in vitro-fertilized oocytes decreased gradually according to the time required for cleavage (84% (32/38) for 15 h to 50% (1/2) for 20 h), but intermediate-cleaved (15-16 h) nuclear-transferred oocytes had a higher potential to develop into blastocysts (55% (17/31) to 67% (45/67) versus 0-43% (6/14)]. Second the nuclear-transferred oocytes were divided into three groups according to the timing of the first cleavage; each group was cultured to blastocysts in vitro, and then transferred to recipients. The potential of intermediate-cleaved oocytes (15-16 h) to develop into blastocysts was significantly higher than fast-cleaved (before 15 h) and slow-cleaved (after 16 h) oocytes (65, 46, and 37%). The proportion of fetuses on Day 10.5 of pregnancy was highest in the intermediate-cleaved group (4 versus 2 and 1%, respectively) and a full-term fetus was obtained from this group. The present study demonstrated that the timing of the first cleavage could be used to determine the potential of nuclear-transferred oocytes with embryonic stem cells to develop to the blastocyst stage in vitro, but not to determine post-implantation viability after transfer to recipients.
Role of cleavage at the core-E1 junction of hepatitis C virus polyprotein in viral morphogenesis.
Pène, Véronique; Lemasson, Matthieu; Harper, Francis; Pierron, Gérard; Rosenberg, Arielle R
2017-01-01
In hepatitis C virus (HCV) polyprotein sequence, core protein terminates with E1 envelope signal peptide. Cleavage by signal peptidase (SP) separates E1 from the complete form of core protein, anchored in the endoplasmic reticulum (ER) membrane by the signal peptide. Subsequent cleavage of the signal peptide by signal-peptide peptidase (SPP) releases the mature form of core protein, which preferentially relocates to lipid droplets. Both of these cleavages are required for the HCV infectious cycle, supporting the idea that HCV assembly begins at the surface of lipid droplets, yet SPP-catalyzed cleavage is dispensable for initiation of budding in the ER. Here we have addressed at what step(s) of the HCV infectious cycle SP-catalyzed cleavage at the core-E1 junction is required. Taking advantage of the sole system that has allowed visualization of HCV budding events in the ER lumen of mammalian cells, we showed that, unexpectedly, mutations abolishing this cleavage did not prevent but instead tended to promote the initiation of viral budding. Moreover, even though no viral particles were released from Huh-7 cells transfected with a full-length HCV genome bearing these mutations, intracellular viral particles containing core protein protected by a membrane envelope were formed. These were visualized by electron microscopy as capsid-containing particles with a diameter of about 70 nm and 40 nm before and after delipidation, respectively, comparable to intracellular wild-type particle precursors except that they were non-infectious. Thus, our results show that SP-catalyzed cleavage is dispensable for HCV budding per se, but is required for the viral particles to acquire their infectivity and secretion. These data support the idea that HCV assembly occurs in concert with budding at the ER membrane. Furthermore, capsid-containing particles did not accumulate in the absence of SP-catalyzed cleavage, suggesting the quality of newly formed viral particles is controlled before secretion.
Role of cleavage at the core-E1 junction of hepatitis C virus polyprotein in viral morphogenesis
Pène, Véronique; Lemasson, Matthieu; Harper, Francis; Pierron, Gérard; Rosenberg, Arielle R.
2017-01-01
In hepatitis C virus (HCV) polyprotein sequence, core protein terminates with E1 envelope signal peptide. Cleavage by signal peptidase (SP) separates E1 from the complete form of core protein, anchored in the endoplasmic reticulum (ER) membrane by the signal peptide. Subsequent cleavage of the signal peptide by signal-peptide peptidase (SPP) releases the mature form of core protein, which preferentially relocates to lipid droplets. Both of these cleavages are required for the HCV infectious cycle, supporting the idea that HCV assembly begins at the surface of lipid droplets, yet SPP-catalyzed cleavage is dispensable for initiation of budding in the ER. Here we have addressed at what step(s) of the HCV infectious cycle SP-catalyzed cleavage at the core-E1 junction is required. Taking advantage of the sole system that has allowed visualization of HCV budding events in the ER lumen of mammalian cells, we showed that, unexpectedly, mutations abolishing this cleavage did not prevent but instead tended to promote the initiation of viral budding. Moreover, even though no viral particles were released from Huh-7 cells transfected with a full-length HCV genome bearing these mutations, intracellular viral particles containing core protein protected by a membrane envelope were formed. These were visualized by electron microscopy as capsid-containing particles with a diameter of about 70 nm and 40 nm before and after delipidation, respectively, comparable to intracellular wild-type particle precursors except that they were non-infectious. Thus, our results show that SP-catalyzed cleavage is dispensable for HCV budding per se, but is required for the viral particles to acquire their infectivity and secretion. These data support the idea that HCV assembly occurs in concert with budding at the ER membrane. Furthermore, capsid-containing particles did not accumulate in the absence of SP-catalyzed cleavage, suggesting the quality of newly formed viral particles is controlled before secretion. PMID:28437468
Devers, Emanuel A.; Branscheid, Anja; May, Patrick; Krajinski, Franziska
2011-01-01
The majority of plants are able to form the arbuscular mycorrhizal (AM) symbiosis in association with AM fungi. During symbiosis development, plant cells undergo a complex reprogramming resulting in profound morphological and physiological changes. MicroRNAs (miRNAs) are important components of the regulatory network of plant cells. To unravel the impact of miRNAs and miRNA-mediated mRNA cleavage on root cell reprogramming during AM symbiosis, we carried out high-throughput (Illumina) sequencing of small RNAs and degradome tags of Medicago truncatula roots. This led to the annotation of 243 novel miRNAs. An increased accumulation of several novel and conserved miRNAs in mycorrhizal roots suggest a role of these miRNAs during AM symbiosis. The degradome analysis led to the identification of 185 root transcripts as mature miRNA and also miRNA*-mediated mRNA cleavage targets. Several of the identified miRNA targets are known to be involved in root symbioses. In summary, the increased accumulation of specific miRNAs and the miRNA-mediated cleavage of symbiosis-relevant genes indicate that miRNAs are an important part of the regulatory network leading to symbiosis development. PMID:21571671
N-CADHERIN PRODOMAIN CLEAVAGE REGULATES SYNAPSE FORMATION IN VIVO
Latefi, Nazlie S.; Pedraza, Liliana; Schohl, Anne; Li, Ziwei; Ruthazer, Edward S.
2009-01-01
Cadherins are initially synthesized bearing a prodomain that is thought to limit adhesion during early stages of biosynthesis. Functional cadherins lack this prodomain, raising the intriguing possibility that cells may utilize prodomain cleavage as a means to temporally or spatially regulate adhesion after delivery of cadherin to the cell surface. In support of this idea, immunostaining for the prodomain of zebrafish N-cadherin revealed enriched labeling at neuronal surfaces at the soma and along axonal processes. To determine whether post-translational cleavage of the prodomain affects synapse formation, we imaged Rohon-Beard cells in zebrafish embryos expressing GFP-tagged wild-type N-cadherin (NCAD-GFP) or a GFP-tagged N-cadherin mutant expressing an uncleavable prodomain (PRON-GFP) rendering it non-adhesive. NCAD-GFP accumulated at synaptic microdomains in a developmentally regulated manner, and its overexpression transiently accelerated synapse formation. PRON-GFP was much more diffusely distributed along the axon and its overexpression delayed synapse formation. Our results support the notion that N-cadherin serves to stabilize pre- to postsynaptic contacts early in synapse development and suggests that regulated cleavage of the N-cadherin prodomain may be a mechanism by which the kinetics of synaptogenesis are regulated. PMID:19365814
Multifaceted regulation of V(D)J recombination
NASA Astrophysics Data System (ADS)
Wang, Guannan
V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2) and the subsequent imprecise resolution of the DNA ends, which is carried out by the ubiquitous non-homologous end joining pathway (NHEJ). The V(D)J recombination reaction is obliged to be tightly controlled under all circumstances, as it involves generations of DNA double strand breaks, which are considered the most dangerous lesion to a cell. Multifaceted regulatory mechanisms have been evolved to create great diversity of the antigen receptor repertoire while ensuring genome stability. The RAG-mediated cleavage reaction is stringently regulated at both the pre-cleavage stage and the post-cleavage stage. Specifically, RAG1/2 first forms a pre-cleavage complex assembled at the boarder of RSS and coding flank, which ensures the appropriate DNA targeting. Subsequently, this complex initiates site-specific cleavage, generating two types of double stranded DNA breaks, hairpin-ended coding ends (HP-CEs) and blunt signal ends (SEs). After the cleavage, RAG1/2 proteins bind and retain the recombination ends to form post-cleavage complexes (PCC), which collaborates with the NHEJ machinery for appropriate transfer of recombination ends to NHEJ for proper end resolution. However, little is known about the molecular basis of this collaboration, partly attributed to the lack of sensitive assays to reveal the interaction of PCC with HP-CEs. Here, for the first time, by using two complementary fluorescence-based techniques, fluorescence anisotropy and fluorescence resonance energy transfer (FRET), I managed to monitor the RAG1/2-catalyzed cleavage reaction in real time, from the pre-cleavage to the post-cleavage stages. By examining the dynamic fluorescence changes during the RAG-mediated cleavage reactions, and by manipulating the reaction conditions, I was able to characterize some fundamental properties of RAG-DNA interactions before and after cleavage. Firstly, Mg 2+, known as a physiological cofactor at the excision step, also promotes the HP-CEs retention in the RAG complex after cleavage. Secondly, the structure of pre-cleavage complex may affect the subsequent collaborations with NHEJ for end resolution. Thirdly, the non-core region of RAG2 may have differential influences on the PCC retention of HP-CEs and SEs. Furthermore, I also provide the first evidence of RAG1-mediated regulation of RAG2. Our study provides important insights into the multilayered regulatory mechanisms, in modulating recombination events in developing lymphocytes and paves the way for possible development of detection and diagnotic markers for defective recombination events that are often associated immunodeficiency and/or lymphoid malignancy.
Li, Xiaoning; Su, Jing; Xia, Meihui; Li, Hongyan; Xu, Ye; Ma, Chunhui; Ma, Liwei; Kang, Jingsong; Yu, Huimei; Zhang, Zhichao; Sun, Liankun
2016-02-01
S1, a novel BH3 mimetic, can induce apoptosis dependent on Bax/Bak through inhibition of Bcl-2 in various tumors. S1 also induces autophagy through interrupting the interaction of Bcl-2 and Beclin1. Our results showed that S1 induces apoptosis in human ovarian cancer SKOV3 cells in a time- and dose-dependent manner. Autophagy precedes apoptosis, in SKOV3 cells treated with S1 (6 μmol/L), autophagy reached the maximum peak at 12 h after treatment and decreased to 24 h. In SKOV3 cells treated with different concentrations of S1 for 24 h, the highest level of autophagy was observed with 5 μmol/L and decreased to 10 μmol/L. Autophagy inhibitors 3-MA and CQ enhanced apoptosis induced by S1 in SKOV3 cells. However, overactivation of caspases in apoptosis induced by S1 may inhibit the autophagy-inducing function of Beclin1. Because the pan-caspase inhibitor Z-VAD recovered the autophagy-inducing function of Beclin1 through reduction of activated caspase-mediated cleavage of Beclin1. Furthermore, the Beclin1 cleavage products could further increase apoptosis induced by S1 in SKOV3 cells. This indicates that apoptosis induced by high doses and long exposure of S1 causes the overactivation of caspases and subsequent cleavage of Beclin1, and inhibits the protection of autophagy. Moreover, the cleaved product of Beclin1 further promotes apoptosis induced by S1 in SKOV3 cells. Our results suggest this may be a molecular mechanism for enhancing the sensitivity of cancer cells to apoptosis induced by small molecular compound targeting Bcl-2.
Chan, W H; Yu, J S; Yang, S D
1999-03-01
Hyperosmotic shock elicits a stress response in mammalian cells and can lead to apoptotic cell death. In the present study, we report that hyperosmotic shock can induce activation of a 36 kDa kinase detected by an in-gel kinase assay in several cell types, including mouse Balb/c 3T3 fibroblasts, and human Hep 3B and A431 cells. This 36 kDa kinase can be recognized by an antibody against the C-terminal region of a family of p21Cdc42/Rac-activated kinases (PAKs) on immunoblot. Further studies with this antibody and a PAK2-specific antibody against the N-terminal region of PAK2 demonstrate that hyperosmotic shock can induce cleavage of PAK2 to generate a 36 kDa C-terminal catalytic fragment in cells. The cleavage and activation of PAK2 was found to be closely associated with both DNA fragmentation and activation of an ICE/CED-3 family cysteine protease termed caspase-3 in hyperosmotically shocked cells. Furthermore, pretreating the cells with two caspase inhibitors (Ac-DEVD-cho and Ac-YVAD-cmk) could inhibit both cleavage/activation of PAK2 and DNA fragmentation induced by hyperosmotic shock. Moreover, all these hyperosmotic shock-induced changes (i.e., activation of caspase-3, cleavage/activation of PAK2, and DNA fragmentation) in cells could be blocked by antioxidants such as ascorbic acid (vitamine C), alpha-tocopherol (vitamine E), dithiothreitol, beta-mercaptoethanol, and glutathione. Taken together, our results show that PAK2 is cleaved and activated via a caspase-dependent mechanism during hyperosmotic shock-induced apoptosis and suggest the involvement of antioxidant-preventable oxidative stress in inducing this process.
Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors.
Prodon, François; Chenevert, Janet; Hébras, Céline; Dumollard, Rémi; Faure, Emmanuel; Gonzalez-Garcia, Jose; Nishida, Hiroki; Sardet, Christian; McDougall, Alex
2010-06-01
Mitotic spindle orientation with respect to cortical polarity cues generates molecularly distinct daughter cells during asymmetric cell division (ACD). However, during ACD it remains unknown how the orientation of the mitotic spindle is regulated by cortical polarity cues until furrowing begins. In ascidians, the cortical centrosome-attracting body (CAB) generates three successive unequal cleavages and the asymmetric segregation of 40 localized postplasmic/PEM RNAs in germ cell precursors from the 8-64 cell stage. By combining fast 4D confocal fluorescence imaging with gene-silencing and classical blastomere isolation experiments, we show that spindle repositioning mechanisms are active from prometaphase until anaphase, when furrowing is initiated in B5.2 cells. We show that the vegetal-most spindle pole/centrosome is attracted towards the CAB during prometaphase, causing the spindle to position asymmetrically near the cortex. Next, during anaphase, the opposite spindle pole/centrosome is attracted towards the border with neighbouring B5.1 blastomeres, causing the spindle to rotate (10 degrees /minute) and migrate (3 microm/minute). Dynamic 4D fluorescence imaging of filamentous actin and plasma membrane shows that precise orientation of the cleavage furrow is determined by this second phase of rotational spindle displacement. Furthermore, in pairs of isolated B5.2 blastomeres, the second phase of rotational spindle displacement was lost. Finally, knockdown of PEM1, a protein localized in the CAB and required for unequal cleavage in B5.2 cells, completely randomizes spindle orientation. Together these data show that two separate mechanisms active during mitosis are responsible for spindle positioning, leading to precise orientation of the cleavage furrow during ACD in the cells that give rise to the germ lineage in ascidians.
Lemaire, Patrick
2009-08-01
Ascidians were historically the first metazoans in which experimental embryology was carried out. These early works by Chabry and Conklin [Chabry, L., 1887. Embryologie normale et tératologique des Ascidie. Felix Alcan Editeur, Paris; Conklin, E., 1905. The organization and cell lineage of the ascidian egg. J. Acad., Nat. Sci. Phila. 13, 1], in particular, led to the idea that the developmental program of these animals was driven by the cell-autonomous inheritance of localised maternal determinants, rendered precise by the stereotyped pattern of invariant cell cleavages. Work in the past 20 years indeed identified several localised maternal determinants of the position of cleavage planes or of some early cell fates. The overwhelming majority of cells in the three germ layers, however, do not follow a cell-autonomous differentiation program. Instead, they respond to short-range signals, as described in this review. Careful analysis of cell-cell contacts suggests that a major function of the invariant position of cleavage plans, besides segregating competence factors, is to control the relative positions of inducing cells and those competent to respond. Surprisingly, while the cell lineage is very well conserved between the divergent species Halocynthia roretzi and Ciona intestinalis, the molecular nature of inducing signals can vary. The constraints on embryo anatomy thus appear stronger than those on the choice of individual regulatory molecules.
Mechanism of Intramembrane Cleavage of Alcadeins by γ-Secretase
Piao, Yi; Kimura, Ayano; Urano, Satomi; Saito, Yuhki; Taru, Hidenori; Yamamoto, Tohru; Hata, Saori; Suzuki, Toshiharu
2013-01-01
Background Alcadein proteins (Alcs; Alcα, Alcβand Alcγ) are predominantly expressed in neurons, as is Alzheimer's β-amyloid (Aβ) precursor protein (APP). Both Alcs and APP are cleaved by primary α- or β-secretase to generate membrane-associated C-terminal fragments (CTFs). Alc CTFs are further cleaved by γ-secretase to secrete p3-Alc peptide along with the release of intracellular domain fragment (Alc ICD) from the membrane. In the case of APP, APP CTFβ is initially cleaved at the ε-site to release the intracellular domain fragment (AICD) and consequently the γ-site is determined, by which Aβ generates. The initial ε-site is thought to define the final γ-site position, which determines whether Aβ40/43 or Aβ42 is generated. However, initial intracellular ε-cleavage sites of Alc CTF to generate Alc ICD and the molecular mechanism that final γ-site position is determined remains unclear in Alcs. Methodology Using HEK293 cells expressing Alcs plus presenilin 1 (PS1, a catalytic unit of γ-secretase) and the membrane fractions of these cells, the generation of p3-Alc possessing C-terminal γ-cleavage site and Alc ICD possessing N-terminal ε-cleavage site were analysed with MALDI-TOF/MS. We determined the initial ε-site position of all Alcα, Alcβ and Alcγ, and analyzed the relationship between the initially determined ε-site position and the final γ-cleavage position. Conclusions The initial ε-site position does not always determine the final γ-cleavage position in Alcs, which differed from APP. No additional γ-cleavage sites are generated from artificial/non-physiological positions of ε-cleavage for Alcs, while the artificial ε-cleavage positions can influence in selection of physiological γ-site positions. Because alteration of γ-secretase activity is thought to be a pathogenesis of sporadic Alzheimer's disease, Alcs are useful and sensitive substrate to detect the altered cleavage of substrates by γ-secretase, which may be induced by malfunction of γ-secretase itself or changes of membrane environment for enzymatic reaction. PMID:23658629
Chapin, Hannah C.; Rajendran, Vanathy
2010-01-01
Polycystin (PC)1 and PC2 are membrane proteins implicated in autosomal dominant polycystic kidney disease. A physiologically relevant cleavage at PC1's G protein-coupled receptor proteolytic site (GPS) occurs early in the secretory pathway. Our results suggest that PC2 increases both PC1 GPS cleavage and PC1's appearance at the plasma membrane. Mutations that prevent PC1's GPS cleavage prevent its plasma membrane localization. PC2 is a member of the trp family of cation channels and is an important PC1 binding partner. The effect of PC2 on PC1 localization is independent of PC2 channel activity, as tested using channel-inhibiting PC2 mutations. PC1 and PC2 can interact through their C-terminal tails, but removing the C-terminal tail of either protein has no effect on PC1 surface localization in human embryonic kidney 293 cells. Experiments in polarized LLC-PK cells show that apical and ciliary PC1 localization requires PC2 and that this delivery is sensitive to PC2 truncation. In sum, our work shows that PC2 expression is required for the movement of PC1 to the plasma and ciliary membranes. In fibroblast cells this localization effect is independent of PC2's channel activity or PC1 binding ability but involves a stimulation of PC1's GPS cleavage before the PC1 protein's surface delivery. PMID:20980620
A transcriptional blueprint for a spiral-cleaving embryo.
Chou, Hsien-Chao; Pruitt, Margaret M; Bastin, Benjamin R; Schneider, Stephan Q
2016-08-05
The spiral cleavage mode of early development is utilized in over one-third of all animal phyla and generates embryonic cells of different size, position, and fate through a conserved set of stereotypic and invariant asymmetric cell divisions. Despite the widespread use of spiral cleavage, regulatory and molecular features for any spiral-cleaving embryo are largely uncharted. To address this gap we use RNA-sequencing on the spiralian model Platynereis dumerilii to capture and quantify the first complete genome-wide transcriptional landscape of early spiral cleavage. RNA-sequencing datasets from seven stages in early Platynereis development, from the zygote to the protrochophore, are described here including the de novo assembly and annotation of ~17,200 Platynereis genes. Depth and quality of the RNA-sequencing datasets allow the identification of the temporal onset and level of transcription for each annotated gene, even if the expression is restricted to a single cell. Over 4000 transcripts are maternally contributed and cleared by the end of the early spiral cleavage phase. Small early waves of zygotic expression are followed by major waves of thousands of genes, demarcating the maternal to zygotic transition shortly after the completion of spiral cleavages in this annelid species. Our comprehensive stage-specific transcriptional analysis of early embryonic stages in Platynereis elucidates the regulatory genome during early spiral embryogenesis and defines the maternal to zygotic transition in Platynereis embryos. This transcriptome assembly provides the first systems-level view of the transcriptional and regulatory landscape for a spiral-cleaving embryo.
Kim, Min Woo; Sun, Gwanggyu; Lee, Jung Hyuk; Kim, Byung-Gee
2018-06-01
Ribozyme (Rz) is a very attractive RNA molecule in metabolic engineering and synthetic biology fields where RNA processing is required as a control unit or ON/OFF signal for its cleavage reaction. In order to use Rz for such RNA processing, Rz must have highly active and specific catalytic activity. However, current methods for assessing the intracellular activity of Rz have limitations such as difficulty in handling and inaccuracies in the evaluation of correct cleavage activity. In this paper, we proposed a simple method to accurately measure the "intracellular cleavage efficiency" of Rz. This method deactivates unwanted activity of Rz which may consistently occur after cell lysis using DNA quenching method, and calculates the cleavage efficiency by analyzing the cleaved fraction of mRNA by Rz from the total amount of mRNA containing Rz via quantitative real-time PCR (qPCR). The proposed method was applied to measure "intracellular cleavage efficiency" of sTRSV, a representative Rz, and its mutant, and their intracellular cleavage efficiencies were calculated as 89% and 93%, respectively. Copyright © 2018 Elsevier Inc. All rights reserved.
Resolution of model Holliday junctions by yeast endonuclease: effect of DNA structure and sequence.
Parsons, C A; Murchie, A I; Lilley, D M; West, S C
1989-01-01
The resolution of Holliday junctions in DNA involves specific cleavage at or close to the site of the junction. A nuclease from Saccharomyces cerevisiae cleaves model Holliday junctions in vitro by the introduction of nicks in regions of duplex DNA adjacent to the crossover point. In previous studies [Parsons and West (1988) Cell, 52, 621-629] it was shown that cleavage occurred within homologous arm sequences with precise symmetry across the junction. In contrast, junctions with heterologous arm sequences were cleaved asymmetrically. In this work, we have studied the effect of sequence changes and base modification upon the site of cleavage. It is shown that the specificity of cleavage is unchanged providing that perfect homology is maintained between opposing arm sequences. However, in the absence of homology, cleavage depends upon sequence context and is affected by minor changes such as base modification. These data support the proposed mechanism for cleavage of a Holliday junction, which requires homologous alignment of arm sequences in an enzyme--DNA complex as a prerequisite for symmetrical cleavage by the yeast endonuclease. Images PMID:2653810
Skop, Ahna R.; Bergmann, Dominique; Mohler, William A.; White, John G.
2013-01-01
Background The terminal phase of cytokinesis in eukaryotic cells involves breakage of the intercellular canal containing the spindle midzone and resealing of the daughter cells. Recent observations suggest that the spindle midzone is required for this process. In this study, we investigated the possibility that targeted secretion in the vicinity of the spindle midzone is required for the execution of the terminal phase of cytokinesis. Results We inhibited secretion in early C. elegans embryos by treatment with brefeldin A (BFA). Using 4D recordings of dividing cells, we showed that BFA induced stereotyped failures in the terminal phase of cytokinesis; although the furrow ingressed normally, after a few minutes the furrow completely regressed, even though spindle midzone and midbody microtubules appeared normal. In addition, using an FM1-43 membrane probe, we found that membrane accumulated locally at the apices of the late cleavage furrows that form the persisting intercellular canals between daughter cells. However, in BFA-treated embryos this membrane accumulation did not occur, which possibly accounts for the observed cleavage failures. Conclusions We have shown that BFA disrupts the terminal phase of cytokinesis in the embryonic blastomeres of C. elegans. We observed that membrane accumulates at the apices of the late cleavage furrow by means of a BFA-sensitive mechanism. We suggest that this local membrane accumulation is necessary for the completion of cytokinesis and speculate that the spindle midzone region of animal cells is functionally equivalent to the phragmoplast of plants and acts to target secretion to the equatorial plane of a cleaving cell. PMID:11378383
NASA Astrophysics Data System (ADS)
Bazak, Remon; Ressl, Jan; Raha, Sumita; Doty, Caroline; Liu, William; Wanzer, Beau; Salam, Seddik Abdel; Elwany, Samy; Paunesku, Tatjana; Woloschak, Gayle E.
2013-11-01
A nanoconjugate was composed of metal oxide nanoparticles decorated with peptides and fluorescent dye and tested for DNA cleavage following UV light activation. The peptide design was based on a DNA binding domain, the so called KH domain of the hnRNPK protein. This ``KH peptide'' enabled cellular uptake of nanoconjugates and their entry into cell nuclei. The control nanoconjugate carried no peptide; it consisted only of the metal oxide nanoparticle prepared as Fe3O4@TiO2 nanocomposite and the fluorescent dye alizarin red S. These components of either construct are responsible for nanoconjugate activation by UV light and the resultant production of reactive oxygen species (ROS). Production of ROS at different subcellular locations causes damage to different components of cells: only nanoconjugates inside cell nuclei can be expected to cause DNA cleavage. Degradation of cellular DNA with KH peptide decorated nanoconjugates exceeded the DNA damage obtained from control, no-peptide nanoconjugate counterparts. Moreover, caspase activation and cell death were more extensive in the same cells.A nanoconjugate was composed of metal oxide nanoparticles decorated with peptides and fluorescent dye and tested for DNA cleavage following UV light activation. The peptide design was based on a DNA binding domain, the so called KH domain of the hnRNPK protein. This ``KH peptide'' enabled cellular uptake of nanoconjugates and their entry into cell nuclei. The control nanoconjugate carried no peptide; it consisted only of the metal oxide nanoparticle prepared as Fe3O4@TiO2 nanocomposite and the fluorescent dye alizarin red S. These components of either construct are responsible for nanoconjugate activation by UV light and the resultant production of reactive oxygen species (ROS). Production of ROS at different subcellular locations causes damage to different components of cells: only nanoconjugates inside cell nuclei can be expected to cause DNA cleavage. Degradation of cellular DNA with KH peptide decorated nanoconjugates exceeded the DNA damage obtained from control, no-peptide nanoconjugate counterparts. Moreover, caspase activation and cell death were more extensive in the same cells. Electronic supplementary information (ESI) available: http://janus.northwestern.edu/wololab/auxiliary/supplementary_data_2013.docx. See DOI: 10.1039/c3nr02203j
Thornton, Peter; Sevalle, Jean; Deery, Michael J; Fraser, Graham; Zhou, Ye; Ståhl, Sara; Franssen, Elske H; Dodd, Roger B; Qamar, Seema; Gomez Perez-Nievas, Beatriz; Nicol, Louise Sc; Eketjäll, Susanna; Revell, Jefferson; Jones, Clare; Billinton, Andrew; St George-Hyslop, Peter H; Chessell, Iain; Crowther, Damian C
2017-10-01
We have characterised the proteolytic cleavage events responsible for the shedding of triggering receptor expressed on myeloid cells 2 (TREM2) from primary cultures of human macrophages, murine microglia and TREM2-expressing human embryonic kidney (HEK293) cells. In all cell types, a soluble 17 kDa N-terminal cleavage fragment was shed into the conditioned media in a constitutive process that is inhibited by G1254023X and metalloprotease inhibitors and siRNA targeting ADAM10. Inhibitors of serine proteases and matrix metalloproteinases 2/9, and ADAM17 siRNA did not block TREM2 shedding. Peptidomimetic protease inhibitors highlighted a possible cleavage site, and mass spectrometry confirmed that shedding occurred predominantly at the H157-S158 peptide bond for both wild-type and H157Y human TREM2 and for the wild-type murine orthologue. Crucially, we also show that the Alzheimer's disease-associated H157Y TREM2 variant was shed more rapidly than wild type from HEK293 cells, possibly by a novel, batimastat- and ADAM10-siRNA-independent, sheddase activity. These insights offer new therapeutic targets for modulating the innate immune response in Alzheimer's and other neurological diseases. © 2017 MedImmune Ltd. Published under the terms of the CC BY 4.0 license.
Cleavage of HPV-16 E6/E7 mRNA mediated by modified 10-23 deoxyribozymes.
Reyes-Gutiérrez, Pablo; Alvarez-Salas, Luis M
2009-09-01
Deoxyribozymes (DXZs) are small oligodeoxynucleotides capable of mediating phosphodiester bond cleavage of a target RNA in a sequence-specific manner. These molecules are a new generation of artificial catalytic nucleic acids currently used to silence many disease-related genes. The present study describes a DXZ (Dz1023-434) directed against the polycistronic mRNA from the E6 and E7 genes of human papillomavirus type 16 (HPV-16), the main etiological agent of cervical cancer. Dz1023-434 showed efficient cleavage against a bona fide antisense window at nt 410-445 within HPV-16 E6/E7 mRNA even in low [Mg(2+)] conditions. Using a genetic analysis as guidance, we introduced diverse chemical modifications within Dz1023-434 catalytic core to produce a stable locked nucleic acid (LNA)-modified DXZ (Dz434-LNA) with significant cleavage activity of full E6/E7 transcripts. Cell culture testing of Dz434-LNA produced a sharp decrement of E6/E7 mRNA levels in HPV-16-positive cells resulting in decreased proliferation and considerable cell death in a specific and dose-dependent manner. No significant effects were observed with inactive or scrambled control DXZs nor from using HPV-negative cells, suggesting catalysis-dependent effect and high specificity. The biological effects of Dz434-LNA suggest a potential use for the treatment of cervical cancer.
The endoproteolytic maturation of progastrin and procholecystokinin.
Rehfeld, Jens F
2006-07-01
The homologous brain-gut propeptides, procholecystokinin (proCCK) and progastrin, both undergo extensive posttranslational maturation in specific neuroendocrine cells. The process comprises multiple endoproteolytic cleavages at mono- and dibasic sites, in addition to exoproteolytic trimmings and amino acid derivatizations. Knockout of prohormone convertases (PCs) in mice and studies in cell lines indicate that PC1, PC2 and, to a minor extent, PC5, are responsible for most of the endoproteolytic cleavages of both prohormones. Progastrin in antral G-cells is cleaved by PC1 at two di-Arg sites, R36R37 and R73R74, whereas, PC2 only cleaves at the single di-Lys site, K53K54. Pituitary corticotrophs and intestinal TG-cells, both of which express gastrin, do not cleave K53K54 due to lack of PC2. In proCCK five monobasic (R25, R44, R50, K61 and R75) as well as a single dibasic site (R85R86) can all be cleaved by both PC1 and PC2. But the cleavage differs in a cell-specific manner in that PC1 is responsible for the entire endoproteolytic cleavage in intestinal endocrine I-cells, except for perhaps the K61 site. In contrast PC2 is responsible for most endoproteolysis of proCCK in the cerebral CCK-neurons, which do not express PC1 in significant amounts. Moreover, PC5 appears to contribute to a minor extent to the neuronal proCCK and to the antral progastrin processing. This review emphasizes that prohormone convertases play a decisive but substrate and cell-specific role in the biosynthetic maturation of gastrin and CCK.
2013-01-01
Background Prostate apoptosis response-4 (Par-4) is a tumor-suppressor protein that selectively activates and induces apoptosis in cancer cells, but not in normal cells. The cancer specific pro-apoptotic function of Par-4 is encoded in its centrally located SAC (Selective for Apoptosis induction in Cancer cells) domain (amino acids 137–195). The SAC domain itself is capable of nuclear entry, caspase activation, inhibition of NF-κB activity, and induction of apoptosis in cancer cells. However, the precise mechanism(s) of how the SAC domain is released from Par-4, in response to apoptotic stimulation, is not well explored. Results In this study, we demonstrate for the first time that sphingosine (SPH), a member of the sphingolipid family, induces caspase-dependant cleavage of Par-4, leading to the release of SAC domain containing fragment from it. Par-4 is cleaved at the EEPD131G site on incubation with caspase-3 in vitro, and by treating cells with several anti-cancer agents. The caspase-3 mediated cleavage of Par-4 is blocked by addition of the pan-caspase inhibitor z-VAD-fmk, caspase-3 specific inhibitor Ac-DEVD-CHO, and by introduction of alanine substitution for D131 residue. Moreover, suppression of SPH-induced Akt dephosphorylation also abrogated the caspase dependant cleavage of Par-4. Conclusion Evidence provided here shows that Par-4 is cleaved by caspase-3 during SPH-induced apoptosis. Cleavage of Par-4 leads to the generation of SAC domain containing fragment which may possibly be essential and sufficient to induce or augment apoptosis in cancer cells. PMID:23442976
Van Landuyt, L; Van de Velde, H; De Vos, A; Haentjens, P; Blockeel, C; Tournaye, H; Verheyen, G
2013-11-01
Is the effect of cell loss on further cleavage and implantation different for vitrified than for slowly frozen Day 3 embryos? Vitrified embryos develop better overnight than slowly frozen embryos, regardless of the number of cells lost, but have similar implantation potential if further cleavage occurs overnight. After slow-freezing, similar implantation rates have been obtained for intact 4-cell embryos or 4-cell embryos with 1 cell damaged. For slowly frozen Day 3 embryos, lower implantation rates have been observed when at least 25% of cells were lost. Other studies reported similar implantation potential for 7- to 8-cell embryos with 0, 1 or 2 cells damaged. No data are available on further development of vitrified embryos in relation to cell damage. Survival and overnight cleavage were retrospectively assessed for 7664 slowly frozen Day 3 embryos (study period: January 2004-December 2008) and 1827 vitrified embryos (study period: April 2010-September 2011). Overnight cleavage was assessed according to cell stage at cryopreservation and post-thaw cell loss for both protocols. The relationship between cell loss and implantation rate was analysed in a subgroup of single-embryo transfers (SETs) with 780 slowly frozen and 294 vitrified embryos. Embryos with ≥6 blastomeres and ≤20% fragmentation were cryopreserved using slow controlled freezing [with dimethyl sulphoxide (DMSO) as cryoprotectant] or closed vitrification [with DMSO-ethylene glycol (EG)-sucrose (S) as cryoprotectants]. Only embryos with ≥50% of cells intact after thawing were cultured overnight and were only transferred if further cleaved. For each outcome, logistic regression analysis was performed. Survival was 94 and 64% after vitrification and slow-freezing respectively. Logistic regression analysis showed that overnight cleavage of surviving embryos was higher after vitrification than after slow-freezing (P < 0.001) and decreased according to the degree of cell damage (P < 0.001). If the embryo continued to cleave after thawing, there was no effect of the number of cells lost or the cryopreservation method on its implantation potential. The implantation rates of embryos with 0, 1 or 2 cells damaged were, respectively, 21% (n = 114), 21% (n = 28) and 20% (n = 12) after slow-freezing and 20% (n = 50), 21% (n = 5) and 27% (n = 4) after vitrification. This analysis is retrospective and study periods for vitrification and slow-freezing are different. The number of SETs with vitrified embryos is limited. However, a large number of vitrified embryos were available to analyse the further cleavage of surviving embryos. Although it is not proved that vitrified embryos are more viable than slowly frozen embryos in terms of pregnancy outcome, vitrification yields higher survival rates, better overnight development and higher transfer rates per embryo warmed. This increases the number of frozen transfer cycles originating from a single treatment and might result in a better cumulative clinical outcome. Based on the present data, the policy to warm an extra embryo before overnight culture depends on the cell stage at cryopreservation and the cell damage after warming. For 8-cell embryos, up to two cells may be damaged compared with only one cell for 6- to 7-cell embryos, before an additional embryo is warmed. none.
Asthmatics are more susceptible to influenza infections, yet mechanisms mediating this enhanced susceptibility are unknown. Influenza virus hemagglutinin (HA) protein binds to sialic add residues on the host cells. HA requires cleavage to allow fusion of the viral HA with host ce...
Shang, Lei; Ding, Wei; Li, Na; Liao, Lvshuang; Chen, Dan; Huang, Jufang; Xiong, Kun
2017-02-06
Necroptosis is a type of regulated cell death that has been implicated in various diseases. Receptor-interacting protein 3 (RIP3), a member of the RIP family, is an important mediator of the necroptotic pathway. Cleavage of RIP3 at Asp328 by caspase-8 abolishes the kinase activity of RIP3, which is critical for necroptosis. Moreover, RIP3 is significantly upregulated during the early stages of acute high intra-ocular pressure and oxygen glucose deprivation. In this study, the effects of RIP3 during elevated hydrostatic pressure (EHP) were investigated and the possible mechanism through which caspase-8 regulated RIP3 cleavage was explored. Flow cytometry analysis revealed that the number of EHP-induced necrotic retinal ganglion cell 5 (RGC-5) cells was reduced after RIP3-knockdown. Furthermore, malondialdehyde (MDA) levels and glycogen phosphorylase (PYGL) activity in normal RGC-5 cells were much higher than those in RIP3-knockdown cells after EHP. EHP-induced RGC-5 necrosis was significantly reduced after treatment with butylated hydroxyanisole (BHA), a reactive oxygen species (ROS) scavenger. MDA levels and PYGL activity were lower in normal RGC-5 cells than those in cells with caspase-8 inhibition after EHP. Western blot analysis demonstrated that the RIP3 cleavage product was upregulated in cells with caspase-8 inhibition. Additionally, flow cytometry analysis revealed that the number of EHP-induced necrotic RGC-5 cells was increased after caspase-8 inhibition. Our results suggested that RGC-5 necroptosis following EHP was mediated by RIP3 through induction of PYGL activity and subsequent ROS accumulation. Thus, caspase-8 may participate in the regulation of RGC-5 necroptosis via RIP3 cleavage. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Role of Autophagy with Arginine Deiminase as a Novel Prostate Cancer Therapy
2009-07-01
determine the time course of autophagy after ADI-PEG20 treatment in CWR22Rv1 cells 1a. To detect LC3 cleavage as a marker for autophagy after ADI...PEG20 treatment in CWR22Rv1 cells. CWR22Rv1 cells were treated with 0.3 µg/mL ADI-PEG20 for 0.5, 1, 4, and 24 hours. Expression of LC3 -I and its...cleavage product LC3 -II were examined as a marker for the formation of autophagosomes during autophagy. In addition, autophagic flux was confirmed with
Rapid conversion of angiotensin I to angiotensin II by neutrophil and mast cell proteinases.
Reilly, C F; Tewksbury, D A; Schechter, N M; Travis, J
1982-08-10
Human neutrophil cathepsin G and human skin mast cell chymase rapidly convert angiotensin I to angiotensin II with only minor cleavage elsewhere in the molecule. The rate of cleavage is consistent with a potential role for either or both of these enzymes in an alternate pathway for angiotensin II synthesis. Since neither enzyme in inhibited by captopril, an angiotensin converting enzyme inactivator, it is possible that leukocyte and mast cell enzymes may play a significant role in the development of abnormally high local concentrations of angiotensin II, associated with various inflammatory processes.
Regulation of Dpp activity by tissue-specific cleavage of an upstream site within the prodomain
Sopory, Shailaja; Kwon, Sunjong; Wehrli, Marcel; Christian, Jan L.
2010-01-01
BMP4 is synthesized as an inactive precursor that is cleaved at two sites during maturation: initially at a site (S1) adjacent to the ligand domain, and then at an upstream site (S2) within the prodomain. Cleavage at the second site regulates the stability of mature BMP4 and this in turn influences its signaling intensity and range of action. The Drosophila ortholog of BMP4, Dpp, functions as a long- or short-range signaling molecule in the wing disc or embryonic midgut, respectively but mechanisms that differentially regulate its bioactivity in these tissues have not been explored. In the current studies we demonstrate, by dpp mutant rescue, that cleavage at the S2 site of proDpp is required for development of the wing and leg imaginal discs, whereas cleavage at the S1 site is sufficient to rescue Dpp function in the midgut. Both the S1 and S2 site of proDpp are cleaved in the wing disc, and S2-cleavage is essential to generate sufficient ligand to exceed the threshold for pMAD activation at both short- and long-range in most cells. By contrast, proDpp is cleaved at the S1 site alone in the embryonic mesoderm and this generates sufficient ligand to activate physiological target genes in neighboring cells. These studies provide the first biochemical and genetic evidence that that selective cleavage of the S2 site of proDPP provides a tissue-specific mechanism for regulating Dpp activity, and that differential cleavage can contribute to, but is not an absolute determinant of signaling range. PMID:20659445
FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis.
Wang, Jiao; Liu, Shu; Yin, Yancun; Li, Mingjin; Wang, Bo; Yang, Li; Jiang, Yangfu
2015-03-01
The anthraquinone compound rhein is a natural agent in the traditional Chinese medicine rhubarb. Preclinical studies demonstrate that rhein has anticancer activity. Treatment of a variety of cancer cells with rhein may induce apoptosis. Here, we report that rhein induces atypical unfolded protein response in breast cancer MCF-7 cells and hepatoma HepG2 cells. Rhein induces CHOP expression, eIF2α phosphorylation and caspase cleavage, while it does not induce glucose-regulated protein 78 (GRP78) expression in both MCF-7 and HepG2 cells. Meanwhile, rhein inhibits thapsigargin-induced GRP78 expression and X box-binding protein 1 splicing. In addition, rhein inhibits Akt phosphorylation and stimulates FOXO transactivation activity. Rhein induces Bim expression in MCF-7 and HepG2 cells, which can be abrogated by FOXO3a knockdown. Knockdown of FOXO3a or Bim abrogates rhein-induced caspase cleavage and apoptosis. The chemical chaperone 4-phenylbutyrate acid antagonizes the induction of FOXO activation, Bim expression and caspase cleavage by rhein, indicating that protein misfolding may be involved in triggering these deleterious effects. We conclude that FOXO3a-mediated up-regulation of Bim is a key mechanism underlying rhein-induced cancer cells apoptosis.
Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)
2014-10-01
Kubo , T., Wada, T., Yamaguchi, Y., Shimizu, A. & Handa, H. Knock-down of 25 kDa subunit of cleavage factor Im inHela cells alters alternative...usage was calculated as 62normalized DDDCT. Oligonucleotides used for qRT–PCR. Cyclin D1 common forward, 59-CTGC CAGGAGCAGATCGAAG; reverse, 59...CTdeviation of either amplicon at all of the dilutions was calculated as a correction factor. d, The experiment shown in c was repeated for DICER1 and
The Evolving Field of Biodefence: Therapeutic Developments and Diagnostics
2005-04-01
several ways. One method would be to interfere with the furin -medi- ated cleavage of PA to its active form (PA 63 ) following host-cell receptor binding4...b | The inactive form of protective antigen (PA83) binds to a host-cell receptor, where it is cleaved by a furin -related protease, to give active PA63...explore whether a putative target, such as furin cleavage site of Ebola virus, is essential for viral infection88. Compared with filoviruses, poxvirus
The establishment of polarized membrane traffic in Xenopus laevis embryos.
Roberts, S J; Leaf, D S; Moore, H P; Gerhart, J C
1992-09-01
Delineation of apical and basolateral membrane domains is a critical step in the epithelialization of the outer layer of cells in the embryo. We have examined the initiation of polarized membrane traffic in Xenopus and show that membrane traffic is not polarized in oocytes but polarized membrane domains appear at first cleavage. The following proteins encoded by injected RNA transcripts were used as markers to monitor membrane traffic: (a) VSV G, a transmembrane glycoprotein preferentially inserted into the basolateral surface of polarized epithelial cells; (b) GThy-1, a fusion protein of VSV G and Thy-1 that is localized to the apical domains of polarized epithelial cells; and (c) prolactin, a peptide hormone that is not polarly secreted. In immature oocytes, there is no polarity in the expression of VSV G or GThy-1, as shown by the constitutive expression of both proteins at the surface in the animal and vegetal hemispheres. At meiotic maturation, membrane traffic to the surface is blocked; the plasma membrane no longer accepts the vesicles synthesized by the oocyte (Leaf, D. L., S. J. Roberts, J. C. Gerhart, and H.-P. Moore. 1990. Dev. Biol. 141:1-12). When RNA transcripts are injected after fertilization, VSV G is expressed only in the internal cleavage membranes (basolateral orientation) and is excluded from the outer surface (apical orientation, original oocyte membrane). In contrast, GThy-1 and prolactin, when expressed in embryos, are inserted or released at both the outer membrane derived from the oocyte and the inner cleavage membranes. Furthermore, not all of the cleavage membrane comes from an embryonic pool of vesicles--some of the cleavage membrane comes from vesicles synthesized during oogenesis. Using prolactin as a marker, we found that a subset of vesicles synthesized during oogenesis was only released after fertilization. However, while embryonic prolactin was secreted from both apical and basolateral surfaces, the secretion of oogenic prolactin was polarized. Oogenic prolactin was secreted only into the blastocoel (from the cleavage membrane), none could be detected in the external medium (from the original oocyte membrane). These results provide the first direct evidence that the oocyte synthesizes a cache of vesicles for specific recruitment to the embryonic cleavage membranes which are polarized beginning with the first cleavage division.
Demethylation and cleavage of dimethylsulfoniopropionate in marine intertidal sediments
Visscher, P.T.; Kiene, R.P.; Taylor, B.F.
1994-01-01
Demethylation and cleavage of dimethylsulfoniopropionate (DMSP) was measured in three different types of,intertidal marine sediments: a cyanobacterial mat, a diatom-covered tidal flat and a carbonate sediment. Consumption rates of added DMSP were highest in cyanobacterial mat slurries (59 ?? mol DMSP l-1 slurry h-1) and lower in slurries from a diatom mat and a carbonate tidal sediment (24 and 9 ??mol DMSP l-1 h-1, respectively). Dimethyl sulfide (DMS) and 3-mercaptopropionate (MPA) were produced simultaneously during DMSP consumption, indicating that cleavage and demethylation occurred at the same time. Viable counts of DMSP-utilizing bacteria revealed a population of 2 x 107 cells cm-3 sediment (90% of these cleaved DMSP to DMS, 10% demethylated DMSP to MPA) in the cyanobacterial mat, 7 x 105 cells cm-3 in the diatom mat (23% cleavers, 77% demethylators), and 9 x 104 cells cm-3 (20% cleavers and 80% demethylators) in the carbonate sediment. In slurries of the diatom mat, the rate of MPA production from added 3-methiolpropionate (MMPA) was 50% of the rate of MPA formation from DMSP. The presence of a large population of demethylating bacteria and the production of MPA from DMSP suggest that the demethylation pathway, in addition to cleavage, contributes significantly to DMSP consumption in coastal sediments.
Miranda-Rodríguez, Jerónimo Roberto; Salas-Vidal, Enrique; Lomelí, Hilda; Zurita, Mario; Schnabel, Denhi
2017-01-01
Zebrafish germ plasm is composed of mRNAs such as vasa and nanos and of proteins such as Bucky ball, all of which localize symmetrically in four aggregates at the distal region of the first two cleavage furrows. The coordination of actin microfilaments, microtubules and kinesin is essential for the correct localization of the germ plasm. Rho-GTPases, through their effectors, coordinate cytoskeletal dynamics. We address the participation of RhoA and its effector ROCK in germ plasm localization during the transition from two- to eight-cell embryos. We found that active RhoA is enriched along the cleavage furrow during the first two division cycles, whereas ROCK localizes at the distal region of the cleavage furrows in a similar pattern as the germ plasm mRNAs. Specific inhibition of RhoA and ROCK affected microtubules organization at the cleavage furrow; these caused the incorrect localization of the germ plasm mRNAs. The incorrect localization of the germ plasm led to a dramatic change in the number of germ cells during the blastula and 24hpf embryo stages without affecting any other developmental processes. We demonstrate that the Rho/ROCK pathway is intimately related to the determination of germ cells in zebrafish embryos. Copyright © 2016 Elsevier Inc. All rights reserved.
Herůdková, Jarmila; Krkoška, Martin; Tománková, Silvie; Kahounová, Zuzana; Anděra, Ladislav; Bouchal, Jan; Kharaishvili, Gvantsa; Král, Milan; Sova, Petr; Kozubík, Alois
2017-01-01
Searching for new strategies for effective elimination of human prostate cancer cells, we investigated the cooperative cytotoxic action of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and two platinum-based complexes, cisplatin or LA-12, and related molecular mechanisms. We demonstrated a notable ability of cisplatin or LA-12 to enhance the sensitivity of several human prostate cancer cell lines to TRAIL-induced cell death via an engagement of mitochondrial apoptotic pathway. This was accompanied by augmented Bid cleavage, Bak activation, loss of mitochondrial membrane potential, activation of caspase-8, -10, -9, and -3, and XIAP cleavage. RNAi-mediated silencing of Bid or Bak in Bax-deficient DU 145 cells suppressed the drug combination-induced cytotoxicity, further underscoring the involvement of mitochondrial signaling. The caspase-10 was dispensable for enhancement of cisplatin/LA-12 and TRAIL combination-induced cell death and stimulation of Bid cleavage. Importantly, we newly demonstrated LA-12-mediated enhancement of TRAIL-induced cell death in cancer cells derived from human patient prostate tumor specimens. Our results provide convincing evidence that employing TRAIL combined with cisplatin/LA-12 could contribute to more effective killing of prostate cancer cells compared to the individual action of the drugs, and offer new mechanistic insights into their cooperative anticancer action. PMID:29182622
Donovan, Jesse; Rath, Sneha; Kolet-Mandrikov, David; Korennykh, Alexei
2017-11-01
Mammalian cells respond to double-stranded RNA (dsRNA) by activating a translation-inhibiting endoribonuclease, RNase L. Consensus in the field indicates that RNase L arrests protein synthesis by degrading ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs). However, here we provide evidence for a different and far more efficient mechanism. By sequencing abundant RNA fragments generated by RNase L in human cells, we identify site-specific cleavage of two groups of noncoding RNAs: Y-RNAs, whose function is poorly understood, and cytosolic tRNAs, which are essential for translation. Quantitative analysis of human RNA cleavage versus nascent protein synthesis in lung carcinoma cells shows that RNase L stops global translation when tRNAs, as well as rRNAs and mRNAs, are still intact. Therefore, RNase L does not have to degrade the translation machinery to stop protein synthesis. Our data point to a rapid mechanism that transforms a subtle RNA cleavage into a cell-wide translation arrest. © 2017 Donovan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Chen, Qian; Li, Hui; De Lozanne, Arturo
2006-01-01
Dictyostelium DdINCENP is a chromosomal passenger protein associated with centromeres, the spindle midzone, and poles during mitosis and the cleavage furrow during cytokinesis. Disruption of the single DdINCENP gene revealed important roles for this protein in mitosis and cytokinesis. DdINCENP null cells lack a robust spindle midzone and are hypersensitive to microtubule-depolymerizing drugs, suggesting that their spindles may not be stable. Furthermore DdCP224, a protein homologous to the microtubule-stabilizing protein TOGp/XMAP215, was absent from the spindle midzone of DdINCENP null cells. Overexpression of DdCP224 rescued the weak spindle midzone defect of DdINCENP null cells. Although not required for the localization of the myosin II contractile ring and subsequent formation of a cleavage furrow, DdINCENP is important for the abscission of daughter cells at the end of cytokinesis. Finally, we show that the localization of DdINCENP at the cleavage furrow is modulated by myosin II but it occurs by a mechanism different from that controlling the formation of the contractile ring. PMID:16339076
2017-01-01
Camptothecin (CPT) selectively traps topoisomerase 1-DNA cleavable complexes (Top1cc) to promote anticancer activity. Here, we report the design and synthesis of a new class of neutral porphyrin derivative 5,10-bis(4-carboxyphenyl)-15, 20-bis(4-dimethylaminophenyl)porphyrin (compound 8) as a potent catalytic inhibitor of human Top1. In contrast to CPT, compound 8 reversibly binds with the free enzyme and inhibits the formation of Top1cc and promotes reversal of the preformed Top1cc with CPT. Compound 8 induced inhibition of Top1cc formation in live cells was substantiated by fluorescence recovery after photobleaching (FRAP) assays. We established that MCF7 cells treated with compound 8 trigger proteasome-mediated Top1 degradation, accumulate higher levels of reactive oxygen species (ROS), PARP1 cleavage, oxidative DNA fragmentation, and stimulate apoptotic cell death without stabilizing apoptotic Top1-DNA cleavage complexes. Finally, compound 8 shows anticancer activity by targeting cellular Top1 and preventing the enzyme from directly participating in the apoptotic process. PMID:29290109
Jablonski, Joseph; Clementz, Mark; Ryan, Kevin; Valente, Susana T.
2014-01-01
The 3’ end of mammalian mRNAs is not formed by abrupt termination of transcription by RNA polymerase II (RNPII). Instead, RNPII synthesizes precursor mRNA beyond the end of mature RNAs, and an active process of endonuclease activity is required at a specific site. Cleavage of the precursor RNA normally occurs 10-30 nt downstream from the consensus polyA site (AAUAAA) after the CA dinucleotides. Proteins from the cleavage complex, a multifactorial protein complex of approximately 800 kDa, accomplish this specific nuclease activity. Specific RNA sequences upstream and downstream of the polyA site control the recruitment of the cleavage complex. Immediately after cleavage, pre-mRNAs are polyadenylated by the polyA polymerase (PAP) to produce mature stable RNA messages. Processing of the 3’ end of an RNA transcript may be studied using cellular nuclear extracts with specific radiolabeled RNA substrates. In sum, a long 32P-labeled uncleaved precursor RNA is incubated with nuclear extracts in vitro, and cleavage is assessed by gel electrophoresis and autoradiography. When proper cleavage occurs, a shorter 5’ cleaved product is detected and quantified. Here, we describe the cleavage assay in detail using, as an example, the 3’ end processing of HIV-1 mRNAs. PMID:24835792
Quantification of DNA cleavage specificity in Hi-C experiments.
Meluzzi, Dario; Arya, Gaurav
2016-01-08
Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Martinez, Luis; Thames, Easter; Kim, Jinna; Chaudhuri, Gautam; Singh, Rajan; Pervin, Shehla
2016-07-29
Breast cancer is a complex heterogeneous disease where many distinct subtypes are found. Younger African American (AA) women often present themselves with aggressive form of breast cancer with unique biology which is very difficult to treat. Better understanding the biology of AA breast tumors could lead to development of effective treatment strategies. Our previous studies indicate that AA but not Caucasian (CA) triple negative (TN) breast cancer cells were sensitive to nitrosative stress-induced cell death. In this study, we elucidate possible mechanisms that contribute to nitric oxide (NO)-induced apoptosis in AA TN breast cancer cells. Breast cancer cells were treated with various concentrations of long-acting NO donor, DETA-NONOate and cell viability was determined by trypan blue exclusion assay. Apoptosis was determined by TUNEL and caspase 3 activity as well as changes in mitochondrial membrane potential. Caspase 3 and Bax cleavage, levels of Cu/Zn superoxide dismutase (SOD) and Mn SOD was assessed by immunoblot analysis. Inhibition of Bax cleavage by Calpain inhibitor, and levels of reactive oxygen species (ROS) as well as SOD activity was measured in NO-induced apoptosis. In vitro and in vivo effect of NO treatment on mammary cancer stem cells (MCSCs) was assessed. NO induced mitocondria-mediated apoptosis in all AA but not in CA TN breast cancer cells. We found significant TUNEL-positive cells, cleavage of Bax and caspase-3 activation as well as depolarization mitochondrial membrane potential only in AA TN breast cancer cells exposed to NO. Inhibition of Bax cleavage and quenching of ROS partially inhibited NO-induced apoptosis in AA TN cells. Increase in ROS coincided with reduction in SOD activity in AA TN breast cancer cells. Furthermore, NO treatment of AA TN breast cancer cells dramatically reduced aldehyde dehydrogenase1 (ALDH1) expressing MCSCs and xenograft formation but not in breast cancer cells from CA origin. Ethnic differences in breast tumors dictate a need for tailoring treatment options more suited to the unique biology of the disease.
Driesbaugh, Kathryn H.; Buzza, Marguerite S.; Martin, Erik W.; Conway, Gregory D.; Kao, Joseph P. Y.; Antalis, Toni M.
2015-01-01
Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca2+ mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. PMID:25519908
Sugimura, Satoshi; Akai, Tomonori; Somfai, Tamás; Hirayama, Muneyuki; Aikawa, Yoshio; Ohtake, Masaki; Hattori, Hideshi; Kobayashi, Shuji; Hashiyada, Yutaka; Konishi, Kazuyuki; Imai, Kei
2010-12-01
We have developed a polystyrene-based well-of-the-well (WOW) system using injection molding to track individual embryos throughout culture using time-lapse cinematography (TLC). WOW culture of bovine embryos following in vitro fertilization was compared with conventional droplet culture (control). No differences between control- and WOW-cultured embryos were observed during development to the blastocyst stage. Morphological quality and inner cell mass (ICM) and trophectoderm (TE) cell numbers were not different between control- and WOW-derived blastocysts; however, apoptosis in both the ICM and TE cells was reduced in WOW culture (P < 0.01). Oxygen consumption in WOW-derived blastocysts was closer to physiological level than that of control-derived blastocysts. Moreover, WOW culture improved embryo viability, as indicated by increased pregnancy rates at Days 30 and 60 after embryo transfer (P < 0.05). TLC monitoring was performed to evaluate the cleavage pattern and the duration of the first cell cycle of embryos from oocytes collected by ovum pickup; correlations with success of pregnancy were determined. Logistic regression analysis indicated that the cleavage pattern correlated with success of pregnancy (P < 0.05), but cell cycle length did not. Higher pregnancy rates (66.7%) were observed for animals in which transferred blastocysts had undergone normal cleavage, identified by the presence of two blastomeres of the same size without fragmentation, than among those with abnormal cleavage (33.3%). These results suggest that our microwell culture system is a powerful tool for producing and selecting healthy embryos and for identifying viability biomarkers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Lanying; Kao, Richard Y.; Zhou, Yusen
The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, wasmore » able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection.« less
Cell cycle-dependent regulation of Aurora kinase B mRNA by the Microprocessor complex.
Jung, Eunsun; Seong, Youngmo; Seo, Jae Hong; Kwon, Young-Soo; Song, Hoseok
2014-03-28
Aurora kinase B regulates the segregation of chromosomes and the spindle checkpoint during mitosis. In this study, we showed that the Microprocessor complex, which is responsible for the processing of the primary transcripts during the generation of microRNAs, destabilizes the mRNA of Aurora kinase B in human cells. The Microprocessor-mediated cleavage kept Aurora kinase B at a low level and prevented premature entrance into mitosis. The cleavage was reduced during mitosis leading to the accumulation of Aurora kinase B mRNA and protein. In addition to Aurora kinase B mRNA, the processing of other primary transcripts of miRNAs were also decreased during mitosis. We found that the cleavage was dependent on an RNA helicase, DDX5, and the association of DDX5 and DDX17 with the Microprocessor was reduced during mitosis. Thus, we propose a novel mechanism by which the Microprocessor complex regulates stability of Aurora kinase B mRNA and cell cycle progression. Copyright © 2014 Elsevier Inc. All rights reserved.
The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites.
Jenal, Mathias; Elkon, Ran; Loayza-Puch, Fabricio; van Haaften, Gijs; Kühn, Uwe; Menzies, Fiona M; Oude Vrielink, Joachim A F; Bos, Arnold J; Drost, Jarno; Rooijers, Koos; Rubinsztein, David C; Agami, Reuven
2012-04-27
Alternative cleavage and polyadenylation (APA) is emerging as an important layer of gene regulation. Factors controlling APA are largely unknown. We developed a reporter-based RNAi screen for APA and identified PABPN1 as a regulator of this process. Genome-wide analysis of APA in human cells showed that loss of PABPN1 resulted in extensive 3' untranslated region shortening. Messenger RNA transcription, stability analyses, and in vitro cleavage assays indicated enhanced usage of proximal cleavage sites (CSs) as the underlying mechanism. Using Cyclin D1 as a test case, we demonstrated that enhanced usage of proximal CSs compromises microRNA-mediated repression. Triplet-repeat expansion in PABPN1 (trePABPN1) causes autosomal-dominant oculopharyngeal muscular dystrophy (OPMD). The expression of trePABPN1 in both a mouse model of OPMD and human cells elicited broad induction of proximal CS usage, linked to binding to endogenous PABPN1 and its sequestration in nuclear aggregates. Our results elucidate a novel function for PABPN1 as a suppressor of APA. Copyright © 2012 Elsevier Inc. All rights reserved.
Nuclear Reprogramming: Kinetics of Cell Cycle and Metabolic Progression as Determinants of Success
Balbach, Sebastian Thomas; Esteves, Telma Cristina; Houghton, Franchesca Dawn; Siatkowski, Marcin; Pfeiffer, Martin Johannes; Tsurumi, Chizuko; Kanzler, Benoit; Fuellen, Georg; Boiani, Michele
2012-01-01
Establishment of totipotency after somatic cell nuclear transfer (NT) requires not only reprogramming of gene expression, but also conversion of the cell cycle from quiescence to the precisely timed sequence of embryonic cleavage. Inadequate adaptation of the somatic nucleus to the embryonic cell cycle regime may lay the foundation for NT embryo failure and their reported lower cell counts. We combined bright field and fluorescence imaging of histone H2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This allowed us to quantitatively analyze cleavage kinetics of cloned embryos and revealed an extended and inconstant duration of the second and third cell cycles compared to fertilized controls generated by intracytoplasmic sperm injection (ICSI). Compared to fertilized embryos, slow and fast cleaving NT embryos presented similar rates of errors in M phase, but were considerably less tolerant to mitotic errors and underwent cleavage arrest. Although NT embryos vary substantially in their speed of cell cycle progression, transcriptome analysis did not detect systematic differences between fast and slow NT embryos. Profiling of amino acid turnover during pre-implantation development revealed that NT embryos consume lower amounts of amino acids, in particular arginine, than fertilized embryos until morula stage. An increased arginine supplementation enhanced development to blastocyst and increased embryo cell numbers. We conclude that a cell cycle delay, which is independent of pluripotency marker reactivation, and metabolic restraints reduce cell counts of NT embryos and impede their development. PMID:22530006
Amyloid-β Production Via Cleavage of Amyloid-β Protein Precursor is Modulated by Cell Density
Zhang, Can; Browne, Andrew; DiVito, Jason R.; Stevenson, Jesse A.; Romano, Donna; Dong, Yuanlin; Xie, Zhongcong; Tanzi, Rudolph E.
2012-01-01
Mounting evidence suggests that Alzheimer disease (AD) is caused by the accumulation of the small peptide, Aβ, a proteolytic cleavage product of amyloid-β protein precursor (AβPP; or APP). Aβ is generated through a serial cleavage of APP by β- and γ-secretase. Aβ40 and Aβ42 are the two main components of amyloid plaques in AD brains, with Aβ42 being more prone to aggregation. APP can also be processed by α-secretase, which cleaves APP within the Aβ sequence, thereby preventing the generation of Aβ. Little is currently known regarding the effects of cell density on APP processing and Aβ generation. Here we assessed the effects of cell density on APP processing in neuronal and non-neuronal cell lines, as well as mouse primary cortical neurons. We found that decreased cell density significantly increases levels of Aβ40, Aβ42, total Aβ, and the ratio of Aβ42:Aβ40. These results also indicate that cell density is a significant modulator of APP processing. Overall, these findings carry profound implications for both previous and forthcoming studies aiming to assess the effects of various conditions and genetic/chemical factors, e.g. novel drugs on APP processing and Aβ generation in cell-based systems. Moreover, it is interesting to speculate whether cell density changes in vivo may also affect APP processing and Aβ levels in the AD brain. PMID:20847415
Control of Bacteriophage T4 Tail Lysozyme Activity During the Infection Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanamaru, Shuji; Ishiwata, Yasutaka; Suzuki, Toshiharu
2010-07-19
Bacteriophage T4 has an efficient mechanism for injecting the host Escherichia coli cell with genomic DNA. Its gene product 5 (gp5) has a needle-like structure attached to the end of a tube through which the DNA passes on its way out of the head and into the host. The gp5 needle punctures the outer cell membrane and then digests the peptidoglycan cell wall in the periplasmic space. gp5 is normally post-translationally cleaved between residues 351 and 352. The function of this process in controlling the lysozyme activity of gp5 has now been investigated. When gp5 is over-expressed in E. coli,more » two mutants (S351H and S351A) showed a reduction of cleavage products and five other mutants (S351L, S351K, S351Y, S351Q, and S351T) showed no cleavage. Furthermore, in a complementation assay at 20 C, the mutants that had no cleavage of gp5 produced a reduced number of plaques compared to wild-type T4. The crystal structure of the non-cleavage phenotype mutant of gp5, S351L, complexed with gene product 27, showed that the 18 residues in the vicinity of the potential cleavage site (disordered in the wild-type structure) had visible electron density. The polypeptide around the potential cleavage site is exposed, thus allowing access for an E. coli protease. The lysozyme activity is inhibited in the wild-type structure by a loop from the adjacent gp5 monomer that binds into the substrate-binding site. The same inhibition is apparent in the mutant structure, showing that the lysozyme is inhibited before gp5 is cleaved and, presumably, the lysozyme is activated only after gp5 has penetrated the outer membrane.« less
Screening for Small Molecule Inhibitors of Statin-Induced APP C-terminal Toxic Fragment Production
Poksay, Karen S.; Sheffler, Douglas J.; Spilman, Patricia; Campagna, Jesus; Jagodzinska, Barbara; Descamps, Olivier; Gorostiza, Olivia; Matalis, Alex; Mullenix, Michael; Bredesen, Dale E.; Cosford, Nicholas D. P.; John, Varghese
2017-01-01
Alzheimer’s disease (AD) is characterized by neuronal and synaptic loss. One process that could contribute to this loss is the intracellular caspase cleavage of the amyloid precursor protein (APP) resulting in release of the toxic C-terminal 31-amino acid peptide APP-C31 along with the production of APPΔC31, full-length APP minus the C-terminal 31 amino acids. We previously found that a mutation in APP that prevents this caspase cleavage ameliorated synaptic loss and cognitive impairment in a murine AD model. Thus, inhibition of this cleavage is a reasonable target for new therapeutic development. In order to identify small molecules that inhibit the generation of APP-C31, we first used an APPΔC31 cleavage site-specific antibody to develop an AlphaLISA to screen several chemical compound libraries for the level of N-terminal fragment production. This antibody was also used to develop an ELISA for validation studies. In both high throughput screening (HTS) and validation testing, the ability of compounds to inhibit simvastatin- (HTS) or cerivastatin- (validation studies) induced caspase cleavage at the APP-D720 cleavage site was determined in Chinese hamster ovary (CHO) cells stably transfected with wildtype (wt) human APP (CHO-7W). Several compounds, as well as control pan-caspase inhibitor Q-VD-OPh, inhibited APPΔC31 production (measured fragment) and rescued cell death in a dose-dependent manner. The effective compounds fell into several classes including SERCA inhibitors, inhibitors of Wnt signaling, and calcium channel antagonists. Further studies are underway to evaluate the efficacy of lead compounds – identified here using cells and tissues expressing wt human APP – in mouse models of AD expressing mutated human APP, as well as to identify additional compounds and determine the mechanisms by which they exert their effects. PMID:28261092
Makadiya, Nirajkumar; Gaba, Amit; Tikoo, Suresh K
2015-09-01
The L6 region of bovine adenovirus type 3 (BAdV-3) encodes a non-structural protein named 100K. Rabbit antiserum raised against BAdV-3 100K recognized a protein of 130 kDa at 12-24 h and proteins of 130, 100, 95 and 15 kDa at 36-48 h after BAdV-3 infection. The 100K species localized to the nucleus and the cytoplasm of BAdV-3-infected cells. In contrast, 100K localized predominantly to the cytoplasm of the transfected cells. However, BAdV-3 infection of cells transfected with 100K-enhanced yellow fluorescent protein-expressing plasmid detected fluorescent protein in the nucleus of the cells, suggesting that other viral proteins may be required for the nuclear localization of 100K. Interaction of BAdV-3 100K with BAdV-3 33K protein did not alter the cytoplasmic localization of 100K. However, co-expression of BAdV-3 100K and BAdV-3 protease localized 100K to the nucleolus of the transfected cells. Subsequent analysis suggested that BAdV-3 protease cleaves 100K at two identified potential protease cleavage sites (aa 740-745 and 781-786) in transfected or BAdV-3-infected cells. The cleaved C terminus (107 aa) was localized to the nucleolus of the transfected cells. Further analysis suggested that the cleaved C terminus contains a bipartite nuclear localization signal and utilizes import receptor importin-α3 of the classical importin-α/β transport pathway for nuclear transport. Successful isolation of recombinant BAdV-3 expressing mutant 100K (substitution of alanine for glycine in the potential protease cleavage site) suggested that cytoplasmic cleavage of BAdV-3 100K by adenoviral protease is not essential for virus replication.
Robertson, Danielle M; Ho, Su-Inn; Cavanagh, H Dwight
2010-08-01
In the central human corneal epithelium, loss of DeltaNp63 occurs in all surface epithelial cells preparing to undergo desquamation, suggesting a potential role for DeltaNp63 isoforms in mediating surface cell apoptotic shedding. In this study, the authors investigated a role for DeltaNp63 isoforms in caspase-mediated apoptosis in a telomerase-immortalized corneal epithelial cell line. For in vitro studies, hTCEpi cells were cultured in KGM-2 serum-free culture media containing 0.15 mM calcium. To assess dynamic protein interactions among individual DeltaNp63 isoforms, DeltaNp63-EGFP expression plasmids were transiently expressed in hTCEpi cells and evaluated by FRAP. Trichostatin-A (TSA; 3.31 muM) was used to induce cell death as measured by caspase activity. Cleavage and loss of endogenous DeltaNp63alpha, DeltaNp63-EGFP expression plasmids, and p53 were assessed after treatment with TSA and siRNA. Transient expression of DeltaNp63-EGFP alpha and beta isoforms resulted in the formation of a smaller isoform similar in size to DeltaNp63gamma-EGFP. FRAP demonstrated that DeltaNp63alpha-EGFP has greater immobile fraction than beta or gamma. TSA induced caspase-mediated apoptotic pathways; caspase induction was accompanied by a decrease in endogenous DeltaNp63alpha and p53. TSA upregulated DeltaNp63-EGFP plasmid expression; this was accompanied by a selective increase in cleavage of DeltaNp63alpha-EGFP. siRNA knockdown of DeltaNp63alpha correlated with a reduction in p53 independently of TSA. DeltaNp63alpha is the dominant active isoform in corneal epithelial cell nuclei. Loss of DeltaNp63alpha occurs during apoptotic signaling by cleavage at the C terminus. The corresponding loss of p53 suggests that a significant relationship appears to exist between these two regulatory proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Takayuki, E-mail: tkato@med.osaka-cu.ac.jp; Ikemoto, Masaru; Hato, Fumihiko
2009-04-10
Extracellular signal-regulated kinase and p38 have been shown to be cleaved in human neutrophils undergoing apoptosis induced by tumor necrosis factor-{alpha} and cycloheximide. However, the cleavage products of these molecules were undetected when apoptotic neutrophils were pretreated with phenylmethylsulfonyl fluoride or disrupted by nitrogen cavitation before preparation of cell lysates. The electron microscopy revealed that granules in apoptotic neutrophils were significantly swollen than those in control cells. These findings suggest that granule membrane may become destabilized during neutrophil apoptosis, leading to rapid proteolysis of these molecules by granule-derived serine proteases during preparation of cell lysates with the conventional lysis buffer.
Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaljot, K.T.; Shaw, R.D.; Greenberg, H.B.
1988-04-01
Rotaviruses are icosahedral viruses with a segmented, double-stranded RNA genome. They are the major cause of severe infantile infectious diarrhea. Rotavirus growth in tissue culture is markedly enhanced by pretreatment of virus with trypsin. Trypsin activation is associated with cleavage of the viral hemagglutinin (viral protein 3 (VP3); 88 kilodaltons) into two fragments (60 and 28 kilodaltons). The mechanism by which proteolytic cleavage leads to enhanced growth is unknown. To determine whether trypsin treatment affected rotavirus internalization, the authors studied the kinetics of entry of infectious rhesus rotavirus (RRV) into MA104 cells. Trypsin-activated RRV was internalized with a half-time ofmore » 3 to 5 min, while nonactivated virus disappeared from the cell surface with a half-time of 30 to 50 min. In contrast to trypsin-activated RRV, loss of nonactivated RRV from the cell surface did not result in the appearance of infection, as measured by plaque formation. Purified trypsin-activated RRV added to cell monolayers at pH 7.4 mediated {sup 51}Cr, ({sup 14}C)choline, and ({sup 3}H)inositol released from prelabeled MA104 cells. This release could be specifically blocked by neutralizing antibodies to VP3. These results suggest that MA104 cell infection follows the rapid entry of trypsin-activated RRV by direct cell membrane penetration. Cell membrane penetration of infectious RRV is initiated by trypsin cleavage of VP3. Neutralizing antibodies can inhibit this direct membrane penetration.« less
Kim, Shin-Hee; Chen, Zongyan; Yoshida, Asuka; Paldurai, Anandan; Xiao, Sa; Samal, Siba K
2017-01-01
Newcastle disease virus (NDV) causes a devastating poultry disease worldwide. Frequent outbreaks of NDV in chickens vaccinated with conventional live vaccines suggest a need to develop new vaccines that are genetically matched against circulating NDV strains, such as the genotype V virulent strains currently circulating in Mexico and Central America. In this study, a reverse genetics system was developed for the virulent NDV strain Mexico/01/10 strain and used to generate highly attenuated vaccine candidates by individually modifying the cleavage site sequence of fusion (F) protein. The cleavage site sequence of parental virus was individually changed to those of the avirulent NDV strain LaSota and other serotypes of avian paramyxoviruses (APMV serotype-2, -3, -4, -6, -7, -8, and -9). In general, these mutations affected cell-to-cell fusion activity in vitro and the efficiency of the F protein cleavage and made recombinant Mexico/01/10 (rMex) virus highly attenuated in chickens. When chickens were immunized with the rMex mutant viruses and challenged with the virulent parent virus, there was reduced challenge virus shedding compared to birds immunized with the heterologous vaccine strain LaSota. Among the vaccine candidates, rMex containing the cleavage site sequence of APMV-2 induced the highest neutralizing antibody titer and completely protected chickens from challenge virus shedding. These results show the role of the F protein cleavage site sequence of each APMV type in generating genotype V-matched vaccines and the efficacy of matched vaccine strains to provide better protection against NDV strains currently circulating in Mexico.
Earnshaw, D J; Gait, M J
1998-01-01
The hairpin ribozyme is a small catalytic RNA that achieves an active configuration by docking of its two helical domains in an antiparallel fashion. Both docking and subsequent cleavage are dependent on the presence of divalent metal ions, such as magnesium, but there is no evidence to date for direct participation of such ions in the chemical cleavage step. We show that aminoglycoside antibiotics inhibit cleavage of the hairpin ribozyme in the presence of metal ions with the most effective being 5-epi-sisomicin and neomycin B. In contrast, in the absence of metal ions, a number of aminoglycoside antibiotics at 10 mM concentration promote hairpin cleavage with rates only 13-20-fold lower than the magnesium-dependent reaction. We show that neomycin B competes with metal ions by ion replacement with the postively charged amino groups of the antibiotic. In addition, we show that the polyamine spermine at 10 mM promotes efficient hairpin cleavage with rates similar to the magnesium-dependent reaction. Low concentrations of either spermine or the shorter polyamine spermidine synergize with 5 mM magnesium ions to boost cleavage rates considerably. In contrast, at 500 microM magnesium ions, 4 mM spermine, but not spermidine, boosts the cleavage rate. The results have significance both in understanding the role of ions in hairpin ribozyme cleavage and in potential therapeutic applications in mammalian cells. PMID:9837982
2A self-cleaving peptide-based multi-gene expression system in the silkworm Bombyx mori
Wang, Yuancheng; Wang, Feng; Wang, Riyuan; Zhao, Ping; Xia, Qingyou
2015-01-01
Fundamental and applied studies of silkworms have entered the functional genomics era. Here, we report a multi-gene expression system (MGES) based on 2A self-cleaving peptide (2A), which regulates the simultaneous expression and cleavage of multiple gene targets in the silk gland of transgenic silkworms. First, a glycine-serine-glycine spacer (GSG) was found to significantly improve the cleavage efficiency of 2A. Then, the cleavage efficiency of six types of 2As with GSG was analyzed. The shortest porcine teschovirus-1 2A (P2A-GSG) exhibited the highest cleavage efficiency in all insect cell lines that we tested. Next, P2A-GSG successfully cleaved the artificial human serum albumin (66 kDa) linked with human acidic fibroblast growth factor (20.2 kDa) fusion genes and vitellogenin receptor fragment (196 kD) of silkworm linked with EGFP fusion genes, importantly, vitellogenin receptor protein was secreted to the outside of cells. Furthermore, P2A-GSG successfully mediated the simultaneous expression and cleavage of a DsRed and EGFP fusion gene in silk glands and caused secretion into the cocoon of transgenic silkworms using our sericin1 expression system. We predicted that the MGES would be an efficient tool for gene function research and innovative research on various functional silk materials in medicine, cosmetics, and other biomedical areas. PMID:26537835
Nakakuki, Masanori; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Mizuguchi, Kiyoshi; Shimano, Hitoshi
2014-05-01
The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.
Phosphorylation-dependent cleavage regulates von Hippel Lindau proteostasis and function
German, Peter; Bai, Shanshan; Liu, Xian-De; Sun, Mianen; Zhou, Lijun; Kalra, Sarathi; Zhang, Xuesong; Minelli, Rosalba; Scott, Kenneth L.; Mills, Gordon B.; Jonasch, Eric; Ding, Zhiyong
2016-01-01
Loss of von Hippel Lindau (VHL) protein function is a key driver of VHL diseases, including sporadic and inherited clear cell renal cell carcinoma. Modulation of the proteostasis of VHL, especially missense point-mutated VHL, is a promising approach to augmenting VHL levels and function. VHL proteostasis is regulated by multiple mechanisms including folding, chaperone binding, complex formation, and phosphorylation. Nevertheless, many details underlying the regulations of VHL proteostasis are unknown. VHL is expressed as two variants, VHL30 and VHL19. Furthermore, the long form variant of VHL was often detected as multiple bands by Western blotting. However, how these multiple species of VHL are generated and whether the process regulates VHL proteostasis and function are unknown. We hypothesized that the two major species are generated by VHL protein cleavage, and the cleavage regulates VHL proteostasis and subsequent function. We characterized VHL species using genetic and pharmacologic approaches and showed that VHL was first cleaved at the N-terminus by chymotrypsin C before being directed for proteasomal degradation. Casein kinase 2-mediated phosphorylation at VHL N-terminus was required for the cleavage. Furthermore, inhibition of cleavage stabilized VHL protein, thereby promoting HIF downregulation. Our study reveals a novel mechanism regulating VHL proteostasis and function, which is significant for identifying new drug targets and developing new therapeutic approaches targeting VHL deficiency in VHL diseases. PMID:26973240
Vicat, Jean Michel; Ardila-Osorio, Hector; Khabir, Abdelmajid; Brezak, Marie Christine; Viossat, Isabelle; Kasprzyk, Philip; Jlidi, Rachid; Opolon, Paule; Ooka, Tadamassa; Prevost, Grégoire; Huang, Dolly P; Busson, Pierre
2003-02-01
Epstein-Barr virus (EBV)-associated nasopharyngeal carcinomas (NPC) are much more sensitive to chemotherapy than other head and neck carcinomas. Spectacular regressions are frequently observed after induction chemotherapy. However, these favorable responses are difficult to predict and often of short duration. So far there have been only few experiments to investigate the mechanisms which underline the cytotoxic effects of anti-neoplastic drugs against NPC cells. In addition, these studies were performed almost entirely on EBV-negative cell lines therefore not truly representative of NPC cells. For the first time, we have used two EBV-positive NPC tumor lines derived from a North African (C15) and a Chinese (C666-1) patient as in vitro targets for a panel of anti-neoplastic agents. Doxorubicin, taxol and in a lesser extent cis-platinum efficiently inhibited NPC cell proliferation at clinically relevant concentrations, but all three agents failed to induce apoptosis. However, massive apoptosis of C15 cells was achieved when doxorubicin (1 microM) was combined with a farnesyl-transferase inhibitor, BIM 2001 (5 microM). Moreover, this apoptotic process was associated with a caspase-dependent early cleavage of the TNF-receptor associated factor 1 (TRAF-1) molecule, a signaling adaptor which is specifically expressed in latently EBV-infected cells. TRAF-1 cleavage might become a useful indicator of chemo-induced apoptosis in EBV-associated NPCs.
Soleymanlou, Nima; Jurisicova, Andrea; Wu, Yuanhong; Chijiiwa, Mari; Ray, Jocelyn E.; Detmar, Jacqui; Todros, Tullia; Zamudio, Stacy; Post, Martin; Caniggia, Isabella
2007-01-01
Preeclampsia, a disorder of pregnancy, is characterized by increased trophoblast cell death and altered trophoblast-mediated remodeling of myometrial spiral arteries resulting in reduced uteroplacental perfusion. Mitochondria-associated Bcl-2 family members are important regulators of programed cell death. The mechanism whereby hypoxia alters the mitochondrial apoptotic rheostat is essential to our understanding of placental disease. Herein, myeloid cell leukemia factor-1 (Mcl-1) isoform expression was examined in physiological/pathological models of placental hypoxia. Preeclamptic placentae were characterized by caspase-dependent cleavage of death-suppressing Mcl-1L and switch toward cell death-inducing Mcl-1S. In vitro, Mcl-1L cleavage was induced by hypoxia-reoxygenation in villous explants, whereas Mcl-1L overexpression under hypoxia-reoxygenation rescued trophoblast cells from undergoing apoptosis. Cleavage was mediated by caspase-3/-7 because pharmacological caspase inhibition prevented this process. Altitude-induced chronic hypoxia was characterized by expression of Mcl-1L; resulting in a reduction of apoptotic markers (cleaved caspase-3/-8 and p85 poly-ADP-ribose polymerase). Moreover, in both physiological (explants and high altitude) and pathological (preeclampsia) placental hypoxia, decreased trophoblast syncytin expression was observed. Hence, although both pathological and physiological placental hypoxia are associated with slowed trophoblast differentiation, trophoblast apoptosis is only up-regulated in preeclampsia, because of a hypoxia-reoxygenation-induced switch in generation of proapoptotic Mcl-1 isoforms. PMID:17600131
2011-01-01
Background Caspase-8 is a key upstream mediator in death receptor-mediated apoptosis and also participates in mitochondria-mediated apoptosis via cleavage of proapoptotic Bid. However, the role of caspase-8 in p53- and p73-dependent apoptosis induced by genotoxic drugs remains unclear. We recently reported that the reconstitution of procaspase-8 is sufficient for sensitizing cisplatin- but not etoposide-induced apoptosis, in chemoresistant and caspase-8 deficient HOC313 head and neck squamous cell carcinoma (HNSCC) cells. Results We show that p53/p73-dependent caspase-8 activation is required for sensitizing etoposide-induced apoptosis by utilizing HOC313 cells carrying a temperature-sensitive p53G285K mutant. Restoration of wild-type p53 function under the permissive conditions, together with etoposide treatment, led to substantial transcriptional activation of proapoptotic Noxa and PUMA, but failed to induce apoptosis. In addition to p53 restoration, caspase-8 reconstitution was needed for sensitization to etoposide-induced apoptosis, mitochondria depolarization, and cleavage of the procaspases-3, and -9. In etoposide-sensitive Ca9-22 cells carrying a temperature-insensitive mutant p53, siRNA-based p73 knockdown blocked etoposide-induced apoptosis and procaspase-8 cleavage. However, induction of p73 protein and up-regulation of Noxa and PUMA, although observed in Ca9-22 cells, were hardly detected in etoposide-treated HOC313 cells under non-permissive conditions, suggesting a contribution of p73 reduction to etoposide resistance in HOC313 cells. Finally, the caspase-9 inhibitor Ac-LEHD-CHO or caspase-9 siRNA blocked etoposide-induced caspase-8 activation, Bid cleavage, and apoptosis in both cell lines, indicating that p53/p73-dependent caspase-8 activation lies downstream of mitochondria. Conclusions we conclude that p53 and p73 can act as upstream regulators of caspase-8, and that caspase-8 is an essential mediator of the p53/p73-dependent apoptosis induced by etoposide in HNSCC cells. Our data suggest the importance of caspase-8-mediated positive feedback amplification in the p53/p73-dependent apoptosis induced by etoposide in HNSCC cells. PMID:21801448
Liu, Juan; Uematsu, Hiroshi; Tsuchida, Nobuo; Ikeda, Masa-Aki
2011-07-31
Caspase-8 is a key upstream mediator in death receptor-mediated apoptosis and also participates in mitochondria-mediated apoptosis via cleavage of proapoptotic Bid. However, the role of caspase-8 in p53- and p73-dependent apoptosis induced by genotoxic drugs remains unclear. We recently reported that the reconstitution of procaspase-8 is sufficient for sensitizing cisplatin- but not etoposide-induced apoptosis, in chemoresistant and caspase-8 deficient HOC313 head and neck squamous cell carcinoma (HNSCC) cells. We show that p53/p73-dependent caspase-8 activation is required for sensitizing etoposide-induced apoptosis by utilizing HOC313 cells carrying a temperature-sensitive p53G285K mutant. Restoration of wild-type p53 function under the permissive conditions, together with etoposide treatment, led to substantial transcriptional activation of proapoptotic Noxa and PUMA, but failed to induce apoptosis. In addition to p53 restoration, caspase-8 reconstitution was needed for sensitization to etoposide-induced apoptosis, mitochondria depolarization, and cleavage of the procaspases-3, and -9. In etoposide-sensitive Ca9-22 cells carrying a temperature-insensitive mutant p53, siRNA-based p73 knockdown blocked etoposide-induced apoptosis and procaspase-8 cleavage. However, induction of p73 protein and up-regulation of Noxa and PUMA, although observed in Ca9-22 cells, were hardly detected in etoposide-treated HOC313 cells under non-permissive conditions, suggesting a contribution of p73 reduction to etoposide resistance in HOC313 cells. Finally, the caspase-9 inhibitor Ac-LEHD-CHO or caspase-9 siRNA blocked etoposide-induced caspase-8 activation, Bid cleavage, and apoptosis in both cell lines, indicating that p53/p73-dependent caspase-8 activation lies downstream of mitochondria. we conclude that p53 and p73 can act as upstream regulators of caspase-8, and that caspase-8 is an essential mediator of the p53/p73-dependent apoptosis induced by etoposide in HNSCC cells. Our data suggest the importance of caspase-8-mediated positive feedback amplification in the p53/p73-dependent apoptosis induced by etoposide in HNSCC cells.
Joachims, Michelle; Van Breugel, Pieter C.; Lloyd, Richard E.
1999-01-01
Many enteroviruses, members of the family Picornaviridae, cause a rapid and drastic inhibition of host cell protein synthesis during infection, a process referred to as host cell shutoff. Poliovirus, one of the best-studied enteroviruses, causes marked inhibition of host cell translation while preferentially allowing translation of its own genomic mRNA. An abundance of experimental evidence has accumulated to indicate that cleavage of an essential translation initiation factor, eIF4G, during infection is responsible at least in part for this shutoff. However, evidence from inhibitors of viral replication suggests that an additional event is necessary for the complete translational shutoff observed during productive infection. This report examines the effect of poliovirus infection on a recently characterized 3′ end translational stimulatory protein, poly(A)-binding protein (PABP). PABP is involved in stimulating translation initiation in lower eukaryotes by its interaction with the poly(A) tail on mRNAs and has been proposed to facilitate 5′-end–3′-end interactions in the context of the closed-loop translational model. Here, we show that PABP is specifically degraded during poliovirus infection and that it is cleaved in vitro by both poliovirus 2A and 3C proteases and coxsackievirus B3 2A protease. Further, PABP cleavage by 2A protease is accompanied by concurrent loss of translational activity in an in vitro-translation assay. Similar loss of translational activity also occurs simultaneously with partial 3C protease-mediated cleavage of PABP in translation assays. Further, PABP is not degraded during infections in the presence of guanidine-HCl, which blocks the complete development of host translation shutoff. These results provide preliminary evidence that cleavage of PABP may contribute to inhibition of host translation in infected HeLa cells, and they are consistent with the hypothesis that PABP plays a role in facilitating translation initiation in higher eukaryotes. PMID:9847378
Ma, Jihong; Zou, Chunbin; Guo, Lida; Seneviratne, Danushka S.; Tan, Xinping; Kwon, Yong-Kook; An, Jiyan; Bowser, Robert; DeFrances, Marie C.; Zarnegar, Reza
2013-01-01
Met, the transmembrane tyrosine kinase receptor for hepatocyte growth factor (HGF) is known to function as a potent anti-apoptotic mediator in normal and neoplastic cells. Herein we report that intracellular cytoplasmic tail of Met has evolved to harbor a tandem pair of Caspase-3 cleavage sites, which bait, trap and disable the active site of Caspase-3, thereby blocking the execution of apoptosis. We call this Caspase-3 cleavage motif the ‘Death Defying Domain’ (DDD). This site consists of the following sequence: DNAD-DEVD-T (where the hyphens denote caspase cleavage sites). Through functional and mechanistic studies, we show that upon DDD cleavage by Caspase-3, the resulting DEVD-T peptide acts as a competitive inhibitor and entraps the active site of Caspase-3 akin to DEVD-CHO, which is a potent, synthetic inhibitor of Caspase-3 activity. By gain and loss-of-function studies using restoration of DDD expression in DDD deficient hepatocytic cells, we found that both Caspase-3 sites in DDD are necessary for inhibition of Caspase-3 and promotion of cell survival. Employing mutagenesis studies, we show that DDD could operate independently of Met’s enzymatic activity as determined by using kinase-dead human Met mutant constructs. Studies of both human liver cancer tissues and cell lines uncovered that DDD cleavage and entrapment of Caspase-3 by DDD occur in vivo, further proving that this site has physiological and pathophysiological relevance. Conclusion Our findings show that Met can directly inhibit Caspase-3 via a novel mechanism and promote hepato-cyte survival. Results presented here will further our understanding of the mechanisms that control not only normal tissue homeostasis but also abnormal tissue growth such as cancer and degenerative diseases in which apoptotic caspases are at play. PMID:24122846
Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.
Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant tomore » the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.« less
Bivén, K; Erdal, H; Hägg, M; Ueno, T; Zhou, R; Lynch, M; Rowley, B; Wood, J; Zhang, C; Toi, M; Shoshan, M C; Linder, S
2003-06-01
We have developed an apoptosis assay based on measurement of a neoepitope of cytokeratin-18 (CK18-Asp396) exposed after caspase-cleavage and detected by the monoclonal antibody M30. The total amount of caspase-cleaved CK18 which has accumulated in cells and tissue culture media during apoptosis is measured by ELISA. The sensitivity is sufficient for use in the 96-well format to allow high-through-put screening of drug libraries. We here describe strategies allowing classification of pro-apoptotic compounds according to their profiles of induction of apoptosis in the presence of pharmacological inhibitors. The time course of induction of CK18 cleavage can furthermore be used to distinguish structurally similar compounds. We propose that compounds that induce rapid CK18 cleavage have mechanisms of actions distinct from conventional genotoxic and microtubuli-targeting agents, and we present one example of an agent that induces almost immediate mitochondrial depolarization and cytochrome c release. Finally, CK18-Asp396 cleavage products are released from cells in tissue culture, and presumably from tumor cells in vivo. These products can be measured in sera from cancer patients. We present evidence suggesting that it will be possible to use the M30-ELISA assay for measuring chemotherapy-induced apoptosis in patient sera, opening possibilities for monitoring therapy.
Driesbaugh, Kathryn H; Buzza, Marguerite S; Martin, Erik W; Conway, Gregory D; Kao, Joseph P Y; Antalis, Toni M
2015-02-06
Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca(2+) mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Manithody, Chandrashekhara; Yang, Likui; Rezaie, Alireza R
2012-03-27
Recent results have indicated that factor Xa (FXa) cleaves protease-activated receptor 2 (PAR-2) to elicit protective intracellular signaling responses in endothelial cells. In this study, we investigated the molecular determinants of the specificity of FXa interaction with PAR-2 by monitoring the cleavage of PAR-2 by FXa in endothelial cells transiently transfected with a PAR-2 cleavage reporter construct in which the extracellular domain of the receptor was fused to cDNA encoding for alkaline phosphatase. Comparison of the cleavage efficiency of PAR-2 by a series of FXa mutants containing mutations in different surface loops indicated that the acidic residues of 39-loop (Glu-36, Glu-37, and Glu-39) and the basic residues of 60-loop (Lys-62 and Arg-63), 148-loop (Arg-143, Arg-150, and Arg-154), and 162-helix (Arg-165 and Lys-169) contribute to the specificity of receptor recognition by FXa on endothelial cells. This was evidenced by significantly reduced activity of mutants toward PAR-2 expressed on transfected cells. The extent of loss in the PAR-2 cleavage activity of FXa mutants correlated with the extent of loss in their PAR-2-dependent intracellular signaling activity. Further characterization of FXa mutants indicated that, with the exception of basic residues of 162-helix, which play a role in the recognition specificity of the prothrombinase complex, none of the surface loop residues under study makes a significant contribution to the activity of FXa in the prothrombinase complex. These results provide new insight into mechanisms through which FXa specifically interacts with its macromolecular substrates in the clotting and signaling pathways.
Intracellular Domain Fragment of CD44 Alters CD44 Function in Chondrocytes*
Mellor, Liliana; Knudson, Cheryl B.; Hida, Daisuke; Askew, Emily B.; Knudson, Warren
2013-01-01
The hyaluronan receptor CD44 undergoes sequential proteolytic cleavage at the cell surface. The initial cleavage of the CD44 extracellular domain is followed by a second intramembranous cleavage of the residual CD44 fragment, liberating the C-terminal cytoplasmic tail of CD44. In this study conditions that promote CD44 cleavage resulted in a diminished capacity to assemble and retain pericellular matrices even though sufficient non-degraded full-length CD44 remained. Using stable and transient overexpression of the cytoplasmic domain of CD44, we determined that the intracellular domain interfered with anchoring of the full-length CD44 to the cytoskeleton and disrupted the ability of the cells to bind hyaluronan and assemble a pericellular matrix. Co-immunoprecipitation assays were used to determine whether the mechanism of this interference was due to competition with actin adaptor proteins. CD44 of control chondrocytes was found to interact and co-immunoprecipitate with both the 65- and 130-kDa isoforms of ankyrin-3. Moreover, this interaction with ankyrin-3 proteins was diminished in cells overexpressing the CD44 intracellular domain. Mutating the putative ankyrin binding site of the transiently transfected CD44 intracellular domain diminished the inhibitory effects of this protein on matrix retention. Although CD44 in other cells types has been shown to interact with members of the ezrin/radixin/moesin (ERM) family of adaptor proteins, only modest interactions between CD44 and moesin could be demonstrated in chondrocytes. The data suggest that release of the CD44 intracellular domain into the cytoplasm of cells such as chondrocytes exerts a competitive or dominant-negative effect on the function of full-length CD44. PMID:23884413
Efficient Cleavage of Ribosome-Associated Poly(A)-Binding Protein by Enterovirus 3C Protease
Kuyumcu-Martinez, N. Muge; Joachims, Michelle; Lloyd, Richard E.
2002-01-01
Poliovirus (PV) causes a rapid and drastic inhibition of host cell cap-dependent protein synthesis during infection while preferentially allowing cap-independent translation of its own genomic RNA via an internal ribosome entry site element. Inhibition of cap-dependent translation is partly mediated by cleavage of an essential translation initiation factor, eIF4GI, during PV infection. In addition to cleavage of eIF4GI, cleavage of eIF4GII and poly(A)-binding protein (PABP) has been recently proposed to contribute to complete host translation shutoff; however, the relative importance of eIF4GII and PABP cleavage has not been determined. At times when cap-dependent translation is first blocked during infection, only 25 to 35% of the total cellular PABP is cleaved; therefore, we hypothesized that the pool of PABP associated with polysomes may be preferentially targeted by viral proteases. We have investigated what cleavage products of PABP are produced in vivo and the substrate determinants for cleavage of PABP by 2A protease (2Apro) or 3C protease (3Cpro). Our results show that PABP in ribosome-enriched fractions is preferentially cleaved in vitro and in vivo compared to PABP in other fractions. Furthermore, we have identified four N-terminal PABP cleavage products produced during PV infection and have shown that viral 3C protease generates three of the four cleavage products. Also, 3Cpro is more efficient in cleaving PABP in ribosome-enriched fractions than 2Apro in vitro. In addition, binding of PABP to poly(A) RNA stimulates 3Cpro-mediated cleavage and inhibits 2Apro-mediated cleavage. These results suggest that 3Cpro plays a major role in processing PABP during virus infection and that the interaction of PABP with translation initiation factors, ribosomes, or poly(A) RNA may promote its cleavage by viral 2A and 3C proteases. PMID:11836384
Khedgikar, Vikram; Abbruzzese, Genevieve; Mathavan, Ketan; Szydlo, Hannah; Cousin, Helene; Alfandari, Dominique
2017-08-22
Adam13/33 is a cell surface metalloprotease critical for cranial neural crest (CNC) cell migration. It can cleave multiple substrates including itself, fibronectin, ephrinB, cadherin-11, pcdh8 and pcdh8l (this work). Cleavage of cadherin-11 produces an extracellular fragment that promotes CNC migration. In addition, the adam13 cytoplasmic domain is cleaved by gamma secretase, translocates into the nucleus and regulates multiple genes. Here, we show that adam13 interacts with the arid3a/dril1/Bright transcription factor. This interaction promotes a proteolytic cleavage of arid3a and its translocation to the nucleus where it regulates another transcription factor: tfap2α. Tfap2α in turn activates multiple genes including the protocadherin pcdh8l (PCNS). The proteolytic activity of adam13 is critical for the release of arid3a from the plasma membrane while the cytoplasmic domain appears critical for the cleavage of arid3a. In addition to this transcriptional control of pcdh8l, adam13 cleaves pcdh8l generating an extracellular fragment that also regulates cell migration.
Khedgikar, Vikram; Abbruzzese, Genevieve; Mathavan, Ketan; Szydlo, Hannah; Cousin, Helene
2017-01-01
Adam13/33 is a cell surface metalloprotease critical for cranial neural crest (CNC) cell migration. It can cleave multiple substrates including itself, fibronectin, ephrinB, cadherin-11, pcdh8 and pcdh8l (this work). Cleavage of cadherin-11 produces an extracellular fragment that promotes CNC migration. In addition, the adam13 cytoplasmic domain is cleaved by gamma secretase, translocates into the nucleus and regulates multiple genes. Here, we show that adam13 interacts with the arid3a/dril1/Bright transcription factor. This interaction promotes a proteolytic cleavage of arid3a and its translocation to the nucleus where it regulates another transcription factor: tfap2α. Tfap2α in turn activates multiple genes including the protocadherin pcdh8l (PCNS). The proteolytic activity of adam13 is critical for the release of arid3a from the plasma membrane while the cytoplasmic domain appears critical for the cleavage of arid3a. In addition to this transcriptional control of pcdh8l, adam13 cleaves pcdh8l generating an extracellular fragment that also regulates cell migration. PMID:28829038
Tripolar mitosis and partitioning of the genome arrests human preimplantation development in vitro.
Ottolini, Christian S; Kitchen, John; Xanthopoulou, Leoni; Gordon, Tony; Summers, Michael C; Handyside, Alan H
2017-08-29
Following in vitro fertilisation (IVF), only about half of normally fertilised human embryos develop beyond cleavage and morula stages to form a blastocyst in vitro. Although many human embryos are aneuploid and genomically imbalanced, often as a result of meiotic errors inherited in the oocyte, these aneuploidies persist at the blastocyst stage and the reasons for the high incidence of developmental arrest remain unknown. Here we use genome-wide SNP genotyping and meiomapping of both polar bodies to identify maternal meiotic errors and karyomapping to fingerprint the parental chromosomes in single cells from disaggregated arrested embryos and excluded cells from blastocysts. Combined with time lapse imaging of development in culture, we demonstrate that tripolar mitoses in early cleavage cause chromosome dispersal to clones of cells with identical or closely related sub-diploid chromosome profiles resulting in intercellular partitioning of the genome. We hypothesise that following zygotic genome activation (ZGA), the combination of genomic imbalance and partial genome loss disrupts the normal pattern of embryonic gene expression blocking development at the morula-blastocyst transition. Failure to coordinate the cell cycle in early cleavage and regulate centrosome duplication is therefore a major cause of human preimplantation developmental arrest in vitro.
NASA Astrophysics Data System (ADS)
Zhao, T.; Shi, L.; Zhang, Y. T.; Zou, L.; Zhang, L.
2017-10-01
Atmospheric pressure non-equilibrium plasmas have attracted significant attention and have been widely used to inactivate pathogens, yet the mechanisms underlying the interactions between plasma-generated species and bio-organisms have not been elucidated clearly. In this paper, reactive molecular dynamics simulations are employed to investigate the mechanisms of interactions between reactive oxygen plasma species (O, OH, and O2) and β-1,6-glucan (a model for the C. albicans cell wall) from a microscopic point of view. Our simulations show that O and OH species can break structurally important C-C and C-O bonds, while O2 molecules exhibit only weak, non-bonded interactions with β-1,6-glucan. Hydrogen abstraction from hydroxyl or CH groups occurs first in all bond cleavage mechanisms. This is followed by a cascade of bond cleavage and double bond formation events. These lead to the destruction of the fungal cell wall. O and OH have similar effects related to their bond cleavage mechanisms. Our simulation results provide fundamental insights into the mechanisms underlying the interactions between reactive oxygen plasma species and the fungal cell wall of C. albicans at the atomic level.
In-vivo quantification of primary microRNA processing by Drosha with a luciferase based system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allegra, Danilo; Cooperation Unit 'Mechanisms of Leukemogenesis', B061, DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg; Mertens, Daniel, E-mail: daniel.mertens@uniklinik-ulm.de
2011-03-25
Research highlights: {yields} Posttranscriptional regulation of miRNA processing is difficult to quantify. {yields} Our in-vivo processing assay can quantify Drosha cleavage in live cells. {yields} It is based on luciferase reporters fused with pri-miRNAs. {yields} The assay validates the processing defect caused by a mutation in pri-16-1. {yields} It is a sensitive method to quantify pri-miRNA cleavage by Drosha in live cells. -- Abstract: The RNAse III Drosha is responsible for the first step of microRNA maturation, the cleavage of primary miRNA to produce the precursor miRNA. Processing by Drosha is finely regulated and influences the amount of mature microRNAmore » in a cell. We describe in the present work a method to quantify Drosha processing activity in-vivo, which is applicable to any microRNA. With respect to other methods for measuring Drosha activity, our system is faster and scalable, can be used with any cellular system and does not require cell sorting or use of radioactive isotopes. This system is useful to study regulation of Drosha activity in physiological and pathological conditions.« less
megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering.
Boissel, Sandrine; Jarjour, Jordan; Astrakhan, Alexander; Adey, Andrew; Gouble, Agnès; Duchateau, Philippe; Shendure, Jay; Stoddard, Barry L; Certo, Michael T; Baker, David; Scharenberg, Andrew M
2014-02-01
Rare-cleaving endonucleases have emerged as important tools for making targeted genome modifications. While multiple platforms are now available to generate reagents for research applications, each existing platform has significant limitations in one or more of three key properties necessary for therapeutic application: efficiency of cleavage at the desired target site, specificity of cleavage (i.e. rate of cleavage at 'off-target' sites), and efficient/facile means for delivery to desired target cells. Here, we describe the development of a single-chain rare-cleaving nuclease architecture, which we designate 'megaTAL', in which the DNA binding region of a transcription activator-like (TAL) effector is used to 'address' a site-specific meganuclease adjacent to a single desired genomic target site. This architecture allows the generation of extremely active and hyper-specific compact nucleases that are compatible with all current viral and nonviral cell delivery methods.
Dhir, Ashish; Dhir, Somdutta; Proudfoot, Nick J; Jopling, Catherine L
2015-04-01
MicroRNAs (miRNAs) play a major part in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with cotranscriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. Although most miRNAs are located within introns of protein-coding transcripts, a substantial minority of miRNAs originate from long noncoding (lnc) RNAs, for which transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lncRNA transcripts containing miRNAs (lnc-pri-miRNAs) do not use the canonical cleavage-and-polyadenylation pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a new RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells.
Microprocessor mediates transcriptional termination in long noncoding microRNA genes
Dhir, Ashish; Dhir, Somdutta; Proudfoot, Nick J.; Jopling, Catherine L.
2015-01-01
MicroRNA (miRNA) play a major role in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with co-transcriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. While most miRNA are located within introns of protein coding genes, a substantial minority of miRNA originate from long non coding (lnc) RNA where transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lnc-pri-miRNA do not use the canonical cleavage and polyadenylation (CPA) pathway, but instead use Microprocessor cleavage to terminate transcription. This Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a novel RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells. PMID:25730776
Radiation induced abnormalities in early in vitro mouse embryos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, J.F.
1973-08-01
Female mice were superovulated and mated, and the two-cell embryos were collected and cultured in vitro. The embryos were exposed to x-irradiation (0 to 491 rads) during the two-cell stage before the appearance of the next cleavage plate, placed in new unirradiated culture medium and observed during subsequent development. Morphological abnormalities, which occurred as a result of irradiation, included fragmentation, disintegration, granlation, incomplete cleavage, cleavage cessation, nuclear degeneration and pycnosis and cytoplasmic vacuolization. There was no damage to the zona pellucida. The types of abnormalities indicate an agreement with the results of previous in vivo studies. A distinct correlation existedmore » between morphological abnormalities and embryo death. The greatest number of abnormalities resulted within five hours following irradiation, but increased through 20 hours post-exposure. At doses above 300 rads, the magnitude of damage was greater in the in vitro embryos than that shown in previous in vivo studies. (auth)« less
Rokeach, Luis A.
2015-01-01
Cell fate is determined by the balance of conserved molecular mechanisms regulating death (apoptosis) and survival (autophagy). Autophagy is a process by which cells recycle their organelles and macromolecules through degradation within the vacuole in yeast and plants, and lysosome in metazoa. In the yeast Schizosaccharomyces pombe, autophagy is strongly induced under nitrogen starvation and in aging cells. Previously, we demonstrated that calnexin (Cnx1p), a highly conserved transmembrane chaperone of the endoplasmic reticulum (ER), regulates apoptosis under ER stress or inositol starvation. Moreover, we showed that in stationary phase, Cnx1p is cleaved into two moieties, L_Cnx1p and S_Cnx1p. Here, we show that the processing of Cnx1p is regulated by autophagy, induced by nitrogen starvation or cell aging. The cleavage of Cnx1p involves two vacuolar proteases: Isp6, which is essential for autophagy, and its paralogue Psp3. Blocking autophagy through the knockout of autophagy-related genes (atg) results in inhibition of both, the cleavage and the trafficking of Cnx1p from the ER to the vacuole. We demonstrate that Cnx1p is required for cell survival under nitrogen-starvation and in chronological aging cultures. The death of the mini_cnx1 mutant (overlapping S_cnx1p) cells is accompanied by accumulation of high levels of reactive-oxygen species (ROS), a slowdown in endocytosis and severe cell-wall defects. Moreover, mutant cells expressing only S_Cnx1p showed cell wall defects. Co-expressing mutant overlapping the L_Cnx1p and S_Cnx1p cleavage products reverses the death, ROS phenotype and cell wall defect to wild-type levels. As it is involved in both apoptosis and autophagy, Cnx1p could be a nexus for the crosstalk between these pro-death and pro-survival mechanisms. Ours, and observations in mammalian systems, suggest that the multiple roles of calnexin depend on its sub-cellular localization and on its cleavage. The use of S. pombe should assist in further shedding light on the multiple roles of calnexin. PMID:25803873
Giansanti, Maria Grazia; Vanderleest, Timothy E.; Jewett, Cayla E.; Sechi, Stefano; Frappaolo, Anna; Fabian, Lacramioara; Robinett, Carmen C.; Brill, Julie A.; Loerke, Dinah; Fuller, Margaret T.; Blankenship, J. Todd
2015-01-01
Mitotic and cytokinetic processes harness cell machinery to drive chromosomal segregation and the physical separation of dividing cells. Here, we investigate the functional requirements for exocyst complex function during cell division in vivo, and demonstrate a common mechanism that directs anaphase cell elongation and cleavage furrow progression during cell division. We show that onion rings (onr) and funnel cakes (fun) encode the Drosophila homologs of the Exo84 and Sec8 exocyst subunits, respectively. In onr and fun mutant cells, contractile ring proteins are recruited to the equatorial region of dividing spermatocytes. However, cytokinesis is disrupted early in furrow ingression, leading to cytokinesis failure. We use high temporal and spatial resolution confocal imaging with automated computational analysis to quantitatively compare wild-type versus onr and fun mutant cells. These results demonstrate that anaphase cell elongation is grossly disrupted in cells that are compromised in exocyst complex function. Additionally, we observe that the increase in cell surface area in wild type peaks a few minutes into cytokinesis, and that onr and fun mutant cells have a greatly reduced rate of surface area growth specifically during cell division. Analysis by transmission electron microscopy reveals a massive build-up of cytoplasmic astral membrane and loss of normal Golgi architecture in onr and fun spermatocytes, suggesting that exocyst complex is required for proper vesicular trafficking through these compartments. Moreover, recruitment of the small GTPase Rab11 and the PITP Giotto to the cleavage site depends on wild-type function of the exocyst subunits Exo84 and Sec8. Finally, we show that the exocyst subunit Sec5 coimmunoprecipitates with Rab11. Our results are consistent with the exocyst complex mediating an essential, coordinated increase in cell surface area that potentiates anaphase cell elongation and cleavage furrow ingression. PMID:26528720
Merkle, R K; Helland, D E; Welles, J L; Shilatifard, A; Haseltine, W A; Cummings, R D
1991-10-01
The envelope glycoprotein of HIV-I in infected, cultured human T cells is synthesized as a precursor of apparent Mr 160 kDa (gp160) and is cleaved to two glycoproteins, gp120 and gp41, which are the mature envelope glycoproteins in the virus. Neither the temporal and spatial features of glycosylation nor the oligosaccharide processing and proteolytic cleavage of the envelope glycoprotein are well understood. To understand more about these events, we investigated the glycosylation and cleavage of the envelope glycoproteins in the CD4+ human cell line, Molt-3, persistently infected with HIV-I (HTLV IIIB). The carbohydrate analysis of gp160 and gp120 and the behavior of the glycoproteins and glycopeptides derived from them on immobilized lectins demonstrate that both of these glycoproteins contain complex- and high-mannose-type Asn-linked oligosaccharides. In addition, the N-glycanase-resistant oligosaccharides of gp120 were found to contain N-acetyl-galactosamine, a common constituent of Ser/Thr-linked oligosaccharides. Pulse-chase analysis of the conversion of [35S]cysteine-labeled gp160 showed that in Molt-3 cells it takes about 2 h for gp120 to arise with a half-time of conversion of about 5 h. At its earliest detectable occurrence, gp120 was found to contain complex-type Asn-linked oligosaccharides. Taken together, these results indicate that proteolytic cleavage of gp160 to gp120 and gp41 occurs either within the trans-Golgi or in a distal compartment.
A Mutation in UL15 of Herpes Simplex Virus 1 That Reduces Packaging of Cleaved Genomes▿
Yang, Kui; Wills, Elizabeth G.; Baines, Joel D.
2011-01-01
Herpesvirus genomic DNA is cleaved from concatemers that accumulate in infected cell nuclei. Genomic DNA is inserted into preassembled capsids through a unique portal vertex. Extensive analyses of viral mutants have indicated that intact capsids, the portal vertex, and all components of a tripartite terminase enzyme are required to both cleave and package viral DNA, suggesting that DNA cleavage and packaging are inextricably linked. Because the processes have not been functionally separable, it has been difficult to parse the roles of individual proteins in the DNA cleavage/packaging reaction. In the present study, a virus bearing the deletion of codons 400 to 420 of UL15, encoding a terminase component, was analyzed. This virus, designated vJB27, failed to replicate on noncomplementing cells but cleaved concatemeric DNA to ca. 35 to 98% of wild-type levels. No DNA cleavage was detected in cells infected with a UL15-null virus or a virus lacking UL15 codons 383 to 385, comprising a motif proposed to couple ATP hydrolysis to DNA translocation. The amount of vJB27 DNA protected from DNase I digestion was reduced compared to the wild-type virus by 6.5- to 200-fold, depending on the DNA fragment analyzed, thus indicating a profound defect in DNA packaging. Capsids containing viral DNA were not detected in vJB27-infected cells, as determined by electron microscopy. These data suggest that pUL15 plays an essential role in DNA translocation into the capsid and indicate that this function is separable from its role in DNA cleavage. PMID:21880766
Amyloid-β production via cleavage of amyloid-β protein precursor is modulated by cell density.
Zhang, Can; Browne, Andrew; Divito, Jason R; Stevenson, Jesse A; Romano, Donna; Dong, Yuanlin; Xie, Zhongcong; Tanzi, Rudolph E
2010-01-01
Mounting evidence suggests that Alzheimer's disease (AD) is caused by the accumulation of the small peptide, amyloid-β (Aβ), a proteolytic cleavage product of amyloid-β protein precursor (AβPP). Aβ is generated through a serial cleavage of AβPP by β- and γ-secretase. Aβ40 and Aβ42 are the two main components of amyloid plaques in AD brains, with Aβ42 being more prone to aggregation. AβPP can also be processed by α-secretase, which cleaves AβPP within the Aβ sequence, thereby preventing the generation of Aβ. Little is currently known regarding the effects of cell density on AβPP processing and Aβ generation. Here we assessed the effects of cell density on AβPP processing in neuronal and non-neuronal cell lines, as well as mouse primary cortical neurons. We found that decreased cell density significantly increases levels of Aβ40, Aβ42, total Aβ, and the ratio of Aβ42: Aβ40. These results also indicate that cell density is a significant modulator of AβPP processing. Overall, these findings carry profound implications for both previous and forthcoming studies aiming to assess the effects of various conditions and genetic/chemical factors, e.g., novel drugs on AβPP processing and Aβ generation in cell-based systems. Moreover, it is interesting to speculate whether cell density changes in vivo may also affect AβPP processing and Aβ levels in the AD brain.
Embryonic Cleavage Cycles: How Is a Mouse Like a Fly?
O’Farrell, Patrick H.; Stumpff, Jason; Su, Tin Tin
2009-01-01
The evolutionary advent of uterine support of embryonic growth in mammals is relatively recent. Nonetheless, striking differences in the earliest steps of embryogenesis make it difficult to draw parallels even with other chordates. We suggest that use of fertilization as a reference point misaligns the earliest stages and masks parallels that are evident when development is aligned at conserved stages surrounding gastrulation. In externally deposited eggs from representatives of all the major phyla, gastrulation is preceded by specialized extremely rapid cleavage cell cycles. Mammals also exhibit remarkably fast cell cycles in close association with gastrulation, but instead of beginning development with these rapid cycles, the mammalian egg first devotes itself to the production of extraembryonic structures. Previous attempts to identify common features of cleavage cycles focused on post-fertilization divisions of the mammalian egg. We propose that comparison to the rapid peri-gastrulation cycles is more appropriate and suggest that these cycles are related by evolutionary descent to the early cleavage stages of embryos such as those of frog and fly. The deferral of events in mammalian embryogenesis might be due to an evolutionary shift in the timing of fertilization. PMID:14711435
piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis.
Goh, Wee Siong Sho; Falciatori, Ilaria; Tam, Oliver H; Burgess, Ralph; Meikar, Oliver; Kotaja, Noora; Hammell, Molly; Hannon, Gregory J
2015-05-15
MIWI catalytic activity is required for spermatogenesis, indicating that piRNA-guided cleavage is critical for germ cell development. To identify meiotic piRNA targets, we augmented the mouse piRNA repertoire by introducing a human meiotic piRNA cluster. This triggered a spermatogenesis defect by inappropriately targeting the piRNA machinery to mouse mRNAs essential for germ cell development. Analysis of such de novo targets revealed a signature for pachytene piRNA target recognition. This enabled identification of both transposable elements and meiotically expressed protein-coding genes as targets of native piRNAs. Cleavage of genic targets began at the pachytene stage and resulted in progressive repression through meiosis, driven at least in part via the ping-pong cycle. Our data support the idea that meiotic piRNA populations must be strongly selected to enable successful spermatogenesis, both driving the response away from essential genes and directing the pathway toward mRNA targets that are regulated by small RNAs in meiotic cells. © 2015 Goh et al.; Published by Cold Spring Harbor Laboratory Press.
Salamaga, Bartłomiej; Prajsnar, Tomasz K.; Willemse, Joost; Bewley, Martin A.; Chau, Françoise
2017-01-01
Enterococcus faecalis is an opportunistic pathogen frequently isolated in clinical settings. This organism is intrinsically resistant to several clinically relevant antibiotics and can transfer resistance to other pathogens. Although E. faecalis has emerged as a major nosocomial pathogen, the mechanisms underlying the virulence of this organism remain elusive. We studied the regulation of daughter cell separation during growth and explored the impact of this process on pathogenesis. We demonstrate that the activity of the AtlA peptidoglycan hydrolase, an enzyme dedicated to septum cleavage, is controlled by several mechanisms, including glycosylation and recognition of the peptidoglycan substrate. We show that the long cell chains of E. faecalis mutants are more susceptible to phagocytosis and are no longer able to cause lethality in the zebrafish model of infection. Altogether, this work indicates that control of cell separation during division underpins the pathogenesis of E. faecalis infections and represents a novel enterococcal virulence factor. We propose that inhibition of septum cleavage during division represents an attractive therapeutic strategy to control infections. PMID:28742152
Effects of inhibition of ubiquitin-proteasome pathway on human primary leukemic cells.
Lan, Yu; Zhang, Xuemin; Yang, Pingdi; Hu, Meiru; Yu, Ming; Yang, Yi; Shen, Beifen
2002-12-01
Though there were a lot of reports about the totally different responses to the inhibition of ubiquitin-proteasome pathway in different kinds of cell lines, much less has been known about the responses in primary human leukemic cells. In this study, the effects of inhibition of ubiquitin-proteasome pathway on human bone marrow (BM) mononuclear cells (MNCs) obtained from 10 normal persons and 8 leukemia patients were examined. The results showed that the responses obviously varied individually. Among them, BM MNCs in 3 cases of leukemic patients were extremely sensitive, demonstrated by that > 90% cells were induced to undergo apoptosis within 24 h, but MNCs in 10 cases of normal persons showed resistance to the inhibition and no apoptosis was observed. Furthermore, Western blots revealed that the Bcl-2 expression was relatively high in the sensitive primary leukemia cells, and especially the cleavage of 26 ku Bcl-2 into a 22 ku fragment occurred during the induction of apoptosis. In contrast, the Bcl-2 expression was either undetectable or detectable but no cleavage of that above was observed in the cells insensitive to the inhibition of the pathway (including BM MNCs in normal persons). Together with the observations on the leukemic cell lines, these findings suggested the correlation of the specific cleavage of Bcl-2 into a shortened fragment with the sensitivity of cells to the inhibition of ubiquitin-proteasome pathway, which provides clues to the further understanding of the mechanisms of that dramatically different responses existing in different kinds of cells to the inhibition of ubiquitin-proteasome pathway.
Quan, Juan-Hua; Kang, Byung-Hun; Cha, Guang-Ho; Zhou, Wei; Koh, Young-Bok; Yang, Jung-Bo; Yoo, Heon-Jong; Lee, Min-A; Ryu, Jae-Sook; Noh, Heung-Tae; Kwon, Jaeyul; Lee, Young-Ha
2014-01-01
To elucidate the roles of metalloproteinases and the Bcl-2 family of proteins in Trichovaginalis. vaginalis-induced apoptosis in human cervical cancer cells (SiHa cells) and vaginal epithelial cells (MS74 cells), SiHa cells and MS74 cells were incubated with live T. vaginalis, T. vaginalis excretory and secretory products (ESP), and T. vaginalis lysates, either with or without the specific metalloproteinase inhibitor 1,10-phenanthroline (1,10-PT), and examined apoptotic events and Bcl-2 signaling. The live T. vaginalis and the T. vaginalis ESP induced the release of cytochrome c into the cytosol, the activation of caspase-3 and caspase-9, and the cleavage of PARP. Additionally, the live T. vaginalis, but not the T. vaginalis lysate, induced the cleavage of the proapoptotic Bim protein. The live T. vaginalis and the T. vaginalis ESP, but not the T. vaginalis lysate, induced the dose-dependent cleavage of the antiapoptotic Bcl-xL and Mcl-1 proteins and decreased the association levels of Bcl-xL/Bim and Mcl-1/Bim complexes. We performed gelatin zymography and casein-hydrolysis assays on the live T. vaginalis and the T. vaginalis ESP to identify the apoptosis-inducing factor. Both the live T. vaginalis and the ESP contained high levels of metalloproteinases, of which activities were significantly inhibited by 1,10-PT treatment. Furthermore, the 1,10-PT blocked the cleavage of Bcl-xL, Mcl-1, PARP, caspase-3, and caspase-9, as well as the release of cytochrome c into the cytosol, and it significantly increased the association levels of the Bcl-xL/Bim and Mcl-1/Bim protein complexes, returning them to normal levels. Our results demonstrate that T. vaginalis induces mitochondria-dependent apoptosis in SiHa cells through the dissociation of Bcl-xL/Bim and Mcl-1/Bim complexes and that the apoptosis is blocked by the metalloproteinase inhibitor 1,10-PT. These results expand our understanding of the role of metalloproteinases in T. vaginalis-induced apoptosis and the signaling pathway in trichomoniasis of the cervicovaginal epithelial cells.
Zhou, Wei; Koh, Young-Bok; Yang, Jung-Bo; Yoo, Heon-Jong; Lee, Min-A; Ryu, Jae-Sook; Noh, Heung-Tae; Kwon, Jaeyul; Lee, Young-Ha
2014-01-01
To elucidate the roles of metalloproteinases and the Bcl-2 family of proteins in Trichovaginalis. vaginalis-induced apoptosis in human cervical cancer cells (SiHa cells) and vaginal epithelial cells (MS74 cells), SiHa cells and MS74 cells were incubated with live T. vaginalis, T. vaginalis excretory and secretory products (ESP), and T. vaginalis lysates, either with or without the specific metalloproteinase inhibitor 1,10-phenanthroline (1,10-PT), and examined apoptotic events and Bcl-2 signaling. The live T. vaginalis and the T. vaginalis ESP induced the release of cytochrome c into the cytosol, the activation of caspase-3 and caspase-9, and the cleavage of PARP. Additionally, the live T. vaginalis, but not the T. vaginalis lysate, induced the cleavage of the proapoptotic Bim protein. The live T. vaginalis and the T. vaginalis ESP, but not the T. vaginalis lysate, induced the dose-dependent cleavage of the antiapoptotic Bcl-xL and Mcl-1 proteins and decreased the association levels of Bcl-xL/Bim and Mcl-1/Bim complexes. We performed gelatin zymography and casein-hydrolysis assays on the live T. vaginalis and the T. vaginalis ESP to identify the apoptosis-inducing factor. Both the live T. vaginalis and the ESP contained high levels of metalloproteinases, of which activities were significantly inhibited by 1,10-PT treatment. Furthermore, the 1,10-PT blocked the cleavage of Bcl-xL, Mcl-1, PARP, caspase-3, and caspase-9, as well as the release of cytochrome c into the cytosol, and it significantly increased the association levels of the Bcl-xL/Bim and Mcl-1/Bim protein complexes, returning them to normal levels. Our results demonstrate that T. vaginalis induces mitochondria-dependent apoptosis in SiHa cells through the dissociation of Bcl-xL/Bim and Mcl-1/Bim complexes and that the apoptosis is blocked by the metalloproteinase inhibitor 1,10-PT. These results expand our understanding of the role of metalloproteinases in T. vaginalis-induced apoptosis and the signaling pathway in trichomoniasis of the cervicovaginal epithelial cells. PMID:25343522
Yue, Qingxi; Feng, Lixing; Cao, Biyin; Liu, Miao; Zhang, Dongmei; Wu, Wanying; Jiang, Baohong; Yang, Min; Liu, Xuan; Guo, Dean
2016-01-01
Gambogic acid (GA) is an anticancer agent in phase IIb clinical trial in China. In HeLa cells, GA inhibited cell proliferation, induced cell cycle arrest at G2/M phase and apoptosis, as showed by results of MTT assay and flow cytometric analysis. Possible target-related proteins of GA were searched using comparative proteomic analysis (2-DE) and nine proteins at early (3 h) stage together with nine proteins at late (24 h) stage were found. Vimentin was the only target-related protein found at both early and late stage. Results of both 2-DE analysis and Western blotting assay suggested cleavage of vimentin induced by GA. MS/MS analysis of cleaved vimentin peptides indicated possible cleavage sites of vimentin at or near ser51 and glu425. Results of targeted proteomic analysis showed that GA induced change in phosphorylation state of the vimentin head domain (aa51–64). Caspase inhibitors could not abrogate GA-induced cleavage of vimentin. Over-expression of vimentin ameliorated cytotoxicity of GA in HeLa cells. The GA-activated signal transduction, from p38 MAPK, heat shock protein 27 (HSP27), vimentin, dysfunction of cytoskeleton, to cell death, was predicted and then confirmed. Results of animal study showed that GA treatment inhibited tumor growth in HeLa tumor-bearing mice and cleavage of vimentin could be observed in tumor xenografts of GA-treated animals. Results of immunohistochemical staining also showed down-regulated vimentin level in tumor xenografts of GA-treated animals. Furthermore, compared with cytotoxicity of GA in HeLa cells, cytotoxicity of GA in MCF-7 cells with low level of vimentin was weaker whereas cytotoxicity of GA in MG-63 cells with high level of vimentin was stronger. These results indicated the important role of vimentin in the cytotoxicity of GA. The effects of GA on vimentin and other epithelial-to-mesenchymal transition (EMT) markers provided suggestion for better usage of GA in clinic. PMID:26499837
Kurbegovic, Almira; Kim, Hyunho; Xu, Hangxue; Yu, Shengqiang; Cruanès, Julie; Maser, Robin L.; Boletta, Alessandra; Trudel, Marie
2014-01-01
Polycystin-1 (Pc1) cleavage at the G protein-coupled receptor (GPCR) proteolytic site (GPS) is required for normal kidney morphology in humans and mice. We found a complex pattern of endogenous Pc1 forms by GPS cleavage. GPS cleavage generates not only the heterodimeric cleaved full-length Pc1 (Pc1cFL) in which the N-terminal fragment (NTF) remains noncovalently associated with the C-terminal fragment (CTF) but also a novel (Pc1) form (Pc1deN) in which NTF becomes detached from CTF. Uncleaved Pc1 (Pc1U) resides primarily in the endoplasmic reticulum (ER), whereas both Pc1cFL and Pc1deN traffic through the secretory pathway in vivo. GPS cleavage is not a prerequisite, however, for Pc1 trafficking in vivo. Importantly, Pc1deN is predominantly found at the plasma membrane of renal epithelial cells. By functional genetic complementation with five Pkd1 mouse models, we discovered that CTF plays a crucial role in Pc1deN trafficking. Our studies support GPS cleavage as a critical regulatory mechanism of Pc1 biogenesis and trafficking for proper kidney development and homeostasis. PMID:24958103
Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing.
Lacroix, Benjamin; Letort, Gaëlle; Pitayu, Laras; Sallé, Jérémy; Stefanutti, Marine; Maton, Gilliane; Ladouceur, Anne-Marie; Canman, Julie C; Maddox, Paul S; Maddox, Amy S; Minc, Nicolas; Nédélec, François; Dumont, Julien
2018-05-21
Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume. Copyright © 2018 Elsevier Inc. All rights reserved.
Polycystin-1 C-terminal Cleavage Is Modulated by Polycystin-2 Expression*
Bertuccio, Claudia A.; Chapin, Hannah C.; Cai, Yiqiang; Mistry, Kavita; Chauvet, Veronique; Somlo, Stefan; Caplan, Michael J.
2009-01-01
Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC-1) and polycystin-2 (PC-2). PC-1 cleavage releases its cytoplasmic C-terminal tail (CTT), which enters the nucleus. To determine whether PC-1 CTT cleavage is influenced by PC-2, a quantitative cleavage assay was utilized, in which the DNA binding and activation domains of Gal4 and VP16, respectively, were appended to PC-1 downstream of its CTT domain (PKDgalvp). Cells cotransfected with the resultant PKDgalvp fusion protein and PC-2 showed an increase in luciferase activity and in CTT expression, indicating that the C-terminal tail of PC-1 is cleaved and enters the nucleus. To assess whether CTT cleavage depends upon Ca2+ signaling, cells transfected with PKDgalvp alone or together with PC-2 were incubated with several agents that alter intracellular Ca2+ concentrations. PC-2 enhancement of luciferase activity was not altered by any of these treatments. Using a series of PC-2 C-terminal truncated mutations, we identified a portion of the PC-2 protein that is required to stimulate PC-1 CTT accumulation. These data demonstrate that release of the CTT from PC-1 is influenced and stabilized by PC-2. This effect is independent of Ca2+ but is regulated by sequences contained within the PC-2 C-terminal tail, suggesting a mechanism through which PC-1 and PC-2 may modulate a novel signaling pathway. PMID:19491093
Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z
2017-01-01
As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975
Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z
2017-02-01
As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.
Tian, Hui; Zhang, De-Fang; Zhang, Bao-Fu; Li, Hui-Zhong; Zhang, Qing; Li, Lian-Tao; Pei, Dong-Sheng; Zheng, Jun-Nian
2015-03-01
Melanoma differentiation-associated gene-7 (mda-7)/interleukin-24 (IL-24) induces caspase-3 cleavage and subsequent activation via the intrinsic or extrinsic pathway to result in cancer cell-selective apoptosis, but whether mda-7/IL-24 may directly regulate caspase-3 through the post-translational modification remains unknown. Here, we reported that tumor-selective replicating adenovirus ZD55-IL-24 led to caspase-3 denitrosylation and subsequent activation, indicating that caspase-3 denitrosylation played a crucial role in ZD55-IL-24-induced cancer cell apoptosis. To confirm the relationship between caspase-3 denitrosylation and its activation in response to ZD55-IL-24, we treated carcinoma cells with the different nitric oxide (NO) regulators to modulate caspase-3 denitrosylation level, then observed the corresponding caspase-3 cleavage. We found that NO inhibitor 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (PTIO) promoted caspase-3 denitrosylation and caspase-3 cleavage, thereby exacerbating ZD55-IL-24-induced cancer cell apoptosis, whereas NO donor sodium nitroprusside (SNP) showed the opposite effect. Moreover, caspase-3 denitrosylation facilitated its downstream target poly ADP-ribose polymerase (PARP) degradation that further increased the apoptotic susceptibility. Although caspase-3 activation controlled by denitrosylation modification has emerged as an important regulator of programmed cell death, the detailed molecular mechanism by which caspase-3 exerts its denitrosylation modification in response to ZD55-IL-24 still needs to be elucidated. Thus, our results demonstrated that ZD55-IL-24 increased Fas expression to enhance thioredoxin reductase 2 (TrxR2), which was responsible for caspase-3 denitrosylation. Collectively, these findings elucidate that ZD55-IL-24 induces caspase-3 denitrosylation through Fas-mediated TrxR2 enhancement, thereby facilitating caspase-3 cleavage and the downstream caspase signaling pathway activation, which provides a novel insight into ZD55-IL-24-induced cancer-specific apoptosis by post-translational modification of the apoptotic executor caspase-3.
The disaccharide moiety of bleomycin facilitates uptake by cancer cells.
Schroeder, Benjamin R; Ghare, M Imran; Bhattacharya, Chandrabali; Paul, Rakesh; Yu, Zhiqiang; Zaleski, Paul A; Bozeman, Trevor C; Rishel, Michael J; Hecht, Sidney M
2014-10-01
The disaccharide moiety is responsible for the tumor cell targeting properties of bleomycin (BLM). While the aglycon (deglycobleomycin) mediates DNA cleavage in much the same fashion as bleomycin, it exhibits diminished cytotoxicity in comparison to BLM. These findings suggested that BLM might be modular in nature, composed of tumor-seeking and tumoricidal domains. To explore this possibility, BLM analogues were prepared in which the disaccharide moiety was attached to deglycobleomycin at novel positions, namely, via the threonine moiety or C-terminal substituent. The analogues were compared with BLM and deglycoBLM for DNA cleavage, cancer cell uptake, and cytotoxic activity. BLM is more potent than deglycoBLM in supercoiled plasmid DNA relaxation, while the analogue having the disaccharide on threonine was less active than deglycoBLM and the analogue containing the C-terminal disaccharide was slightly more potent. While having unexceptional DNA cleavage potencies, both glycosylated analogues were more cytotoxic to cultured DU145 prostate cancer cells than deglycoBLM. Dye-labeled conjugates of the cytotoxic BLM aglycons were used in imaging experiments to determine the extent of cell uptake. The rank order of internalization efficiencies was the same as their order of cytotoxicities toward DU145 cells. These findings establish a role for the BLM disaccharide in tumor targeting/uptake and suggest that the disaccharide moiety may be capable of delivering other cytotoxins to cancer cells. While the mechanism responsible for uptake of the BLM disaccharide selectively by tumor cells has not yet been established, data are presented which suggest that the metabolic shift to glycolysis in cancer cells may provide the vehicle for selective internalization.
Murray, Vincent; Chen, Jon K; Galea, Anne M
2014-04-01
The genome-wide pattern of DNA cleavage at transcription start sites (TSSs) for the anti-tumor drug bleomycin was examined in human HeLa cells using next-generation DNA sequencing. It was found that actively transcribed genes were preferentially cleaved compared with non-transcribed genes. The 143,600 identified human TSSs were split into non-transcribed genes (82,596) and transcribed genes (61,004) for HeLa cells. These transcribed genes were further split into quintiles of 12,201 genes comprising the top 20, 20-40, 40-60, 60-80, and 80-100 % of expressed genes. The bleomycin cleavage pattern at highly transcribed gene TSSs was greatly enhanced compared with purified DNA and non-transcribed gene TSSs. The top 20 and 20-40 % quintiles had a very similar enhanced cleavage pattern, the 40-60 % quintile was intermediate, while the 60-80 and 80-100 % quintiles were close to the non-transcribed and purified DNA profiles. The pattern of bleomycin enhanced cleavage had peaks that were approximately 200 bp apart, and this indicated that bleomycin was identifying the presence of phased nucleosomes at TSSs. Hence bleomycin can be utilized to detect chromatin structures that are present at actively transcribed genes. In this study, for the first time, the pattern of DNA damage by a clinically utilized cancer chemotherapeutic agent was performed on a human genome-wide scale at the nucleotide level.
Simons, Michelle; Szczelkun, Mark D.
2011-01-01
The Type I restriction-modification enzymes comprise three protein subunits; HsdS and HsdM that form a methyltransferase (MTase) and HsdR that associates with the MTase and catalyses Adenosine-5′-triphosphate (ATP)-dependent DNA translocation and cleavage. Here, we examine whether the MTase and HsdR components can ‘turnover’ in vitro, i.e. whether they can catalyse translocation and cleavage events on one DNA molecule, dissociate and then re-bind a second DNA molecule. Translocation termination by both EcoKI and EcoR124I leads to HsdR dissociation from linear DNA but not from circular DNA. Following DNA cleavage, the HsdR subunits appear unable to dissociate even though the DNA is linear, suggesting a tight interaction with the cleaved product. The MTases of EcoKI and EcoAI can dissociate from DNA following either translocation or cleavage and can initiate reactions on new DNA molecules as long as free HsdR molecules are available. In contrast, the MTase of EcoR124I does not turnover and additional cleavage of circular DNA is not observed by inclusion of RecBCD, a helicase–nuclease that degrades the linear DNA product resulting from Type I cleavage. Roles for Type I restriction endonuclease subunit dynamics in restriction alleviation in the cell are discussed. PMID:21712244
Kimura, Sayaka; Matsumiya, Tomoh; Shiba, Yuko; Nakanishi, Michi; Hayakari, Ryo; Kawaguchi, Shogo; Yoshida, Hidemi; Imaizumi, Tadaatsu
2018-06-20
The recognition of nonself dsRNA by retinoic acid-inducible gene-I (RIG-I) leads to the engagement of RIG-I-like receptor signaling. In addition, nonself dsRNA triggers a robust latent RNase (RNase L) activation and leads to the degradation of ribosomal structures and cell death. In contrast, nonself ssRNA is known to be recognized by TLR 7/8 in immune cells such as plasmacytoid dendritic cells and B cells, but little is known regarding the involvement of nonself ssRNA in antiviral signaling in nonimmune cells, including epithelial cells. Moreover, the fate of intracellular nonself ssRNA remains unknown. To address this issue, we developed a quantitative RT-PCR-based approach that monitors the kinetics of nonself ssRNA cleavage following the transfection of HeLa human cervical carcinoma cells, using model nonself ssRNA. We discovered that the degradation of ssRNA is independent of RIG-I and type I IFN signaling because ssRNA did not trigger RIG-I-mediated antiviral signaling. We also found that the kinetics of self (5'-capped) and nonself ssRNA decay were unaltered, suggesting that nonself ssRNA is not recognized by nonimmune cells. We further demonstrated that the cleavage of nonself ssRNA is accelerated when nonself dsRNA is also introduced into cells. In addition, the cleavage of nonself ssRNA is completely abolished by knockdown of RNase L. Overall, our data demonstrate the important role of dsRNA-RNase L in nonself ssRNA degradation and may partly explain the positive regulation of the antiviral responses in nonimmune cells. Copyright © 2018 by The American Association of Immunologists, Inc.
Satoh, Kanehide; Kominami, Tetsuya
2008-10-01
To elucidate factors involved in the oral-aboral axis specification, several observations and experiments were undertaken using the sand dollar Scaphechinus mirabilis. Unlike in Strongylcentrotus purpuratus, localization of mitochondria was not detected in unfertilized eggs. After fertilization, however, the bulk of mitochondria became localized to the opposite side of sperm entry. The first cleavage divided this mitochondrial cluster into daughter blastomeres. On the other hand, a second cleavage produced daughter blastomeres containing quite different amounts of mitochondria. To know whether such mitochondrial localization affects the oral-aboral axis specification, 4-cell-stage embryos were separated along the second cleavage plane. Although both half embryos developed into morphologically normal plutei, some differences, such as the number of pigment cells, were noticed between the siblings. In contrast, cell tracing revealed that the first cleavage separated the oral from the aboral part in most cases, indicating that the unequal distribution of mitochondria is not critical for the oral-aboral axis specification. Further, stained and non-stained half embryo fragments were combined. Such combined embryos developed into normal plutei with a single oral-aboral axis. The plane dividing labeled and non-labeled parts were incident, oblique or perpendicular to the median plane of the combined embryo, and the appearance frequencies of those labeling patterns were similar to those obtained by cell tracing in intact embryos. Interestingly, the half fragments derived from embryos inseminated earlier showed a tendency to form the oral part. These suggest that several factors as well as the localized cytoplasmic components would be involved in the specification process of oral-aboral axis.
Surface antigen in early differentiation.
Kemler, R; Babinet, C; Eisen, H; Jacob, F
1977-01-01
Addition of Fab fragments from rabbit antiserum to surface antigen F9 to 2-cell stage mouse embryos in culture does not alter cleavage; however, the addition prevents culture does not alter cleavage; however, the addition prevents the formation of compact morulae and blastocysts. A similar effect is observed when Fab fragments are added to already compact 8-cell stage or even older morulae, but disappears at the beginning of blastocoel formation. This effect is reversible: uncompact 30-cell embryos washed free of Fab become compact in a few hours, produce blastocysts, and upon reimplantation into pseudopregnant mothers can produce mice. Development is not altered by divalent anti-F9 antibodies, by Fab fragments from sera directed against other embryo surface antigens, or by succinyl concanavalin A. Images PMID:270688
Xie, Zhongcong; Dong, Yuanlin; Maeda, Uta; Xia, Weiming; Tanzi, Rudolph E
2012-03-22
Amyloid-β-protein (Aβ), the key component of senile plaques in Alzheimer's disease (AD) brain, is produced from amyloid precursor protein (APP) by cleavage of β-secretase and then γ-secretase. APP adaptor proteins with phosphotyrosine-binding (PTB) domains, including Dab (gene: DAB) and Numb (gene: NUMB), can bind to and interact with the conserved YENPTY-motif in the APP C-terminus. Here we describe, for the first time, the effects of RNAi knock-down of Dab and Numb expression on APP processing and Aβ production. RNAi knock-down of Dab and Numb in H4 human neuroglioma cells stably transfected to express either FL-APP (H4-FL-APP cells) or APP-C99 (H4-APP-C99 cells) increased levels of APP-C-terminal fragments (APP-CTFs) and lowered Aβ levels in both cell lines by inhibiting γ-secretase cleavage of APP. Finally, RNAi knock-down of APP also reduced levels of Numb in H4-APP cells. These findings suggest that pharmacologically blocking interaction of APP with Dab and Numb may provide novel therapeutic strategies of AD. The notion of attenuating γ-secretase cleavage of APP via the APP adaptor proteins, Dab and Numb, is particularly attractive with regard to therapeutic potential, given that side effects of γ-secretase inhibition owing to impaired proteolysis of other γ-secretase substrates, e.g. Notch, might be avoided.
He, She-Hong; Liu, Hong-Gai; Zhou, Yu-Fei; Yue, Qing-Fen
2017-08-01
Cervical cancer is one of the most common female malignancies worldwide. Liquiritin (LT), a major constituent of Glycyrrhiza Radix, possesses a variety of pharmacological activities, including anti-cancer, anti-oxidative, anti-inflammatory and neuro-protective effects. However, its role in human cervical cancer remains to be elusive. In our study, we found that LT suppressed cervical cancer cell migration, invasion and cloning ability with little cytotoxicity to human normal cells. In addition, apoptosis was induced by LT in cervical cancer cells through activation of Caspase-3 and poly ADP-ribose polymerase (PARP) cleavage. LT-triggered apoptosis was dependent on extrinsic and intrinsic pathways, which were relied on Fas-associated protein with death domain (FADD)- and Bcl-2/Bax-regulated pathways, leading to Caspase-8 and Caspase-9 cleavage, respectively. LT was found to increase FADD expression, while reduce Bcl-2 expression, contributing to Caspase-3 cleavage. And tumor suppressors, p21 and p53, were enhanced after LT treatment, inhibiting the growth of cervical cancer cells in vitro. Significantly, in vivo study suggested that tumor growth was impeded by LT in a dose-dependent manner through enhancing apoptosis. Together, the data here revealed that LT was an effective and promising candidate for preventing human cervical cancer progression via apoptosis enhancement. Copyright © 2017. Published by Elsevier Masson SAS.
NASA Astrophysics Data System (ADS)
Schmidt, Thomas P.; Perna, Anna M.; Fugmann, Tim; Böhm, Manja; Jan Hiss; Haller, Sarah; Götz, Camilla; Tegtmeyer, Nicole; Hoy, Benjamin; Rau, Tilman T.; Neri, Dario; Backert, Steffen; Schneider, Gisbert; Wessler, Silja
2016-03-01
The cell adhesion protein and tumour suppressor E-cadherin exhibits important functions in the prevention of gastric cancer. As a class-I carcinogen, Helicobacter pylori (H. pylori) has developed a unique strategy to interfere with E-cadherin functions. In previous studies, we have demonstrated that H. pylori secretes the protease high temperature requirement A (HtrA) which cleaves off the E-cadherin ectodomain (NTF) on epithelial cells. This opens cell-to-cell junctions, allowing bacterial transmigration across the polarised epithelium. Here, we investigated the molecular mechanism of the HtrA-E-cadherin interaction and identified E-cadherin cleavage sites for HtrA. Mass-spectrometry-based proteomics and Edman degradation revealed three signature motifs containing the [VITA]-[VITA]-x-x-D-[DN] sequence pattern, which were preferentially cleaved by HtrA. Based on these sites, we developed a substrate-derived peptide inhibitor that selectively bound and inhibited HtrA, thereby blocking transmigration of H. pylori. The discovery of HtrA-targeted signature sites might further explain why we detected a stable 90 kDa NTF fragment during H. pylori infection, but also additional E-cadherin fragments ranging from 105 kDa to 48 kDa in in vitro cleavage experiments. In conclusion, HtrA targets E-cadherin signature sites that are accessible in in vitro reactions, but might be partially masked on epithelial cells through functional homophilic E-cadherin interactions.
IFT Proteins Accumulate during Cell Division and Localize to the Cleavage Furrow in Chlamydomonas
Wood, Christopher R.; Wang, Zhaohui; Diener, Dennis; Zones, James Matt; Rosenbaum, Joel; Umen, James G.
2012-01-01
Intraflagellar transport (IFT) proteins are well established as conserved mediators of flagellum/cilium assembly and disassembly. However, data has begun to accumulate in support of IFT protein involvement in other processes elsewhere in the cell. Here, we used synchronous cultures of Chlamydomonas to investigate the temporal patterns of accumulation and localization of IFT proteins during the cell cycle. Their mRNAs showed periodic expression that peaked during S and M phase (S/M). Unlike most proteins that are synthesized continuously during G1 phase, IFT27 and IFT46 levels were found to increase only during S/M phase. During cell division, IFT27, IFT46, IFT72, and IFT139 re-localized from the flagella and basal bodies to the cleavage furrow. IFT27 was further shown to be associated with membrane vesicles in this region. This localization pattern suggests a role for IFT in cell division. PMID:22328921
Kik, Krzysztof; Studzian, Kazimierz; Wasowska-Łukawska, Małgorzata; Oszczapowicz, Irena; Szmigiero, Leszek
2009-01-01
This work was undertaken to compare cytotoxicity, DNA damaging properties and effect on DNA cleavage by topoisomerase II of the anthracycline drug doxorubicin (DOX) and its two derivatives with a formamidino group containing a cyclic amine moiety such as morpholine (DOXM) or hexamethyleneimine (DOXH). The tetrazolium dye colorimetric assay was used to determine the cytotoxic activity of anthracyclines toward L1210 leukemia cells. DNA damage was measured by alkaline elution technique. The effect of anthracyclines on DNA cleavage was studied in a cell-free system containing supercoiled pBR322 DNA and purified human topoisomerase II. The cytotoxicity data and the results of studies on the mechanism of DNA break formation by anthracyclines at the cellular level and in the cell-free system showed that the presence of the formamidino group in the doxorubicin molecule reduced its ability to stimulate DNA cleavage by DNA topoisomerase II. DNA topoisomerase II is not a primary cellular target for DOXM or DOXH. An advantageous feature of formamidinoanthracyclines is their mechanism of cytotoxic action which is not related to the inhibition of DNA topoisomerase II. Therefore this class of anthracyclines seems to be a good source for selection of an anticancer drug directed toward cancer cells with the developed multidrug resistance attributed to the presence of altered DNA topoisomerase II.
Coleman, Hope A.; Labrador, Juan-Pablo; Chance, Rebecca K.; Bashaw, Greg J.
2010-01-01
Slits and their Roundabout (Robo) receptors mediate repulsive axon guidance at the Drosophila ventral midline and in the vertebrate spinal cord. Slit is cleaved to produce fragments with distinct signaling properties. In a screen for genes involved in Slit-Robo repulsion, we have identified the Adam family metalloprotease Kuzbanian (Kuz). Kuz does not regulate midline repulsion through cleavage of Slit, nor is Slit cleavage essential for repulsion. Instead, Kuz acts in neurons to regulate repulsion and Kuz can cleave the Robo extracellular domain in Drosophila cells. Genetic rescue experiments using an uncleavable form of Robo show that this receptor does not maintain normal repellent activity. Finally, Kuz activity is required for Robo to recruit its downstream signaling partner, Son of sevenless (Sos). These observations support the model that Kuz-directed cleavage is important for Robo receptor activation. PMID:20570941
Chen, Xiao-Ping; Chen, Wei-Feng; Wang, Da-Wei
2014-01-01
Prenatal organophosphate exposure elicits long-term brain cytoarchitecture and cognitive function impairments, but the mechanism underlying the onset and development of neural progenitors remain largely unclear. Using precise positioned brain slices, we observed an alternated cleavage plane bias that emerged in the mitotic neural progenitors of embryonal neocortex with diazinion (DZN) and chlorpyrifos (CPF) pretreatment. In comparison with the control, DZN and CPF treatment induced decrease of vertical orientation, increase of oblique orientation, and increase of horizontal orientation. That is, the cleavage plane orientation bias had been rotated from vertical to horizontal after DZN and CPF treatment. Meanwhile, general morphology and mitotic index of the progenitors were unchanged. Acephate (ACP), another common organophosphate, had no significant effects on the cleavage plane orientation, cell morphology and mitotic index. These results represent direct evidence for the toxicity mechanism in onset multiplication of neural progenitors. PMID:24740262
Kavishwar, Amol; Medarova, Zdravka
2016-01-01
The ability to detect miRNA expression in live cells would leave these cells available for further manipulation or culture. Here, we describe the design of a miRNA sensor oligonucleotide whose sequence mimics the target mRNA. The sensor has a fluorescent label on one end of the oligo and a quencher on the other. When inside the cell, the sensor is recognized by its cognate miRNA-RISC and gets cleaved, setting the fluorophore free from its quencher. This results in fluorescence "turn on." Since cleavage by the RISC complex is an enzymatic process, the described approach has a very high level of sensitivity (nM). The rate of nonspecific cleavage of the sensor is very slow permitting the collection of meaningful signal over a long period of time.
Lin, Ru-Wei; Yang, Chia-Ning; Ku, ShengYu; Ho, Cheng-Jung; Huang, Shih-Bo; Yang, Min-Chi; Chang, Hsin-Wen; Lin, Chun-Mao; Hwang, Jaulang; Chen, Yeh-Long; Tzeng, Cherg-Chyi; Wang, Chihuei
2014-01-01
CFS-1686 (chemical name (E)-N-(2-(diethylamino)ethyl)-4-(2-(2-(5-nitrofuran-2-yl)vinyl)quinolin-4-ylamino)benzamide) inhibits cell proliferation and triggers late apoptosis in prostate cancer cell lines. Comparing the effect of CFS-1686 on cell cycle progression with the topoisomerase 1 inhibitor camptothecin revealed that CFS-1686 and camptothecin reduced DNA synthesis in S-phase, resulting in cell cycle arrest at the intra-S phase and G1-S boundary, respectively. The DNA damage in CFS-1686 and camptothecin treated cells was evaluated by the level of ATM phosphorylation, γH2AX, and γH2AX foci, showing that camptothecin was more effective than CFS-1686. However, despite its lower DNA damage capacity, CFS-1686 demonstrated 4-fold higher inhibition of topoisomerase 1 than camptothecin in a DNA relaxation assay. Unlike camptothecin, CFS-1686 demonstrated no activity on topoisomerase 1 in a DNA cleavage assay, but nevertheless it reduced the camptothecin-induced DNA cleavage of topoisomerase 1 in a dose-dependent manner. Our results indicate that CFS-1686 might bind to topoisomerase 1 to inhibit this enzyme from interacting with DNA relaxation activity, unlike campothecin's induction of a topoisomerase 1-DNA cleavage complex. Finally, we used a computer docking strategy to localize the potential binding site of CFS-1686 to topoisomerase 1, further indicating that CFS-1686 might inhibit the binding of Top1 to DNA.
A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin
Liu, Yao; Zhu, Wenhan; Tan, Yunhao; ...
2017-01-27
Legionella pneumophila, the etiological agent of Legionnaires' disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H 95E XXH 99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cellmore » rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Furthermore, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen.« less
Different Effects of sgRNA Length on CRISPR-mediated Gene Knockout Efficiency.
Zhang, Jian-Ping; Li, Xiao-Lan; Neises, Amanda; Chen, Wanqiu; Hu, Lin-Ping; Ji, Guang-Zhen; Yu, Jun-Yao; Xu, Jing; Yuan, Wei-Ping; Cheng, Tao; Zhang, Xiao-Bing
2016-06-24
CRISPR-Cas9 is a powerful genome editing technology, yet with off-target effects. Truncated sgRNAs (17nt) have been found to decrease off-target cleavage without affecting on-target disruption in 293T cells. However, the potency of 17nt sgRNAs relative to the full-length 20nt sgRNAs in stem cells, such as human mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), has not been assessed. Using a GFP reporter system, we found that both 17nt and 20nt sgRNAs expressed by lentiviral vectors induce ~95% knockout (KO) in 293T cells, whereas the KO efficiencies are significantly lower in iPSCs (60-70%) and MSCs (65-75%). Furthermore, we observed a decrease of 10-20 percentage points in KO efficiency with 17nt sgRNAs compared to full-length sgRNAs in both iPSCs and MSCs. Off-target cleavage was observed in 17nt sgRNAs with 1-2nt but not 3-4nt mismatches; whereas 20nt sgRNAs with up to 5nt mismatches can still induce off-target mutations. Of interest, we occasionally observed off-target effects induced by the 17nt but not the 20nt sgRNAs. These results indicate the importance of balancing on-target gene cleavage potency with off-target effects: when efficacy is a major concern such as genome editing in stem cells, the use of 20nt sgRNAs is preferable.
Hackett, C J; Dietzschold, B; Gerhard, W; Ghrist, B; Knorr, R; Gillessen, D; Melchers, F
1983-08-01
The functional helper T cell line Vir-2, derived from a PR8 (H1N1) influenza virus-immunized BALB/c mouse, proliferates in response to syngeneic antigen-presenting cells and naturally occurring strains of subtype H1 human influenza virus from 1934-1957 and 1977-1980 isolates. A conserved region of the hemagglutinin molecule around amino acid position 115 in the heavy chain (HA1) was implicated as being important in this recognition by the lack of stimulatory activity associated with a glutamic acid to lysine substitution at position 115 in the laboratory mutant RV6, derived from wild-type PR8. Characterization of the stimulatory determinant on the wild-type hemagglutinin molecule was then undertaken using cleavage products and synthetic peptides. Vir-2 cells recognized the reduced and alkylated purified HA1 of PR8 virus, and this reactivity was retained after cleavage at methionine and tryptophan residues. High-pressure liquid chromatography separation of cleavage fragments indicated that a short sequence of the HA1 containing residue 115 was being recognized. This recognition was localized to a nine amino acid segment (positions 111-119) by assaying stimulation with synthetic peptide homologues of different lengths from that region. As with native hemagglutinin, Vir-2 cells responded to active peptides when presented by H-2d but not H-2k antigen-presenting cells.
Koch, Bailey A.; Han, Xuemei
2017-01-01
Centrosomes organize microtubules and are essential for spindle formation and chromosome segregation during cell division. Duplicated centrosomes are physically linked, but how this linkage is dissolved remains unclear. Yeast centrosomes are tethered by a nuclear-envelope-attached structure called the half-bridge, whose components have mammalian homologues. We report here that cleavage of the half-bridge protein Mps3 promotes accurate centrosome disjunction in budding yeast. Mps3 is a single-pass SUN-domain protein anchored at the inner nuclear membrane and concentrated at the nuclear side of the half-bridge. Using the unique feature in yeast meiosis that centrosomes are linked for hours before their separation, we have revealed that Mps3 is cleaved at its nucleus-localized N-terminal domain, the process of which is regulated by its phosphorylation at serine 70. Cleavage of Mps3 takes place at the yeast centrosome and requires proteasome activity. We show that noncleavable Mps3 (Mps3-nc) inhibits centrosome separation during yeast meiosis. In addition, overexpression of mps3-nc in vegetative yeast cells also inhibits centrosome separation and is lethal. Our findings provide a genetic mechanism for the regulation of SUN-domain protein-mediated activities, including centrosome separation, by irreversible protein cleavage at the nuclear periphery. PMID:28609436
Manoharan, Vinoth K; Varghese, Berin P; Paldurai, Anandan; Samal, Siba K
2018-01-01
Newcastle disease (ND) causes severe economic loss to poultry industry worldwide. Frequent outbreaks of ND in commercial chickens vaccinated with live vaccines suggest a need to develop improved vaccines that are genetically matched against circulating Newcastle disease virus (NDV) strains. In this study, the fusion protein cleavage site (FPCS) sequence of NDV strain Banjarmasin/010 (Banj), a genotype VII NDV, was individually modified using primer mutagenesis to those of avian paramyxovirus (APMV) serotypes 2, 7 and 8 and compared with the recombinant Banjarmasin (rBanj) with avirulent NDV LaSota cleavage site (rBanj-LaSota). These FPCS mutations changed the in vitro cell-to-cell fusion activity and made rBanj FPCS mutant viruses highly attenuated in chickens. When chickens immunized with the rBanj FPCS mutant viruses and challenged with the virulent Banj, there was reduced challenge virus shedding observed compared to chickens immunized with the heterologous vaccine strain LaSota. Among the genotype VII NDV Banj vaccine candidates, rBanj-LaSota and rBanj containing FPCS of APMV-8 induced highest neutralizing antibody titers and protected chickens with reduced challenge virus shedding. These results show the effect of the F protein cleavage site sequence in generating genotype VII matched NDV vaccines.
Bebel, Aleksandra; Karaca, Ezgi; Kumar, Banushree; Stark, W Marshall; Barabas, Orsolya
2016-01-01
Bacterial Xer site-specific recombinases play an essential genome maintenance role by unlinking chromosome multimers, but their mechanism of action has remained structurally uncharacterized. Here, we present two high-resolution structures of Helicobacter pylori XerH with its recombination site DNA difH, representing pre-cleavage and post-cleavage synaptic intermediates in the recombination pathway. The structures reveal that activation of DNA strand cleavage and rejoining involves large conformational changes and DNA bending, suggesting how interaction with the cell division protein FtsK may license recombination at the septum. Together with biochemical and in vivo analysis, our structures also reveal how a small sequence asymmetry in difH defines protein conformation in the synaptic complex and orchestrates the order of DNA strand exchanges. Our results provide insights into the catalytic mechanism of Xer recombination and a model for regulation of recombination activity during cell division. DOI: http://dx.doi.org/10.7554/eLife.19706.001 PMID:28009253
Brandon, Nicholas J.; Moss, Stephen J.
2017-01-01
The RNA-binding and -processing protein TAR DNA-binding protein 43 (TDP-43) is heavily linked to the underlying causes and pathology of neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. In these diseases, TDP-43 is mislocalized, hyperphosphorylated, ubiquitinated, aggregated and cleaved. The importance of TDP-43 cleavage in the disease pathogenesis is still poorly understood. Here we detail the use of D-sorbitol as an exogenous stressor that causes TDP-43 cleavage in HeLa cells, resulting in a 35 kDa truncated product that accumulates in the cytoplasm within one hour of treatment. We confirm that the formation of this 35 kDa cleavage product is mediated by the activation of caspases. Inhibition of caspases blocks the cleavage of TDP-43, but does not prevent the accumulation of full-length protein in the cytoplasm. Using D-sorbitol as a stressor and caspase activator, we also demonstrate that the A90V variant of TDP-43, which lies adjacent to the caspase cleavage site within the nuclear localization sequence of TDP-43, confers partial resistance against caspase-mediated generation of the 35 kDa cleavage product. PMID:28510586
The use of morphokinetics as a predictor of embryo implantation.
Meseguer, Marcos; Herrero, Javier; Tejera, Alberto; Hilligsøe, Karen Marie; Ramsing, Niels Birger; Remohí, Jose
2011-10-01
Time-lapse observation presents an opportunity for optimizing embryo selection based on morphological grading as well as providing novel kinetic parameters, which may further improve accurate selection of viable embryos. The objective of this retrospective study was to identify the morphokinetic parameters specific to embryos that were capable of implanting. In order to compare a large number of embryos, with minimal variation in culture conditions, we have used an automatic embryo monitoring system. Using a tri-gas IVF incubator with a built-in camera designed to automatically acquire images at defined time points, we have simultaneously monitored up to 72 individual embryos without removing the embryos from the controlled environment. Images were acquired every 15 min in five different focal planes for at least 64 h for each embryo. We have monitored the development of transferred embryos from 285 couples undergoing their first ICSI cycle. The total number of transferred embryos was 522, of which 247 either failed to implant or fully implanted, with full implantation meaning that all transferred embryos in a treatment implanted. A detailed retrospective analysis of cleavage times, blastomere size and multinucleation was made for the 247 transferred embryos with either failed or full implantation. We found that several parameters were significantly correlated with subsequent implantation (e.g. time of first and subsequent cleavages as well as the time between cleavages). The most predictive parameters were: (i) time of division to 5 cells, t5 (48.8-56.6 h after ICSI); (ii) time between division to 3 cells and subsequent division to 4 cells, s2 (≤ 0.76 h) and (iii) duration of cell cycle two, i.e. time between division to 2 cells and division to 3 cells, cc2 (≤ 11.9 h). We also observed aberrant behavior such as multinucleation at the 4 cell stage, uneven blastomere size at the 2 cell stage and abrupt cell division to three or more cells, which appeared to largely preclude implantation. The image acquisition and time-lapse analysis system makes it possible to determine exact timing of embryo cleavages in a clinical setting. We propose a multivariable model based on our findings to classify embryos according to their probability of implantation. The efficacy of this classification will be evaluated in a prospective randomized study that ultimately will determine if implantation rates can be improved by time-lapse analysis.
NASA Astrophysics Data System (ADS)
Wang, Huiying; Chen, Tongsheng; Sun, Lei
2008-02-01
Caspase-3 is a key activated death protease, which catalyzes the specific cleavage of many cellular proteins and induces DNA cleavage eventually. In this report, cells were treated with mitomycin C (MMC) at different concentration and its activity was detected by cell counting kit (CCK-8). Based on results of CCK-8, cells were treated with 10μg/mL MMC and Hoechst 33258 has been used to observe cell apoptosis. Fluorescence resonance energy transfer (FRET) and confocal microscopy have been used to the effect of MMC on the caspase3 activation in living cells. Human lung adenocarcinoma cells (ASTC-a-1) was transfected with plasmid SCAT3 (pSCAT3)/CKAR FRET receptor. Acceptor photobleaching techniques of FRET plasmid has been used to destruct fluorophore of cells stably expressing SCAT3 reporter on a fluorescence confocal microscope. The activity of caspase3 can be analyzed by FRET dynamics of SCAT3 in living cells. Our results show that MM C can induce ASTC-a-1 cell apoptosis through activation of caspase3.
Mosley-Foreman, Charity; Choi, Jaehwa; Wang, Shuguang; Yu, Hongtao
2008-12-01
Phenylenediamines (PD) are dye precursors used to manufacture hair dyes. The three PDs, 1,2-,1,3-, and 1,4-PD and three chlorinated PDs, 4-chloro-1,2-PD, 4-chloro-1,3-PD, and 4,5-dichloro-1,2-PD were studied for their mutagenic effect in Salmonella typhimurium TA 102, cytotoxicity in human skin keratinocyte cells, and for DNA cleavage. The results show that all six compounds are not toxic/mutagenic in TA 102 bacteria or skin cells, and do not cause DNA cleavage in PhiX 174 phage DNA. If the same tests are carried out by exposing them to light irradiation concurrently, all three chlorinated PDs cause mutation in TA 102 bacteria and single strand cleavage in PhiX174 phage DNA. This indicates that chlorination of the PDs makes these compounds more photochemically active and produces reactive species that cause DNA damage and mutation. For the photocytotoxicity test in skin cells, it appears there is no such structure-activity relationship. Two chlorinated PDs and two non-chlorinated PDs are cytotoxic at a fairly high concentration (1000microM) upon exposure to light irradiation.
Jaru-Ampornpan, Peera; Jengarn, Juggragarn; Wanitchang, Asawin; Jongkaewwattana, Anan
2017-01-15
Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and high mortality rates in newborn piglets, leading to massive losses to the swine industry worldwide during recent epidemics. Intense research efforts are now focusing on defining viral characteristics that confer a growth advantage, pathogenicity, or cell adaptability in order to better understand the PEDV life cycle and identify suitable targets for antiviral or vaccine development. Here, we report a unique phenomenon of PEDV nucleocapsid (N) cleavage by the PEDV-encoded 3C-like protease (3Cpro) during infection. The identification of the 3Cpro cleavage site at the C terminus of N supported previous observations that PEDV 3Cpro showed a substrate requirement slightly different from that of severe acute respiratory syndrome coronavirus (SARS-CoV) 3Cpro and revealed a greater flexibility in its substrate recognition site. This cleavage motif is present in the majority of cell culture-adapted PEDV strains but is missing in emerging field isolates. Remarkably, reverse-genetics-derived cell culture-adapted PEDV AVCT12 harboring uncleavable N displayed growth retardation in Vero E6-APN cells compared to the wild-type virus. These observations altogether shed new light on the investigation and characterization of the PEDV nucleocapsid protein and its possible link to cell culture adaptation. Recurrent PEDV outbreaks have resulted in enormous economic losses to swine industries worldwide. To gain the upper hand in combating this disease, it is necessary to understand how this virus replicates and evades host immunity. Characterization of viral proteins provides important clues to mechanisms by which viruses survive and spread. Here, we characterized an intriguing phenomenon in which the nucleocapsids of some PEDV strains are proteolytically processed by the virally encoded main protease. Growth retardation in recombinant PEDV carrying uncleavable N suggests a replication advantage provided by the cleavage event, at least in the cell culture system. These findings may direct us to a more complete understanding of PEDV replication and pathogenicity. Copyright © 2017 American Society for Microbiology.
Enterovirus 71 Inhibits Pyroptosis through Cleavage of Gasdermin D
Lei, Xiaobo; Zhang, Zhenzhen; Xiao, Xia; Qi, Jianli
2017-01-01
ABSTRACT Enterovirus 71 (EV71) can cause hand-foot-and-mouth disease (HFMD) in young children. Severe infection with EV71 can lead to neurological complications and even death. However, the molecular basis of viral pathogenesis remains poorly understood. Here, we report that EV71 induces degradation of gasdermin D (GSDMD), an essential component of pyroptosis. Remarkably, the viral protease 3C directly targets GSDMD and induces its cleavage, which is dependent on the protease activity. Further analyses show that the Q193-G194 pair within GSDMD is the cleavage site of 3C. This cleavage produces a shorter N-terminal fragment spanning amino acids 1 to 193 (GSDMD1–193). However, unlike the N-terminal fragment produced by caspase-1 cleavage, this fragment fails to trigger cell death or inhibit EV71 replication. Importantly, a T239D or F240D substitution abrogates the activity of GSDMD consisting of amino acids 1 to 275 (GSDMD1–275). This is correlated with the lack of pyroptosis or inhibition of viral replication. These results reveal a previously unrecognized strategy for EV71 to evade the antiviral response. IMPORTANCE Recently, it has been reported that GSDMD plays a critical role in regulating lipopolysaccharide and NLRP3-mediated interleukin-1β (IL-1β) secretion. In this process, the N-terminal domain of p30 released from GSDMD acts as an effector in cell pyroptosis. We show that EV71 infection downregulates GSDMD. EV71 3C cleaves GSDMD at the Q193-G194 pair, resulting in a truncated N-terminal fragment disrupted for inducing cell pyroptosis. Notably, GSDMD1–275 (p30) inhibits EV71 replication whereas GSDMD1–193 does not. These results reveal a new strategy for EV71 to evade the antiviral response. PMID:28679757
Enterovirus 71 Inhibits Pyroptosis through Cleavage of Gasdermin D.
Lei, Xiaobo; Zhang, Zhenzhen; Xiao, Xia; Qi, Jianli; He, Bin; Wang, Jianwei
2017-09-15
Enterovirus 71 (EV71) can cause hand-foot-and-mouth disease (HFMD) in young children. Severe infection with EV71 can lead to neurological complications and even death. However, the molecular basis of viral pathogenesis remains poorly understood. Here, we report that EV71 induces degradation of gasdermin D (GSDMD), an essential component of pyroptosis. Remarkably, the viral protease 3C directly targets GSDMD and induces its cleavage, which is dependent on the protease activity. Further analyses show that the Q193-G194 pair within GSDMD is the cleavage site of 3C. This cleavage produces a shorter N-terminal fragment spanning amino acids 1 to 193 (GSDMD 1-193 ). However, unlike the N-terminal fragment produced by caspase-1 cleavage, this fragment fails to trigger cell death or inhibit EV71 replication. Importantly, a T239D or F240D substitution abrogates the activity of GSDMD consisting of amino acids 1 to 275 (GSDMD 1-275 ). This is correlated with the lack of pyroptosis or inhibition of viral replication. These results reveal a previously unrecognized strategy for EV71 to evade the antiviral response. IMPORTANCE Recently, it has been reported that GSDMD plays a critical role in regulating lipopolysaccharide and NLRP3-mediated interleukin-1β (IL-1β) secretion. In this process, the N-terminal domain of p30 released from GSDMD acts as an effector in cell pyroptosis. We show that EV71 infection downregulates GSDMD. EV71 3C cleaves GSDMD at the Q193-G194 pair, resulting in a truncated N-terminal fragment disrupted for inducing cell pyroptosis. Notably, GSDMD 1-275 (p30) inhibits EV71 replication whereas GSDMD 1-193 does not. These results reveal a new strategy for EV71 to evade the antiviral response. Copyright © 2017 American Society for Microbiology.
NASA Technical Reports Server (NTRS)
Conrad, A. H.; Stephens, A. P.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)
1994-01-01
Some effects of gravity on early morphogenesis are correlated with microtubule locations within cells. During first cleavage in Ilyanassa obsoleta embryos, a transitory polar lobe constriction forms and then relaxes, allowing the polar lobe to merge with one daughter cell. If the polar lobe is equally divided or removed, morphogenesis is severely disrupted. To examine microtuble locations during early Ilyanassa development, eggs were fixed and stained for polymerized alpha-tubulin during first cleavage. The mitotic apparatus assembles at the animal pole. The cleavage furrow forms between the asters, constricting to a stabilized intercellular bridge encircling midbody-bound microtubules, whereas the polar lobe constriction forms below and parallel to the spindle, constricting to a transitory intercellular bridge encircling no detectable microtubules. At metaphase an alpha-tubulin epitope is distributed throughout the spindle, whereas a beta-tubulin epitope is present predominantly in the asters. Incubation in hexylene glycol, a drug that increases microtubule polymerization, during mitosis causes the polar lobe constriction to tighten around polymerized alpha-tubulin and remain stably constricted. If hexylene glycol is removed, alpha-tubulin staining disappears from the polar lobe constriction, which relaxes, whereas microtubules remain in the cleavage furrow, which remains constricted. These observations suggest that asymmetric distribution of microtubules affects early Ilyanassa cleavage patterns, and that continued presence of microtubules extending through an intercellular bridge is important for stabilization of the bridge constriction prior to completion of cytokinesis. These data provide the basis for further analysis of the role of microtubules in possible microgravity disruptions of Ilyanassa development.
Xue, Liang-yan; Chiu, Song-mao; Oleinick, Nancy L
2005-10-20
The antiapoptotic Bcl-2-family proteins, Bcl-2 and Bcl-xL, are recognized phototargets of photodynamic therapy (PDT) with the mitochondrion-targeting phthalocyanine photosensitizer Pc 4. In the present study, we found that myeloid cell leukemia 1 (Mcl-1), another antiapoptotic member of the Bcl-2 family, was not photodamaged in Pc 4-PDT-treated human carcinoma cells MCF-7c3, MDA-MB468, DU145, and A431, although Mcl-1 turnover was observed after exposure of HeLa or MCF-7c3 cells to a supralethal dose of UVC. In contrast, when human lymphoma U937 and Jurkat cells were treated with Pc 4-PDT, staurosporine (STS) or UVC, Mcl-1 was cleaved to generate a 28-kDa fragment over a 2-4 h period. The cleavage of Mcl-1 was accompanied by the activation of caspases-3, -9, and -8. The broad-specificity caspase inhibitor z-VAD-fmk completely blocked Mcl-1 cleavage induced by PDT, STS or UVC, providing evidence for Mcl-1 as a substrate for caspases. Western blot analysis localized Mcl-1 to mitochondria, ER, and cytosol of both MCF-7c3 and U937 cells, suggesting that Mcl-1 protein, unlike Bcl-2 and Bcl-xL, is not a target for Pc 4-PDT, probably due to its localization to sites removed from those of Pc 4 binding. The 28-kDa cleaved fragment of Mcl-1, which has proapoptotic activity, was produced in PDT-treated lymphoid-derived cells, but not in cells of epithelial origin, suggesting that PDT-induced rapid and extensive apoptosis in lymphoma cells may result in part from the sensitivity of their Mcl-1 to caspase cleavage, removing an important negative control on apoptosis.
Stinemetz, Emily K; Gao, Peng; Pinkston, Kenneth L; Montealegre, Maria Camila; Murray, Barbara E; Harvey, Barrett R
2017-01-01
AtlA is the major peptidoglycan hydrolase of Enterococcus faecalis involved in cell division and cellular autolysis. The secreted zinc metalloprotease, gelatinase (GelE), has been identified as an important regulator of cellular function through post-translational modification of protein substrates. AtlA is a known target of GelE, and their interplay has been proposed to regulate AtlA function. To study the protease-mediated post-translational modification of AtlA, monoclonal antibodies were developed as research tools. Flow cytometry and Western blot analysis suggests that in the presence of GelE, surface-bound AtlA exists primarily as a N-terminally truncated form whereas in the absence of GelE, the N-terminal domain of AtlA is retained. We identified the primary GelE cleavage site occurring near the transition between the T/E rich Domain I and catalytic region, Domain II via N-terminal sequencing. Truncation of AtlA had no effect on the peptidoglycan hydrolysis activity of AtlA. However, we observed that N-terminal cleavage was required for efficient AtlA-mediated cell division while unprocessed AtlA was unable to resolve dividing cells into individual units. Furthermore, we observed that the processed AtlA has the propensity to localize to the cell septum on wild-type cells whereas unprocessed AtlA in the ΔgelE strain were dispersed over the cell surface. Combined, these results suggest that AtlA septum localization and subsequent cell separation can be modulated by a single GelE-mediated N-terminal cleavage event, providing new insights into the post-translation modification of AtlA and the mechanisms governing chaining and cell separation.
Pinkston, Kenneth L.; Montealegre, Maria Camila; Murray, Barbara E.
2017-01-01
AtlA is the major peptidoglycan hydrolase of Enterococcus faecalis involved in cell division and cellular autolysis. The secreted zinc metalloprotease, gelatinase (GelE), has been identified as an important regulator of cellular function through post-translational modification of protein substrates. AtlA is a known target of GelE, and their interplay has been proposed to regulate AtlA function. To study the protease-mediated post-translational modification of AtlA, monoclonal antibodies were developed as research tools. Flow cytometry and Western blot analysis suggests that in the presence of GelE, surface-bound AtlA exists primarily as a N-terminally truncated form whereas in the absence of GelE, the N-terminal domain of AtlA is retained. We identified the primary GelE cleavage site occurring near the transition between the T/E rich Domain I and catalytic region, Domain II via N-terminal sequencing. Truncation of AtlA had no effect on the peptidoglycan hydrolysis activity of AtlA. However, we observed that N-terminal cleavage was required for efficient AtlA-mediated cell division while unprocessed AtlA was unable to resolve dividing cells into individual units. Furthermore, we observed that the processed AtlA has the propensity to localize to the cell septum on wild-type cells whereas unprocessed AtlA in the ΔgelE strain were dispersed over the cell surface. Combined, these results suggest that AtlA septum localization and subsequent cell separation can be modulated by a single GelE-mediated N-terminal cleavage event, providing new insights into the post-translation modification of AtlA and the mechanisms governing chaining and cell separation. PMID:29049345
Embryo apoptosis identification: Oocyte grade or cleavage stage?
Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul
2015-01-01
Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565
Riestra, Angelica M.; Gandhi, Shiv; Sweredoski, Michael J.; Moradian, Annie; Hess, Sonja; Urban, Sinisa; Johnson, Patricia J.
2015-01-01
Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis. PMID:26684303
Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein.
Welch, Brett D; Liu, Yuanyuan; Kors, Christopher A; Leser, George P; Jardetzky, Theodore S; Lamb, Robert A
2012-10-09
The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by fusion of the viral envelope with the plasma membrane through the concerted action of the fusion (F) protein and the receptor binding protein hemagglutinin-neuraminidase. The F protein folds initially to form a trimeric metastable prefusion form that is triggered to undergo large-scale irreversible conformational changes to form the trimeric postfusion conformation. It is thought that F refolding couples the energy released with membrane fusion. The F protein is synthesized as a precursor (F0) that must be cleaved by a host protease to form a biologically active molecule, F1,F2. Cleavage of F protein is a prerequisite for fusion and virus infectivity. Cleavage creates a new N terminus on F1 that contains a hydrophobic region, known as the FP, which intercalates target membranes during F protein refolding. The crystal structure of the soluble ectodomain of the uncleaved form of PIV5 F is known; here we report the crystal structure of the cleavage-activated prefusion form of PIV5 F. The structure shows minimal movement of the residues adjacent to the protease cleavage site. Most of the hydrophobic FP residues are buried in the uncleaved F protein, and only F103 at the newly created N terminus becomes more solvent-accessible after cleavage. The conformational freedom of the charged arginine residues that compose the protease recognition site increases on cleavage of F protein.
Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein
Welch, Brett D.; Liu, Yuanyuan; Kors, Christopher A.; Leser, George P.; Jardetzky, Theodore S.; Lamb, Robert A.
2012-01-01
The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by fusion of the viral envelope with the plasma membrane through the concerted action of the fusion (F) protein and the receptor binding protein hemagglutinin-neuraminidase. The F protein folds initially to form a trimeric metastable prefusion form that is triggered to undergo large-scale irreversible conformational changes to form the trimeric postfusion conformation. It is thought that F refolding couples the energy released with membrane fusion. The F protein is synthesized as a precursor (F0) that must be cleaved by a host protease to form a biologically active molecule, F1,F2. Cleavage of F protein is a prerequisite for fusion and virus infectivity. Cleavage creates a new N terminus on F1 that contains a hydrophobic region, known as the FP, which intercalates target membranes during F protein refolding. The crystal structure of the soluble ectodomain of the uncleaved form of PIV5 F is known; here we report the crystal structure of the cleavage-activated prefusion form of PIV5 F. The structure shows minimal movement of the residues adjacent to the protease cleavage site. Most of the hydrophobic FP residues are buried in the uncleaved F protein, and only F103 at the newly created N terminus becomes more solvent-accessible after cleavage. The conformational freedom of the charged arginine residues that compose the protease recognition site increases on cleavage of F protein. PMID:23012473
DELAY OF CLEAVAGE OF THE ARBACIA EGG BY ULTRAVIOLET RADIATION
Blum, Harold F.; Price, Judith P.
1950-01-01
While our data do not permit us to state the exact locus or mode of action of ultraviolet radiation in the Arbacia egg, certain general conclusions may be reached. The amount of delay of cleavage of these eggs is determined by two principal factors: (1) The extent of an effect, resulting from photochemical action induced by ultraviolet radiation, which is reversible in a biological sense, the reversibility not being directly dependent upon the process of cell division. (2) The sensitivity of the cell division process to the effects of the ultraviolet-induced photochemical reaction. This factor varies with the stage of cell division, the cell being insensitive during a period corresponding to most of mitosis. It seems likely that these findings may apply to cell division in general, but, since the quantitative relationships observed must, in this case, reflect the integration of two semi-independent factors, the over-all picture may appear quite different for different kinds of cells. PMID:15410486
Forsyth, Peter A; Krishna, Niveditha; Lawn, Samuel; Valadez, J Gerardo; Qu, Xiaotao; Fenstermacher, David A; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T; Zeinieh, Michele; Barker, Philip A; Carter, Bruce D; Cooper, Michael K; Kenchappa, Rajappa S
2014-03-21
Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.
Forsyth, Peter A.; Krishna, Niveditha; Lawn, Samuel; Valadez, J. Gerardo; Qu, Xiaotao; Fenstermacher, David A.; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T.; Zeinieh, Michele; Barker, Philip A.; Carter, Bruce D.; Cooper, Michael K.; Kenchappa, Rajappa S.
2014-01-01
Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target. PMID:24519935
Microbial Biosensor for the Detection of Protease-Virulent Factors from Pathogens
2017-04-28
cleavage in the extracellular space. The cleavage of TCS receptor protein would abolish the kinase activity responsible for the phosphorylation of the...cytoplasmic response regulator, AgrA, which functions as a transcriptional activator . As the cell-based protease biosensor response requires over...to AIP; AgrC is a AIP receptor that phosphorylates AgrA, an activator for P2 and P3. Protein-based protease biosensor construction To facilitate
van de Water, B; Tijdens, I B; Verbrugge, A; Huigsloot, M; Dihal, A A; Stevens, J L; Jaken, S; Mulder, G J
2000-08-18
Decreased phosphorylation of focal adhesion kinase and paxillin is associated with loss of focal adhesions and stress fibers and precedes the onset of apoptosis (van de Water, B., Nagelkerke, J. F., and Stevens, J. L. (1999) J. Biol. Chem. 274, 13328-13337). The cortical actin cytoskeletal network is also lost during apoptosis, yet little is known about the temporal relationship between altered phosphorylation of proteins that are critical in the regulation of this network and their potential cleavage by caspases during apoptosis. Adducins are central in the cortical actin network organization. Cisplatin caused apoptosis of renal proximal tubular epithelial cells, which was associated with the cleavage of alpha-adducin into a 74-kDa fragment; this was blocked by a general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-fmk). Hemagglutinin-tagged human alpha-adducin was cleaved into a similar 74-kDa fragment by caspase-3 in vitro but not by caspase-6 or -7. Asp-Arg-Val-Asp(29)-Glu, Asp-Ile-Val-Asp(208)-Arg, and Asp-Asp-Ser-Asp(633)-Ala were identified as the principal caspase-3 cleavage sites; Asp-Asp-Ser-Asp(633)-Ala was key in the formation of the 74-kDa fragment. Cisplatin also caused an increased phosphorylation of alpha-adducin and gamma-adducin in the MARCKS domain that preceded alpha-adducin cleavage and was associated with loss of adducins from adherens junctions; this was not affected by z-VAD-fmk. In conclusion, the data support a model in which increased phosphorylation of alpha-adducin due to cisplatin leads to dissociation from the cytoskeleton, a situation rendered irreversible by caspase-3-mediated cleavage of alpha-adducin at Asp-Asp-Ser-Asp(633)-Ala.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinsil; Ha, Hye-Jeong; Kim, Sujin
Lipid homeostasis in mammalian cells is regulated by sterol regulatory element-binding protein (SREBP) transcription factors that are activated through sequential cleavage by Golgi Site-1 and Site-2 proteases. Fission yeast SREBP, Sre1, engages a different mechanism involving the Golgi Dsc E3 ligase complex, but it is not clearly understood exactly how Sre1 is proteolytically cleaved and activated. In this study, we screened the Schizosaccharomyces pombe non-essential haploid deletion collection to identify missing components of the Sre1 cleavage machinery. Our screen identified an additional component of the SREBP pathway required for Sre1 proteolysis named rhomboid protein 2 (Rbd2). We show that anmore » rbd2 deletion mutant fails to grow under hypoxic and hypoxia-mimetic conditions due to lack of Sre1 activity and that this growth phenotype is rescued by Sre1N, a cleaved active form of Sre1. We found that the growth inhibition phenotype under low oxygen conditions is specific to the strain with deletion of rbd2, not any other fission yeast rhomboid-encoding genes. Our study also identified conserved residues of Rbd2 that are required for Sre1 proteolytic cleavage. All together, our results suggest that Rbd2 is a functional SREBP protease with conserved residues required for Sre1 cleavage and provide an important piece of the puzzle to understand the mechanisms for Sre1 activation and the regulation of various biological and pathological processes involving SREBPs. - Highlights: • An rbd2-deleted yeast strain shows defects in growth in response to low oxygen levels. • rbd2-deficient cells fail to generate cleaved Sre1 (Sre1N) under hypoxic conditions. • Expression of Sre1N rescues the rbd2 deletion mutant growth phenotype. • Rbd2 contains conserved residues potentially critical for catalytic activity. • Mutation of the conserved Rbd2 catalytic residues leads to defects in Sre1 cleavage.« less
Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Anantharam, Vellareddy; Song, Chunjuan; Witte, Travis; Houk, R. S.; Kanthasamy, Anumantha G.
2009-01-01
Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V2O5). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V2O5 was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC50 was determined to be 37 μM in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (>fourfold) and caspase-3 (>ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKCδ, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKCδ kinase activity. Co-treatment with pan-caspase inhibitor ZVAD-FMK significantly blocked vanadium-induced PKCδ proteolytic activation, indicating that caspases mediate PKCδ cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V2O5-induced DNA fragmentation. Furthermore, PKCδ knockdown using siRNA protected N27 cells from V2O5-induced apoptotic cell death. Collectively, these results demonstrate vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKCδ cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration. PMID:19646462
Kryczka, Jakub; Stasiak, Marta; Dziki, Lukasz; Mik, Michał; Dziki, Adam; Cierniewski, Czesław S.
2012-01-01
Cancer cell invasion is a key element in metastasis that requires integrins for adhesion/de-adhesion, as well as matrix metalloproteinases (MMPs) for focalized proteolysis. Herein we show that MMP-2 is up-regulated in resected colorectal tumors and degrades β1 integrins with the release of fragments containing the β1 I-domain. The β1 cleavage pattern is similar to that produced by digestion of α5β1 and α2β1 with MMP-2. Two such fragments, at 25 and 75 kDa, were identified after immunoprecipitation, with monoclonal antibody BD610468 reacting with the NH2-terminal I-like ectodomain followed by SDS-PAGE and microsequencing using electrospray (ISI-Q-TOF-Micromass) spectrometry. Cleavage of the β1 integrin can be abolished by inhibition of MMP-2 activity; it can be induced by up-regulation of MMP-2 expression, as exemplified by HT29 colon cancer cells transfected with pCMV6-XL5-MMP-2. Co-immunoprecipitation studies of colon cancer cells showed that the β1 integrin subunit is associated with MMP-2. The MMP-2-mediated shedding of the I-like domain from β1 integrins resulted in decreased adhesion of colon cancer cells to collagen and fibronectin, thus abolishing their receptivity. Furthermore, such cells showed enhanced motility as evaluated by a “wound healing-like” assay and time-lapse microscopy, indicating their increased invasiveness. Altogether, our data demonstrate that MMP-2 amplifies the motility of colon cancer cells, not only by digesting the extracellular matrix components in the vicinity of cancer cells but also by inactivating their major β1 integrin receptors. PMID:22898815
Casarini, Livio; Riccetti, Laura; De Pascali, Francesco; Gilioli, Lisa; Marino, Marco; Vecchi, Eugenia; Morini, Daria; Nicoli, Alessia; La Sala, Giovanni Battista; Simoni, Manuela
2017-04-28
Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) are glycoprotein hormones used for assisted reproduction acting on the same receptor (LHCGR) and mediating different intracellular signaling. We evaluated the pro- and anti-apoptotic effect of 100 pM LH or hCG, in the presence or in the absence of 200 pg/mL 17β-estradiol, in long-term, serum-starved human primary granulosa cells (hGLC) and a transfected granulosa cell line overexpressing LHCGR (hGL5/LHCGR). To this purpose, phospho-extracellular-regulated kinase 1/2 (pERK1/2), protein kinase B (pAKT), cAMP-responsive element binding protein (pCREB) activation and procaspase 3 cleavage were evaluated over three days by Western blotting, along with the expression of target genes by real-time PCR and cell viability by colorimetric assay. We found that LH induced predominant pERK1/2 and pAKT activation STARD1 , CCND2 and anti-apoptotic XIAP gene expression, while hCG mediated more potent CREB phosphorylation, expression of CYP19A1 and procaspase 3 cleavage than LH. Cell treatment by LH is accompanied by increased (serum-starved) cell viability, while hCG decreased the number of viable cells. The hCG-specific, pro-apoptotic effect was blocked by a physiological dose of 17β-estradiol, resulting in pAKT activation, lack of procaspase 3 cleavage and increased cell viability. These results confirm that relatively high levels of steroidogenic pathway activation are linked to pro-apoptotic signals in vitro, which may be counteracted by other factors, i.e., estrogens.
RNA-programmed genome editing in human cells
Jinek, Martin; East, Alexandra; Cheng, Aaron; Lin, Steven; Ma, Enbo; Doudna, Jennifer
2013-01-01
Type II CRISPR immune systems in bacteria use a dual RNA-guided DNA endonuclease, Cas9, to cleave foreign DNA at specific sites. We show here that Cas9 assembles with hybrid guide RNAs in human cells and can induce the formation of double-strand DNA breaks (DSBs) at a site complementary to the guide RNA sequence in genomic DNA. This cleavage activity requires both Cas9 and the complementary binding of the guide RNA. Experiments using extracts from transfected cells show that RNA expression and/or assembly into Cas9 is the limiting factor for Cas9-mediated DNA cleavage. In addition, we find that extension of the RNA sequence at the 3′ end enhances DNA targeting activity in vivo. These results show that RNA-programmed genome editing is a facile strategy for introducing site-specific genetic changes in human cells. DOI: http://dx.doi.org/10.7554/eLife.00471.001 PMID:23386978
Reduced Expression of SARM in Mouse Spleen during Polymicrobial Sepsis.
Gong, Yu; Zou, Lin; Cen, Dongzhi; Chao, Wei; Chen, Dunjin
2016-12-01
Objective Immune dysfunction, including prominent apoptosis of immune cells and decreased functioning of the remaining immune cells, plays a central role in the pathogenesis of sepsis. Sterile α and HEAT/armadillo motif-containing protein (SARM) is implicated in the regulation of immune cell apoptosis. This study aimed to elucidate SARM contributes to sepsis-induced immune cell death and immunosuppression. Methods A mouse model of polymicrobial sepsis was generated by cecum ligation and puncture (CLP). SARM gene and protein expression, caspase 3 cleavage and intracellular ATP production were measured in the mouse spleens. Results CLP-induced polymicrobial sepsis specifically attenuated both the gene and protein expression of SARM in the spleens. Moreover, the attenuation of SARM expression synchronized with splenocyte apoptosis, as evidenced by increased caspase 3 cleavage and ATP depletion. Conclusions These findings suggest that SARM is a potential regulator of sepsis-induced splenocyte apoptosis.
RNAi-mediated knock-down of Dab and Numb attenuate Aβ levels via γ-secretase mediated APP processing
2012-01-01
Amyloid-β-protein (Aβ), the key component of senile plaques in Alzheimer's disease (AD) brain, is produced from amyloid precursor protein (APP) by cleavage of β-secretase and then γ-secretase. APP adaptor proteins with phosphotyrosine-binding (PTB) domains, including Dab (gene: DAB) and Numb (gene: NUMB), can bind to and interact with the conserved YENPTY-motif in the APP C-terminus. Here we describe, for the first time, the effects of RNAi knock-down of Dab and Numb expression on APP processing and Aβ production. RNAi knock-down of Dab and Numb in H4 human neuroglioma cells stably transfected to express either FL-APP (H4-FL-APP cells) or APP-C99 (H4-APP-C99 cells) increased levels of APP-C-terminal fragments (APP-CTFs) and lowered Aβ levels in both cell lines by inhibiting γ-secretase cleavage of APP. Finally, RNAi knock-down of APP also reduced levels of Numb in H4-APP cells. These findings suggest that pharmacologically blocking interaction of APP with Dab and Numb may provide novel therapeutic strategies of AD. The notion of attenuating γ-secretase cleavage of APP via the APP adaptor proteins, Dab and Numb, is particularly attractive with regard to therapeutic potential, given that side effects of γ-secretase inhibition owing to impaired proteolysis of other γ-secretase substrates, e.g. Notch, might be avoided. PMID:23211096
Interaction of TIF-90 and filamin A in the regulation of rRNA synthesis in leukemic cells.
Nguyen, Le Xuan Truong; Chan, Steven M; Ngo, Tri Duc; Raval, Aparna; Kim, Kyeong Kyu; Majeti, Ravindra; Mitchell, Beverly S
2014-07-24
The transcription initiation factor I (TIF-IA) is an important regulator of the synthesis of ribosomal RNA (rRNA) through its facilitation of the recruitment of RNA polymerase I (Pol I) to the ribosomal DNA promoter. Activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, which occurs commonly in acute myelogenous leukemia, enhances rRNA synthesis through TIF-IA stabilization and phosphorylation. We have discovered that TIF-IA coexists with a splicing isoform, TIF-90, which is expressed preferentially in the nucleolus and at higher levels in proliferating and transformed hematopoietic cells. TIF-90 interacts directly with Pol I to increase rRNA synthesis as a consequence of Akt activation. Furthermore, TIF-90 binds preferentially to a 90-kDa cleavage product of the actin binding protein filamin A (FLNA) that inhibits rRNA synthesis. Increased expression of TIF-90 overcomes the inhibitory effect of this cleavage product and stimulates rRNA synthesis. Because activated Akt also reduces FLNA cleavage, these results indicate that activated Akt and TIF-90 function in parallel to increase rRNA synthesis and, as a consequence, cell proliferation in leukemic cells. These results provide evidence that the direct targeting of Akt would be an effective therapy in acute leukemias in which Akt is activated. © 2014 by The American Society of Hematology.
A novel cell-based assay to measure activity of Venezuelan equine encephalitis virus nsP2 protease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos-Gomez, Javier; Ahmad, Fahim; Rodriguez, Efrain
2016-09-15
The encephalitic alphaviruses encode nsP2 protease (nsP2pro), which because of its vital role in virus replication, represents an attractive target for therapeutic intervention. To facilitate the discovery of nsP2 inhibitors we have developed a novel assay for quantitative measurement of nsP2pro activity in a cell-based format. The assay is based on a substrate fusion protein consisting of eGFP and Gaussia luciferase (Gluc) linked together by a small peptide containing a VEEV nsp2pro cleavage sequence. The expression of the substrate protein in cells along with recombinant nsP2pro results in cleavage of the substrate protein resulting in extracellular release of free Gluc.more » The Gluc activity in supernatants corresponds to intracellular nsP2pro-mediated substrate cleavage; thus, providing a simple and convenient way to quantify nsP2pro activity. Here, we demonstrate potential utility of the assay in identification of nsP2pro inhibitors, as well as in investigations related to molecular characterization of nsP2pro. - Highlights: • A novel cell-based assay to measure VEEV nsP2 protease activity was developed. • Assay utility was demonstrated for antiviral screening. • .The assay also proved to be useful in basic mechanistic studies of nsP2 protease.« less
Induction of apoptosis in cancer cell lines by the Red Sea brine pool bacterial extracts.
Sagar, Sunil; Esau, Luke; Holtermann, Karie; Hikmawan, Tyas; Zhang, Guishan; Stingl, Ulrich; Bajic, Vladimir B; Kaur, Mandeep
2013-12-05
Marine microorganisms are considered to be an important source of bioactive molecules against various diseases and have great potential to increase the number of lead molecules in clinical trials. Progress in novel microbial culturing techniques as well as greater accessibility to unique oceanic habitats has placed the marine environment as a new frontier in the field of natural product drug discovery. A total of 24 microbial extracts from deep-sea brine pools in the Red Sea have been evaluated for their anticancer potential against three human cancer cell lines. Downstream analysis of these six most potent extracts was done using various biological assays, such as Caspase-3/7 activity, mitochondrial membrane potential (MMP), PARP-1 cleavage and expression of γH2Ax, Caspase-8 and -9 using western blotting. In general, most of the microbial extracts were found to be cytotoxic against one or more cancer cell lines with cell line specific activities. Out of the 13 most active microbial extracts, six extracts were able to induce significantly higher apoptosis (>70%) in cancer cells. Mechanism level studies revealed that extracts from Chromohalobacter salexigens (P3-86A and P3-86B(2)) followed the sequence of events of apoptotic pathway involving MMP disruption, caspase-3/7 activity, caspase-8 cleavage, PARP-1 cleavage and Phosphatidylserine (PS) exposure, whereas another Chromohalobacter salexigens extract (K30) induced caspase-9 mediated apoptosis. The extracts from Halomonas meridiana (P3-37B), Chromohalobacter israelensis (K18) and Idiomarina loihiensis (P3-37C) were unable to induce any change in MMP in HeLa cancer cells, and thus suggested mitochondria-independent apoptosis induction. However, further detection of a PARP-1 cleavage product, and the observed changes in caspase-8 and -9 suggested the involvement of caspase-mediated apoptotic pathways. Altogether, the study offers novel findings regarding the anticancer potential of several halophilic bacterial species inhabiting the Red Sea (at the depth of 1500-2500 m), which constitute valuable candidates for further isolation and characterization of bioactive molecules.
Processing of human cytomegalovirus glycoprotein B in recombinant adenovirus-infected cells.
Marshall, G S; Fenger, D P; Stout, G G; Knights, M E; Hunt, L A
1996-07-01
Intracellular processing of human cytomegalovirus (HCMV) glycoprotein B (gB; gpUL55) expressed by a recombinant adenovirus (Ad-gB) was studied in human A549 cells as processing events could affect immunogenicity when such viruses are used as live-recombinant vaccines. Cleavage of [35S]methionine-labelled gp13O into gp93 and gp55 reached a maximum after a 3 h chase. Cleavage was completely inhibited by brefeldin A, suggesting that processing normally occurs as a late Golgi or post-Golgi event. Uncleaved gp 130 remained completely sensitive to endo-beta-N-acetylglucosaminidase H (Endo-H) in untreated cells following long chase periods, indicating high-mannose oligosaccharides at all of the 18 N-linked glycosylation sites (Asn-X-Ser/Thr) and retention in the endoplasmic reticulum. Endo-H analysis of gp55 from swainsonine-treated and untreated cells was consistent with glycosylation at all three potential sites, with two oligosaccharides remaining sensitive to Endo-H and one being processed to Endo-H resistance. The heavily glycosylated N-terminal gp93 subunit was not detected by [35S]methionine-labelling but was easily detected along with gp55 after labelling with [3H]mannose. No cleavage of gp 130 was observed in analogous pulse-chase radiolabelling of Ad-gB-infected human fibroblasts, even though these cells are permissive for HCMV replication and can process the native gB molecule. Processing of gB in recombinant adenovirus-infected A549 cells was generally similar to that previously reported for native gB in HCMV-infected fibroblasts.
Griffiths, James S; Thompson, Aiysha; Stott, Matthew; Benny, Ankita; Lewis, Natalie A; Taylor, Philip R; Forton, Julian; Herrick, Sarah; Orr, Selinda J; McGreal, Eamon P
2018-06-01
Patients with cystic fibrosis (CF) experience chronic or recurrent bacterial and fungal lung infections. Many patients with CF cannot effectively clear Aspergillus from their lungs. This may result in IgE sensitization and the development of allergic bronchopulmonary aspergillosis, or invasive infections, such as Aspergillus bronchitis. Lung disease in patients with CF is associated with neutrophil-dominated inflammation and elevated levels of the serine protease, neutrophil elastase (NE). Various C-type lectin-like receptors (CLRs), including Dectin-1 and Dectin-2, are involved in the immune response to Aspergillus. Here, we show that purified NE cleaves Dectin-1 in an isoform-specific manner. Bronchoalveolar lavage fluid from patients with CF, which contains high NE activity, induces Dectin-1 cleavage. Similarly, filtrate from a protease-producing strain of Aspergillus fumigatus induces isoform-specific cleavage of Dectin-1. Dectin-1 knockout (KO) cells and NE-treated cells demonstrated reduced phagocytosis of zymosan, a fungal cell wall preparation. In addition, NE cleaves 2 other CLRs, Dectin-2 and Mincle, and fungal-induced cytokine production was reduced in Dectin-1 KO cells, Dectin-2 KO cells, and NE-treated cells. Thus, Dectin-1 and Dectin-2 cleavage by NE and/or A. fumigatus-derived proteases results in an aberrant antifungal immune response that likely contributes to disease pathology in patients with CF.-Griffiths, J. S., Thompson, A., Stott, M., Benny, A., Lewis, N. A., Taylor, P. R., Forton, J., Herrick, S., Orr, S. J., McGreal, E. P. Differential susceptibility of Dectin-1 isoforms to functional inactivation by neutrophil and fungal proteases.
Guan, Su Hua; Belsham, Graham J
2017-04-01
Foot-and-mouth disease virus is a picornavirus and its RNA genome encodes a large polyprotein. The N-terminal part of this polyprotein is the leader protein, a cysteine protease, termed Lpro. The virus causes the rapid inhibition of host cell cap-dependent protein synthesis within infected cells. This results from the Lpro-dependent cleavage of the cellular translation initiation factor eIF4G. Lpro also releases itself from the virus capsid precursor by cleaving the L/P1 junction. Using site-directed mutagenesis of the Lpro coding sequence, we have investigated the role of 51 separate amino acid residues in the functions of this protein. These selected residues either are highly conserved or are charged and exposed on the protein surface. Using transient expression assays, within BHK-21 cells, it was found that residues around the active site (W52, L53 and A149) of Lpro and others located elsewhere (K38, K39, R44, H138 and W159) are involved in the induction of eIF4G cleavage but not in the processing of the L/P1 junction. Modified viruses, encoding such amino acid substitutions within Lpro, can replicate in BHK-21 cells but did not grow well in primary bovine thyroid cells. This study characterizes mutant viruses that are deficient in blocking host cell responses to infection (e.g. interferon induction) and can assist in the rational design of antiviral agents targeting this process and in the production of attenuated viruses.
RNase L targets distinct sites in influenza A virus RNAs.
Cooper, Daphne A; Banerjee, Shuvojit; Chakrabarti, Arindam; García-Sastre, Adolfo; Hesselberth, Jay R; Silverman, Robert H; Barton, David J
2015-03-01
Influenza A virus (IAV) infections are influenced by type 1 interferon-mediated antiviral defenses and by viral countermeasures to these defenses. When IAV NS1 protein is disabled, RNase L restricts virus replication; however, the RNAs targeted for cleavage by RNase L under these conditions have not been defined. In this study, we used deep-sequencing methods to identify RNase L cleavage sites within host and viral RNAs from IAV PR8ΔNS1-infected A549 cells. Short hairpin RNA knockdown of RNase L allowed us to distinguish between RNase L-dependent and RNase L-independent cleavage sites. RNase L-dependent cleavage sites were evident at discrete locations in IAV RNA segments (both positive and negative strands). Cleavage in PB2, PB1, and PA genomic RNAs suggests that viral RNPs are susceptible to cleavage by RNase L. Prominent amounts of cleavage mapped to specific regions within IAV RNAs, including some areas of increased synonymous-site conservation. Among cellular RNAs, RNase L-dependent cleavage was most frequent at precise locations in rRNAs. Our data show that RNase L targets specific sites in both host and viral RNAs to restrict influenza virus replication when NS1 protein is disabled. RNase L is a critical component of interferon-regulated and double-stranded-RNA-activated antiviral host responses. We sought to determine how RNase L exerts its antiviral activity during influenza virus infection. We enhanced the antiviral activity of RNase L by disabling a viral protein, NS1, that inhibits the activation of RNase L. Then, using deep-sequencing methods, we identified the host and viral RNAs targeted by RNase L. We found that RNase L cleaved viral RNAs and rRNAs at very precise locations. The direct cleavage of IAV RNAs by RNase L highlights an intimate battle between viral RNAs and an antiviral endonuclease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Wani, Tasaduq Hussain; Surendran, Sreeraj; Jana, Anal; Chakrabarty, Anindita; Chowdhury, Goutam
2018-06-13
Sepantronium bromide (YM155) is a small molecule antitumor agent currently in phase II clinical trials. Although developed as survivin suppressor, YM155's primary mode of action has recently been found to be DNA damage. However, the mechanism of DNA damage by YM155 is still unknown. Knowing the mechanism of action of an anticancer drug is necessary to formulate a rational drug combination and select a cancer type for achieving maximum clinical efficacy. Using cell-based assays we showed that YM155 cause extensive DNA cleavage and reactive oxygen species generation. DNA cleavage by YM155 was found to be inhibited by radical scavengers and desferal. The reducing agent DTT and the cellular reducing system xanthine/xanthine oxidase were found to reductively activate YM155 and cause DNA cleavage. Unlike quinones, DNA cleavage by YM155 occurs in the presence of catalase and under hypoxic conditions indicating that hydrogen peroxide and oxygen is not necessary. Although YM155 is a quinone, it does not follow a typical quinone mechanism. Consistent with these observations a mechanism has been proposed that suggests that YM155 can cause oxidative DNA cleavage upon two electron reductive activation.
A triplex ribozyme expression system based on a single hairpin ribozyme.
Aquino-Jarquin, Guillermo; Benítez-Hess, María Luisa; DiPaolo, Joseph A; Alvarez-Salas, Luis M
2008-09-01
Triplex ribozyme (RZ) configurations allow for the individual activity of trans-acting RZs in multiple expression cassettes (multiplex), thereby increasing target cleavage relative to conventionally expressed RZs. Although hairpin RZs have been advantageously compared to hammerhead RZs, their longer size and structural features complicated triplex design. We present a triplex expression system based on a single hairpin RZ with transcleavage capability and simple engineering. The system was tested in vitro using cis- and trans-cleavage kinetic assays against a known target RNA from HPV-16 E6/E7 mRNA. Single and multiplex triplex RZ constructs were more efficient in cleaving the target than tandem-cloned hairpin RZs, suggesting that the release of individual RZs enhanced trans-cleavage kinetics. Multiplex systems constructed with two different hairpin RZs resulted in better trans-cleavage compared to standard double-RZ constructs. In addition, the triplex RZ performed cis- and trans-cleavage in cervical cancer cells. The use of triplex configurations with multiplex RZs permit differential targeting of the same or different RNA, thus improving potential use against unstable targets. This prototype will provide the basis for the development of future RZ-based therapies and technologies.
Millet, Jean Kaoru; Goldstein, Monty E; Labitt, Rachael N; Hsu, Hung-Lun; Daniel, Susan; Whittaker, Gary R
2016-01-01
Middle East respiratory syndrome coronavirus (MERS-CoV) continues to circulate in both humans and camels, and the origin and evolution of the virus remain unclear. Here we characterize the spike protein of a camel-derived MERS-CoV (NRCE-HKU205) identified in 2013, early in the MERS outbreak. NRCE-HKU205 spike protein has a variant cleavage motif with regard to the S2′ fusion activation site—notably, a novel substitution of isoleucine for the otherwise invariant serine at the critical P1′ cleavage site position. The substitutions resulted in a loss of furin-mediated cleavage, as shown by fluorogenic peptide cleavage and western blot assays. Cell–cell fusion and pseudotyped virus infectivity assays demonstrated that the S2′ substitutions decreased spike-mediated fusion and viral entry. However, cathepsin and trypsin-like protease activation were retained, albeit with much reduced efficiency compared with the prototypical EMC/2012 human strain. We show that NRCE-HKU205 has more limited fusion activation properties possibly resulting in more restricted viral tropism and may represent an intermediate in the complex pattern of MERS-CoV ecology and evolution. PMID:27999426
Hahn, Peter J; Lai, Zhi-Wei; Nevaldine, Barbara; Schiff, Ninel; Fiore, Nancy C; Silverstone, Allen E
2003-11-01
We have quantified the emergence of early chromatin breaks during the signal transduction phase of apoptosis in mouse thymocytes after treatment with either ionizing radiation or dexamethasone. Dexamethasone at 1 microM can induce significant levels of DNA breaks (equivalent to the amount induced directly by 7.5 Gy ionizing radiation) within 0.5 h of treatment. The execution phase of apoptosis was not observed until 4-6 h after the same treatment. The presence of the Bcl2 transgene under the control of the p56lck promoter almost completely inhibited apoptosis up to 24 h after treatment, but it had virtually no effect on the early chromatin cleavage occurring in the first 6 h. Ionizing radiation induced chromatin cleavage both directly by damaging DNA and indirectly with kinetics similar to the induction of chromatin cleavage by dexamethasone. The presence of the Bcl2 transgene had no effect on the direct or indirect radiation-induced cleavage in the first 6 h, but after the first 6 h, the Bcl2 gene inhibited further radiation-induced chromatin cleavage. These results suggest that endonucleases are activated within minutes of treatment with either dexamethasone or ionizing radiation as part of the very early signal transduction phase of apoptosis, and prior to the irreversible commitment to cell death.
Process of pigment cell specification in the sand dollar, Scaphechinus mirabilis.
Kominami, Tetsuya; Takata, Hiromi
2002-04-01
The process of pigment cell specification in the sand dollar Scaphechinus mirabilis was examined by manipulative methods. In half embryos, which were formed by dissociating embryos at the 2-cell stage, the number of pigment cells was significantly greater than half the number of pigment cells observed in control embryos. This relative increase might have been brought about by the change in the arrangement of blastomeres surrounding the micromere progeny. To examine whether such an increase could be induced at a later stage, embryos were bisected with a glass needle. When embryos were bisected before 7 h postfertilization, the sum of pigment cells observed in a pair of embryo fragments was greater than that in control embryos. This relative increase was not seen when embryos were bisected after 7 h postfertilization. From the size of blastomeres, it became clear that the 9th cleavage was completed by 7 h postfertilization. Aphidicolin treatment revealed that 10-15 pigment founder cells were formed. The results obtained suggest that the pigment founder cells were specified through direct cell contact with micromere progeny after the 9th cleavage, and that most of the founder cells had divided three times before they differentiated into pigment cells.
Bozhkova, V P; Budayova, M; Kvasnicka, P; Cigankova, N; Chorvat, D
1994-12-01
Regional differences in lateral diffusion rates of fluorescence-labeled proteins have been studied in the plasma membrane of dividing eggs of the loach (Misgurnus fossilis) by fluorescence recovery after photobleaching (FRAP). Apparent animal-vegetal differences in fluorescence intensity, lateral diffusion coefficients, and fractions of mobile proteins have been found, with all these quantities being higher in the animal pole region than in the yolk region. Cyclic changes in protein diffusion coefficients and mobile fractions during the first few cell cycles have also been recorded. Soon after the end of a cleavage, the diffusion coefficient reaches its minimal value and increases rapidly before the next cleavage.
Splicing fidelity: DEAD/H-box ATPases as molecular clocks.
Koodathingal, Prakash; Staley, Jonathan P
2013-07-01
The spliceosome discriminates against suboptimal substrates, both during assembly and catalysis, thereby enhancing specificity during pre-mRNA splicing. Central to such fidelity mechanisms are a conserved subset of the DEAD- and DEAH-box ATPases, which belong to a superfamily of proteins that mediate RNP rearrangements in almost all RNA-dependent processes in the cell. Through an investigation of the mechanisms contributing to the specificity of 5' splice site cleavage, two related reports, one from our lab and the other from the Cheng lab, have provided insights into fidelity mechanisms utilized by the spliceosome. In our work, we found evidence for a kinetic proofreading mechanism in splicing in which the DEAH-box ATPase Prp16 discriminates against substrates undergoing slow 5' splice site cleavage. Additionally, our study revealed that discriminated substrates are discarded through a general spliceosome disassembly pathway, mediated by another DEAH-box ATPase Prp43. In their work, Tseng et al. described the underlying molecular events through which Prp16 discriminates against a splicing substrate during 5' splice site cleavage. Here, we present a synthesis of these two studies and, additionally, provide the first biochemical evidence for discrimination of a suboptimal splicing substrate just prior to 5' splice site cleavage. Together, these findings support a general mechanism for a ubiquitous superfamily of ATPases in enhancing specificity during RNA-dependent processes in the cell.
Integrin trafficking regulated by Rab21 is necessary for cytokinesis.
Pellinen, Teijo; Tuomi, Saara; Arjonen, Antti; Wolf, Maija; Edgren, Henrik; Meyer, Hannelore; Grosse, Robert; Kitzing, Thomas; Rantala, Juha K; Kallioniemi, Olli; Fässler, Reinhard; Kallio, Marko; Ivaska, Johanna
2008-09-01
Adherent cells undergo remarkable changes in shape during cell division. However, the functional interplay between cell adhesion turnover and the mitotic machinery is poorly understood. The endo/exocytic trafficking of integrins is regulated by the small GTPase Rab21, which associates with several integrin alpha subunits. Here, we show that targeted trafficking of integrins to and from the cleavage furrow is required for successful cytokinesis, and that this is regulated by Rab21. Rab21 activity, integrin-Rab21 association, and integrin endocytosis are all necessary for normal cytokinesis, which becomes impaired when integrin-mediated adhesion at the cleavage furrow fails. We also describe a chromosomal deletion and loss of Rab21 gene expression in human cancer, which leads to the accumulation of multinucleate cells. Importantly, reintroduction of Rab21 rescued this phenotype. In conclusion, Rab21-regulated integrin trafficking is essential for normal cell division, and its defects may contribute to multinucleation and genomic instability, which are hallmarks of cancer.
Leu, Chia-Hsing; Yang, Mei-Lin; Chung, Nai-Hui; Huang, Yen-Jang; Su, Yu-Chu; Chen, Yi-Cheng; Lin, Chia-Cheng; Shieh, Gia-Shing; Chang, Meng-Ya; Wang, Shainn-Wei; Chang, Yao; Chao, Julie; Chao, Lee
2015-01-01
Proteolytic cleavage of the hemagglutinin (HA) of influenza virus by host trypsin-like proteases is required for viral infectivity. Some serine proteases are capable of cleaving influenza virus HA, whereas some serine protease inhibitors (serpins) inhibit the HA cleavage in various cell types. Kallikrein-related peptidase 1 (KLK1, also known as tissue kallikrein) is a widely distributed serine protease. Kallistatin, a serpin synthesized mainly in the liver and rapidly secreted into the circulation, forms complexes with KLK1 and inhibits its activity. Here, we investigated the roles of KLK1 and kallistatin in influenza virus infection. We show that the levels of KLK1 increased, whereas those of kallistatin decreased, in the lungs of mice during influenza virus infection. KLK1 cleaved H1, H2, and H3 HA molecules and consequently enhanced viral production. In contrast, kallistatin inhibited KLK1-mediated HA cleavage and reduced viral production. Cells transduced with the kallistatin gene secreted kallistatin extracellularly, which rendered them more resistant to influenza virus infection. Furthermore, lentivirus-mediated kallistatin gene delivery protected mice against lethal influenza virus challenge by reducing the viral load, inflammation, and injury in the lung. Taking the data together, we determined that KLK1 and kallistatin contribute to the pathogenesis of influenza virus by affecting the cleavage of the HA peptide and inflammatory responses. This study provides a proof of principle for the potential therapeutic application of kallistatin or other KLK1 inhibitors for influenza. Since proteolytic activation also enhances the infectivity of some other viruses, kallistatin and other kallikrein inhibitors may be explored as antiviral agents against these viruses. PMID:26149981
Gilad, Yoav; Pritchard, Jonathan K.; Stephens, Matthew
2015-01-01
Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede. PMID:26406244
Raj, Anil; Shim, Heejung; Gilad, Yoav; Pritchard, Jonathan K; Stephens, Matthew
2015-01-01
Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede.
RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.
Liu, Tina Y; Iavarone, Anthony T; Doudna, Jennifer A
2017-01-01
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.
Huang, Kai; Zhang, Jingjing; O'Neill, Katelyn L.; Gurumurthy, Channabasavaiah B.; Quadros, Rolen M.; Tu, Yaping; Luo, Xu
2016-01-01
The BH3-only protein Bid is known as a critical mediator of the mitochondrial pathway of apoptosis following death receptor activation. However, since full-length Bid possesses potent apoptotic activity, the role of a caspase-mediated Bid cleavage is not established in vivo. In addition, due to the fact that multiple caspases cleave Bid at the same site in vitro, the identity of the Bid-cleaving caspase during death receptor signaling remains uncertain. Moreover, as Bid maintains its overall structure following its cleavage by caspase 8, it remains unclear how Bid is activated upon cleavage. Here, Bid-deficient (Bid KO) colon cancer cells were generated by gene editing, and were reconstituted with wild-type or mutants of Bid. While the loss of Bid blocked apoptosis following treatment by TNF-related apoptosis inducing ligand (TRAIL), this blockade was relieved by re-introduction of the wild-type Bid. In contrast, the caspase-resistant mutant BidD60E and a BH3 defective mutant BidG94E failed to restore TRAIL-induced apoptosis. By generating Bid/Bax/Bak-deficient (TKO) cells, we demonstrated that Bid is primarily cleaved by caspase 8, not by effector caspases, to give rise to truncated Bid (tBid) upon TRAIL treatment. Importantly, despite the presence of an intact BH3 domain, a tBid mutant lacking the mitochondrial targeting helices (α6 and α7) showed diminished apoptotic activity. Together, these results for the first time establish that cleavage by caspase 8 and the subsequent association with the outer mitochondrial membrane are two critical events that activate Bid during death receptor-mediated apoptosis. PMID:27053107
Huang, Kai; Zhang, Jingjing; O'Neill, Katelyn L; Gurumurthy, Channabasavaiah B; Quadros, Rolen M; Tu, Yaping; Luo, Xu
2016-05-27
The BH3-only protein Bid is known as a critical mediator of the mitochondrial pathway of apoptosis following death receptor activation. However, since full-length Bid possesses potent apoptotic activity, the role of a caspase-mediated Bid cleavage is not established in vivo In addition, due to the fact that multiple caspases cleave Bid at the same site in vitro, the identity of the Bid-cleaving caspase during death receptor signaling remains uncertain. Moreover, as Bid maintains its overall structure following its cleavage by caspase 8, it remains unclear how Bid is activated upon cleavage. Here, Bid-deficient (Bid KO) colon cancer cells were generated by gene editing, and were reconstituted with wild-type or mutants of Bid. While the loss of Bid blocked apoptosis following treatment by TNF-related apoptosis inducing ligand (TRAIL), this blockade was relieved by re-introduction of the wild-type Bid. In contrast, the caspase-resistant mutant Bid(D60E) and a BH3 defective mutant Bid(G94E) failed to restore TRAIL-induced apoptosis. By generating Bid/Bax/Bak-deficient (TKO) cells, we demonstrated that Bid is primarily cleaved by caspase 8, not by effector caspases, to give rise to truncated Bid (tBid) upon TRAIL treatment. Importantly, despite the presence of an intact BH3 domain, a tBid mutant lacking the mitochondrial targeting helices (α6 and α7) showed diminished apoptotic activity. Together, these results for the first time establish that cleavage by caspase 8 and the subsequent association with the outer mitochondrial membrane are two critical events that activate Bid during death receptor-mediated apoptosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Tenzer, S; Peters, B; Bulik, S; Schoor, O; Lemmel, C; Schatz, M M; Kloetzel, P-M; Rammensee, H-G; Schild, H; Holzhütter, H-G
2005-05-01
Epitopes presented by major histocompatibility complex (MHC) class I molecules are selected by a multi-step process. Here we present the first computational prediction of this process based on in vitro experiments characterizing proteasomal cleavage, transport by the transporter associated with antigen processing (TAP) and MHC class I binding. Our novel prediction method for proteasomal cleavages outperforms existing methods when tested on in vitro cleavage data. The analysis of our predictions for a new dataset consisting of 390 endogenously processed MHC class I ligands from cells with known proteasome composition shows that the immunological advantage of switching from constitutive to immunoproteasomes is mainly to suppress the creation of peptides in the cytosol that TAP cannot transport. Furthermore, we show that proteasomes are unlikely to generate MHC class I ligands with a C-terminal lysine residue, suggesting processing of these ligands by a different protease that may be tripeptidyl-peptidase II (TPPII).
Membrane microdomain switching: a regulatory mechanism of amyloid precursor protein processing.
Sakurai, Takashi; Kaneko, Kumi; Okuno, Misako; Wada, Koji; Kashiyama, Taku; Shimizu, Hideaki; Akagi, Takumi; Hashikawa, Tsutomu; Nukina, Nobuyuki
2008-10-20
Neuronal activity has an impact on beta cleavage of amyloid precursor protein (APP) by BACE1 to generate amyloid-beta peptide (Abeta). However, the molecular mechanisms underlying this effect remain to be elucidated. Cholesterol dependency of beta cleavage prompted us to analyze immunoisolated APP-containing detergent-resistant membranes from rodent brains. We found syntaxin 1 as a key molecule for activity-dependent regulation of APP processing in cholesterol-dependent microdomains. In living cells, APP associates with syntaxin 1-containing microdomains through X11-Munc18, which inhibits the APP-BACE1 interaction and beta cleavage via microdomain segregation. Phosphorylation of Munc18 by cdk5 causes a shift of APP to BACE1-containing microdomains. Neuronal hyperactivity, implicated in Abeta overproduction, promotes the switching of APP microdomain association as well as beta cleavage in a partially cdk5-dependent manner. We propose that microdomain switching is a mechanism of cholesterol- and activity-dependent regulation of APP processing in neurons.
Membrane microdomain switching: a regulatory mechanism of amyloid precursor protein processing
Sakurai, Takashi; Kaneko, Kumi; Okuno, Misako; Wada, Koji; Kashiyama, Taku; Shimizu, Hideaki; Akagi, Takumi; Hashikawa, Tsutomu; Nukina, Nobuyuki
2008-01-01
Neuronal activity has an impact on β cleavage of amyloid precursor protein (APP) by BACE1 to generate amyloid-β peptide (Aβ). However, the molecular mechanisms underlying this effect remain to be elucidated. Cholesterol dependency of β cleavage prompted us to analyze immunoisolated APP-containing detergent-resistant membranes from rodent brains. We found syntaxin 1 as a key molecule for activity-dependent regulation of APP processing in cholesterol-dependent microdomains. In living cells, APP associates with syntaxin 1–containing microdomains through X11–Munc18, which inhibits the APP–BACE1 interaction and β cleavage via microdomain segregation. Phosphorylation of Munc18 by cdk5 causes a shift of APP to BACE1-containing microdomains. Neuronal hyperactivity, implicated in Aβ overproduction, promotes the switching of APP microdomain association as well as β cleavage in a partially cdk5-dependent manner. We propose that microdomain switching is a mechanism of cholesterol- and activity-dependent regulation of APP processing in neurons. PMID:18936252
Valle, Marcello; Guimarães, Fernando; Cavagnoli, Melissa; Sampaio, Marcos; Geber, Selmo
2012-12-01
The role of cryopreservation in assisted reproductive technology programs has increased within the last years allowing the transfer of a limited number of embryos and the storage of the remaining for future use. The reduction in the number of transferred embryos decreases the frequency of multiple pregnancy rates and of ovarian hyperstimulation syndrome while the cumulative pregnancy rate can be maximized. Moreover, as not all embryos will survive the warming process more cleavage stage embryos are warmed to improve selection for transfer. Therefore, surplus good quality cleavage stage embryos and/or blastocysts must be re-vitrified for further transfer to achieve pregnancy. To our knowledge, there have been no reports demonstrating that human embryos can be successfully vitrified/warmed twice at the cleavage stage. Thus we report two successful pregnancies and deliveries of healthy babies after transfer of embryos that were twice vitrified/warmed at 2-4 cells stage. Copyright © 2012 Elsevier Inc. All rights reserved.
A self-lysis pathway that enhances the virulence of a pathogenic bacterium.
McFarland, Kirsty A; Dolben, Emily L; LeRoux, Michele; Kambara, Tracy K; Ramsey, Kathryn M; Kirkpatrick, Robin L; Mougous, Joseph D; Hogan, Deborah A; Dove, Simon L
2015-07-07
In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system.
Tharmalingam, Nagendran; Park, Min; Lee, Min Ho; Woo, Hyun Jun; Kim, Hyun Woo; Yang, Ji Yeong; Rhee, Ki-Jong; Kim, Jong-Bae
2016-01-01
Helicobacter pylori related gastric cancer initiation has been studied widely. The objective of our present study was to evaluate the effect of a single compound piperine on H. pylori infection and its anti-inflammatory and anti-cancer effects in vitro. Cytotoxicity was tested by Ez-cytox cell viability assay kit. Effects of piperine on H. pylori toxin gene expression and IL-8 expression in mammalian cells during infection were assessed by RT-PCR. Effects of piperine on toxin entry into host cells, E-cadherin cleavage by H. pylori, and the changes in H. pylori mediated β-catenin expression and IL-8 secretion were determined by immunoblotting. Piperine treatment restrained the entry of CagA and VacA into AGS cells. Piperine administration in H. pylori infection reduced E-cadherin cleavage in stomach epithelium. In addition, H. pylori induced β-catenin up-regulation was reduced. Piperine administration impaired IL-8 secretion in H. pylori-infected gastric epithelial cells. As we reported previously piperine restrained H. pylori motility. The possible reason behind the H. pylori inhibition mechanism of piperine could be the dwindled motility, which weakened H. pylori adhesion to gastric epithelial cells. The reduced adhesion decreased the toxin entry thereby secreting less amount of IL-8. In addition, piperine treatment suppressed H. pylori protease led to reduction of E-cadherin cleavage and β-catenin expression resulting in diminished β-catenin translocation into the nucleus thus decreasing the risk of oncogenesis. To our knowledge, this is the preliminary report of piperine mediated H. pylori infection control on gastric epithelial cells in-vitro. PMID:27158376
Shapira, Assaf; Gal-Tanamy, Meital; Nahary, Limor; Litvak-Greenfeld, Dana; Zemel, Romy; Tur-Kaspa, Ran; Benhar, Itai
2011-01-01
The synthesis of inactive enzyme precursors, also known as “zymogens,” serves as a mechanism for regulating the execution of selected catalytic activities in a desirable time and/or site. Zymogens are usually activated by proteolytic cleavage. Many viruses encode proteases that execute key proteolytic steps of the viral life cycle. Here, we describe a proof of concept for a therapeutic approach to fighting viral infections through eradication of virally infected cells exclusively, thus limiting virus production and spread. Using the hepatitis C virus (HCV) as a model, we designed two HCV NS3 protease-activated “zymogenized” chimeric toxins (which we denote “zymoxins”). In these recombinant constructs, the bacterial and plant toxins diphtheria toxin A (DTA) and Ricin A chain (RTA), respectively, were fused to rationally designed inhibitor peptides/domains via an HCV NS3 protease-cleavable linker. The above toxins were then fused to the binding and translocation domains of Pseudomonas exotoxin A in order to enable translocation into the mammalian cells cytoplasm. We show that these toxins exhibit NS3 cleavage dependent increase in enzymatic activity upon NS3 protease cleavage in vitro. Moreover, a higher level of cytotoxicity was observed when zymoxins were applied to NS3 expressing cells or to HCV infected cells, demonstrating a potential therapeutic window. The increase in toxin activity correlated with NS3 protease activity in the treated cells, thus the therapeutic window was larger in cells expressing recombinant NS3 than in HCV infected cells. This suggests that the “zymoxin” approach may be most appropriate for application to life-threatening acute infections where much higher levels of the activating protease would be expected. PMID:21264238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi
2014-08-15
Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrialmore » dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.« less
Motoneurons secrete angiogenin to induce RNA cleavage in astroglia.
Skorupa, Alexandra; King, Matthew A; Aparicio, Isabela M; Dussmann, Heiko; Coughlan, Karen; Breen, Bridget; Kieran, Dairin; Concannon, Caoimhin G; Marin, Philippe; Prehn, Jochen H M
2012-04-11
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder affecting motoneurons. Mutations in angiogenin, encoding a member of the pancreatic RNase A superfamily, segregate with ALS. We previously demonstrated that angiogenin administration shows promise as a neuroprotective therapeutic in studies using transgenic ALS mice and primary motoneuron cultures. Its mechanism of action and target cells in the spinal cord, however, are largely unknown. Using mixed motoneuron cultures, motoneuron-like NSC34 cells, and primary astroglia cultures as model systems, we here demonstrate that angiogenin is a neuronally secreted factor that is endocytosed by astroglia and mediates neuroprotection in paracrine. We show that wild-type angiogenin acts unidirectionally to induce RNA cleavage in astroglia, while the ALS-associated K40I mutant is also secreted and endocytosed, but fails to induce RNA cleavage. Angiogenin uptake into astroglia requires heparan sulfate proteoglycans, and engages clathrin-mediated endocytosis. We show that this uptake mechanism exists for mouse and human angiogenin, and delivers a functional RNase output. Moreover, we identify syndecan 4 as the angiogenin receptor mediating the selective uptake of angiogenin into astroglia. Our data provide new insights into the paracrine activities of angiogenin in the nervous system, and further highlight the critical role of non-neuronal cells in the pathogenesis of ALS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madu, Ikenna G.; Belouzard, Sandrine; Whittaker, Gary R., E-mail: grw7@cornell.ed
The S2 domain of the coronavirus spike (S) protein is known to be responsible for mediating membrane fusion. In addition to a well-recognized cleavage site at the S1-S2 boundary, a second proteolytic cleavage site has been identified in the severe acute respiratory syndrome coronavirus (SARS-CoV) S2 domain (R797). C-terminal to this S2 cleavage site is a conserved region flanked by cysteine residues C822 and C833. Here, we investigated the importance of this well conserved region for SARS-CoV S-mediated fusion activation. We show that the residues between C822-C833 are well conserved across all coronaviruses. Mutagenic analysis of SARS-CoV S, combined withmore » cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for the core-conserved residues C822, D830, L831, and C833. Based on available predictive models, we propose that the conserved domain flanked by cysteines 822 and 833 forms a loop structure that interacts with components of the SARS-CoV S trimer to control the activation of membrane fusion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muha, Villo; Zagyva, Imre; Venkei, Zsolt
2009-04-03
Two dUTPase isoforms (23 kDa and 21 kDa) are present in the fruitfly with the sole difference of an N-terminal extension. In Drosophila embryo, both isoforms are detected inside the nucleus. Here, we investigated the function of the N-terminal segment using eYFP-dUTPase constructs. In Schneider 2 cells, only the 23 kDa construct showed nuclear localization arguing that it may contain a nuclear localization signal (NLS). Sequence comparisons identified a lysine-rich nonapeptide with similarity to the human c-myc NLS. In Drosophila embryos during nuclear cleavages, the 23 kDa isoform showed the expected localization shifts. Contrariwise, although the 21 kDa isoform wasmore » excluded from the nuclei during interphase, it was shifted to the nucleus during prophase and forthcoming mitotic steps. The observed dynamic localization character showed strict timing to the nuclear cleavage phases and explained how both isoforms can be present within the nuclear microenvironment, although at different stages of cell cycle.« less
Ulitzky, Laura; Lafer, Manuel M; KuKuruga, Mark A; Silberstein, Erica; Cehan, Nicoleta; Taylor, Deborah R
2016-01-01
Poor outcome in response to hepatitis C virus, including higher viral load, hepatocellular carcinoma and cirrhosis, is more associated with men and postmenopausal women than with premenopausal women and women receiving hormone replacement therapy, suggesting that β-estradiol plays an innate role in preventing viral infection and liver disease. Consequently, most research in the field has concluded that estrogen affects HCV replication through viral interactions with estrogen receptor-α. Previously, estrogen-like antagonists, including Tamoxifen, were shown to reduce HCV RNA production and prevent viral entry, although the authors did not identify host factors involved. Estrogen can act alternatively through the membrane-bound G-protein-coupled estrogen receptor, GPR30. Here, human hepatoma Huh7.5 cells were infected with HCV J6/JFH-1 and treated with estrogen or Tamoxifen, resulting in a marked decrease in detectable virus. The effect was mimicked by G1, a GPR30-specific agonist, and was reversed by the GPR30-specific antagonist, G15. While previous studies have demonstrated that estrogen down-regulated occludin in cervical cancer cells, its action on liver cells was unknown. Occludin is a tight junction protein and HCV receptor and here we report that activation and cellular export of MMP-9 led to the cleavage of occludin upon estrogen treatment of liver cells. This is the first report of the cleavage of an HCV receptor in response to estrogen. We also identify the occludin cleavage site in extracellular Domain D; the motif required for HCV entry and spread. This pathway gives new insight into a novel innate antiviral pathway and the suboptimal environment that estrogen provides for the proliferation of the virus. It may also explain the disparate host-virus responses to HCV demonstrated by the two sexes. Moreover, these data suggest that hormone replacement therapy may have beneficial antiviral enhancement properties for HCV-infected postmenopausal women and show promise for new antiviral treatments for both men and women.
Gasdermin D: the long-awaited executioner of pyroptosis.
Man, Si Ming; Kanneganti, Thirumala-Devi
2015-11-01
Inflammatory caspases drive a lytic form of cell death called pyroptosis in response to microbial infection and endogenous damage-associated signals. Two studies now demonstrate that cleavage of the substrate gasdermin D by inflammatory caspases necessitates eventual pyroptotic demise of a cell.
Development and application of bond cleavage reactions in bioorthogonal chemistry.
Li, Jie; Chen, Peng R
2016-03-01
Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research.
Lin, Zhengmei; Zhu, Xiangping; Zhang, Tingrong; You, Feng; Wu, Zhihao; Cao, Yuanshui
2016-06-01
Fluorescent double-labeled technique was used to investigate the effects of hydrostatic pressure on microtubule organization and nucleus in gynogenetically activated eggs of olive flounder (Paralichthys olivaceus). The parameter of hydrostatic pressure treatment was 600 kg/cm(2) for 6 minutes at prometaphase of the first mitosis. The data showed that nucleus and microtubule changes of the diploid control were basically similar to those of the haploid one (5 minutes behind those of the diploid control). Nuclear diameter of the haploid embryo was significantly smaller than that of the diploid one (P < 0.01). The ploidy of chromosome set could be determined basing on nuclear diameter. The results of nuclear diameter measurement and the ratio of developmentally delayed embryo showed that the chromosome set was not doubled during the second cell cycle, the first cleavage proceeded normally; but that of about 80% treated embryo was doubled during the third cell cycle, the second cleavage was inhibited. Microtubules were disassembled, and nucleation capacity of centrosome was just temporarily inhibited by pressure treatment. Centrosome renucleated microtubule, and a bipolar spindle reassembled 15 minutes after treatment, leading to occurrence of the first cleavage. During the second cell cycle, about 80% treated embryo had a single centrosome and formed a unipolar spindle in both blastomeres. After prometaphase, chromosomes spread around for about 20 minutes instead of aligning on the equatorial plane, then assembled and formed one large nucleus without anaphase separation. The second cleavage was inhibited, and the chromosome set was doubled. The data indicated that the chromosome set doubling of mitogynogenetic diploid induced by hydrostatic pressure treatment, which performed at prometaphase of the first mitosis, mainly resulted from the inhibition of the second cleavage rather than the first one. This study is the first to adapt fluorescent double-labeled technique to investigate the mechanism on chromosome set doubling of mitotic gynogenesis induction. This study will offer theoretical support for mitogynogenetic diploid induction in marine fish. Copyright © 2016 Elsevier Inc. All rights reserved.
Stanlie, Andre; Begum, Nasim A; Akiyama, Hideo; Honjo, Tasuku
2012-01-01
Class-switch recombination (CSR), induced by activation-induced cytidine deaminase (AID), can be divided into two phases: DNA cleavage of the switch (S) regions and the joining of the cleaved ends of the different S regions. Here, we show that the DSIF complex (Spt4 and Spt5), a transcription elongation factor, is required for CSR in a switch-proficient B cell line CH12F3-2A cells, and Spt4 and Spt5 carry out independent functions in CSR. While neither Spt4 nor Spt5 is required for transcription of S regions and AID, expression array analysis suggests that Spt4 and Spt5 regulate a distinct subset of transcripts in CH12F3-2A cells. Curiously, Spt4 is critically important in suppressing cryptic transcription initiating from the intronic Sμ region. Depletion of Spt5 reduced the H3K4me3 level and DNA cleavage at the Sα region, whereas Spt4 knockdown did not perturb the H3K4me3 status and S region cleavage. H3K4me3 modification level thus correlated well with the DNA breakage efficiency. Therefore we conclude that Spt5 plays a role similar to the histone chaperone FACT complex that regulates H3K4me3 modification and DNA cleavage in CSR. Since Spt4 is not involved in the DNA cleavage step, we suspected that Spt4 might be required for DNA repair in CSR. We examined whether Spt4 or Spt5 is essential in non-homologous end joining (NHEJ) and homologous recombination (HR) as CSR utilizes general repair pathways. Both Spt4 and Spt5 are required for NHEJ and HR as determined by assay systems using synthetic repair substrates that are actively transcribed even in the absence of Spt4 and Spt5. Taken together, Spt4 and Spt5 can function independently in multiple transcription-coupled steps of CSR.
Eriksson, Oskar; Thulin, Åsa; Asplund, Anna; Hegde, Geeta; Navani, Sanjay; Siegbahn, Agneta
2016-05-31
Tissue Factor (TF) forms a proteolytically active complex together with coagulation factor VIIa (FVIIa) and functions as the trigger of blood coagulation or alternatively activates cell signaling. We recently described that EphA2 of the Eph tyrosine kinase receptor family is cleaved directly by the TF/FVIIa complex. The aim of the present study was to further characterize the cross-talk between TF/FVIIa and EphA2 using in vitro model systems and human cancer specimens. Cleavage and phosphorylation of EphA2 was studied by Western blot. Subcellular localization of TF and EphA2 was investigated by a proximity ligation assay and confocal microscopy. Phalloidin staining of the actin cytoskeleton was used to study cell rounding and retraction fiber formation. Expression of TF and EphA2 in human colorectal cancer specimens was examined by immunohistochemistry. TF and EphA2 co-localized constitutively in MDA-MB-231 cells, and addition of FVIIa resulted in cleavage of EphA2 by a PAR2-independent mechanism. Overexpression of TF in U251 glioblastoma cells lead to co-localization with EphA2 at the leading edge and FVIIa-dependent cleavage of EphA2. FVIIa potentiated ephrin-A1-induced cell rounding and retraction fiber formation in MDA-MB-231 cells through a RhoA/ROCK-dependent pathway that did not require PAR2-activation. TF and EphA2 were expressed in colorectal cancer specimens, and were significantly correlated. These results suggest that TF/FVIIa-EphA2 cross-talk might potentiate ligand-dependent EphA2 signaling in human cancers, and provide initial evidence that it is possible for this interaction to occur in vivo.
Enzymatic and antisense effects of a specific anti-Ki-ras ribozyme in vitro and in cell culture.
Giannini, C D; Roth, W K; Piiper, A; Zeuzem, S
1999-01-01
Due to their mode of action, ribozymes show antisense effects in addition to their specific cleavage activity. In the present study we investigated whether a hammerhead ribozyme is capable of cleaving mutated Ki-ras mRNA in a pancreatic carcinoma cell line and whether antisense effects contribute to the activity of the ribozyme. A 2[prime]-O-allyl modified hammerhead ribozyme was designed to cleave specifically the mutated form of the Ki- ras mRNA (GUU motif in codon 12). The activity was monitored by RT-PCR on Ki- ras RNA expression by determination of the relative amount of wild type to mutant Ki-ras mRNA, by 5-bromo-2[prime]-deoxy-uridine incorporation on cell proliferation and by colony formation in soft agar on malignancy in the human pancreatic adenocarcinoma cell line CFPAC-1, which is heterozygous for the Ki-ras mutation. A catalytically inactive ribozyme was used as control to differentiate between antisense and cleavage activity and a ribozyme with random guide sequences as negative control. The catalytically active anti-Ki-ras ribozyme was at least 2-fold more potent in decreasing cellular Ki-ras mRNA levels, inhibiting cell proliferation and colony formation in soft agar than the catalytically inactive ribozyme. The catalytically active anti-Ki-ras ribozyme, but not the catalytically inactive or random ribozyme, increased the ratio of wild type to mutated Ki-ras mRNA in CFPAC-1 cells. In conclusion, both cleavage activity and antisense effects contribute to the activity of the catalytically active anti-Ki-ras hammerhead ribozyme. Specific ribozymes might be useful in the treatment of pancreatic carcinomas containing an oncogenic GTT mutation in codon 12 of the Ki-ras gene. PMID:10373591
Clower, Michelle K.; Holub, Ashton S.; Smith, Rebecca T.; Wyngaard, Grace A.
2016-01-01
The highly programmed fragmentation of chromosomes and elimination of large amounts of nuclear DNA from the presomatic cell lineages (i.e., chromatin diminution), occurs in the embryos of the freshwater zooplankton Mesocyclops edax (S. A. Forbes, 1891) (Crustacea: Copepoda). The somatic genome is reorganized and reduced to a size five times smaller even though the germline genome remains intact. We present the first comprehensive, quantitative model of DNA content throughout embryogenesis in a copepod that possesses embryonic DNA elimination. We used densitometric image analysis to measure the DNA content of polar bodies, germline and somatic nuclei, and excised DNA “droplets.” We report: 1) variable DNA contents of polar bodies, some of which do not contain the amount corresponding to the haploid germline genome size; 2) presence of pronuclei in newly laid embryo sacs; 3) gonomeric chromosomes in the second to fourth cleavage divisions and in the primordial germ cell and primordial endoderm cell during the fifth cleavage division; 4) timing of early embryonic cell stages, elimination of DNA, and divisions of the primordial germ cell and primordial endoderm cell at 22°C; and 5) persistence of a portion of the excised DNA “droplets” throughout embryogenesis. DNA elimination is a trait that spans multiple embryonic stages and a knowledge of the timing and variability of the associated cytological events with DNA elimination will promote the study of the molecular mechanisms involved in this trait. We propose the “genome yolk hypothesis” as a functional explanation for the persistence of the eliminated DNA that might serve as a resource during postdiminution cleavage divisions. PMID:27857452
Love, Julia E; Day, Ryan J; Gause, Justin W; Brown, Raquel J; Pu, Xinzhu; Theis, Dustin I; Caraway, Chad A; Poon, Wayne W; Rahman, Abir A; Morrison, Brad E; Rohn, Troy T
2017-01-01
Although harboring the apolipoprotein E4 ( APOE4 ) allele is a well known risk factor in Alzheimer's disease (AD), the mechanism by which it contributes to disease risk remains elusive. To investigate the role of proteolysis of apoE4 as a potential mechanism, we designed and characterized a site-directed cleavage antibody directed at position D151 of the mature form of apoE4 and E3. Characterization of this antibody indicated a high specificity for detecting synthesized recombinant proteins corresponding to the amino acid sequences 1-151 of apoE3 and E4 that would generate the 17 kDa (p17) fragment. In addition, this antibody also detected a ~17 kDa amino-terminal fragment of apoE4 following incubation with collagenase and matrix metalloproteinase-9 (MMP-9), but did not react with full-length apoE4. Application of this amino-terminal apoE cleavage-fragment (nApoECFp17) antibody, revealed nuclear labeling within glial cells and labeling of a subset of neurofibrillary tangles in the human AD brain. A quantitative analysis indicated that roughly 80% of labeled nuclei were microglia. To confirm these findings, cultured BV2 microglia cells were incubated with the amino-terminal fragment of apoE4 corresponding to the cleavage site at D151. The results indicated efficient uptake of this fragment and trafficking to the nucleus that also resulted in significant cell death. In contrast, a similarly designed apoE3 fragment showed no toxicity and primarily localized within the cytoplasm. These data suggest a novel cleavage event by which apoE4 is cleaved by the extracellular proteases, collagenase and MMP-9, generating an amino-terminal fragment that is then taken up by microglia, traffics to the nucleus and promotes cell death. Collectively, these findings provide important mechanistic insights into the mechanism by which harboring the APOE4 allele may elevate dementia risk observed in AD.
Liu, Hao; Wu, Andong; Mei, Long; Liu, Qingzhen
2016-01-01
Sf9, a cell line derived from Spodoptera frugiperda, is an ideal model organism for studying insect apoptosis. The first notable study that attempted to identify the apoptotic pathway in Sf9 was performed in 1997 and included the discovery of Sf-caspase-1, an effector caspase of Sf9. However, it was not until 2013 that the first initiator caspase in Sf9, SfDronc, was discovered, and the apoptotic pathway in Sf9 became clearer. In this study, we report another caspase of Sf9, SfDredd. SfDredd is highly similar to insect initiator caspase Dredd homologs. Experimentally, recombinant SfDredd underwent autocleavage and exhibited different efficiencies in cleavage of synthetic caspase substrates. This was attributed to its caspase activity for the predicted active site mutation blocked the above autocleavage and synthetic caspase substrates cleavage activity. SfDredd was capable of not only cleaving Sf-caspase-1 in vitro but also cleaving Sf-caspase-1 and inducing apoptosis when it was co-expressed with Sf-caspase-1 in Sf9 cells. The protein level of SfDredd was increased when Sf9 cells were treated by Actinomycin D, whereas silencing of SfDredd reduced apoptosis and Sf-caspase-1 cleavage induced by Actinomycin D treatment. These results clearly indicate that SfDredd functioned as an apoptotic initiator caspase. Apoptosis induced in Sf9 cells by overexpression of SfDredd alone was not as obvious as that induced by SfDronc alone, and the cleavage sites of Sf-caspase-1 for SfDredd and SfDronc are different. In addition, despite sharing a sequence homology with initiator caspases and possessing weak activity on initiator caspase substrates, SfDredd showed strong activity on effector caspase substrates, making it the only insect caspase reported so far functioning similar to human caspase-2 in this aspect. We believe that the discovery of SfDredd, and its different properties from SfDronc, will improve the understanding of apoptosis pathway in Sf9 cells. PMID:26977926
Yang, Zhouning; Zhou, Ke; Liu, Hao; Wu, Andong; Mei, Long; Liu, Qingzhen
2016-01-01
Sf9, a cell line derived from Spodoptera frugiperda, is an ideal model organism for studying insect apoptosis. The first notable study that attempted to identify the apoptotic pathway in Sf9 was performed in 1997 and included the discovery of Sf-caspase-1, an effector caspase of Sf9. However, it was not until 2013 that the first initiator caspase in Sf9, SfDronc, was discovered, and the apoptotic pathway in Sf9 became clearer. In this study, we report another caspase of Sf9, SfDredd. SfDredd is highly similar to insect initiator caspase Dredd homologs. Experimentally, recombinant SfDredd underwent autocleavage and exhibited different efficiencies in cleavage of synthetic caspase substrates. This was attributed to its caspase activity for the predicted active site mutation blocked the above autocleavage and synthetic caspase substrates cleavage activity. SfDredd was capable of not only cleaving Sf-caspase-1 in vitro but also cleaving Sf-caspase-1 and inducing apoptosis when it was co-expressed with Sf-caspase-1 in Sf9 cells. The protein level of SfDredd was increased when Sf9 cells were treated by Actinomycin D, whereas silencing of SfDredd reduced apoptosis and Sf-caspase-1 cleavage induced by Actinomycin D treatment. These results clearly indicate that SfDredd functioned as an apoptotic initiator caspase. Apoptosis induced in Sf9 cells by overexpression of SfDredd alone was not as obvious as that induced by SfDronc alone, and the cleavage sites of Sf-caspase-1 for SfDredd and SfDronc are different. In addition, despite sharing a sequence homology with initiator caspases and possessing weak activity on initiator caspase substrates, SfDredd showed strong activity on effector caspase substrates, making it the only insect caspase reported so far functioning similar to human caspase-2 in this aspect. We believe that the discovery of SfDredd, and its different properties from SfDronc, will improve the understanding of apoptosis pathway in Sf9 cells.
Dos Santos, Alessandra Antunes; López-Granero, Caridad; Farina, Marcelo; Rocha, João B T; Bowman, Aaron B; Aschner, Michael
2018-03-01
Methylmercury is a toxic environmental contaminant that elicits significant toxicity in humans. The central nervous system is the primary target of toxicity, and is particularly vulnerable during development. Rho-associated protein kinase 1 (ROCK-1) is a major downstream effector of the small GTPase RhoA and a direct substrate of caspase-3. The activation of ROCK-1 is necessary for membrane blebbing during apoptosis. In this work, we examined whether MeHg could affect the RhoA/ROCK-1 signaling pathway in primary cultures of mouse astrocytes. Exposure of cells with 10 μM MeHg decreased cellular viability after 24 h of incubation. This reduction in viability was preceded by a significant increase in intracellular and mitochondrial reactive oxygen species levels, as well as a reduced NAD + /NADH ratio. MeHg also induced an increase in mitochondrial-dependent caspase-9 and caspase-3, while the levels of RhoA protein expression were reduced or unchanged. We further found that MeHg induced ROCK-1 cleavage/activation and promoted LIMK1 and MYPT1 phosphorylation, both of which are the best characterized ROCK-1 downstream targets. Inhibiting ROCK-1 and caspases activation attenuated the MeHg-induced cell death. Collectively, these findings are the first to show that astrocytes exposed to MeHg showed increased cleavage/activation of ROCK-1, which was independent of the small GTPase RhoA. Copyright © 2018. Published by Elsevier Ltd.
Developmental bias in cleavage-stage mouse blastomeres
Tabansky, Inna; Lenarcic, Alan; Draft, Ryan W.; Loulier, Karine; Keskin, Derin B; Rosains, Jacqueline; Rivera-Feliciano, José; Lichtman, Jeff W.; Livet, Jean; Stern, Joel NH; Sanes, Joshua R.; Eggan, Kevin
2012-01-01
Summary Introduction The cleavage stage mouse embryo is composed of superficially equivalent blastomeres that will generate both the embryonic inner cell mass (ICM) and the supportive trophectoderm (TE). However, it remains unsettled whether the contribution of each blastomere to these two lineages can be accounted for by chance. Addressing the question of blastomere cell fate may be of practical importance, as preimplantation genetic diagnosis (PGD) requires removal of blastomeres from the early human embryo. To determine if blastomere allocation to the two earliest lineages is random, we developed and utilized a recombination-mediated, non-invasive combinatorial fluorescent labeling method for embryonic lineage tracing. Results When we induced recombination at cleavage stages, we observed a statistically significant bias in the contribution of the resulting labeled clones to the trophectoderm or the inner cell mass in a subset of embryos. Surprisingly, we did not find a correlation between localization of clones in the embryonic and abembryonic hemispheres of the late blastocyst and their allocation to the TE and ICM, suggesting that TE-ICM bias arises separately from embryonic-abembryonic bias. Rainbow lineage tracing also allowed us to demonstrate that the bias observed in the blastocyst persists into post-implantation stages, and therefore has relevance for subsequent development. Discussion The Rainbow transgenic mice that we describe here have allowed us to detect lineage-dependent bias in early development. They should also enable assessment of the developmental equivalence of mammalian progenitor cells in a variety of tissues. PMID:23177476
Weis, Michael; Maisner, Andrea
2015-01-01
Nipah virus (NiV) is a highly pathogenic paramyxovirus which encodes two surface glycoproteins: the receptor-binding protein G and the fusion protein F. As for all paramyxoviruses, proteolytic activation of the NiV-F protein is an indispensable prerequisite for viral infectivity. Interestingly, proteolytic activation of NiV-F differs principally from other paramyxoviruses with respect to protease usage (cathepsins instead of trypsin- or furin-like proteases), and the subcellular localization where cleavage takes place (endosomes instead of Golgi or plasma membrane). To allow efficient F protein activation needed for productive virus replication and cell-to-cell fusion, the NiV-F cytoplasmic tail contains a classical tyrosine-based endocytosis signal (Y525RSL) that we have shown earlier to be needed for F uptake and proteolytic activation. In this report, we furthermore revealed that an intact endocytosis signal alone is not sufficient for full bioactivity. The very C-terminus of the cytoplasmic tail is needed in addition. Deletions of more than four residues did not affect F uptake or endosomal cleavage but downregulated the surface expression, likely by delaying the intracellular trafficking through endosomal-recycling compartments. Given that the NiV-F cytoplasmic tail is needed for timely and correct intracellular trafficking, endosomal cleavage and fusion activity, the influence of tail truncations on NiV-mediated cell-to-cell fusion and on pseudotyping lentiviral vectors is discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.
van der Post, Sjoerd; Subramani, Durai B.; Bäckström, Malin; Johansson, Malin E. V.; Vester-Christensen, Malene B.; Mandel, Ulla; Bennett, Eric P.; Clausen, Henrik; Dahlén, Gunnar; Sroka, Aneta; Potempa, Jan; Hansson, Gunnar C.
2013-01-01
The colonic epithelial surface is protected by an inner mucus layer that the commensal microflora cannot penetrate. We previously demonstrated that Entamoeba histolytica secretes a protease capable of dissolving this layer that is required for parasite penetration. Here, we asked whether there are bacteria that can secrete similar proteases. We screened bacterial culture supernatants for such activity using recombinant fragments of the MUC2 mucin, the major structural component, and the only gel-forming mucin in the colonic mucus. MUC2 has two central heavily O-glycosylated mucin domains that are protease-resistant and has cysteine-rich N and C termini responsible for polymerization. Culture supernatants of Porphyromonas gingivalis, a bacterium that secretes proteases responsible for periodontitis, cleaved the MUC2 C-terminal region, whereas the N-terminal region was unaffected. The active enzyme was isolated and identified as Arg-gingipain B (RgpB). Two cleavage sites were localized to IR↓TT and NR↓QA. IR↓TT cleavage will disrupt the MUC2 polymers. Because this site has two potential O-glycosylation sites, we tested whether recombinant GalNAc-transferases (GalNAc-Ts) could glycosylate a synthetic peptide covering the IRTT sequence. Only GalNAc-T3 was able to glycosylate the second Thr in IRTT, rendering the sequence resistant to cleavage by RgpB. Furthermore, when GalNAc-T3 was expressed in CHO cells expressing the MUC2 C terminus, the second threonine was glycosylated, and the protein became resistant to RgpB cleavage. These findings suggest that bacteria can produce proteases capable of dissolving the inner protective mucus layer by specific cleavages in the MUC2 mucin and that this cleavage can be modulated by site-specific O-glycosylation. PMID:23546879
Xu, Han; Miao, Bei; Zhang, Minhua; Chen, Yifei; Wang, Lichang
2017-10-04
The performance of transition metal catalysts for ethanol oxidation reaction (EOR) in direct ethanol fuel cells (DEFCs) may be greatly affected by their oxidation. However, the specific effect and catalytic mechanism for EOR of transition metal oxides are still unclear and deserve in-depth exploitation. Copper as a potential anode catalyst can be easily oxidized in air. Thus, in this study, we investigated C-C and C-H bond cleavage reactions of CH x CO (x = 1, 2, 3) species in EOR on Cu 2 O(111) using PBE+U calculations, as well as the specific effect of +U correction on the process of adsorption and reaction on Cu 2 O(111). It was revealed that the catalytic performance of Cu 2 O(111) for EOR was restrained compared with that of Cu(100). Except for the C-H cleavage of CH 2 CO, all the reaction barriers for C-C and C-H cleavage were higher than those on Cu(100). The most probable pathway for CH 3 CO to CHCO on Cu 2 O(111) was the continuous dehydrogenation reaction. Besides, the barrier for C-C bond cleavage increased due to the loss of H atoms in the intermediate. Moreover, by the comparison of the traditional GGA/PBE method and the PBE+U method, it could be concluded that C-C cleavage barriers would be underestimated without +U correction, while C-H cleavage barriers would be overestimated. +U correction was proved to be necessary, and the reaction barriers and the values of the Hubbard U parameter had a proper linear relationship.
Mullen, Lisa; Adams, Gill; Foster, Julie; Vessillier, Sandrine; Köster, Mario; Hauser, Hansjörg; Layward, Lorna; Gould, David; Chernajovsky, Yuti
2014-09-01
Latent cytokines are engineered by fusing the latency associated peptide (LAP) derived from transforming growth factor-β (TGF-β) with the therapeutic cytokine, in this case interferon-β (IFN-β), via an inflammation-specific matrix metalloproteinase (MMP) cleavage site. To demonstrate latency and specific delivery in vivo and to compare therapeutic efficacy of aggrecanase-mediated release of latent IFN-β in arthritic joints to the original MMP-specific release. Recombinant fusion proteins with MMP, aggrecanase or devoid of cleavage site were expressed in CHO cells, purified and characterised in vitro by Western blotting and anti-viral protection assays. Therapeutic efficacy and half-life were assessed in vivo using the mouse collagen-induced arthritis model (CIA) of rheumatoid arthritis and a model of acute paw inflammation, respectively. Transgenic mice with an IFN-regulated luciferase gene were used to assess latency in vivo and targeted delivery to sites of disease. Efficient localised delivery of IFN-β to inflamed paws, with low levels of systemic delivery, was demonstrated in transgenic mice using latent IFN-β. Engineering of latent IFN-β with an aggrecanase-sensitive cleavage site resulted in efficient cleavage by ADAMTS-4, ADAMTS-5 and synovial fluid from arthritic patients, with an extended half-life similar to the MMP-specific molecule and greater therapeutic efficacy in the CIA model. Latent cytokines require cleavage in vivo for therapeutic efficacy, and they are delivered in a dose dependent fashion only to arthritic joints. The aggrecanase-specific cleavage site is a viable alternative to the MMP cleavage site for the targeting of latent cytokines to arthritic joints. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Cellular effects of olomoucine, an inhibitor of cyclin-dependent kinases.
Abraham, R T; Acquarone, M; Andersen, A; Asensi, A; Bellé, R; Berger, F; Bergounioux, C; Brunn, G; Buquet-Fagot, C; Fagot, D
1995-01-01
Olomoucine (2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine) has been recently described as a competitive inhibitor (ATP-binding site) of the cell cycle regulating p34cdc2/cyclin B, p33cdk2/cyclin A and p33cdk2/cyclin E kinases, the brain p33cdk5/p35 kinase and the ERK1/MAP-kinase. The unusual specificity of this compound towards cell cycle regulating enzymes suggests that it could inhibit certain steps of the cell cycle. The cellular effects of olomoucine were investigated in a large variety of plant and animal models. This compound inhibits the G1/S transition of unicellular algae (dinoflagellate and diatom). It blocks Fucus zygote cleavage and development of Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the development of Calanus copepod larvae. It reversibly inhibits the early cleavages of Caenorhabditis elegans embryos and those of ascidian embryos. Olomoucine inhibits the serotonin-induced prophase/metaphase transition of clam oocytes; furthermore, it triggers the the release of these oocytes from their meiotic metaphase I arrest, and induces nuclei reformation. Olomoucine slows down the prophase/metaphase transition in cleaving sea urchin embryos, but does not affect the duration of the metaphase/anaphase and anaphase/telophase transitions. It also inhibits the prophase/metaphase transition of starfish oocytes triggered by various agonists. Xenopus oocyte maturation, the in vivo and in vitro phosphorylation of elongation factor EF-1 are inhibited by olomoucine. Mouse oocyte maturation is delayed by this compound, whereas parthenogenetic release from metaphase II arrest is facilitated. Growth of a variety of human cell lines (rhabdomyosarcoma cell lines Rh1, Rh18, Rh28 and Rh30; MCF-7, KB-3-1 and their adriamycin-resistant counterparts; National Cancer Institute 60 human tumor cell lines comprising nine tumor types) is inhibited by olomoucine. Cell cycle parameter analysis of the non-small cell lung cancer cell line MR65 shows that olomoucine affects G1 and S phase transits. Olomoucine inhibits DNA synthesis in interleukin-2-stimulated T lymphocytes (CTLL-2 cells) and triggers a G1 arrest similar to interleukin-2 deprivation. Both cdc2 and cdk2 kinases (immunoprecipitated from nocodazole- and hydroxyurea-treated CTLL-2 cells, respectively) are inhibited by olomoucine. Both yeast and Drosophila embryos were insensitive to olomoucine. Taken together the results of this Noah's Ark approach show that olomoucine arrests cells both at the G1/S and the G2/M boundaries, consistent with the hypothesis of a prevalent effect on the cdk2 and cdc2 kinases, respectively.
Agent-based modeling: case study in cleavage furrow models.
Mogilner, Alex; Manhart, Angelika
2016-11-07
The number of studies in cell biology in which quantitative models accompany experiments has been growing steadily. Roughly, mathematical and computational techniques of these models can be classified as "differential equation based" (DE) or "agent based" (AB). Recently AB models have started to outnumber DE models, but understanding of AB philosophy and methodology is much less widespread than familiarity with DE techniques. Here we use the history of modeling a fundamental biological problem-positioning of the cleavage furrow in dividing cells-to explain how and why DE and AB models are used. We discuss differences, advantages, and shortcomings of these two approaches. © 2016 Mogilner and Manhart. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Hunter, C P; Kenyon, C
1996-10-18
The early asymmetric cleavages of Caenorhabditis elegans embryos produce blastomeres with distinct developmental potentials. Here, we show that the caudal-like homeodomain protein PAL-1 is required to specify the somatic identity of one posterior blastomere in the 4 cell embryo. We find that pal-1 activity is sequentially restricted to this blastomere. First, at the 4 cell stage, it is translated only in the two posterior blastomeres. Then, its function is restricted to one of these blastomeres. This second targeting step is dependent on the activities of the posteriorly localized SKN-1 and asymmetrically segregated PIE-1 proteins. We propose that the segregation of PIE-1, combined with the temporal decay of SKN-1, targets pal-1 activity to this posterior lineage, thus coupling the regulation of this conserved posterior patterning gene to asymmetric cell cleavages.
Kristensen, Thea; Normann, Preben; Gullberg, Maria; Fahnøe, Ulrik; Polacek, Charlotta; Rasmussen, Thomas Bruun; Belsham, Graham J
2017-03-01
The foot-and-mouth disease virus (FMDV) capsid precursor, P1-2A, is cleaved by FMDV 3C protease to yield VP0, VP3, VP1 and 2A. Cleavage of the VP1/2A junction is the slowest. Serotype O FMDVs with uncleaved VP1-2A (having a K210E substitution in VP1; at position P2 in cleavage site) have been described previously and acquired a second site substitution (VP1 E83K) during virus rescue. Furthermore, introduction of the VP1 E83K substitution alone generated a second site change at the VP1/2A junction (2A L2P, position P2' in cleavage site). These virus adaptations have now been analysed using next-generation sequencing to determine sub-consensus level changes in the virus; this revealed other variants within the E83K mutant virus population that changed residue VP1 K210. The construction of serotype A viruses with a blocked VP1/2A cleavage site (containing K210E) has now been achieved. A collection of alternative amino acid substitutions was made at this site, and the properties of the mutant viruses were determined. Only the presence of a positively charged residue at position P2 in the cleavage site permitted efficient cleavage of the VP1/2A junction, consistent with analyses of diverse FMDV genome sequences. Interestingly, in contrast to the serotype O virus results, no second site mutations occurred within the VP1 coding region of serotype A viruses with the blocked VP1/2A cleavage site. However, some of these viruses acquired changes in the 2C protein that is involved in enterovirus morphogenesis. These results have implications for the testing of potential antiviral agents targeting the FMDV 3C protease.
Bergeron, Éric; Zivcec, Marko; Chakrabarti, Ayan K; Nichol, Stuart T; Albariño, César G; Spiropoulou, Christina F
2015-05-01
Crimean Congo hemorrhagic fever virus (CCHFV) is a negative-strand RNA virus of the family Bunyaviridae (genus: Nairovirus). In humans, CCHFV causes fever, hemorrhage, severe thrombocytopenia, and high fatality. A major impediment in precisely determining the basis of CCHFV's high pathogenicity has been the lack of methodology to produce recombinant CCHFV. We developed a reverse genetics system based on transfecting plasmids into BSR-T7/5 and Huh7 cells. In our system, bacteriophage T7 RNA polymerase produced complementary RNA copies of the viral S, M, and L segments that were encapsidated with the support, in trans, of CCHFV nucleoprotein and L polymerase. The system was optimized to systematically recover high yields of infectious CCHFV. Additionally, we tested the ability of the system to produce specifically designed CCHFV mutants. The M segment encodes a polyprotein that is processed by host proprotein convertases (PCs), including the site-1 protease (S1P) and furin-like PCs. S1P and furin cleavages are necessary for producing the non-structural glycoprotein GP38, while S1P cleavage yields structural Gn. We studied the role of furin cleavage by rescuing a recombinant CCHFV encoding a virus glycoprotein precursor lacking a functional furin cleavage motif (RSKR mutated to ASKA). The ASKA mutation blocked glycoprotein precursor's maturation to GP38, and Gn precursor's maturation to Gn was slightly diminished. Furin cleavage was not essential for replication, as blocking furin cleavage resulted only in transient reduction of CCHFV titers, suggesting that either GP38 and/or decreased Gn maturation accounted for the reduced virion production. Our data demonstrate that nairoviruses can be produced by reverse genetics, and the utility of our system uncovered a function for furin cleavage. This viral rescue system could be further used to study the CCHFV replication cycle and facilitate the development of efficacious vaccines to counter this biological and public health threat.
Bergeron, Éric; Zivcec, Marko; Chakrabarti, Ayan K.; Nichol, Stuart T.; Albariño, César G.; Spiropoulou, Christina F.
2015-01-01
Crimean Congo hemorrhagic fever virus (CCHFV) is a negative-strand RNA virus of the family Bunyaviridae (genus: Nairovirus). In humans, CCHFV causes fever, hemorrhage, severe thrombocytopenia, and high fatality. A major impediment in precisely determining the basis of CCHFV’s high pathogenicity has been the lack of methodology to produce recombinant CCHFV. We developed a reverse genetics system based on transfecting plasmids into BSR-T7/5 and Huh7 cells. In our system, bacteriophage T7 RNA polymerase produced complementary RNA copies of the viral S, M, and L segments that were encapsidated with the support, in trans, of CCHFV nucleoprotein and L polymerase. The system was optimized to systematically recover high yields of infectious CCHFV. Additionally, we tested the ability of the system to produce specifically designed CCHFV mutants. The M segment encodes a polyprotein that is processed by host proprotein convertases (PCs), including the site-1 protease (S1P) and furin-like PCs. S1P and furin cleavages are necessary for producing the non-structural glycoprotein GP38, while S1P cleavage yields structural Gn. We studied the role of furin cleavage by rescuing a recombinant CCHFV encoding a virus glycoprotein precursor lacking a functional furin cleavage motif (RSKR mutated to ASKA). The ASKA mutation blocked glycoprotein precursor’s maturation to GP38, and Gn precursor’s maturation to Gn was slightly diminished. Furin cleavage was not essential for replication, as blocking furin cleavage resulted only in transient reduction of CCHFV titers, suggesting that either GP38 and/or decreased Gn maturation accounted for the reduced virion production. Our data demonstrate that nairoviruses can be produced by reverse genetics, and the utility of our system uncovered a function for furin cleavage. This viral rescue system could be further used to study the CCHFV replication cycle and facilitate the development of efficacious vaccines to counter this biological and public health threat. PMID:25933376
Programmable RNA recognition and cleavage by CRISPR/Cas9.
O'Connell, Mitchell R; Oakes, Benjamin L; Sternberg, Samuel H; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A
2014-12-11
The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA-DNA complementarity to identify target sites for sequence-specific double-stranded DNA (dsDNA) cleavage. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, known as the protospacer adjacent motif (PAM), next to and on the strand opposite the twenty-nucleotide target site in dsDNA. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in a large range of prokaryotic and eukaryotic cell types, and in whole organisms, but it has been thought to be incapable of targeting RNA. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalysed DNA cleavage. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous messenger RNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable transcript recognition without the need for tags.
F-box only protein 2 (Fbxo2) regulates amyloid precursor protein levels and processing.
Atkin, Graham; Hunt, Jack; Minakawa, Eiko; Sharkey, Lisa; Tipper, Nathan; Tennant, William; Paulson, Henry L
2014-03-07
The amyloid precursor protein (APP) is an integral membrane glycoprotein whose cleavage products, particularly amyloid-β, accumulate in Alzheimer disease (AD). APP is present at synapses and is thought to play a role in both the formation and plasticity of these critical neuronal structures. Despite the central role suggested for APP in AD pathogenesis, the mechanisms regulating APP in neurons and its processing into cleavage products remain incompletely understood. F-box only protein 2 (Fbxo2), a neuron-enriched ubiquitin ligase substrate adaptor that preferentially binds high-mannose glycans on glycoproteins, was previously implicated in APP processing by facilitating the degradation of the APP-cleaving β-secretase, β-site APP-cleaving enzyme. Here, we sought to determine whether Fbxo2 plays a similar role for other glycoproteins in the amyloid processing pathway. We present in vitro and in vivo evidence that APP is itself a substrate for Fbxo2. APP levels were decreased in the presence of Fbxo2 in non-neuronal cells, and increased in both cultured hippocampal neurons and brain tissue from Fbxo2 knock-out mice. The processing of APP into its cleavage products was also increased in hippocampi and cultured hippocampal neurons lacking Fbxo2. In hippocampal slices, this increase in cleavage products was accompanied by a significant reduction in APP at the cell surface. Taken together, these results suggest that Fbxo2 regulates APP levels and processing in the brain and may play a role in modulating AD pathogenesis.
Shanthalingam, Sudarvili; Tibary, Ahmed; Beever, Jonathan E.; Kasinathan, Poothapillai; Brown, Wendy C.; Srikumaran, Subramaniam
2016-01-01
Signal peptides of membrane proteins are cleaved by signal peptidase once the nascent proteins reach the endoplasmic reticulum. Previously, we reported that, contrary to the paradigm, the signal peptide of ruminant CD18, the β subunit of β2 integrins, is not cleaved and hence remains intact on mature CD18 molecules expressed on the surface of ruminant leukocytes. Leukotoxin secreted by Mannheimia (Pasteurella) haemolytica binds to the intact signal peptide and causes cytolysis of ruminant leukocytes, resulting in acute inflammation and lung tissue damage. We also demonstrated that site-directed mutagenesis leading to substitution of cleavage-inhibiting glutamine (Q), at amino acid position 5 upstream of the signal peptide cleavage site, with cleavage-inducing glycine (G) results in the cleavage of the signal peptide and abrogation of leukotoxin-induced cytolysis of target cells. In this proof-of-principle study, we used precise gene editing to induce Q(‒5)G substitution in both alleles of CD18 in bovine fetal fibroblast cells. The gene-edited fibroblasts were used for somatic nuclear transfer and cloning to produce a bovine fetus homozygous for the Q(‒5)G substitution. The leukocyte population of this engineered ruminant expressed CD18 without the signal peptide. More importantly, these leukocytes were absolutely resistant to leukotoxin-induced cytolysis. This report demonstrates the feasibility of developing lines of cattle genetically resistant to M. haemolytica-caused pneumonia, which inflicts an economic loss of over $1 billion to the US cattle industry alone. PMID:27799556
Shanthalingam, Sudarvili; Tibary, Ahmed; Beever, Jonathan E; Kasinathan, Poothapillai; Brown, Wendy C; Srikumaran, Subramaniam
2016-11-15
Signal peptides of membrane proteins are cleaved by signal peptidase once the nascent proteins reach the endoplasmic reticulum. Previously, we reported that, contrary to the paradigm, the signal peptide of ruminant CD18, the β subunit of β 2 integrins, is not cleaved and hence remains intact on mature CD18 molecules expressed on the surface of ruminant leukocytes. Leukotoxin secreted by Mannheimia (Pasteurella) haemolytica binds to the intact signal peptide and causes cytolysis of ruminant leukocytes, resulting in acute inflammation and lung tissue damage. We also demonstrated that site-directed mutagenesis leading to substitution of cleavage-inhibiting glutamine (Q), at amino acid position 5 upstream of the signal peptide cleavage site, with cleavage-inducing glycine (G) results in the cleavage of the signal peptide and abrogation of leukotoxin-induced cytolysis of target cells. In this proof-of-principle study, we used precise gene editing to induce Q(‒5)G substitution in both alleles of CD18 in bovine fetal fibroblast cells. The gene-edited fibroblasts were used for somatic nuclear transfer and cloning to produce a bovine fetus homozygous for the Q(‒5)G substitution. The leukocyte population of this engineered ruminant expressed CD18 without the signal peptide. More importantly, these leukocytes were absolutely resistant to leukotoxin-induced cytolysis. This report demonstrates the feasibility of developing lines of cattle genetically resistant to M. haemolytica-caused pneumonia, which inflicts an economic loss of over $1 billion to the US cattle industry alone.
RIPK3 regulates p62-LC3 complex formation via the caspase-8-dependent cleavage of p62.
Matsuzawa, Yu; Oshima, Shigeru; Nibe, Yoichi; Kobayashi, Masanori; Maeyashiki, Chiaki; Nemoto, Yasuhiro; Nagaishi, Takashi; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Watanabe, Mamoru
2015-01-02
RIPK3 is a key molecule for necroptosis, initially characterized by necrotic cell death morphology and the activation of autophagy. Cell death and autophagic signaling are believed to tightly regulate each other. However, the associated recruitment of signaling proteins remains poorly understood. p62/sequestosome-1 is a selective autophagy substrate and a selective receptor for ubiquitinated proteins. In this study, we illustrated that both mouse and human RIPK3 mediate p62 cleavage and that RIPK3 interacts with p62, resulting in complex formation. In addition, RIPK3-dependent p62 cleavage is restricted by the inhibition of caspases, especially caspase-8. Moreover, overexpression of A20, a ubiquitin-editing enzyme and an inhibitor of caspase-8 activity, inhibits RIPK3-dependent p62 cleavage. To further investigate the potential role of RIPK3 in selective autophagy, we analyzed p62-LC3 complex formation, revealing that RIPK3 prevents the localization of LC3 and ubiquitinated proteins to the p62 complex. In addition, RIPK3-dependent p62-LC3 complex disruption is regulated by caspase inhibition. Taken together, these results demonstrated that RIPK3 interacts with p62 and regulates p62-LC3 complex formation. These findings suggested that RIPK3 serves as a negative regulator of selective autophagy and provides new insights into the mechanism by which RIPK3 regulates autophagic signaling. Copyright © 2014 Elsevier Inc. All rights reserved.
Programmable RNA recognition and cleavage by CRISPR/Cas9
O’Connell, Mitchell R.; Oakes, Benjamin L.; Sternberg, Samuel H.; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A.
2014-01-01
The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA:DNA complementarity to identify target sites for sequence-specific doublestranded DNA (dsDNA) cleavage1-5. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, the protospacer adjacent motif (PAM), next to and on the strand opposite the 20-nucleotide target site in dsDNA4-7. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in many cell types and organisms8, but it has been thought to be incapable of targeting RNA5. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalyzed DNA cleavage7. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous mRNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable and tagless transcript recognition. PMID:25274302
Herold, Zoltán; Nagy, Péter; Patócs, Attila; Somogyi, Anikó
2015-02-01
Chromogranin-A is a member of the granine protein family. It is produced in neuroendocrine cells via secretory granules. Many cleavage proteins are formed from chromogranin-A, from which some have well known biological activity, while the function of others is not yet fully known. Serum chromogranin-A levels are used in neuroendocrine tumour diagnostics. Recent studies showed that one of its cleavage protein, WE-14 may also play a role in the development of type 1 diabetes. WE-14 may function as an autoantigen for T-cells involved in the destruction of β-cells. This mechanism was previously observed only in non-obese diabetic mice. Novel results show that WE-14 also serves as a target for autoreactive cells in newly diagnosed type 1 diabetic patients as well, which reaction can be increased with transglutaminase. In this paper the authors summarize the recent knowledge about chromogranin-A and its potential role in the pathomechanism of type 1 diabetes mellitus.
Grawunder, U; Lieber, M R
1997-01-01
The recombination activating gene (RAG) 1 and 2 proteins are required for initiation of V(D)J recombination in vivo and have been shown to be sufficient to introduce DNA double-strand breaks at recombination signal sequences (RSSs) in a cell-free assay in vitro. RSSs consist of a highly conserved palindromic heptamer that is separated from a slightly less conserved A/T-rich nonamer by either a 12 or 23 bp spacer of random sequence. Despite the high sequence specificity of RAG-mediated cleavage at RSSs, direct binding of the RAG proteins to these sequences has been difficult to demonstrate by standard methods. Even when this can be demonstrated, questions about the order of events for an individual RAG-RSS complex will require methods that monitor aspects of the complex during transitions from one step of the reaction to the next. Here we have used template-independent DNA polymerase terminal deoxynucleotidyl transferase (TdT) in order to assess occupancy of the reaction intermediates by the RAG complex during the reaction. In addition, this approach allows analysis of the accessibility of end products of a RAG-catalyzed cleavage reaction for N nucleotide addition. The results indicate that RAG proteins form a long-lived complex with the RSS once the initial nick is generated, because the 3'-OH group at the nick remains obstructed for TdT-catalyzed N nucleotide addition. In contrast, the 3'-OH group generated at the signal end after completion of the cleavage reaction can be efficiently tailed by TdT, suggesting that the RAG proteins disassemble from the signal end after DNA double-strand cleavage has been completed. Therefore, a single RAG complex maintains occupancy from the first step (nick formation) to the second step (cleavage). In addition, the results suggest that N region diversity at V(D)J junctions within rearranged immunoglobulin and T cell receptor gene loci can only be introduced after the generation of RAG-catalyzed DNA double-strand breaks, i.e. during the DNA end joining phase of the V(D)J recombination reaction. PMID:9060432
Maurer-Stroh, Sebastian; Lee, Raphael T C; Gunalan, Vithiagaran; Eisenhaber, Frank
2013-05-01
A characteristic difference between highly and non-highly pathogenic avian influenza strains is the presence of an extended, often multibasic, cleavage motif insertion in the hemagglutinin protein. Such motif is found in H7N3 strains from chicken farm outbreaks in 2012 in Mexico. Through phylogenetic, sequence and structural analysis, we try to shed light on the role, prevalence, likelihood of appearance and origin of the inserted cleavage motifs in these H7N3 avian influenza strains. The H7N3 avian influenza strain which caused outbreaks in chicken farms in June/July 2012 in Mexico has a new extended cleavage site which is the likely reason for its high pathogenicity in these birds. This cleavage site appears to have been naturally acquired and was not present in the closest low pathogenic precursors. Structural modeling shows that insertion of a productive cleavage site is quite flexible to accept insertions of different length and with sequences from different possible origins. Different from recent cleavage site insertions, the origin of the insert here is not from the viral genome but from host 28S ribosomal RNA (rRNA) instead. This is a novelty for a natural acquisition as a similar insertion has so far only been observed in a laboratory strain before. Given the abundance of viral and host RNA in infected cells, the acquisition of a pathogenicity-enhancing extended cleavage site through a similar route by other low-pathogenic avian strains in future does not seem unlikely. Important for surveillance of these H7N3 strains, the structural sites known to enhance mammalian airborne transmission are dominated by the characteristic avian residues and the risk of human to human transmission should currently be low but should be monitored for future changes accordingly. This highly pathogenic H7N3 avian influenza strain acquired a novel extended cleavage site which likely originated from recombination with 28S rRNA from the avian host. Notably, this new virus can infect humans but currently lacks critical host receptor adaptations that would facilitate human to human transmission.
A self-lysis pathway that enhances the virulence of a pathogenic bacterium
McFarland, Kirsty A.; Dolben, Emily L.; LeRoux, Michele; Kambara, Tracy K.; Ramsey, Kathryn M.; Kirkpatrick, Robin L.; Mougous, Joseph D.; Hogan, Deborah A.; Dove, Simon L.
2015-01-01
In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system. PMID:26100878
2012-01-01
Background Numerous studies have demonstrated that autophagy plays a vital role in maintaining cellular homeostasis. Interestingly, several anticancer agents were found to exert their anticancer effects by triggering autophagy. Emerging data suggest that autophagy represents a novel mechanism that can be exploited for therapeutic benefit. Pharmacologically active natural compounds such as those from marine, terrestrial plants and animals represent a promising resource for novel anticancer drugs. There are several prominent examples from the past proving the success of natural products and derivatives exhibiting anticancer activity. Helenalin, a sesquiterpene lactone has been demonstrated to have potent anti-inflammatory and antitumor activity. Albeit previous studies demonstrating helenalin’s multi modal action on cellular proliferative and apoptosis, the mechanisms underlying its action are largely unexplained. Methods To deduce the mechanistic action of helenalin, cancer cells were treated with the drug at various concentrations and time intervals. Using western blot, FACS analysis, overexpression and knockdown studies, cellular signaling pathways were interrogated focusing on apoptosis and autophagy markers. Results We show here that helenalin induces sub-G1 arrest, apoptosis, caspase cleavage and increases the levels of the autophagic markers. Suppression of caspase cleavage by the pan caspase inhibitor, Z-VAD-fmk, suppressed induction of LC3-B and Atg12 and reduced autophagic cell death, indicating caspase activity was essential for autophagic cell death induced by helenalin. Additionally, helenalin suppressed NF-κB p65 expression in a dose and time dependent manner. Exogenous overexpression of p65 was accompanied by reduced levels of cell death whereas siRNA mediated suppression led to augmented levels of caspase cleavage, autophagic cell death markers and increased cell death. Conclusions Taken together, these results show that helenalin mediated autophagic cell death entails inhibition of NF-κB p65, thus providing a promising approach for the treatment of cancers with aberrant activation of the NF-κB pathway. PMID:22784363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, J.; Schultz, R.M.
1990-06-01
G proteins, which in many somatic cells serve as mediators of signal transduction, were identified in preimplantation mouse embryos by their capacity to undergo pertussis toxin-catalyzed ADP-ribosylation. Two pertussis toxin (PT) substrates with Mr = 38,000 and 39,000 (alpha 38 and alpha 39) are present in approximately equal amounts. Relative to the amount in freshly isolated germinal vesicle (GV)-intact oocytes, the amount of PT-catalyzed ADP-ribosylation of alpha 38-39 falls during oocyte maturation, rises between the one- and two-cell stages, falls by the eight-cell and morula stages, and increases again by the blastocyst stage. The decrease in PT-catalyzed ADP-ribosylation of alphamore » 38-39 that occurs during oocyte maturation, however, does not require germinal vesicle breakdown (GVBD), since inhibiting GVBD with 3-isobutyl-1-methyl xanthine (IBMX) does not prevent the decrease in the extent of PT-catalyzed ADP-ribosylation. A biologically active phorbol diester (12-O-tetradecanoyl phorbol 13-acetate), but not an inactive one (4 alpha-phorbol 12,13-didecanoate, 4 alpha-PDD), totally inhibits the increase in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs between the one- and two-cell stage; TPA inhibits cleavage, but not transcriptional activation, which occurs in the two-cell embryo. In contrast, cytochalasin D, genistein, or aphidicolin, each of which inhibits cleavage of one-cell embryos, or alpha-amanitin or H8, each of which inhibits transcriptional activation but not cleavage of one-cell embryos, have little or inhibitory effects on the increase in PT-catalyzed ADP-ribosylation of alpha 38-39. Results of immunoblotting experiments using an antibody that is highly specific for alpha il-3 reveal the presence of a cross-reactive species of Mr = 38,000 (alpha 38) in the GV-intact oocyte, metaphase II-arrested egg, and one-, two-cell embryos.« less
USDA-ARS?s Scientific Manuscript database
Surface macromolecule cleavage experiments were conducted on enterohaemorrhagic Escherichia coli O157:H7 cells to investigate the influence of these macromolecules on cell surface properties. Electrophoretic mobility, hydrophobicity, and titration experiments were carried out on proteinase K treate...
Selective Destruction Of Cells Infected With The Human Immunodeficiency Virus
Keener, William K.; Ward, Thomas E.
2006-03-28
Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a varient of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.
Selective destruction of cells infected with human immunodeficiency virus
Keener, William K.; Ward, Thomas E.
2003-09-30
Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a variant of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.
Neisseria Heparin Binding Antigen is targeted by the human alternative pathway C3-convertase
Di Fede, Martina; Biagini, Massimiliano; Cartocci, Elena; Parillo, Carlo; Greco, Alessandra; Martinelli, Manuele; Marchi, Sara; Pezzicoli, Alfredo; Delany, Isabel
2018-01-01
Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein specific for Neisseria and constitutes one of the three main protein antigens of the Bexsero vaccine. Meningococcal and human proteases, cleave NHBA protein upstream or downstream of a conserved Arg-rich region, respectively. The cleavage results in the release of the C-terminal portion of the protein. The C-terminal fragment originating from the processing of meningococcal proteases, referred to as C2 fragment, exerts a toxic effect on endothelial cells altering the endothelial permeability. In this work, we reported that recombinant C2 fragment has no influence on the integrity of human airway epithelial cell monolayers, consistent with previous findings showing that Neisseria meningitidis traverses the epithelial barrier without disrupting the junctional structures. We showed that epithelial cells constantly secrete proteases responsible for a rapid processing of C2 fragment, generating a new fragment that does not contain the Arg-rich region, a putative docking domain reported to be essential for C2-mediated toxic effect. Moreover, we found that the C3-convertase of the alternative complement pathway is one of the proteases responsible for this processing. Overall, our data provide new insights on the cleavage of NHBA protein during meningococcal infection. NHBA cleavage may occur at different stages of the infection, and it likely has a different role depending on the environment the bacterium is interacting with. PMID:29579105
Krishnan, Anitha; Fei, Fei; Jones, Alexander; Busto, Patricia; Marshak-Rothstein, Ann; Ksander, Bruce R.; Gregory-Ksander, Meredith
2016-01-01
Glaucoma is a multifactorial disease resulting in the death of retinal ganglion cells (RGCs) and irreversible blindness. Glaucoma-associated RGC cell death depends on the pro-apoptotic and proinflammatory activity of membrane-bound FasL (mFasL). In contrast to mFasL, the natural soluble FasL cleavage product (sFasL) inhibits mFasL-mediated apoptosis and inflammation and is therefore a mFasL antagonist. DBA/2J (D2) mice spontaneously develop glaucoma and predictably RGC destruction is exacerbated by expression of a mutated membrane-only FasL (mFasL) gene that lacks the extracellular cleavage site. Remarkably, one time intraocular adeno-associated virus-mediated gene delivery of sFasL (AAV2.sFasL) provides complete and sustained neuroprotection in both the chronic D2 and acute microbead-induced models of glaucoma, even in the presence of elevated intraocular pressure (IOP). This protection correlated with inhibition of glial activation, reduced production of TNFα, and decreased apoptosis of RGCs and loss of axons. These data indicate that cleavage of FasL under homeostatic conditions, and the ensuing release of sFasL, normally limits the neurodestructive activity of FasL. The data further support the notion that sFasL, and not mFasL, contributes to the immune privileged status of the eye. PMID:27849168
Ohrt, Thomas; Staroske, Wolfgang; Mütze, Jörg; Crell, Karin; Landthaler, Markus; Schwille, Petra
2011-01-01
RNA interference (RNAi) offers a powerful tool to specifically direct the degradation of complementary RNAs, and thus has great therapeutic potential for targeting diseases. Despite the reported preferences of RNAi, there is still a need for new techniques that will allow for a detailed mechanistic characterization of RNA-induced silencing complex (RISC) assembly and activity to further improve the biocompatibility of modified siRNAs. In contrast to previous reports, we investigated the effects of 2′-O-methyl (2′OMe) modifications introduced at specific positions within the siRNA at the early and late stages of RISC assembly, as well as their influence on target recognition and cleavage directly in living cells. We found that six to 10 2′OMe nucleotides on the 3′-end inhibit passenger-strand release as well as target-RNA cleavage without changing the affinity, strand asymmetry, or target recognition. 2′OMe modifications introduced at the 5′-end reduced activated RISC stability, whereas incorporations at the cleavage site showed only minor effects on passenger-strand release when present on the passenger strand. Our new fluorescence cross-correlation spectroscopy assays resolve different steps and stages of RISC assembly and target recognition with heretofore unresolved detail in living cells, which is needed to develop therapeutic siRNAs with optimized in vivo properties. PMID:21689532
Freeman, Gary
1983-12-01
The normal embryology of the trachymedusa Aglantha digitale and the siphonophores Nanomia cara and Muggiaea atlantica is described. Marking experiments on these embryos indicate that the site of first cleavage initiation corresponds to the oral pole of the oral-aboral axis. In Muggiaea the plane of the first cleavage corresponds to the plane of bilateral symmetry. Experiments in which presumptive aboral and oral regions are isolated from these embryos at different stages of development indicate that there is an early determination of different regions along this axis. Only the oral region of the Muggiaea embryo has the ability to regulate. These eggs have a pronounced centrolecithal organization. As a consequence of cleavage, the outer ectoplasmic layer of the egg ends up in the cells that form the ectoderm, while the inner or endoplasmic region of the egg ends up in the cells that form the endoderm. Experimentally created fragments of fertilized eggs that contain only ectoplasm differentiate to form an unorganized ectodermal cell mass, indicating that endoplasm is necessary in order to differentiate endoderm. The process of embryogenesis in these animals and the developmental mechanisms they use are very different from those used by hydrozoans with indirect development. These embryos use a suite of developmental mechanisms which are very similar to those used by ctenophores. The significance of this similarity is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Mu-Yun; Shen, Yuh-Chiang; National Research Institute of Chinese Medicine, Taipei, Taiwan
Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ERmore » stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin's capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin's tumoricidal effect. Mechanistically, prodigiosin engages the IRE1–JNK and PERK–eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death. Highlights: ► Prodigiosin is a bacterial tripyrrole pigment with potent anticancer effect. ► Prodigiosin is herein identified as an endoplasmic reticulum (ER) stress inducer. ► Prodigiosin-induced cytotoxicity involves ER stress-mediated cell death. ► Prodigiosin transcriptionally induces CHOP to suppress BCL2 for evoking cell death. ► Prodigiosin engages the IRE1–JNK and PERK–eIF2α pathways to up-regulate CHOP.« less
Structure of the Immature Dengue Virus at Low pH Primes Proteolytic Maturation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, I-Mei; Zhang, Wei; Holdaway, Heather A.
Intracellular cleavage of immature flaviviruses is a critical step in assembly that generates the membrane fusion potential of the E glycoprotein. With cryo-electron microscopy we show that the immature dengue particles undergo a reversible conformational change at low pH that renders them accessible to furin cleavage. At a pH of 6.0, the E proteins are arranged in a herringbone pattern with the pr peptides docked onto the fusion loops, a configuration similar to that of the mature virion. After cleavage, the dissociation of pr is pH-dependent, suggesting that in the acidic environment of the trans-Golgi network pr is retained onmore » the virion to prevent membrane fusion. These results suggest a mechanism by which flaviviruses are processed and stabilized in the host cell secretory pathway.« less
[Harringtonine induces apoptosis in NB4 cells through down-regulation of Mcl-1].
Wu, Chunxiao; Shen, Hongqiang; Xia, Dajing
2013-07-01
To investigate the growth inhibition effect, cytotoxicity and apoptotic induction of harringtonine (HT) in human acute promyelocytic leukemia (APL) NB4 cells,and the related mechanism. NB4 cells were treated with HT. Total cell numbers were counted by hemocytometer, and cell viabilities were determined by trypan blue exclusion. Apoptotic cells were determined by fluorescence microscopy and FACS after staining with AO and EB or PI, respectively. The cleavage of PARP and the activation of Bax and the expression of anti-apoptotic proteins were determined by Western Blot. siRNA was used to silence the expression of target genes. Primary cells were isolated following Ficoll-Hypaque density gradient centrifugation method. HT inhibited cell growth and induced apoptosis of NB4 cells in a dose- and time-dependent manner. Apoptosis induced by HT was correlated with the down-regulation of Mcl-1 and the cleavage of PARP, while HT did not affect the protein level of Bax and Bak or change the protein level of Bcl-2. The silence of Bcl-XL sensitized HT-induced apoptosis in NB4 cells.Apoptosis induced by HT in primarily cultured APL cells was also correlated with the down-regulation of Mcl-1. HT inhibits cell growth and induces apoptosis in NB4 cells and primarily cultured APL cells, which may be associated with down-regulation of Mcl-1.
Early development of Xenopus embryos is affected by simulated gravity
NASA Technical Reports Server (NTRS)
Yokota, Hiroki; Neff, Anton W.; Malacinski, George M.
1994-01-01
Early amphibian (Xenopus laevis) development under clinostat-simulated weightlessness and centrifuge-simulated hypergravity was studied. The results revealed significant effects on (i) 'morphological patterning' such as the cleavage furrow pattern in the vegetal hemisphere at the eight-cell stage and the shape of the dorsal lip in early gastrulae and (ii) 'the timing of embryonic events' such as the third cleavage furrow completion and the dorsal lip appearance. Substantial variations in sensitivity to simulated force fields were observed, which should be considered in interpreting spaceflight data.
Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein.
Ben Halima, Saoussen; Mishra, Sabyashachi; Raja, K Muruga Poopathi; Willem, Michael; Baici, Antonio; Simons, Kai; Brüstle, Oliver; Koch, Philipp; Haass, Christian; Caflisch, Amedeo; Rajendran, Lawrence
2016-03-08
Development of disease-modifying therapeutics is urgently needed for treating Alzheimer disease (AD). AD is characterized by toxic β-amyloid (Aβ) peptides produced by β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP). β-secretase inhibitors reduce Aβ levels, but mechanism-based side effects arise because they also inhibit β-cleavage of non-amyloid substrates like Neuregulin. We report that β-secretase has a higher affinity for Neuregulin than it does for APP. Kinetic studies demonstrate that the affinities and catalytic efficiencies of β-secretase are higher toward non-amyloid substrates than toward APP. We show that non-amyloid substrates are processed by β-secretase in an endocytosis-independent manner. Exploiting this compartmentalization of substrates, we specifically target the endosomal β-secretase by an endosomally targeted β-secretase inhibitor, which blocked cleavage of APP but not non-amyloid substrates in many cell systems, including induced pluripotent stem cell (iPSC)-derived neurons. β-secretase inhibitors can be designed to specifically inhibit the Alzheimer process, enhancing their potential as AD therapeutics without undesired side effects. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Zhou, Zhou; Munteanu, Emilia Laura; He, Jun; Ursell, Tristan; Bathe, Mark; Huang, Kerwyn Casey; Chang, Fred
2015-01-01
The functions of the actin-myosin–based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells. PMID:25355954
Panda, Sudeepta K; George, Aman; Saha, Ambika P; Sharma, Ruchi; Manik, Radhey S; Chauhan, Manmohan S; Palta, Prabhat; Singla, Suresh K
2011-06-01
This study examined the effects of cytoplasmic volume on the developmental competence of hand-made cloned buffalo embryos. Two different cell types, that is, buffalo fetal fibroblast (BFF) and buffalo embryonic stem (ES) cell-like cells were taken as donor cell and fused with one, two, or three demicytoplasts to generate embryos with decreased, normal (control), and increased cytoplasmic volume. Using BFF as a nuclear donor, the cleavage rate was similar in all the groups (p > 0.05), but the blastocysts rate was significantly lower (p < 0.05) for embryos generated with decreased cytoplasmic volume. Using ES cell-like cells, the cleavage and blastocyst rate with increased cytoplasmic volume was significantly higher (p < 0.05) compared that with reduced cytoplasmic volume. Blastocysts produced from embryos having increased cytoplasmic volume had significantly higher (p < 0.05) cell number than normal (control) embryos in both BFF and ES cell-like cells groups. Pregnancies were established in all the groups except for the embryos reconstructed with decreased cytoplasmic volume. The pregnancy rate was almost double for embryos reconstructed using increased cytoplasmic volume compared to that with the controls. Most of the pregnancies aborted in the first trimester and one live calf was delivered through Caesarean, which died 4 h after birth.
Cytotoxic effect of sanguiin H-6 on MCF-7 and MDA-MB-231 human breast carcinoma cells.
Park, Eun-Ji; Lee, Dahae; Baek, Seon-Eun; Kim, Ki Hyun; Kang, Ki Sung; Jang, Tae Su; Lee, Hye Lim; Song, Ji Hoon; Yoo, Jeong-Eun
2017-09-15
Sanguiin H-6 is a dimer of casuarictin linked by a bond between the gallic acid residue and one of the hexahydroxydiphenic acid units. It is an effective compound extracted from Rubus coreanus. It has an anticancer effect against several human cancer cells; however, its effect on breast cancer cells has not been clearly demonstrated. Thus, we aimed to investigate the anticancer effect and mechanism of action of sanguiin H-6 against two human breast carcinoma cell lines (MCF-7 and MDA-MB-231). We found that sanguiin H-6 significantly reduced cell viability in a concentration-dependent manner. It also increased the rates at which MCF-7 and MDA-MB-231 cells underwent apoptosis. Furthermore, sanguiin H-6 induced the cleavage of caspase-8, caspase-3, and poly(ADP-ribose) polymerase, which resulted in apoptosis. However, cleavage of caspase-9 was only detectable in MCF-7 cells. In addition, sanguiin H-6 increased the ratio of Bax to Bcl-2 in both MCF-7 and MDA-MB-231 cells. These findings suggest that sanguiin H-6 is a potent therapeutic agent against breast cancer cells. In addition, it exerts its anticancer effect in an estrogen-receptor-independent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ye-Ji; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul; Lee, Seung-Hae
2012-08-15
Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0more » increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.« less
HER2 in Breast Cancer Stemness: A Negative Feedback Loop towards Trastuzumab Resistance
Nami, Babak; Wang, Zhixiang
2017-01-01
HER2 receptor tyrosine kinase that is overexpressed in approximately 20% of all breast cancers (BCs) is a poor prognosis factor and a precious target for BC therapy. Trastuzumab is approved by FDA to specifically target HER2 for treating HER2+ BC. However, about 60% of patients with HER2+ breast tumor develop de novo resistance to trastuzumab, partially due to the loss of expression of HER2 extracellular domain on their tumor cells. This is due to shedding/cleavage of HER2 by metalloproteinases (ADAMs and MMPs). HER2 shedding results in the accumulation of intracellular carboxyl-terminal HER2 (p95HER2), which is a common phenomenon in trastuzumab-resistant tumors and is suggested as a predictive marker for trastuzumab resistance. Up-regulation of the metalloproteinases is a poor prognosis factor and is commonly seen in mesenchymal-like cancer stem cells that are risen during epithelial to mesenchymal transition (EMT) of tumor cells. HER2 cleavage during EMT can explain why secondary metastatic tumors with high percentage of mesenchymal-like cancer stem cells are mostly resistant to trastuzumab but still sensitive to lapatinib. Importantly, many studies report HER2 interaction with oncogenic/stemness signaling pathways including TGF-β/Smad, Wnt/β-catenin, Notch, JAK/STAT and Hedgehog. HER2 overexpression promotes EMT and the emergence of cancer stem cell properties in BC. Increased expression and activation of metalloproteinases during EMT leads to proteolytic cleavage and shedding of HER2 receptor, which downregulates HER2 extracellular domain and eventually increases trastuzumab resistance. Here, we review the hypothesis that a negative feedback loop between HER2 and stemness signaling drives resistance of BC to trastuzumab. PMID:28445439
Altered regulation of ELAVL1/HuR in HLA-B27-expressing U937 monocytic cells.
Sahlberg, Anna S; Ruuska, Marja; Granfors, Kaisa; Penttinen, Markus A
2013-01-01
To investigate the role of HLA-B27 expression in the regulation of RNA binding protein (RBP) Embryonic Lethal Abnormal Vision (ELAV) L1/Human antigen R (HuR) expression in Salmonella-infected or LPS-stimulated human monocytic cells, since HuR is a critical regulator of the post-transcriptional fate of many genes (e.g. TNFα) important in inflammatory response. U937 monocytic cells were stably transfected with pSV2neo resistant vector (mock), wild type HLA-B27, or mutated HLA-B27 with amino acid substitutions in the B pocket. Cells were differentiated, infected with Salmonella enteritidis or stimulated with lipopolysaccharide. The expression levels of HuR protein and cleavage products (CP1 and CP2) were detected by Western blotting and flow cytometry. Specific inhibitors were used to study the role of PKR and p38 in HuR expression and generation of CPs. TNFα and IL-10 secretion after p38 and PKR inhibition were measured by ELISA. Full length HuR is overexpressed and HuR cleavage is disturbed in U937 monocytic cells expressing HLA-B27 heavy chains (HC). Increased full length HuR expression, disturbed cleavage and reduced dependence on PKR after infection correlate with the expression of glutamic acid 45 in the B pocket that is linked to the misfolding of HLA-B27. Results show that the expression of HLA-B27 HCs modulates the intracellular environment of U937 monocyte/macrophages by altering HuR regulation. This phenomenon is at least partly dependent on the misfolding feature of the B27 molecule. Since HuR is an important regulator of multiple genes involved in inflammatory response observations offer an explanation how HLA-B27 may modulate inflammatory response.
Marlin, Jerry W; Chang, Yu-Wen E; Ober, Margaret; Handy, Amy; Xu, Wenhao; Jakobi, Rolf
2011-06-01
p21-Activated protein kinase 2 (PAK-2) has both anti- and pro-apoptotic functions depending on its mechanism of activation. Activation of full-length PAK-2 by the monomeric GTPases Cdc42 or Rac stimulates cell survival, whereas caspase activation of PAK-2 to the PAK-2p34 fragment is involved in the apoptotic response. In this study we use functional knockout of PAK-2 and gene replacement with the caspase cleavage-deficient PAK-2D212N mutant to differentiate the biological functions of full-length PAK-2 and caspase-activated PAK-2p34. Knockout of PAK-2 results in embryonic lethality at early stages before organ development, whereas replacement with the caspase cleavage-deficient PAK-2D212N results in viable and healthy mice, indicating that early embryonic lethality is caused by deficiency of full-length PAK-2 rather than lack of caspase activation to the PAK-2p34 fragment. However, deficiency of caspase activation of PAK-2 decreased spontaneous cell death of primary mouse embryonic fibroblasts and increased cell growth at high cell density. In contrast, stress-induced cell death by treatment with the anti-cancer drug cisplatin was not reduced by deficiency of caspase activation of PAK-2, but switched from an apoptotic to a nonapoptotic, caspase-independent mechanism. Homozygous PAK-2D212N primary mouse embryonic fibroblasts that lack the ability to generate the proapoptotic PAK-2p34 show less activation of the effector caspase 3, 6, and 7, indicating that caspase activation of PAK-2 amplifies the apoptotic response through a positive feedback loop resulting in more activation of effector caspases.
Attardo, Alessio; Calegari, Federico; Haubensak, Wulf; Wilsch-Bräuninger, Michaela; Huttner, Wieland B.
2008-01-01
The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors. PMID:18545663
Sasado, Takao; Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi
2017-01-01
Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3'UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3'UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3'UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo.
Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi
2017-01-01
Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3’UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3’UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3’UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo. PMID:28253363
Borst, Eva Maria; Kleine-Albers, Jennifer; Gabaev, Ildar; Babić, Marina; Wagner, Karen; Binz, Anne; Degenhardt, Inga; Kalesse, Markus; Jonjić, Stipan; Bauerfeind, Rudolf
2013-01-01
Cleavage of human cytomegalovirus (HCMV) genomes as well as their packaging into capsids is an enzymatic process mediated by viral proteins and therefore a promising target for antiviral therapy. The HCMV proteins pUL56 and pUL89 form the terminase and play a central role in cleavage-packaging, but several additional viral proteins, including pUL51, had been suggested to contribute to this process, although they remain largely uncharacterized. To study the function of pUL51 in infected cells, we constructed HCMV mutants encoding epitope-tagged versions of pUL51 and used a conditionally replicating virus (HCMV-UL51-ddFKBP), in which pUL51 levels could be regulated by a synthetic ligand. In cells infected with HCMV-UL51-ddFKBP, viral DNA replication was not affected when pUL51 was knocked down. However, no unit-length genomes and no DNA-filled C capsids were found, indicating that cleavage of concatemeric HCMV DNA and genome packaging into capsids did not occur in the absence of pUL51. pUL51 was expressed mainly with late kinetics and was targeted to nuclear replication compartments, where it colocalized with pUL56 and pUL89. Upon pUL51 knockdown, pUL56 and pUL89 were no longer detectable in replication compartments, suggesting that pUL51 is needed for their correct subnuclear localization. Moreover, pUL51 was found in a complex with the terminase subunits pUL56 and pUL89. Our data provide evidence that pUL51 is crucial for HCMV genome cleavage-packaging and may represent a third component of the viral terminase complex. Interference with the interactions between the terminase subunits by antiviral drugs could be a strategy to disrupt the HCMV replication cycle. PMID:23175377
Castri, Paola; Lee, Yang-ja; Ponzio, Todd; Maric, Dragan; Spatz, Maria; Bembry, Joliet; Hallenbeck, John
2014-01-01
Poly(ADP-ribose) polymerase-1 (PARP-1) and its cleavage products regulate cell viability and NF-kB activity when expressed in neurons. PARP-1 cleavage generates a 24kDa (PARP-124) and an 89kDa fragment (PARP-189). Compared to WT (PARP-1WT), the expression of an uncleavable PARP-1 (PARP-1UNCL) or of PARP-124 conferred protection from oxygen/glucose deprivation (OGD) or OGD/restoration of oxygen and glucose (ROG) damage in vitro, whereas expression of PARP-189 was cytotoxic. Viability experiments were performed in SH-SY5Y, a human neuroblastoma cell line, as well as in rat primary cortical neurons. Following OGD, the higher viability in the presence of PARP-1UNCL or PARP-124 was not accompanied with decreased formation of poly(ADP-riboses) or higher NAD levels. PARP-1 is a known cofactor for NF-kB, hence we investigated whether PARP-1 cleavage influences the inflammatory response. All PARP-1 constructs mimicked PARP-1WT in regards to induction of NF-kB translocation into the nucleus and its increased activation during ischemic challenge. However, expression of PARP-189 construct induced significantly higher NF-kB activity than PARP-1WT; and the same was true for NF-kB-dependent iNOS promoter binding activity. At a protein level, PARP-1UNCL and PARP-124 decreased iNOS (and lower levels of iNOS transcript) and COX-2, and increased Bcl-xL. The increased levels of NF-kB and iNOS transcriptional activities, seen with cytotoxic PARP-189, were accompanied by higher protein expression of COX-2 and iNOS (and higher levels of iNOS transcript) and lower protein expression of Bcl-xL. Taken together, these findings suggest that PARP-1 cleavage products may regulate cellular viability and inflammatory responses in opposing ways during in vitro models of “ischemia”. PMID:24333653
Dean, Richard A; Butler, Georgina S; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R; Courty, José; Overall, Christopher M
2007-12-01
Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2-/- cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.
Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.
2007-01-01
Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800
Kramer, K M; Brock, J A; Bloom, K; Moore, J K; Haber, J E
1994-01-01
In haploid rad52 Saccharomyces cerevisiae strains unable to undergo homologous recombination, a chromosomal double-strand break (DSB) can be repaired by imprecise rejoining of the broken chromosome ends. We have used two different strategies to generate broken chromosomes: (i) a site-specific DSB generated at the MAT locus by HO endonuclease cutting or (ii) a random DSB generated by mechanical rupture during mitotic segregation of a conditionally dicentric chromosome. Broken chromosomes were repaired by deletions that were highly variable in size, all of which removed more sequences than was required either to prevent subsequent HO cleavage or to eliminate a functional centromere, respectively. The junction of the deletions frequently occurred where complementary strands from the flanking DNA could anneal to form 1 to 5 bp, although 12% (4 of 34) of the events appear to have occurred by blunt-end ligation. These types of deletions are very similar to the junctions observed in the repair of DSBs by mammalian cells (D. B. Roth and J. H. Wilson, Mol. Cell. Biol. 6:4295-4304, 1986). When a high level of HO endonuclease, expressed in all phases of the cell cycle, was used to create DSBs, we also recovered a large class of very small (2- or 3-bp) insertions in the HO cleavage site. These insertions appear to represent still another mechanism of DSB repair, apparently by annealing and filling in the overhanging 3' ends of the cleavage site. These types of events have also been well documented for vertebrate cells. PMID:8289808
Galectin-3: A novel substrate for c-Abl kinase.
Balan, Vitaly; Nangia-Makker, Pratima; Jung, Young Suk; Wang, Yi; Raz, Avraham
2010-10-01
Galectin-3, a beta-galactoside-binding lectin, is found in cellular and extracellular location of the cell and has pleiotropic biological functions such as cell growth, cell adhesion and cell-cell interaction. It may exhibit anti- or pro-apoptotic activity depending on its localization and post-translational modifications. Two important post-translational modifications of galectin-3 have been reported: its cleavage and phosphorylation. Cleavage of galectin-3 was reported to be involved with angiogenic potential and apoptotic resistance. Phosphorylation of galectin-3 regulates its sugar-binding ability. In this report we have identified novel tyrosine phosphorylation sites in galectin-3 as well as the kinase responsible for its phosphorylation. Our results demonstrate that tyrosines at positions 79, 107 and 118 can be phosphorylated in vitro and in vivo by c-Abl kinase. Tyrosine 107 is the main target of c-Abl. Expression of galectin-3 Y107F mutant in galectin-3 null SK-Br-3 cells leads to morphological changes and increased motility compared to wild type galectin-3. Further investigation is needed to better understand the functional significance of the novel tyrosine phosphorylated sites of galectin-3. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun
2011-11-15
The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 {mu}M) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the freemore » radical scavenger MnTBAP (10 {mu}M) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKC{delta}) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 {mu}M). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKC{delta}{sup D327A} and kinase dead PKC{delta}{sup K376R} or siRNA-mediated knockdown of PKC{delta} protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKC{delta} promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKC{delta} expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKC{delta} cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKC{delta}{sup D327A} protein protected against 6-OHDA-induced PKC{delta} activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKC{delta} is a key downstream event in dopaminergic degeneration, and these results may have important translational value for development of novel treatment strategies for PD.« less
Jin, Cheng-Yun; Moon, Dong-Oh; Choi, Yung Hyun; Lee, Jae-Dong; Kim, Gi-Young
2007-08-01
Agaricus blazei is a medicinal mushroom that possesses antimetastatic, antitumor, antimutagenic, and immunostimulating effects. However, the molecular mechanisms involved in A. blazei-mediated apoptosis remain unclear. In the present study, to elucidate the role of the Bcl-2 in A. blazei-mediated apoptosis, U937 cells were transfected with either empty vector (U937/vec) or vector containing cDNA encoding full-length Bcl-2 (U937/Bcl-2). As compared with U937/vec, U937/Bcl-2 cells exhibited a 4-fold greater expression of Bcl-2. Treatment of U937/vec with 1.0-4.0 mg/ml of A. blazei extract (ABE) for 24 h resulted in a significant induction of morphologic features indicative of apoptosis. In contrast, U937/Bcl-2 exposed to the same ABE treatment only exhibited a slight induction of apoptotic features. ABE-induced apoptosis was accompanied by downregulation of antiapoptotic proteins such as X-linked inhibitor of apoptosis protein (XIAP), inhibitor of apoptosis protein (cIAP)-2 and Bcl-2, activation of caspase-3, and cleavage of poly(ADP-ribose)polymerase (PARP). Ectopic expression of Bcl-2 was associated with significantly induced expression of antiapoptotic proteins, such as cIAP-2 and Bcl-2, but not XIAP. Ectopic expression of Bcl-2 also reduced caspase-3 activation and PARP cleavage in ABE treated U937 cells. Furthermore, treatment with the caspase-3 inhibitor z-DEVD-fmk was sufficient to restore cell viability following ABE treatment. This increase in viability was ascribed to downregulation of caspase-3 and blockage of PARP and PLC-gamma cleavage. ABE also triggered the downregulation of Akt, and combined treatment with LY294002 (an inhibitor of Akt) significantly decreased cell viability. The results indicated that major regulators of ABE-induced apoptosis in human leukemic U937 cells are Bcl-2 and caspase-3, which are associated with dephosphorylation of the Akt signal pathway.
Krishnamurthy, Shruthi; Deng, Bin; del Rio, Roxana; Buchholz, Kerry R.; Treeck, Moritz; Urban, Siniša; Boothroyd, John; Lam, Ying-Wai
2016-01-01
ABSTRACT Apical membrane antigen 1 (AMA1) is a receptor protein on the surface of Toxoplasma gondii that plays a critical role in host cell invasion. The ligand to which T. gondii AMA1 (TgAMA1) binds, TgRON2, is secreted into the host cell membrane by the parasite during the early stages of invasion. The TgAMA1-TgRON2 complex forms the core of the “moving junction,” a ring-shaped zone of tight contact between the parasite and host cell membranes, through which the parasite pushes itself during invasion. Paradoxically, the parasite also expresses rhomboid proteases that constitutively cleave the TgAMA1 transmembrane domain. How can TgAMA1 function effectively in host cell binding if its extracellular domain is constantly shed from the parasite surface? We show here that when TgAMA1 binds the domain 3 (D3) peptide of TgRON2, its susceptibility to cleavage by rhomboid protease(s) is greatly reduced. This likely serves to maintain parasite-host cell binding at the moving junction, a hypothesis supported by data showing that parasites expressing a hypercleavable version of TgAMA1 invade less efficiently than wild-type parasites do. Treatment of parasites with the D3 peptide was also found to reduce phosphorylation of S527 on the cytoplasmic tail of TgAMA1, and parasites expressing a phosphomimetic S527D allele of TgAMA1 showed an invasion defect. Taken together, these data suggest that TgAMA1-TgRON2 interaction at the moving junction protects TgAMA1 molecules that are actively engaged in host cell penetration from rhomboid-mediated cleavage and generates an outside-in signal that leads to dephosphorylation of the TgAMA1 cytosolic tail. Both of these effects are required for maximally efficient host cell invasion. PMID:27624124
Muthu, Magesh; Jamal, Shazia; Chen, Di; Yang, Huanjie; Polin, Lisa A.; Tarca, Adi L.; Pass, Harvey I.; Dou, Q. Ping; Sharma, Sunita; Wali, Anil; Rishi, Arun K.
2014-01-01
Dithiocarbamate compound Disulfiram (DSF) that binds with copper and functions as an inhibitor of aldehyde dehydrogenase is a Food and Drug Administration approved agent for treatment of alcoholism. Copper complexed DSF (DSF-Cu) also possesses anti-tumor and chemosensitizing properties; however, its molecular mechanisms of action remain unclear. Here we investigated malignant pleural mesothelioma (MPM) suppressive effects of DSF-Cu and the molecular mechanisms involved. DSF-Cu inhibited growth of the murine as well as human MPM cells in part by increasing levels of ubiquitinated proteins. DSF-Cu exposure stimulated apoptosis in MPM cells that involved activation of stress-activated protein kinases (SAPKs) p38 and JNK1/2, caspase-3, and cleavage of poly-(ADP-ribose)-polymerase, as well as increased expression of sulfatase 1 and apoptosis transducing CARP-1/CCAR1 protein. Gene-array based analyses revealed that DSF-Cu suppressed cell growth and metastasis-promoting genes including matrix metallopeptidase 3 and 10. DSF inhibited MPM cell growth and survival by upregulating cell cycle inhibitor p27Kip1, IGFBP7, and inhibitors of NF-κB such as ABIN 1 and 2 and Inhibitory κB (IκB)α and β proteins. DSF-Cu promoted cleavage of vimentin, as well as serine-phosphorylation and lysine-63 linked ubiquitination of podoplanin. Administration of 50 mg/kg DSF-Cu by daily i.p injections inhibited growth of murine MPM cell-derived tumors in vivo. Although podoplanin expression often correlates with metastatic disease and poor prognosis, phosphorylation of serines in cytoplasmic domain of podoplanin has recently been shown to interfere with cellular motility and migration signaling. Post-translational modification of podoplanin and cleavage of vimentin by DSF-Cu underscore a metastasis inhibitory property of this agent and together with our in vivo studies underscore its potential as an anti-MPM agent. PMID:24690739
Somyoonsap, Peechapack; Kitpreechavanich, Vichein
2013-01-01
A sequence-specific nicking endonuclease from Streptomyces designated as DC13 was purified to near homogeneity. Starting with 30 grams of wet cells, the enzyme was purified by ammonium sulfate fractionation, DEAE cellulose, and phenyl-Sepharose chromatography. The purified protein had a specific activity 1000 units/mg and migrated on SDS-PAGE gel with an estimated molecular weight of 71 kDa. Determination of subunit composition by gel filtration chromatography indicated that the native enzyme is a monomer. When incubated with different DNA substrates including pBluescript II KS, pUC118, pET-15b, and pET-26b, the enzyme converted these supercoiled plasmids to a mixture of open circular and linear DNA products, with the open circular DNA as the major cleavage product. Analysis of the kinetic of DNA cleavage showed that the enzyme appeared to cleave super-coiled plasmid in two distinct steps: a rapid cleavage of super-coiled plasmid to an open circular DNA followed a much slower step to linear DNA. The DNA cleavage reaction of the enzyme required Mg2+ as a cofactor. Based on the monomeric nature of the enzyme, the kinetics of DNA cleavage exhibited by the enzyme, and cofactor requirement, it is suggested here that the purified enzyme is a sequence-specific nicking endonuclease that is similar to type IIS restriction endonuclease. PMID:25937959
Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair
Redpath, G. M. I.; Woolger, N.; Piper, A. K.; Lemckert, F. A.; Lek, A.; Greer, P. A.; North, K. N.; Cooper, S. T.
2014-01-01
Dysferlin and calpain are important mediators of the emergency response to repair plasma membrane injury. Our previous research revealed that membrane injury induces cleavage of dysferlin to release a synaptotagmin-like C-terminal module we termed mini-dysferlinC72. Here we show that injury-activated cleavage of dysferlin is mediated by the ubiquitous calpains via a cleavage motif encoded by alternately spliced exon 40a. An exon 40a–specific antibody recognizing cleaved mini-dysferlinC72 intensely labels the circumference of injury sites, supporting a key role for dysferlinExon40a isoforms in membrane repair and consistent with our evidence suggesting that the calpain-cleaved C-terminal module is the form specifically recruited to injury sites. Calpain cleavage of dysferlin is a ubiquitous response to membrane injury in multiple cell lineages and occurs independently of the membrane repair protein MG53. Our study links calpain and dysferlin in the calcium-activated vesicle fusion of membrane repair, placing calpains as upstream mediators of a membrane repair cascade that elicits cleaved dysferlin as an effector. Of importance, we reveal that myoferlin and otoferlin are also cleaved enzymatically to release similar C-terminal modules, bearing two C2 domains and a transmembrane domain. Evolutionary preservation of this feature highlights its functional importance and suggests that this highly conserved C-terminal region of ferlins represents a functionally specialized vesicle fusion module. PMID:25143396
Structural Determinants of Autoproteolysis of the Haemophilus influenzae Hap Autotransporter▿
Kenjale, Roma; Meng, Guoyu; Fink, Doran L.; Juehne, Twyla; Ohashi, Tomoo; Erickson, Harold P.; Waksman, Gabriel; St. Geme, Joseph W.
2009-01-01
Haemophilus influenzae is a gram-negative bacterium that initiates infection by colonizing the upper respiratory tract. The H. influenzae Hap autotransporter protein mediates adherence, invasion, and microcolony formation in assays with respiratory epithelial cells and presumably facilitates colonization. The serine protease activity of Hap is associated with autoproteolytic cleavage and extracellular release of the HapS passenger domain, leaving the Hapβ C-terminal domain embedded in the outer membrane. Cleavage occurs most efficiently at the LN1036-37 peptide bond and to a lesser extent at three other sites. In this study, we utilized site-directed mutagenesis, homology modeling, and assays with a peptide library to characterize the structural determinants of Hap proteolytic activity and cleavage specificity. In addition, we used homology modeling to predict the S1, S2, and S4 subsite residues of the Hap substrate groove. Our results indicate that the P1 and P2 positions at the Hap cleavage sites are critical for cleavage, with leucine preferred over larger hydrophobic residues or other amino acids in these positions. The substrate groove is formed by L263 and N274 at the S1 subsite, R264 at the S2 subsite, and E265 at the S4 subsite. This information may facilitate design of approaches to block Hap activity and interfere with H. influenzae colonization. PMID:19687208
A Python Analytical Pipeline to Identify Prohormone Precursors and Predict Prohormone Cleavage Sites
Southey, Bruce R.; Sweedler, Jonathan V.; Rodriguez-Zas, Sandra L.
2008-01-01
Neuropeptides and hormones are signaling molecules that support cell–cell communication in the central nervous system. Experimentally characterizing neuropeptides requires significant efforts because of the complex and variable processing of prohormone precursor proteins into neuropeptides and hormones. We demonstrate the power and flexibility of the Python language to develop components of an bioinformatic analytical pipeline to identify precursors from genomic data and to predict cleavage as these precursors are en route to the final bioactive peptides. We identified 75 precursors in the rhesus genome, predicted cleavage sites using support vector machines and compared the rhesus predictions to putative assignments based on homology to human sequences. The correct classification rate of cleavage using the support vector machines was over 97% for both human and rhesus data sets. The functionality of Python has been important to develop and maintain NeuroPred (http://neuroproteomics.scs.uiuc.edu/neuropred.html), a user-centered web application for the neuroscience community that provides cleavage site prediction from a wide range of models, precision and accuracy statistics, post-translational modifications, and the molecular mass of potential peptides. The combined results illustrate the suitability of the Python language to implement an all-inclusive bioinformatics approach to predict neuropeptides that encompasses a large number of interdependent steps, from scanning genomes for precursor genes to identification of potential bioactive neuropeptides. PMID:19169350
Postnatal development of Leydig cells involves transformation through three stages: progenitor, immature, and adult Leydig cells. The process of differentiation is accompanied by a progressive increase in the capacity of Leydig cells to produce testosterone (T). T promotes the ma...
Nair, Soumya V; Witek, Małgorzata A; Jackson, Joshua M; Lindell, Maria A M; Hunsucker, Sally A; Sapp, Travis; Perry, Caroline E; Hupert, Mateusz L; Bae-Jump, Victoria; Gehrig, Paola A; Wysham, Weiya Z; Armistead, Paul M; Voorhees, Peter; Soper, Steven A
2015-02-21
We report a novel strategy to enzymatically release affinity-selected cells, such as circulating tumor cells (CTCs), from surfaces with high efficiency (∼90%) while maintaining cell viability (>85%). The strategy utilizes single-stranded DNAs that link a capture antibody to the surfaces of a CTC selection device. The DNA linkers contain a uracil residue that can be cleaved.
GARP is regulated by miRNAs and controls latent TGF-β1 production by human regulatory T cells.
Gauthy, Emilie; Cuende, Julia; Stockis, Julie; Huygens, Caroline; Lethé, Bernard; Collet, Jean-François; Bommer, Guido; Coulie, Pierre G; Lucas, Sophie
2013-01-01
GARP is a transmembrane protein present on stimulated human regulatory T lymphocytes (Tregs), but not on other T lymphocytes (Th cells). It presents the latent form of TGF-β1 on the Treg surface. We report here that GARP favors the cleavage of the pro-TGF-β1 precursor and increases the amount of secreted latent TGF-β1. Stimulated Tregs, which naturally express GARP, and Th cells transfected with GARP secrete a previously unknown form of latent TGF-β1 that is disulfide-linked to GARP. These GARP/TGF-β1 complexes are possibly shed from the T cell surface. Secretion of GARP/TGF-β1 complexes was not observed with transfected 293 cells and may thus be restricted to the T cell lineage. We conclude that in stimulated human Tregs, GARP not only displays latent TGF-β1 at the cell surface, but also increases its secretion by forming soluble disulfide-linked complexes. Moreover, we identified six microRNAs (miRNAs) that are expressed at lower levels in Treg than in Th clones and that target a short region of the GARP 3' UTR. In transfected Th cells, the presence of this region decreased GARP levels, cleavage of pro-TGF-β1, and secretion of latent TGF-β1.
Thiel, Christian T. ; Mortier, Geert ; Kaitila, Ilkka ; Reis, André ; Rauch, Anita
2007-01-01
Mutations in the RMRP gene lead to a wide spectrum of autosomal recessive skeletal dysplasias, ranging from the milder phenotypes metaphyseal dysplasia without hypotrichosis and cartilage hair hypoplasia (CHH) to the severe anauxetic dysplasia (AD). This clinical spectrum includes different degrees of short stature, hair hypoplasia, defective erythrogenesis, and immunodeficiency. The RMRP gene encodes the untranslated RNA component of the mitochondrial RNA–processing ribonuclease, RNase MRP. We recently demonstrated that mutations may affect both messenger RNA (mRNA) and ribosomal RNA (rRNA) cleavage and thus cell-cycle regulation and protein synthesis. To investigate the genotype-phenotype correlation, we analyzed the position and the functional effect of 13 mutations in patients with variable features of the CHH-AD spectrum. Those at the end of the spectrum include a novel patient with anauxetic dysplasia who was compound heterozygous for the null mutation g.254_263delCTCAGCGCGG and the mutation g.195C→T, which was previously described in patients with milder phenotypes. Mapping of nucleotide conservation to the two-dimensional structure of the RMRP gene revealed that disease-causing mutations either affect evolutionarily conserved nucleotides or are likely to alter secondary structure through mispairing in stem regions. In vitro testing of RNase MRP multiprotein-specific mRNA and rRNA cleavage of different mutations revealed a strong correlation between the decrease in rRNA cleavage in ribosomal assembly and the degree of bone dysplasia, whereas reduced mRNA cleavage, and thus cell-cycle impairment, predicts the presence of hair hypoplasia, immunodeficiency, and hematological abnormalities and thus increased cancer risk. PMID:17701897
Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T; Gasparutto, Didier; Geacintov, Nicholas E; Saparbaev, Murat
2015-06-05
Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506-2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3'-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T.; Gasparutto, Didier; Geacintov, Nicholas E.; Saparbaev, Murat
2015-01-01
Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506–2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3′-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins. PMID:25903131
Kaul, Artur; Stauffer, Sarah; Berger, Carola; Pertel, Thomas; Schmitt, Jennifer; Kallis, Stephanie; Zayas, Margarita; Lopez, Margarita Zayas; Lohmann, Volker; Luban, Jeremy; Bartenschlager, Ralf
2009-08-01
Viruses are obligate intracellular parasites and therefore their replication completely depends on host cell factors. In case of the hepatitis C virus (HCV), a positive-strand RNA virus that in the majority of infections establishes persistence, cyclophilins are considered to play an important role in RNA replication. Subsequent to the observation that cyclosporines, known to sequester cyclophilins by direct binding, profoundly block HCV replication in cultured human hepatoma cells, conflicting results were obtained as to the particular cyclophilin (Cyp) required for viral RNA replication and the underlying possible mode of action. By using a set of cell lines with stable knock-down of CypA or CypB, we demonstrate in the present work that replication of subgenomic HCV replicons of different genotypes is reduced by CypA depletion up to 1,000-fold whereas knock-down of CypB had no effect. Inhibition of replication was rescued by over-expression of wild type CypA, but not by a mutant lacking isomerase activity. Replication of JFH1-derived full length genomes was even more sensitive to CypA depletion as compared to subgenomic replicons and virus production was completely blocked. These results argue that CypA may target an additional viral factor outside of the minimal replicase contributing to RNA amplification and assembly, presumably nonstructural protein 2. By selecting for resistance against the cyclosporine analogue DEBIO-025 that targets CypA in a dose-dependent manner, we identified two mutations (V2440A and V2440L) close to the cleavage site between nonstructural protein 5A and the RNA-dependent RNA polymerase in nonstructural protein 5B that slow down cleavage kinetics at this site and reduce CypA dependence of viral replication. Further amino acid substitutions at the same cleavage site accelerating processing increase CypA dependence. Our results thus identify an unexpected correlation between HCV polyprotein processing and CypA dependence of HCV replication.
Kesic, Matthew J.; Meyer, Megan; Bauer, Rebecca; Jaspers, Ilona
2012-01-01
Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility. PMID:22496898
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Kanevsky, V. M.
The (001) cleavage surface of vanadium pentoxide (V{sub 2}O{sub 5}) crystal has been studied by scanning tunneling spectroscopy (STM). It is shown that the surface is not reconstructed; the STM image allows geometric lattice parameters to be determined with high accuracy. The nanostructure formed on the (001) cleavage surface of crystal consists of atomically smooth steps with a height multiple of unit-cell parameter c = 4.37 Å. The V{sub 2}O{sub 5} crystal cleavages can be used as references in calibration of a scanning tunneling microscope under atmospheric conditions both along the (Ñ…, y) surface and normally to the sample surfacemore » (along the z axis). It is found that the terrace surface is not perfectly atomically smooth; its roughness is estimated to be ~0.5 Å. This circumstance may introduce an additional error into the microscope calibration along the z coordinate.« less
Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5.
Ehsani, Ali; Saetrom, Pål; Zhang, Jane; Alluin, Jessica; Li, Haitang; Snøve, Ola; Aagaard, Lars; Rossi, John J
2010-04-01
Small-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) are distinguished by their modes of action. SiRNAs serve as guides for sequence-specific cleavage of complementary mRNAs and the targets can be in coding or noncoding regions of the target transcripts. MiRNAs inhibit translation via partially complementary base-pairing to 3' untranslated regions (UTRs) and are generally ineffective when targeting coding regions of a transcript. In this study, we deliberately designed siRNAs that simultaneously direct cleavage and translational suppression of HIV RNAs, or cleavage of the mRNA encoding the HIV coreceptor CCR5 and suppression of translation of HIV. These bifunctional siRNAs trigger inhibition of HIV infection and replication in cell culture. The design principles have wide applications throughout the genome, as about 90% of genes harbor sites that make the design of bifunctional siRNAs possible.
Transcriptome Wide Annotation of Eukaryotic RNase III Reactivity and Degradation Signals
Gagnon, Jules; Lavoie, Mathieu; Catala, Mathieu; Malenfant, Francis; Elela, Sherif Abou
2015-01-01
Detection and validation of the RNA degradation signals controlling transcriptome stability are essential steps for understanding how cells regulate gene expression. Here we present complete genomic and biochemical annotations of the signals required for RNA degradation by the dsRNA specific ribonuclease III (Rnt1p) and examine its impact on transcriptome expression. Rnt1p cleavage signals are randomly distributed in the yeast genome, and encompass a wide variety of sequences, indicating that transcriptome stability is not determined by the recurrence of a fixed cleavage motif. Instead, RNA reactivity is defined by the sequence and structural context in which the cleavage sites are located. Reactive signals are often associated with transiently expressed genes, and their impact on RNA expression is linked to growth conditions. Together, the data suggest that Rnt1p reactivity is triggered by malleable RNA degradation signals that permit dynamic response to changes in growth conditions. PMID:25680180
Montero-Pardo, A; Hernández-Cerón, J; Rojas-Maya, S; Valencia, J; Rodríguez-Cortez, A; Gutiérrez, C G
2011-05-01
Treatment with bovine somatotropin (bST) during estrous synchronization increased fertility and prolificacy in sheep. In the present study, a single dose of bST 5 days before the end of progestin treatment improved cleavage and embryo development. Stage of estrous cycle was synchronized in ewes (n=32) with progestin and superovulation was induced by use of FSH. Five days before the end of progestin treatment, ewes were randomly assigned to two groups: bST group (n=16) received a depot injection of 125 mg of bST sc (Lactotropina, Elanco, México) and the control group (n=16) received saline solution. Estrous was detected with rams fitted with an apron every 2 h and estrous sheep were mated every 8 h whilst in estrous. Embryos were recovered on Day 7 post mating, assessed microscopically and fixed in 4% paraformaldehyde. Cell number in blastocysts was counted after Hoechst 33342 staining. Plasma concentrations of IGF-I, insulin and progesterone were determined in eight sheep per group from the day of bST treatment to the day of embryo recovery. Cleavage rate, percentage of transferable embryos (transferable embryos/cleaved) and percentage of embryos reaching the blastocyst stage (blastocyst/cleaved) were compared between groups by logistic regression. IGF-I, insulin and progesterone plasma concentrations were analyzed by ANOVA for repeated measurements and cell number by ANOVA. Cleavage rate was greater (P<0.01) in bST treatment group (86%) than in the control group (62%). Similarly, the proportion of embryos reaching the blastocyst stage (bST=68.7 vs control=42.5) and the number of cells per blastocyst (bST group 91.8±5.5 compared to control group 75±6) were greater (P<0.01) in the bST-treated sheep. Plasma concentrations of IGF-I and insulin were greater (P<0.01) in the bST-treated group. No changes were observed in progesterone concentrations (P=0.5). It is concluded that bST injection 5 days before progestin removal increases cleavage rate and the proportion of embryos that reach the blastocyst stage. These effects are associated with an increase in IGF-I and insulin concentrations. Copyright © 2011 Elsevier B.V. All rights reserved.
George, Aman; Sharma, Ruchi; Singh, Karn P; Panda, Sudeepta K; Singla, Suresh K; Palta, Prabhat; Manik, Radhaysham; Chauhan, Manmohan S
2011-06-01
Here, we report the isolation and characterization of embryonic stem (ES) cell-like cells from cloned blastocysts, generated using fibroblasts derived from an adult buffalo (BAF). These nuclear transfer embryonic stem cell-like cells (NT-ES) grew in well-defined and dome-shaped colonies. The expression pattern of pluripotency marker genes was similar in both NT-ES and in vitro fertilization (IVF) embryo-derived embryonic stem cell-like cells (F-ES). Upon spontaneous differentiation via embryoid body formation, cells of different morphology were observed, among which predominant were endodermal-like and epithelial-like cell types. The ES cell-like cells could be passaged only mechanically and did not form colonies when plated as single cell suspension at different concentrations. When F-ES cell-like, NT-ES cell-like, and BAF cells of same genotype were used for hand-made cloning (HMC), no significant difference (p > 0.05) was observed in cleavage and blastocyst rate. Following transfer of HMC embryos to synchronized recipients, pregnancies were established only with F-ES cell-like and BAF cell-derived embryos, and one live calf was born from F-ES cell-like cells. Further, when transfected NT-ES cell-like cells and BAF were used for HMC, no significant difference (p > 0.05) was observed between cleavage and blastocyst rate. In conclusion, here we report for the first time the derivation of ES cell-like cells from an adult buffalo, and its genetic modification. We also report the birth of a live cloned calf from buffalo ES cell-like cells.
Two Antagonistic MALT1 Auto-Cleavage Mechanisms Reveal a Role for TRAF6 to Unleash MALT1 Activation
Renner, Florian; Lam, Stephen; Freuler, Felix; Gerrits, Bertran; Voshol, Johannes; Calzascia, Thomas; Régnier, Catherine H.; Renatus, Martin; Nikolay, Rainer; Israël, Laura; Bornancin, Frédéric
2017-01-01
The paracaspase MALT1 has arginine-directed proteolytic activity triggered by engagement of immune receptors. Recruitment of MALT1 into activation complexes is required for MALT1 proteolytic function. Here, co-expression of MALT1 in HEK293 cells, either with activated CARD11 and BCL10 or with TRAF6, was used to explore the mechanism of MALT1 activation at the molecular level. This work identified a prominent self-cleavage site of MALT1 isoform A (MALT1A) at R781 (R770 in MALT1B) and revealed that TRAF6 can activate MALT1 independently of the CBM. Intramolecular cleavage at R781/R770 removes a C-terminal TRAF6-binding site in both MALT1 isoforms, leaving MALT1B devoid of the two key interaction sites with TRAF6. A previously identified auto-proteolysis site of MALT1 at R149 leads to deletion of the death-domain, thereby abolishing interaction with BCL10. By using MALT1 isoforms and cleaved fragments thereof, as well as TRAF6 WT and mutant forms, this work shows that TRAF6 induces N-terminal auto-proteolytic cleavage of MALT1 at R149 and accelerates MALT1 protein turnover. The MALT1 fragment generated by N-terminal self-cleavage at R149 was labile and displayed enhanced signaling properties that required an intact K644 residue, previously shown to be a site for mono-ubiquitination of MALT1. Conversely, C-terminal self-cleavage at R781/R770 hampered the ability for self-cleavage at R149 and stabilized MALT1 by hindering interaction with TRAF6. C-terminal self-cleavage had limited impact on MALT1A but severely reduced MALT1B proteolytic and signaling functions. It also abrogated NF-κB activation by N-terminally cleaved MALT1A. Altogether, this study provides further insights into mechanisms that regulate the scaffolding and activation cycle of MALT1. It also emphasizes the reduced functional capacity of MALT1B as compared to MALT1A. PMID:28052131
Processing of hemojuvelin requires retrograde trafficking to the Golgi in HepG2 cells.
Maxson, Julia E; Enns, Caroline A; Zhang, An-Sheng
2009-02-19
Hemojuvelin (HJV) was recently identified as a critical regulator of iron homeostasis. It is either associated with cell membranes through a glycosylphosphatidylinositol anchor or released as a soluble form. Membrane-anchored HJV acts as a coreceptor for bone morphogenetic proteins and activates the transcription of hepcidin, a hormone that regulates iron efflux from cells. Soluble HJV antagonizes bone morphogenetic protein signaling and suppresses hepcidin expression. In this study, we examined the trafficking and processing of HJV. Cellular HJV reached the plasma membrane without obtaining complex oligosaccharides, indicating that HJV avoided Golgi processing. Secreted HJV, in contrast, has complex oligosaccharides and can be derived from HJV with high-mannose oligosaccharides at the plasma membrane. Our results support a model in which retrograde trafficking of HJV before cleavage is the predominant processing pathway. Release of HJV requires it to bind to the transmembrane receptor neogenin. Neogenin does not, however, play a role in HJV trafficking to the cell surface, suggesting that it could be involved either in retrograde trafficking of HJV or in cleavage leading to HJV release.
Processing of hemojuvelin requires retrograde trafficking to the Golgi in HepG2 cells
Maxson, Julia E.; Enns, Caroline A.
2009-01-01
Hemojuvelin (HJV) was recently identified as a critical regulator of iron homeostasis. It is either associated with cell membranes through a glycosylphosphatidylinositol anchor or released as a soluble form. Membrane-anchored HJV acts as a coreceptor for bone morphogenetic proteins and activates the transcription of hepcidin, a hormone that regulates iron efflux from cells. Soluble HJV antagonizes bone morphogenetic protein signaling and suppresses hepcidin expression. In this study, we examined the trafficking and processing of HJV. Cellular HJV reached the plasma membrane without obtaining complex oligosaccharides, indicating that HJV avoided Golgi processing. Secreted HJV, in contrast, has complex oligosaccharides and can be derived from HJV with high-mannose oligosaccharides at the plasma membrane. Our results support a model in which retrograde trafficking of HJV before cleavage is the predominant processing pathway. Release of HJV requires it to bind to the transmembrane receptor neogenin. Neogenin does not, however, play a role in HJV trafficking to the cell surface, suggesting that it could be involved either in retrograde trafficking of HJV or in cleavage leading to HJV release. PMID:19029439
Inhibitory Effect of Lycopene on Amyloid-β-Induced Apoptosis in Neuronal Cells.
Hwang, Sinwoo; Lim, Joo Weon; Kim, Hyeyoung
2017-08-16
Alzheimer's disease (AD) is a fatal neurodegenerative disease. Brain amyloid-β deposition is a crucial feature of AD, causing neuronal cell death by inducing oxidative damage. Reactive oxygen species (ROS) activate NF-κB, which induces expression of Nucling. Nucling is a pro-apoptotic factor recruiting the apoptosome complex. Lycopene is an antioxidant protecting from oxidative stress-induced cell damage. We investigated whether lycopene inhibits amyloid-β-stimulated apoptosis through reducing ROS and inhibiting mitochondrial dysfunction and NF-κB-mediated Nucling expression in neuronal SH-SY5Y cells. We prepared cells transfected with siRNA for Nucling or nontargeting control siRNA to determine the role of Nucling in amyloid-β-induced apoptosis. The amyloid-β increased intracellular and mitochondrial ROS levels, apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), NF-kB activation and Nucling expression, while cell viability, mitochondrial membrane potential, and oxygen consumption rate decreased in SH-SY5Y cells. Lycopene inhibited these amyloid-β-induced alterations. However, amyloid-β did not induce apoptosis, determined by cell viability and apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), in the cells transfected with siRNA for Nucling. Lycopene inhibited apoptosis by reducing ROS, and by inhibiting mitochondrial dysfunction and NF-κB-target gene Nucling expression in neuronal cells. Lycopene may be beneficial for preventing oxidative stress-mediated neuronal death in patients with neurodegeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiangjie; Belser, Jessica A.; Tumpey, Terrence M., E-mail: tft9@cdc.gov
In 2012, an avian influenza A H7N3 (A/Mexico/InDRE7218/2012; Mx/7218) virus was responsible for two confirmed cases of human infection and led to the death or culling of more than 22 million chickens in Jalisco, Mexico. Interestingly, this virus acquired an 8-amino acid (aa)-insertion (..PENPK-DRKSRHRR-TR/GLF) near the hemagglutinin (HA) cleavage site by nonhomologous recombination with host rRNA. It remains unclear which specific residues at the cleavage site contribute to the virulence of H7N3 viruses in mammals. Using loss-of-function approaches, we generated a series of cleavage site mutant viruses by reverse genetics and characterized the viruses in vitro and in vivo. Wemore » found that the 8-aa insertion and the arginine at position P4 of the Mx/7218 HA cleavage site are essential for intracellular HA cleavage in 293T cells, but have no effect on the pH of membrane fusion. However, we identified a role for the histidine residue at P5 position in viral fusion pH. In mice, the 8-aa insertion is required for Mx/7218 virus virulence; however, the basic residues upstream of the P4 position are dispensable for virulence. Overall, our study provides the first line of evidence that the insertion in the Mx/7218 virus HA cleavage site confers its intracellular cleavability, and consequently contributes to enhanced virulence in mice. - Highlights: • An avian influenza H7N3 virus acquired a unique 8-amino acid (aa) insertion. • The role of specific basic residues in the HA insertion in viral pathogenesis was determined. • In mice, the 8-aa insertion is required for H7N3 virus virulence. • The R residue at position P4 is essential for HA intracellular cleavage and virus virulence.« less
Time-gated detection of protein-protein interactions with transcriptional readout
Sanchez, Mateo I; Coukos, Robert; von Zastrow, Mark
2017-01-01
Transcriptional assays, such as yeast two-hybrid and TANGO, that convert transient protein-protein interactions (PPIs) into stable expression of transgenes are powerful tools for PPI discovery, screens, and analysis of cell populations. However, such assays often have high background and lose information about PPI dynamics. We have developed SPARK (Specific Protein Association tool giving transcriptional Readout with rapid Kinetics), in which proteolytic release of a membrane-tethered transcription factor (TF) requires both a PPI to deliver a protease proximal to its cleavage peptide and blue light to uncage the cleavage site. SPARK was used to detect 12 different PPIs in mammalian cells, with 5 min temporal resolution and signal ratios up to 37. By shifting the light window, we could reconstruct PPI time-courses. Combined with FACS, SPARK enabled 51 fold enrichment of PPI-positive over PPI-negative cells. Due to its high specificity and sensitivity, SPARK has the potential to advance PPI analysis and discovery. PMID:29189201
Heat Inactivation of Garlic (Allium sativum) Extract Abrogates Growth Inhibition of HeLa Cells.
Chintapalli, Renuka; Murray, Matthew J J; Murray, James T
2016-07-01
The potential anticancer properties of garlic (Allium sativum) may depend on the method of preparation and its storage. Storage of garlic has not been thoroughly investigated to determine whether anticancer properties are retained. Garlic was prepared and processed to mimic normal options for storage and preparation for consumption. Cytotoxicity was determined by crystal violet assay and mechanisms of cytotoxicity were established by microscopy, SDS-PAGE, and Western immunoblotting. Significant (P < 0.0001) cytotoxicity was observed in all preparations, except with boiled (cooked) garlic. Depending on the method of storage, garlic extract induced either type I or type II programmed cell death, detectable by caspase 9 cleavage, or Poly (adenosine diphosphate-ribose) polymerase (PARP) cleavage and LC3-II accumulation, respectively. The conflicting literature on the anticancer properties of garlic may be explained by differences in processing and storage. This study has highlighted that the potency of the antiproliferative properties of cooked garlic, compared to the uncooked form, is diminished in HeLa cells.
NASA Astrophysics Data System (ADS)
Wu, Yunxia; Xing, Da; Chen, Qun; Chen, Tongsheng; Tang, Yonghong; Wan, Qingling
2005-04-01
Apoptosis is one of the important modes in PDT-induced cell death. Activation of caspase-3 is considered to be the final step in many apoptosis pathways. In this study, we used SCAT3, a fluorescence resonance energy transfer (FRET) probe containing caspase-3 substrate, to study the dynamics of caspase-3 activation in living ASTC-a-1 cells expressing stably SCAT3. The FRET analysis results indicated that caspase-3 activation in response to tumor necrosis factor-α or PDT resulted in cleavage of the linker peptide and subsequent disruption of the FRET signal. The SCAT3 was cleaved immediately after PDT treatment, but that for TNF-a treatment was delayed two hours. Our experimental results suggested that the different apoptotic pathways induced by TNF-α or PDT caused different cleavage kinetics of SCAT3. This study shows that FRET technique based on GFPs could be used to study the mechanism of PDT-induced apoptosis in living cells.
Essential role of TNF family molecule LIGHT as a cytokine in the pathogenesis of hepatitis
Anand, Sudarshan; Wang, Pu; Yoshimura, Kiyoshi; Choi, In-Hak; Hilliard, Anja; Chen, Youhai H.; Wang, Chyung-Ru; Schulick, Richard; Flies, Andrew S.; Flies, Dallas B.; Zhu, Gefeng; Xu, Yanhui; Pardoll, Drew M.; Chen, Lieping; Tamada, Koji
2006-01-01
LIGHT is an important costimulatory molecule for T cell immunity. Recent studies have further implicated its role in innate immunity and inflammatory diseases, but its cellular and molecular mechanisms remain elusive. We report here that LIGHT is upregulated and functions as a proinflammatory cytokine in 2 independent experimental hepatitis models, induced by concanavalin A and Listeria monocytogenes. Molecular mutagenesis studies suggest that soluble LIGHT protein produced by cleavage from the cell membrane plays an important role in this effect through the interaction with the lymphotoxin-β receptor (LTβR) but not herpes virus entry mediator. NK1.1+ T cells contribute to the production, but not the cleavage or effector functions, of soluble LIGHT. Importantly, treatment with a mAb that specifically interferes with the LIGHT-LTβR interaction protects mice from lethal hepatitis. Our studies thus identify a what we believe to be a novel function of soluble LIGHT in vivo and offer a potential target for therapeutic interventions in hepatic inflammatory diseases. PMID:16557300
DNA Breaks and End Resection Measured Genome-wide by End Sequencing.
Canela, Andres; Sridharan, Sriram; Sciascia, Nicholas; Tubbs, Anthony; Meltzer, Paul; Sleckman, Barry P; Nussenzweig, André
2016-09-01
DNA double-strand breaks (DSBs) arise during physiological transcription, DNA replication, and antigen receptor diversification. Mistargeting or misprocessing of DSBs can result in pathological structural variation and mutation. Here we describe a sensitive method (END-seq) to monitor DNA end resection and DSBs genome-wide at base-pair resolution in vivo. We utilized END-seq to determine the frequency and spectrum of restriction-enzyme-, zinc-finger-nuclease-, and RAG-induced DSBs. Beyond sequence preference, chromatin features dictate the repertoire of these genome-modifying enzymes. END-seq can detect at least one DSB per cell among 10,000 cells not harboring DSBs, and we estimate that up to one out of 60 cells contains off-target RAG cleavage. In addition to site-specific cleavage, we detect DSBs distributed over extended regions during immunoglobulin class-switch recombination. Thus, END-seq provides a snapshot of DNA ends genome-wide, which can be utilized for understanding genome-editing specificities and the influence of chromatin on DSB pathway choice. Published by Elsevier Inc.
Kabiraj, Parijat; Pal, Rituraj; Varela-Ramirez, Armando; Miranda, Manuel; Narayan, Mahesh
2012-09-28
Mitochondrial dysfunction, leading to elevated levels of reactive oxygen species, is associated with the pathogenesis of neurodegenerative disorders. Rotenone, a mitochondrial stressor induces caspase-9 and caspase-3 activation leading proteolytic cleavage of substrate nuclear poly(ADP-ribose) polymerase (PARP). PARP cleavage is directly related to apoptotic cell death. In this study, we have monitored the aggregation of green-fluorescent protein (GFP)-tagged synphilin-1, as a rotenone-induced Parkinsonia-onset biomarker. We report that the innate ketone body, Na-D-β-hydroxybutyrate (NaβHB) reduces markedly the incidence of synphilin-1 aggregation. Furthermore, our data reveal that the metabolic byproduct also prevents rotenone-induced caspase-activated apoptotic cell death in dopaminergic SH-SY5Y cells. Together, these results suggest that NaβHB is neuroprotective; it attenuates effects originating from mitochondrial insult and can serve as a scaffold for the design and development of sporadic neuropathies. Copyright © 2012 Elsevier Inc. All rights reserved.
Luczo, Jasmina M.; Stambas, John; Durr, Peter A.; Michalski, Wojtek P.
2015-01-01
Summary The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio‐economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host‐pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. PMID:26467906
Bcl2-low-expressing MCF7 cells undergo necrosis rather than apoptosis upon staurosporine treatment.
Poliseno, Laura; Bianchi, Laura; Citti, Lorenzo; Liberatori, Sabrina; Mariani, Laura; Salvetti, Alessandra; Evangelista, Monica; Bini, Luca; Pallini, Vitaliano; Rainaldi, Giuseppe
2004-01-01
We present a ribozyme-based strategy for studying the effects of Bcl2 down-regulation. The anti-bcl2 hammerhead ribozyme Rz-bcl2 was stably transfected into MCF7 cancer cells and the cleavage of Bcl2 mRNA was demonstrated using a new assay for cleavage product detection, while Western blot analysis showed a concomitant depletion of Bcl2 protein. Rz-bcl2-expressing cells were more sensitive to staurosporine than control cells. Moreover, both molecular and cellular read-outs indicated that staurosporine-induced cell death was necrosis rather than apoptosis in these cells. The study of the effects of Bcl2 down-regulation was extended to the global MCF7 protein expression profile, exploiting a proteomic approach. Two reference electro-pherograms of Rz-bcl2-transfected cells, one with the ribozyme in a catalytically active form and the other with the ribozyme in a catalytically inactive form, were obtained. When comparing the two-dimensional maps, 53 differentially expressed spots were found, four of which were identified by MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS as calreticulin, nucleophosmin, phosphoglycerate kinase and pyruvate kinase. How the up-regulation of these proteins might help to explain the modification of Bcl2 activity is discussed. PMID:14748742
Choi, Sa-Ra; Lee, Ju-Hye; Kim, Jae-Yong; Park, Kyoung-Wuk; Jeong, Il-Yun; Shim, Ki-Hwan; Lee, Mi-Kyung; Seo, Kwon-Il
2011-10-01
Decursin is a major biological active component of Angelicagigas Nakai and is known to induce apoptosis of metastatic prostatic cancer cells. However, the apoptotic mechanism of decursin using primary malignant tumor (RC-58T/h/SA#4)-derived human prostate cells is not known. In the present study, we show that treatment of prostate cancer cells with decursin inhibited cell proliferation in a dose-dependent manner. Decursin also induced apoptosis in RC-58T/h/SA#4 cells, as determined by flow cytometry, Hoechst 33258 staining, and DNA fragmentation. Decursin caused activation of caspases-8, -9, and -3 and promoted the apoptotic action of caspase-8-mediated Bid cleavage. Decursin increased the protein levels of Bax and cytosolic cytochrome c as well as cleavage of PARP while decreasing the protein levels of Bcl-2. Furthermore, the caspase-independent mitochondrial apoptosis factor, apoptosis-inducing factor (AIF), was upregulated by treatment with decursin. Taken together, these findings indicate that decursin inhibited the proliferation of RC-58T/h/SA#4 cells through induction of apoptosis, which is mediated by both caspase-dependent and -independent apoptotic pathways. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kwong, P J; Nam, H Y; Wan Khadijah, W E; Kamarul, T; Abdullah, R B
2014-04-01
The aim of this study was to produce cloned caprine embryos using either caprine bone marrow-derived mesenchymal stem cells (MSCs) or ear fibroblast cells (EFCs) as donor karyoplasts. Caprine MSCs were isolated from male Boer goats of an average age of 1.5 years. To determine the pluripotency of MSCs, the cells were induced to differentiate into osteocytes, chondrocytes and adipocytes. Subsequently, MSCs were characterized through cell surface antigen profiles using specific markers, prior to their use as donor karyoplasts for nuclear transfer. No significant difference (p > 0.05) in fusion rates was observed between MSCs (87.7%) and EFCs (91.3%) used as donor karyoplasts. The cleavage rate of cloned embryos derived with MSCs (87.0%) was similar (p > 0.05) to those cloned using EFCs (84.4%). However, the in vitro development of MSCs-derived cloned embryos (25.3%) to the blastocyst stage was significantly higher (p < 0.05) than those derived with EFCs (20.6%). In conclusion, MSCs could be reprogrammed by caprine oocytes, and production of cloned caprine embryos with MSCs improved their in vitro developmental competence, but not in their fusion and cleavage rate as compared to cloning using somatic cells such as EFCs. © 2014 Blackwell Verlag GmbH.
Chemical degradation mechanisms of membranes for alkaline membrane fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Yoong-Kee; Henson, Neil J.; Kim, Yu Seung
2015-12-31
Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane shouldmore » enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.« less
Soluble Axl Is Generated by ADAM10-Dependent Cleavage and Associates with Gas6 in Mouse Serum†
Budagian, Vadim; Bulanova, Elena; Orinska, Zane; Duitman, Erwin; Brandt, Katja; Ludwig, Andreas; Hartmann, Dieter; Lemke, Greg; Saftig, Paul; Bulfone-Paus, Silvia
2005-01-01
Axl receptor tyrosine kinase exists as a transmembrane protein and as a soluble molecule. We show that constitutive and phorbol 12-myristate 13-acetate-induced generation of soluble Axl (sAxl) involves the activity of disintegrin-like metalloproteinase 10 (ADAM10). Spontaneous and inducible Axl cleavage was inhibited by the broad-spectrum metalloproteinase inhibitor GM6001 and by hydroxamate GW280264X, which is capable of blocking ADAM10 and ADAM17. Furthermore, murine fibroblasts deficient in ADAM10 expression exhibited a significant reduction in constitutive and inducible Axl shedding, whereas reconstitution of ADAM10 restored sAxl production, suggesting that ADAM10-mediated proteolysis constitutes a major mechanism for sAxl generation in mice. Partially overlapping 14-amino-acid stretch deletions in the membrane-proximal region of Axl dramatically affected sAxl generation, indicating that these regions are involved in regulating the access of the protease to the cleavage site. Importantly, relatively high circulating levels of sAxl are present in mouse sera in a heterocomplex with Axl ligand Gas6. Conversely, two other family members, Tyro3 and Mer, were not detected in mouse sera and conditioned medium. sAxl is constitutively released by murine primary cells such as dendritic and transformed cell lines. Upon immobilization, sAxl promoted cell migration and induced the phosphorylation of Axl and phosphatidylinositol 3-kinase. Thus, ADAM10-mediated generation of sAxl might play an important role in diverse biological processes. PMID:16227584
de Castro, Letícia S.; de Assis, Patrícia M.; Siqueira, Adriano F. P.; Hamilton, Thais R. S.; Mendes, Camilla M.; Losano, João D. A.; Nichi, Marcílio; Visintin, José A.; Assumpção, Mayra E. O. A.
2016-01-01
Our study aimed to assess the impact of sperm oxidative stress on embryo development by means of a dose-dependent model. In experiment 1, straws from five bulls were subjected to incubation with increasing H2O2 doses (0, 12.5, 25, and 50 μM). Motility parameters were evaluated by Computed Assisted System Analysis (CASA). Experiment 2 was designed to study a high (50 μM) and low dose (12.5 μM) of H2O2 compared to a control (0 μM). Samples were incubated and further used for in vitro fertilization. Analyses of motility (CASA), oxidative status (CellROX green and 2'-7' dichlorofluorescein diacetate), mitochondrial potential (JC-1), chromatin integrity (AO), and sperm capacitation status (chlortetracycline) were performed. Embryos were evaluated based on fast cleavage (30 h.p.i.), cleavage (D = 3), development (D = 5), and blastocyst rates (D = 8). We observed a dose-dependent deleterious effect of H2O2 on motility and increase on the percentages of positive cells for CellROX green, capacitated sperm, and AO. A decrease on cleavage and blastocyst rates was observed as H2O2 increased. Also, we detected a blockage on embryo development. We concluded that sperm when exposed to oxidative environment presents impaired motility traits, prooxidative status, and premature capacitation; such alterations resulting in embryo development fail. PMID:26770658
EMMPRIN Modulates Epithelial Barrier Function through a MMP–Mediated Occludin Cleavage
Huet, Eric; Vallée, Benoit; Delbé, Jean; Mourah, Samia; Prulière-Escabasse, Virginie; Tremouilleres, Magali; Kadomatsu, Kenji; Doan, Serge; Baudouin, Christophe; Menashi, Suzanne; Gabison, Eric E.
2011-01-01
Dry eye is a common disease that develops as a result of alteration of tear fluid, leading to osmotic stress and a perturbed epithelial barrier. Matrix metalloproteinase-9 (MMP-9) may be important in dry eye disease, as its genetic knockout conferred resistance to the epithelial disruption. We show that extracellular matrix metalloproteinase inducer (EMMPRIN; also termed CD147), an inducer of MMP expression, participates in the pathogenesis of dry eye through MMP-mediated cleavage of occludin, an important component of tight junctions. EMMPRIN expression was increased on the ocular surface of dry eye patients and correlated with those of MMP-9. High osmolarity in cell culture, mimicking dry eye conditions, increased both EMMPRIN and MMP-9 and resulted in the disruption of epithelial junctions through the cleavage of occludin. Exogenously added recombinant EMMPRIN had similar effects that were abrogated in the presence of the MMP inhibitor marimastat. Membrane occludin immunostaining was markedly increased in the apical corneal epithelium of both EMMPRIN and MMP-9 knock-out mice. Furthermore, an inverse correlation between EMMPRIN and occludin membrane staining was consistently observed both in vitro and in vivo as a function of corneal epithelial cells differentiation. These data suggest a possible role of EMMPRIN in regulating the amount of occludin at the cell surface in homeostasis beyond pathological situations such as dry eye disease, and EMMPRIN may be essential for the formation and maintenance of organized epithelial structure. PMID:21777561
Usui, Tatsufumi; Soda, Kosuke; Tomioka, Yukiko; Ito, Hiroshi; Yabuta, Toshiyo; Takakuwa, Hiroki; Otsuki, Koichi; Ito, Toshihiro; Yamaguchi, Tsuyoshi
2017-02-01
Since 2014, clade 2.3.4.4 H5 subtype highly pathogenic avian influenza viruses (HPAIVs) have been distributed worldwide. These viruses, which were reported to be highly virulent in chickens by intravenous inoculation, have a consensus HPAI motif PLRERRRKR at the HA cleavage site. However, two-clade 2.3.4.4 H5N8 viruses which we isolated from wild migratory birds in late 2014 in Japan possessed atypical HA cleavage sequences. A swan isolate, Tottori/C6, had a novel polybasic cleavage sequence, PLGERRRKR, and another isolate from a dead mandarin duck, Gifu/01, had a heterogeneous mixture of consensus PLRERRRKR and variant PLRERRRRKR sequences. The polybasic HA cleavage site is the prime virulence determinant of AIVs. Therefore, in the present study, we examined the pathogenicity of these H5N8 isolates in chickens by intravenous inoculation. When 10 6 EID 50 of these viruses were intravenously inoculated into chickens, the mean death time associated with Tottori/C6 was substantially longer (>6.1 days) than that associated with Gifu/01 (2.5 days). These viruses had comparable abilities to replicate in tissue culture cells in the presence and absence of exogenous trypsin, but the growth of Tottori/C6 was hampered. These results indicate that the novel cleavage motif of Tottori/C6 did not directly affect the infectivity of the virus, but Tottori/C6 caused attenuated pathogenicity in chickens because of hampered replication efficiency. It is important to test for the emergence of diversified HPAIVs, because introduction of HPAIVs with a lower virulence like Tottori/C6 might hinder early detection of affected birds in poultry farms.
A Ubiquitin-Proteasome Pathway for the Repair of Topoisomerase I-DNA Covalent Complexes*S⃞
Lin, Chao-Po; Ban, Yi; Lyu, Yi Lisa; Desai, Shyamal D.; Liu, Leroy F.
2008-01-01
Reversible topoisomerase I (Top1)-DNA cleavage complexes are the key DNA lesion induced by anticancer camptothecins (e.g. topotecan and irinotecan) as well as structurally perturbed DNAs (e.g. oxidatively damaged DNA, UV-irradiated DNA, alkylated DNA, uracil-substituted DNA, mismatched DNA, gapped and nicked DNA, and DNA with abasic sites). Top1 cleavage complexes arrest transcription and trigger transcription-dependent degradation of Top1, a phenomenon termed Top1 down-regulation. In the current study, we have investigated the role of Top1 down-regulation in the repair of Top1 cleavage complexes. Using quiescent (serum-starved) human WI-38 cells, camptothecin (CPT) was shown to induce Top1 down-regulation, which paralleled the induction of DNA single-strand breaks (SSBs) (assayed by comet assays) and ATM autophosphorylation (at Ser-1981). Interestingly, Top1 down-regulation, induction of DNA SSBs and ATM autophosphorylation were all abolished by the proteasome inhibitor MG132. Furthermore, studies using immunoprecipitation and dominant-negative ubiquitin mutants have suggested a specific requirement for the assembly of Lys-48-linked polyubiquitin chains for CPT-induced Top1 down-regulation. In contrast to the effect of proteasome inhibition, inactivation of PARP1 was shown to increase the amount of CPT-induced SSBs and the level of ATM autophosphorylation. Together, these results support a model in which Top1 cleavage complexes arrest transcription and activate a ubiquitin-proteasome pathway leading to the degradation of Top1 cleavage complexes. Degradation of Top1 cleavage complexes results in the exposure of Top1-concealed SSBs for repair through a PARP1-dependent process. PMID:18515798
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Tomoaki; Nakamura, Kento; Masaoka, Keisuke
Various viruses infect animals and humans and cause a variety of diseases, including cancer. However, effective methodologies to prevent virus infection have not yet been established. Therefore, development of technologies to inactivate viruses is highly desired. We have already demonstrated that cleavage of a DNA virus genome was effective to prevent its replication. Here, we expanded this methodology to RNA viruses. In the present study, we used staphylococcal nuclease (SNase) instead of the PIN domain (PilT N-terminus) of human SMG6 as an RNA-cleavage domain and fused the SNase to a human Pumilio/fem-3 binding factor (PUF)-based artificial RNA-binding protein to constructmore » an artificial RNA restriction enzyme with enhanced RNA-cleavage rates for influenzavirus. The resulting SNase-fusion nuclease cleaved influenza RNA at rates 120-fold greater than the corresponding PIN-fusion nuclease. The cleaving ability of the PIN-fusion nuclease was not improved even though the linker moiety between the PUF and RNA-cleavage domain was changed. Gel shift assays revealed that the RNA-binding properties of the PUF derivative used was not as good as wild type PUF. Improvement of the binding properties or the design method will allow the SNase-fusion nuclease to cleave an RNA target in mammalian animal cells and/or organisms. - Highlights: • A novel RNA restriction enzyme using SNase was developed tor cleave viral RNA. • Our enzyme cleaved influenza RNA with rates >120-fold higher rates a PIN-fusion one. • Our artificial enzyme with the L5 linker showed the highest RNA cleavage rate. • Our artificial enzyme site-selectively cleaved influenza RNA in vitro.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Byeong-Moo; Department of Medicine, Harvard Medical School, Boston, MA 02115; Choi, Michael Y., E-mail: mchoi@partners.org
2012-09-21
Highlights: Black-Right-Pointing-Pointer Embryonic stem cells (ESCs) lacking non-canonical miRNAs proliferate slower. Black-Right-Pointing-Pointer miR-320 and miR-702 are two non-canonical miRNAs expressed in ESCs. Black-Right-Pointing-Pointer miR-320 and miR-702 promote proliferation of Dgcr8-deficient ESCs. Black-Right-Pointing-Pointer miR-320 targets p57 and helps to release Dgcr8-deficient ESCs from G1 arrest. Black-Right-Pointing-Pointer miR-702 targets p21 and helps to release Dgcr8-deficient ESCs from G1 arrest. -- Abstract: MicroRNAs are known to contribute significantly to stem cell phenotype by post-transcriptionally regulating gene expression. Most of our knowledge of microRNAs comes from the study of canonical microRNAs that require two sequential cleavages by the Drosha/Dgcr8 heterodimer and Dicer to generatemore » mature products. In contrast, non-canonical microRNAs bypass the cleavage by the Drosha/Dgcr8 heterodimer within the nucleus but still require cytoplasmic cleavage by Dicer. The function of non-canonical microRNAs in embryonic stem cells (ESCs) remains obscure. It has been hypothesized that non-canonical microRNAs have important roles in ESCs based upon the phenotypes of ESC lines that lack these specific classes of microRNAs; Dicer-deficient ESCs lacking both canonical and non-canonical microRNAs have much more severe proliferation defect than Dgcr8-deficient ESCs lacking only canonical microRNAs. Using these cell lines, we identified two non-canonical microRNAs, miR-320 and miR-702, that promote proliferation of Dgcr8-deficient ESCs by releasing them from G1 arrest. This is accomplished by targeting the 3 Prime -untranslated regions of the cell cycle inhibitors p57 and p21 and thereby inhibiting their expression. This is the first report of the crucial role of non-canonical microRNAs in ESCs.« less
Shen, Shing-Chuan; Yang, Liang-Yo; Lin, Hui-Yi; Wu, Chin-Yen; Su, Tsung-Hsien; Chen, Yen-Chou
2008-06-01
The effects of six arsenic compounds including As(+3), MMA(+3), DMA(+3), As(+5), MMA(+5), and DMA(+5) on the viability of NIH3T3 cells were examined. As(+3) and MMA(+3), but not the others, exhibited significant cytotoxic effects in NIH3T3 cells through apoptosis induction. The apoptotic events such as DNA fragmentation and chromosome condensation induced by As(+3) and MMA(+3) were prevented by the addition of NAC and CAT, and induction of HO-1 gene expression in accordance with cleavage of the HSP90 protein, and suppression of telomerase activity were observed in NIH3T3 cells under As(+3) and MMA(+3) treatments. An increase in the intracellular peroxide level was examined in As(+3)- and MMA(+3)-treated NIH3T3 cells, and As(+3)- and MMA(+3)-induced apoptotic events were blocked by NAC, CAT, and DPI addition. HSP90 inhibitors, GA and RD, significantly attenuated the telomerase activity in NIH3T3 cells with an enhancement of As(+3)- and MMA(+3)-induced cytotoxicity. Suppression of JNKs significantly inhibited As(+3)- and MMA(+3)-induced apoptosis by blocking HSP90 protein cleavage and telomerase reduction in NIH3T3 cells. Furthermore, Hb, SnPP, and dexferosamine showed no effect against As(+3)- and MMA(+3)-induced apoptosis, and overexpression of HO-1 protein or inhibition of HO-1 protein expression did not affect the apoptosis induced by As(+3) or MMA(+3). These data provide the first evidence to indicate that apoptosis induced by As(+3) and MMA(+3) is mediated by an ROS-dependent degradation of HSP90 protein and reduction of telomerase via JNK activation, and HO-1 induction might not be involved.
New Type of BACE1 siRNA Delivery to Cells
Jabłkowski, Maciej; Szemraj, Maciej; Oszajca, Katarzyna; Janiszewska, Grażyna; Bartkowiak, Jacek; Szemraj, Janusz
2014-01-01
Background Small interfering RNA (siRNA) gene therapy is a new molecular approach in the search for an efficient therapy for Alzheimer disease (AD), based on the principle of RNA interference. Reducing BACE activity can have great therapeutic potential for the treatment of AD. In this study, receptor-mediated delivery was used to deliver opioid peptide-conjugated BACE 1 to INR-32 human neuroblastoma cells. Material/Methods An INR-32 human neuroblastoma cell line was stably transfected to express the APP cDNA coding fragment containing the predicted sites for cleavage by α, β, or γ-secretase. This was then treated with BACE 1 siRNA to silence BACE gene expression. BACE gene transcription and translation was determined using BACE-1 siRNA cross-linked with opioid peptide, together with RT-PCR, Western blot analysis, and ELISA. Results Receptor-mediated delivery was used to introduce BACE1 siRNA to the APP – INR 32 human neuroblastoma cells. Decreased BACE mRNA and protein expression were observed after the cells were transfected with BACE1 siRNA. Conclusions Delivery of BACE1 siRNA appears to specifically reduce the cleavage of APP by inhibiting BACE1 activity. PMID:25491230
Wei, Shuquan; Wang, Kangwei; Zhao, Zhuxiang; Huang, Xiaomei; Tang, Wanna; Zhao, Ziwen
2018-06-16
Cell death is a normal phenomenon in the course of biological development, moreover, which is also a prominent feature in lung exposed to hyperoxia. Severe hypoxia occurs in ALI/ARDS patients, who generally require high concentration oxygen therapy assisted by mechanical ventilation. Nevertheless, high oxygen can cause excessive reactive oxygen species (ROS), leading to apoptosis in lung epithelial cells, which has been reported in our previous study. Herein, the correlation between increments of ROS and CCN6 expression was negative in CCN6-mediated the mitochondria dependent, intrinsic apoptotic pathway. Our latest research explained that CCN6 can inhibit caspase-8 mediated extrinsic apoptotic pathway to protect cells from hyperoxia-induced apoptosis. As demonstrated by Western Blot Analysis, Caspase 8 cleavage and Caspase 3 cleavage in CCN6-depleted cells exceeded the control group treated with high oxygen (48 h). And deletion of CCN6 enhanced caspase-8 activation after hyperoxia shown by Flow Cytometry. Although, it is unclear how CCN6 participated in the regulation of apoptotic pathways, the future targeted therapy drugs inhibiting CCN6 may be useful in the treatment of ALI/ARDS. Copyright © 2018. Published by Elsevier B.V.
Two-Dimensional Cadmium Chloride Nanosheets in Cadmium Telluride Solar Cells.
Perkins, Craig L; Beall, Carolyn; Reese, Matthew O; Barnes, Teresa M
2017-06-21
In this study we make use of a liquid nitrogen-based thermomechanical cleavage technique and a surface analysis cluster tool to probe in detail the tin oxide/emitter interface at the front of completed CdTe solar cells. We show that this thermomechanical cleavage occurs within a few angstroms of the SnO 2 /emitter interface. An unexpectedly high concentration of chlorine at this interface, ∼20%, was determined from a calculation that assumed a uniform chlorine distribution. Angle-resolved X-ray photoelectron spectroscopy was used to further probe the structure of the chlorine-containing layer, revealing that both sides of the cleave location are covered by one-third of a unit cell of pure CdCl 2 , a thickness corresponding to about one Cl-Cd-Cl molecular layer. We interpret this result in the context of CdCl 2 being a true layered material similar to transition-metal dichalcogenides. Exposing cleaved surfaces to water shows that this Cl-Cd-Cl trilayer is soluble, raising questions pertinent to cell reliability. Our work provides new and unanticipated details about the structure and chemistry of front surface interfaces and should prove important to improving materials, processes, and reliability of next-generation CdTe-based solar cells.
Impact of PCOS on early embryo cleavage kinetics.
Wissing, M L; Bjerge, M R; Olesen, A I G; Hoest, T; Mikkelsen, A L
2014-04-01
This study investigated whether polycystic ovary syndrome (PCOS) affected early embryo development assessed by time-lapse analysis of embryo kinetics from fertilization to the blastocyst stage. This was a prospective cohort study of two pronuclei (2PN) embryos from 25 hyperandrogenic PCOS patients (110 2PN embryos), 26 normoandrogenic PCOS patients (140 2PN embryos) and 20 healthy, regularly cycling women (controls, 97 2PN embryos). Patients underwent the same baseline evaluation and the same ovarian stimulation from April 2010 to February 2013. Oocytes were fertilized by intracytoplasmic sperm injection and incubated in an EmbryoScope with pictures taken every 20 min in seven focal planes. Time to 2PN breakdown, first cleavage and cleavage to 3, 4, 5, 6, 7 and 8 cells, morula and blastocyst (t₂, t₃, t₄, t₅, t₆, t₇, t₈, t(M), t(B)) were annotated. Differences in embryo kinetics between groups were assessed by mixed modelling. Compared with controls, embryos from hyperandrogenic PCOS patients were significantly delayed at 2PN breakdown, t₂, t₃, t₄ and t₇ but not at t₅, t₆, t₈, t(M) or t(B). Embryos from hyperandrogenic PCOS women had developed slower from fertilization to the 8-cell stage compared with embryos from controls. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Coppola, Julia M; Hamilton, Christin A; Bhojani, Mahaveer S; Larsen, Martha J; Ross, Brian D; Rehemtulla, Alnawaz
2007-05-01
Noninvasive real-time quantification of cellular protease activity allows monitoring of enzymatic activity and identification of activity modulators within the protease's natural milieu. We developed a protease activity assay based on differential localization of a recombinant reporter consisting of a Golgi retention signal and a protease cleavage sequence fused to alkaline phosphatase (AP). When expressed in mammalian cells, this protein localizes to Golgi bodies and, on protease-mediated cleavage, AP translocates to the extracellular medium where its activity is measured. We used this system to monitor the Golgi-associated protease furin, a pluripotent enzyme with a key role in tumorigenesis, viral propagation of avian influenza, ebola, and HIV as well as in activation of anthrax, pseudomonas, and diphtheria toxins. This technology was adapted for high-throughput screening of 39,000-compound small molecule libraries, leading to identification of furin inhibitors. Furthermore, this strategy was used to identify inhibitors of another Golgi protease, the beta-site amyloid precursor protein (APP)-cleaving enzyme (BACE). BACE cleavage of the APP leads to formation of the Abeta peptide, a key event that leads to Alzheimer's disease. In conclusion, we describe a customizable noninvasive technology for real-time assessment of Golgi protease activity used to identify inhibitors of furin and BACE.
Activation and cleavage of SASH1 by caspase-3 mediates an apoptotic response
Burgess, Joshua T; Bolderson, Emma; Adams, Mark N; Baird, Anne-Marie; Zhang, Shu-Dong; Gately, Kathy A; Umezawa, Kazuo; O'Byrne, Kenneth J; Richard, Derek J
2016-01-01
Apoptosis is a highly regulated cellular process that functions to remove undesired cells from multicellular organisms. This pathway is often disrupted in cancer, providing tumours with a mechanism to avoid cell death and promote growth and survival. The putative tumour suppressor, SASH1 (SAM and SH3 domain containing protein 1), has been previously implicated in the regulation of apoptosis; however, the molecular role of SASH1 in this process is still unclear. In this study, we demonstrate that SASH1 is cleaved by caspase-3 following UVC-induced apoptosis. Proteolysis of SASH1 enables the C-terminal fragment to translocate from the cytoplasm to the nucleus where it associates with chromatin. The overexpression of wild-type SASH1 or a cleaved form of SASH1 representing amino acids 231–1247 leads to an increase in apoptosis. Conversely, mutation of the SASH1 cleavage site inhibits nuclear translocation and prevents the initiation of apoptosis. SASH1 cleavage is also required for the efficient translocation of the transcription factor nuclear factor-κB (NF-κB) to the nucleus. The use of the NF-κB inhibitor DHMEQ demonstrated that the effect of SASH1 on apoptosis was dependent on NF-κB, indicating a codependence between SASH1 and NF-κB for this process. PMID:27831555
Bialonska, Dobroslawa; Song, Kenneth; Bolton, Philip H.
2011-01-01
Tumor cell lines can replicate faster than normal cells and many also have defective DNA repair pathways. This has lead to the investigation of the inhibition of DNA repair proteins as a means of therapeutic intervention. An alternative approach is to hide or mask damaged DNA from the repair systems. We have developed a protocol to investigate the structures of the complexes of damaged DNA with drug like molecules. Nucleotide resolution structural information can be obtained using an improved hydroxyl radical cleavage protocol. The use of a dTn tail increases the length of the smallest fragments of interest and allows efficient co-precipitation of the fragments with poly(A). The use of a fluorescent label, on the 5′ end of the dTn tail, in conjunction with modified cleavage reaction conditions, avoids the lifetime and other problems with 32P labeling. The structures of duplex DNAs containing AC and CC mismatches in the presence and absence of minor groove binders have been investigated as have those of the fully complementary DNA. The results indicate that the structural perturbations of the mismatches are localized, are sequence dependent and that the presence of a mismatch can alter the binding of drug like molecules. PMID:21893212
Olson, Emilia S.; Whitney, Michael A.; Friedman, Beth; Aguilera, Todd A.; Crisp, Jessica L.; Baik, Fred M.; Jiang, Tao; Baird, Stephen M.; Tsimikas, Sotirios; Tsien, Roger Y.
2012-01-01
Thrombin and other coagulation enzymes have been shown to be important during atherosclerotic disease development. Study of these proteases is currently limited because of lack of robust molecular imaging agents for imaging protease activity in vivo. Activatable cell penetrating peptides (ACPPs) have been used to monitor MMP activity in tumors and, in principle, can be modified to detect other proteases. We have developed a probe that incorporates the peptide sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) into an ACPP and shown that it is preferentially cleaved by purified thrombin. Active thrombin in serum cleaves DPRSFL–ACPP with >90% inhibition by lepirudin or argatroban. The DPRSFL–ACPP cleavage product accumulated in advanced atherosclerotic lesions in living mice, with 85% reduction in retention upon pre-injection of mice with hirudin. Uptake of the ACPP cleavage product was highest in plaques with histological features associated with more severe disease. Freshly resected human atheromas bathed in DPRSFL–ACPP retained 63% greater cleavage product compared to control ACPP. In conclusion, DPRSFL–ACPP can be used to study thrombin activity in coagulation and atherosclerosis with good spatial and temporal resolution. Thrombin-sensitive ACPPs may be developed into probes for early detection and intraoperative imaging of high risk atherosclerotic plaques. PMID:22534729
Olson, Emilia S; Whitney, Michael A; Friedman, Beth; Aguilera, Todd A; Crisp, Jessica L; Baik, Fred M; Jiang, Tao; Baird, Stephen M; Tsimikas, Sotirios; Tsien, Roger Y; Nguyen, Quyen T
2012-06-01
Thrombin and other coagulation enzymes have been shown to be important during atherosclerotic disease development. Study of these proteases is currently limited because of lack of robust molecular imaging agents for imaging protease activity in vivo. Activatable cell penetrating peptides (ACPPs) have been used to monitor MMP activity in tumors and, in principle, can be modified to detect other proteases. We have developed a probe that incorporates the peptide sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) into an ACPP and shown that it is preferentially cleaved by purified thrombin. Active thrombin in serum cleaves DPRSFL-ACPP with >90% inhibition by lepirudin or argatroban. The DPRSFL-ACPP cleavage product accumulated in advanced atherosclerotic lesions in living mice, with 85% reduction in retention upon pre-injection of mice with hirudin. Uptake of the ACPP cleavage product was highest in plaques with histological features associated with more severe disease. Freshly resected human atheromas bathed in DPRSFL-ACPP retained 63% greater cleavage product compared to control ACPP. In conclusion, DPRSFL-ACPP can be used to study thrombin activity in coagulation and atherosclerosis with good spatial and temporal resolution. Thrombin-sensitive ACPPs may be developed into probes for early detection and intraoperative imaging of high risk atherosclerotic plaques.
Collins, Steven J; Tumpach, Carolin; Groveman, Bradley R; Drew, Simon C; Haigh, Cathryn L
2018-03-24
Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.
Activation and cleavage of SASH1 by caspase-3 mediates an apoptotic response.
Burgess, Joshua T; Bolderson, Emma; Adams, Mark N; Baird, Anne-Marie; Zhang, Shu-Dong; Gately, Kathy A; Umezawa, Kazuo; O'Byrne, Kenneth J; Richard, Derek J
2016-11-10
Apoptosis is a highly regulated cellular process that functions to remove undesired cells from multicellular organisms. This pathway is often disrupted in cancer, providing tumours with a mechanism to avoid cell death and promote growth and survival. The putative tumour suppressor, SASH1 (SAM and SH3 domain containing protein 1), has been previously implicated in the regulation of apoptosis; however, the molecular role of SASH1 in this process is still unclear. In this study, we demonstrate that SASH1 is cleaved by caspase-3 following UVC-induced apoptosis. Proteolysis of SASH1 enables the C-terminal fragment to translocate from the cytoplasm to the nucleus where it associates with chromatin. The overexpression of wild-type SASH1 or a cleaved form of SASH1 representing amino acids 231-1247 leads to an increase in apoptosis. Conversely, mutation of the SASH1 cleavage site inhibits nuclear translocation and prevents the initiation of apoptosis. SASH1 cleavage is also required for the efficient translocation of the transcription factor nuclear factor-κB (NF-κB) to the nucleus. The use of the NF-κB inhibitor DHMEQ demonstrated that the effect of SASH1 on apoptosis was dependent on NF-κB, indicating a codependence between SASH1 and NF-κB for this process.
Coppola, Julia M.; Hamilton, Christin A.; Bhojani, Mahaveer S.; Larsen, Martha J.; Ross, Brian D.; Rehemtulla, Alnawaz
2007-01-01
Non-invasive real time quantification of cellular protease activity allows monitoring of enzymatic activity and identification of activity modulators within the protease’s natural milieu. We developed a protease-activity assay based on differential localization of a recombinant reporter consisting of a Golgi retention signal and a protease cleavage sequence fused to alkaline phosphatase (AP). When expressed in mammalian cells, this protein localizes to Golgi bodies and, upon protease mediated cleavage, AP translocates to the extracellular medium where its activity is measured. We used this system to monitor the Golgi-associated protease furin, a pluripotent enzyme with a key role in tumorigenesis, viral propagation of avian influenza, ebola, and HIV, and in activation of anthrax, pseudomonas, and diphtheria toxins. This technology was adapted for high throughput screening of 30,000 compound small molecule libraries, leading to identification of furin inhibitors. Further, this strategy was utilized to identify inhibitors of another Golgi protease, the β-site APP-cleaving enzyme (BACE). BACE cleavage of the amyloid precursor protein leads to formation of the Aβ peptide, a key event that leads to Alzheimer’s disease. In conclusion, we describe a customizable, non-invasive technology for real time assessment of Golgi protease activity used to identify inhibitors of furin and BACE. PMID:17316541
Rivera-Torres, Natalia; Strouse, Bryan; Bialk, Pawel; Niamat, Rohina A; Kmiec, Eric B
2014-01-01
With recent technological advances that enable DNA cleavage at specific sites in the human genome, it may now be possible to reverse inborn errors, thereby correcting a mutation, at levels that could have an impact in a clinical setting. We have been developing gene editing, using single-stranded DNA oligonucleotides (ssODNs), as a tool to direct site specific single base changes. Successful application of this technique has been demonstrated in many systems ranging from bacteria to human (ES and somatic) cells. While the frequency of gene editing can vary widely, it is often at a level that does not enable clinical application. As such, a number of stimulatory factors such as double-stranded breaks are known to elevate the frequency significantly. The majority of these results have been discovered using a validated HCT116 mammalian cell model system where credible genetic and biochemical readouts are available. Here, we couple TAL-Effector Nucleases (TALENs) that execute specific ds DNA breaks with ssODNs, designed specifically to repair a missense mutation, in an integrated single copy eGFP gene. We find that proximal cleavage, relative to the mutant base, is key for enabling high frequencies of editing. A directionality of correction is also observed with TALEN activity upstream from the target base being more effective in promoting gene editing than activity downstream. We also find that cells progressing through S phase are more amenable to combinatorial gene editing activity. Thus, we identify novel aspects of gene editing that will help in the design of more effective protocols for genome modification and gene therapy in natural genes.
Amemiya, S; Arakawa, E
1996-09-01
Peronella japonica, a sand dollar, forms an abbreviated pluteus larva and metamorphoses within 3 days without feeding. In the present study, the cleavage pattern of Peronella embryos was found to be quite irregular in the vegetal blastomeres at the fourth cleavage. Less than half of the embryos examined formed four typical micromeres. The majority formed zero, one, two or three typical micromeres of regular size, and the blastomere(s) remaining in the vegetal-most region was atypical in size and/or its direction of division. Most embryos were able to form pluteus larvae and a considerable proportion of these metamorphosed into juvenile sea urchins, regardless of whether or not they had formed four typical micromeres of regular size, although embryos which formed no typical micromeres developed into pluteus larvae less frequently. The micromere progeny in Peronella embryos form skeletogenic mesenchyme cells. The average numbers of skeletogenic mesenchyme cells in the three sand dollar species, Clypeaster japonicus, Astriclypeus manni and P. japonica were 62, 122 and 219, respectively. In these species, the skeletogenic mesenchyme cell-specific glycoprotein (msp130) was first detected immediately after ingression of the primary mesenchyme cells, spicules appeared at the early gastrula stage and triradiate spicules were found in late gastrulae. Appearance of these characteristics was markedly accelerated in the embryos of A. manni and P. japonica in comparison with those of C. japonicus. Each step in the formation of larval spicules was equally accelerated in A. manni and P. japonica, although the appearance of the adult skeleton was further accelerated in P. japonica in comparison with A. manni, possibly because of omission of the four- to eight-armed pluteus stages.
Activation of Influenza A Viruses by Host Proteases from Swine Airway Epithelium
Peitsch, Catharina; Klenk, Hans-Dieter; Garten, Wolfgang
2014-01-01
Pigs are important natural hosts of influenza A viruses, and due to their susceptibility to swine, avian, and human viruses, they may serve as intermediate hosts supporting adaptation and genetic reassortment. Cleavage of the influenza virus surface glycoprotein hemagglutinin (HA) by host cell proteases is essential for viral infectivity. Most influenza viruses, including human and swine viruses, are activated at a monobasic HA cleavage site, and we previously identified TMPRSS2 and HAT to be relevant proteases present in human airways. We investigated the proteolytic activation of influenza viruses in primary porcine tracheal and bronchial epithelial cells (PTEC and PBEC, respectively). Human H1N1 and H3N2 viruses replicated efficiently in PTECs and PBECs, and viruses containing cleaved HA were released from infected cells. Moreover, the cells supported the proteolytic activation of HA at the stage of entry. We found that swine proteases homologous to TMPRSS2 and HAT, designated swTMPRSS2 and swAT, respectively, were expressed in several parts of the porcine respiratory tract. Both proteases cloned from primary PBECs were shown to activate HA with a monobasic cleavage site upon coexpression and support multicycle replication of influenza viruses. swAT was predominantly localized at the plasma membrane, where it was present as an active protease that mediated activation of incoming virus. In contrast, swTMPRSS2 accumulated in the trans-Golgi network, suggesting that it cleaves HA in this compartment. In conclusion, our data show that HA activation in porcine airways may occur by similar proteases and at similar stages of the viral life cycle as in human airways. PMID:24155384
Son, Yeo-Jin; Lee, Seung-Eun; Park, Yun-Gwi; Jeong, Sang-Gi; Shin, Min-Young; Kim, Eun-Young; Park, Se-Pill
2018-06-01
Somatic cell nuclear transfer (SCNT) is required for the generation of transgenic animals as disease models. During the in vitro development of SCNT embryos, the quality of matured oocytes is one of the major factors regulating the developmental potential of embryos. Time-lapse monitoring systems are new tools that assess the developmental capacity of embryos for use in embryo transfer. In this study, we investigated the effect of fibroblast growth factor 10 (FGF 10) on the developmental potential of SCNT embryos. After the in vitro maturation (IVM) of oocytes in IVM medium containing 10 ng/mL FGF 10 (10 F), the polar body extrusion rate was significantly higher than in the control. However, there was no difference in the percentage of fused embryos between the groups. The cleavage and blastocyst formation rates of embryos were significantly increased in the 10 F compared with the control. In addition, the total cell number was higher and the apoptotic index was lower in the 10 F than control at day 7. The messenger RNA (mRNA) expression of genes involved in apoptosis (baculoviral inhibitor of apoptosis repeat containing 5 [BIRC5] and caspase 3 [CASP3]) and development (octamer-binding transcription factor 4 [POU5F1] and sex determining region Y box 2 [SOX2]) increased after 10 F treatment. Furthermore, the kinetics of the first cleavage was faster and the percentage of embryos at cell block was significantly lower in the 10 F group than in the control. These results demonstrate that exposure of oocytes to FGF 10 during IVM promotes developmental competence.
Katoh, Yohei; Michisaka, Saki; Nozaki, Shohei; Funabashi, Teruki; Hirano, Tomoaki; Takei, Ryota; Nakayama, Kazuhisa
2017-04-01
The CRISPR/Cas9 system has revolutionized genome editing in virtually all organisms. Although the CRISPR/Cas9 system enables the targeted cleavage of genomic DNA, its use for gene knock-in remains challenging because levels of homologous recombination activity vary among various cells. In contrast, the efficiency of homology-independent DNA repair is relatively high in most cell types. Therefore the use of a homology-independent repair mechanism is a possible alternative for efficient genome editing. Here we constructed a donor knock-in vector optimized for the CRISPR/Cas9 system and developed a practical system that enables efficient disruption of target genes by exploiting homology-independent repair. Using this practical knock-in system, we successfully disrupted genes encoding proteins involved in ciliary protein trafficking, including IFT88 and IFT20, in hTERT-RPE1 cells, which have low homologous recombination activity. The most critical concern using the CRISPR/Cas9 system is off-target cleavage. To reduce the off-target cleavage frequency and increase the versatility of our knock-in system, we constructed a universal donor vector and an expression vector containing Cas9 with enhanced specificity and tandem sgRNA expression cassettes. We demonstrated that the second version of our system has improved usability. © 2017 Katoh et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
DOE Office of Scientific and Technical Information (OSTI.GOV)
York, Joanne; Nunberg, Jack H.
2007-03-01
The arenavirus envelope glycoprotein (GP-C) retains a cleaved and stable signal peptide (SSP) as an essential subunit of the mature complex. This 58-amino-acid residue peptide serves as a signal sequence and is additionally required to enable transit of the assembled GP-C complex to the Golgi, and for pH-dependent membrane fusion activity. We have investigated the C-terminal region of the Junin virus SSP to study the role of the cellular signal peptidase (SPase) in generating SSP. Site-directed mutagenesis at the cleavage site (positions - 1 and - 3) reveals a pattern of side-chain preferences consistent with those of SPase. Although positionmore » - 2 is degenerate for SPase cleavage, this residue in the arenavirus SSP is invariably a cysteine. In the Junin virus, this cysteine is not involved in disulfide bonding. We show that replacement with alanine or serine is tolerated for SPase cleavage but prevents the mutant SSP from associating with GP-C and enabling transport to the cell surface. Conversely, an arginine mutation at position - 1 that prevents SPase cleavage is fully compatible with GP-C-mediated membrane fusion activity when the mutant SSP is provided in trans. These results point to distinct roles of SSP sequences in SPase cleavage and GP-C biogenesis. Further studies of the unique structural organization of the GP-C complex will be important in identifying novel opportunities for antiviral intervention against arenaviral hemorrhagic disease.« less
Jakubiec, Anna; Drugeon, Gabrièle; Camborde, Laurent; Jupin, Isabelle
2007-01-01
Turnip yellow mosaic virus (TYMV), a positive-strand RNA virus belonging to the alphavirus-like supergroup, encodes its nonstructural replication proteins as a 206K precursor with domains indicative of methyltransferase (MT), proteinase (PRO), NTPase/helicase (HEL), and polymerase (POL) activities. Subsequent processing of 206K generates a 66K protein encompassing the POL domain and uncharacterized 115K and 85K proteins. Here, we demonstrate that TYMV proteinase mediates an additional cleavage between the PRO and HEL domains of the polyprotein, generating the 115K protein and a 42K protein encompassing the HEL domain that can be detected in plant cells using a specific antiserum. Deletion and substitution mutagenesis experiments and sequence comparisons indicate that the scissile bond is located between residues Ser879 and Gln880. The 85K protein is generated by a host proteinase and is likely to result from nonspecific proteolytic degradation occurring during protein sample extraction or analysis. We also report that TYMV proteinase has the ability to process substrates in trans in vivo. Finally, we examined the processing of the 206K protein containing native, mutated, or shuffled cleavage sites and analyzed the effects of cleavage mutations on viral infectivity and RNA synthesis by performing reverse-genetics experiments. We present evidence that PRO/HEL cleavage is critical for productive virus infection and that the impaired infectivity of PRO/HEL cleavage mutants is due mainly to defective synthesis of positive-strand RNA. PMID:17686855
Somatic cell nuclear transfer using transported in vitro-matured oocytes in cynomolgus monkey.
Chen, N; Liow, S-L; Abdullah, R Bin; Embong, W Khadijah Wan; Yip, W-Y; Tan, L-G; Tong, G-Q; Ng, S-C
2007-02-01
Somatic cell nuclear transfer (SCNT) is not successful so far in non-human primates. The objective of this study was to investigate the effects of stimulation cycles (first and repeat) on oocyte retrieval and in vitro maturation (IVM) and to evaluate the effects of stimulation cycles and donor cell type (cumulus and fetal skin fibroblasts) on efficiency of SCNT with transported IVM oocytes. In this study, 369 immature oocytes were collected laparoscopically at 24 h following human chorionic gonadotrophin (hCG) treatment from 12 cynomolgus macaque (Macaca fascicularis) in 24 stimulation cycles, and shipped in pre-equilibrated IVM medium for a 5 h journey, placed in a dry portable incubator (37 degrees C) without CO(2) supplement. A total of 70.6% (247/350) of immature oocytes reached metaphase II (MII) stage at 36 h after hCG administration, MII spindle could be seen clearly in 80.6% (104/129) of matured IVM oocytes under polarized microscopy. A total of 50.0% (37/74) of reconstructive SCNT embryos cleaved after activation; after cleavage, 37.8% (14/37) developed to the 8-cell stage and 8.1% (3/37) developed to morula, but unfortunately none developed to the blastocyst stage. Many more oocytes could be retrieved per cycle from monkeys in the first cycle than in repeated cycles (19.1 vs. 11.7, p < 0.05). There were no significant differences in the maturation rate (70.0 vs. 71.4%, p > 0.05) and MII spindle rate under polarized microscopy (76.4 vs. 86.0%, p > 0.05) between the first and repeat cycles. There were also no significant differences in the cleavage rate, and the 4-cell, 8-cell and morula development rate of SCNT embryos between the first and repeat cycles. When fibroblast cells and cumulus cells were used as the donor cells for SCNT, first cleavage rate was not significantly different, but 4-cell (50.0 vs. 88.9%, p < 0.05) and 8-cell (0 vs. 51.9%, p < 0.01) development rate were significantly lower for the former. In conclusion, the number of stimulation cycles has a significant effect on oocyte retrieval, but has no effect on maturation and SCNT embryo development; however, different donor cell types (cumulus and fibroblast) resulted in different developmental potentials of SCNT embryos.
McNab, Alistair R.; Desai, Prashant; Person, Stan; Roof, Lori L.; Thomsen, Darrell R.; Newcomb, William W.; Brown, Jay C.; Homa, Fred L.
1998-01-01
The herpes simplex virus type 1 (HSV-1) UL25 gene contains a 580-amino-acid open reading frame that codes for an essential protein. Previous studies have shown that the UL25 gene product is a virion component (M. A. Ali et al., Virology 216:278–283, 1996) involved in virus penetration and capsid assembly (C. Addison et al., Virology 138:246–259, 1984). In this study, we describe the isolation of a UL25 mutant (KUL25NS) that was constructed by insertion of an in-frame stop codon in the UL25 open reading frame and propagated on a complementing cell line. Although the mutant was capable of synthesis of viral DNA, it did not form plaques or produce infectious virus in noncomplementing cells. Antibodies specific for the UL25 protein were used to demonstrate that KUL25NS-infected Vero cells did not express the UL25 protein. Western immunoblotting showed that the UL25 protein was associated with purified, wild-type HSV A, B, and C capsids. Transmission electron microscopy indicated that the nucleus of Vero cells infected with KUL25NS contained large numbers of both A and B capsids but no C capsids. Analysis of infected cells by sucrose gradient sedimentation analysis confirmed that the ratio of A to B capsids was elevated in KUL25NS-infected Vero cells. Following restriction enzyme digestion, specific terminal fragments were observed in DNA isolated from KUL25NS-infected Vero cells, indicating that the UL25 gene was not required for cleavage of replicated viral DNA. The latter result was confirmed by pulsed-field gel electrophoresis (PFGE), which showed the presence of genome-size viral DNA in KUL25NS-infected Vero cells. DNase I treatment prior to PFGE demonstrated that monomeric HSV DNA was not packaged in the absence of the UL25 protein. Our results indicate that the product of the UL25 gene is required for packaging but not cleavage of replicated viral DNA. PMID:9445000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, Carolina; Klasse, Per Johan; Kibler, Christopher W.
2006-07-20
The human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein forms trimers that mediate interactions with the CD4 receptor and a co-receptor on the target cell surface, thereby triggering viral fusion with the cell membrane. Cleavage of Env into its surface, gp120, and transmembrane, gp41, moieties is necessary for activation of its fusogenicity. Here, we produced pseudoviruses with phenotypically mixed wild-type (Wt) and mutant, cleavage-incompetent Env in order to quantify the effects of incorporating uncleaved Env on virion infectivity, antigenicity and neutralization sensitivity. We modeled the relative infectivity of three such phenotypically mixed viral strains, JR-FL, HXBc2 and a derivativemore » of the latter, 3.2P, as a function of the relative amount of Wt Env. The data were fit very closely (R {sup 2} > 0.99) by models which assumed that only Wt homotrimers were functional, with different approximate thresholds of critical numbers of functional trimers per virion for the three strains. We also produced 3.2P pseudoviruses containing both a cleavage-competent Env that is defective for binding the neutralizing monoclonal antibody (NAb) 2G12, and a cleavage-incompetent Env that binds 2G12. The 2G12 NAb was not able to reduce the infectivity of these pseudoviruses detectably. Their neutralization by the CD4-binding site-directed agents CD4-IgG2 and NAb b12 was also unaffected by 2G12 binding to uncleaved Env. These results further strengthen the conclusion that only homotrimers consisting of cleaved Env are functional. They also imply that the function of a trimer is unaffected sterically by the binding of an antibody to an adjacent trimer.« less
Hartnett, M. Elizabeth; Martiniuk, David; Byfield, Grace; Geisen, Pete; Zeng, Gefei; Bautch, Victoria L.
2008-01-01
Purpose To study the effects of vascular endothelial growth factor (VEGF) on endothelial nitric oxide synthetase (eNOS) and retinal vascular tortuosity and cleavage planes in a rat model of retinopathy of prematurity (ROP). Methods Within 4 hours of birth, pups and mothers were cycled between 50% and 10% oxygen daily. At postnatal day (p)12, pups received either intravitreous anti-rat neutralizing antibody to VEGF or control nonimmune rat IgG in one eye and returned to oxygen cycling until p14 when they were placed in room air (RA) for 4 days (50/10 oxygen-induced retinopathy [50/10 OIR]). Tortuosity indices and endothelial cleavage plane angles relative to the long axes of the major retinal vessels during anaphase were calculated from phosphohistone- and Alexa-isolectin-stained retinal flatmounts. Some retinas were processed for eNOS protein or phosphorylated/total eNOS. Results Retinas from 50/10 OIR had increased tortuosity over time with peaks at p12 and p14 (P < 0.001 vs. RA) before the development of intravitreous neovascularization, which peaked at p18. Compared with RA, eNOS/actin in 50/10 OIR retinas was increased at p12 (P = 0.0003) and p14 (P = 0.047). Inhibition of VEGF with a neutralizing antibody decreased tortuosity and caused endothelial mitosis cleavage planes to orient in favor of vessel elongation but did not affect eNOS protein or activation. Conclusions In the 50/10 OIR model, a model with relevance to ROP, arteriolar tortuosity, and venous dilation are increased through VEGF, which influences the orientation of endothelial cell cleavage in major arterioles and veins, independent of eNOS. PMID:18378573
Mani, Santhosh K.; Shiraishi, Hirokazu; Balasubramanian, Sundaravadivel; Yamane, Kentaro; Chellaiah, Meenakshi; Cooper, George; Banik, Naren; Zile, Michael R.; Kuppuswamy, Dhandapani
2008-01-01
Calpain activation is linked to the cleavage of several cytoskeletal proteins and could be an important contributor to the loss of cardiomyocytes and contractile dysfunction during cardiac pressure overload (PO). Using a feline right ventricular (RV) PO model, we analyzed calpain activation during the early compensatory period of cardiac hypertrophy. Calpain enrichment and its increased activity with a reduced calpastatin level were observed in 24- to 48-h-PO myocardium, and these changes returned to basal level by 1 wk of PO. Histochemical studies in 24-h-PO myocardium revealed the presence of TdT-mediated dUTP nick-end label (TUNEL)-positive cardiomyocytes, which exhibited enrichment of calpain and gelsolin. Biochemical studies showed an increase in histone H2B phosphorylation and cytoskeletal binding and cleavage of gelsolin, which indicate programmed cardiomyocyte cell death. To test whether calpain inhibition could prevent these changes, we administered calpeptin (0.6 mg/kg iv) by bolus injections twice, 15 min before and 6 h after induction of 24-h PO. Calpeptin blocked the following PO-induced changes: calpain enrichment and activation, decreased calpastatin level, caspase-3 activation, enrichment and cleavage of gelsolin, TUNEL staining, and histone H2B phosphorylation. Although similar administration of a caspase inhibitor, N-benzoylcarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VD-fmk), blocked caspase-3 activation, it did not alleviate other aforementioned changes. These results indicate that biochemical markers of cardiomyocyte cell death, such as sarcomeric disarray, gelsolin cleavage, and TUNEL-positive nuclei, are mediated, at least in part, by calpain and that calpeptin may serve as a potential therapeutic agent to prevent cardiomyocyte loss and preserve myocardial structure and function during cardiac hypertrophy. PMID:18487434
Burns, Brendan P.; Mendz, George L.; Hazell, Stuart L.
1998-01-01
The mechanism of resistance to N-phosphonoacetyl-l-aspartate (PALA), a potent inhibitor of aspartate carbamoyltransferase (which catalyzes the first committed step of de novo pyrimidine biosynthesis), in Helicobacter pylori was investigated. At a 1 mM concentration, PALA had no effects on the growth and viability of H. pylori. The inhibitor was taken up by H. pylori cells and the transport was saturable, with a Km of 14.8 mM and a Vmax of 19.1 nmol min−1 μl of cell water−1. By 31P nuclear magnetic resonance (NMR) spectroscopy, both PALA and phosphonoacetate were shown to have been metabolized in all isolates of H. pylori studied. A main metabolic end product was identified as inorganic phosphate, suggesting the presence of an enzyme activity which cleaved the carbon-phosphorus (C-P) bonds. The kinetics of phosphonate group cleavage was saturable, and there was no evidence for substrate inhibition at higher concentrations of either compound. C-P bond cleavage activity was temperature dependent, and the activity was lost in the presence of the metal chelator EDTA. Other cleavages of PALA were observed by 1H NMR spectroscopy, with succinate and malate released as main products. These metabolic products were also formed when N-acetyl-l-aspartate was incubated with H. pylori lysates, suggesting the action of an aspartase. Studies of the cellular location of these enzymes revealed that the C-P bond cleavage activity was localized in the soluble fraction and that the aspartase activity appeared in the membrane-associated fraction. The results suggested that the two H. pylori enzymes transformed the inhibitor into noncytotoxic products, thus providing the bacterium with a mechanism of resistance to PALA toxicity which appears to be unique. PMID:9791105
Schaab, Michael; Kausch, Henriette; Klammt, Juergen; Nowicki, Marcin; Anderegg, Ulf; Gebhardt, Rolf; Rose-John, Stefan; Scheller, Juergen; Thiery, Joachim; Kratzsch, Juergen
2012-01-01
The adipokine leptin realizes signal transduction via four different membrane-anchored leptin receptor (Ob-R) isoforms in humans. However, the amount of functionally active Ob-R is affected by constitutive shedding of the extracellular domain via a so far unknown mechanism. The product of the cleavage process the so-called soluble leptin receptor (sOb-R) is the main binding protein for leptin in human blood and modulates its bioavailability. sOb-R levels are differentially regulated in metabolic disorders like type 1 diabetes mellitus or obesity and can, therefore, enhance or reduce leptin sensitivity. To describe mechanisms of Ob-R cleavage and to investigate the functional significance of differential sOb-R levels we established a model of HEK293 cells transiently transfected with different human Ob-R isoforms. Using siRNA knockdown experiments we identified ADAM10 (A Disintegrin And Metalloproteinase 10) as a major protease for constitutive and activated Ob-R cleavage. Additionally, the induction of lipotoxicity and apoptosis led to enhanced shedding shown by increased levels of the soluble leptin receptor (sOb-R) in cell supernatants. Conversely, high leptin concentrations and ER stress reduced sOb-R levels. Decreased amounts of sOb-R due to ER stress were accompanied by impaired leptin signaling and reduced leptin binding. Lipotoxicity and apoptosis increased Ob-R cleavage via ADAM10-dependent mechanisms. In contrast high leptin levels and ER stress led to reduced sOb-R levels. While increased sOb-R concentrations seem to directly block leptin action, reduced amounts of sOb-R may reflect decreased membrane expression of Ob-R. These findings could explain changes of leptin sensitivity which are associated with variations of serum sOb-R levels in metabolic diseases.
Schaab, Michael; Kausch, Henriette; Klammt, Juergen; Nowicki, Marcin; Anderegg, Ulf; Gebhardt, Rolf; Rose-John, Stefan; Scheller, Juergen; Thiery, Joachim; Kratzsch, Juergen
2012-01-01
Background The adipokine leptin realizes signal transduction via four different membrane-anchored leptin receptor (Ob-R) isoforms in humans. However, the amount of functionally active Ob-R is affected by constitutive shedding of the extracellular domain via a so far unknown mechanism. The product of the cleavage process the so-called soluble leptin receptor (sOb-R) is the main binding protein for leptin in human blood and modulates its bioavailability. sOb-R levels are differentially regulated in metabolic disorders like type 1 diabetes mellitus or obesity and can, therefore, enhance or reduce leptin sensitivity. Methodology/Principal Findings To describe mechanisms of Ob-R cleavage and to investigate the functional significance of differential sOb-R levels we established a model of HEK293 cells transiently transfected with different human Ob-R isoforms. Using siRNA knockdown experiments we identified ADAM10 (A Disintegrin And Metalloproteinase 10) as a major protease for constitutive and activated Ob-R cleavage. Additionally, the induction of lipotoxicity and apoptosis led to enhanced shedding shown by increased levels of the soluble leptin receptor (sOb-R) in cell supernatants. Conversely, high leptin concentrations and ER stress reduced sOb-R levels. Decreased amounts of sOb-R due to ER stress were accompanied by impaired leptin signaling and reduced leptin binding. Conclusions Lipotoxicity and apoptosis increased Ob-R cleavage via ADAM10-dependent mechanisms. In contrast high leptin levels and ER stress led to reduced sOb-R levels. While increased sOb-R concentrations seem to directly block leptin action, reduced amounts of sOb-R may reflect decreased membrane expression of Ob-R. These findings could explain changes of leptin sensitivity which are associated with variations of serum sOb-R levels in metabolic diseases. PMID:22545089
Bellocq, A; Doublier, S; Suberville, S; Perez, J; Escoubet, B; Fouqueray, B; Puyol, D R; Baud, L
1999-12-24
Somatostatin has direct anti-inflammatory actions and participates in the anti-inflammatory actions of glucocorticoids, but the mechanisms underlying this regulation remain poorly understood. The objective of this study was to evaluate whether somatostatin increases glucocorticoid responsiveness by up-regulating glucocorticoid receptor (GR) expression and signaling. Somatostatin promoted a time- and dose-dependent increase in [(3)H]dexamethasone binding to RAW 264.7 macrophages. Cell exposure to 10 nM somatostatin for 18 h promoted a 2-fold increase in the number of GR sites per cell without significant modification of the affinity. Analysis of GR heterocomplex components demonstrated that somatostatin increased the level of heat shock protein (Hsp) 90, whereas the level of GR remained almost unchanged. The increase in Hsp 90 was associated with a decrease in the cleavage of its carboxyl-terminal domain. Evidence for the involvement of calpain inhibition in this process was obtained by the demonstration that 1) somatostatin induced a dose-dependent decrease in calpain activity and 2) calpain inhibitors, calpain inhibitor I and calpeptin, both abolished the cleavage of Hsp 90 and induced a dose-dependent increase in [(3)H]dexamethasone binding. Increases in glucocorticoid binding after somatostatin treatment were associated with similar increases in the ability of GR to transactivate a minimal promoter containing two glucocorticoid response elements (GRE) and to interfere with the activation of nuclear factor-kappaB (NF-kappaB). Thus, the present findings indicate that somatostatin increases glucocorticoid binding and signaling by limiting the calpain-specific cleavage of GR-associated Hsp 90. This mechanism may represent a novel target for intervention to increase glucocorticoid responsiveness.
Tumor Associated Neutrophils in Human Lung Cancer
2016-10-01
tumor innate immune response. anti-tumor adaptive immune response, neutrophil and T cell interaction. ACCOMPLISHMENTS There were no significant...and by producing factors to recruit and acti- vate cells of the innate and adaptive immune system (Mantovani et al., 2011). Given these varying effects...vivo effects on neutro- phil activation (Figure 2, A and B) and cleavage of myeloid and lymphoid cell markers (Supplemental Figure 1, C–G). Once opti
Gröbner, Sabine; Schulz, Sebastian; Soldanova, Irena; Gunst, Dani S J; Waibel, Michaela; Wesselborg, Sebastian; Borgmann, Stefan; Autenrieth, Ingo B
2007-01-01
In an initial period (< or =4 h) Toll-like receptor 4 (TLR4) signaling is required for Yersinia enterocolitica YopP-induced dendritic cell (DC) death. Later (>4 h), DC die independent of TLR4 signaling. In TLR4-deficient DC caspase 8 cleavage is delayed, indicating that TLR4 signaling accelerates caspase 8 activation, leading to DC death.
Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer
2013-09-01
we obtain cleavage patterns consistent with the administered UV dosage and that sequencing libraries generated for both yeast and human cells show...understanding the mutations they cause. 15. SUBJECT TERMS UV DNA modification, HeLa cells, Skin Cancer 16. SECURITY CLASSIFICATION OF: 17...of mutations that are caused by UV light in cells and correlate them to modification frequencies. Understanding the initial chemical changes
Dutta, Rahul; Malakar, Dhruba; Khate, Keviletsu; Sahu, Shailendra; Akshey, Yogesh; Mukesh, Manishi
2011-09-15
The main purpose of the experiment was to compare the efficiency of three cell types, namely adult fibroblast, putative embryonic stem (ES) cell, and lymphocyte, as donor cells for somatic cell nuclear transfer by handmade cloning in goats. The outcome clearly shows that putative embryonic stem cells, with a cleavage and blastocyst production rate of 74.69% ± 3.92 and 39.75% ± 3.86, respectively, performs better in comparison to adult fibroblast cell and lymphocyte. Between adult fibroblast cell and lymphocyte no statistically significant difference exists at P < 0.05. An overall cleavage and blastocyst formation rate of 67.41% ± 3.92 and 26.96% ± 3.86 was obtained using adult fibroblast donor cells. The study establishes beyond doubt the reprogrammability of lymphocyte by handmade cloning (HMC) protocol with a cleavage and blastocyst production rate of 56.47% ± 3.92 and 24.70% ± 3.86, respectively. PCR analysis of highly polymorphic 286 bp fragment of MHC II DRB genes of cloned embryos and three donor cells were performed to verify the cloned embryos. The amplified PCR products were subjected to SSCP to confirm their genetic identity. The karyotyping of the cloned embryos showed normal chromosomal status as expected in goat. Significantly, in the second stage of the experiment, the produced cloned embryos were successfully used to derive ntES-like cells. The rate of primary colony formation rate was 62.50% ± 4.62 for fibroblast donor cell derived embryos. The same was 60.60% ± 4.62 for putative ES donor cell derived embryos and 66.66% ± 4.62 for lymphocyte donor cell derived embryos, respectively. The putative ntES colonies were positively characterized for alkaline phosphatase, Oct-4, TRA-1-60, TRA-1-81, Sox-2, and Nanog by Immunocytochemistry and Reverse Transcription PCR. To further validate the stem ness, the produced putative ntES colonies were differentiated to embryoid bodies. Immunocytochemistry revealed that embryoid bodies expressed NESTIN specific for ectodermal lineage; GATA-4 for endodermal lineage and smooth muscle actin-I, and troponin-I specific for mesodermal lineage. The study has established an efficient protocol for putative ntES cell derivation from HMC embryos. It could be of substantial significance as patient specific ntES cells have proven therapeutic significance. Copyright © 2011 Elsevier Inc. All rights reserved.
Ren, Wei; Beebe, Stephen J
2011-04-01
Stimuli directed towards activation of apoptosis mechanisms are an attractive approach to eliminate evasion of apoptosis, a ubiquitous cancer hallmark. In these in vitro studies, kinetics and electric field thresholds for several apoptosis characteristics are defined in E4 squamous carcinoma cells (SCC) exposed to ten 300 ns pulses with increasing electric fields. Cell death was >95% at the highest electric field and coincident with phosphatidylserine externalization, caspase and calpain activation in the presence and absence of cytochrome c release, decreases in Bid and mitochondria membrane potential (Δψm) without apparent changes reactive oxygen species levels or in Bcl2 and Bclxl levels. Bid cleavage was caspase-dependent (55-60%) and calcium-dependent (40-45%). Intracellular calcium as an intrinsic mechanism and extracellular calcium as an extrinsic mechanism were responsible for about 30 and 70% of calcium dependence for Bid cleavage, respectively. The results reveal electric field-mediated cell death induction and progression, activating pro-apoptotic-like mechanisms and affecting plasma membrane and intracellular functions, primarily through extrinsic-like pathways with smaller contributions from intrinsic-like pathways. Nanosecond second pulsed electric fields trigger heterogeneous cell death mechanisms in E4 SCC populations to delete them, with caspase-associated cell death as a predominant, but not an unaccompanied event.
Inflammasome - activated gasdermin D causes pyroptosis by forming membrane pores
Liu, Xing; Zhang, Zhibin; Ruan, Jianbin; Pan, Youdong; Magupalli, Venkat Giri; Wu, Hao; Lieberman, Judy
2017-01-01
Inflammatory caspases (caspases 1, 4, 5 and 11) are activated in response to microbial infection and danger signals. When activated, they cleave mouse and human gasdermin D (GSDMD) after Asp276 and Asp275, respectively, to generate an N-terminal cleavage product (GSDMD-NT) that triggers inflammatory death (pyroptosis) and release of inflammatory cytokines such as interleukin-1β1,2. Cleavage removes the C-terminal fragment (GSDMD-CT), which is thought to fold back on GSDMD-NT to inhibit its activation. However, how GSDMD-NT causes cell death is unknown. Here we show that GSDMD-NT oligomerizes in membranes to form pores that are visible by electron microscopy. GSDMD-NT binds to phosphatidylinositol phosphates and phosphatidylserine (restricted to the cell membrane inner leaflet) and cardiolipin (present in the inner and outer leaflets of bacterial membranes). Mutation of four evolutionarily conserved basic residues blocks GSDMD-NT oligomerization, membrane binding, pore formation and pyroptosis. Because of its lipid-binding preferences, GSDMD-NT kills from within the cell, but does not harm neighbouring mammalian cells when it is released during pyroptosis. GSDMD-NT also kills cell-free bacteria in vitro and may have a direct bactericidal effect within the cytosol of host cells, but the importance of direct bacterial killing in controlling in vivo infection remains to be determined. PMID:27383986
Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores.
Liu, Xing; Zhang, Zhibin; Ruan, Jianbin; Pan, Youdong; Magupalli, Venkat Giri; Wu, Hao; Lieberman, Judy
2016-07-07
Inflammatory caspases (caspases 1, 4, 5 and 11) are activated in response to microbial infection and danger signals. When activated, they cleave mouse and human gasdermin D (GSDMD) after Asp276 and Asp275, respectively, to generate an N-terminal cleavage product (GSDMD-NT) that triggers inflammatory death (pyroptosis) and release of inflammatory cytokines such as interleukin-1β. Cleavage removes the C-terminal fragment (GSDMD-CT), which is thought to fold back on GSDMD-NT to inhibit its activation. However, how GSDMD-NT causes cell death is unknown. Here we show that GSDMD-NT oligomerizes in membranes to form pores that are visible by electron microscopy. GSDMD-NT binds to phosphatidylinositol phosphates and phosphatidylserine (restricted to the cell membrane inner leaflet) and cardiolipin (present in the inner and outer leaflets of bacterial membranes). Mutation of four evolutionarily conserved basic residues blocks GSDMD-NT oligomerization, membrane binding, pore formation and pyroptosis. Because of its lipid-binding preferences, GSDMD-NT kills from within the cell, but does not harm neighbouring mammalian cells when it is released during pyroptosis. GSDMD-NT also kills cell-free bacteria in vitro and may have a direct bactericidal effect within the cytosol of host cells, but the importance of direct bacterial killing in controlling in vivo infection remains to be determined.
Demirci, Selami; Doğan, Ayşegül; Türkmen, Neşe Başak; Telci, Dilek; Rizvanov, Albert A; Şahin, Fikrettin
2017-02-01
Prostate cancer is a multistep and complicated cancer type that is regulated by androgens at the cellular level and remains the second commonest cause of death among men. Discovery and development of novel chemotherapeutic agents enabling rapid tumor cell death with minimal toxic effects to healthy tissues might greatly improve the safety of chemotherapy. The present study evaluates the anti-cancer activity of a novel heterodinuclear copper(II)Mn(II) complex (Schiff base) in combination with poly(ethylene oxide) and poly(propylene oxide) block copolymer (Pluronic) P85. We used assays for cell proliferation, apoptosis, cell migration and invasion, DNA binding and cleavage to elucidate the molecular mechanisms of action, in addition to the anti-inflammatory potency of the new combination. The combined treatment of Schiff base and P85 lead to a remarkable anti-cancer effect on prostate cancer cell lines. Cell proliferation was inhibited in Schiff base-P85 treatment. The activity of this formulation is on DNA binding and cleavage and prevents inflammation in in vitro conditions. This is the first study presenting the anti-cancer activity of the present Schiff base derivative and its combination with P85 to treat prostate cancer in vitro. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com; Cheah, Yew-Hoong; Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur
Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action ofmore » xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.« less
Pörn-Ares, M Isabella; Saido, Takaomi C; Andersson, Tommy; Ares, Mikko P S
2003-01-01
Oxidized low-density lipoprotein (oxLDL) is known to induce apoptosis in endothelial cells, and this is believed to contribute to the progression of atherosclerosis. In the present study we made the novel observation that oxLDL-induced death of HMEC-1 cells is accompanied by activation of calpain. The mu-calpain inhibitor PD 151746 decreased oxLDL-induced cytotoxicity, whereas the general caspase inhibitor BAF (t-butoxycarbonyl-Asp-methoxyfluoromethylketone) had no effect. Also, oxLDL provoked calpain-dependent proteolysis of cytoskeletal alpha-fodrin in the HMEC-1 cells. Our observation of an autoproteolytic cleavage of the 80 kDa subunit of mu-calpain provided further evidence for an oxLDL-induced stimulation of calpain activity. The Bcl-2 protein Bid was also cleaved during oxLDL-elicited cell death, and this was prevented by calpain inhibitors, but not by inhibitors of cathepsin B and caspases. Treating the HMEC-1 cells with oxLDL did not result in detectable activation of procaspase 3 or cleavage of PARP [poly(ADP-ribose) polymerase], but it did cause polyubiquitination of caspase 3, indicating inactivation and possible degradation of this protease. Despite the lack of caspase 3 activation, oxLDL treatment led to the formation of nucleosomal DNA fragments characteristic of apoptosis. These novel results show that oxLDL initiates a calpain-mediated death-signalling pathway in endothelial cells. PMID:12775216
Planar embryos have poor prognosis in terms of blastocyst formation and implantation.
Ebner, T; Maurer, M; Shebl, O; Moser, M; Mayer, R B; Duba, H C; Tews, G
2012-09-01
Normally, day-2 embryos show a crosswise arrangement of four cells with three blastomeres lying side by side. Cleavage anomalies include embryos that are characterized by a particular planar constellation of four blastomeres with presumed incomplete cleavage. Since little is known on the developmental fate of such conceptuses, within a 10-month period all consecutive patients were screened for day-2 planar embryos. A total of 64/2070 embryos with suboptimal blastomere configuration were detected (3.1%). In conventional IVF, planar embryos were significantly less frequent (0.7%) as compared with intracytoplasmic sperm injection (2.8%; P<0.05) and cases of testicular sperm extraction (5.4%; P<0.01). Interestingly, embryos with a cleavage anomaly showed better morphology both on day 2 (P<0.005) and day 3 (P<0.001). In contrast, blastocyst formation (P<0.001) and blastocyst quality (P=NS) was higher in tetrahedral embryos. There was a significant increase in implantation rate if tetrahedral embryos could be transferred compared with when planar embryos had to be transferred (P<0.01). It may be postulated that, in planar embryos, the mitotic spindle might have been affected, e.g. sperm centrosome composition or function, which in turn might have led to the observed cleavage anomaly. Normally, day-2 embryos show a crosswise arrangement of four cells with three blastomeres lying side by side. Cleavage anomalies include more planar embryos that are characterized by a particular flat constellation of four blastomeres with presumed premature cleavage (like a tetrafoliate clover). Since little is known on the developmental fate of such embryos within a 10-month study period, all consecutive patients were screened for the presence of day-2 planar embryos (study group). A total of 64 (out of 2070) embryos with abnormal blastomere configuration were detected (3.1%). Interestingly, in conventional IVF (0.7%), the presence of planar embryos was significantly less frequent as compared with intracytoplasmic sperm injection (2.8%; P<0.05) and cases of testicular biopsy (5.4%; P<0.01). Embryos from the study group showed better morphology both on day 2 (P<0.005) and day 3 (P<0.001). In contrast, blastocyst formation (survival to day 5 of preimplantation development) was higher in the normally cleaved control group (P<0.001) and so was blastocyst quality; however, the latter parameter did not reach level of significance. This was also reflected in a significantly higher implantation rate in the control group (P<0.01). Based on present data, it may be postulated that, in planar embryos, the mitotic spindle (which involves the sperm centrosome) might have been affected, which in turn might have led to an incomplete cleavage. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Morshed, S. A.; Davies, T. F.
2016-01-01
The immunologic processes involved in Graves' disease (GD) have one unique characteristic – the autoantibodies to the TSH receptor (TSHR) – which have both linear and conformational epitopes. Three types of TSHR antibodies (stimulating, blocking, and cleavage) with different functional capabilities have been described in GD patients, which induce different signaling effects varying from thyroid cell proliferation to thyroid cell death. The establishment of animal models of GD by TSHR antibody transfer or by immunization with TSHR antigen has confirmed its pathogenic role and, therefore, GD is the result of a breakdown in TSHR tolerance. Here we review some of the characteristics of TSHR antibodies with a special emphasis on new developments in our understanding of what were previously called “neutral” antibodies and which we now characterize as autoantibodies to the “cleavage” region of the TSHR ectodomain. PMID:26361259
Precise small molecule recognition of a toxic CUG RNA repeat expansion
Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D
2017-01-01
Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)exp) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)exp. In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG)exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG)exp in its natural context. PMID:27941760
Precise small-molecule recognition of a toxic CUG RNA repeat expansion.
Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D
2017-02-01
Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG) exp ) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG) exp . In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG) exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG) exp in its natural context.
Identification of the membrane remnants of transferrin receptor with domain-specific antibodies.
Baynes, R D; Shih, Y J; Hudson, B G; Cook, J D
1994-03-01
Tissue culture studies with K562 and HL60 cells have demonstrated the production of a soluble form of transferrin receptor identical to that identified in human serum. The present study was undertaken to search for membrane remnants of the truncated receptor with peptide antibodies specific for the extracellular and cytoplasmic domain of transferrin receptor. In cell membranes, a 105K remnant was identified that is consistent with truncation of one extracellular domain monomer of the transferrin receptor. In the exosomal fraction of the culture supernatant, a smaller 20K remnant consistent with truncation of both extracellular domains was also demonstrated. These findings provide evidence that soluble receptor is the product of proteolytic cleavage of intact membrane-bound transferrin receptor. Prior studies showing that the concentration of the extracellular domain in exosomes remained stable during incubation in culture supernatant suggest that this cleavage possibly occurs intracellularly.
Retrovirus maturation-an extraordinary structural transformation.
Mattei, Simone; Schur, Florian Km; Briggs, John Ag
2016-06-01
Retroviruses such as HIV-1 assemble and bud from infected cells in an immature, non-infectious form. Subsequently, a series of proteolytic cleavages catalysed by the viral protease leads to a spectacular structural rearrangement of the viral particle into a mature form that is competent to fuse with and infect a new cell. Maturation involves changes in the structures of protein domains, in the interactions between protein domains, and in the architecture of the viral components that are assembled by the proteins. Tight control of proteolytic cleavages at different sites is required for successful maturation, and the process is a major target of antiretroviral drugs. Here we will describe what is known about the structures of immature and mature retrovirus particles, and about the maturation process by which one transitions into the other. Despite a wealth of available data, fundamental questions about retroviral maturation remain unanswered. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
The Maternal to Zygotic Transition in Mammals
Li, Lei; Lu, Xukun; Dean, Jurrien
2013-01-01
Prior to activation of the embryonic genome, the initiating events of mammalian development are under maternal control and include fertilization, the block to polyspermy and processing sperm DNA. Following gamete union, the transcriptionally inert sperm DNA is repackaged into the male pronucleus which fuses with the female pronucleus to form a 1-cell zygote. Embryonic transcription begins during the maternal to zygotic transfer of control in directing development. This transition occurs at species-specific times after one or several rounds of blastomere cleavage and is essential for normal development. However, even after activation of the embryonic genome, successful development relies on stored maternal components without which embryos fail to progress beyond initial cell divisions. Better understanding of the molecular basis of maternal to zygotic transition including fertilization, the activation of the embryonic genome and cleavage-stage development will provide insight into early human development that should translate into clinical applications for regenerative medicine and assisted reproductive technologies. PMID:23352575
Endogenous peptide profile for elucidating biosynthetic processing of the ghrelin precursor.
Tsuchiya, Takashi; Iwakura, Hiroshi; Minamino, Naoto; Kangawa, Kenji; Sasaki, Kazuki
2017-09-02
Ghrelin is an orexigenic peptide primarily produced by gastric endocrine cells. The biosynthetic cleavage site of ghrelin has been well documented, but how its downstream region undergoes proteolytic processing remains poorly explored. Here, we provide the first snapshot of endogenous peptides from the ghrelin precursor by profiling the secretopeptidome of cultured mouse ghrelin-producing cells during exocytosis. Mapping of MS/MS sequenced peptides to the precursor highlighted three atypical monobasic processing sites, including the established C-terminus of ghrelin and the N-terminal cleavage site for obestatin, a putative 23-amino-acid C-terminally amidated peptide. However, we found that mouse obestatin does not occur in the form originally reported, but that a different amidation site is used to generate a shorter peptide. These data can be extended to study and characterize the precursor-derived peptides located downstream of ghrelin in different biological contexts. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Zhiqi; Kapus, Andras; Khatri, Ismat; Kos, Olha; Zhu, Fang; Gorczynski, Reginald M
2018-06-01
In previous studies we had reported that the immunosuppressive cell membrane bound molecule CD200 is released from the cell following cleavage by matrix metalloproteases, with the released soluble CD200 acting as an immunosuppressant following binding to, and signaling through, its cognate receptor CD200R expressed on target cells. We now show that although the intracellular cytoplasmic tail (CD200 C-tail ) of CD200 has no consensus sites for adapter molecules which might signal the CD200 + cell directly, cleavage of the CD200 C-tail from the membrane region of CD200 by a consensus γ-secretase, leads to nuclear translocation and DNA binding (identified by chromatin immunoprecipitation followed by sequencing, Chip-sequencing) of the CD200 C-tail . Subsequently there occurs an altered expression of a limited number of genes, many of which are transcription factors (TFs) known to be associated with regulation of cell proliferation. Altered expression of these TFs was also prominent following transfection of CD200 + B cell lines and fresh patient CLL cells with a vector construct containing the CD200 C-tail . Artificial transfection of non CD200 + Hek293 cells with this CD200 C-tail construct resulted in altered expression of most of these same genes. Introduction of a siRNA for one of these TFs, POTEA, reversed CD200 C-tail regulation of altered cell proliferation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Denolly, Solène; Bourlet, Thomas; Amirache, Fouzia
2017-01-01
Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV) encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP). HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus. PMID:29253880
Dendritic polymer imaging systems for the evaluation of conjugate uptake and cleavage
NASA Astrophysics Data System (ADS)
Krüger, Harald R.; Nagel, Gregor; Wedepohl, Stefanie; Calderón, Marcelo
2015-02-01
Fluorescent turn-on probes combined with polymers have a broad range of applications, e.g. for intracellular sensing of ions, small molecules, or DNA. In the field of polymer therapeutics, these probes can be applied to extend the in vitro characterization of novel conjugates beyond cytotoxicity and cellular uptake studies. This is particularly true in cases in which polymer conjugates contain drugs attached by cleavable linkers. Better information on the intracellular linker cleavage and drug release would allow a faster evaluation and optimization of novel polymer therapeutic concepts. We therefore developed a fluorescent turn-on probe that enables direct monitoring of pH-mediated cleavage processes over time. This is achieved by exploiting the fluorescence resonance energy transfer (FRET) between two dyes that have been coupled to a dendritic polymer. We demonstrate the use of this probe to evaluate polymer uptake and intracellular release of cargo in a cell based microplate assay that is suitable for high throughput screening.Fluorescent turn-on probes combined with polymers have a broad range of applications, e.g. for intracellular sensing of ions, small molecules, or DNA. In the field of polymer therapeutics, these probes can be applied to extend the in vitro characterization of novel conjugates beyond cytotoxicity and cellular uptake studies. This is particularly true in cases in which polymer conjugates contain drugs attached by cleavable linkers. Better information on the intracellular linker cleavage and drug release would allow a faster evaluation and optimization of novel polymer therapeutic concepts. We therefore developed a fluorescent turn-on probe that enables direct monitoring of pH-mediated cleavage processes over time. This is achieved by exploiting the fluorescence resonance energy transfer (FRET) between two dyes that have been coupled to a dendritic polymer. We demonstrate the use of this probe to evaluate polymer uptake and intracellular release of cargo in a cell based microplate assay that is suitable for high throughput screening. Electronic supplementary information (ESI) available: Including detailed synthetic procedures of the dye and conjugate synthesis, as well as cellular uptake and inhibitor studies. See DOI: 10.1039/c4nr04467c
Agent-based modeling: case study in cleavage furrow models
Mogilner, Alex; Manhart, Angelika
2016-01-01
The number of studies in cell biology in which quantitative models accompany experiments has been growing steadily. Roughly, mathematical and computational techniques of these models can be classified as “differential equation based” (DE) or “agent based” (AB). Recently AB models have started to outnumber DE models, but understanding of AB philosophy and methodology is much less widespread than familiarity with DE techniques. Here we use the history of modeling a fundamental biological problem—positioning of the cleavage furrow in dividing cells—to explain how and why DE and AB models are used. We discuss differences, advantages, and shortcomings of these two approaches. PMID:27811328
Almalki, Sami G.; Llamas Valle, Yovani
2017-01-01
Abstract The molecular mechanisms that control the ability of adipose‐derived mesenchymal stem cells (AMSCs) to remodel three‐dimensional extracellular matrix barriers during differentiation are not clearly understood. Herein, we studied the expression of matrix metalloproteinases (MMPs) during the differentiation of AMSCs to endothelial cells (ECs) in vitro. MSCs were isolated from porcine abdominal adipose tissue, and characterized by immunopositivity to CD44, CD90, CD105, and immunonegativity to CD14 and CD45. Plasticity of AMSCs was confirmed by multilineage differentiation. The mRNA transcripts for MMPs and Tissue Inhibitor of Metalloproteinases (TIMPs), and protein expression of EC markers were analyzed. The enzyme activity and protein expression were analyzed by gelatin zymography, enzyme‐linked immunosorbent assay (ELISA), and Western blot. The differentiation of AMSCs to ECs was confirmed by mRNA and protein expressions of the endothelial markers. The mRNA transcripts for MMP‐2 and MMP‐14 were significantly increased during the differentiation of MSCs into ECs. Findings revealed an elevated MMP‐14 and MMP‐2 expression, and MMP2 enzyme activity. Silencing of MMP‐2 and MMP‐14 significantly increased the expression of EC markers, formation of capillary tubes, and acetylated‐low‐density lipoprotein uptake, and decreased the cleavage of vascular endothelial growth factor receptor type 2 (VEGFR2). Inhibition of VEGFR2 significantly decreased the expression of EC markers. These novel findings demonstrate that the upregulation of MMP2 and MMP14 has an inhibitory effect on the differentiation of AMSCs to ECs, and silencing these MMPs inhibit the cleavage of VEGFR2 and stimulate the differentiation of AMSCs to ECs. These findings provide a potential mechanism for the regulatory role of MMP‐2 and MMP‐14 in the re‐endothelialization of coronary arteries following intervention. Stem Cells Translational Medicine 2017;6:1385–1398 PMID:28213979
Altered Regulation of ELAVL1/HuR in HLA-B27–Expressing U937 Monocytic Cells
Sahlberg, Anna S.; Ruuska, Marja; Granfors, Kaisa; Penttinen, Markus A.
2013-01-01
Objective To investigate the role of HLA-B27 expression in the regulation of RNA binding protein (RBP) Embryonic Lethal Abnormal Vision (ELAV) L1/Human antigen R (HuR) expression in Salmonella-infected or LPS-stimulated human monocytic cells, since HuR is a critical regulator of the post-transcriptional fate of many genes (e.g. TNFα) important in inflammatory response. Methods U937 monocytic cells were stably transfected with pSV2neo resistant vector (mock), wild type HLA–B27, or mutated HLA–B27 with amino acid substitutions in the B pocket. Cells were differentiated, infected with Salmonella enteritidis or stimulated with lipopolysaccharide. The expression levels of HuR protein and cleavage products (CP1 and CP2) were detected by Western blotting and flow cytometry. Specific inhibitors were used to study the role of PKR and p38 in HuR expression and generation of CPs. TNFα and IL-10 secretion after p38 and PKR inhibition were measured by ELISA. Results Full length HuR is overexpressed and HuR cleavage is disturbed in U937 monocytic cells expressing HLA-B27 heavy chains (HC). Increased full length HuR expression, disturbed cleavage and reduced dependence on PKR after infection correlate with the expression of glutamic acid 45 in the B pocket that is linked to the misfolding of HLA-B27. Conclusion Results show that the expression of HLA-B27 HCs modulates the intracellular environment of U937 monocyte/macrophages by altering HuR regulation. This phenomenon is at least partly dependent on the misfolding feature of the B27 molecule. Since HuR is an important regulator of multiple genes involved in inflammatory response observations offer an explanation how HLA-B27 may modulate inflammatory response. PMID:23894643
Khan, Saman; Malla, Ali Mohammed; Zafar, Atif
2017-01-01
Despite substantial research on cancer therapeutics, systemic toxicity and drug-resistance limits the clinical application of many drugs like cisplatin. Therefore, new chemotherapeutic strategies against different malignancies are needed. Targeted cancer therapy is a new paradigm for cancer therapeutics which targets pathways or chemical entities specific to cancer cells than normal ones. Unlike normal cells, cancer cells contain elevated copper which plays an integral role in angiogenesis. Copper is an important metal ion associated with chromatin DNA, particularly with guanine. Thus, targeting copper via copper-specific chelators in cancer cells can serve as an effective anticancer strategy. New pharmacophore di(2-picolyl)amine (DPA)-3(bromoacetyl) coumarin (ligand-L) was synthesized and characterized by IR, ESI-MS, 1H- and 13C-NMR. Binding ability of ligand-L to DNA/Cu(II) was evaluated using a plethora of biophysical techniques which revealed ligand-L-DNA and ligand-L-Cu(II) interaction. Competitive displacement assay and docking confirmed non-intercalative binding mode of ligand-L with ctDNA. Cyclic voltammetry confirmed ligand-L causes quasi reversible Cu(II)/Cu(I) conversion. Further, acute toxicity studies revealed no toxic effects of ligand-L on mice. To evaluate the chemotherapeutic potential and anticancer mechanism of ligand-L, DNA damage via pBR322 cleavage assay and reactive oxygen species (ROS) generation were studied. Results demonstrate that ligand-L causes DNA cleavage involving ROS generation in the presence of Cu(II). In conclusion, ligand-L causes redox cycling of Cu(II) to generate ROS which leads to oxidative DNA damage and pro-oxidant cancer cell death. These findings will establish ligand-L as a lead molecule to synthesize new molecules with better copper chelating and pro-oxidant properties against different malignancies. PMID:28763458
Bale, Shridhar; Martiné, Alexandra; Wilson, Richard; Behrens, Anna-Janina; Le Fourn, Valérie; de Val, Natalia; Sharma, Shailendra K.; Tran, Karen; Torres, Jonathan L.; Girod, Pierre-Alain; Ward, Andrew B.; Crispin, Max; Wyatt, Richard T.
2018-01-01
Native flexibly linked (NFL) HIV-1 envelope glycoprotein (Env) trimers are cleavage-independent and display a native-like, well-folded conformation that preferentially displays broadly neutralizing determinants. The NFL platform simplifies large-scale production of Env by eliminating the need to co-transfect the precursor-cleaving protease, furin that is required by the cleavage-dependent SOSIP trimers. Here, we report the development of a CHO-M cell line that expressed BG505 NFL trimers at a high level of homogeneity and yields of ~1.8 g/l. BG505 NFL trimers purified by single-step lectin-affinity chromatography displayed a native-like closed structure, efficient recognition by trimer-preferring bNAbs, no recognition by non-neutralizing CD4 binding site-directed and V3-directed antibodies, long-term stability, and proper N-glycan processing. Following negative-selection, formulation in ISCOMATRIX adjuvant and inoculation into rabbits, the trimers rapidly elicited potent autologous tier 2 neutralizing antibodies. These antibodies targeted the N-glycan “hole” naturally present on the BG505 Env proximal to residues at positions 230, 241, and 289. The BG505 NFL trimers that did not expose V3 in vitro, elicited low-to-no tier 1 virus neutralization in vivo, indicating that they remained intact during the immunization process, not exposing V3. In addition, BG505 NFL and BG505 SOSIP trimers expressed from 293F cells, when formulated in Adjuplex adjuvant, elicited equivalent BG505 tier 2 autologous neutralizing titers. These titers were lower in potency when compared to the titers elicited by CHO-M cell derived trimers. In addition, increased neutralization of tier 1 viruses was detected. Taken together, these data indicate that both adjuvant and cell-type expression can affect the elicitation of tier 2 and tier 1 neutralizing responses in vivo.
Yang, Ying-Jie; Wang, Ye; Li, Zhi-Feng; Gong, Ya; Zhang, Peng; Hu, Wen-Chao; Sheng, Duo-Hong; Li, Yue-Zhong
2017-08-16
The CRISPR/Cas9 system is a powerful tool for genome editing, in which the sgRNA binds and guides the Cas9 protein for the sequence-specific cleavage. The protocol is employable in different organisms, but is often limited by cell damage due to the endonuclease activity of the introduced Cas9 and the potential off-target DNA cleavage from incorrect guide by the 20 nt spacer. In this study, after resolving some critical limits, we have established an efficient CRISPR/Cas9 system for the deletion of large genome fragments related to the biosynthesis of secondary metabolites in Myxococcus xanthus cells. We revealed that the high expression of a codon-optimized cas9 gene in M. xanthus was cytotoxic, and developed a temporally high expression strategy to reduce the cell damage from high expressions of Cas9. We optimized the deletion protocol by using the tRNA-sgRNA-tRNA chimeric structure to ensure correct sgRNA sequence. We found that, in addition to the position-dependent nucleotide preference, the free energy of a 20 nt spacer was a key factor for the deletion efficiency. By using the developed protocol, we achieved the CRISPR/Cas9-induced deletion of large biosynthetic gene clusters for secondary metabolites in M. xanthus DK1622 and its epothilone-producing mutant. The findings and the proposals described in this paper were suggested to be workable in other organisms, for example, other Gram negative bacteria with high GC content.
Parkinson, Leigh G; Toro, Ana; Zhao, Hongyan; Brown, Keddie; Tebbutt, Scott J; Granville, David J
2015-02-01
Extracellular matrix (ECM) degradation is a hallmark of many chronic inflammatory diseases that can lead to a loss of function, aging, and disease progression. Ultraviolet light (UV) irradiation from the sun is widely considered as the major cause of visible human skin aging, causing increased inflammation and enhanced ECM degradation. Granzyme B (GzmB), a serine protease that is expressed by a variety of cells, accumulates in the extracellular milieu during chronic inflammation and cleaves a number of ECM proteins. We hypothesized that GzmB contributes to ECM degradation in the skin after UV irradiation through both direct cleavage of ECM proteins and indirectly through the induction of other proteinases. Wild-type and GzmB-knockout mice were repeatedly exposed to minimal erythemal doses of solar-simulated UV irradiation for 20 weeks. GzmB expression was significantly increased in wild-type treated skin compared to nonirradiated controls, colocalizing to keratinocytes and to an increased mast cell population. GzmB deficiency significantly protected against the formation of wrinkles and the loss of dermal collagen density, which was related to the cleavage of decorin, an abundant proteoglycan involved in collagen fibrillogenesis and integrity. GzmB also cleaved fibronectin, and GzmB-mediated fibronectin fragments increased the expression of collagen-degrading matrix metalloproteinase-1 (MMP-1) in fibroblasts. Collectively, these findings indicate a significant role for GzmB in ECM degradation that may have implications in many age-related chronic inflammatory diseases. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Huet, Eric; Vallée, Benoit; Delbé, Jean; Mourah, Samia; Prulière-Escabasse, Virginie; Tremouilleres, Magali; Kadomatsu, Kenji; Doan, Serge; Baudouin, Christophe; Menashi, Suzanne; Gabison, Eric E
2011-09-01
Dry eye is a common disease that develops as a result of alteration of tear fluid, leading to osmotic stress and a perturbed epithelial barrier. Matrix metalloproteinase-9 (MMP-9) may be important in dry eye disease, as its genetic knockout conferred resistance to the epithelial disruption. We show that extracellular matrix metalloproteinase inducer (EMMPRIN; also termed CD147), an inducer of MMP expression, participates in the pathogenesis of dry eye through MMP-mediated cleavage of occludin, an important component of tight junctions. EMMPRIN expression was increased on the ocular surface of dry eye patients and correlated with those of MMP-9. High osmolarity in cell culture, mimicking dry eye conditions, increased both EMMPRIN and MMP-9 and resulted in the disruption of epithelial junctions through the cleavage of occludin. Exogenously added recombinant EMMPRIN had similar effects that were abrogated in the presence of the MMP inhibitor marimastat. Membrane occludin immunostaining was markedly increased in the apical corneal epithelium of both EMMPRIN and MMP-9 knock-out mice. Furthermore, an inverse correlation between EMMPRIN and occludin membrane staining was consistently observed both in vitro and in vivo as a function of corneal epithelial cells differentiation. These data suggest a possible role of EMMPRIN in regulating the amount of occludin at the cell surface in homeostasis beyond pathological situations such as dry eye disease, and EMMPRIN may be essential for the formation and maintenance of organized epithelial structure. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Sang Hyeok; Seo, Sung-Keum; An, Sungkwan
Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lungmore » cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.« less
Yang, Hanjiang; Wahlmüller, Felix Christof; Sarg, Bettina; Furtmüller, Margareta; Geiger, Margarethe
2015-01-01
Protein C inhibitor (PCI) is a serpin with broad protease reactivity. It binds glycosaminoglycans and certain phospholipids that can modulate its inhibitory activity. PCI can penetrate through cellular membranes via binding to phosphatidylethanolamine. The exact mechanism of PCI internalization and the intracellular role of the serpin are not well understood. Here we showed that testisin, a glycosylphosphatidylinositol-anchored serine protease, cleaved human PCI and mouse PCI (mPCI) at their reactive sites as well as at sites close to their N terminus. This cleavage was observed not only with testisin in solution but also with cell membrane-anchored testisin on U937 cells. The cleavage close to the N terminus released peptides rich in basic amino acids. Synthetic peptides corresponding to the released peptides of human PCI (His1–Arg11) and mPCI (Arg1–Ala18) functioned as cell-penetrating peptides. Because intact mPCI but not testisin-cleaved mPCI was internalized by Jurkat T cells, a truncated mPCI mimicking testisin-cleaved mPCI was created. The truncated mPCI lacking 18 amino acids at the N terminus was not taken up by Jurkat T cells. Therefore our model suggests that testisin or other proteases could regulate the internalization of PCI by removing its N terminus. This may represent one of the mechanisms regulating the intracellular functions of PCI. PMID:25488662
Epothilone B induces extrinsic pathway of apoptosis in human SKOV-3 ovarian cancer cells.
Rogalska, Aneta; Gajek, Arkadiusz; Marczak, Agnieszka
2014-06-01
The molecular mechanisms underlying epothilone B (EpoB) induced apoptosis were investigated in SKOV-3 human ovarian cancer cells. The aim of this research was to compare EpoB's, which belongs to the new class of anticancer drugs, with paclitaxel's (PTX) ability to induce apoptosis. The mode of cell death was assessed colorimetrically, fluorimetrically and by immunoblot analyses through measuring DNA fragmentation, the level of intracellular calcium, the level of cytochrome c, TRAIL, the cleavage of poly(ADP-ribose) polymerase (PARP) and the activation of caspase-9, -8 and -3. EpoB leads to an increase of the cytosolic level of cytochrome c after 4 h of cell treatment. After 24 and 48 h of cell treatment the level of intracellular calcium also increased by about 21% and 24% respectively. Moreover, EpoB, similarly to PTX, promoted the expression of TRAIL in lymphocytes, although high TRAIL expression on tumor cells was detected only after adding EpoB to SKOV-3 cells. EpoB mediates caspases-8 and -3 activation, which is independent of the reduction in the amount of caspase-9. Epitope-specific monoclonal and polyclonal antibodies revealed characteristic apoptotic changes that included cleavage of the 116 kDa PARP polypeptide to 25 kDa fragments. The results of our study show that EpoB induces mainly the extrinsic pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.
2013-01-01
Background There is growing evidence indicating the insulin-like growth factor 1 receptor (IGF-1R) plays a critical role in the progression of human colorectal carcinomas. IGF-1R is an attractive drug target for the treatment of colon cancer. Picropodophyllin (PPP), of the cyclolignan family, has recently been identified as an IGF-1R inhibitor. The aim of this study is to determine the therapeutic response and mechanism after colorectal carcinoma treatment with PPP. Methods Seven colorectal carcinoma cell lines were treated with PPP. Following treatment, cells were analyzed for growth by a cell viability assay, sub-G1 apoptosis by flow cytometry, caspase cleavage and activation of AKT and extracellular signal-regulated kinase (ERK) by western blot analysis. To examine the in vivo therapeutic efficacy of PPP, mice implanted with human colorectal carcinoma xenografts underwent PPP treatment. Results PPP treatment blocked the phosphorylation of IGF-1R, AKT and ERK and inhibited the growth of TP53 wild-type but not mutated colorectal carcinoma cell lines. The treatment of PPP also induced apoptosis in TP53 wild-type cells as evident by the presence of sub-G1 cells and the cleavage of caspase-9, caspase-3, DNA fragmentation factor-45 (DFF45), poly (ADP-ribose) polymerase (PARP), and X-linked inhibitor of apoptosis protein (XIAP). The loss of BAD phosphorylation in the PPP-treated TP53 wild type cells further suggested that the treatment induced apoptosis through the BAD-mediated mitochondrial pathway. In contrast, PPP treatment failed to induce the phosphorylation of AKT and ERK and caspase cleavage in TP53 mutated colorectal carcinoma cell lines. Finally, PPP treatment suppressed the growth of xenografts derived from TP53 wild type but not mutated colorectal carcinoma cells. Conclusions We report the association of TP53 mutations with the resistance of treatment of colorectal carcinoma cells in culture and in a xenograft mouse model with the IGF-1R inhibitor PPP. TP53 mutations often occur in colorectal carcinomas and could be used as a biomarker to predict the resistance of colorectal carcinomas to the treatment by this IGF-1R inhibitor. PMID:24182354
Tarr, Sarah J; Cryar, Adam; Thalassinos, Konstantinos; Haldar, Kasturi; Osborne, Andrew R
2013-01-01
The malaria parasite exports proteins across its plasma membrane and a surrounding parasitophorous vacuole membrane, into its host erythrocyte. Most exported proteins contain a Host Targeting motif (HT motif) that targets them for export. In the parasite secretory pathway, the HT motif is cleaved by the protease plasmepsin V, but the role of the newly generated N-terminal sequence in protein export is unclear. Using a model protein that is cleaved by an exogenous viral protease, we show that the new N-terminal sequence, normally generated by plasmepsin V cleavage, is sufficient to target a protein for export, and that cleavage by plasmepsin V is not coupled directly to the transfer of a protein to the next component in the export pathway. Mutation of the fourth and fifth positions of the HT motif, as well as amino acids further downstream, block or affect the efficiency of protein export indicating that this region is necessary for efficient export. We also show that the fifth position of the HT motif is important for plasmepsin V cleavage. Our results indicate that plasmepsin V cleavage is required to generate a new N-terminal sequence that is necessary and sufficient to mediate protein export by the malaria parasite. PMID:23279267
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Nicholas D., E-mail: nweber@fhcrc.org; Department of Laboratory Medicine, University of Washington, Seattle, WA 98195; Aubert, Martine, E-mail: maubert@fhcrc.org
Treatment for most persistent viral infections consists of palliative drug options rather than curative approaches. This is often because long-lasting viral DNA in infected cells is not affected by current antivirals, providing a source for viral persistence and reactivation. Targeting latent viral DNA itself could therefore provide a basis for novel curative strategies. DNA cleavage enzymes can be used to induce targeted mutagenesis of specific genes, including those of exogenous viruses. Although initial in vitro and even in vivo studies have been carried out using DNA cleavage enzymes targeting various viruses, many questions still remain concerning the feasibility of thesemore » strategies as they transition into preclinical research. Here, we review the most recent findings on DNA cleavage enzymes for human viral infections, consider the most relevant animal models for several human viral infections, and address issues regarding safety and enzyme delivery. Results from well-designed in vivo studies will ideally provide answers to the most urgent remaining questions, and allow continued progress toward clinical application. - Highlights: • Recent in vitro and in vivo results for DNA cleavage enzymes targeting persistent viral infections. • Analysis of the best animal models for testing enzymes for HBV, HSV, HIV and HPV. • Challenges facing in vivo delivery of therapeutic enzymes for persistent viral infections. • Safety issues to be addressed with proper animal studies.« less
Bleomycin Can Cleave an Oncogenic Noncoding RNA.
Angelbello, Alicia J; Disney, Matthew D
2018-01-04
Noncoding RNAs are pervasive in cells and contribute to diseases such as cancer. A question in biomedical research is whether noncoding RNAs are targets of medicines. Bleomycin is a natural product that cleaves DNA; however, it is known to cleave RNA in vitro. Herein, an in-depth analysis of the RNA cleavage preferences of bleomycin A5 is presented. Bleomycin A5 prefers to cleave RNAs with stretches of AU base pairs. Based on these preferences and bioinformatic analysis, the microRNA-10b hairpin precursor was identified as a potential substrate for bleomycin A5. Both in vitro and cellular experiments demonstrated cleavage. Importantly, chemical cleavage by bleomycin A5 in the microRNA-10b hairpin precursors occurred near the Drosha and Dicer enzymatic processing sites and led to destruction of the microRNA. Evidently, oncogenic noncoding RNAs can be considered targets of cancer medicines and might elicit their pharmacological effects by targeting noncoding RNA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chaumeil, Julie; Micsinai, Mariann; Ntziachristos, Panagiotis; Deriano, Ludovic; Wang, Joy M-H; Ji, Yanhong; Nora, Elphege P.; Rodesch, Matthew J.; Jeddeloh, Jeffrey A.; Aifantis, Iannis; Kluger, Yuval; Schatz, David G.; Skok, Jane A.
2013-01-01
SUMMARY V(D)J recombination is essential for generating a diverse array of B and T cell receptors that can recognize and combat foreign antigen. As with any recombination event, tight control is essential to prevent the occurrence of genetic anomalies that drive cellular transformation. One important aspect of regulation is directed targeting of the RAG recombinase. Indeed, RAG accumulates at the 3’ end of individual antigen receptor loci poised for rearrangement, however, it is not known whether focal binding is involved in regulating cleavage, and what mechanisms lead to enrichment of RAG in this region. Here we show that mono-allelic looping out of the 3’ end of Tcra, coupled with transcription and increased chromatin/nuclear accessibility, are linked to focal RAG binding and ATM-mediated regulated mono-allelic cleavage on looped out 3’ regions. Our data identify higher order loop formation as a key determinant of directed RAG targeting and the maintenance of genome stability. PMID:23416051
Electrochemistry-Assisted Top-Down Characterization of Disulfide-Containing Proteins
Zhang, Yun; Cui, Weidong; Zhang, Hao; Dewald, Howard D.; Chen, Hao
2013-01-01
Covalent disulfide bond linkage in a protein represents an important challenge for mass spectrometry (MS)-based top-down protein structure analysis as it reduces the backbone cleavage efficiency for MS/MS dissociation. This study presents a strategy for solving this critical issue via integrating electrochemistry (EC) online with top-down MS approach. In this approach, proteins undergo electrolytic reduction in an electrochemical cell to break disulfide bonds and then online ionized into gaseous ions for analysis by electron-capture dissociation (ECD) and collision-induced dissociation (CID). The electrochemical reduction of proteins allows to remove disulfide bond constraints and also leads to increased charge numbers of the resulting protein ions. As a result, sequence coverage was significantly enhanced, as exemplified by β-lactoglobulin A (24 vs. 73 backbone cleavages before and after electrolytic reduction, respectively) and lysozyme (5 vs. 66 backbone cleavages before and after electrolytic reduction, respectively). This methodology is fast and does not need chemical reductants, which would have an important impact in high-throughput proteomics research. PMID:22448817
Electrochemistry-assisted top-down characterization of disulfide-containing proteins.
Zhang, Yun; Cui, Weidong; Zhang, Hao; Dewald, Howard D; Chen, Hao
2012-04-17
Covalent disulfide bond linkage in a protein represents an important challenge for mass spectrometry (MS)-based top-down protein structure analysis as it reduces the backbone cleavage efficiency for MS/MS dissociation. This study presents a strategy for solving this critical issue via integrating electrochemistry (EC) online with a top-down MS approach. In this approach, proteins undergo electrolytic reduction in an electrochemical cell to break disulfide bonds and then undergo online ionization into gaseous ions for analysis by electron-capture dissociation (ECD) and collision-induced dissociation (CID). The electrochemical reduction of proteins allows one to remove disulfide bond constraints and also leads to increased charge numbers of the resulting protein ions. As a result, sequence coverage was significantly enhanced, as exemplified by β-lactoglobulin A (24 vs 75 backbone cleavages before and after electrolytic reduction, respectively) and lysozyme (5 vs 66 backbone cleavages before and after electrolytic reduction, respectively). This methodology is fast and does not need chemical reductants, which would have an important impact in high-throughput proteomics research.
Gu, Cheng-Zhen; Lv, Jun-Jiang; Zhang, Xiao-Xia; Yan, Hui; Zhu, Hong-Tao; Luo, Huai-Rong; Wang, Dong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun
2015-06-01
Nine new minor dehydrogenated and cleavaged dammarane-type triterpenoid saponins, namely notoginsenosides ST6-ST14 (1-9) were isolated from the steamed roots of Panax notoginseng, together with 14 known ones. Among them, 5-7 and 21-22 were protopanaxadiol type and the left 18 compounds, including 1-4, 8-20, and 23 were protopanaxatriol type saponins. Their structures were identified by extensive analysis of MS, 1D and 2D NMR spectra, and acidic hydrolysis. Resulted from the side chain cleavage, the new saponins 1 and 2 featured in a ketone group at C-25, and 3-5 had an aldehyde unit at C-23. The known saponins 12, 16 and 18 displayed the enhancing potential of neurite outgrowth of NGF-mediated PC12 cells at a concentration of 10 μM, while 20 exhibited acetyl cholinesterase inhibitory activity, with IC50 value of 13.97 μM. Copyright © 2015 Elsevier B.V. All rights reserved.
Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)
2015-12-01
expression, increased cell proliferation and increased tumor growth in an in vivo mouse xenograft . [13]. However, Pcf11 did not have any effect on the...miRNA Regulation through Alternative Polyadenylation in Glioblastoma . (Selected for Plenary talk). Symposia on Cancer research, 2014. Illuminating...Albrecht T.R., Li W., Shyu A-B., and Wagner, E.J. CFlm25 Links Global change in APA to Cell Growth Control and Glioblastoma Survival. Abstract
Rosiglitazone enhances the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Shu-Jun, E-mail: chiusj@mail.tcu.edu.tw; Institute of Radiation Sciences, Tzu Chi Technology College, Hualien, Taiwan; Hsaio, Ching-Hui
2010-04-09
Combined-modality treatment has improved the outcome in cases of various solid tumors, and radiosensitizers are used to enhance the radiotherapeutic efficiency. Rosiglitazone, a synthetic ligand of peroxisome proliferator-activated receptors {gamma} used in the treatment of type-2 diabetes, has been shown to reduce tumor growth and metastasis in human cancer cells, and may have the potential to be used as a radiosensitizer in radiotherapy for human colorectal cancer cells. In this study, rosiglitazone treatment significantly reduced the cell viability of p53-wild type HCT116 cells but not p53-mutant HT-29 cells. Interestingly, rosiglitazone pretreatment enhanced radiosensitivity in p53-mutant HT-29 cells but not HCT116more » cells, and prolonged radiation-induced G{sub 2}/M arrest and enhanced radiation-induced cell growth inhibition in HT-29 cells. Pretreatment with rosiglitazone also suppressed radiation-induced H2AX phosphorylation in response to DNA damage and AKT activation for cell survival; on the contrary, rosiglitazone pretreatment enhanced radiation-induced caspase-8, -9, and -3 activation and PARP cleavage in HT-29 cells. In addition, pretreatment with a pan-caspase inhibitor, zVAD-fmk, attenuated the levels of caspase-3 activation and PARP cleavage in radiation-exposed cancer cells in combination with rosiglitazone pretreatment. Our results provide proof for the first time that rosiglitazone suppresses radiation-induced survival signals and DNA damage response, and enhances the radiation-induced apoptosis signaling cascade. These findings can assist in the development of rosiglitazone as a novel radiosensitizer.« less
2007-02-05
lines. Three regulatory mechanisms have been examined in our laboratory: antisense inhibition, ribozyme cleavage, and RNA interference (RNAi...cell lines. However, the latter two regulatory mechanisms, ribozyme -based inactivation and RNAi-mediated silencing, demonstrated significant activity...in these cell lines as is briefly described below. Microswitches responsive to the small molecule theophylline and targeting GFP based on a ribozyme
Daniel J. Yelle; Prasad Kaparaju; Christopher G. Hunt; Kolby Hirth; Hoon Kim; John Ralph; Claus Felby
2012-01-01
Solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy of plant cell walls is a powerful tool for characterizing changes in cell wall chemistry during the hydrothermal pretreatment process of wheat straw for second-generation bioethanol production. One-bond 13C-1H NMR correlation spectroscopy, via...
Caspase cleavage of viral proteins, another way for viruses to make the best of apoptosis.
Richard, A; Tulasne, D
2012-03-08
Viral infection constitutes an unwanted intrusion that needs to be eradicated by host cells. On one hand, one of the first protective barriers set up to prevent viral replication, spread or persistence involves the induction of apoptotic cell death that aims to limit the availability of the cellular components for viral amplification. On the other hand, while they completely depend on the host molecular machinery, viruses also need to evade the cellular responses that are meant to destroy them. The existence of numerous antiapoptotic products within the viral kingdom proves that apoptosis constitutes a major threat that should better be bypassed. Among the different strategies developed to deal with apoptosis, one is based on what viruses do best: backfiring the cell on itself. Several unrelated viruses have been described to take advantage of apoptosis induction by expressing proteins targeted by caspases, the key effectors of apoptotic cell death. Caspase cleavage of these proteins results in various consequences, from logical apoptosis inhibition to more surprising enhancement or attenuation of viral replication. The present review aims at discussing the characterization and relevance of this post-translational modification that adds a new complexity in the already intricate host-apoptosis-virus triangle.
Fatehi, A N; Bevers, M M; Schoevers, E; Roelen, B A J; Colenbrander, B; Gadella, B M
2006-01-01
The main goal of this study was to investigate whether and at what level damage of paternal DNA influences fertilization of oocytes and early embryonic development. We hypothesized that posttesticular sperm DNA damage will only marginally affect sperm physiology due to the lack of gene expression, but that it will affect embryo development at the stage that embryo genome (including the paternal damaged DNA) expression is initiated. To test this, we artificially induced sperm DNA damage by irradiation with x- or gamma rays (doses of 0-300 Gy). Remarkably, sperm cells survived the irradiation quite well and, when compared with nonirradiated cells, sperm motility and integrity of plasma membrane, acrosome, and mitochondria were not altered by this irradiation treatment. In contrast, a highly significant logarithmic relation between irradiation dose and induced DNA damage to sperm cells was found by both terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) and the acridin orange assay. Despite the DNA damage, irradiated sperm cells did not show any sign of apoptosis (nuclear fragmentation, depolarization of inner mitochondrial membranes, or phospholipid scrambling) and were normally capable of fertilizing oocytes, as there was no reduction in cleavage rates when compared with nonirradiated sperm samples up to irradiation doses of less than 10 Gy. Further embryonic development was completely blocked as the blastocyst rates at days 7 and 9 dropped from 28% (nonirradiated sperm) to less than 3% by greater than 2.5-Gy-irradiated sperm. This block in embryonic development was accompanied with the initiation of apoptosis after the second or third cleavage. Specific signs of apoptosis, such as nuclear fragmentation and aberrations in spindle formation, were observed in all embryos resulting from in vitro fertilization with irradiated sperm (irradiation doses >1.25 Gy). The results show that sperm DNA damage does not impair fertilization of the oocyte or completion of the first 2-3 cleavages, but blocks blastocyst formation by inducing apoptosis. Embryos produced by assisted reproductive techniques (ART) could have incorporated aberrant paternal DNA (frequently detected in sperm of sub/infertile males). Analogously, in the present work, we discuss the possibility of following embryo development of oocytes fertilized by ART through the blastocyst stage before embryo transfer into the uterus in order to reduce risks of reproductive failure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jin; Ye, Feng; Dan, Guorong
Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O{sup 6}-methylguanine–DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPCmore » was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1 h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24 h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. - Highlights: • Nitrogen mustard-induced MGMT-DNA cross-linking was detected in a living cell. • Concentration- and time-dependent manners of MGMT-DNA cross-linking were revealed. • Proteolysis played an important role in protein (MGMT)-DNA cross-linking repair. • DVC1 acts as a proteolytic enzyme in cross-linking repair in a p97-dependent manner.« less
Jang, Jinsil; Jeong, Soo-Jin; Kwon, Hee-Young; Jung, Ji Hoon; Sohn, Eun Jung; Lee, Hyo-Jung; Kim, Ji-Hyun; Kim, Sun-Hee; Kim, Jin Hyoung; Kim, Sung-Hoon
2013-01-01
Background. Combination cancer therapy is one of the attractive approaches to overcome drug resistance of cancer cells. In the present study, we investigated the synergistic effect of decursin from Angelica gigas and doxorubicin on the induction of apoptosis in three human multiple myeloma cells. Methodology/Principal Findings. Combined treatment of decursin and doxorubicin significantly exerted significant cytotoxicity compared to doxorubicin or decursin in U266, RPMI8226, and MM.1S cells. Furthermore, the combination treatment enhanced the activation of caspase-9 and -3, the cleavage of PARP, and the sub G1 population compared to either drug alone in three multiple myeloma cells. In addition, the combined treatment downregulated the phosphorylation of mTOR and its downstream S6K1 and activated the phosphorylation of ERK in three multiple myeloma cells. Furthermore, the combined treatment reduced mitochondrial membrane potential, suppressed the phosphorylation of JAK2, STAT3, and Src, activated SHP-2, and attenuated the expression of cyclind-D1 and survivin in U266 cells. Conversely, tyrosine phosphatase inhibitor pervanadate reversed STAT3 inactivation and also PARP cleavage and caspase-3 activation induced by combined treatment of doxorubicin and decursin in U266 cells. Conclusions/Significance. Overall, the combination treatment of decursin and doxorubicin can enhance apoptotic activity via mTOR and/or STAT3 signaling pathway in multiple myeloma cells. PMID:23818927
Jang, Jinsil; Jeong, Soo-Jin; Kwon, Hee-Young; Jung, Ji Hoon; Sohn, Eun Jung; Lee, Hyo-Jung; Kim, Ji-Hyun; Kim, Sun-Hee; Kim, Jin Hyoung; Kim, Sung-Hoon
2013-01-01
Background. Combination cancer therapy is one of the attractive approaches to overcome drug resistance of cancer cells. In the present study, we investigated the synergistic effect of decursin from Angelica gigas and doxorubicin on the induction of apoptosis in three human multiple myeloma cells. Methodology/Principal Findings. Combined treatment of decursin and doxorubicin significantly exerted significant cytotoxicity compared to doxorubicin or decursin in U266, RPMI8226, and MM.1S cells. Furthermore, the combination treatment enhanced the activation of caspase-9 and -3, the cleavage of PARP, and the sub G1 population compared to either drug alone in three multiple myeloma cells. In addition, the combined treatment downregulated the phosphorylation of mTOR and its downstream S6K1 and activated the phosphorylation of ERK in three multiple myeloma cells. Furthermore, the combined treatment reduced mitochondrial membrane potential, suppressed the phosphorylation of JAK2, STAT3, and Src, activated SHP-2, and attenuated the expression of cyclind-D1 and survivin in U266 cells. Conversely, tyrosine phosphatase inhibitor pervanadate reversed STAT3 inactivation and also PARP cleavage and caspase-3 activation induced by combined treatment of doxorubicin and decursin in U266 cells. Conclusions/Significance. Overall, the combination treatment of decursin and doxorubicin can enhance apoptotic activity via mTOR and/or STAT3 signaling pathway in multiple myeloma cells.
Signal peptide discrimination and cleavage site identification using SVM and NN.
Kazemian, H B; Yusuf, S A; White, K
2014-02-01
About 15% of all proteins in a genome contain a signal peptide (SP) sequence, at the N-terminus, that targets the protein to intracellular secretory pathways. Once the protein is targeted correctly in the cell, the SP is cleaved, releasing the mature protein. Accurate prediction of the presence of these short amino-acid SP chains is crucial for modelling the topology of membrane proteins, since SP sequences can be confused with transmembrane domains due to similar composition of hydrophobic amino acids. This paper presents a cascaded Support Vector Machine (SVM)-Neural Network (NN) classification methodology for SP discrimination and cleavage site identification. The proposed method utilises a dual phase classification approach using SVM as a primary classifier to discriminate SP sequences from Non-SP. The methodology further employs NNs to predict the most suitable cleavage site candidates. In phase one, a SVM classification utilises hydrophobic propensities as a primary feature vector extraction using symmetric sliding window amino-acid sequence analysis for discrimination of SP and Non-SP. In phase two, a NN classification uses asymmetric sliding window sequence analysis for prediction of cleavage site identification. The proposed SVM-NN method was tested using Uni-Prot non-redundant datasets of eukaryotic and prokaryotic proteins with SP and Non-SP N-termini. Computer simulation results demonstrate an overall accuracy of 0.90 for SP and Non-SP discrimination based on Matthews Correlation Coefficient (MCC) tests using SVM. For SP cleavage site prediction, the overall accuracy is 91.5% based on cross-validation tests using the novel SVM-NN model. © 2013 Published by Elsevier Ltd.
Two-Dimensional Cadmium Chloride Nanosheets in Cadmium Telluride Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, Craig L.; Beall, Carolyn; Reese, Matthew O.
In this paper we make use of a liquid nitrogen-based thermomechanical cleavage technique and a surface analysis cluster tool to probe in detail the tin oxide/emitter interface at the front of completed CdTe solar cells. We show that this thermomechanical cleavage occurs within a few angstroms of the SnO 2/emitter interface. An unexpectedly high concentration of chlorine at this interface, ~20%, was determined from a calculation that assumed a uniform chlorine distribution. Angle-resolved X-ray photoelectron spectroscopy was used to further probe the structure of the chlorine-containing layer, revealing that both sides of the cleave location are covered by one-third ofmore » a unit cell of pure CdCl 2, a thickness corresponding to about one Cl-Cd-Cl molecular layer. We interpret this result in the context of CdCl 2 being a true layered material similar to transition-metal dichalcogenides. Exposing cleaved surfaces to water shows that this Cl-Cd-Cl trilayer is soluble, raising questions pertinent to cell reliability. Our work provides new and unanticipated details about the structure and chemistry of front surface interfaces and should prove important to improving materials, processes, and reliability of next-generation CdTe-based solar cells.« less
Park, Jong Won; Min, Kyoung-Jin; Kim, Dong Eun; Kwon, Taeg Kyu
2015-01-01
Withaferin A is a steroidal lactone purified from the Indian medicinal plant, Withania somnifera. Withaferin A has been shown to inhibit the proliferation, metastasis, invasion and angiogenesis of cancer cells. In the present study, we investigated whether withaferin A induces apoptosis in the human head and neck cancer cells, AMC-HN4. Withaferin A markedly increased the sub-G1 cell population and the cleavage of poly(ADP-ribose) polymerase (PARP), which are markers of apoptosis. Pan-caspase inhibitor, z-VAD-fmk (z-VAD), markedly inhibited the withaferin A-induced apoptosis. However, the withaferin A-induced increase in the expression of COX-2 was not affected by treatment with z-VAD. Furthermore, withaferin A upregulated cyclooxygenase-2 (COX-2) expression. The COX-2 inhibitor, NS-398, reduced the withaferin A-induced production of prostaglandin E2. However, treatment with NS-398 did not affect the sub-G1 population and the cleavage of PARP. In addition, the withaferin A-induced apoptosis was independent of reactive oxygen species production. Thiol donors [N-acetylcysteine (NAC) and dithiothreitol (DTT)] reversed withaferin A-induced apoptosis. Therefore, our data suggest that withaferin A induces apoptosis through the mechanism of thiol oxidation in head and neck carcinoma cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabiraj, Parijat; Pal, Rituraj; Varela-Ramirez, Armando
2012-09-28
Highlights: Black-Right-Pointing-Pointer Rotenone is a model for inducing apoptosis and synphilin-1 accumulation in Parkinson Prime s studies. Black-Right-Pointing-Pointer The metabolite sodium betahydroxybutryate mitigates these effects in SHSY5Y cell lines. Black-Right-Pointing-Pointer Results reveal a novel and innate mechanism to prevent neurodegeneration/cell death. -- Abstract: Mitochondrial dysfunction, leading to elevated levels of reactive oxygen species, is associated with the pathogenesis of neurodegenerative disorders. Rotenone, a mitochondrial stressor induces caspase-9 and caspase-3 activation leading proteolytic cleavage of substrate nuclear poly(ADP-ribose) polymerase (PARP). PARP cleavage is directly related to apoptotic cell death. In this study, we have monitored the aggregation of green-fluorescent protein (GFP)-taggedmore » synphilin-1, as a rotenone-induced Parkinsonia-onset biomarker. We report that the innate ketone body, Na-D-{beta}-hydroxybutyrate (Na{beta}HB) reduces markedly the incidence of synphilin-1 aggregation. Furthermore, our data reveal that the metabolic byproduct also prevents rotenone-induced caspase-activated apoptotic cell death in dopaminergic SH-SY5Y cells. Together, these results suggest that Na{beta}HB is neuroprotective; it attenuates effects originating from mitochondrial insult and can serve as a scaffold for the design and development of sporadic neuropathies.« less
Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis.
Chekeni, Faraaz B; Elliott, Michael R; Sandilos, Joanna K; Walk, Scott F; Kinchen, Jason M; Lazarowski, Eduardo R; Armstrong, Allison J; Penuela, Silvia; Laird, Dale W; Salvesen, Guy S; Isakson, Brant E; Bayliss, Douglas A; Ravichandran, Kodi S
2010-10-14
Apoptotic cells release 'find-me' signals at the earliest stages of death to recruit phagocytes. The nucleotides ATP and UTP represent one class of find-me signals, but their mechanism of release is not known. Here, we identify the plasma membrane channel pannexin 1 (PANX1) as a mediator of find-me signal/nucleotide release from apoptotic cells. Pharmacological inhibition and siRNA-mediated knockdown of PANX1 led to decreased nucleotide release and monocyte recruitment by apoptotic cells. Conversely, PANX1 overexpression enhanced nucleotide release from apoptotic cells and phagocyte recruitment. Patch-clamp recordings showed that PANX1 was basally inactive, and that induction of PANX1 currents occurred only during apoptosis. Mechanistically, PANX1 itself was a target of effector caspases (caspases 3 and 7), and a specific caspase-cleavage site within PANX1 was essential for PANX1 function during apoptosis. Expression of truncated PANX1 (at the putative caspase cleavage site) resulted in a constitutively open channel. PANX1 was also important for the 'selective' plasma membrane permeability of early apoptotic cells to specific dyes. Collectively, these data identify PANX1 as a plasma membrane channel mediating the regulated release of find-me signals and selective plasma membrane permeability during apoptosis, and a new mechanism of PANX1 activation by caspases.
BmICE-2 is a novel pro-apoptotic caspase involved in apoptosis in the silkworm, Bombyx mori.
Yi, Hua-Shan; Pan, Cai-Xia; Pan, Chun; Song, Juan; Hu, Yan-Fen; Wang, La; Pan, Min-Hui; Lu, Cheng
2014-02-28
In this study we identified a potential pro-apoptotic caspase gene, Bombyx mori(B. mori)ICE-2 (BmICE-2) which encoded a polypeptide of 284 amino acid residues, including a (169)QACRG(173) sequence which surrounded the catalytic site and contained a p20 and a p10 domain. BmICE-2 expressed in Escherichia coli (E. coli) exhibited high proteolytic activity for the synthetic human initiator caspase-9 substrates Ac-LEHD-pNA, but little activity towards the effector caspase-3 substrates Ac-DEVD-pNA. When BmICE-2 was transiently expressed in BmN-SWU1 silkworm B. mori cells, we found that the high proteolytic activity for Ac-LEHD-pNA triggered caspase-3-like protease activity resulting in spontaneous cleavage and apoptosis in these cells. This effect was not replicated in Spodoptera frugiperda 9 cells. In addition, spontaneous cleavage of endogenous BmICE-2 in BmN-SWU1 cells could be induced by actinomycin D. These results suggest that BmICE-2 may be a novel pro-apoptotic gene with caspase-9 activity which is involved apoptotic processes in BmN-SWU1 silkworm B. mori cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Two-Dimensional Cadmium Chloride Nanosheets in Cadmium Telluride Solar Cells
Perkins, Craig L.; Beall, Carolyn; Reese, Matthew O.; ...
2017-05-12
In this paper we make use of a liquid nitrogen-based thermomechanical cleavage technique and a surface analysis cluster tool to probe in detail the tin oxide/emitter interface at the front of completed CdTe solar cells. We show that this thermomechanical cleavage occurs within a few angstroms of the SnO 2/emitter interface. An unexpectedly high concentration of chlorine at this interface, ~20%, was determined from a calculation that assumed a uniform chlorine distribution. Angle-resolved X-ray photoelectron spectroscopy was used to further probe the structure of the chlorine-containing layer, revealing that both sides of the cleave location are covered by one-third ofmore » a unit cell of pure CdCl 2, a thickness corresponding to about one Cl-Cd-Cl molecular layer. We interpret this result in the context of CdCl 2 being a true layered material similar to transition-metal dichalcogenides. Exposing cleaved surfaces to water shows that this Cl-Cd-Cl trilayer is soluble, raising questions pertinent to cell reliability. Our work provides new and unanticipated details about the structure and chemistry of front surface interfaces and should prove important to improving materials, processes, and reliability of next-generation CdTe-based solar cells.« less
Antifungal Activity of Eupolauridine and Its Action on DNA Topoisomerases
Khan, Shabana I.; Nimrod, Alison C.; Mehrpooya, Mohammed; Nitiss, John L.; Walker, Larry A.; Clark, Alice M.
2002-01-01
The azafluoranthene alkaloid eupolauridine has previously been shown to have in vitro antifungal activity and selective inhibition of fungal topoisomerase I. The present study was undertaken to examine further its selectivity and mode of action. Eupolauridine completely inhibits the DNA relaxation activity of purified fungal topoisomerase I at 50 μg/ml, but it does not stabilize the cleavage complex of either human or fungal topoisomerase I. Cleavage complex stabilization is the mode of action of topoisomerase I targeting drugs of the camptothecin family. Also, unlike camptothecin, eupolauridine does not cause significant cytotoxicity in mammalian cells. To determine if the inhibition of topoisomerase I is the principal mode of antifungal action of eupolauridine, Saccharomyces cerevisiae strains with alterations in topoisomerase genes were used in clonogenic assays. The antifungal activity of eupolauridine was not diminished in the absence of topoisomerase I; rather, the cells lacking the enzyme were more sensitive to the drug. Cell-killing activity of eupolauridine was also more pronounced in cells that overexpressed topoisomerase II. In vitro assays with the purified yeast enzyme confirmed that eupolauridine stabilized topoisomerase II covalent complexes. These results indicate that a major target for fungal cell killing by eupolauridine is DNA topoisomerase II rather than topoisomerase I, but does not exclude the possibility that the drug also acts against other targets. PMID:12019091
Antifungal activity of eupolauridine and its action on DNA topoisomerases.
Khan, Shabana I; Nimrod, Alison C; Mehrpooya, Mohammed; Nitiss, John L; Walker, Larry A; Clark, Alice M
2002-06-01
The azafluoranthene alkaloid eupolauridine has previously been shown to have in vitro antifungal activity and selective inhibition of fungal topoisomerase I. The present study was undertaken to examine further its selectivity and mode of action. Eupolauridine completely inhibits the DNA relaxation activity of purified fungal topoisomerase I at 50 microg/ml, but it does not stabilize the cleavage complex of either human or fungal topoisomerase I. Cleavage complex stabilization is the mode of action of topoisomerase I targeting drugs of the camptothecin family. Also, unlike camptothecin, eupolauridine does not cause significant cytotoxicity in mammalian cells. To determine if the inhibition of topoisomerase I is the principal mode of antifungal action of eupolauridine, Saccharomyces cerevisiae strains with alterations in topoisomerase genes were used in clonogenic assays. The antifungal activity of eupolauridine was not diminished in the absence of topoisomerase I; rather, the cells lacking the enzyme were more sensitive to the drug. Cell-killing activity of eupolauridine was also more pronounced in cells that overexpressed topoisomerase II. In vitro assays with the purified yeast enzyme confirmed that eupolauridine stabilized topoisomerase II covalent complexes. These results indicate that a major target for fungal cell killing by eupolauridine is DNA topoisomerase II rather than topoisomerase I, but does not exclude the possibility that the drug also acts against other targets.
Cell painting with an engineered EPCR to augment the protein C system.
Bouwens, Eveline A M; Stavenuiter, Fabian; Mosnier, Laurent O
2015-11-25
The protein C (PC) system conveys beneficial anticoagulant and cytoprotective effects in numerous in vivo disease models. The endothelial protein C receptor (EPCR) plays a central role in these pathways as cofactor for PC activation and by enhancing activated protein C (APC)-mediated protease-activated receptor (PAR) activation. During inflammatory disease, expression of EPCR on cell membranes is often diminished thereby limiting PC activation and APC's effects on cells. Here a caveolae-targeting glycosylphosphatidylinositol (GPI)-anchored EPCR (EPCR-GPI) was engineered to restore EPCR's bioavailability via "cell painting." The painting efficiency of EPCR-GPI on EPCR-depleted endothelial cells was time- and dose-dependent. The EPCR-GPI bioavailability after painting was long lasting since EPCR surface levels reached 400 % of wild-type cells after 2 hours and remained > 200 % for 24 hours. EPCR-GPI painting conveyed APC binding to EPCR-depleted endothelial cells where EPCR was lost due to shedding or shRNA. EPCR painting normalised PC activation on EPCR-depleted cells indicating that EPCR-GPI is functional active on painted cells. Caveolin-1 lipid rafts were enriched in EPCR after painting due to the GPI-anchor targeting caveolae. Accordingly, EPCR painting supported PAR1 and PAR3 cleavage by APC and augmented PAR1-dependent Akt phosphorylation by APC. Thus, EPCR-GPI painting achieved physiological relevant surface levels on endothelial cells, restored APC binding to EPCR-depleted cells, supported PC activation, and enhanced APC-mediated PAR cleavage and cytoprotective signalling. Therefore, EPCR-GPI provides a novel tool to restore the bioavailability and functionality of EPCR on EPCR- depleted and -deficient cells.
Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Masahito; Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571; Umeyama, Kazuhiro
2010-11-05
Research highlights: {yields} EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. {yields} ZFNs induced targeted mutations in porcine primary cultured cells. {yields} Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor themore » exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.« less
Marshall, Ryan; Maxwell, Colin S; Collins, Scott P; Jacobsen, Thomas; Luo, Michelle L; Begemann, Matthew B; Gray, Benjamin N; January, Emma; Singer, Anna; He, Yonghua; Beisel, Chase L; Noireaux, Vincent
2018-01-04
CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation. TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repression-all without protein purification or live cells. We used TXTL to measure the dynamics of DNA cleavage and gene repression for single- and multi-effector CRISPR nucleases, predict gene repression strength in E. coli, determine the specificities of 24 diverse anti-CRISPR proteins, and develop a fast and scalable screen for protospacer-adjacent motifs that was successfully applied to five uncharacterized Cpf1 nucleases. These examples underscore how TXTL can facilitate the characterization and application of CRISPR technologies across their many uses. Copyright © 2017 Elsevier Inc. All rights reserved.
Homan, E Jane; Bremel, Robert D
2014-01-01
Resurgent mumps outbreaks have raised questions about the current efficacy of mumps vaccines. We have applied immunoinformatics techniques based on principal component analysis to evaluate patterns in predicted B-cell linear epitopes, MHC binding affinity and cathepsin cleavage in the hemagglutinin neuraminidase protein of vaccine strains and wild-type mumps isolates. We have mapped predicted MHC-peptide binding for 37 MHC-I and 28 MHC-II alleles and predicted cleavage by cathepsin B, L and S. By all measures we applied Jeryl-Lynn JL5 major strain is an outlier with immunomic features arising from a small number of amino acid changes that distinguish it from other virus strains. Individuals vaccinated with Jeryl-Lynn who are not exposed to wild-type virus until their protective antibody titer has waned may be unable to recall a protective immune response when exposed to wild-type virus. Dependence on serology to evaluate mumps vaccines may have overemphasized the conservation of one neutralizing antibody epitope, at the expense of monitoring other related changes in the HN protein that could affect recall responses. PMID:24275080
Mesodermal and axial determinants contribute to mesoderm regionalization in Bufo arenarum embryos.
Manes, Mario E; Campos Casal, Fernando H
2002-09-01
The existence of mesodermal determinants in the equator of Bufo arenarum embryos has been previously demonstrated. In this work, their role in dorso-ventral regionalization of mesoderm was studied by transferring the determinants to animal blastomeres. The transfer was performed by cleavage reorientation and cytoplasmic microinjection. Forced inclination during early cleavage caused deviation of the third cleavage plane and annexation of equatorial cytoplasm into animal quartets. Animal blastomeres from embryos oriented with the dorsal side up, incorporated ventro-equatorial cytoplasm and formed blood cells, mesenchyme, and coelomic epithelium. In contrast, animal blastomeres from embryos oriented with the ventral side up, acquired dorso-equatorial cytoplasm and developed notochord, somites, mesenchyme, coelomic epithelium and nervous tissue. In order to investigate if this dorso-ventral differentiation pattern responds to an interaction of mesodermal and axial factors, isolated 8-cell-stage animal quartets were microinjected with subcortical cytoplasm from: (a) the ventro-equatorial region of synchronous embryos; (b) the vegetal pole of uncleaved eggs; (c) a combination of both cytoplasms. As expected, the implanted ventro-equatorial cytoplasm promoted ventral mesoderm differentiation. Conversely, the joint transfer of ventro-equatorial cytoplasm and vegetal pole cytoplasm behaved as the dorso-equatorial cytoplasm, promoting dorso-lateral mesoderm and neural formation. Thus, mesoderm regionalization in B. arenarum embryos seems to be caused by a concurrent action of both mesodermal and axial determinants.
Bialonska, Dobroslawa; Song, Kenneth; Bolton, Philip H
2011-11-27
Tumor cell lines can replicate faster than normal cells and many also have defective DNA repair pathways. This has lead to the investigation of the inhibition of DNA repair proteins as a means of therapeutic intervention. An alternative approach is to hide or mask damaged DNA from the repair systems. We have developed a protocol to investigate the structures of the complexes of damaged DNA with drug like molecules. Nucleotide resolution structural information can be obtained using an improved hydroxyl radical cleavage protocol. The use of a dT(n) tail increases the length of the smallest fragments of interest and allows efficient co-precipitation of the fragments with poly(A). The use of a fluorescent label, on the 5' end of the dT(n) tail, in conjunction with modified cleavage reaction conditions, avoids the lifetime and other problems with (32)P labeling. The structures of duplex DNAs containing AC and CC mismatches in the presence and absence of minor groove binders have been investigated as have those of the fully complementary DNA. The results indicate that the structural perturbations of the mismatches are localized, are sequence dependent and that the presence of a mismatch can alter the binding of drug like molecules. Copyright © 2011 Elsevier B.V. All rights reserved.
RAPID COMMUNICATION: Nerve growth factor influences cleavage rate and embryo development in sheep.
Crispo, M; Dos Santos-Neto, P C; Vilariño, M; Mulet, A P; de León, A; Barbeito, L; Menchaca, A
2016-10-01
Recent information about Nerve growth factor (NGF), a protein traditionally associated to the nervous system that regulates survival and maturation of developing neurons, suggests that it may exert action also on different levels in the reproductive system. The aim of this study was to evaluate the effect of NGF added during in vitro oocyte maturation, fertilization or in vitro embryo development in sheep. Nerve growth factor was supplemented to the culture medium at 0, 100, or 1,000 ng/mL, during either in vitro maturation (Exp. 1), in vitro fertilization (Exp. 2), or in vitro culture (Exp. 3). In addition, NGF mRNA expression was determined in cumulus cells and oocytes. Nerve growth factor induced early cleavage when added during oocyte maturation or fertilization, improved embryo development when added during fertilization, and had no significant effect when added during embryo culture. In general, the effect was more evident with 100 rather than 1,000 ng/mL (P < 0.05). Expression of endogenous NGF was not detected in oocytes, and increased in cumulus cells when 1,000 ng/mL of NGF was added during fertilization, but not during maturation and embryo culture. In conclusion, the addition of NGF during oocyte maturation and fertilization affects in vitro cleavage and embryo development in sheep. We suggest a possible effect of this growth factor on oocyte maturation and mainly on the fertilization process.
Gholinejad, Zafar; Kheiripour, Nejat; Nourbakhsh, Mitra; Ilbeigi, Davod; Behroozfar, Kiarash; Hesari, Zahra; Golestani, Abolfazl; Shabani, Mohammad; Einollahi, Nahid
2017-06-01
Visfatin is a novel adipokine and proinflammatory cytokine which is implicated in breast cancer progression. The exact proliferative and anti-apoptotic mechanisms of visfatin are still under debate. In this study, the effect of extracellular visfatin on proliferation and apoptosis of breast cancer cells were investigated considering key regulatory molecules in these procedures. BrdU (Bromodeoxyuridine) experiment was used to assess cell proliferation in response to visfatin treatment. Cell viability and apoptosis were assessed using MTT assay and flowcytometry, respectively. Phosphorylation levels of AKT and ERK1/2 as well as survivin levels and Poly ADP ribose polymerase (PARP) cleavage were investigated by western blot analysis. Visfatin induced proliferation of MCF-7 and MDA-MB-231 cells, an effect that was repressed by using AKT and ERK1/2 inhibitors, indicating involvement of these two signaling pathways in the proliferative effect of visfatin. Similarly, phosphorylation of AKT and ERK1/2 were elevated by visfatin treatment. On the other hand, visfatin improved cell viability and prevented TNF-α-induced apoptosis as well as PARP cleavage. Visfatin also exerted a protective effect on survivin. The results of this study suggest that visfatin induces breast cancer cell proliferation through AKT/PI3K and ERK/MAPK activation and protects against apoptosis in these cells. Thus increased visfatin levels may augment breast cancer development and attenuate treatment efficiency in breast cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Martin, Annette; Bénichou, Danièle; Chao, Shih-Fong; Cohen, Lisette M.; Lemon, Stanley M.
1999-01-01
Most details of the processing of the hepatitis A virus (HAV) polyprotein are known. Unique among members of the family Picornaviridae, the primary cleavage of the HAV polyprotein is mediated by 3Cpro, the only proteinase known to be encoded by the virus, at the 2A/2B junction. All other cleavages of the polyprotein have been considered to be due to 3Cpro, although the precise location and mechanism responsible for the VP1/2A cleavage have been controversial. Here we present data that argue strongly against the involvement of the HAV 3Cpro proteinase in the maturation of VP1 from its VP1-2A precursor. Using a heterologous expression system based on recombinant vaccinia viruses directing the expression of full-length or truncated capsid protein precursors, we show that the C terminus of the mature VP1 capsid protein is located near residue 764 of the polyprotein. However, a proteolytically active HAV 3Cpro that was capable of directing both VP0/VP3 and VP3/VP1 cleavages in vaccinia virus-infected cells failed to process the VP1-2A precursor. Using site-directed mutagenesis of an infectious molecular clone of HAV, we modified potential VP1/2A cleavage sites that fit known 3Cpro recognition criteria and found that a substitution that ablates the presumed 3Cpro dipeptide recognition sequence at Glu764-Ser765 abolished neither infectivity nor normal VP1 maturation. Altered electrophoretic mobility of VP1 from a viable mutant virus with an Arg764 substitution indicated that this residue is present in VP1 and that the VP1/2A cleavage occurs downstream of this residue. These data indicate that maturation of the HAV VP1 capsid protein is not dependent on 3Cpro processing and may thus be uniquely dependent on a cellular proteinase. PMID:10400711
Comparative Analysis of Mitochondrial N-Termini from Mouse, Human, and Yeast *
Clauser, Karl R.; Shen, Hongying; Kamer, Kimberli J.; Wells, James A.
2017-01-01
The majority of mitochondrial proteins are encoded in the nuclear genome, translated in the cytoplasm, and directed to the mitochondria by an N-terminal presequence that is cleaved upon import. Recently, N-proteome catalogs have been generated for mitochondria from yeast and from human U937 cells. Here, we applied the subtiligase method to determine N-termini for 327 proteins in mitochondria isolated from mouse liver and kidney. Comparative analysis between mitochondrial N-termini from mouse, human, and yeast proteins shows that whereas presequences are poorly conserved at the sequence level, other presequence properties are extremely conserved, including a length of ∼20–60 amino acids, a net charge between +3 to +6, and the presence of stabilizing amino acids at the N-terminus of mature proteins that follow the N-end rule from bacteria. As in yeast, ∼80% of mouse presequence cleavage sites match canonical motifs for three mitochondrial peptidases (MPP, Icp55, and Oct1), whereas the remainder do not match any known peptidase motifs. We show that mature mitochondrial proteins often exist with a spectrum of N-termini, consistent with a model of multiple cleavage events by MPP and Icp55. In addition to analysis of canonical targeting presequences, our N-terminal dataset allows the exploration of other cleavage events and provides support for polypeptide cleavage into two distinct enzymes (Hsd17b4), protein cleavages key for signaling (Oma1, Opa1, Htra2, Mavs, and Bcs2l13), and in several cases suggests novel protein isoforms (Scp2, Acadm, Adck3, Hsdl2, Dlst, and Ogdh). We present an integrated catalog of mammalian mitochondrial N-termini that can be used as a community resource to investigate individual proteins, to elucidate mechanisms of mammalian mitochondrial processing, and to allow researchers to engineer tags distally to the presequence cleavage. PMID:28122942
Expression and processing of human preprogastrin in murine medullary thyroid carcinoma cells.
Daugherty, D F; Dickinson, C J; Takeuchi, T; Bachwich, D; Yamada, T
1991-05-01
Gastrin, the primary hormonal mediator of postprandial gastric acid secretion, is produced from its precursor progastrin by a series of posttranslational processing reactions including dibasic residue cleavage and carboxyl-terminal alpha-amidation. Progastrin contains three dibasic cleavage signals, Arg57Arg58, Lys74Lys75, and Arg94Arg95, that appear to be cleaved differently in different tissues. Differential processing is a potential means by which the production of biologically active peptides may be regulated in a tissue-specific manner. To study these reactions further, we used the pZipNeo SV(X) retroviral vector to express human gastrin cDNA in a heterologous cell line (MTC 6-23) known to be capable of processing other peptide precursors. The psi 2 packaging cell line transfected with the gastrin cDNA-retroviral construct (pSVXgas) produced progastrin, but no substantial amounts of processed amidated gastrin were detected. amounts of processed amidated gastrin were detected. In contrast, MTC 6-23 cells infected with the viral stock obtained from the supernatant of pSVXgas-transfected psi 2 cells produced carboxyl-terminally amidated gastrin in all of its standard molecular forms, including sulfated and nonsulfated forms of tetratriacontagastrin (G-34), heptadecagastrin (G-17), and tetradecagastrin (G-14). These studies indicate that heterologous endocrine cell lines infected with a retroviral-peptide cDNA construct can serve as useful models for peptide hormone posttranslational processing.
Zhou, Yan; Zhang, Shen; Deng, Sijun; Dai, Chongshan; Tang, Shusheng; Yang, Xiayun; Li, Daowen; Zhao, Kena; Xiao, Xilong
2016-01-01
The study aims at evaluating the combination of the quinocetone and the ML-7 in preclinical hepatocellular carcinoma models. To this end, the effect of quinocetone and ML-7 on apoptosis induction and signaling pathways was analyzed on HepG2 cell lines. Here, we report that ML-7, in a nontoxic concentration, sensitized the HepG2 cells to quinocetone-induced cytotoxicity. Also, ML-7 profoundly enhances quinocetone-induced apoptosis in HepG2 cell line. Mechanistic investigations revealed that ML-7 and quinocetone act in concert to trigger the cleavage of caspase-8 as well as Bax/Bcl-2 ratio up-regulation and subsequent cleavage of Bid, capsases-9 and -3. Importantly, ML-7 weakened the quinocetone-induced Akt pathway activation, but strengthened the phosphorylation of p-38, ERK and JNK. Further treatment of Akt activator and p-38 inhibitor almost completely abolished the ML-7/quinocetone-induced apoptosis. In contrast, the ERK and JNK inhibitor aggravated the ML-7/quinocetone-induced apoptosis, indicating that the synergism critically depended on p-38 phosphorylation and HepG2 cells provoke Akt, ERK and JNK signaling pathways to against apoptosis. In conclusion, the rational combination of quinocetone and ML-7 presents a promising approach to trigger apoptosis in hepatocellular carcinoma, which warrants further investigation.
Chen, Xin; He, Wan-ting; Hu, Lichen; Li, Jingxian; Fang, Yuan; Wang, Xin; Xu, Xiaozheng; Wang, Zhuo; Huang, Kai; Han, Jiahuai
2016-01-01
Necroptosis and pyroptosis are two forms of programmed cell death with a common feature of plasma membrane rupture. Here we studied the morphology and mechanism of pyroptosis in comparison with necroptosis. Different from necroptosis, pyroptosis undergoes membrane blebbing and produces apoptotic body-like cell protrusions (termed pyroptotic bodies) prior to plasma membrane rupture. The rupture in necroptosis is explosion-like, whereas in pyroptosis it leads to flattening of cells. It is known that the execution of necroptosis is mediated by mixed lineage kinase domain-like (MLKL) oligomers in the plasma membrane, whereas gasdermin-D (GSDMD) mediates pyroptosis after its cleavage by caspase-1 or caspase-11. We show that N-terminal fragment of GSDMD (GSDMD-N) generated by caspase cleavage also forms oligomer and migrates to the plasma membrane to kill cells. Both MLKL and GSDMD-N are lipophilic and the N-terminal sequences of both proteins are important for their oligomerization and plasma membrane translocation. Unlike MLKL which forms channels on the plasma membrane that induces influx of selected ions which osmotically swell the cells to burst, GSDMD-N forms non-selective pores and does not rely on increased osmolarity to disrupt cells. Our study reveals the pore-forming activity of GSDMD and channel-forming activity of MLKL determine different ways of plasma membrane rupture in pyroptosis and necroptosis. PMID:27573174
Chen, Xin; He, Wan-Ting; Hu, Lichen; Li, Jingxian; Fang, Yuan; Wang, Xin; Xu, Xiaozheng; Wang, Zhuo; Huang, Kai; Han, Jiahuai
2016-09-01
Necroptosis and pyroptosis are two forms of programmed cell death with a common feature of plasma membrane rupture. Here we studied the morphology and mechanism of pyroptosis in comparison with necroptosis. Different from necroptosis, pyroptosis undergoes membrane blebbing and produces apoptotic body-like cell protrusions (termed pyroptotic bodies) prior to plasma membrane rupture. The rupture in necroptosis is explosion-like, whereas in pyroptosis it leads to flattening of cells. It is known that the execution of necroptosis is mediated by mixed lineage kinase domain-like (MLKL) oligomers in the plasma membrane, whereas gasdermin-D (GSDMD) mediates pyroptosis after its cleavage by caspase-1 or caspase-11. We show that N-terminal fragment of GSDMD (GSDMD-N) generated by caspase cleavage also forms oligomer and migrates to the plasma membrane to kill cells. Both MLKL and GSDMD-N are lipophilic and the N-terminal sequences of both proteins are important for their oligomerization and plasma membrane translocation. Unlike MLKL which forms channels on the plasma membrane that induces influx of selected ions which osmotically swell the cells to burst, GSDMD-N forms non-selective pores and does not rely on increased osmolarity to disrupt cells. Our study reveals the pore-forming activity of GSDMD and channel-forming activity of MLKL determine different ways of plasma membrane rupture in pyroptosis and necroptosis.
Kim, Seung-Jin; Choi, Hojung; Park, Sung-Soo; Chang, Chawnshang; Kim, Eungseok
2011-01-01
Stearoyl-CoA desaturase (SCD), the rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids, is highly expressed in prostate cancer although the SCD protein has been known to be rapidly turned over by proteolytic cleavage. The present data demonstrate that SCD can promote proliferation of androgen receptor (AR)-positive LNCaP prostate cancer cells and enhance dihydrotestosterone (DHT)-induced AR transcriptional activity, resulting in increased expression of prostatespecific antigen (PSA) and kallikrein-related peptidase 2 (KLK2). Interestingly, among the previously reported SCDderived peptides produced by proteolytic cleavage of SCD, a peptide spanning amino acids 130-162 of SCD (SCDCoRNR) contained the CoRNR box motif (LFLII) and enhanced AR transcriptional activity. In contrast, a mutant SCD-CoRNR in which Leu136 was replaced by Ala had no effect on AR transcriptional activity. Moreover, SCDCoRNR directly interacted with AR and inhibited RIP140 suppression of AR transactivation. Knockdown of the SCD gene by SCD microRNA suppressed AR transactivation with decreased cell proliferation, suggesting that SCD may regulate the proliferation of LNCaP cells via modulation of AR transcriptional activity. Moreover, ectopic expression of SCD in LNCaP cells facilitated LNCaP tumor formation and growth in nude mice. Together, the data indicate that SCD plays a key role in the regulation of AR transcriptional activity in prostate cancer cells. PMID:21331774
Monocyte:T cell interaction regulates human T cell activation through a CD28/CD46 crosstalk
Charron, Lauren; Doctrinal, Axelle; Choileain, Siobhan Ni; Astier, Anne L.
2015-01-01
T cell activation requires engagement of the T cell receptor and of at least one costimulatory molecule. The key role of CD28 in inducing T cell activation has been reported several decades ago and the molecular mechanisms involved well described. The complement regulator CD46 also acts as a costimulatory molecule for T cells but, in contrast to CD28, has the ability to drive T cell differentiation from producing some IFNγ to secreting some potent anti-inflammatory IL-10, acquiring a so-called Type I regulatory phenotype (Tr1). Proteolytic cleavage of CD46 occurs upon costimulation and is important for T cell activation and IL-10 production. The observation that CD46 cleavage was reduced when PBMC were costimulated compared to purified naive T cells led us to hypothesize that interactions between different cell types within the PBMC were able to modulate the CD46 pathway. We show that CD46 downregulation is also reduced when CD4+ T cells are co-cultured with autologous monocytes. Indeed, monocyte:T cell co-cultures impaired CD46–mediated T cell differentiation and coactivation, by reducing downregulation of surface CD46, lowering induction of the early activation marker CD69, as well as reducing the levels of IL-10 secretion. Blocking of CD86 could partly restore CD69 expression and cytokine secretion, demonstrating that the CD28-CD86 pathway regulates CD46 activation. Direct concomitant ligation of CD28 and CD46 on CD4+ T cells also modulated CD46 expression and regulated cytokine production. These data identify a crosstalk between two main costimulatory pathways and provide novel insights into the regulation of human T cell activation. PMID:25787182
Role of protein kinase C-η in cigarette smoke extract-induced apoptosis in MRC-5-cells.
Son, E S; Kyung, S Y; Lee, S P; Jeong, S H; Shin, J Y; Ohba, M; Yeo, E J; Park, J W
2015-09-01
Cigarette smoke (CS) is a major risk factor for emphysema, which causes cell death in structural cells of the lung by mechanisms that are still not completely understood. We demonstrated previously that CS extract (CSE) induces caspase activation in MRC-5 human lung fibroblasts, activated protein kinase C-η (PKC-η), and translocated PKC-η from the cytosol to the membrane. The objective of this study was to investigate the involvement of PKC-η activation in a CSE-induced extrinsic apoptotic pathway. We determined that CSE increases expression of caspase 3 and 8 cleavage in MRC-5 cells and overexpression of PKC-η significantly increased expression of caspase 3 and 8 cleavage compared with control LacZ-infected cells. In contrast, dominant negative (dn) PKC-η inhibited apoptosis in MRC-5 cells exposed to CSE and decreased expression of caspase 3 and 8 compared with control cells. Exposure to 10% CSE for >8 h significantly increased lactate dehydrogenase release in PKC-η-infected cells compared with LacZ-infected cells. Additionally, PKC-η-infected cells had an increased number of Hoechst 33342 stained nuclei compared with LacZ-infected cells, while dn PKC-η-infected cells exhibited fewer morphological changes than LacZ-infected cells under phase-contrast microscopy. In conclusion, PKC-η activation plays a pro-apoptotic role in CSE-induced extrinsic apoptotic pathway in MRC-5 cells. These results suggest that modulation of PKC-η may be a useful tool for regulating the extrinsic apoptosis of MRC-5 cells by CSE and may have therapeutic potential in the treatment of CS-induced lung injury. © The Author(s) 2014.
Zhou, Zhou; Munteanu, Emilia Laura; He, Jun; Ursell, Tristan; Bathe, Mark; Huang, Kerwyn Casey; Chang, Fred
2015-01-01
The functions of the actin-myosin-based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells. © 2015 Zhou et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Coordinated induction of cell survival signaling in the inflamed microenvironment of the prostate.
McIlwain, David W; Zoetemelk, Marloes; Myers, Jason D; Edwards, Marshé T; Snider, Brandy M; Jerde, Travis J
2016-06-01
Both prostate cancer and benign prostatic hyperplasia are associated with inflammatory microenvironments. Inflammation is damaging to tissues, but it is unclear how the inflammatory microenvironment protects specialized epithelial cells that function to proliferate and repair the tissue. The objective of this study is to characterize the cell death and cell survival response of the prostatic epithelium in response to inflammation. We assessed induction of cell death (TNF, TRAIL, TWEAK, FasL) and cell survival factors (IGFs, hedgehogs, IL-6, FGFs, and TGFs) in inflamed and control mouse prostates by ELISA. Cell death mechanisms were determined by immunoblotting and immunofluorescence for cleavage of caspases and TUNEL. Survival pathway activation was assessed by immunoblotting and immunofluorescence for Mcl-1, Bcl-2, Bcl-XL, and survivin. Autophagy was determined by immunoblotting and immunofluorescence for free and membrane associated light chain 3 (LC-3). Cleavage of all four caspases was significantly increased during the first 2 days of inflammation, and survival protein expression was substantially increased subsequently, maximizing at 3 days. By 5 days of inflammation, 50% of prostatic epithelial cells expressed survivin. Autophagy was also evident during the recovery phase (3 days). Finally, immunofluorescent staining of human specimens indicates strong activation of survival proteins juxtaposed to inflammation in inflamed prostate specimens. The prostate responds to deleterious inflammation with induction of cell survival mechanisms, most notably survivin and autophagy, demonstrating a coordinated induction of survival factors that protects and expands a specialized set of prostatic epithelial cells as part of the repair and recovery process during inflammation. © 2016 Wiley Periodicals, Inc.
Malpezzi, E L; Freitas, J C
1990-01-01
A methanolic extract of the sea anemone Bunodosoma caissarum has an antimitotic effect on sea urchin egg development. The extract produces a dose-dependent inhibition of cell cleavage. When the extract is added together with sperm to unfertilized sea urchin eggs, the ED50 is 0.60 +/- 0.03 mg/ml (mean +/- SEM). When added shortly after fertilization, the extract produces the same kind of progressive inhibition but with an ED50 of 0.98 +/- 0.16 mg/ml. In the first case, detachment of the vitelline layer is inhibited whereas in the second case the extract inhibits cleavage even when the membrane is present.
Regulation of blood vessels by prolactin and vasoinhibins.
Clapp, Carmen; Thebault, Stéphanie; Macotela, Yazmín; Moreno-Carranza, Bibiana; Triebel, Jakob; Martínez de la Escalera, Gonzalo
2015-01-01
Prolactin (PRL) stimulates the growth of new blood vessels (angiogenesis) either directly through actions on endothelial cells or indirectly by upregulating proangiogenic factors like vascular endothelial growth factor (VEGF). Moreover, PRL acquires antiangiogenic properties after undergoing proteolytic cleavage to vasoinhibins, a family of PRL fragments (including 16 kDa PRL) with potent antiangiogenic, vasoconstrictive, and antivasopermeability effects. In view of the opposing actions of PRL and vasoinhibins, the regulation of the proteases responsible for specific PRL cleavage represents an efficient mechanism for controlling blood vessel growth and function. This review briefly describes the vascular actions of PRL and vasoinhibins, and addresses how their interplay could help drive biological effects of PRL in the context of health and disease.
Effects of low-intensity pulsed electromagnetic fields on the early development of sea urchins.
Falugi, C; Grattarola, M; Prestipino, G
1987-01-01
The effects of weak electromagnetic signals on the early development of the sea urchin Paracentrotus lividus have been studied. The duration and repetition of the pulses were similar to those used for bone healing in clinical practice. A sequence of pulses, applied for a time ranging from 2 to 4 h, accelerates the cleavages of sea urchin embryo cells. This effect can be quantitatively assessed by determining the time shifts induced by the applied electromagnetic field on the completion of the first and second cleavages in a population of fertilized eggs. The exposed embryos were allowed to develop up to the pluteus stage, showing no abnormalities. Images FIGURE 3 FIGURE 4 PMID:3607217
Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1.
Tallur, Preeti N; Megadi, Veena B; Ninnekar, Harichandra Z
2008-02-01
A bacterium capable of utilizing pyrethroid pesticide cypermethrin as sole source of carbon was isolated from soil and identified as a Micrococcus sp. The organism also utilized fenvalerate, deltamethrin, perimethrin, 3-phenoxybenzoate, phenol, protocatechuate and catechol as growth substrates. The organism degraded cypermethrin by hydrolysis of ester linkage to yield 3-phenoxybenzoate, leading to loss of its insecticidal activity. 3-Phenoxybenzoate was further metabolized by diphenyl ether cleavage to yield protocatechuate and phenol as evidenced by isolation and identification of metabolites and enzyme activities in the cell-free extracts. Protocatechuate and phenol were oxidized by ortho-cleavage pathway. Thus, the organism was versatile in detoxification and complete mineralization of pyrethroid cypermethrin.
Furlong, Suzanne J; Ridgway, Neale D; Hoskin, David W
2008-03-01
Bovine lactoferricin (LfcinB) is a cationic antimicrobial peptide that selectively induces apoptosis in several different types of human cancer cells. However, the potential use of LfcinB as an anticancer agent is presently limited by the need for relatively high concentrations of the peptide to trigger apoptosis. Ceramide is a membrane sphingolipid that is believed to function as a second messenger during apoptosis. In this study, we investigated the role of ceramide in LfcinB-induced apoptosis in CCRF-CEM and Jurkat T-leukemia cell lines. Exposure to LfcinB caused nuclear condensation and fragmentation, poly(ADP-ribose) polymerase (PARP) cleavage, and DNA fragmentation in CCRF-CEM and Jurkat T-cell acute lymphoblastic leukemia cell lines. Treatment with C6 ceramide, a cell-permeable, short-chain ceramide analog, also induced apoptotic nuclear morphology, PARP cleavage, and DNA fragmentation in T-leukemia cells. Although LfcinB treatment did not cause ceramide to accumulate in CCRF-CEM or Jurkat cells, the addition of C6 ceramide to LfcinB-treated T-leukemia cells resulted in increased DNA fragmentation. Furthermore, modulation of cellular ceramide metabolism either by inhibiting ceramidases with D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol or N-oleoylethanolamine, or by blocking glucosylceramide synthase activity with 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, enhanced the ability of LfcinB to trigger apoptosis in both Jurkat and CCRF-CEM cells. In addition, LfcinB-induced apoptosis of T-leukemia cells was enhanced in the presence of the antiestrogen tamoxifen, which has multiple effects on cancer cells, including inhibition of glucosylceramide synthase activity. We conclude that manipulation of cellular ceramide levels in combination with LfcinB therapy warrants further investigation as a novel strategy for the treatment of T cell-derived leukemias.
Schuhmann, D; Godoy, P; Weiß, C; Gerloff, A; Singer, M V; Dooley, S; Böcker, U
2011-01-01
The intestinal epithelial barrier represents an important component in the pathogenesis of inflammatory bowel diseases. Interferon (IFN)-γ, a T helper type 1 (Th1) cytokine, regulated by the interleukin (IL)-18/IL-18 binding protein (bp) system, modulates the integrity of this barrier. The aim of this work was to study functionally the consequences of IFN-γ on intestinal epithelial cells (IEC) and to interfere selectively with identified adverse IFN-γ effects. IEC lines were stimulated with IFN-γ. IL-18 and IL-18bp were assessed by enzyme-linked immunosorbent assay. Staining of phosphatidylserine, DNA laddering, lactate dehydrogenase (LDH) release, cleavage of poly-adenosine diphosphate-ribose-polymerase (PARP) and activation of caspase-3 were analysed to determine cell death. Inhibitors of tyrosine kinase, caspase-3 or p38 mitogen-activated kinase ((MAP) activity were used. Cytokines were measured in supernatants of colonic biopsies of healthy controls and inflammatory bowel disease (IBD) patients. In IEC lines, IFN-γ up-regulated IL-18bp selectively. Ex vivo, IFN-γ was present in supernatants from cultured biopsies and up-regulated with inflammation. Contrary to previous reports, IFN-γ alone induced apoptosis in IEC lines, as demonstrated by phosphatidylserin staining, DNA cleavage and LDH release. Further, activation of caspase-3, PARP cleavage and expression of pro-apoptotic Bad were induced. Partial inhibition of caspase-3 and of p38 but not JAK tyrosine kinase, preserved up-regulation of IL-18bp expression. Selective inhibition of IFN-γ mediated apoptosis, while preserving its beneficial consequences on the ratio of IL-18/IL-18bp, could contribute to the integrity of the mucosal barrier in intestinal inflammation. PMID:21078084
Nibert, M L; Fields, B N
1992-01-01
Penetration of a cell membrane as an early event in infection of cells by mammalian reoviruses appears to require a particular type of viral particle, the infectious subvirion particle (ISVP), which is generated from an intact virion by proteolytic cleavage of the outer capsid proteins sigma 3 and mu 1/mu 1C. Characterizations of the structural components and properties of ISVPs are thus relevant to attempts to understand the mechanism of penetration by reoviruses. In this study, a novel, approximately 13-kDa carboxy-terminal fragment (given the name phi) was found to be generated from protein mu 1/mu 1C during in vitro treatments of virions with trypsin or chymotrypsin to yield ISVPs. With trypsin treatment, both the carboxy-terminal fragment phi and the amino-terminal fragment mu 1 delta/delta were shown to be generated and to remain attached to ISVPs in stoichiometric quantities. Sites of protease cleavage were identified in the deduced amino acid sequence of mu 1 by determining the amino-terminal sequences of phi proteins: trypsin cleaves between arginine 584 and isoleucine 585, and chymotrypsin cleaves between tyrosine 581 and glycine 582. Findings in this study indicate that sequences in the phi portion of mu 1/mu 1C may participate in the unique functions attributed to ISVPs. Notably, the delta-phi cleavage junction was predicted to be flanked by a pair of long amphipathic alpha-helices. These amphipathic alpha-helices, together with the myristoyl group at the extreme amino terminus of mu 1/mu 1N, are proposed to interact directly with the lipid bilayer of a cell membrane during penetration by mammalian reoviruses. Images PMID:1328674
Gordon, Kerry; Nesterovitch, Andrew B.; Lünsdorf, Heinrich; Chen, Zhenlong; Castellon, Maricela; Popova, Isolda A.; Kalinin, Sergey; Mendonca, Emma; Petukhov, Pavel A.; Schwartz, David E.
2011-01-01
Background Angiotensin I-converting enzyme (ACE) metabolizes a range of peptidic substrates and plays a key role in blood pressure regulation and vascular remodeling. Thus, elevated ACE levels may be associated with an increased risk for different cardiovascular or respiratory diseases. Previously, a striking familial elevation in blood ACE was explained by mutations in the ACE juxtamembrane region that enhanced the cleavage-secretion process. Recently, we found a family whose affected members had a 6-fold increase in blood ACE and a Tyr465Asp (Y465D) substitution, distal to the stalk region, in the N domain of ACE. Methodology/Principal Findings HEK and CHO cells expressing mutant (Tyr465Asp) ACE demonstrate a 3- and 8-fold increase, respectively, in the rate of ACE shedding compared to wild-type ACE. Conformational fingerprinting of mutant ACE demonstrated dramatic changes in ACE conformation in several different epitopes of ACE. Cell ELISA carried out on CHO-ACE cells also demonstrated significant changes in local ACE conformation, particularly proximal to the stalk region. However, the cleavage site of the mutant ACE - between Arg1203 and Ser1204 - was the same as that of WT ACE. The Y465D substitution is localized in the interface of the N-domain dimer (from the crystal structure) and abolishes a hydrogen bond between Tyr465 in one monomer and Asp462 in another. Conclusions/Significance The Y465D substitution results in dramatic increase in the rate of ACE shedding and is associated with significant local conformational changes in ACE. These changes could result in increased ACE dimerization and accessibility of the stalk region or the entire sACE, thus increasing the rate of cleavage by the putative ACE secretase (sheddase). PMID:21998728
Wang, Shih-Wei; Chen, Yun-Ru; Chow, Jyh-Ming; Chien, Ming-Hsien; Yang, Shun-Fa; Wen, Yu-Ching; Lee, Wei-Jiunn; Tseng, Tsui-Hwa
2018-07-01
Luteolin (3',4',5,7-tetrahydroxyflavone), which exists in fruits, vegetables, and medicinal herbs, is used in Chinese traditional medicine for treating various diseases, such as hypertension, inflammatory disorders, and cancer. However, the gene-regulatory role of luteolin in cancer prevention and therapy has not been clarified. Herein, we demonstrated that treatment with luteolin resulted in a significant decrease in the viability of human leukemia cells. In the present study, by evaluating fragmentation of DNA and poly (ADP-ribose) polymerase (PARP), we found that luteolin was able to induce PARP cleavage and nuclear fragmentation as well as an increase in the sub-G 0 /G 1 fraction. In addition, luteolin also induced Fas and Fas ligand (FasL) expressions and subsequent activation of caspases-8 and -3, which can trigger the extrinsic apoptosis pathway, while knocking down Fas-associated protein with death domain (FADD) prevented luteolin-induced PARP cleavage. Immunoblot and chromatin immunoprecipitation (ChIP) analyses revealed that luteolin increased acetylation of histone H3, which is involved in the upregulation of Fas and FasL. Moreover, both the extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) pathways are involved in luteolin-induced histone H3 acetylation. Finally, luteolin also activated the c-Jun signaling pathway, which contributes to FasL, but not Fas, gene expression and downregulation of c-Jun expression by small interfering RNA transfection which resulted in a significant decrease in luteolin-induced PARP cleavage. Thus, our results demonstrate that luteolin induced apoptosis of HL-60 cells, and this was associated with c-Jun activation and histone H3 acetylation-mediated Fas/FasL expressions. © 2018 Wiley Periodicals, Inc.
Alatrash, Nagham; Narh, Eugenia S; Yadav, Abhishek; Kim, Mahn-Jong; Janaratne, Thamara; Gabriel, James; MacDonnell, Frederick M
2017-07-06
Four mononuclear [(L-L) 2 Ru(tatpp)] 2+ and two dinuclear [(L-L) 2 Ru(tatpp)Ru(L-L) 2 ] 4+ ruthenium(II) polypyridyl complexes (RPCs) containing the 9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (tatpp) ligand were synthesized, in which L-L is a chelating diamine ligand such as 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me 4 phen) or 4,7-diphenyl-1,10-phenanthroline (Ph 2 phen). These Ru-tatpp analogues all undergo reduction reactions with modest reducing agents, such as glutathione (GSH), at pH 7. These, plus several structurally related but non-redox-active RPCs, were screened for DNA cleavage activity, cytotoxicity, acetylcholinesterase (AChE) inhibition, and acute mouse toxicity, and their activities were examined with respect to redox activity and lipophilicity. All of the redox-active RPCs show single-strand DNA cleavage in the presence of GSH, whereas none of the non-redox-active RPCs do. Low-micromolar cytotoxicity (IC 50 ) against malignant H358, CCL228, and MCF7 cultured cell lines was mainly restricted to the redox-active RPCs; however, they were substantially less toxic toward nonmalignant MCF10 cells. The IC 50 values for AChE inhibition in cell-free assays and the acute toxicity of RPCs in mice revealed that whereas most RPCs show potent inhibitory action against AChE (IC 50 values <15 μm), Ru-tatpp complexes as a class are surprisingly well tolerated in animals relative to other RPCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Goth, Christoffer K.; Tuhkanen, Hanna E.; Khan, Hamayun; Lackman, Jarkko J.; Wang, Shengjun; Narimatsu, Yoshiki; Hansen, Lasse H.; Overall, Christopher M.; Clausen, Henrik; Schjoldager, Katrine T.; Petäjä-Repo, Ulla E.
2017-01-01
The β1-adrenergic receptor (β1AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as β-blockers, relatively little is yet known about its regulation. We have shown previously that β1AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O-glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O-glycosylates β1AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O-glycosylation and proteolytic cleavage assays, a cell line deficient in O-glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β1AR. Furthermore, we demonstrate that impaired O-glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the βAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O-glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β1AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases. PMID:28167537