Science.gov

Sample records for cell clones expressing

  1. Expression cloning of human B cell immunoglobulins.

    PubMed

    Wardemann, Hedda; Kofer, Juliane

    2013-01-01

    The majority of lymphomas originate from B cells at the germinal center stage or beyond. Preferential selection of B cell clones by a limited set of antigens has been suggested to drive lymphoma development. However, little is known about the specificity of the antibodies expressed by lymphoma cells, and the role of antibody-specificity in lymphomagenesis remains elusive. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire on a single cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells, to the RT-PCR-based amplification of the expressed Igh, Igκ, and Igλ chain genes, and Ig gene expression vector cloning for the in vitro production of monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B cell lymphomas by single cell Ig gene sequencing and on the antibody reactivity of human lymphoma B cells.

  2. cDNA expression cloning in mammalian cells.

    PubMed

    Hoffman, B J

    2001-05-01

    This unit contains protocols for expression cloning in mammalian cells. Either calcium phosphate- or liposome-mediated transfection of mammalian cells, or virus infection and liposome-mediated transfection are used to screen pools derived from a cDNA library. cDNA pools are prepared for cloning from library-transformed E. coli grown in liquid culture medium or on antibiotic-containing selection plates. Results of screening assays for expression can be detected using autoradiography of dishes of cultured cells to identify clones, direct visualization of radiolabeled cells on emulsion-coated and developed chamber slides, detection and quantification of gene activity by a functional (transport) assay with scintillation counting, or detection using a filter-based assay for binding of radioligand to membranes or whole cells. The most critical step of any cDNA cloning project is the establishment of the screening protocol. Therefore, the bioassay for the gene product must be established prior to executing any of these protocols, including construction of the cDNA library. PMID:18428491

  3. Gene expression analysis of the CD4+ T-cell clones derived from gingival tissues of periodontitis patients.

    PubMed

    Ito, H; Honda, T; Domon, H; Oda, T; Okui, T; Amanuma, R; Nakajima, T; Yamazaki, K

    2005-12-01

    The function of T cells infiltrating periodontitis lesions is complex and has not been fully elucidated. Here, we established T-cell clones from the gingival tissues of periodontitis patients and examined their gene expression. A total of 57 and 101 T-cell clones were established by means of immobilized anti-CD3 antibody and IL-2 from gingival tissues and peripheral blood, respectively. The gingival T-cell clones were derived from three patients, and the peripheral blood T-cell clones from two of these patients and a further patient whose gingival T-cell clones were not established. Gingival tissues were also obtained from a further 19 periodontitis patients. The expression of cytokines and molecules related to both regulatory function and tissue destruction were examined by means of reverse-transcription polymerase chain reaction. All the gingival T-cell clones expressed mRNA for TGF-beta1, CTLA-4, and CD25, and all the T-cell clones from peripheral blood expressed IFN-gamma and TGF-beta1 mRNAs. Most but not all the T-cell clones from gingival tissues and peripheral blood expressed mRNA for IFN-gamma and, CD25 and CTLA-4, respectively. The frequency of T-cell clones and gingival tissues expressing FOXP3, a possible master gene for mouse CD4(+)CD25(+) regulatory T cells, was very high (97%, 93%, and 100% for gingival T-cell clones, peripheral blood T-cell clones, and gingival tissues, respectively). Whereas the frequency of IL-4-expressing T-cell clones was lower for gingival T-cell clones (70% vs. 87%), the frequency of the gingival T-cell clones expressing IL-10 and IL-17 was higher than peripheral blood T-cell clones (75% vs. 62% for IL-10, 51% vs. 11% for IL-17). A similar expression profile was observed for gingival T-cell clones compared with gingival tissue samples with the exception of IL-4 expression, where the frequency of positive samples was lower in the gingival tissues (70% vs. 11%). These results suggest that the individual T cells infiltrating

  4. Cloning and expression of a cDNA for the T-cell-activating protein TAP.

    PubMed Central

    Reiser, H; Coligan, J; Palmer, E; Benacerraf, B; Rock, K L

    1988-01-01

    The T-cell-activating protein TAP is a murine phosphatidylinositol-anchored glycoprotein whose expression is controlled by the Ly-6 locus. Previous studies have suggested an important role for this protein in physiological T-cell activation. Using oligonucleotide probes, we have now isolated a cDNA clone whose predicted sequence would encode a protein with an NH2-terminal sequence identical to that of the TAP molecule. Further analysis of the predicted protein sequence revealed a cysteine-rich protein with a hydrophobic domain at the COOH terminus and without N-linked glycosylation sites--all features consistent with our previous analysis of the TAP protein. In Southern blot analysis, the Ly-6.2 cDNA clone detects a multigene family and a restriction fragment length polymorphism that maps precisely to the Ly-6 locus. Expression of the cDNA clone in COS cells demonstrates that it codes for TAP and clarifies the relationship between the epitopes recognized by various alpha Ly-6 monoclonal antibodies. Finally, we have studied the expression of Ly-6 mRNA in a variety of cell lineages. Ly-6 transcripts were detected in all organs examined, including spleen, kidney, lung, brain, and heart. This demonstrates that the Ly-6 locus is transcriptionally active in a wide range of organs and suggests that the role of TAP or TAP-like proteins might extend to other tissues. Images PMID:2895473

  5. Molecular cloning, expression analysis, and function of decorin in goat ovarian granulosa cells.

    PubMed

    Peng, J Y; Gao, K X; Xin, H Y; Han, P; Zhu, G Q; Cao, B Y

    2016-10-01

    Decorin (DCN), a component of the extracellular matrix (ECM), participates in ECM assembly and influences cell proliferation and apoptosis in many mammalian tissues and cells. However, expression and function of DCN in the ovary remain unclear. This study cloned the full-length cDNA of goat DCN obtained from the ovary of an adult goat. Sequence analysis revealed that the putative DCN protein shared a highly conserved amino acid sequence with known mammalian homologs. The tissue distribution of DCN mRNA expression was evaluated by real-time PCR, and the results showed that DCN was widely expressed in the tissues of adult goat. Immunohistochemistry results suggested that DCN protein existed in the granulosa cells and oocytes from all types of follicles and theca cells of antral follicles. Moreover, hCG-induced DCN mRNA expression was significantly reduced by the inhibitors of protein kinase A, PI3K, or p38 kinase (P < 0.05), which are key mediators involved in hCG-induced DCN expression. Overexpression of DCN significantly increased apoptosis and blocked cell cycle progression in cultured granulosa cells (P < 0.05). Western blot analysis also showed that overexpression of DCN upregulated the expression levels of p21 protein (P < 0.05), whereas no effects were observed on the expression of Bax and Bcl-2 and on Bcl-2/Bax ratio (P > 0.05). These findings suggested that DCN regulates the apoptosis and cell cycle of granulosa cells. PMID:27565237

  6. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning

    PubMed Central

    Tiller, Thomas; Meffre, Eric; Yurasov, Sergey; Tsuiji, Makoto; Nussenzweig, Michel C.; Wardemann, Hedda

    2008-01-01

    We have developed an efficient strategy that combines immunoglobulin (Ig) gene repertoire analysis and Ig reactivity profiling at the single cell level. Based on surface marker expression individual cells at different stages of human B cell development are isolated by fluorescence-activated cell sorting. For each cell Ig heavy and corresponding Ig light chain gene transcripts are amplified by nested RT-PCR and cloned into eukaryotic expression vectors to produce monoclonal human antibodies of the same specificity in vitro. All reactions are performed in 96-well plates and allow cloning of large numbers of Ig genes. The recombinant antibodies are tested for reactivity with diverse self-and non-self antigens and the reactivity profile can be directly linked to the complete Ig heavy and IgL chain gene sequence information that is obtained as part of the cloning strategy. In summary, our method to clone and express human monoclonal antibodies is unbiased, highly efficient, requires only small cell numbers and the recombinant antibodies allow direct conclusions on the frequency of specific human B cells in a diverse repertoire. PMID:17996249

  7. Introduction of cloned human papillomavirus genomes into mouse cells and expression at the RNA level.

    PubMed

    Brackmann, K H; Green, M; Wold, W S; Rankin, A; Loewenstein, P M; Cartas, M A; Sanders, P R; Olson, K; Orth, G; Jablonska, S; Kremsdorf, D; Favre, M

    1983-08-01

    The entire DNA genomes of five different human papillomaviruses (HPVs) were cloned into the BamHI site of pBR322 (HPV-1a, HPV-3, HPV-4, and HPV-9) or the EcoRI site of pBR325 (HPV-2), using as starting materials virus preparations isolated from papillomas of individual patients. Under stringent hybridization conditions (Tm-28 degrees), the five cloned HPVs exhibited less than 10% homology with one another. To establish model cell systems that may be useful for the identification of HPV genes and HPV gene products, mouse thymidine kinase negative (tk-) cells were cotransformed to the tk+ phenotype with the herpesvirus thymidine kinase gene and each of the five HPV cloned DNAs (either as intact recombinants or excised HPV DNA without removal of pBR). In most tk+ cell clones, a complex pattern of multiple high molecular weight inserts of HPV DNA were present in high copy number. Most of the HPV DNA sequences in the cotransformed cells were not present as unit-length episomal viral DNA. Analyses of the integration pattern (DNA blot) and RNA expression (RNA blot) of several HPV-1a and HPV-3 transformed cell lines suggest that some copies of the viral genome are integrated in a similar manner in different cell lines leading to the expression of identical viral RNA-containing species. Two of the cell lines transformed by the intact HPV-1a/pBR322 recombinant synthesized substantial amounts of four discrete viral polyadenylated cytoplasmic RNA species of 1.9, 3.2, 3.8, and 4.5 kb. Two cell lines transformed by the intact HPV-3/pBR322 recombinant synthesized 4-5 polyadenylated cytoplasmic viral RNA species ranging from 0.8 to 4.6 kb. The analysis shows that each viral RNA species appears to be a hybrid RNA molecule containing both HPV and pBR322 sequences. Based on these findings and the molecular organization of the HPV-1a genome (O. Danos, M. Katinka, and M. Yaniv (1982). EMBO J. 1, 231-237), it is possible that transcription of each of the HPV-1a RNA species is initiated

  8. Molecular cloning, expression, and regulation of the ovalbumin gene in pigeon oviduct epithelial cells.

    PubMed

    Zhang, H; Lu, L Z; Chen, L; Tao, Z R; Chen, F; Zhong, S L; Liu, Y L; Tian, Y; Yan, P S

    2014-01-10

    The full-length pigeon ovalbumin (OVA) gene cDNA was cloned and sequenced by reverse transcription-polymerase chain reaction (RT-PCR) and rapid-amplification of cDNA ends. A 386-amino acid protein was predicted for the obtained sequence, which had 67% identity with the chicken protein. Similar to chicken OVA, the pigeon OVA gene is a non-inhibitory serine protease inhibitor. Quantitative PCR analysis revealed that pigeon OVA mRNA was highly expressed in the oviduct, and trace amounts were detected in other tissues. During the reproductive cycle, pigeon oviduct OVA mRNA expression reached its peak during the egg-laying stage, decreased with brooding, and then increased again during the squab-feeding period. Moreover, the relative OVA expression level in pigeon oviduct epithelial cells could be upregulated by a constant concentration of steroid hormones.

  9. T-cell receptor beta gene rearrangements in clones derived from human CD4-8- cells expressing natural killer cell activity.

    PubMed

    Christmas, S E; Moore, M

    1988-12-01

    Clones derived from highly purified human peripheral blood Leu 19+ cells in the presence of phytohaemagglutinin (PHA) and interleukin-2 (IL-2) expressed cytotoxic activity against natural killer (NK)-resistant as well as NK-sensitive targets. All 66 clones analysed had a germ line configuration of T-cell receptor (TCR) beta genes and 38/40 also had unrearranged TCR gamma genes. The two exceptions were both CD3+ clones, but these did not have a cytotoxic repertoire noticeably different from CD3- clones without TCR gamma gene rearrangements. Clones were also obtained from highly purified CD4-8- cells, most of which were also cytotoxic for NK-resistant and NK-sensitive targets. About 90% of these clones were CD3+ but only around 50% remained negative for CD4 and CD8 while a significant number (12.7%) were positive for both CD4 and CD8. All clones analysed had rearranged TCR gamma genes and most had also rearranged TCR beta genes, including 20/25 of the clones which were CD3+4-8-. Many of the clones showed two rearrangements of TCR beta genes, and 3/4 CD3- clones had rearranged TCR beta as well as TCR gamma genes. There was no correlation between cytotoxic activity and TCR gene status or phenotype of these CD4-8- derived clones, except that clones which were Leu 19+ tended to have higher cytotoxic activity against NK-sensitive and NK-resistant targets than Leu 19-clones. The results strongly indicate that TCR beta and gamma gene products are not involved in the cytotoxicity mediated by these clones. They also suggest that some CD4-8- cells may be capable of limited differentiation in vitro.

  10. Cloning-independent expression and screening of enzymes using cell-free protein synthesis systems.

    PubMed

    Kwon, Yong-Chan; Song, Jae-Kwang; Kim, Dong-Myung

    2014-01-01

    We present a strategy for expression and screening of microbial enzymes without involving cloning procedures. Libraries of putative ω-transaminases (ω-TA) and mutated Candida antarctica lipase B (CalB) are PCR-amplified from bacterial colonies and directly expressed in an Escherichia coli-based cell-free protein synthesis system. The open nature of cell-free protein synthesis system also allows streamlined analysis of the enzymatic activity of the expressed enzymes, which greatly shortens the time required for enzyme screening. We expect that the proposed strategy will provide a universal platform for bridging the information gap between nucleotide sequence and protein function, in order to accelerate the discovery of novel enzymes. The proposed strategy can also serve as a viable option for the rapid and precise tuning of enzyme molecules, not only for analytical purposes, but also for industrial applications. This is accomplished via large-scale production using microbial cells transformed with variant genes selected from the cell-free expression screening. PMID:24395411

  11. Cloning-independent expression and screening of enzymes using cell-free protein synthesis systems.

    PubMed

    Kwon, Yong-Chan; Song, Jae-Kwang; Kim, Dong-Myung

    2014-01-01

    We present a strategy for expression and screening of microbial enzymes without involving cloning procedures. Libraries of putative ω-transaminases (ω-TA) and mutated Candida antarctica lipase B (CalB) are PCR-amplified from bacterial colonies and directly expressed in an Escherichia coli-based cell-free protein synthesis system. The open nature of cell-free protein synthesis system also allows streamlined analysis of the enzymatic activity of the expressed enzymes, which greatly shortens the time required for enzyme screening. We expect that the proposed strategy will provide a universal platform for bridging the information gap between nucleotide sequence and protein function, in order to accelerate the discovery of novel enzymes. The proposed strategy can also serve as a viable option for the rapid and precise tuning of enzyme molecules, not only for analytical purposes, but also for industrial applications. This is accomplished via large-scale production using microbial cells transformed with variant genes selected from the cell-free expression screening.

  12. Molecular cloning, expression and bioactivity of B cell activating factor (BAFF) in African ostrich.

    PubMed

    Yang, Keli; Xiao, Ke; Huang, Haibo; Lu, Shun; Zhong, Juming; Ansari, Abdur Rahman; Khaliq, Haseeb; Song, Hui; Liu, Huazhen; Peng, Kemei

    2015-09-01

    B cell activating factor (BAFF), which belongs to the tumor necrosis factor (TNF) family, is testified to play a critical role in B cell survival, proliferation, maturation and immunoglobulin secretion. In the present study, the cDNA of open reading frame (ORF) in African ostrich (Struthio camelus) BAFF (designated OsBAFF) was cloned by reverse transcription-PCR (RT-PCR). The OsBAFF gene encodes a 288-amino acid protein containing a predicted transmembrane domain and a putative furin protease cleavage site like BAFFs from chicken (cBAFF), quail (qBAFF), duck (dBAFF), goose (gBAFF) and dove (doBAFF). RT-PCR analysis showed that the OsBAFF gene is strongly expressed in the bursa of Fabricius, thymus, spleen, and bone marrow. The soluble OsBAFF had been cloned into pET28a. SDS-PAGE and Western blotting analysis confirmed that the soluble fusion protein His-OsBAFF was efficiently expressed in Escherichia coli Rosset (DE3). In vitro, purified OsBAFF was not only able to promote the survival of African ostrich bursal lymphocytes, but also able to co-stimulate proliferation of mouse splenic B cells. The expression of OsBAFF in lymphocyte cells was higher than the control after LPS stimulation. These findings indicated that OsBAFF plays an important role in survival and proliferation of African ostrich bursal lymphocytes, which may provide valuable information for research into the immune system of African ostrich and OsBAFF may serve as a potential immunologic factor for enhancing immunological efficacy in African ostrich and any other birds. PMID:26256697

  13. Molecular cloning, expression and characterization of programmed cell death 10 from sheep (Ovis aries).

    PubMed

    Yang, Yong-Jie; Liu, Zeng-Shan; Lu, Shi-Ying; Li, Chuang; Hu, Pan; Li, Yan-Song; Liu, Nan-Nan; Tang, Feng; Xu, Yun-Ming; Zhang, Jun-Hui; Li, Zhao-Hui; Feng, Xiao-Li; Zhou, Yu; Ren, Hong-Lin

    2015-03-01

    Programmed cell death 10 (PDCD10) is a highly conserved adaptor protein. Its mutations result in cerebral cavernous malformations (CCMs). In this study, PDCD10 cDNA from the buffy coat of Small Tail Han sheep (Ovis aries) was cloned from a suppression subtractive hybridization cDNA library, named OaPDCD10. The full-length cDNA of OaPDCD10 was 1343bp with a 639bp open reading frame (ORF) encoding 212 amino acid residues. Tissue distribution of OaPDCD10 mRNA determined that it was ubiquitously expressed in all tested tissue samples, and the highest expression was observed in the heart. The differential expression of OaPDCD10 between infected sheep (challenged with Brucella melitensis) and vaccinated sheep (vaccinated with Brucella suis S2) was also investigated. The results revealed that, compared to the control group, the expression of OaPDCD10 from infected and vaccinated sheep was both significantly up-regulated (p<0.05). Moreover, the expression levels of OaPDCD10 from the vaccinated sheep were significantly higher than the infected sheep (p<0.05) after 30days post-inoculation. The recombinant OaPDCD10 (rOaPDCD10) protein was expressed in Escherichia coli BL21 (DE3), and then purified by affinity chromatography. The rOaPDCD10 protein was demonstrated to induce apoptosis and promote cell proliferation. Our studies are intended to discover potential diagnostic biomarkers of brucellosis to discern infected sheep from vaccinated sheep, and OaPDCD10 could be considered as a potential diagnostic biomarker of brucellosis.

  14. Stable expression of cloned rat GABAA receptor subunits in a human kidney cell line.

    PubMed

    Hamilton, B J; Lennon, D J; Im, H K; Im, W B; Seeburg, P H; Carter, D B

    1993-04-30

    A predominant form of the GABAA/benzodiazepine receptor-Cl- channel complex is believed to consist of three different 48-55 kDa subunits (alpha, beta, gamma) with unknown stoichiometry. Plasmids containing the rat GABAA receptor cDNAs coding for alpha 1, beta 2, and gamma 2 were co-transfected, along with a plasmid encoding G418 resistance, into human embryonic kidney cells previously transformed with Adenovirus 5 (HEK-293) [J. Gen. Virol., 36 (1977) 59-72]. Four percent of the G418 resistant colonies were found to express mRNA for all three of the GABAA subunits constitutively. A single cell clone derived from one of the alpha 1 beta 2 gamma 2 expressors has demonstrated stable electrophysiological characteristics over 25 passages. The GABA-activated Cl- current in this cell line is blocked by picrotoxin and bicuculline, and is modulated by a variety of agonist and inverse agonist ligands including diazepam, Ro 154513, zolpidem, and beta-CCE. The cell line has been used successfully over a 12-month period as a screen for novel drugs modulating GABA-mediated polarization of neuronal cells. PMID:7687050

  15. Cloning and substrate specificity of a human phenol UDP-glucuronosyltransferase expressed in COS-7 cells.

    PubMed Central

    Harding, D; Fournel-Gigleux, S; Jackson, M R; Burchell, B

    1988-01-01

    A rat kidney phenol UDP-glucuronosyltransferase cDNA was used to isolate a human liver phenol UDP-glucuronosyltransferase cDNA by screening of a human liver cDNA library in the expression vector lambda gt11. The 2.4-kilobase cDNA contained an open reading frame of 1593 base pairs coding for a protein of 531 residues. The human liver cDNA was subcloned into the vector pKCRH2. Transfection of this recombinant plasmid into COS-7 cells allowed the expression of a protein of approximately 55 kDa. The enzyme synthesized was a glycoprotein, as indicated by a reduction in molecular mass of approximately 3 kDa after biosynthesis in the presence of tunicamycin. The expressed enzyme rapidly catalyzed the glucuronidation of 1-naphthol, 4-methylumbelliferone, and 4-nitrophenol. The use of a related series of simple phenols provided an outline description of the substituent restrictions imposed upon the phenolic structures accepted as substrates. The glucuronidation of testosterone, androsterone, and estrone was not catalyzed by this cloned UDP-glucuronosyltransferase. Images PMID:3141926

  16. Molecular cloning, primary structure, and expression of the human platelet/erythroleukemia cell 12-lipoxygenase

    SciTech Connect

    Funk, C.D.; Furci, L.; FitzGerald, G.A. )

    1990-08-01

    The major pathway of arachidonic acid metabolism in human platelets proceeds via a 12-lipoxygenase enzyme; however, the biological role of the product of this reaction, 12-hydro(pero)xyeicosatetraenoic acid (12-H(P)ETE), is unknown. Using a combination of the polymerase chain reaction and conventional screening procedures, the authors have isolated cDNA clones encoding the human platelet/human erythroleukemia (HEL) cell 12-lipoxygenase. From the deduced primary structure, human platelet/HEL 12-lipoxygenase would encode a M{sub r} 75,000 protein consisting of 663 amino acids. The cDNA encoding the full-length protein (pCDNA-12lx) under the control of the cytomegalovirus promoter was expressed in simian COS-M6 cells. Intact cells and lysed-cell supernatants were able to synthesize 12-H(P)ETE from arachidonic acid, whereas no 12-H(P)ETE synthesis was detected in mock-transfected cells. A single 2.4-kilobase mRNA was detected in erythroleukemia cells but not in several other tissues and cell lines evaluated by Northern blot analysis. Comparison of the human platelet/HEL 12-lipoxygenase sequence with that of porcine leukocyte 12-lipoxygenase and human reticulocyte 15-lipoxygenase revealed 65% amino acid identity to both enzymes. By contrast, the leukocyte 12-lipoxygenase is 86% identical to human reticulocyte 15-lipoxygenase. Sequence data and previously demonstrated immunochemical and biochemical evidence support the existence of distinct 12-lipoxygenase isoforms. The availability of cDNA probes for human platelet/HEL cell 12-lipoxygenase should facilitate elucidation of the biological role of this pathway.

  17. Cloning, expression and identification of an isoform of human stromal cell derived factor-1α

    PubMed Central

    LIANG, YIN-KU; PING, WEI; BIAN, LIU-JIAO

    2015-01-01

    Human stromal cell derived factor-1α (hSDF-1α), a chemotactic factor of stem cells, regulates inflammation, promotes the mobilization of stem cells and induces angiogenesis following ischemia. Six SDF-1 isoforms, SDF-1α, SDF-1β, SDF-1γ, SDF-1δ, SDF-1ε and SDF-1ϕ, which all contain a signal peptide at the N-terminus, have been reported. In the present study a special isoform of hSDF-1α is described that does not contain the N-terminal signal peptide sequence. The hSDF-1α gene was cloned with the recombinant plasmid pCMV-SPORT6-hSDF1 as the template, and the prokaryotic expression vector pET15b-hSDF-1α was constructed. This hSDF-1α was successfully expressed as an inclusion body in Escherichia coli BL21(DE3). The recombinant hSDF-1α was refolded in vitro and separated by cation exchange chromatography. Following these two steps the purity of the hSDF-1α was able to reach >85%. The recombinant hSDF-1α was then purified by size-exclusion chromatography. SDS-PAGE analysis demonstrated that the purity of the hSDF-1α was >95%, which meets almost all the requirements of a protein experiment. Chemotactic activity of the recombinant hSDF-1α was analyzed by Transwell migration assay and it was found that the recombinant hSDF-1α was able to stimulate THP-1 cell migration. These data suggest that the procedure of producing recombinant hSDF-1α proteins with chemotactic activity was feasible and the N-terminal signal peptide of hSDF-1α has little effect on the chemotactic activity of hSDF-1α. PMID:26136888

  18. Cloning and Expression of CD19, a Human B-Cell Marker in NIH-3T3 Cell Line

    PubMed Central

    Abbasi-Kenarsari, Hajar; Shafaghat, Farzaneh; Baradaran, Behzad; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Background CD19 is a pan B cell marker that is recognized as an attractive target for antibody-based therapy of B-cell disorders including autoimmune disease and hematological malignancies. The object of this study was to stably express the human CD19 antigen in the murine NIH-3T3 cell line aimed to be used as an immunogen in our future study. Methods Total RNA was extracted from Raji cells in which high expression of CD19 was confirmed by flow cytometry. Synthesized cDNA was used for CD19 gene amplification by conventional PCR method using Pfu DNA polymerase. PCR product was ligated to pGEM-T Easy vector and ligation mixture was transformed to DH5α competent bacteria. After blue/white selection, one positive white colony was subjected to plasmid extraction and direct sequencing. Then, CD19 cDNA was sub-cloned into pCMV6-Neo expression vector by double digestion using KpnI and HindIII enzymes. NIH-3T3 mouse fibroblast cell line was subsequently transfected by the construct using Jet-PEI transfection reagent. After 48 hours, surface expression of CD19 was confirmed by flow cytometry and stably transfected cells were selected by G418 antibiotic. Results Amplification of CD19 cDNA gave rise to 1701 bp amplicon confirmed by alignment to reference sequence in NCBI database. Flow cytometric analysis showed successful transient and stable expression of CD19 on NIH-3T3 cells (29 and 93%, respectively). Conclusion Stable cell surface expression of human CD19 antigen in a murine NIH-3T3 cell line may develop a proper immunogene which raises specific anti-CD19 antibody production in the mice immunized sera. PMID:25926951

  19. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system.

    PubMed

    Nakamura, Tsuyoshi; Omasa, Takeshi

    2015-09-01

    Therapeutic antibodies are commonly produced by high-expressing, clonal and recombinant Chinese hamster ovary (CHO) cell lines. Currently, CHO cells dominate as a commercial production host because of their ease of use, established regulatory track record, and safety profile. CHO-K1SV is a suspension, protein-free-adapted CHO-K1-derived cell line employing the glutamine synthetase (GS) gene expression system (GS-CHO expression system). The selection of high-producing mammalian cell lines is a crucial step in process development for the production of therapeutic antibodies. In general, cloning by the limiting dilution method is used to isolate high-producing monoclonal CHO cells. However, the limiting dilution method is time consuming and has a low probability of monoclonality. To minimize the duration and increase the probability of obtaining high-producing clones with high monoclonality, an automated single cell-based clone selector, the ClonePix FL system, is available. In this study, we applied the high-throughput ClonePix FL system for cell line development using CHO-K1SV cells and investigated efficient conditions for single cell-based clone selection. CHO-K1SV cell growth at the pre-picking stage was improved by optimizing the formulation of semi-solid medium. The efficiency of picking and cell growth at the post-picking stage was improved by optimization of the plating time without decreasing the diversity of clones. The conditions for selection, including the medium formulation, were the most important factors for the single cell-based clone selection system to construct a high-producing CHO cell line.

  20. [Cloning and expression of bacteriophage FMV lysocyme gene in cells of yeasts Saccharomyces cerevisiae and Pichia pastoris].

    PubMed

    Kozlov, D G; Cheperigin, S E; Chestkov, A V; Krylov, V N; Tsygankov, Iu D

    2010-03-01

    Cloning, sequencing, and expression of the gene for soluble lysozyme of bacteriophage FMV from Gram-negative Pseudomonas aeruginosa bacteria were conducted in yeast cells. Comparable efficiency of two lysozyme expression variants (as intracellular or secreted proteins) was estimated in cells of Saccharomyces cerevisiae and Pichia pastoris. Under laboratory conditions, yeast S. cerevisiae proved to be more effective producer of phage lysozyme than P. pastoris, the yield of the enzyme in the secreted form being significantly higher than that produced in the intracellular form. PMID:20391778

  1. An expressed sequence tag database of T-cell-enriched activated chicken splenocytes: sequence analysis of 5251 clones.

    PubMed

    Tirunagaru, V G; Sofer, L; Cui, J; Burnside, J

    2000-06-01

    The cDNA and gene sequences of many mammalian cytokines and their receptors are known. However, corresponding information on avian cytokines is limited due to the lack of cross-species activity at the functional level or strong homology at the molecular level. To improve the efficiency of identifying cytokines and novel chicken genes, a directionally cloned cDNA library from T-cell-enriched activated chicken splenocytes was constructed, and the partial sequence of 5251 clones was obtained. Sequence clustering indicates that 2357 (42%) of the clones are present as a single copy, and 2961 are distinct clones, demonstrating the high level of complexity of this library. Comparisons of the sequence data with known DNA sequences in GenBank indicate that approximately 25% of the clones match known chicken genes, 39% have similarity to known genes in other species, and 11% had no match to any sequence in the database. Several previously uncharacterized chicken cytokines and their receptors were present in our library. This collection provides a useful database for cataloging genes expressed in T cells and a valuable resource for future investigations of gene expression in avian immunology. A chicken EST Web site (http://udgenome. ags.udel. edu/chickest/chick.htm) has been created to provide access to the data, and a set of unique sequences has been deposited with GenBank (Accession Nos. AI979741-AI982511). Our new Web site (http://www. chickest.udel.edu) will be active as of March 3, 2000, and will also provide keyword-searching capabilities for BLASTX and BLASTN hits of all our clones. PMID:10860659

  2. Production of interferon-gamma and tumour necrosis factor-alpha by human T-cell clones expressing different forms of the gamma delta receptor.

    PubMed

    Christmas, S E; Meager, A

    1990-12-01

    Panels of human T-cell clones bearing the gamma delta T-cell receptor (TcR) were obtained from peripheral blood and decidual tissue and maintained in the presence of interleukin-2 (IL-2). TcR V gamma and V delta gene expression was determined in 40 TcR delta 1+ clones using the gamma delta T-cell subset markers Ti gamma A and delta TCS1, in conjunction with Southern blot analysis using TcR J gamma and J delta probes. gamma delta T-cell clones, together with control alpha beta T-cell clones derived from the same lymphocyte populations, were stimulated with phytohaemagglutinin (PHA) and their ability to produce interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha) tested using specific ELISA. Many clones representative of the major peripheral V gamma 9/V delta 2J1 subset produced high amounts of both cytokines and mean levels were not significantly different from those produced by alpha beta T-cell clones. Panels of clones expressing V gamma 9 and V delta 2J1 produced significantly higher levels of TNF-alpha than clones not expressing V delta 2J1 and those expressing V delta 1J1. There was no relationship between levels of IFN-gamma and TNF-alpha produced by individual gamma delta T-cell clones and also no relationship between their non-major histocompatibility complex (MHC)-restricted cytotoxic activity and levels of either cytokine. There was a significant tendency for gamma delta T-cell clones to produce more TNF-alpha than IFN-gamma in comparison to alpha beta T-cell clones. The significance of these findings is discussed in the light of the reported differences in distribution in vivo of V delta 1J1+ and V delta 2J1+ cells.

  3. Establishment and characterization of Epstein-Barr virus gp350-expressing transfected human lymphoid (Raji) cell clones.

    PubMed

    Khyatti, M; Patel, P C; Menezes, J

    1991-06-19

    Gp350, a late Epstein-Barr-virus (EBV) glycoprotein expressed on both the envelope of viral particles and EBV-producing cells, is also the candidate for the development of an anti-EBV subunit vaccine. This glycoprotein is thought to play an important role in anti-EBV immunity. However, studies on the role of this viral antigen in cellular cytotoxicity and other immune functions have been hampered by the lack of a suitable model expressing gp350. We describe here a study in which we successfully transfected a gp350-negative cell line resistant to natural-killer(NK)-cell activity (i.e., Raji) with a recombinant plasmid (pZIP-MA) containing the EBV-gp350 and the neomycin resistance gene. Three clones with a stable and strong expression of gp350 on their surface membrane, as demonstrated using a gp350-specific (i.e., 2LI0) monoclonal antibody (MAb) were isolated, characterized and used as targets in an antibody-dependent cellular cytotoxicity (ADCC) assay. However, gp350 expression on 2 of the 3 isolated clones was not recognized by an anti-gp350 MAb (72AI) which is specific to a unique gp350 epitope with a dual function (i.e., involved in both EBV binding to its target cell receptors and in inducing virus-neutralizing antibody). We have also found that gp350 expression on our 3 selected clones does not affect EBV-receptor (CR2) density. Our model of gp350-expressing, NK-cell-activity-resistant targets revealed very useful in determining that gp350 serves as a target antigen for EBV-specific ADCC. These gp350-expressing cell clones appear to represent a valuable tool for diagnostic purposes (i.e., for detecting and titrating gp350 antibodies in patients with EBV-associated diseases). Our approach should also prove useful for studying the expression of other cell-surface-associated viral and tumor antigens and their role in specific cellular immunity and immunosurveillance. PMID:1646179

  4. An Alternative Method to Facilitate cDNA Cloning for Expression Studies in Mammalian Cells by Introducing Positive Blue White Selection in Vaccinia Topoisomerase I-Mediated Recombination

    PubMed Central

    Udo, Hiroshi

    2015-01-01

    One of the most basic techniques in biomedical research is cDNA cloning for expression studies in mammalian cells. Vaccinia topoisomerase I-mediated cloning (TOPO cloning by Invitrogen) allows fast and efficient recombination of PCR-amplified DNAs. Among TOPO vectors, a pcDNA3.1 directional cloning vector is particularly convenient, since it can be used for expression analysis immediately after cloning. However, I found that the cloning efficiency was reduced when RT-PCR products were used as inserts (about one-quarter). Since TOPO vectors accept any PCR products, contaminating fragments in the insert DNA create negative clones. Therefore, I designed a new mammalian expression vector enabling positive blue white selection in Vaccinia topoisomerase I–mediated cloning. The method utilized a short nontoxic LacZα peptide as a linker for GFP fusion. When cDNAs were properly inserted into the vector, minimal expression of the fusion proteins in E. coli (harboring lacZΔM15) resulted in formation of blue colonies on X-gal plates. This method improved both cloning efficiency (75%) and directional cloning (99%) by distinguishing some of the negative clones having non-cording sequences, since these inserts often disturbed translation of lacZα. Recombinant plasmids were directly applied to expression studies using GFP as a reporter. Utilization of the P2A peptide allowed for separate expression of GFP. In addition, the preparation of Vaccinia topoisomerase I-linked vectors was streamlined, which consisted of successive enzymatic reactions with a single precipitation step, completing in 3 hr. The arrangement of unique restriction sites enabled further modification of vector components for specific applications. This system provides an alternative method for cDNA cloning and expression in mammalian cells. PMID:26422141

  5. An Alternative Method to Facilitate cDNA Cloning for Expression Studies in Mammalian Cells by Introducing Positive Blue White Selection in Vaccinia Topoisomerase I-Mediated Recombination.

    PubMed

    Udo, Hiroshi

    2015-01-01

    One of the most basic techniques in biomedical research is cDNA cloning for expression studies in mammalian cells. Vaccinia topoisomerase I-mediated cloning (TOPO cloning by Invitrogen) allows fast and efficient recombination of PCR-amplified DNAs. Among TOPO vectors, a pcDNA3.1 directional cloning vector is particularly convenient, since it can be used for expression analysis immediately after cloning. However, I found that the cloning efficiency was reduced when RT-PCR products were used as inserts (about one-quarter). Since TOPO vectors accept any PCR products, contaminating fragments in the insert DNA create negative clones. Therefore, I designed a new mammalian expression vector enabling positive blue white selection in Vaccinia topoisomerase I-mediated cloning. The method utilized a short nontoxic LacZα peptide as a linker for GFP fusion. When cDNAs were properly inserted into the vector, minimal expression of the fusion proteins in E. coli (harboring lacZΔM15) resulted in formation of blue colonies on X-gal plates. This method improved both cloning efficiency (75%) and directional cloning (99%) by distinguishing some of the negative clones having non-cording sequences, since these inserts often disturbed translation of lacZα. Recombinant plasmids were directly applied to expression studies using GFP as a reporter. Utilization of the P2A peptide allowed for separate expression of GFP. In addition, the preparation of Vaccinia topoisomerase I-linked vectors was streamlined, which consisted of successive enzymatic reactions with a single precipitation step, completing in 3 hr. The arrangement of unique restriction sites enabled further modification of vector components for specific applications. This system provides an alternative method for cDNA cloning and expression in mammalian cells. PMID:26422141

  6. Rapid cloning, expression, and functional characterization of paired αβ and γδ T-cell receptor chains from single-cell analysis

    PubMed Central

    Guo, Xi-zhi J; Dash, Pradyot; Calverley, Matthew; Tomchuck, Suzanne; Dallas, Mari H; Thomas, Paul G

    2016-01-01

    Transgenic expression of antigen-specific T-cell receptor (TCR) genes is a promising approach for immunotherapy against infectious diseases and cancers. A key to the efficient application of this approach is the rapid and specific isolation and cloning of TCRs. Current methods are often labor-intensive, nonspecific, and/or relatively slow. Here, we describe an efficient system for antigen-specific αβTCR cloning and CDR3 substitution. We demonstrate the capability of cloning influenza-specific TCRs within 10 days using single-cell polymerase chain reaction (PCR) and Gibson Assembly techniques. This process can be accelerated to 5 days by generating receptor libraries, requiring only the exchange of the antigen-specific CDR3 region into an existing backbone. We describe the construction of this library for human γδ TCRs and report the cloning and expression of a TRGV9/TRDV2 receptor that is activated by zoledronic acid. The functional activity of these αβ and γδ TCRs can be characterized in a novel reporter cell line (Nur77-GFP Jurkat 76 TCRα–β–) for screening of TCR specificity and avidity. In summary, we provide a rapid method for the cloning, expression, and functional characterization of human and mouse TCRs that can assist in the development of TCR-mediated therapeutics. PMID:26858965

  7. Cloning and characterization of a gibberellin-induced RNase expressed in barley aleurone cells

    SciTech Connect

    Rogers, S.W.; Rogers, J.C. . Inst. of Biological Chemistry)

    1999-04-01

    The authors cloned a cDNA for a gibberellin-induced ribonuclease (RNase) expressed in barley (Hordeum vulgare) aleurone and the gene for a second barley RNase expressed in leaf tissue. The protein encoded by the cDNA is unique among RNases described to date in that it contains a novel 23-amino acid insert between the C2 and C3 conserved sequences. Expression of the recombinant protein in tobacco (Ncotiana tabacum) suspension-cultured protoplasts gave an active RNase of the expected size, confirming the enzymatic activity of the protein. Analyses of hormone regulation of re-expression of mRNA for the aleurone RNase revealed that, like the pattern for [alpha]-amylase, mRNA levels increased in the presence of gibberellic acid, and its antagonist abscisic acid prevented this effect. Quantitative studies at early times demonstrated that cycloheximide treatment of aleurone layers increased mRNA levels 4-fold, whereas a combination of gibberellin plus cycloheximide treatment was required to increase [alpha]-amylase mRNA levels to the same extent. These results are consistent with loss of repression as an initial effect of gibberellic acid on transcription of those genes, although the regulatory pathways for the two genes may differ.

  8. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    SciTech Connect

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.

  9. Expression of active human clotting factor IX from recombinant DNA clones in mammalian cells.

    PubMed

    Anson, D S; Austen, D E; Brownlee, G G

    Haemophilia B, or Christmas disease, is an inherited X-chromosome-linked bleeding disorder caused by a defect in clotting factor IX and occurs in about 1 in 30,000 males in the United Kingdom. Injection of factor IX concentrate obtained from blood donors allows most patients to be successfully managed. However, because of impurities in the factor IX concentrate presently in use, this treatment involves some risk of infection by blood-borne viruses such as non-A, non-B hepatitis and the virus causing acquired immune deficiency syndrome (AIDS). Because of the recent concern about the increasing incidence of AIDS amongst haemophiliacs, a factor IX preparation derived from a source other than blood is desirable. Here, we report that after introduction of human factor IX DNA clones into a rat hepatoma cell line using recombinant DNA methods, we were able to isolate small amounts of biologically active human factor IX.

  10. Molecular cloning, sequencing, and expression of functional bovine herpesvirus 1 glycoprotein gIV in transfected bovine cells.

    PubMed Central

    Tikoo, S K; Fitzpatrick, D R; Babiuk, L A; Zamb, T J

    1990-01-01

    The gene encoding bovine herpesvirus 1 (BHV-1) glycoprotein gIV was mapped, cloned, and sequenced. The gene is situated between map units 0.892 and 0.902 and encodes a predicted protein of 417 amino acids with a signal sequence cleavage site between amino acids 18 and 19. Comparison of the BHV-1 amino acid sequence with the homologous glycoproteins of other alphaherpesviruses, including herpes simplex virus type 1 glycoprotein gD, revealed significant homology in the amino-terminal half of the molecules, including six invariant cysteine residues. The identity of the open reading frame was verified by expression of the authentic recombinant BHV-1 gIV in bovine cells by using eucaryotic expression vectors pRSDneo (strong, constitutive promoter) and pMSG (weak, dexamethasone-inducible promoter). Constitutive expression of gIV proved toxic to cells, since stable cell lines could only be established when the gIV gene was placed under the control of an inducible promoter. Expression of gIV was cell associated and localized predominantly in the perinuclear region, although nuclear and plasma membrane staining was also observed. Radioimmunoprecipitation revealed that the recombinant glycoprotein was efficiently processed and had a molecular weight similar to that of the native form of gIV expressed in BHV-1-infected bovine cells. Recombinant gIV produced in the transfected bovine cells induced cell fusion, polykaryon formation, and nuclear fusion. In addition, expression of gIV interfered with BHV-1 replication in the transfected bovine cells. Images PMID:2168991

  11. Identification of Mycobacterium tuberculosis vaccine candidates using human CD4+ T-cells expression cloning

    PubMed Central

    Coler, Rhea N.; Dillon, Davin C.; Skeiky, Yasir A. W.; Kahn, Maria; Orme, Ian M.; Lobet, Yves; Reed, Steven G.; Alderson, Mark R.

    2009-01-01

    To identify Mycobacterium tuberculosis (Mtb) antigens as candidates for a subunit vaccine against tuberculosis (TB), we have employed a CD4+ T-cell expression screening method. Mtb-specific CD4+ T-cell lines from nine healthy PPD positive donors were stimulated with different antigenic substrates including autologous dendritic cells (DC) infected with Mtb, culture filtrate proteins (CFP), and purified protein derivative of Mtb (PPD). These lines were used to screen a genomic Mtb library expressed in Escherichia coli and processed and presented by autologous DC. This screening led to the recovery of numerous T-cell antigens, including both novel and previously described antigens. One of these novel antigens, referred to as Mtb9.8 (Rv0287), was recognized by multiple T-cell lines, stimulated with either Mtb-infected DC or CFP. Using the mouse and guinea pig models of TB, high levels of IFN-γ were produced, and solid protection from Mtb challenge was observed following immunization with Mtb9.8 formulated in either AS02A or AS01B Adjuvant Systems. These results demonstrate that T-cell screening of the Mtb genome can be used to identify CD4+ T-cell antigens that are candidates for vaccine development. PMID:19000730

  12. Expression of the fetal Alz-50 clone 1 protein induces apoptotic cell death

    SciTech Connect

    Strachan, Gordon D.; Ostrow, Liya Avshalumov; Jordan-Sciutto, Kelly L. . E-mail: Jordan@path.dental.upenn.edu

    2005-10-21

    The fetal Alz-50 clone 1 (FAC1) protein exhibits altered expression patterns in neurodegenerative disease. Though it has been shown to bind DNA in a site-specific, phosphorylation-dependent manner, its cellular function remains unknown. Here, we demonstrate that overexpression of FAC1 in PT67 fibroblasts induces nuclear condensation and cleavage of caspase 3 to its active form indicating induction of apoptosis. The amino-terminal domain of FAC1 is necessary and sufficient to induce both nuclear condensation and activation of caspase 3. Disruption of FAC1 interaction with a known binding partner, kelch-like ECH-associated protein 1 (Keap1), enhances activation of caspase 3. Keap1 is known to block activation of the antioxidant response gene products by direct interaction with the transcriptional activator, Nrf2. Disruption of the Keap1:Nrf2 interaction enhances FAC1 induction of apoptosis. These findings suggest a role for FAC1 in apoptosis following release of Nrf2 from Keap1 in response to oxidative stress.

  13. Molecular cloning, expression, and regulation of estrogen receptors in pigeon oviduct epithelial cells.

    PubMed

    Zhang, H; Chen, F; Li, G L; Ding, Y Y; Tao, Z R; Li, J J; Zhong, S L; Lu, L Z

    2014-03-17

    Estrogen regulates reproductive behavior and drives the proliferation and differentiation of several cell types. These physiological functions of estrogen are mediated by estrogen receptors (ERs), and each ER isoform plays a distinct role. To clarify the molecular mechanism of estrogen action and to evaluate the effect of ERs on the secretion of ovalbumin (OVA) in pigeon oviduct epithelial cells (POECs), we determined the complete coding sequences encoding ER alpha (ERα) and ER beta (ERβ) in pigeons. The abundance of pigeon ERα and ERβ mRNA was detected using quantitative polymerase chain reaction. These results revealed that pigeon ERα is highly expressed in the oviduct, while pigeon ERb is highly expressed in the ovary and kidney. We hypothesize that ERα mRNA predominates over that of ERβ in the oviduct. The expression of ERα can be down-regulated by 17β-estradiol, and the knockdown of ERα promoted OVA mRNA expression in cultured POECs, indicating that ERα may play an important role in OVA secretion.

  14. A new leukocyte cell-derived chemotaxin-2 from marine fish grouper, Epinephelus coioides: molecular cloning and expression analysis.

    PubMed

    Wei, Jingguang; Guo, Minglan; Cui, Huachun; Yan, Yang; Ouyang, Zhengliang; Qin, Qiwei

    2011-10-01

    Leukocyte cell-derived chemotaxin-2 (LECT2) is a multifunctional protein involved in cell growth, differentiation and autoimmunity. In this study, a new leukocyte cell-derived chemotaxin-2 (EcLECT2) gene was cloned from grouper, Epinephelus coioides, by rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA sequence of EcLECT2 was 595 bp in size, containing a 5'-untranslated region (UTR) of 44 bp and a 3'-UTR of 83 bp. The deduced protein sequence of the open reading frame (465 bp) showed highest similarity (81%) to the LECT2 of the fresh-water fish Larimichthys crocea. An abundant transcription of the determined EcLECT2 mRNA has been detected in liver and skin of grouper, E. coioides. Furthermore, the expression of EcLECT2 was differentially up-regulated in liver after infection with Staphyloccocus aureus, Vibrio vulnificus, Vibrio parahaemolyticus, Saccharomyces cerevisiae and Singapore grouper iridovirus (SGIV), while the expression was down-regulated after stimulation with Concanavalin A (Con A). Recombinant mature EcLECT2 (rEcLECT2) was successfully expressed in Escherichia coli BL21 (DE3), and the antiserum against EcLECT2 was obtained for further investigations. EcLECT2 may be an important molecule in the innate immunity of grouper.

  15. Aberrant gene expression patterns in placentomes are associated with phenotypically normal and abnormal cattle cloned by somatic cell nuclear transfer.

    PubMed

    Everts, Robin E; Chavatte-Palmer, Pascale; Razzak, Anthony; Hue, Isabelle; Green, Cheryl A; Oliveira, Rosane; Vignon, Xavier; Rodriguez-Zas, Sandra L; Tian, X Cindy; Yang, Xiangzhong; Renard, Jean-Paul; Lewin, Harris A

    2008-03-14

    Transcription profiling of placentomes derived from somatic cell nuclear transfer (SCNT, n = 20), in vitro fertilization (IVF, n = 9), and artificial insemination (AI, n = 9) at or near term development was performed to better understand why SCNT and IVF often result in placental defects, hydrops, and large offspring syndrome (LOS). Multivariate analysis of variance was used to distinguish the effects of SCNT, IVF, and AI on gene expression, taking into account the effects of parturition (term or preterm), sex of fetus, breed of dam, breed of fetus, and pathological finding in the offspring (hydrops, normal, or other abnormalities). Differential expression of 20 physiologically important genes was confirmed with quantitative PCR. The largest effect on placentome gene expression was attributable to whether placentas were collected at term or preterm (i.e., whether the collection was because of disease or to obtain stage-matched controls) followed by placentome source (AI, IVF, or SCNT). Gene expression in SCNT placentomes was dramatically different from AI (n = 336 genes; 276 >2-fold) and from IVF (n = 733 genes; 162 >2-fold) placentomes. Functional analysis of differentially expressed genes (DEG) showed that IVF has significant effects on genes associated with cellular metabolism. In contrast, DEG associated with SCNT are involved in multiple pathways, including cell cycle, cell death, and gene expression. Many DEG were shared between the gene lists for IVF and SCNT comparisons, suggesting that common pathways are affected by the embryo culture methods used for IVF and SCNT. However, the many unique gene functions and pathways affected by SCNT suggest that cloned fetuses may be starved and accumulating toxic wastes due to placental insufficiency caused by reprogramming errors. Many of these genes are candidates for hydrops and LOS.

  16. Active influenza virus neuraminidase is expressed in monkey cells from cDNA cloned in simian virus 40 vectors.

    PubMed Central

    Davis, A R; Bos, T J; Nayak, D P

    1983-01-01

    We have replaced the late genes of simian virus 40 (SV40) with a cloned cDNA copy of the neuraminidase (NA; EC 3.2.1.18) gene of the WSN (H1N1) strain of human influenza virus. When the SV40-NA recombinant virus was complemented in a lytic infection of monkey cells with a helper virus containing an early region deletion mutant, influenza NA was expressed and readily detected by immunofluorescence as well as by immunoprecipitation of in vivo labeled proteins with monoclonal antibodies against NA. In addition, the expressed NA exhibited enzymatic activity by cleaving the sialic acid residue from alpha-2,3-sialyllactitol. The expressed protein was glycosylated and transported to the cell surface, and it possessed the same molecular weight as the NA of WSN virus grown in monkey cells. Because the structure of NA is quite different from that of other integral membrane proteins and includes an anchoring region at the NH2 terminus consisting of hydrophobic amino acids, we also constructed deletion mutants of NA in this region. Replacement of DNA coding for the first 10 NH2-terminal amino acids with SV40 and linker sequences had no apparent effect on NA expression, glycosylation, transport to the cell surface, or enzymatic activity. However, further deletion of NA DNA encoding the first 26 amino acids abolished NA expression. These data suggest that the hydrophobic NH2-terminal region is multifunctional and is important in biosynthesis and translocation of NA across the membrane as well as in anchoring the protein. Images PMID:6306656

  17. Differential expression of alpha-subunits of G-proteins in human neuroblastoma-derived cell clones.

    PubMed

    Klinz, F J; Yu, V C; Sadée, W; Costa, T

    1987-11-16

    The distribution of alpha- and beta-subunits of G-proteins was analyzed in membranes of three cell clones which are derived from the human neuroblastoma cell line SK-N-SH. The neuroblast-like clone SH-SY5Y shows a pattern of G-proteins very similar to that of human brain cortex with high levels of Gi alpha and Go alpha but low levels of G40 alpha. The intermediate clone SH-IN contains high levels of Go alpha and Gi alpha and moderate levels of G40 alpha. The non-neuronal clone SH-EP shows high levels of G40 alpha but lacks Go alpha. Differentiation of the neuroblast-like clone SH-SY5Y by retinoic acid or nerve growth factor does not change the amount of Gi alpha or Go alpha in the membrane. PMID:3119368

  18. [Molecular cloning, tissue distribution and expression in engineered cells of human orphan receptor GPR81].

    PubMed

    Wu, Fang-Ming; Huang, Huo-Gao; Hu, Ming; Gao, Yue; Liu, Yong-Xue

    2006-05-01

    The gpr81 was amplified by polymerase chain reaction (PCR) using human fetus kidney cDNA and whole blood genome DNA as template, respectively. The expression profile of gpr81 in human fetus was analyzed by RT-PCR and the result indicated GPR81 mRNA was most abundant in fetus liver and heart. In addition, the deduced amino acid of GPR81 was compared with other related molecules by Clustal w/x software, and a molecular phylogenetic tree was constructed with Treeview software. It was showed that GPR81 had the highest homology with nicotinic acid receptor in amino acids. After sequence identification, gpr81 was inserted into the plasmid pcDNA3. 1 (-)/his-mycA and then transfected into Chinese hamster ovary cell (CHO-K1). With the selection of G418, an engineered cell line which could stably express gpr81 was obtained by the indication of RT-PCR and Western-blot detection. The establishment of the cell line will serve as means for further study of GPR81.

  19. Auto-transporter A protein of Neisseria meningitidis: a potent CD4+ T-cell and B-cell stimulating antigen detected by expression cloning.

    PubMed

    Ait-Tahar, K; Wooldridge, K G; Turner, D P; Atta, M; Todd, I; Ala'Aldeen, D A

    2000-09-01

    A meningococcal genomic expression library was screened for potent CD4+ T-cell antigens, using patients' peripheral blood lymphocytes (PBLs). One of the most promising positive clones was fully characterized. The recombinant meningococcal DNA contained a single, incomplete, open reading frame (ORF), which was fully reconstructed with reference to available genomic sequence data. The gene was designated autA (auto-transporter A) as its peptide sequence shares molecular characteristics of the auto-transporter family of proteins. Only a single copy of this gene was detected in the meningococcal, and none in the gonococcal, genomic sequence databases. The complete autA gene, when cloned into an expression vector, expressed a protein of approximately 68 kDa. Purified rAutA recalled strong secondary T-cell responses in PBLs of patients and some healthy donors, and induced strong primary T-cell responses in healthy donors. The human B-cell immunogenicity and cross-reactivity of AutA, purified under native conditions, was confirmed in dot immunoblot experiments. Immunoblots with rabbit polyclonal antibodies to rAutA demonstrated the conserved nature, antigenicity and cross-reactivity of AutA amongst meningococci of different serogroups and strains representing different hypervirulent lineages. AutA showed homology with another meningococcal and gonococcal ORF (designated AutB). AutB was cloned and expressed and used to raise an autB-specific antiserum. Immunoblot experiments indicated that AutB is not expressed in meningococci and does not cross-react with AutA. Thus, AutA, being a potent CD4+ T-cell and B-cell-stimulating antigen, which is highly conserved, deserves further investigation as a potential vaccine candidate.

  20. Cloning and expression analysis of nonspecific cytotoxic cell receptor 1 (Ls-NCCRP1) from red snapper (Lutjanus sanguineus).

    PubMed

    Cai, Jia; Wei, Shina; Wang, Bei; Huang, Yucong; Tang, Jufen; Lu, Yishan; Wu, Zaohe; Jian, Jichang

    2013-09-01

    It is well known that nonspecific cytotoxic cells (NCCs) are kinds of natural killer cell mediated innate immune responses in teleosts. The nonspecific cytotoxic cell receptor protein 1 (NCCRP-1) is an important cell surface protein on NCC, which serves crucial functions in target cell recognition and cytotoxicity activation. In the present study, a nonspecific cytotoxic cell receptor protein NCCRP-1 (Ls-NCCRP1) was cloned from red snapper, Lutjanus sanguineus. The Ls-NCCRP1 cDNA is composed of 986bp with a 43bp of 5'-UTR, 702bp open reading frame (ORF) and 241bp 3'-UTR, encoding a polypeptide of 233 amino acids (GenBank accession no: ADK32635). Phylogenetic analysis revealed that Ls-NCCRP1 showed highest similarity to sea bream NCCRP-1. Quantitative real-time PCR (qRT-PCR) analysis showed that Ls-NCCRP1 had relatively high expression level in the head kidney, spleen and liver. After Vibrio alginolyticus infection, transcripts of Ls-NCCRP1 increased and reached its peak at 4h p.i. These results indicated that Ls-NCCRP1 may play an important role in innate immune response to bacteria.

  1. Programmed cell death 4 in bacterially-challenged Apostichopus japonicus: Molecular cloning, expression analysis and functional characterization.

    PubMed

    Lv, Zhimeng; Li, Chenghua; Shao, Yina; Zhang, Weiwei; Wang, Zhenhui; Wang, Haihong

    2016-07-01

    Programmed cell death 4 (PDCD4) plays a crucial role in modulating cellular signals, mainly via TOLL cascades during the immune response. In the present study, a novel PDCD4 homologue gene (denoted as AjPDCD4) was cloned from the sea cucumber Apostichopus japonicus using RACE. The full-length AjPDCD4 cDNA comprised a 366bp 5'-UTR, a 418bp 3'-UTR, and a 1353bp open reading frame encoding a 450 amino acid residue protein with two typical MA3 domains. Phylogenetic analysis revealed that AjPDCD4 belonged to the invertebrate PDCD4 family. Spatial expression analysis indicated that AjPDCD4 mRNA transcripts are expressed at a high level in the tentacles and at a low level in muscle compared with coelomocytes. Vibrio splendidus challenge and LPS exposure could both significantly down-regulate AjPDCD4 mRNA expression. More importantly, we found that ultraviolet (UV)-induced ROS production and DNA damage were greatly repressed in AjPDCD4-knockdown coelomocytes. Meanwhile, the expression levels of the NF-kappa B homologue, p105, were synchronously up-regulated in the same conditions. All of these results indicated that AjPDCD4 is involved in modulating DNA damage and ROS production in sea cucumber, perhaps by affecting the TLR pathway. PMID:27262523

  2. CD8+ T-cell clones deficient in the expression of the CD45 protein tyrosine phosphatase have impaired responses to T-cell receptor stimuli.

    PubMed Central

    Weaver, C T; Pingel, J T; Nelson, J O; Thomas, M L

    1991-01-01

    CD45 is a high-molecular-weight transmembrane protein tyrosine phosphatase expressed only by nucleated cells of hematopoietic origin. To examine function, mouse CD8+ cytolytic T-cell clones were derived that had a specific defect in the expression of CD45. Northern (RNA) blot analysis indicates that the CD45 deficiency is due to either a transcriptional defect or mRNA instability. The CD45-deficient cells were greatly diminished in their ability to respond to antigen. All functional parameters of T-cell receptor signalling analyzed (cytolysis of targets, proliferation, and cytokine production) were markedly diminished. A CD45+ revertant was isolated, and the ability to respond to antigen was restored. These results support a central and immediate role for this transmembrane protein tyrosine phosphatase in T-cell receptor signalling. Images PMID:1652055

  3. Quality improvement of transgenic cloned bovine embryos using an aggregation method: Effects on cell number, cell ratio, embryo perimeter, mitochondrial distribution, and gene expression profile.

    PubMed

    Bang, J I; Jin, J I; Ghanem, N; Choi, B H; Fakruzzaman, M; Ha, A N; Lee, K L; Uhm, S J; Ko, D H; Koo, B C; Lee, J G; Kong, I K

    2015-09-01

    The production of cloned embryos using conventional methods has extremely low success rates owing to low embryo quality. To improve the quality of cloned bovine embryos expressing enhanced green fluorescent protein (EGFP), we applied an aggregation culture method. The EGFP gene was transfected into bovine fetal fibroblasts using a retroviral vector system. Somatic cell nuclear transfer was performed using these cells, and the resulting embryos were cultured in aggregates or individually. Gene expression was analyzed by a microarray, and differentially expressed genes were validated by quantitative real-time polymerase chain reaction. The total number of cells per blastocyst and the ratio of inner cell mass cells to trophectoderm cells were higher in aggregated transgenic cloned blastocysts (agBL; 368.7 ± 109.6 and 1:4.8, respectively) than in in vitro-fertilized blastocysts (ivfBL; 189.8 ± 65.8 and 1:2.6, respectively) and nonaggregated transgenic cloned blastocysts (sBL; 113.1 ± 36.3 and 1:1.5, respectively; P < 0.05 and P < 0.01, respectively). Moreover, the blastocyst perimeter was larger in the agBL group than in the ivfBL and sBL groups (1168.8 ± 200.23 vs. 887.33 ± 187.62 and 678 ± 226.1 μm; P < 0.05). In addition, mitochondrial fluorescence intensity was higher in the agBL group than in the ivfBL and sBL groups (P < 0.05). The number of apoptotic cells per blastocyst was lower in the ivfBL and agBL groups than in the sBL group (3.7 ± 2.2 and 3.4 ± 2.1 vs. 6.7 ± 6.8; P < 0.05). The genes identified in the microarray belonged to 18 categories. Expression of the Krüppel-like factor 4 gene, which is associated with cell proliferation, development, and transcription, was 7.2-fold higher in the agBL group than in the ivfBL group (P < 0.05) but did not differ between the sBL and ivfBL groups (P > 0.05). Expression of the heat shock 70-kDa protein 1A gene, which is associated with apoptosis, was 12-fold higher in the s

  4. Cloning and Expression of Major Surface Antigen 1 Gene of Toxoplasma gondii RH Strain Using the Expression Vector pVAX1 in Chinese Hamster Ovary Cells

    PubMed Central

    Abdizadeh, Rahman; Maraghi, Sharif; Ghadiri, Ata A.; Tavalla, Mehdi; Shojaee, Saeedeh

    2015-01-01

    Background: Toxoplasmosis is an opportunistic protozoan infection with a high prevalence in a broad range of hosts infecting up to one-third of the world human population. Toxoplasmosis leads to serious medical problems in immunocompromised individuals and fetuses and also induces abortion and mortality in domestic animals. Therefore, there is a huge demand for the development of an effective vaccine. Surface Antigen 1 (SAG1) is one of the important immunodominant surface antigens of Toxoplasma gondii, which interacts with host cells and primarily involved in adhesion, invasion and stimulation of host immune response. Surface antigen 1 is considered as the leading candidate for development of an effective vaccine against toxoplasmosis. Objectives: The purpose of this study was to clone the major surface antigen1 gene (SAG1) from the genotype 1 of T. gondii, RH strain into the eukaryotic expression vector pVAX1 in order to use for a DNA vaccine. Materials and Methods: Genomic DNA was extracted from tachyzoite of the parasite using the QIAamp DNA mini kit. After designing the specific primers, SAG1 gene was amplified by Polymerase Chain Reaction (PCR). The purified PCR products were then cloned into a pPrime plasmid vector. The aforementioned product was subcloned into the pVAX1 eukaryotic expression vector. The recombinant pVAX1-SAG1 was then transfected into Chinese Hamster Ovary (CHO) cells and expression of SAG1 antigen was evaluated using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR), Immunofluorescence Assay (IFA) and Western Blotting (WB). Results: The cloning and subcloning products (pPrime-SAG1 and pVAX1-SAG1 plasmid vectors) of SAG1 gene were verified and confirmed by enzyme digestion and sequencing. A 30 kDa recombinant protein was expressed in CHO cells as shown by IFA and WB methods. Conclusions: The pVAX1 expression vector and CHO cells are a suitable system for high-level recombinant protein production for SAG1 gene from T. gondii parasites

  5. Single cell derived murine embryonic stem cell clones stably express Rex1-specific green fluorescent protein and their differentiation study

    SciTech Connect

    Chen Xiaopan; Wu Rongrong; Feng Shumei; Gu Bin; Dai Licheng; Zhang Ming; Zhao Xiaoli

    2007-10-19

    Embryonic stem cells (ESCs) often display high rates of apoptosis and spontaneous differentiation in routine culture, thus bring the proliferation of these cells highly inefficient. Moreover, little is known about the factors that are indispensable for sustaining self-renewal. To surmount these issues, we established transgenic mES cell lines expressing the enhanced green fluorescent protein (EGFP) under the control of the Rex1 promoter which is a key regulator of pluripotency in ES cells. In addition, we provided a simplified and improved protocol to derive transgenic mESCs from single cell. Finally, we showed that embryoid body (EB) development was faster than adherent differentiation in terms of differentiation ratio by real-time tracking of the EGFP expression. Therefore, these cell lines can be tracked and selected both in vitro and in vivo and should be invaluable for studying the factors that are indispensable for maintaining pluripotency.

  6. Expression Platforms for Producing Eukaryotic Proteins: A Comparison of E. coli Cell-Based and Wheat Germ Cell-Free Synthesis, Affinity and Solubility Tags, and Cloning Strategies

    PubMed Central

    Aceti, David J.; Bingman, Craig A.; Wrobel, Russell L.; Frederick, Ronnie O.; Makino, Shin-ichi; Nichols, Karl W.; Sahu, Sarata C.; Bergeman, Lai F.; Blommel, Paul G.; Cornilescu, Claudia C.; Gromek, Katarzyna A.; Seder, Kory D.; Hwang, Soyoon; Primm, John G.; Sabat, Grzegorz; Vojtik, Frank C.; Volkman, Brian F.; Zolnai, Zsolt; Phillips, George N.; Markley, John L.; Fox, Brian G.

    2015-01-01

    Vectors designed for protein production in Escherichia coli and by wheat germ cell-free translation were tested using 21 well-characterized eukaryotic proteins chosen to serve as controls within the context of a structural genomics pipeline. The controls were carried through cloning, small-scale expression trials, large-scale growth or synthesis, and purification. Successfully purified proteins were also subjected to either crystallization trials or 1H-15N HSQC NMR analyses. Experiments evaluated: (1) the relative efficacy of restriction/ligation and recombinational cloning systems; (2) the value of maltose-binding protein (MBP) as a solubility enhancement tag; (3) the consequences of in vivo proteolysis of the MBP fusion as an alternative to post-purification proteolysis; (4) the effect of the level of LacI repressor on the yields of protein obtained from E. coli using autoinduction; (5) the consequences of removing the His tag from proteins produced by the cell-free system; and (6) the comparative performance of E. coli cells or wheat germ cell-free translation. Optimal promoter/repressor and fusion tag configurations for each expression system are discussed. PMID:25854603

  7. Epigenomics of Neural Cells: REST-Induced Down- and Upregulation of Gene Expression in a Two-Clone PC12 Cell Model

    PubMed Central

    Garcia-Manteiga, Jose M.; Bonfiglio, Silvia; Malosio, Maria Luisa; Lazarevic, Dejan; Stupka, Elia; Cittaro, Davide; Meldolesi, Jacopo

    2015-01-01

    Cell epigenomics depends on the marks released by transcription factors operating via the assembly of complexes that induce focal changes of DNA and histone structure. Among these factors is REST, a repressor that, via its strong decrease, governs both neuronal and neural cell differentiation and specificity. REST operation on thousands of possible genes can occur directly or via indirect mechanisms including repression of other factors. In previous studies of gene down- and upregulation, processes had been only partially investigated in neural cells. PC12 are well-known neural cells sharing properties with neurons. In the widely used PC12 populations, low-REST cells coexist with few, spontaneous high-REST PC12 cells. High- and low-REST PC12 clones were employed to investigate the role and the mechanisms of the repressor action. Among 15,500 expressed genes we identified 1,770 target and nontarget, REST-dependent genes. Functionally, these genes were found to operate in many pathways, from synaptic function to extracellular matrix. Mechanistically, downregulated genes were predominantly repressed directly by REST; upregulated genes were mostly governed indirectly. Among other factors, Polycomb complexes cooperated with REST for downregulation, and Smad3 and Myod1 participated in upregulation. In conclusion, we have highlighted that PC12 clones are a useful model to investigate REST, opening opportunities to development of epigenomic investigation. PMID:26413508

  8. [The cloning and expression of the gene for beta-galactosidase from Candida pseudotropicalis yeasts in Saccharomyces cerevisiae cells].

    PubMed

    Tretiak, K A; Zakal'skiĭ, A E; Gudz', S P

    1998-01-01

    The gene of beta-galactosidase of lactose-assimilating yeast Candida pseudotropicalis was cloned in pG2 and pBG2-3 hybrid shuttle vectors and expressed in Saccharomyces cerevisiae laboratory strains under the control of own promoter. The plasmids were able to replicate autonomously with relative stability in transformants of baker's yeasts. The availability of glucose or lactose in the medium influenced the recombinant plasmid stability and the expression of the cloned gene. A number of experiments have shown that the LAC+ phenotype in pG2-transformed Saccharomyces cerevisiae was due to the expression of the Candida pseudotropicalis lactose permease gene that is probably located in SaIG1/XhoI DNA fragment about 4.3 kb long. Southern hybridization experiments showed that LAC(+)-transformants of Saccharomyces cerevisiae contained both autonomously-replicative, and integrative pG2 plasmid.

  9. Cytotoxic Cyplasin of the Sea Hare, Aplysia punctata, cDNA Cloning, and Expression of Bioactive Recombinants in Insect Cells1

    PubMed Central

    Petzelt, Christian; Joswig, Gaby; Stammer, Hermann; Werner, Dieter

    2002-01-01

    Abstract A 56-kDa protein isolated from the mucus of the European sea hare Aplysia punctata shows a preferential toxicity to autonomously growing transformed mammalian cells. Cell death induced by this protein differs from both apoptosis and necrosis. The cytotoxic effects are irreversible and become apparent at nanomolar concentrations in a cell type-dependent manner. In contrast, injection of micromolar concentrations into mice is tolerated without apparent negative consequences. Microsequencing of the 56-kDa protein released a peptide sequence whose corresponding nucleotide sequence was used as probe to screen A. punctata RNA-based cDNA and to select cDNA clones encoding polypeptides comprising the target peptide. Two closely related cDNA were detected. The cDNA encoding a polypeptide 558 aa in length was considered to reflect a bona fide clone encoding the cytotoxic protein. Its protein-coding section was recloned in vectors suitable for expression in Escherichia coli, in mammalian cells, and in insect cells, respectively. The E. coli-expressed polypeptide was biologically inactive. Transfected mammalian cells expressed a cytotoxic factor and died thereof as if treated with the genuine cytotoxic protein. In contrast, transfected insect cells, which proved to be much less sensitive when treated with the genuine protein, expressed the cytotoxic factor and continued to proliferate, allowing to establish stable insect cell lines expressing sufficient amounts of the cytotoxic factor for further characterization. PMID:11922391

  10. Met-ase: Cloning and distinct chromosomal location of a serine protease preferentially expressed in human natural killer cells

    SciTech Connect

    Smyth, M.J.; Trapani, J.A. ); Sayers, T.J.; Wiltrout, T. ); Powers, J.C. )

    1993-12-01

    A cDNA clone encoding a human NK serine protease was obtained by screening a [lambda]-gt10 library from the Lopez NK leukemia with the rat natural killer Met-ase (RNK-Met-1) cDNA clone. In Northern blot analysis human Met-ase (Hu-Met-1) cDNA hybridized with a 0.9-kb mRNA in two human NK leukemia cell lines, unstimulated human PBMC, and untreated purified CD3[sup [minus

  11. Identification of genes expressed in human CD34+ hematopoietic stem/progenitor cells by expressed sequence tags and efficient full-length cDNA cloning

    PubMed Central

    Mao, Mao; Fu, Gang; Wu, Ji-Sheng; Zhang, Qing-Hua; Zhou, Jun; Kan, Li-Xin; Huang, Qiu-Hua; He, Kai-Li; Gu, Bai-Wei; Han, Ze-Guang; Shen, Yu; Gu, Jian; Yu, Ya-Ping; Xu, Shu-Hua; Wang, Ya-Xin; Chen, Sai-Juan; Chen, Zhu

    1998-01-01

    Hematopoietic stem/progenitor cells (HSPCs) possess the potentials of self-renewal, proliferation, and differentiation toward different lineages of blood cells. These cells not only play a primordial role in hematopoietic development but also have important clinical application. Characterization of the gene expression profile in CD34+ HSPCs may lead to a better understanding of the regulation of normal and pathological hematopoiesis. In the present work, genes expressed in human umbilical cord blood CD34+ cells were catalogued by partially sequencing a large amount of cDNA clones [or expressed sequence tags (ESTs)] and analyzing these sequences with the tools of bioinformatics. Among 9,866 ESTs thus obtained, 4,697 (47.6%) showed identity to known genes in the GenBank database, 2,603 (26.4%) matched to the ESTs previously deposited in a public domain database, 1,415 (14.3%) were previously undescribed ESTs, and the remaining 1,151 (11.7%) were mitochondrial DNA, ribosomal RNA, or repetitive (Alu or L1) sequences. Integration of ESTs of known genes generated a profile including 855 genes that could be divided into different categories according to their functions. Some (8.2%) of the genes in this profile were considered related to early hematopoiesis. The possible function of ESTs corresponding to so far unknown genes were approached by means of homology and functional motif searches. Moreover, attempts were made to generate libraries enriched for full-length cDNAs, to better explore the genes in HSPCs. Nearly 60% of the cDNA clones of mRNA under 2 kb in our libraries had 5′ ends upstream of the first ATG codon of the ORF. With this satisfactory result, we have developed an efficient working system that allowed fast sequencing of 32 full-length cDNAs, 16 of them being mapped to the chromosomes with radiation hybrid panels. This work may lay a basis for the further research on the molecular network of hematopoietic regulation. PMID:9653160

  12. Walleye dermal sarcoma virus: expression of a full-length clone or the rv-cyclin (orf a) gene is cytopathic to the host and human tumor cells.

    PubMed

    Xu, Kun; Zhang, Ting Ting; Wang, Ling; Zhang, Cun Fang; Zhang, Long; Ma, Li Xia; Xin, Ying; Ren, Chong Hua; Zhang, Zhi Qiang; Yan, Qiang; Martineau, Daniel; Zhang, Zhi Ying

    2013-02-01

    Walleye dermal sarcoma virus (WDSV) is etiologically associated with a skin tumor, walleye dermal sarcoma (WDS), which develops in the fall and regresses in the spring. WDSV genome contains, in addition to gag, pol and env, three open reading frames (orfs) designated orf a (rv-cyclin), orf b and orf c. Unintegrated linear WDSV provirus DNA isolated from infected tumor cells was used to construct a full-length WDSV provirus clone pWDSV, while orf a was cloned into pSVK3 to construct the expression vector porfA. Stable co-transfection of a walleye cell line (W12) with pWDSV and pcDNA3 generated fewer and smaller G418-resistant colonies compared to the control. By Northern blot analysis, several small transcripts (2.8, 1.8, 1.2, and 0.8 kb) were detected using a WDSV LTR-specific probe. By RT-PCR and Southern blot analysis, three cDNAs (2.4, 1.6 and 0.8 kb) were identified, including both orf a and orf b messenger. Furthermore stable co-transfection of both a human lung adenocarcinoma cell line (SPC-A-1) and a cervical cancer cell line (HeLa) with pcDNA3 and ether porfA or pWDSV also generated fewer and smaller G418-resistant colonies. We conclude that expression of the full-length WDSV clone or the orf a gene inhibits the host fish and human tumor cell growth, and Orf A protein maybe a potential factor which contributes to the seasonal tumor development and regression. This is the first fish provirus clone that has been expressed in cell culture system, which will provide a new in vitro model for tumor research and oncotherapy study.

  13. Removal of selectable marker gene from fibroblast cells in transgenic cloned cattle by transient expression of Cre recombinase and subsequent effects on recloned embryo development.

    PubMed

    Wang, S; Sun, X; Ding, F; Zhang, K; Zhao, R; Li, S; Li, R; Tang, B; Zhang, L; Liu, Y; Li, J; Gao, F; Wang, H; Wang, L; Dai, Y; Li, N

    2009-09-01

    Introduction of selectable marker genes to transgenic animals could create an inconvenience to further research and may exaggerate public concerns regarding biological safety. The objective of the current study was to excise loxP flanked neo(R) in transgenic cloned cattle by transient expression of Cre recombinase. Green fluorescent protein gene (GFP) was incorporated to monitor Cre expression; therefore, Cre-expressed cells could be selected indirectly by fluorescence-activated cell sorting (FACS). The neo(R) was removed and Cre expressed transiently in GFP-positive colonies; excision of neo(R) was confirmed by single-blastocyst PCR in recloned blastocysts, with neo(R)-free fibroblast cells as donors. There was no difference (P>0.05) in rates of cleavage (76.0% vs. 68.8%) or blastocyst formation (56.6% vs. 52.9%) between recloned embryos with neo(R)-free or neo(R)-included donors. The differential staining of recloned blastocysts were similar (P >0.05) in terms of total cell number (124 vs. 122) and the ratio of ICM (Inner Cell Mass) to the total cell number (38.1% vs. 38.2%). Furthermore, pregnancy and calving rates were not different (P>0.05) from those of the control. In conclusion, we successfully excised neo(R) from transgenic cloned cattle; the manipulation did not affect the developmental competence of recloned preimplantation embryos. This approach should benefit bioreactor and transgenic research in livestock.

  14. PAF-receptor is preferentially expressed in a distinct synthetic phenotype of smooth muscle cells cloned from human internal thoracic artery: Functional implications in cell migration

    SciTech Connect

    Stengel, Dominique; O'Neil, Caroline; Brocheriou, Isabelle; Karabina, Sonia-Athina; Durand, Herve; Caplice, Noel M.; Pickering, J. Geoffrey; Ninio, Ewa . E-mail: ninio@chups.jussieu.fr

    2006-08-04

    Platelet-activating-Factor (PAF) and its structural analogues formed upon low density lipoprotein oxidation are involved in atherosclerotic plaque formation and may signal through PAF-receptor (PAF-R) expressed in human macrophages and in certain smooth muscle cells (SMCs) in the media, but rarely in the intima of human plaques. Our aim was to determine which SMC phenotype expresses PAF-R and whether this receptor is functional in cell migration. Circulating SMC progenitors and two phenotypically distinct clones of proliferative, epithelioid phenotype vs contractile, spindle-shaped SMCs from the media of adult internal thoracic artery were studied for the presence of PAF-receptor (PAF-R). The levels of specific mRNA were obtained by reverse transcription/real-time PCR, the protein expression was deduced from immunohistochemistry staining, and the functional transmigration assay was performed by Boyden chamber-type chemotaxis assay. Only SMCs of spindle-shape and synthetic phenotype expressed both mRNA and PAF-R protein and in the functional test migrated at low concentrations of PAF. Two unrelated, specific PAF-R antagonists inhibited PAF-induced migration, but did not modify the migration initiated by PDGF. The presence of functional PAF-R in arterial spindle-shaped SMCs of synthetic phenotype may be important for their migration from the media into the intima and atherosclerotic plaques formation.

  15. T-cell receptor gene expression by human gamma delta T-cell clones from peripheral blood and reproductive tissues in relation to non-MHC-restricted cytotoxic function.

    PubMed

    Christmas, S E

    1991-06-01

    T-cell receptor gamma and delta gene expression was determined using V-region-specific monoclonal antibodies in conjunction with Southern blot analysis in panels of gamma delta T-cell clones from human peripheral blood (n = 77) and reproductive tissue (n = 9). Whereas 53 out of 77 (69%) clones from peripheral blood expressed V gamma 9 and V delta 2J1, only 2 out of 9 (22%) from reproductive tissues expressed V delta 2J1. Two out of eight decidual clones expressed both V gamma 9 and V delta 1J1, while this configuration was rare in clones from peripheral blood. The majority of clones from the peripheral blood of one donor expressed V gamma 8 and V delta 3J1. Clones were identified which expressed V delta 1J1 in the disulphide-linked C gamma 1 form of the receptor and which expressed a gene other than V delta 1 in the non-disulphide-linked C gamma 2 form, indicating incomplete concordance between expression of V delta 1 and C gamma 2. V delta 3 could be expressed in the disulphide-linked or non-disulphide-linked form of the receptor. At least 5 out of 77 peripheral clones were expressing V delta genes other than V delta 1, V delta 2, or V delta 3 in conjunction with C gamma 1 or C gamma 2. There was a strong but incomplete correlation between high non-NHC-restricted cytotoxic function and C gamma 1 expression. Clones from the same donor expressing both V gamma 9JPC gamma 1 and V delta 2J1 showed either high or negligible cytotoxicity, and cytotoxic clones expressing C gamma 2 were found. Thus no complete correlation between cytotoxic function and expression of a particular form of the gamma delta heterodimer was identified. The results also suggest that gamma delta T cells from reproductive tissues are less likely to express V delta 2J1 than those from peripheral blood.

  16. Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes.

    PubMed Central

    Kawamura, M; McVicar, D W; Johnston, J A; Blake, T B; Chen, Y Q; Lal, B K; Lloyd, A R; Kelvin, D J; Staples, J E; Ortaldo, J R

    1994-01-01

    Protein-tyrosine kinases (PTKs) are critical enzymes for receptor-mediated signaling in lymphocytes. Because natural killer (NK) cells are large granular lymphocytes with specialized effector function, we set out to identify PTKs preferentially expressed in these cells. One such PTK was identified and molecularly cloned. The predicted amino acid sequence shows that this kinase lacks SH2 or SH3 domains typical of src family kinases but has tandem nonidentical catalytic domains, indicating that it is a member of the Janus family of PTKs. Immunoprecipitation using antiserum generated against a peptide corresponding to the deduced amino acid sequence of this gene revealed a kinase with a molecular weight of approximately 125,000. The pattern of expression of this kinase contrasted sharply with that of other Janus kinases, which are ubiquitously expressed. The kinase described in the present study was found to be more limited in its expression; expression was found in NK cells and an NK-like cell line but not in resting T cells or in other tissues. In contrast, stimulated and transformed T cells expressed the gene, suggesting a role in lymphoid activation. Because of its homology and tissue expression, we have tentatively termed this PTK gene L-JAK for leukocyte Janus kinase. Images PMID:8022790

  17. Lack of correlation between membrane CD30 expression and cytokine secretion pattern in allergen-primed naive cord blood T-cell lines and clones.

    PubMed

    Spinozzi, F; Agea, E; Piattoni, S; Falini, B; Grignani, F; Bertotto, A

    1997-04-01

    Various surface molecules are expressed by activated T cells. Among them, the CD30 antigen has been proposed as a reproducible marker that identifies a subset of differentiated and/or activated T lymphocytes that produce T helper (Th)-2-type cytokines, i.e. interleukin (IL)-4 and IL-5. However, because CD30 has mainly been detected on established T-cell clones, it is still unclear whether a priming allergen and/or cytokine can induce its membrane expression on naive T cells, perhaps in parallel with the up-regulation of other relevant activation markers, such as CD25, HLA-DR and L-selectin. It is also unknown whether proper allergen stimulation affects the cytokine secretion pattern by CD30+ T-cell clones derived from antigen-unprimed (naive) T lymphocytes. More information on these questions was sought by adopting a model that used cord blood as a source of virgin T cells and exposing them to native cypress allergen or cytokine (IL-2 or IL-4) stimulation, as well as to conventional polyclonal activators such as PHA or anti-CD3. Peripheral blood MC from four adult cypress-sensitive patients was also assayed and used as controls for all culture experiments. Freshly isolated cord and adult T cells did not express the CD30 antigen on their membrane. Many of the stimulating agents tested were able to up-regulate the expression of CD30. However, despite high expression of this molecule, cloned allergen-specific cord CD4+ T lymphocytes were unable to produce IFN-gamma and/or IL-4. In contrast, they retained the capability to produce IL-2. Thus, expression of the CD30 antigen on virgin T cells does not correlate with a polarized model of T helper (Th)-1 or Th-2 cytokine-producing cells, suggesting that these types of lymphokine-secreting lymphocytes are not a paradigmatic example of T-cell subpopulations that display stable phenotypical features. PMID:9105430

  18. Regulation of Cl- transport in T84 cell clones expressing a mutant regulatory subunit of cAMP-dependent protein kinase.

    PubMed Central

    Rogers, K V; Goldman, P S; Frizzell, R A; McKnight, G S

    1990-01-01

    Cl- channels in the apical membranes of salt-secreting epithelia are activated by both cAMP and Ca2+ second-messenger systems, and dysfunctions in their hormonal regulation have been demonstrated in patients with cystic fibrosis. We have transfected the epithelial cell line T84 with an expression vector containing a mutant form of the regulatory subunit of the cAMP-dependent protein kinase. Stable transformants that express this construct have reduced basal cAMP-dependent protein kinase activity and do not increase kinase activity beyond the basal level of control cells in response to cAMP. Forskolin, vasoactive intestinal peptide, and prostaglandin E2 each stimulate intracellular cAMP accumulation in both mutant and control clones; however, the activation of Cl- channels in response to elevated cAMP is blocked in mutant clones, indicating direct involvement of the cAMP-dependent protein kinase. In contrast, Ca2+ ionophores retain their ability to activate the Cl- channel in T84 cells expressing the mutant regulatory subunit, suggesting that activation of the channel by means of Ca2+ does not require the participation of cAMP-dependent protein kinase activity. These clones will be useful for further studies of the interactions between the cAMP- and Ca2(+)-dependent regulatory pathways in salt-secreting epithelial cells. They can also be used to identify the mediators of Ca2(+)-dependent Cl- channel activation in isolation from interactions with the cAMP second-messenger pathway. Images PMID:2174170

  19. Serial cloning of pigs by somatic cell nuclear transfer: restoration of phenotypic normality during serial cloning.

    PubMed

    Cho, Seong-Keun; Kim, Jae-Hwan; Park, Jong-Yi; Choi, Yun-Jung; Bang, Jae-Il; Hwang, Kyu-Chan; Cho, Eun-Jeong; Sohn, Sea-Hwan; Uhm, Sang Jun; Koo, Deog-Bon; Lee, Kyung-Kwang; Kim, Teoan; Kim, Jin-Hoi

    2007-12-01

    Somatic cell nuclear transfer (scNT) is a useful way to create cloned animals. However, scNT clones exhibit high levels of phenotypic instability. This instability may be due to epigenetic reprogramming and/or genomic damage in the donor cells. To test this, we produced transgenic pig fibroblasts harboring the truncated human thrombopoietin (hTPO) gene and used them as donor cells in scNT to produce first-generation (G1) cloned piglets. In this study, 2,818 scNT embryos were transferred to 11 recipients and five G1 piglets were obtained. Among them, a clone had a dimorphic facial appearance with severe hypertelorism and a broad prominent nasal bridge. The other clones looked normal. Second-generation (G2) scNT piglets were then produced using ear cells from a G1 piglet that had an abnormal nose phenotype. We reasoned that, if the phenotypic abnormality of the G1 clone was not present in the G2 and third-generation (G3) clones, or was absent in the G2 clones but reappeared in the G3 clones, the phenotypic instability of the G1 clone could be attributed to faulty epigenetic reprogramming rather than to inherent/accidental genomic damage to the donor cells. Blastocyst rates, cell numbers in blastocyst, pregnancy rates, term placenta weight and ponderal index, and birth weight between G1 and G2 clones did not differ, but were significantly (P < 0.05) lower than control age- and sex-matched piglets. Next, we analyzed global methylation changes during development of the preimplantation embryos reconstructed by donor cells used for the production of G1 and G2 clones and could not find any significant differences in the methylation patterns between G1 and G2 clones. Indeed, we failed to detect the phenotypic abnormality in the G2 and G3 clones. Thus, the phenotypic abnormality of the G1 clone is likely to be due to epigenetic dysregulation. Additional observations then suggested that expression of the hTPO gene in the transgenic clones did not appear to be the cause of the

  20. Trichostatin A alters the expression of cell cycle controlling genes and microRNAs in donor cells and subsequently improves the yield and quality of cloned bovine embryos in vitro.

    PubMed

    Saini, M; Selokar, N L; Revey, T; Singla, S K; Chauhan, M S; Palta, P; Madan, P

    2014-10-15

    Trichostatin A (TSA), a histone deacetylase inhibitor, has been used to improve nuclear reprogramming in somatic cell nuclear transfer embryos. However, the molecular mechanism of TSA for the improvement of the pre- and postimplantation embryonic development is unknown. In the present study, we investigated mechanism of cell cycle arrest caused by TSA and also determined embryo quality and gene expression in cloned bovine embryos produced from TSA-treated donor cells compared with embryos produced by in vitro fertilization or parthenogenetic activation. We observed that, 50 nM TSA-treated cells were synchronized at G0/G1 stage with concomitant decrease in the proportion of these cells in the S stage of the cell cycle, which was also supported by significant changes in cell morphology and decreased proliferation (P<0.05). Measurement of relative expression using real-time polymerase chain reaction of a some cell cycle-related genes and microRNAs in treated donor cells showed decreased expression of HDAC1, DNMT1, P53, CYC E1, and CDK4 and increased expression of DNMT3a, CDKN1A, CDK2, CDK3, miR-15a, miR-16, and miR-34a (P<0.05). No change in the relative expression of miR-449a was noticed. Trichostatin A treatment of donor cells significantly improved both cleavage and blastocyst rate (P<0.05) compared with the control embryos, also apoptotic index in treated cloned blastocysts was significantly decreased compared with the nontreated blastocysts (P<0.05) and was at the level of IVF counterpart. Relative expression of HDAC1 and DNMT3a was significantly lower in treated cloned and parthenogenetic embryos than that of nontreated and IVF counterpart, whereas in case of P53, expression level between treated and IVF embryos was similar, which was significantly lower than nontreated cloned and parthenogenetic embryos. In conclusion, our data suggested that TSA improves yield and quality of cloned bovine embryos by modulating the expression of G0/G1 cell cycle stage

  1. Handmade Cloned Buffalo (Bubalus bubalis) Embryos Produced from Somatic Cells Isolated from Milk and Ear Skin Differ in Their Developmental Competence, Epigenetic Status, and Gene Expression.

    PubMed

    Jyotsana, Basanti; Sahare, Amol A; Raja, Anuj K; Singh, Karn P; Singla, Suresh K; Chauhan, Manmohan S; Manik, Radhey S; Palta, Prabhat

    2015-10-01

    We compared the cloning efficiency of buffalo embryos produced by handmade cloning (HMC) using ear skin- and milk-derived donor cells. The blastocyst rate was lower (p < 0.05) for milk-derived than that for skin-derived embryos, whereas the total cell number and apoptotic index were similar. The global level of H3K9ac was higher (p < 0.05) in skin- than in milk-derived cells, whereas the level of H3K27me3 was similar in the two groups. The global level of H3K9ac was similar between milk-derived and in vitro-fertilized (IVF) blastocysts, which was higher (p < 0.05) than that in skin-derived blastocysts. The level of H3K27me3 was similar among the three groups. The expression level of IGF-1R and G6PD was higher (p < 0.05) in skin- than in milk-derived cells, whereas DNMT1, DNMT3a, and HDAC1 expression level was similar. In the blastocysts, the expression level of DNMT1, HDAC1, OCT4, and CDX2 was higher (p < 0.05) in skin-derived than that in IVF blastocysts. The expression level of DNMT3a and IGF-1R, was in the order (p < 0.05) skin-derived and IVF > milk-derived blastocysts and that of NANOG was (p < 0.05) IVF-> milk-derived > skin-derived blastocysts. The expression level of all these genes, except NANOG, was lower (p < 0.05) in milk- than in skin-derived or IVF blastocysts. In conclusion, milk-derived cells can be used for producing HMC embryos of quality similar to that of skin-derived embryos, although with a lower blastocyst rate.

  2. Molecular cloning of the human Hand1 gene/cDNA and its tissue-restricted expression in cytotrophoblastic cells and heart.

    PubMed

    Knöfler, M; Meinhardt, G; Vasicek, R; Husslein, P; Egarter, C

    1998-12-11

    The basic helix-loop-helix (bHLH) factor Hand1 plays a role in the developing chicken heart and is required for trophoblast giant cell differentiation and cardiac looping of mouse embryonic development. Here, we report the cloning of the human Hand1 cDNA and gene from a heart-specific cDNA library and a genomic lambda-DNA library, respectively. We present the nucleotide sequence of a 1.75kb cDNA clone, encoding the presumptive 215 amino acid human Hand1 protein, and show homology comparison of the conserved bHLH region between different species. In vitro transcription-translation of Hand1 mRNA and analysis of protein size suggest that the Hand1 polypeptide is (post)translationally modified. By Southern blot analysis we demonstrate that the isolated genomic DNA clone harbours the entire Hand1 gene and describe molecular structure and sequences of the two 799 and 938bp exons and the single 1.56kb intron. The expression pattern of the mRNA in different human tissues revealed that Hand1 transcripts are restricted to the heart, suggesting that the protein could be required for cardiac-specific gene transcription and function in adults. Hand1 transcripts were undetectable in a non-tumorigenic villous trophoblast cell line, immunopurified cytotrophoblasts undergoing in vitro differentiation, and first trimester placental tissue, suggesting that the transcription factor is not involved in the development of villous and extravillous trophoblast cell lineages. Hand1 mRNA, however, was abundantly expressed in cytotrophoblastic Jeg-3 and BeWo cells, suggesting that Hand1 could be required for early trophoblast differentiation.

  3. Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoma cell line transfected with the cloned viral DNA

    SciTech Connect

    Tsurimoto, T.; Fujiyama, A.; Matsubara, K.

    1987-01-01

    A human hepatocellular carcinoma cell line (Huh6-c15) was transfected with a recombinant DNA molecule that consists of tandemly arranged hepatitis B virus (HBV) genome and a neomycin-resistant gene. One clone resistant to G-418 produces and releases surface antigen and e antigen into medium at a high level and accumulates core particles intracellularly. This clone has a chromosomally integrated set of the original recombinant DNA and produces a 3.5-kilobase transcript corresponding to the pregenome RNA as well as HBV DNAs in an extrachromosomal form. Most of these DNAs were in single-stranded or partially double-stranded form and were packaged in the intracellular core particles. In the medium, particles were detected that contained HBV DNA and were morphologically indistinguishable from Dane particles. These results demonstrate that the HBV genome in an integrated state acted as a template for viral gene expression and replication. The cells were maintained for more than 6 months without losing the ability to produce the extrachromosomal HBV DNA and Dane-like particles. Thus, the cells can be used as a model system for analyses of gene expression and DNA replication of HBV in human hepatocytes.

  4. Cloning and identification of a novel human RNPC3 gene that encodes a protein with two RRM domains and is expressed in the cell nucleus.

    PubMed

    Zhao, Enpeng; Li, Jinsong; Xie, Yi; Jin, Wei; Zhang, Zhen; Chen, Jinzhong; Zeng, Li; Yin, Gang; Qian, Ji; Wu, Hai; Ying, Kang; Zhao, Robert Chunhua; Mao, YuMin

    2003-10-01

    The RNA recognition motifs (RRM) domain is one of the most common eukaryotic protein folds. Proteins containing RRM domains function in important steps of posttranscriptional regulation of gene expression and are involved in processing and transport of mRNA precursors. Here we describe the cloning and characterization of a novel human RNPC3 gene containing two RNA recognition motifs. The 1870 bp cDNA encodes a protein with 517 amino acids. It also contains two bipartite nuclear targeting sequences, which is important for nuclear targeting for proteins, especially those functioning in the cell nucleus. The GFP location of the RNPC3 gene product shows that this protein is located in the cell nucleus. RT-PCR reveals that it is abundantly expressed in kidney and pancreas.

  5. DQw3 variants defined by cloned alloreactive T cells.

    PubMed

    Mickelson, E M; Nepom, G T; Nisperos, B; Hansen, J A

    1988-01-01

    The polymorphism of HLA class II molecules expressing the serologically defined alloantigen DQw3 was studied using cloned proliferative T lymphocytes. Two clones, IG9 and IC3, were selectively primed against DQw3-associated determinants and tested against a panel of 92 HLA-D homozygous cells. Both clones were specific for DQw3, but each showed a distinct response pattern. Clone IG9 recognized a DQw3-associated determinant expressed on a subset of DR4 and DR5 haplotypes and on all DRw6, 7, w8, and w9 haplotypes tested. In contrast, clone IC3 recognized a distinct DQw3-associated determinant expressed only on a subset of DR4 haplotypes. In monoclonal antibody inhibition experiments, anti-DQ, but not anti-DR or anti-DP antibodies, blocked reactivity of both clones IG9 and IC3, further demonstrating that the determinants defined by these clones are associated with DQ molecules. In DNA hybridization studies using a DQ beta probe, a correlation was observed between restriction site polymorphisms in the DQ beta gene, designated DQw"3.1" and "3.2," and the expression of the T-cell-defined IG9 and IC3 determinants. It is, thus, possible to demonstrate by cloned T-cell reactivity functionally relevant recognition sites on DQw3+ molecules that are associated with structural polymorphisms defined by molecular and genomic analysis. PMID:2452816

  6. Cloning of Plasmodium falciparum by single-cell sorting.

    PubMed

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-10-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples.

  7. Surface antigen expression and complement susceptibility of differentiated neuroblastoma clones.

    PubMed

    Chen, S; Caragine, T; Cheung, N K; Tomlinson, S

    2000-03-01

    Human neuroblastoma cell lines typically consist of heterogenous subpopulations of cells that are morphologically and biochemically distinct. The cell types are characterized as neuroblastic (N-type), substrate-adherent Schwann-like (S-type), or intermediate (I). These cell types can undergo spontaneous or induced transdifferentiation in vitro. We investigated the complement sensitivity of different neuroblastoma cell lines and of matched sets of cloned N- and S-type neuroblastoma cell lines. Human neuroblastoma cell lines that consisted predominantly of a neuroblastic phenotype were shown to be significantly more susceptible to human complement-mediated lysis than cell lines of other cancer types. Complement sensitivity of neuroblastoma cell lines was correlated with low levels of CD59, decay-accelerating factor, and membrane cofactor protein expression. We found that cloned S-type neuroblastoma cells were much more resistant to complement-mediated lysis than cloned N-type cells. The increased complement resistance of S-type cells was shown to be due to increased expression of membrane-bound complement inhibitors. CD59 was the single most important protein in providing S-type cells with protection from complement lysis. S-type cells were also found to express lower levels of GD2, a target antigen for a complement activating monoclonal antibody currently in clinical trials for neuroblastoma immunotherapy. The ability of S-type cells to evade complement, and the ability of S-type cells to differentiate into the more tumorigenic N-type cells, may represent a mechanism of tumor survival and regrowth, a phenomenon often observed with this cancer.

  8. Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment

    SciTech Connect

    Funk, C.D.; Funk, L.B.; Kennedy, M.E.; Pong, A.S.; Fitzgerald, G.A. )

    1991-06-01

    Platelets metabolize arachidonic acid to thromboxane A{sub 2}, a potent platelet aggregator and vasoconstrictor compound. The first step of this transformation is catalyzed by prostaglandin (PG) G/H synthase, a target site for nonsteroidal antiinflammatory drugs. We have isolated the cDNA for both human platelet and human erythroleukemia cell PGG/H synthase using the polymerase chain reaction and conventional screening procedures. The cDNA encoding the full-length protein was expressed in COS-M6 cells. Microsomal fractions from transfected cells produced prostaglandin endoperoxide derived products which were inhibited by indomethacin and aspirin. Mutagenesis of the serine residue at position 529, the putative aspirin acetylation site, to an asparagine reduced cyclooxygenase activity to barely detectable levels, an effect observed previously with the expressed sheep vesicular gland enzyme. Platelet-derived growth factor and phorbol ester differentially regulated the expression of PGG/H synthase mRNA levels in the megakaryocytic/platelet-like HEL cell line. The PGG/H synthase gene was assigned to chromosome 9 by analysis of a human-hamster somatic hybrid DNA panel. The availability of platelet PGG/H synthase cDNA should enhance our understanding of the important structure/function domains of this protein and it gene regulation.

  9. Cloning of genes whose expression is correlated with mitosis and localized in dividing cells in root caps of Pisum sativum L.

    PubMed

    Woo, H H; Hawes, M C

    1997-12-01

    Removal of border cells from pea roots synchronizes and induces root cap cell division, wall biogenesis and differentiation. Three messages which are expressed differentially in such induced root caps have been cloned. Sequence analyses showed that the PsHRGP1-encoded protein has high homology with a homology with a hydroxyproline-rich glycoprotein. The PsCaP23-encoded protein has high homology with an alfalfa callus protein or translationally controlled human or mouse tumor protein P23. The PsRbL41-encoded protein has high homology with a highly basic 60S ribosomal protein L41. In situ hybridization showed that PsHRGP1. PsCaP23 and PsRbL41 messages are localized within dividing cells of the root cap. PsHRGP1 is highly expressed in uninduced root caps, but its message is repressed by 10-11 times as soon as cell division and differentiation begin. Expression of PsHRGP1 recovers to higher than (180%) its initial level in 30 min. PsHRGP1 is root-specific. PsCaP23 and PsRbL41 messages increase ca. 3-fold within 15 min after root cap induction. All three genes represent small families of 3-5 closely related genes in the pea genome.

  10. Arecoline-induced phosphorylated p53 and p21(WAF1) protein expression is dependent on ATM/ATR and phosphatidylinositol-3-kinase in clone-9 cells.

    PubMed

    Chou, Wen-Wen; Guh, Jinn-Yuh; Tsai, Jung-Fa; Hwang, Chi-Ching; Chiou, Shean-Jaw; Chuang, Lea-Yea

    2009-06-01

    Betel-quid use is associated with liver cancer whereas its constituent arecoline is cytotoxic, genotoxic, and induces p53-dependent p21(WAF1) protein expression in Clone-9 cells (rat hepatocytes). The ataxia telangiectasia mutated (ATM)/rad3-related (ATR)-p53-p21(WAF1) and the phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathways are involved in the DNA damage response and the pathogenesis of cancers. Thus, we studied the role of ATM/ATR and PI3K in arecoline-induced p53 and p21(WAF1) protein expression in Clone-9 cells. We found that arecoline (0.5 mM) activated the ATM/ATR kinase at 30 min. The arecoline-activated ATM/ATR substrate contained p-p53Ser15. Moreover, arecoline only increased the levels of the p-p53Ser6, p-p53Ser15, and p-p53Ser392 phosphorylated p53 isoforms among the known isoforms. ATM shRNA attenuated arecoline-induced p-p53Ser15 and p21(WAF1) at 24 h. Arecoline (0.5 mM) increased phosphorylation levels of p-AktSer473 and p-mTORSer2448 at 30-60 min. Dominant-negative PI3K plasmids attenuated arecoline-induced p21(WAF1), but not p-p53Ser15, at 24 h. Rapamycin attenuated arecoline-induced phosphrylated p-p53Ser15, but not p21(WAF1), at 24 h. ATM shRNA, but not dominant-negative PI3K plasmids, attenuated arecoline-induced p21(WAF1) gene transcription. We conclude that arecoline activates the ATM/ATR-p53-p21(WAF1) and the PI3K/Akt-mTOR-p53 pathways in Clone-9 cells. Arecoline-induced phosphorylated p-p53Ser15 expression is dependent on ATM whereas arecoline-induced p21(WAF1) protein expression is dependent on ATM and PI3K. Moreover, p21(WAF1) gene is transcriptionally induced by arecoline-activated ATM.

  11. Encephalomyocarditis virus 3C protease: efficient cell-free expression from clones which link viral 5' noncoding sequences to the P3 region.

    PubMed Central

    Parks, G D; Duke, G M; Palmenberg, A C

    1986-01-01

    All picornaviral peptides are derived by progressive posttranslational cleavage of a giant precursor polyprotein. Translation of encephalomyocarditis virus (EMC) RNA in rabbit reticulocyte extracts produces active viral peptides, including protease 3C, which is responsible for many cleavage reactions within the processing cascade. DNA plasmids containing 5' noncoding sequences of EMC linked to other portions of the viral genome were constructed and transcribed into RNA. Like virion RNA, the clone-derived transcripts directed efficient protein translation in vitro. The 5'-linked constructions may represent examples of a general method for cell-free expression of any cloned gene segment. One construction produced a self-cleaving P3 region precursor, which contained active 3C protease. A genetically engineered insertion within the 3C sequences eliminated endogenous self-cleavage activity without altering the ability of the P3 peptide to serve as substrate in bimolecular reactions with added 3C. Another plasmid encoding the L-VP0 portion of the capsid region was used to demonstrate that scission between the leader peptide (L) and capsid protein VP0 can be catalyzed by 3C. The enzyme responsible for this step was previously unidentified. A rapid purification scheme for isolation of 3C from EMC-infected HeLa cells is also presented. Images PMID:3021972

  12. Cloning and expression in Escherichia coli cells of a plasmid pBS195 gene that determines the activity of oxygenase

    SciTech Connect

    Kozlova, E.V.; Suvorova, E.S.; Romanov, V.P.; Boronin, A.M.

    1995-02-01

    Plasmid pBS195, detected in a strain of Lactobacillus sp. isolated from long-living persons, has a broad host range, including Gram-positive and Gram-negative microorganisms. Plasmid-harboring colonies of the strain Escherichia coli HB101 give a color reaction with catechol. This indicates that genes mediating the activity of oxygenase are present in this plasmid. The high activity level of this enzyme, mediated by pBS195, and substrate specificity, which has not been detected in any known metapyrocatechases, were found in cells of E. coli. Hybridization with a {sup 32}P-labeled fragment containing the NahC gene revealed a region of homology with a 1.6-kb EcoR I-BamH I fragment of plasmid pBS195. Deletion variants of this plasmid that lost oxygenase activity confirmed the location of the oxygenase gene in this region. The gene responsible for oxygenase activity in the plasmid was cloned on the pUC19 vector in E. coli cells. The expression of the cloned gene is controlled by the lac promoter of this vector. Physical, hybridization, and deletion analyses as well as analysis of polypeptides, which are synthesized in E. coli minicells, showed that this activity requires the participation of a polypeptide with molecular mass of 34 kDa. 9 refs., 3 figs., 1 tab.

  13. Expression of two human skeletal calcitonin receptor isoforms cloned from a giant cell tumor of bone. The first intracellular domain modulates ligand binding and signal transduction.

    PubMed Central

    Gorn, A H; Rudolph, S M; Flannery, M R; Morton, C C; Weremowicz, S; Wang, T Z; Krane, S M; Goldring, S R

    1995-01-01

    Two distinct calcitonin (CT) receptor (CTR)-encoding cDNAs (designated GC-2 and GC-10) were cloned and characterized from giant cell tumor of bone (GCT). Both GC-2 and GC-10 differ structurally from the human ovarian cell CTR (o-hCTR) that we cloned previously, but differ from each other only by the presence (GC-10) or absence (GC-2) of a predicted 16-amino acid insert in the putative first intracellular domain. Expression of all three CTR isoforms in COS cells demonstrated that GC-2 has a lower binding affinity for salmon (s) CT (Kd approximately 15 nM) than GC-10 or o-hCTR (Kd approximately 1.5 nM). Maximal stimulatory concentrations of CT resulted in a mean accumulation of cAMP in GC-2 transfected cells that was greater than eight times higher than in cells transfected with GC-10 after normalizing for the number of receptor-expressing cells. The marked difference in maximal cAMP response was also apparent after normalizing for receptor number. GC-2 also demonstrated a more potent ligand-mediated cAMP response compared with GC-10 for both human (h) and sCT (the EC50 values for GC-2 were approximately 0.2 nM for sCT and approximately 2 nM for hCT; EC50 values for GC-10 were approximately 6 nM for sCT and approximately 25 nM for hCT). Reverse transcriptase PCR of GCT RNA indicated that GC-2 transcripts are more abundant than those encoding for GC-10. In situ hybridization on GCT tissue sections demonstrated CTR mRNA expression in osteoclast-like cells. We localized the human CTR gene to chromosome 7 in band q22. The distinct functional characteristics of GC-2 and GC-10, which differ in structure only in the first intracellular domain, indicate that the first intracellular domain of the CTR plays a previously unidentified role in modulating ligand binding and signal transduction via the G protein/adenylate cyclase system. Images PMID:7769107

  14. Automated Cell-Cutting for Cell Cloning

    NASA Astrophysics Data System (ADS)

    Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro

    We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.

  15. Molecular cloning and responsive expression to injury stimulus of a defender against cell death 1 (DAD1) gene from bay scallops Argopecten irradians.

    PubMed

    Zhu, Ling; Song, Linsheng; Zhang, Huan; Zhao, Jianmin; Li, Chenghua; Xu, Wei

    2008-06-01

    Apoptosis is an active process of cell death, which is an integral part of growth and development in multicellular organisms. The defender against cell death 1 (DAD1), the regulatory protein to inhibit the apoptosis process, was first cloned from the bay scallop Argopecten irradians by randomly sequencing a whole tissue cDNA library and rapid amplification of cDNA end (RACE). The full-length cDNA of the A. irradians DAD1 was 607 bp, consist of a 5'-terminal untranslated region (UTR) of 63 bp, a 3'-terminal UTR of 205 bp with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 339 bp. The deduced amino acid sequence of the A. irradians DAD1 showed 75.5% identity to Araneus ventricosus, 74.5% to Drosophila melanogaster, and 73.6% to Homo sapiens, Sus scrofa, Mesocricetus auratus, Rattus norvegicus and Mus musculus. Excluding the Saccharomyces cerevisiae DAD1 homologue, all animal DAD1 including A. irradians DAD1 homologue formed a subgroup and all plant DAD1 proteins formed another subgroup in the phylogenetic analysis. The A. irradians DAD1 was expressed in all examined tissues including adductor muscle, mantle, gills, digestive gland, gonad and hemolymph, suggesting that A. irradians DAD1 is expressed in most body tissues. Furthermore, the mRNA expression levels of A. irradians DAD1 gene of hemolymph were particularly high after injury, suggesting that the gene is responsive to injury stimuli. PMID:17294251

  16. Cloning by somatic cell nuclear transfer.

    PubMed

    Fulka, J; First, N L; Loi, P; Moor, R M

    1998-10-01

    The birth of the first cloned mammals, produced by the introduction of somatic cell nuclei into enucleated oocytes, was an impressive and surprising development. Although the ethical debate has been intense, the important scientific questions raised by this work have been inadequately discussed and are still unresolved. In this essay we address three questions about nuclear transplantation in the eggs of mice and domestic animals. First, why were the recent experiments on somatic cell cloning successful, when so many others have failed? Second, were these exceptional cases, or is somatic cloning now open to all? Third, what are the future possibilities for increasing the efficiency and wider applicability of the cloning process?

  17. Cloning of the complete gene for carcinoembryonic antigen: analysis of its promoter indicates a region conveying cell type-specific expression.

    PubMed Central

    Schrewe, H; Thompson, J; Bona, M; Hefta, L J; Maruya, A; Hassauer, M; Shively, J E; von Kleist, S; Zimmermann, W

    1990-01-01

    Carcinoembryonic antigen (CEA) is a widely used tumor marker, especially in the surveillance of colonic cancer patients. Although CEA is also present in some normal tissues, it is apparently expressed at higher levels in tumorous tissues than in corresponding normal tissues. As a first step toward analyzing the regulation of expression of CEA at the transcriptional level, we have isolated and characterized a cosmid clone (cosCEA1), which contains the entire coding region of the CEA gene. A close correlation exists between the exon and deduced immunoglobulin-like domain borders. We have determined a cluster of transcriptional starts for CEA and the closely related nonspecific cross-reacting antigen (NCA) gene and have sequenced their putative promoters. Regions of sequence homology are found as far as approximately 500 nucleotides upstream from the translational starts of these genes, but farther upstream they diverge completely. In both cases we were unable to find classic TATA or CAAT boxes at their expected positions. To characterize the CEA and NCA promoters, we carried out transient transfection assays with promoter-indicator gene constructs in the CEA-producing adenocarcinoma cell line SW403, as well as in nonproducing HeLa cells. A CEA gene promoter construct, containing approximately 400 nucleotides upstream from the translational start, showed nine times higher activity in the SW403 than in the HeLa cell line. This indicates that cis-acting sequences which convey cell type-specific expression of the CEA gene are contained within this region. Images PMID:2342461

  18. Expression of functional molecules by human CD3- decidual granular leucocyte clones.

    PubMed

    Gudelj, L; Deniz, G; Rukavina, D; Johnson, P M; Christmas, S E

    1996-04-01

    Cell surface and cytoplasmic antigen expression by 35 CD3- decidual granular leucocyte (DGL) clones, derived from human endometrial tissue in the first trimester of pregnancy, has been compared with both that of fresh CD3- decidual leucocytes and that of CD3- peripheral blood natural killer (PBNK) cell clones (n = 12). The majority of DGL clones retained the antigenic phenotype of fresh cells, although CD103 (HML-1) was expressed on 50% of DGL clones but only 17% of fresh DGL. Both cytoplasmic CD3 zeta and CD3 epsilon chains were detected in > 90% of DGL clones in the absence of cell surface CD3. Cytoplasmic CD3 zeta was present in almost all fresh CD3- DGL, whereas CD3 epsilon was not. Most DGL clones did not express surface Fc gamma receptors I-III (CD64, -32 and -16, respectively) and complement receptors (CR) types 1 and 2 (CD35 and 21, respectively), but 43% expressed CR3 (CD11b/18); in contrast, all PBNK clones were CR3+. The NK cell-associated molecules Kp43 (CD94) and the p58 molecule recognized by the HP3E4 monoclonal antibody were both present on a higher proportion of CD3- PBNK (91% and 50%, respectively) than DGL clones (31% and 14%, respectively), despite expression of CD94 by > 90% of fresh CD56+ decidual leucocytes. Five of 35 CD3- DGL clones expressed cytoplasmic CD3 zeta in the absence of expression of CD2, CD16 or the p58 molecule recognized by HP3E4. These variations between CD3- DGL and PBNK cell clones in expression of functional molecules may be related to previously reported differences in major histocompatibility complex-non-restricted cytotoxic activities between these two cell types.

  19. Single cell-derived clones from human adipose stem cells present different immunomodulatory properties.

    PubMed

    Sempere, J M; Martinez-Peinado, P; Arribas, M I; Reig, J A; De La Sen, M L; Zubcoff, J J; Fraga, M F; Fernández, A F; Santana, A; Roche, E

    2014-05-01

    Human adipose mesenchymal stem cells are a heterogeneous population, where cell cultures derived from single-cell-expanded clones present varying degrees of differential plasticity. This work focuses on the immunomodulatory/anti-inflammatory properties of these cells. To this end, five single-cell clones were isolated (generally called 1.X and 3.X) from two volunteers. Regarding the expression level of the lineage-characteristic surface antigens, clones 1·10 and 1·22 expressed the lowest amounts, while clones 3·10 and 3·5 expressed more CD105 than the rest and clone 1·7 expressed higher amounts of CD73 and CD44. Regarding cytokine secretion, all clones were capable of spontaneously releasing high levels of interleukin (IL)-6 and low to moderate levels of IL-8. These differences can be explained in part by the distinct methylation profile exhibited by the clones. Furthermore, and after lipopolysaccharide stimulation, clone 3.X produced the highest amounts of proinflammatory cytokines such as IL-1β, while clones 1·10 and 1·22 highly expressed IL-4 and IL-5. In co-culture experiments, clones 1.X are, together, more potent inhibitors than clones 3.X for proliferation of total, CD3(+) T, CD4(+) T and CD8(+) T lymphocytes and natural killer (NK) cells. The results of this work indicate that the adipose stem cell population is heterogeneous in cytokine production profile, and that isolation, characterization and selection of the appropriate cell clone is a more exact method for the possible treatment of different patients or pathologies.

  20. Single cell-derived clones from human adipose stem cells present different immunomodulatory properties

    PubMed Central

    Sempere, J M; Martinez-Peinado, P; Arribas, M I; Reig, J A; De La Sen, M L; Zubcoff, J J; Fraga, M F; Fernández, A F; Santana, A; Roche, E

    2014-01-01

    Human adipose mesenchymal stem cells are a heterogeneous population, where cell cultures derived from single-cell-expanded clones present varying degrees of differential plasticity. This work focuses on the immunomodulatory/anti-inflammatory properties of these cells. To this end, five single-cell clones were isolated (generally called 1.X and 3.X) from two volunteers. Regarding the expression level of the lineage-characteristic surface antigens, clones 1·10 and 1·22 expressed the lowest amounts, while clones 3·10 and 3·5 expressed more CD105 than the rest and clone 1·7 expressed higher amounts of CD73 and CD44. Regarding cytokine secretion, all clones were capable of spontaneously releasing high levels of interleukin (IL)-6 and low to moderate levels of IL-8. These differences can be explained in part by the distinct methylation profile exhibited by the clones. Furthermore, and after lipopolysaccharide stimulation, clone 3.X produced the highest amounts of proinflammatory cytokines such as IL-1β, while clones 1·10 and 1·22 highly expressed IL-4 and IL-5. In co-culture experiments, clones 1.X are, together, more potent inhibitors than clones 3.X for proliferation of total, CD3+T, CD4+T and CD8+T lymphocytes and natural killer (NK) cells. The results of this work indicate that the adipose stem cell population is heterogeneous in cytokine production profile, and that isolation, characterization and selection of the appropriate cell clone is a more exact method for the possible treatment of different patients or pathologies. PMID:24666184

  1. Chicken epidermal growth factor (EGF) receptor: cDNA cloning, expression in mouse cells, and differential binding of EGF and transforming growth factor alpha.

    PubMed Central

    Lax, I; Johnson, A; Howk, R; Sap, J; Bellot, F; Winkler, M; Ullrich, A; Vennstrom, B; Schlessinger, J; Givol, D

    1988-01-01

    The primary structure of the chicken epidermal growth factor (EGF) receptor was deduced from the sequence of a cDNA clone containing the complete coding sequence and shown to be highly homologous to the human EGF receptor. NIH-3T3 cells devoid of endogenous EGF receptor were transfected with the appropriate cDNA constructs and shown to express either chicken or human EGF receptors. Like the human EGF receptor, the chicken EGF receptor is a glycoprotein with an apparent molecular weight of 170,000. Murine EGF bound to the chicken receptor with approximately 100-fold lower affinity than to the human receptor molecule. Surprisingly, human transforming growth factor alpha (TGF-alpha) bound equally well or even better to the chicken EGF receptor than to the human EGF receptor. Moreover, TGF-alpha stimulated DNA synthesis 100-fold better than did EGF in NIH 3T3 cells that expressed the chicken EGF receptor. The differential binding and potency of mammalian EGF and TGF-alpha by the avian EGF receptor contrasts with the similar affinities of the mammalian receptor for the two growth factors. Images PMID:3260329

  2. Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression.

    PubMed

    Weber, H; Borisjuk, L; Heim, U; Buchner, P; Wobus, U

    1995-11-01

    We have studied the molecular physiology of photosynthate unloading and partitioning during seed development of fava bean (Vicia faba). During the prestorage phase, high levels of hexoses in the cotyledons and the apoplastic endospermal space are correlated with activity of cell wall-bound invertase in the seed coat. Three cDNAs were cloned. Sequence comparison revealed genes putatively encoding one soluble and two cell wall-bound isoforms of invertase. Expression was studied in different organs and tissues of developing seeds by RNA gel analysis, in situ hybridization, enzyme assay, and enzyme activity staining. One extracellular invertase gene is expressed during the prestorage phase in the thin-walled parenchyma of the seed coat, a region known to be the site of photoassimilate unloading. We propose a model for an invertase-mediated unloading process during early seed development and the regulation of cotyledonary sucrose metabolism. After unloading from the seed coat, sucrose is hydrolyzed by cell wall-bound invertases. Thus, invertase contributes to establish sink strength in young seeds. The resultant hexoses are loaded into the cotyledons and control carbohydrate partitioning via an influence on the sucrose synthase/sucrose-phosphate synthase pathway. The developmentally regulated degradation of the thin-walled parenchyma expressing the invertase apparently initiates the storage phase. This is characterized by a switch to a low sucrose/hexoses ratio. Feeding hexoses to storage-phase cotyledons in vitro increases the sucrose-phosphate synthase/sucrose synthase ratio and changes carbohydrate partitioning in favor of sucrose. Concomitantly, the transcript level of the major storage product legumin B is downregulated.

  3. Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression.

    PubMed Central

    Weber, H; Borisjuk, L; Heim, U; Buchner, P; Wobus, U

    1995-01-01

    We have studied the molecular physiology of photosynthate unloading and partitioning during seed development of fava bean (Vicia faba). During the prestorage phase, high levels of hexoses in the cotyledons and the apoplastic endospermal space are correlated with activity of cell wall-bound invertase in the seed coat. Three cDNAs were cloned. Sequence comparison revealed genes putatively encoding one soluble and two cell wall-bound isoforms of invertase. Expression was studied in different organs and tissues of developing seeds by RNA gel analysis, in situ hybridization, enzyme assay, and enzyme activity staining. One extracellular invertase gene is expressed during the prestorage phase in the thin-walled parenchyma of the seed coat, a region known to be the site of photoassimilate unloading. We propose a model for an invertase-mediated unloading process during early seed development and the regulation of cotyledonary sucrose metabolism. After unloading from the seed coat, sucrose is hydrolyzed by cell wall-bound invertases. Thus, invertase contributes to establish sink strength in young seeds. The resultant hexoses are loaded into the cotyledons and control carbohydrate partitioning via an influence on the sucrose synthase/sucrose-phosphate synthase pathway. The developmentally regulated degradation of the thin-walled parenchyma expressing the invertase apparently initiates the storage phase. This is characterized by a switch to a low sucrose/hexoses ratio. Feeding hexoses to storage-phase cotyledons in vitro increases the sucrose-phosphate synthase/sucrose synthase ratio and changes carbohydrate partitioning in favor of sucrose. Concomitantly, the transcript level of the major storage product legumin B is downregulated. PMID:8535137

  4. Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression.

    PubMed

    Weber, H; Borisjuk, L; Heim, U; Buchner, P; Wobus, U

    1995-11-01

    We have studied the molecular physiology of photosynthate unloading and partitioning during seed development of fava bean (Vicia faba). During the prestorage phase, high levels of hexoses in the cotyledons and the apoplastic endospermal space are correlated with activity of cell wall-bound invertase in the seed coat. Three cDNAs were cloned. Sequence comparison revealed genes putatively encoding one soluble and two cell wall-bound isoforms of invertase. Expression was studied in different organs and tissues of developing seeds by RNA gel analysis, in situ hybridization, enzyme assay, and enzyme activity staining. One extracellular invertase gene is expressed during the prestorage phase in the thin-walled parenchyma of the seed coat, a region known to be the site of photoassimilate unloading. We propose a model for an invertase-mediated unloading process during early seed development and the regulation of cotyledonary sucrose metabolism. After unloading from the seed coat, sucrose is hydrolyzed by cell wall-bound invertases. Thus, invertase contributes to establish sink strength in young seeds. The resultant hexoses are loaded into the cotyledons and control carbohydrate partitioning via an influence on the sucrose synthase/sucrose-phosphate synthase pathway. The developmentally regulated degradation of the thin-walled parenchyma expressing the invertase apparently initiates the storage phase. This is characterized by a switch to a low sucrose/hexoses ratio. Feeding hexoses to storage-phase cotyledons in vitro increases the sucrose-phosphate synthase/sucrose synthase ratio and changes carbohydrate partitioning in favor of sucrose. Concomitantly, the transcript level of the major storage product legumin B is downregulated. PMID:8535137

  5. Cloning and characterization of 5E6(Ly-49C), a receptor molecule expressed on a subset of murine natural killer cells

    PubMed Central

    1995-01-01

    5E6 is a cell surface molecule expressed on a subpopulation of murine natural killer (NK) cells that are involved in the specific rejection of H-2d or H-2f (hemopoietic histocompatibility determinant 2) bone marrow cell grafts. Here, we isolated and cloned the gene encoding 5E6 and determined the nucleotide sequence of the cDNA. 5E6 is nearly identical to Ly-49C; the deduced amino acid sequence reveals a polypeptide of 266 amino acids with a molecular weight of 31,284 that contains multiple cysteine residues to explain its disulfide-linked homodimer structure and five potential N-linked glycosylation sites. 5E6 is a type II integral membrane protein with an extracellular carbohydrate recognition domain characteristic of C-type (Ca(2+)- dependent) animal lectins. Chromosomal mapping indicates that 5E6 is located within the NK gene complex on chromosome 6. The sequence of 5E6 mRNA and the degree of glycosylation of 5E6 protein are under genetic control. Immunoprecipitation before removal of N-linked sugars reveals different size molecules. There are several nucleotide differences among BALB/c, B6, and NZB mRNAs; however, none of them would be expected to affect N-glycosylation. Of particular interest are two findings: (a) BALB/c, B6, and (BALB/c x B6)F1 5E6 reduced molecules are approximately 65, 54, and 54 kD, and (b) the cDNA sequence of (BALB/c x B6)F1 is identical to B6. Thus, there appears to be allelic exclusion of 5E6 expression that may be related to the ability of F1 hybrid mice to reject parental H-2d bone marrow cell grafts. PMID:7629496

  6. Cloning, Expression and Biological Analysis of Recombinant Chicken IFN-gamma Expressed in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interferon-gamma (CHIFN-') derived from the spleen cells of White Leghorns chicken, a local Chinese breeding species was amplified by RT-PCR. The gene encoding CHIFN-' with the deletion of the N-terminal signal peptide was cloned into prokaryotic expression vector pET30a, resulting in a recombin...

  7. FX cloning: a simple and robust high-throughput cloning method for protein expression.

    PubMed

    Geertsma, Eric R

    2014-01-01

    The immense amount of gene sequences available nowadays allows scientist to screen broadly for extraordinary proteins. Reliable cloning tools that allow the parallel processing of many targets are vital for the success of this strategy. The FX cloning procedure detailed here is such a straightforward and efficient tool. It is dedicated to the cloning of open reading frames (ORFs) with the final aim of expressing the corresponding proteins. FX cloning combines attractive features of established high-throughput cloning methods that were thus far not unified in one single method. It facilitates the subcloning of a sequence-verified ORF to a variety of expression vectors, but is sufficiently versatile to accept PCR products as well. Moreover, the common, but undesirable feature of extending target ORFs with long cloning-related sequences is avoided. It leads to the addition of only one amino acid to each side of the protein. As a consequence, only one primer pair or PCR product suffices to generate expression vectors for both N- and C-terminal translational fusions. FX cloning is highly efficient and economical in its use. The method is suited for high-throughput cloning projects and also for everyday cloning of single targets. FX cloning is based on the use of type IIS restriction enzymes and negative selection markers. The full procedure takes place in one pot in less than 3 h and does not require intermediate purification steps nor extensive handling. The method has proven to be very robust and suitable for all common expression systems.

  8. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay

    PubMed Central

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-01-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF-7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot-based molecular targeted imaging techniques (which stained pan-cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF-7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot-based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology. PMID:27572664

  9. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    PubMed

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  10. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    PubMed

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology. PMID:27572664

  11. Cloning, bacterial expression and biological characterization of recombinant human granulocyte chemotactic protein-2 and differential expression of granulocyte chemotactic protein-2 and epithelial cell-derived neutrophil activating peptide-78 mRNAs.

    PubMed

    Froyen, G; Proost, P; Ronsse, I; Mitera, T; Haelens, A; Wuyts, A; Opdenakker, G; Van Damme, J; Billiau, A

    1997-02-01

    Human osteosarcoma cells secrete a novel C-X-C chemokine called granulocyte chemotactic protein-2 (GCP-2), which was previously identified by amino acid sequencing of the purified natural protein. In order to understand the role of this new protein in inflammatory reactions, we cloned GCP-2 DNA sequences to generate recombinant protein and specific DNA probes and primers. By means of PCR on cloned cDNA of osteosarcoma cells induced by interleukin-1 beta and fibroblasts induced by lipopolysaccharide plus dsRNA, the complete coding domain of GCP-2 was isolated. This sequence was cloned into the bacterial expression vector pHEN1 and, after induction, GCP-2 was secreted into the periplasm of Escherichia coli. Recombinant GCP-2 (rGCP-2) was purified and characterized by SDS/PAGE as a monomeric 6.5-kDa protein and by amino-terminal sequencing. The chemoattractive potency of GCP-2 for neutrophilic granulocytes was about 10-times less than that of interleukin-8 and the minimal effective dose was 10 ng/ml. However, at optimal dose (100 ng/ml) the maximal chemotactic response was comparable with that of interleukin-8. Both characteristics correspond with those of natural GCP-2. In addition, intracellular calcium release in neutrophils by recombinant GCP-2 was achieved with as little as 10 ng/ml. Quantitation studies using reverse transcriptase and the polymerase chain reaction revealed higher GCP-2 mRNA production in normal fibroblasts than in tumor cells. When compared with epithelial-cell-derived neutrophil-activating peptide-78 (ENA-78) mRNA, the GCP-2 mRNA levels were higher in all cell lines tested. In addition, GCP-2 and ENA-78 expression seem to be differentially regulated in that phorbol ester and lipopolysaccharide have opposing effects on their mRNA induction in diploid fibroblasts and epithelial cells, respectively. Interleukin-1 was demonstrated to be a general inducer for both chemokines, while interferon-gamma down-regulates their mRNA expression. The

  12. Molecular cloning and expression of the human interleukin 5 receptor

    PubMed Central

    1992-01-01

    Human interleukin 5 (IL-5) plays an important role in proliferation and differentiation of human eosinophils. We report the isolation of cDNA clones from cDNA libraries of human eosinophils by using murine IL-5 receptor alpha chain cDNA as a probe. Analysis of the predicted amino acid sequence indicated that the human IL-5 receptor has approximately 70% amino acid sequence homology with the murine IL-5 receptor and retains features common to the cytokine receptor superfamily. One cDNA clone encodes a glycoprotein of 420 amino acids (Mr 47,670) with an NH2- terminal hydrophobic region (20 amino acids), a glycosylated extracellular domain (324 amino acids), a transmembrane domain (21 amino acids), and a cytoplasmic domain (55 amino acids). Another cDNA encodes only the extracellular domain of this receptor molecule. Other cDNA clones encode molecules having diversified cytoplasmic domains. COS7 cells transfected with the cDNA expressed a approximately 60-kD protein and bound IL-5 with a single class of affinity (Kd = 250-590 pM). The Kd values were similar to that observed in normal human eosinophils. In contrast to the murine 60-kD alpha chain, which binds IL-5 with low affinity (Kd = approximately 10 nM), the human alpha chain homologue can bind IL-5 with much higher affinity by itself. RNA blot analysis of human cells demonstrated two transcripts (approximately 5.3 and 1.4 kb). Both of them were expressed in normal human eosinophils and in erythroleukemic cell line TF-1, which responds to IL-5. The human IL-5 receptor characterized in this paper is essential for signal transduction, because expression of this molecule in murine IL-3-dependent cell line FDC-P1 allowed these cells to proliferate in response to IL-5. PMID:1732409

  13. Cloning

    MedlinePlus

    ... copies of whole animals Therapeutic cloning, which creates embryonic stem cells. Researchers hope to use these cells to grow healthy tissue to replace injured or diseased tissues in the human body. NIH: National Human Genome Research Institute

  14. Structure and cell-specific expression of a cloned human retinol binding protein gene: the 5'-flanking region contains hepatoma specific transcriptional signals.

    PubMed

    D'Onofrio, C; Colantuoni, V; Cortese, R

    1985-08-01

    Human plasma retinol binding protein (RBP) is coded by a single gene and is specifically synthesized in the liver. We have characterized a lambda clone, from a human DNA library, carrying the gene coding for plasma RBP. Southern blot analysis and DNA sequencing show that the gene is composed of six exons and five introns. Primer elongation and S1 mapping experiments allowed the definition of the initiation of transcription and the identification of the putative promoter. The 5'-flanking region of the RBP gene was fused upstream to the coding sequence of the bacterial enzyme chloramphenicol acetyl transferase (CAT): the chimeric gene was introduced, by calcium phosphate precipitation, into the human hepatoma cell line Hep G2 and into HeLa cells. Efficient expression of CAT was obtained only in Hep G2. Primer elongation analysis of the RNA extracted from transfected Hep G2 showed that initiation of transcription of the transfected chimeric gene occurs at a position identical to that of the natural gene. Transcriptional analysis of Bal31 deletions from the 3' end of the RBP 5'-flanking DNA allowed the identification of the RBP gene promoter.

  15. Continuous expression and replication of the hepatitis delta virus genome in Hep G2 hepatoblastoma cells transfected with cloned viral DNA.

    PubMed

    Chen, P J; Kuo, M Y; Chen, M L; Tu, S J; Chiu, M N; Wu, H L; Hsu, H C; Chen, D S

    1990-07-01

    To establish stable cell clones allowing continuous replication of hepatitis delta virus (HDV), Hep G2, a hepatoblastoma cell line containing no hepatitis B virus (HBV) DNA sequences, was transfected with a recombinant plasmid containing a tandem trimer of HDV cDNA (driven by the simian virus 40 late promoter) and a neomycin-resistance gene. After selection with the neomycin analogue G418, at least two of the resistant clones were shown to have intact delta antigen by specific immunoblotting, and the delta antigen was located in the cell nucleus by immunofluorescence. Transfected cloned viral DNAs were found to be integrated into cell chromosomes. Replication of the HDV genome was demonstrated by the presence of not only genomic and antigenomic HDV RNAs but also HDV RNAs in multimeric and circular forms. In addition, a 0.8-kilobase antigenomic RNA containing a poly(A) tail and encoding the delta-antigen open reading frame was documented. Continuous replication and transcription of the HDV genome was thus achieved in these transfected cell lines. The results confirmed that replication of HDV was unassisted by HBV. Stable passage of such cell lines strongly suggests that HDV lacks direct cytopathicity in hepatocytes. These clones should be useful in studying the details of the HDV life cycle and the relationship between HDV and its helper virus, HBV.

  16. Interpretation of reprogramming to predict the success of somatic cell cloning.

    PubMed

    Eckardt, Sigrid; McLaughlin, K John

    2004-07-01

    In the context of mammalian somatic cell cloning, the term reprogramming refers to the processes that enable a somatic cell nucleus to adopt the role of a zygotic nucleus. Gene re-expression is one measure of reprogramming if correlated with subsequent developmental potential. This paper describes several experiments utilizing pre-implantation gene expression to evaluate reprogramming and clone viability. We have established a direct correlation between Oct4 expression in mouse clones at the blastocyst stage and their potential to maintain pluripotent embryonic cells essential for post-implantation development. Furthermore, the quality of gene expression in clones dramatically improves when genetically identical clones are combined in clone-clone aggregate chimeras. Clone--clone aggregates exhibit a higher developmental potential than single clones both in vitro and in vivo. This could be mediated by complementation between blastomeres from epigenetically different clones within the aggregate rather than by the increase in cell number resulting from aggregation. We also discuss the use of tetraploid embryos as a model to evaluate reprogramming using gene expression and demonstrate that somatic cell nuclei can be reprogrammed by blastomeres to re-express embryonic specific genes but not to contribute to post-implantation development.

  17. Cloning, Characterization, and Expression of a Novel Zn2+-Binding FYVE Finger-Containing Phosphoinositide Kinase in Insulin-Sensitive Cells

    PubMed Central

    Shisheva, Assia; Sbrissa, Diego; Ikonomov, Ognian

    1999-01-01

    Signaling by phosphorylated species of phosphatidylinositol (PI) appears to regulate diverse responses in eukaryotic cells. A differential display screen for fat- and muscle-specific transcripts led to identification and cloning of the full-length cDNA of a novel mammalian 2,052-amino-acid protein (p235) from a mouse adipocyte cDNA library. Analysis of the deduced amino acid sequence revealed that p235 contains an N-terminal zinc-binding FYVE finger, a chaperonin-like region in the middle of the molecule, and a consensus for phosphoinositide 5-kinases at the C terminus. p235 mRNA appears as a 9-kb transcript, enriched in insulin-sensitive cells and tissues, likely transcribed from a single-copy gene in at least two close-in-size splice variants. Specific antibodies against mouse p235 were raised, and both the endogenously and heterologously expressed proteins were biochemically detected in 3T3-L1 adipocytes and transfected COS cells, respectively. Immunofluorescence microscopy analysis of endogenous p235 localization in 3T3-L1 adipocytes with affinity-purified anti-p235 antibodies documented a punctate peripheral pattern. In COS cells, the expressed p235 N-terminal but not the C-terminal region displayed a vesicular pattern similar to that in 3T3-L1 adipocytes that became diffuse upon Zn2+ chelation or FYVE finger truncation. A recombinant protein comprising the N-terminal but not the C-terminal region of the molecule was found to bind 2.2 mole equivalents of Zn2+. Determination of the lipid kinase activity in the p235 immunoprecipitates derived from 3T3-L1 adipocytes or from COS cells transiently expressing p235 revealed that p235 displayed unique preferences for PI substrate over already phosphorylated PI. In conclusion, the mouse p235 protein determines an important novel class of phosphoinositide kinases that seems to be targeted to specific intracellular loci by a Zn-dependent mechanism. PMID:9858586

  18. Expression of the nfa1 gene cloned from pathogenic Naegleria fowleri in nonpathogenic N. gruberi enhances cytotoxicity against CHO target cells in vitro.

    PubMed

    Jeong, Seok-Ryoul; Lee, Sang-Chul; Song, Kyoung-Ju; Park, Sun; Kim, Kyongmin; Kwon, Myung-Hee; Im, Kyung-Il; Shin, Ho-Joon

    2005-07-01

    The pathogenic amoeba Naegleria fowleri has a 360-bp nfa1 gene that encodes the Nfa1 protein (13.1 kDa), which is located in the pseudopodia of the amoeba, and an anti-Nfa1 antibody reduces N. fowleri-induced mammalian-cell cytotoxicity in vitro. In contrast, an anti-Nfa1 antibody cannot detect Nfa1 protein expression in the nonpathogenic amoeba Naegleria gruberi, which also possesses the nfa1 gene. In the present study, the nfa1 gene cloned from pathogenic N. fowleri was transfected into nonpathogenic N. gruberi to determine whether it was related to pathogenicity. The nfa1 gene was initially inserted into a eukaryotic transfection vector, pEGFP-C2, containing a cytomegalovirus promoter and the green fluorescent protein (GFP) gene, and was designed as pEGFP-C2/nfa1UTR (nfa1UTR contains 5' upstream regions, the nfa1 open reading frame, and 3' downstream regions). After transfection, the green fluorescence was observed in the cytoplasm of N. gruberi trophozoites. These transfectants were preserved for more than 9 months after selection. The transfected nfa1 gene was observed by PCR using nfa1- and vector-specific primers in the genomic DNA of N. gruberi transfected with the pEGFP-C2/nfa1UTR vector. In addition, the nfa1 and GFP genes were identified by reverse transcription-PCR in transgenic N. gruberi. The Nfa1 protein expressed in transgenic N. gruberi was identified as a 13.1-kDa band by Western blotting using an anti-Nfa1 antibody. Finally, N. gruberi transfected with the pEGFP-C2/nfa1UTR vector was found to have enhanced cytotoxicity against CHO cells compared with naïve N. gruberi.

  19. Effect of donor cell type on developmental competence, quality, gene expression, and epigenetic status of interspecies cloned embryos produced using cells from wild buffalo and oocytes from domestic buffalo.

    PubMed

    Saini, M; Selokar, N L; Raja, A K; Sahare, A A; Singla, S K; Chauhan, M S; Manik, R S; Palta, P

    2015-07-01

    This study compared the cloning efficiency of donor cells of fibroblast and epithelial origin isolated from ear skin of a wild buffalo (Bubalus arnee) and used with cytoplasts from domestic buffalo (Bubalus bubalis) in interspecies SCNT by hand-made cloning. The cleavage (93.0 ± 2.8% vs. 85.6 ± 2.4%) and blastocyst rates (50.6 ± 4.0% vs. 20.5 ± 2.6%) were higher (P < 0.05) for fibroblasts than those for epithelial cells, whereas the total cell number (490 ± 42 and 492 ± 95, respectively) and apoptotic index (2.3 ± 0.3 and 2.5 ± 0.6, respectively) of blastocysts were similar. The global level of H3K18ac and H3K27me3 was lower (P < 0.05) in fibroblasts than that in epithelial cells. The global level of H3K18ac was higher (P < 0.05) in fibroblast than that in epithelial cell-derived blastocysts, whereas that of H3K27me3 was similar between the two groups. The expression level of HDAC1, DNMT1, DNMT3a, and P53 was higher (P < 0.05) in fibroblasts than that in epithelial cells; that of CASPASE3 showed an opposite pattern (P < 0.001), whereas CASPASE7 expression level was similar in the two groups. In the embryos, the expression level of HDAC1, DNMT3a, and CDX2 was lower (P < 0.05) in fibroblast than that in epithelial cell-derived blastocysts; that of NANOG showed an opposite pattern (P < 0.05), whereas that of OCT4 was similar between the two groups. In conclusion, donor cells of fibroblast origin are easier to reprogram than those of epithelial origin in interspecies SCNT, and cloning efficiency, epigenetic status, and gene expression pattern vary among cells having different origin although they may be from the same tissue.

  20. Cloned mice derived from somatic cell nuclei.

    PubMed

    Hosaka, K; Ohi, S; Ando, A; Kobayashi, M; Sato, K

    2000-12-01

    In 1997, a cloned sheep "Dolly" was produced by nuclear transfer of somatic cell. The first birth of cloned mice derived from some somatic cells were succeeded in 1998. At present, it is shown that somatic cells, cumulus cells, fibroblasts and Sertoli cells can be used to the study of cloned animal as nuclear donor. In this study investigation was designed to compare with efficiency on the production of cloned embryos by using the microinjection and the electrofusion methods for nuclear transfer. Oocyte enucleation was performed with a micromanipulator. The oocyte was held by holding pipette, and was enucleated using a beveled pipette. Microinjection method: Cell's nucleus injection was carried out by piezo-micromanipulator. Cytochalasin B treated cumulus cell was aspirated into a injection pipette, and was broken its plasma membrane using the injection pipette. Then, the cumulus cell was injected into the enucleated ooplasm directly. Electrofusion method: The cell was aspirated into a beveled pipette, and then an aspirated cell was inserted into perivitelline space. Then, the pair of enucleated oocyte and cell was fused using electrical cell fusion apparatus. The reconstituted embryos were activated after nuclear transfer using St2+. Reconstituted embryos had been produced by the microinjection showed the embryonic development to over 8-cell stages. But, the rate of fragmentation of reconstituted embryos by the microinjection showed a little high rate in comparison with the electrofusion. When some reconstituted embryos by the microinjection were transplanted to pseudopregnant females' oviduct, 9 fetuses were observed at 14 days post coitum. PMID:11329940

  1. Cloning and expression characteristics of the pig Stra8 gene.

    PubMed

    Wang, Xiaoyan; Chen, Tingfeng; Song, Chengyi; Gao, Bo; Zhang, Yani

    2014-07-15

    Stra8 (Stimulated by Retinoic Acid 8) is considered a meiotic gatekeeper gene. Using reverse transcriptase PCR and rapid amplification of cDNA ends (RACE), the complete sequence of the pig Stra8 gene was cloned. Bioinformatics analyses of this sequence were performed. Using semi-quantitative methods, the expression characteristics of Stra8 in Testis, cauda epididymis, body epididymis, caput epididymis, seminal vesicles, prostate gland, Cowper's gland, heart, liver, spleen, lung, kidney, stomach, hypothalamus, pituitary gland, cerebrum, cerebellum, and hippocampus of adult Meishan boar and sow tissues were examined. The expression pattern in the testis of 2-, 30-, 60-, 90-, and 150-day old Meishan boars were analyzed using real-time PCR. We constructed a eukaryotic expression vector for the Stra8 gene and used it to transfect NIH-3T3 cells and third generation pig spermatogonial stem cells (SSCs) cultured in vitro. Testes weight and sperm count in the cauda epididymis were evaluated at various time points. The results showed that the length of the pig Stra8 gene cDNA was 1444 bp encoding 366 amino acids with one typical helix-loop-helix (HLH) domain. It is testes-specific expression. Expression was first detected in boar testis starting at day 2, and its expression significantly (p<0.05) increased with age and body weight. When NIH-3T3 cells and pig SSCs were transfected with the eukaryotic expression vector EGFP (enhanced green fluorescent protein)-N1-pStra8, it was expressed in the cytoplasm of NIH-3T3 cells. However, in SSCs, Stra8 was expressed predominantly in cytoplasm and few in nucleus. Our data suggest that perhaps Stra8 acts as a transcription factor to initiate meiosis in young boar.

  2. Cloning and Expression Characteristics of the Pig Stra8 Gene

    PubMed Central

    Wang, Xiaoyan; Chen, Tingfeng; Song, Chengyi; Gao, Bo; Zhang, Yani

    2014-01-01

    Stra8 (Stimulated by Retinoic Acid 8) is considered a meiotic gatekeeper gene. Using reverse transcriptase PCR and rapid amplification of cDNA ends (RACE), the complete sequence of the pig Stra8 gene was cloned. Bioinformatics analyses of this sequence were performed. Using semi-quantitative methods, the expression characteristics of Stra8 in Testis, cauda epididymis, body epididymis, caput epididymis, seminal vesicles, prostate gland, Cowper’s gland, heart, liver, spleen, lung, kidney, stomach, hypothalamus, pituitary gland, cerebrum, cerebellum, and hippocampus of adult Meishan boar and sow tissues were examined. The expression pattern in the testis of 2-, 30-, 60-, 90-, and 150-day old Meishan boars were analyzed using real-time PCR. We constructed a eukaryotic expression vector for the Stra8 gene and used it to transfect NIH-3T3 cells and third generation pig spermatogonial stem cells (SSCs) cultured in vitro. Testes weight and sperm count in the cauda epididymis were evaluated at various time points. The results showed that the length of the pig Stra8 gene cDNA was 1444 bp encoding 366 amino acids with one typical helix-loop-helix (HLH) domain. It is testes-specific expression. Expression was first detected in boar testis starting at day 2, and its expression significantly (p < 0.05) increased with age and body weight. When NIH-3T3 cells and pig SSCs were transfected with the eukaryotic expression vector EGFP (enhanced green fluorescent protein)-N1-pStra8, it was expressed in the cytoplasm of NIH-3T3 cells. However, in SSCs, Stra8 was expressed predominantly in cytoplasm and few in nucleus. Our data suggest that perhaps Stra8 acts as a transcription factor to initiate meiosis in young boar. PMID:25029539

  3. Molecular cloning and expression of a cDNA encoding the rabbit ileal villus cell basolateral membrane Na+/H+ exchanger.

    PubMed Central

    Tse, C M; Ma, A I; Yang, V W; Watson, A J; Levine, S; Montrose, M H; Potter, J; Sardet, C; Pouyssegur, J; Donowitz, M

    1991-01-01

    A cDNA clone encoding a rabbit ileal villus cell Na+/H+ exchanger was isolated and its complete nucleotide sequence was determined. The cDNA is 4 kb long and contains 322 bp of 5'-untranslated region, 2451 bp of open reading frame and 1163 bp of 3'-untranslated area, with 70%, 91% and 40% identity to the human sequence, respectively. Amino acid sequence deduced from the longest open reading frame indicated a protein of 816 residues (predicted Mr 90,716) which exhibits 95% amino acid identity to the human Na+/H+ exchanger. The two putative glycosylation sites in the human Na+/H+ exchanger are conserved in this protein, suggesting that it is a glycoprotein. Stable transfection of the cDNA into an Na+/H+ exchanger deficient fibroblast cell line, established Na+/H+ exchange. The Na+/H+ exchanger was stimulated by serum and a phorbol ester but not by 8-Br-cAMP. In Northern blot analysis, the cDNA hybridized to a 4.8 kb message in rabbit ileal villus cells, kidney cortex, kidney medulla, adrenal gland, brain and descending colon and to a 5.2 kb message in cultured human colonic cancer cell lines, HT29-18 and Caco-2. In immunoblotting, a polyclonal antibody raised against a fusion protein of beta-galactosidase and the C-terminal 158 amino acids of the human Na+/H+ exchanger identified a rabbit ileal basolateral membrane protein of 94 kd and only weakly interacted with the ileal brush border membrane. In immunocytochemical studies using ileal villus and crypt epithelial cells, the same antibody identified basolateral and not brush border epitopes. Restriction analysis of genomic DNA with a 462 bp PstI-AccI fragment of the rabbit Na+/H+ exchanger strongly suggests the existence of closely related Na+/H+ exchanger genes. The near identity of the basolateral Na+/H+ exchanger and the human Na+/H+ exchanger plus the ubiquitous expression of this message suggests that the ileal basolateral Na+/H+ exchanger is the 'housekeeping' Na+/H+ exchanger. Images PMID:1712287

  4. Cloning and expression of the rabbit prostaglandin EP2 receptor

    PubMed Central

    Guan, Youfei; Stillman, Brett A; Zhang, Yahua; Schneider, André; Saito, Osamu; Davis, Linda S; Redha, Reyadh; Breyer, Richard M; Breyer, Matthew D

    2002-01-01

    Background Prostaglandin E2 (PGE2) has multiple physiologic roles mediated by G protein coupled receptors designated E-prostanoid, or "EP" receptors. Evidence supports an important role for the EP2 receptor in regulating fertility, vascular tone and renal function. Results The full-length rabbit EP2 receptor cDNA was cloned. The encoded polypeptide contains 361 amino acid residues with seven hydrophobic domains. COS-1 cells expressing the cloned rabbit EP2 exhibited specific [3H]PGE2 binding with a Kd of 19.1± 1.7 nM. [3H]PGE2 was displaced by unlabeled ligands in the following order: PGE2>>PGD2=PGF2α=iloprost. Binding of [3H]PGE2 was also displaced by EP receptor subtype selective agonists with a rank order of affinity consistent with the EP2 receptor (butaprost>AH13205>misoprostol>sulprostone). Butaprost free acid produced a concentration-dependent increase in cAMP accumulation in rabbit EP2 transfected COS-1 cells with a half-maximal effective concentration of 480 nM. RNase protection assay revealed high expression in the ileum, spleen, and liver with lower expression in the kidney, lung, heart, uterus, adrenal gland and skeletal muscle. In situ hybridization localized EP2 mRNA to the uterine endometrium, but showed no distinct localization in the kidney. EP2 mRNA expression along the nephron was determined by RT-PCR and its expression was present in glomeruli, MCD, tDL and CCD. In cultured cells EP2 receptor was not detected in collecting ducts but was detected in renal interstitial cells and vascular smooth muscle cells. EP2 mRNA was also detected in arteries, veins, and preglomerular vessels of the kidney. Conclusion EP2 expression pattern is consistent with the known functional roles for cAMP coupled PGE2 effects in reproductive and vascular tissues and renal interstitial cells. It remains uncertain whether it is also expressed in renal tubules. PMID:12097143

  5. [Production of porcine blastocysts expressed EGFP by handmade cloning].

    PubMed

    Zhang, Peng; Yang, Zhen-Zhen; Dou, Hong-Wei; Li, Wei-Hang; Lv, Bo; Bolund, Lars; DU, Yu-Tao; Tan, Ping-Ping; Ma, Run-Lin

    2011-05-01

    Production of transgenic animals via somatic cell nuclear transfer (SCNT) has been widely used worldwide. However, the application of SCNT is impeded by overall high costs and low efficiency. Here, we reported a modification of the existing technology in order to overcome some of the disadvantages associated with SCNT. Firstly, a marker gene, enhanced green fluorescent gene (EGFP), was transfected into pig fetal fibroblast cells, and was subsequently screened by fluorescent expression to ensure donor cells expressing EGFP. Porcine embryos expressing EGFP were then produced by a method called handmade cloning (HMC), a simplified method for micromanipulation. To demonstrate the concept, we collected a total of 378 fresh swine oocytes, from which 266 with the nucleus removed, obtained a total of 127 viable recombinant oocytes after fusion with EGFP-expressing cells. In vitro incubation of the 127 recombinant oocytes for approximately 144 hours resulted in successful generation of 65 viable embryos, with an average success rate of 52.1±8.3%. Compared with the traditional SCNT, the method of HMC is not only easy to operate, but also increases the rate of recombinant embryo significantly. Furthermore, the modified method no longer relies on expensive instrument like micromanipulator, facilitating the industrialization of transgenic animal production. PMID:21586400

  6. Transfer of the cloned Salmonella SPI-1 type III secretion system and characterization of its expression mechanisms in Gram negative bacteria in comparison with cloned SPI-2.

    PubMed

    Cangelosi, Chris; Hannagan, Susan; Santiago, Clayton P; Wilson, James W

    2015-11-01

    Cloned type III secretion systems have much potential to be used for bacterial engineering purposes involving protein secretion and substrate translocation directly into eukaryotic cells. We have previously cloned the SPI-1 and SPI-2 type III systems from the Salmonella enterica serovar Typhimurium genome using plasmid R995 which can conveniently capture large genomic segments for transfer between bacterial strains. However, though expressed and functional in Salmonella strains, cloned SPI-1 was previously observed to have a serious expression defect in other Gram negative bacteria including Escherichia coli. Here we show that cloned SPI-1 expression and secretion can be detected in the secretion preps from E. coli and Citrobacter indicating the first observation of non-Salmonella SPI-1 expression. We describe a compatible plasmid system to introduce engineered SPI-1 substrates into cloned SPI-1 strains. However, a SPI-1 translocation defect is still observed in E. coli, and we show that this is likely due to a defect in SipB expression/secretion in this species. In addition, we also examined the requirement for the hilA and ssrAB regulators in the expression of cloned SPI-1 and SPI-2, respectively. We found a strict requirement for hilA for full cloned SPI-1 expression and secretion. However, though we found that ssrAB is required for full cloned SPI-2 expression in a range of media across different bacteria, it is not required for cloned SPI-2 expression in MgM8 inducing media in S. Typhimurium. This suggests that under SPI-2 inducing conditions in S. Typhimurium, other factors can substitute for loss of ssrAB in cloned SPI-2 expression. The results provide key foundational information for the future use of these cloned systems in bacteria.

  7. Transfer of the cloned Salmonella SPI-1 type III secretion system and characterization of its expression mechanisms in Gram negative bacteria in comparison with cloned SPI-2.

    PubMed

    Cangelosi, Chris; Hannagan, Susan; Santiago, Clayton P; Wilson, James W

    2015-11-01

    Cloned type III secretion systems have much potential to be used for bacterial engineering purposes involving protein secretion and substrate translocation directly into eukaryotic cells. We have previously cloned the SPI-1 and SPI-2 type III systems from the Salmonella enterica serovar Typhimurium genome using plasmid R995 which can conveniently capture large genomic segments for transfer between bacterial strains. However, though expressed and functional in Salmonella strains, cloned SPI-1 was previously observed to have a serious expression defect in other Gram negative bacteria including Escherichia coli. Here we show that cloned SPI-1 expression and secretion can be detected in the secretion preps from E. coli and Citrobacter indicating the first observation of non-Salmonella SPI-1 expression. We describe a compatible plasmid system to introduce engineered SPI-1 substrates into cloned SPI-1 strains. However, a SPI-1 translocation defect is still observed in E. coli, and we show that this is likely due to a defect in SipB expression/secretion in this species. In addition, we also examined the requirement for the hilA and ssrAB regulators in the expression of cloned SPI-1 and SPI-2, respectively. We found a strict requirement for hilA for full cloned SPI-1 expression and secretion. However, though we found that ssrAB is required for full cloned SPI-2 expression in a range of media across different bacteria, it is not required for cloned SPI-2 expression in MgM8 inducing media in S. Typhimurium. This suggests that under SPI-2 inducing conditions in S. Typhimurium, other factors can substitute for loss of ssrAB in cloned SPI-2 expression. The results provide key foundational information for the future use of these cloned systems in bacteria. PMID:26505312

  8. Cloning mice and ES cells by nuclear transfer from somatic stem cells and fully differentiated cells.

    PubMed

    Wang, Zhongde

    2011-01-01

    Cloning animals by nuclear transfer (NT) has been successful in several mammalian species. In addition to cloning live animals (reproductive cloning), this technique has also been used in several species to establish cloned embryonic stem (ntES) cell lines from somatic cells. It is the latter application of this technique that has been heralded as being the potential means to produce isogenic embryonic stem cells from patients for cell therapy (therapeutic cloning). These two types of cloning differ only in the steps after cloned embryos are produced: for reproductive cloning the cloned embryos are transferred to surrogate mothers to allow them to develop to full term and for therapeutic cloning the cloned embryos are used to derive ntES cells. In this chapter, a detailed NT protocol in mouse by using somatic stem cells (neuron and skin stem cells) and fully differentiated somatic cells (cumulus cells and fibroblast cells) as nuclear donors is described.

  9. Keith's MAGIC: Cloning and the Cell Cycle.

    PubMed

    Wells, D N

    2013-10-01

    Abstract Professor Keith Campbell's critical contribution to the discovery that a somatic cell from an adult animal can be fully reprogrammed by oocyte factors to form a cloned individual following nuclear transfer (NT)(Wilmut et al., 1997 ) overturned a dogma concerning the reversibility of cell fate that many scientists had considered to be biologically impossible. This seminal experiment proved the totipotency of adult somatic nuclei and finally confirmed that adult cells could differentiate without irreversible changes to the genetic material.

  10. Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning.

    PubMed

    Steinborn, R; Schinogl, P; Zakhartchenko, V; Achmann, R; Schernthaner, W; Stojkovic, M; Wolf, E; Müller, M; Brem, G

    2000-07-01

    Mammals have been cloned from adult donor cells. Here we report the first cases of mitochondrial DNA (mtDNA) heteroplasmy in adult mammalian clones generated from fetal and adult donor cells. The heteroplasmic clones included a healthy cattle equivalent of the sheep Dolly, for which a lack of heteroplasmy was reported.

  11. Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning.

    PubMed

    Steinborn, R; Schinogl, P; Zakhartchenko, V; Achmann, R; Schernthaner, W; Stojkovic, M; Wolf, E; Müller, M; Brem, G

    2000-07-01

    Mammals have been cloned from adult donor cells. Here we report the first cases of mitochondrial DNA (mtDNA) heteroplasmy in adult mammalian clones generated from fetal and adult donor cells. The heteroplasmic clones included a healthy cattle equivalent of the sheep Dolly, for which a lack of heteroplasmy was reported. PMID:10888867

  12. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer.

    PubMed

    Sung, Li-Ying; Gao, Shaorong; Shen, Hongmei; Yu, Hui; Song, Yifang; Smith, Sadie L; Chang, Ching-Chien; Inoue, Kimiko; Kuo, Lynn; Lian, Jin; Li, Ao; Tian, X Cindy; Tuck, David P; Weissman, Sherman M; Yang, Xiangzhong; Cheng, Tao

    2006-11-01

    Since the creation of Dolly via somatic cell nuclear transfer (SCNT), more than a dozen species of mammals have been cloned using this technology. One hypothesis for the limited success of cloning via SCNT (1%-5%) is that the clones are likely to be derived from adult stem cells. Support for this hypothesis comes from the findings that the reproductive cloning efficiency for embryonic stem cells is five to ten times higher than that for somatic cells as donors and that cloned pups cannot be produced directly from cloned embryos derived from differentiated B and T cells or neuronal cells. The question remains as to whether SCNT-derived animal clones can be derived from truly differentiated somatic cells. We tested this hypothesis with mouse hematopoietic cells at different differentiation stages: hematopoietic stem cells, progenitor cells and granulocytes. We found that cloning efficiency increases over the differentiation hierarchy, and terminally differentiated postmitotic granulocytes yield cloned pups with the greatest cloning efficiency.

  13. Molecular cloning and expression analysis of TRAF3 in chicken.

    PubMed

    Yang, H L; Feng, Z Q; Zeng, S Q; Li, S M; Zhu, Q; Liu, Y P

    2015-01-01

    Tumor necrosis factor receptor-associated factor 3 (TRAF3) is a crucial regulator that suppresses c-Jun N-terminal kinase and non-canonical nuclear factor-kB signaling, but facilitates type I interferon production. To determine TRAF3 function in innate immune responses among birds, particularly chicken, we cloned and characterized the chicken TRAF3 gene (chTRAF3) and detected its tissue expression profile in chicken. We also detected the differential expression of chTRAF3 and its downstream gene interferon-β (IFN-β) upon different stimuli in primary chicken embryo fibroblast cells. Two chTRAF3 gene products, chTRAF3-1 and chTRAF3-2, can be produced by alternative splicing. The full-length coding sequence of chTRAF3 (chTRAF3-1) was 1704 base pairs and encoded a protein of 567 amino acids with high identity to TRAF3 homologs from mammals and other birds. The deduced amino acid sequence showed typical characteristics of TRAFs, with a RING finger domain, 2 zf-TRAF motifs, and a MATH domain. Quantitative real-time polymerase chain reaction analysis revealed broad expression of chTRAF3 in all detected tissues, with abundant expression in the spleen, thymus, lung, and small intestine. Expression of chTRAF3 was significantly upregulated in a time- and concentration-dependent manner in chicken embryo fibroblast cells challenged with poly I:C or poly dA-dT. Furthermore, chTRAF3 and IFN-β mRNA expression from chicken embryo fibroblast cells challenged with Newcastle disease virus F48E9 suffered intense suppression compared with Newcastle disease virus Mukteswar infection. Our results indicate that chTRAF3 plays important roles in defending against both RNA and DNA virus infection. PMID:25966214

  14. Noncytotoxic T cell clones obtained from a human mixed leukocyte culture.

    PubMed

    Chu, M H; Wee, S L; Bach, F H

    1990-02-01

    Peripheral blood mononuclear cells from a DQW-1 homozygous individual were cocultured with irradiated lymphoblastoid cell line from a DQW-1 homozygous unrelated donor bearing BW35-DW1 haplotype. From T cell cloning of primary and twice-stimulated mixed leukocyte cultures (MLC), 7 and 11 T cell clones were obtained respectively. None of the 18 clones showed specific cytotoxic activity against the alloantigen of the stimulator cell as well as natural killer (NK)-like activity against K562 cells. However, most T cell clones from both primary and re-stimulated MLC demonstrated moderate cytotoxic activity in lectin-dependent cell-mediated cytolysis (LDCC) assay. Screening assay for cell-mediated lympholysis (CML) performed on growing microcultures obtained from restimulated MLC cloning confirmed the non-cytotoxic status of these T cell clones by showing that 41 out of 44 growing microcultures were not cytotoxic against the stimulator cell; the other 3 clones lyzed the target cell mildly. The cells from all 5 T cell clones detected for indirect fluorescence expressed CD3 and CD4 surface markers. Taken together, the results suggested that proliferation-regulating T cell subsets or factor(s) may be generated during the course of MLCs under the present responder-stimulator combination, and may suppress the development of alloreactive cytotoxic T cells and NK-like cells. PMID:2144231

  15. Epigenetic Loss of MLH1 Expression in Normal Human Hematopoietic Stem Cell Clones is Defined by the Promoter CpG Methylation Pattern Observed by High-Throughput Methylation Specific Sequencing

    PubMed Central

    Kenyon, Jonathan; Nickel-Meester, Gabrielle; Qing, Yulan; Santos-Guasch, Gabriela; Drake, Ellen; PingfuFu; Sun, Shuying; Bai, Xiaodong; Wald, David; Arts, Eric; Gerson, Stanton L.

    2016-01-01

    Normal human hematopoietic stem and progenitor cells (HPC) lose expression of MLH1, an important mismatch repair (MMR) pathway gene, with age. Loss of MMR leads to replication dependent mutational events and microsatellite instability observed in secondary acute myelogenous leukemia and other hematologic malignancies. Epigenetic CpG methylation upstream of the MLH1 promoter is a contributing factor to acquired loss of MLH1 expression in tumors of the epithelia and proximal mucosa. Using single molecule high-throughput bisulfite sequencing we have characterized the CpG methylation landscape from −938 to −337 bp upstream of the MLH1 transcriptional start site (position +0), from 30 hematopoietic colony forming cell clones (CFC) either expressing or not expressing MLH1. We identify a correlation between MLH1 promoter methylation and loss of MLH1 expression. Additionally, using the CpG site methylation frequencies obtained in this study we were able to generate a classification algorithm capable of sorting the expressing and non-expressing CFC. Thus, as has been previously described for many tumor cell types, we report for the first time a correlation between the loss of MLH1 expression and increased MLH1 promoter methylation in CFC derived from CD34+ selected hematopoietic stem and progenitor cells. PMID:27570841

  16. A transgenic-cloned pig model expressing non-fluorescent modified Plum

    PubMed Central

    NAGAYA, Masaki; WATANABE, Masahito; KOBAYASHI, Mirina; NAKANO, Kazuaki; ARAI, Yoshikazu; ASANO, Yoshinori; TAKEISHI, Toki; UMEKI, Ikuma; FUKUDA, Tooru; YASHIMA, Sayaka; TAKAYANAGI, Shuko; WATANABE, Nobuyuki; ONODERA, Masafumi; MATSUNARI, Hitomi; UMEYAMA, Kazuhiro; NAGASHIMA, Hiroshi

    2016-01-01

    Genetically modified pigs that express fluorescent proteins such as green and red fluorescent proteins have become indispensable biomedical research tools in recent years. Cell or tissue transplantation studies using fluorescent markers should be conducted, wherein the xeno-antigenicity of the fluorescent proteins does not affect engraftment or graft survival. Thus, we aimed to create a transgenic (Tg)-cloned pig that was immunologically tolerant to fluorescent protein antigens. In the present study, we generated a Tg-cloned pig harboring a derivative of Plum modified by a single amino acid substitution in the chromophore. The cells and tissues of this Tg-cloned pig expressing the modified Plum (mPlum) did not fluoresce. However, western blot and immunohistochemistry analyses clearly showed that the mPlum had the same antigenicity as Plum. Thus, we have obtained primary proof of principle for creating a cloned pig that is immunologically tolerant to fluorescent protein antigens. PMID:27396383

  17. Human somatic cell nuclear transfer and cloning.

    PubMed

    2012-10-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer (cloning)," last published in Fertil Steril 2000;74:873-6.

  18. Successful pod infections by Moniliophthora roreri result in differential Theobroma cacao gene expression depending on the clone's level of tolerance.

    PubMed

    Ali, Shahin S; Melnick, Rachel L; Crozier, Jayne; Phillips-Mora, Wilberth; Strem, Mary D; Shao, Jonathan; Zhang, Dapeng; Sicher, Richard; Meinhardt, Lyndel; Bailey, Bryan A

    2014-09-01

    An understanding of the tolerance mechanisms of Theobroma cacao used against Moniliophthora roreri, the causal agent of frosty pod rot, is important for the generation of stable disease-tolerant clones. A comparative view was obtained of transcript populations of infected pods from two susceptible and two tolerant clones using RNA sequence (RNA-Seq) analysis. A total of 3009 transcripts showed differential expression among clones. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differentially expressed genes indicated shifts in 152 different metabolic pathways between the tolerant and susceptible clones. Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) analyses of 36 genes verified the differential expression. Regression analysis validated a uniform progression in gene expression in association with infection levels and fungal loads in the susceptible clones. Expression patterns observed in the susceptible clones diverged in tolerant clones, with many genes showing higher expression at a low level of infection and fungal load. Principal coordinate analyses of real-time qRT-PCR data separated the gene expression patterns between susceptible and tolerant clones for pods showing malformation. Although some genes were constitutively differentially expressed between clones, most results suggested that defence responses were induced at low fungal load in the tolerant clones. Several elicitor-responsive genes were highly expressed in tolerant clones, suggesting rapid recognition of the pathogen and induction of defence genes. Expression patterns suggested that the jasmonic acid-ethylene- and/or salicylic acid-mediated defence pathways were activated in the tolerant clones, being enhanced by reduced brassinosteroid (BR) biosynthesis and catabolic inactivation of both BR and abscisic acids. Finally, several genes associated with hypersensitive response-like cell death were also induced in tolerant clones.

  19. Structure of the TCR expressed on a gastritogenic T cell clone, II-6, and frequent appearance of similar clonotypes in mice bearing autoimmune gastritis.

    PubMed

    Katakai, T; Agata, Y; Shimizu, A; Ohshima, C; Nishio, A; Inaba, M; Kasakura, S; Mori, K J; Masuda, T

    1997-12-01

    A parietal cell-specific Th1 clone, II-6, which was established from a BALB/c mouse bearing post-thymectomy autoimmune gastritis (AIG), recognizes a peptide of the alpha subunit (alpha891-905) of H+/K+-ATPase and induces gastritis in nu/nu BALB/c mice by adoptive cell transfer. In the present study, the primary structure of the TCR of II-6 was determined as Valpha10-Jalpha c5a-Calpha and Vbeta14-Jbeta2.3-Cbeta2 by cDNA cloning. Using PCR with specific primers, we defined the use of this II-6 TCR in nu/nu mice with transferred II-6 cells and in mice that spontaneously developed AIG by thymectomy on day 3 after birth (d3-Tx). II-6 TCR mRNAs were detected in the gastric mucosa of all of the nu/nu mice, suggesting that II-6 cells indeed home to the gastric mucosa and thereby were directly involved in the destruction of target parietal cells. TCR beta chain mRNAs encoding CDR3 region sequences almost identical with that of II-6 were also found in the gastric mucosa in 43% (six of 14 mice tested) of the d3-Tx AIG mice at 4-12 weeks old by nested RT-PCR. Such a frequent appearance of similar clonotypes in independent individuals suggests that T cells bearing II-6-like TCR including the II-6 itself might be directly involved in, although not essential for, the pathogenesis of AIG in 3d-Tx mice.

  20. Cloning and expression of mouse legumain, a lysosomal endopeptidase.

    PubMed Central

    Chen, J M; Dando, P M; Stevens, R A; Fortunato, M; Barrett, A J

    1998-01-01

    Legumain, a recently discovered mammalian cysteine endopeptidase, was found in all mouse tissues examined, but was particularly abundant in kidney and placenta. The distribution in subcellular fractions of mouse and rat kidney showed a lysosomal localization, and activity was detectable only after the organelles were disrupted. Nevertheless, ratios of legumain activity to that of cathepsin B differed considerably between mouse tissues. cDNA encoding mouse legumain was cloned and sequenced, the deduced amino acid sequence proving to be 83% identical to that of the human protein [Chen, Dando, Rawlings, Brown, Young, Stevens, Hewitt, Watts and Barrett (1997) J. Biol. Chem. 272, 8090-8098]. Recombinant mouse legumain was expressed in human embryonic kidney 293 cells by use of a vector containing a cytomegalovirus promoter. The recombinant enzyme was partially purified and found to be an asparagine-specific endopeptidase closely similar to naturally occurring pig kidney legumain. PMID:9742219

  1. Cloning and Heterologous Expression of the Grecocycline Biosynthetic Gene Cluster

    PubMed Central

    Bilyk, Oksana; Sekurova, Olga N.; Zotchev, Sergey B.; Luzhetskyy, Andriy

    2016-01-01

    Transformation-associated recombination (TAR) in yeast is a rapid and inexpensive method for cloning and assembly of large DNA fragments, which relies on natural homologous recombination. Two vectors, based on p15a and F-factor replicons that can be maintained in yeast, E. coli and streptomycetes have been constructed. These vectors have been successfully employed for assembly of the grecocycline biosynthetic gene cluster from Streptomyces sp. Acta 1362. Fragments of the cluster were obtained by PCR and transformed together with the “capture” vector into the yeast cells, yielding a construct carrying the entire gene cluster. The obtained construct was heterologously expressed in S. albus J1074, yielding several grecocycline congeners. Grecocyclines have unique structural moieties such as a dissacharide side chain, an additional amino sugar at the C-5 position and a thiol group. Enzymes from this pathway may be used for the derivatization of known active angucyclines in order to improve their desired biological properties. PMID:27410036

  2. Cloning and Heterologous Expression of the Grecocycline Biosynthetic Gene Cluster.

    PubMed

    Bilyk, Oksana; Sekurova, Olga N; Zotchev, Sergey B; Luzhetskyy, Andriy

    2016-01-01

    Transformation-associated recombination (TAR) in yeast is a rapid and inexpensive method for cloning and assembly of large DNA fragments, which relies on natural homologous recombination. Two vectors, based on p15a and F-factor replicons that can be maintained in yeast, E. coli and streptomycetes have been constructed. These vectors have been successfully employed for assembly of the grecocycline biosynthetic gene cluster from Streptomyces sp. Acta 1362. Fragments of the cluster were obtained by PCR and transformed together with the "capture" vector into the yeast cells, yielding a construct carrying the entire gene cluster. The obtained construct was heterologously expressed in S. albus J1074, yielding several grecocycline congeners. Grecocyclines have unique structural moieties such as a dissacharide side chain, an additional amino sugar at the C-5 position and a thiol group. Enzymes from this pathway may be used for the derivatization of known active angucyclines in order to improve their desired biological properties. PMID:27410036

  3. Cloning of two members of the SIRP alpha family of protein tyrosine phosphatase binding proteins in cattle that are expressed on monocytes and a subpopulation of dendritic cells and which mediate binding to CD4 T cells.

    PubMed

    Brooke, G P; Parsons, K R; Howard, C J

    1998-01-01

    Recent experimental studies have greatly clarified the function of cell surface molecules in the induction and modulation of T cell responses by antigen-presenting cells (APC). However, the differences in ability to stimulate T cells evident for different types and subpopulations of the same APC, such as dendritic cell subsets, is less well understood. This report details an investigation of an antigen expressed on monocytes that is also expressed on a subset of cattle afferent lymph veiled cells (ALVC). A cDNA library derived from cattle monocytes was screened with monoclonal antibodies (mAb) for expression in COS-7 cells. Using separate mAb for screening, two cDNA were cloned, the sequences of which showed a single long open reading frame encoding a predicted type I glycoprotein of 506 amino acids that contained three immunoglobulin superfamily domains and a long 112-amino acid cytoplasmic tail. We have termed this antigen MyD-1, reflecting its myeloid and dendritic cell distribution. Analysis of the EMBL database revealed that the molecule is a member of the recently described family of signal regulatory proteins (SIRP). The outeremost Ig domain was of the adhesion/receptor I-type, suggesting that MyD-1 might bind to a ligand on another cell. Evidence for this was subsequently obtained by demonstrating that COS-7 cells transfected with MyD-1 cDNA bound CD4 T cells and this binding was blocked by specific mAb. The potential importance of this interaction was supported by the finding that the proliferation of resting memory CD4 T cells to ovalbumin-pulsed monocytes was significantly reduced in the presence of mAb to MyD-1. A role for the molecule in the modulation of the monocyte/dendritic APC response is also predicted from the existence of multiple potential tyrosine phosphorylation sites in the cytoplasmic domain, including the presence of an immunoreceptor tyrosine-based inhibitory motif (ITIM) and the observation that the SIRP alpha family members have been

  4. Cloning and expression of genes encoding Haemophilus somnus antigens.

    PubMed Central

    Corbeil, L B; Chikami, G; Yarnall, M; Smith, J; Guiney, D G

    1988-01-01

    A genomic library of Haemophilus somnus 2336, a virulent isolate from a calf with pneumonia (later used to reproduce H. somnus experimental pneumonia), was constructed in the cosmid vector pHC79. The gene bank in Escherichia coli DH1 was screened by filter immunoassay with convalescent-phase serum, which reacted with several outer membrane antigens of H. somnus. On Western blotting (immunoblotting) of immunoreactive colonies, five clones were found to express proteins which comigrated with H. somnus surface antigens. Three clones (DH1 pHS1, pHS3, and pHS4) expressed both a 120-kilodalton (kDa) antigen and a 76-kDa antigen, one clone (DH1 pHS2) expressed only the 76-kDa antigen, and the fifth clone (DH1 pHS5) expressed a 60-kDa antigen. The 120-kDa and 76-kDa antigens were found internally, whereas the 60-kDa protein was detected in the DH1 pHS5 culture supernatant as membrane blebs or insoluble protein. Both the H. somnus 120-kDa antigen and the recombinant 120-kDa antigen had immunoglobulin Fc-binding activity. Restriction endonuclease mapping demonstrated that the genomic DNA inserts of clones expressing the 76-kDa antigen shared a common 28.4-kilobase-pair region, and the three clones also expressing the 120-kDa antigen shared an additional 7.0-kilobase-pair region. The restriction endonuclease map of pHS5, which expressed the 60-kDa antigen, was not similar to the maps of the other four plasmids. Since these three H. somnus antigens reacted with protective convalescent-phase serum, the recombinants which express these proteins should be useful in further studies of protective immunity in bovine H. somnus disease. Images PMID:2843469

  5. Cloned ferrets produced by somatic cell nuclear transfer

    PubMed Central

    Li, Ziyi; Sun, Xingshen; Chen, Juan; Liu, Xiaoming; Wisely, Samantha M.; Zhou, Qi; Renard, Jean-Paul; Leno, Gregory H.; Engelhardt, John F.

    2007-01-01

    Somatic cell nuclear transfer (SCNT) offers great potential for developing better animal models of human disease. The domestic ferret (Mustela putorius furo) is an ideal animal model for influenza infections and potentially other human respiratory diseases such as cystic fibrosis, where mouse models have failed to reproduce the human disease phenotype. Here, we report the successful production of live cloned, reproductively competent, ferrets using species-specific SCNT methodologies. Critical to developing a successful SCNT protocol for the ferret was the finding that hormonal treatment, normally used for superovulation, adversely affected the developmental potential of recipient oocytes. The onset of Oct4 expression was delayed and incomplete in parthenogenetically activated oocytes collected from hormone-treated females relative to oocytes collected from females naturally mated with vasectomized males. Stimulation induced by mating and in vitro oocyte maturation produced the optimal oocyte recipient for SCNT. Although nuclear injection and cell fusion produced mid-term fetuses at equivalent rates (~3–4%), only cell fusion gave rise to healthy surviving clones. Single cell fusion rates and the efficiency of SCNT were also enhanced by placing two somatic cells into the perivitelline space. These species-specific modifications facilitated the birth of live, healthy, and fertile cloned ferrets. The development of microsatellite genotyping for domestic ferrets confirmed that ferret clones were genetically derived from their respective somatic cells and unrelated to their surrogate mother. With this technology, it is now feasible to begin generating genetically defined ferrets for studying transmissible and inherited human lung diseases. Cloning of the domestic ferret may also aid in recovery and conservation of the endangered black-footed ferret and European mink. PMID:16584722

  6. Indigofera suffruticosa Mill extracts up-regulate the expression of the π class of glutathione S-transferase and NAD(P)H: quinone oxidoreductase 1 in rat Clone 9 liver cells.

    PubMed

    Chen, Chun-Chieh; Liu, Chin-San; Li, Chien-Chun; Tsai, Chia-Wen; Yao, Hsien-Tsung; Liu, Te-Chung; Chen, Haw-Wen; Chen, Pei-Yin; Wu, Yu-Ling; Lii, Chong-Kuei; Liu, Kai-Li

    2013-09-01

    Because induction of phase II detoxification enzyme is important for chemoprevention, we study the effects of Indigofera suffruticosa Mill, a medicinal herb, on the expression of π class of glutathione S-transferase (GSTP) and NAD(P)H: quinone oxidoreductase 1 (NQO1) in rat Clone 9 liver cells. Both water and ethanolic extracts of I. suffruticosa significantly increased the expression and enzyme activities of GSTP and NQO1. I. suffruticosa extracts up-regulated GSTP promoter activity and the binding affinity of nuclear factor erythroid 2-related factor 2 (Nrf2) with the GSTP enhancer I oligonucleotide. Moreover, I. suffruticosa extracts increased nuclear Nrf2 accumulation as well as ARE transcriptional activity. The level of phospho-ERK was augmented by I. suffruticosa extracts, and the ERK inhibitor PD98059 abolished the I. suffruticosa extract-induced ERK activation and GSTP and NQO-1 expression. Moreover, I. suffruticosa extracts, especially the ethanolic extract increased the glutathione level in mouse liver and red blood cells as well as Clone 9 liver cells. The efficacy of I. suffruticosa extracts in induction of phase II detoxification enzymes and glutathione content implies that I. suffruticosa could be considered as a potential chemopreventive agent.

  7. Production of transgenic cloned pigs expressing the far-red fluorescent protein monomeric Plum.

    PubMed

    Watanabe, Masahito; Kobayashi, Mirina; Nagaya, Masaki; Matsunari, Hitomi; Nakano, Kazuaki; Maehara, Miki; Hayashida, Gota; Takayanagi, Shuko; Sakai, Rieko; Umeyama, Kazuhiro; Watanabe, Nobuyuki; Onodera, Masafumi; Nagashima, Hiroshi

    2015-01-01

    Monomeric Plum (Plum), a far-red fluorescent protein with photostability and photopermeability, is potentially suitable for in vivo imaging and detection of fluorescence in body tissues. The aim of this study was to generate transgenic cloned pigs exhibiting systemic expression of Plum using somatic cell nuclear transfer (SCNT) technology. Nuclear donor cells for SCNT were obtained by introducing a Plum-expression vector driven by a combination of the cytomegalovirus early enhancer and chicken beta-actin promoter into porcine fetal fibroblasts (PFFs). The cleavage and blastocyst formation rates of reconstructed SCNT embryos were 81.0% (34/42) and 78.6% (33/42), respectively. At 36-37 days of gestation, three fetuses systemically expressing Plum were obtained from one recipient to which 103 SCNT embryos were transferred (3/103, 2.9%). For generation of offspring expressing Plum, rejuvenated PFFs were established from one cloned fetus and used as nuclear donor cells. Four cloned offspring and one stillborn cloned offspring were produced from one recipient to which 117 SCNT embryos were transferred (5/117, 4.3%). All offspring exhibited high levels of Plum fluorescence in blood cells, such as lymphocytes, monocytes and granulocytes. In addition, the skin, heart, kidney, pancreas, liver and spleen also exhibited Plum expression. These observations demonstrated that transfer of the Plum gene did not interfere with the development of porcine SCNT embryos and resulted in the successful generation of transgenic cloned pigs that systemically expressed Plum. This is the first report of the generation and characterization of transgenic cloned pigs expressing the far-red fluorescent protein Plum.

  8. Production of transgenic cloned pigs expressing the far-red fluorescent protein monomeric Plum

    PubMed Central

    WATANABE, Masahito; KOBAYASHI, Mirina; NAGAYA, Masaki; MATSUNARI, Hitomi; NAKANO, Kazuaki; MAEHARA, Miki; HAYASHIDA, Gota; TAKAYANAGI, Shuko; SAKAI, Rieko; UMEYAMA, Kazuhiro; WATANABE, Nobuyuki; ONODERA, Masafumi; NAGASHIMA, Hiroshi

    2015-01-01

    Monomeric Plum (Plum), a far-red fluorescent protein with photostability and photopermeability, is potentially suitable for in vivo imaging and detection of fluorescence in body tissues. The aim of this study was to generate transgenic cloned pigs exhibiting systemic expression of Plum using somatic cell nuclear transfer (SCNT) technology. Nuclear donor cells for SCNT were obtained by introducing a Plum-expression vector driven by a combination of the cytomegalovirus early enhancer and chicken beta-actin promoter into porcine fetal fibroblasts (PFFs). The cleavage and blastocyst formation rates of reconstructed SCNT embryos were 81.0% (34/42) and 78.6% (33/42), respectively. At 36–37 days of gestation, three fetuses systemically expressing Plum were obtained from one recipient to which 103 SCNT embryos were transferred (3/103, 2.9%). For generation of offspring expressing Plum, rejuvenated PFFs were established from one cloned fetus and used as nuclear donor cells. Four cloned offspring and one stillborn cloned offspring were produced from one recipient to which 117 SCNT embryos were transferred (5/117, 4.3%). All offspring exhibited high levels of Plum fluorescence in blood cells, such as lymphocytes, monocytes and granulocytes. In addition, the skin, heart, kidney, pancreas, liver and spleen also exhibited Plum expression. These observations demonstrated that transfer of the Plum gene did not interfere with the development of porcine SCNT embryos and resulted in the successful generation of transgenic cloned pigs that systemically expressed Plum. This is the first report of the generation and characterization of transgenic cloned pigs expressing the far-red fluorescent protein Plum. PMID:25739316

  9. Cloning, expression and bioactivity of BAFF from Petaurus breviceps.

    PubMed

    Ren, Wen-hua; Xu, Ying; Zhang, Shuang-quan; Yang, Guang

    2010-10-15

    B-cell activating factor (BAFF), belonging to the TNF (tumor necrosis factor) family, is crucial for B-cell survival and maturation. In the present study, PbBAFF cDNA was amplified from the sugar glider Petaurus breviceps by RT-PCR and RACE (rapid amplification of cDNA ends) strategies. The open reading frame (ORF) of PbBAFF cDNA encodes a protein consisting of 287-amino acid. The deduced amino acid sequence contains a predicted transmembrane domain, a putative furin protease cleavage site, a potential N-glycosylation site and conserved cysteine residues similar to that identified in other mammalian BAFF. The soluble mature part of PbBAFF (PbsBAFF) showed 88-92% sequence identity with mammalian homologs. The predicted three-dimensional (3D) structural analysis of PbsBAFF analyzed by comparative protein modeling revealed that they are very similar to the 3D structure of human BAFF. Recombinant PbsBAFF fused with His(6) tag was efficiently expressed in Escherichia coli BL21 (DE3). In vitro, purified PbsBAFF co-stimulates the proliferation of human B-cells. These findings indicate PbBAFF, the first BAFF cloned from marsupial, plays an important role in proliferation of B-cells, and phylogenetic analyses reveal that the work is of value with respect to continued refinement of our understanding of mammalian phylogenetic relationships.

  10. Cloning, expression and bioactivity of BAFF from Petaurus breviceps.

    PubMed

    Ren, Wen-hua; Xu, Ying; Zhang, Shuang-quan; Yang, Guang

    2010-10-15

    B-cell activating factor (BAFF), belonging to the TNF (tumor necrosis factor) family, is crucial for B-cell survival and maturation. In the present study, PbBAFF cDNA was amplified from the sugar glider Petaurus breviceps by RT-PCR and RACE (rapid amplification of cDNA ends) strategies. The open reading frame (ORF) of PbBAFF cDNA encodes a protein consisting of 287-amino acid. The deduced amino acid sequence contains a predicted transmembrane domain, a putative furin protease cleavage site, a potential N-glycosylation site and conserved cysteine residues similar to that identified in other mammalian BAFF. The soluble mature part of PbBAFF (PbsBAFF) showed 88-92% sequence identity with mammalian homologs. The predicted three-dimensional (3D) structural analysis of PbsBAFF analyzed by comparative protein modeling revealed that they are very similar to the 3D structure of human BAFF. Recombinant PbsBAFF fused with His(6) tag was efficiently expressed in Escherichia coli BL21 (DE3). In vitro, purified PbsBAFF co-stimulates the proliferation of human B-cells. These findings indicate PbBAFF, the first BAFF cloned from marsupial, plays an important role in proliferation of B-cells, and phylogenetic analyses reveal that the work is of value with respect to continued refinement of our understanding of mammalian phylogenetic relationships. PMID:20591501

  11. T-cell receptor heterogeneity of gamma delta T-cell clones from human female reproductive tissues.

    PubMed

    Christmas, S E; Brew, R; Deniz, G; Taylor, J J

    1993-03-01

    gamma delta T cells were isolated from human decidua parietalis, decidua basalis and cervix and cloned in the presence of interleukin-2 (IL-2). T-cell receptor (TcR) expression was then analysed and compared with that of a panel of gamma delta T-cell clones from peripheral blood. Only 17/40 (42.5%) clones from decidua parietalis were V gamma 9+/V delta 2+ as compared to 68/94 (72%) of peripheral blood clones (P < 0.005). Conversely, 50% of clones from decidua parietalis but only 15% of clones from peripheral blood were V delta 1+ (P < 0.001). At least seven distinct TcR types were identified among the panel of clones from decidua parietalis and at least six different types were expressed by the panel of 17 clones from cervix. This receptor heterogeneity was not a result of interdonor variation as in all instances where more than one clone was obtained from a single sample, individual clones having between two and five receptor types were identified. However, 23/24 (95.8%) of clones from decidua basalis were V gamma 9+/V delta 2+. Most clones from decidua parietalis and cervix, whether V gamma 9+/V delta 2+ or V delta 1+, were positive for the mucosal lymphocyte marker, HML-1, but expression was often heterogeneous within a single clone. In contrast, almost all gamma delta T-cell clones from peripheral blood were HML-1-. Thus, unlike the mouse, gamma delta T cells within these human female reproductive tissues have a diverse TcR repertoire which, in decidua parietalis, is distinct from that of peripheral blood.

  12. Abnormal expression of the imprinted gene Phlda2 in cloned bovine placenta.

    PubMed

    Guillomot, M; Taghouti, G; Constant, F; Degrelle, S; Hue, I; Chavatte-Palmer, P; Jammes, H

    2010-06-01

    Cloning in mammals suffers from high rates of pregnancy losses associated with abnormal placentation, mainly placentomegaly, leading to fetal death. Placental growth is dependent on the regulated expression of many genes of which imprinted genes play a fundamental role. Among them, the Phlda2 gene is expressed from the maternal allele and acts to limit placental growth in mouse and human. Here we used Northern blots, quantitative RT-PCR and in situ hybridization to analyze the expression patterns of bovine PHLDA2 and to compare its expression levels in normal and somatic cell nuclear transfer (SCNT) placentas over a range of gestational stages. PHLDA2 is not expressed in extra-embryonic tissues before d32 of gestation but the level of expression increases throughout pregnancy until term in the placental villi collected from pregnancy obtained by artificial insemination (AI). At all stages of pregnancy, PHLDA2 mRNA are specifically localized in the trophoblast mononucleated cells contrasting with lack of expression in the binucleated cells and uterine tissues. In SCNT placentas, a similar pattern of expression was observed during early pregnancy. In contrast the level of expression is significantly reduced around d200 of gestation in the placental villi from pathological clones. The reduced expression of PHLDA2 was obvious particularly in the placental villi anchored within the uterine crypts with expression confined to the trophoblast of the chorionic plate. Altogether, these results highlight a similarity in expression patterns for PHLDA2 bovine and human where expression is localized to the trophoblast throughout pregnancy and parallels the continuous growth of the placenta. Moreover, the lack of expression in the fetal villi from oversized bovine cloned placenta is consistent with the function of PHLDA2 in restraining placental growth and underlines an aberrant expression of this gene after somatic cloning.

  13. Cloning and expression of pigeon IFN-γ gene.

    PubMed

    Fringuelli, Elena; Urbanelli, Lorena; Tharuni, Omar; Proietti, Patrizia Casagrande; Bietta, Annalisa; Davidson, Irit; Franciosini, Maria Pia

    2010-12-01

    This is the first paper describing the cloning of pigeon IFN-γ gene (PiIFN-γ) and the analysis of the in vitro expressed recombinant protein. The PiIFN-γ gene was identified by RT-PCR as a 498bp, fragment coding for a precursor protein of 165 amino acids instead of 164 amino acids, as observed in the other avian species. The recombinant protein was expressed in vitro by an eukaryotic system and the biological properties of the cytokine were tested using a chicken macrophage cell line. The high degree of amino acid and nucleotide identity, shared with the ChIFN-γ, and the fact that the pigeon protein was functional on chicken cells, indicates a cross-reactivity between pigeon and chicken IFN-γ. The detection of the PiIFN-γ could represent an useful instrument in understanding the role played by this cytokine in immune response related to vaccinations and infectious diseases in the pigeon.

  14. Handmade somatic cell cloning in cattle.

    PubMed

    Vajta, Gàbor; Lewis, Ian M; Tecirlioglu, R Tayfur

    2006-01-01

    Apart from the biological and ethical problems, technical difficulties also hamper the improvement and widespread application of somatic cell nuclear transfer (NT). Recently introduced zona-free procedures may offer a solution for the latter problem. The most radical approach of these techniques is the so-called handmade cloning (HMC). It does not require micromanipulators because the manipulations required for both enucleation and nucleus transfer are performed by hand. The HMC technique includes manual bisection of zona-free oocytes, selection of cytoplasts by staining, and the simultaneous fusion of the somatic cell with two cytoplasts to produce a cloned embryo. HMC is a rapid and efficient technique that suits large-scale NT programs. It requires less expertise and time than traditional NT methods and the cost of equipment is significantly less. Production efficiency is high and embryo quality, in terms of pregnancy rates and live births, is not compromised. Although HMC has been developed particularly for bovine NT, the technique is applicable to other species. The method may become a useful tool for both experimental and commercial somatic cell cloning because it allows for standardization of procedures and provides the possibility of automation.

  15. Cloning and expression of special F protein from human liver

    PubMed Central

    Liu, Shu-Ye; Yu, Xin-Da; Song, Chun-Juan; Lu, Wei; Zhang, Jian-Dong; Shi, Xin-Rong; Duan, Ying; Zhang, Ju

    2007-01-01

    AIM: To clone human liver special F protein and to express it in a prokaryotic system. METHODS: Total RNA was isolated from human liver tissue and first-strand cDNA was reverse transcribed using the PCR reverse primer. Following this, cDNA of the F protein was ligated into the clone vector pUCm-T. The segment of F protein’s cDNA was subcloned into the expression vector pET-15b and transformed into E. coli BL21 (DE3) pLyss. Isopropy-β-D-thiogalactoside (IPTG) was then used to induce expression of the target protein. RESULTS: The cDNA clone of human liver special F protein (1134bp) was successfully produced, with the cDNA sequence being published in Gene-bank: DQ188836. We confirmed the expression of F protein by Western blot with a molecular weight of 43 kDa. The expressed protein accounted for 40% of the total protein extracted. CONCLUSION: F protein expresses cDNA clone in a prokaryotic system, which offers a relatively simple way of producing sufficient quantities of F protein and contributes to understanding the principal biological functions of this protein. PMID:17465469

  16. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning.

    PubMed

    Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng

    2015-01-01

    We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and 12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in

  17. A comparative study on expression profile of developmentally important genes during pre-implantation stages in buffalo hand-made cloned embryos derived from adult fibroblasts and amniotic fluid derived stem cells.

    PubMed

    Em, Sadeesh; Shah, Fozia; Kataria, Meena; Yadav, P S

    2016-08-01

    Abnormal gene expression in somatic cell nuclear transfer embryos due to aberrant epigenetic modifications of the donor nucleus may account for much of the observed diminished viability and developmental abnormalities. The present study compared the developmentally important gene expression pattern at 4-cell, 8- to 16-cell, morula, and blastocyst stages of buffalo nuclear transfer (NT) embryos from adult fibroblasts (AFs) and amniotic fluid stem cells (AFSCs). In vitro fertilized embryos were used as control embryos. Alterations in the expression pattern of genes implicated in transcription and pluripotency (OCT4, STAT3, NANOG), DNA methylation (DNMT1, DNMT3A), histone deacetylation (HDAC2), growth factor signaling, and imprinting (IGF2, IGF2R), apoptosis (BAX, BCL2), oxidative stress (MnSOD), metabolism (GLUT1) regulation were observed in cloned embryos. The expression of transcripts in AFSC-NT embryos more closely followed that of the in vitro fertilized embryos compared with AF-NT embryos. It is concluded that AFSCs with a relatively undifferentiated genome may serve as suitable donors which could be reprogrammed more efficiently to reactivate expression of early embryonic genes in buffalo NT.

  18. Cloning of mouse telomerase reverse transcriptase gene promoter and identification of proximal core promoter sequences essential for the expression of transgenes in cancer cells.

    PubMed

    Si, Shao-Yan; Song, Shu-Jun; Zhang, Jian-Zhong; Liu, Jun-Li; Liang, Shuang; Feng, Kai; Zhao, Gang; Tan, Xiao-Qing

    2011-08-01

    Telomerase is a ribonucleoprotein complex, whose function is to add motif-specific nucleotides to the end of chromosomes. Telomerase consists of three major subunits, the telomerase RNA template (hTR), the telomerase-associated protein (TEP1) and telomerase reverse transcriptase (TERT). TERT is the most important component responsible for the catalytic activity of telomerase and a rate-limiting determinant of the activity. Telomerase activities were at high levels in approximately 90% of mouse cancers or tumor-derived cell lines through TERT transcriptional up-regulation. Unlike human telomerase, telomerase activity exists in colon, liver, ovary and testis but not in brain, heart, stomach and muscle in normal mouse tissues. In this study, we prepared 5' truncations of 1086 bp fragments upstream of the initiating ATG codon of the mTERT gene to construct luciferase reporter gene plasmids, and transfected these plasmids into a normal mouse cell line and several cancer lines to identify the core promoter region essential for transcriptional activation in cancer cells by a luciferase assay. We constructed a eukaryotic expression vector of membrane-expressing staphylococcal endotoxin A (SEA) gene driven by the core promoter region of the mTERT gene and observed if the core promoter region could express the SEA gene in these cancer cells, but not in normal cells following transfection with the construct. The results showed that the transcriptional activities of each fragment of the mTERT gene promoter in the cancer cell lines Hepa1-6, B16 and CT26 were higher than those in NIH3T3 cells, and the proximal 333-bp fragment was the core promoter of the mTERT gene in the cancer cells. The proximal 333-bp fragment was able to make the SEA express on the surface of the cancer cells, but not in NIH3T3 cells. It provides a foundation for cancer targeting gene therapy by using the mTERT gene promoter. PMID:21567104

  19. Cloning and expression of new microRNAs from zebrafish

    PubMed Central

    Kloosterman, Wigard P.; Steiner, Florian A.; Berezikov, Eugene; de Bruijn, Ewart; van de Belt, Jose; Verheul, Mark; Cuppen, Edwin; Plasterk, Ronald H.A.

    2006-01-01

    MicroRNAs (miRNAs) play an important role in development and regulate the expression of many animal genes by post-transcriptional gene silencing. Here we describe the cloning and expression of new miRNAs from zebrafish. By high-throughput sequencing of small-RNA cDNA libraries from 5-day-old zebrafish larvae and adult zebrafish brain we found 139 known miRNAs and 66 new miRNAs. For 65 known miRNAs and for 11 new miRNAs we also cloned the miRNA star sequence. We analyzed the temporal and spatial expression patterns for 35 new miRNAs and for 32 known miRNAs in the zebrafish by whole mount in situ hybridization and northern blotting. Overall, 23 of the 35 new miRNAs and 30 of the 32 known miRNAs could be detected. We found that most miRNAs were expressed during later stages of development. Some were expressed ubiquitously, but many of the miRNAs were expressed in a tissue-specific manner. Most newly discovered miRNAs have low expression levels and are less conserved in other vertebrate species. Our cloning and expression analysis indicates that most abundant and conserved miRNAs in zebrafish are now known. PMID:16698962

  20. Establishment of Trophectoderm Cell Lines from Buffalo (Bubalus bubalis) Embryos of Different Sources and Examination of In Vitro Developmental Competence, Quality, Epigenetic Status and Gene Expression in Cloned Embryos Derived from Them

    PubMed Central

    Mohapatra, Sushil Kumar; Sandhu, Anjit; Singh, Karn Pratap; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat

    2015-01-01

    Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF. PMID:26053554

  1. Molecular cloning and expression analysis of pig CD138.

    PubMed

    Bae, Joonbeom; Jeong, Seonah; Lee, Ju Yeon; Lee, Hyun-Jeong; Choi, Bong-Hwan; Kim, Ji-Eun; Choi, Inho; Chun, Taehoon

    2013-12-01

    CD138 (syndecan-1) interacts with various components of the extracellular matrix and associates with the actin cytoskeleton. In this study, we cloned pig CD138 cDNA and determined its complete cDNA sequence. Pig CD138 cDNA contained an open reading frame (930 bp) encoding 309 amino acids with five well conserved putative glycosaminoglycan attachment sites, a putative cleavage site for matrix metalloproteinases, and conserved motifs involved in signal transduction among mammalian species. Pig CD138 mRNA was detected in various tissues, including lymphoid and non-lymphoid organs, indicating the multicellular functions of CD138 in pigs. Western blot and flow cytometry analyses detected an approximate 35 kDa pig CD138 protein expressed on the cell surface. Further immunohistochemistry analysis revealed that CD138 expression was mainly observed in submucosa and lamina propria of the pig small intestine. Further study will be necessary to define the functional importance of CD138 during specific infectious diseases in pigs. PMID:24128845

  2. Cloning, expression, and purification of galectins for in vitro studies.

    PubMed

    Poland, Paul A; Kinlough, Carol L; Hughey, Rebecca P

    2015-01-01

    Galectins are best known for their ability to bind glycoconjugates containing β-galactose, but classification of these small proteins within the galectin family is also defined by amino acid homology within structural domains and exon/intron junctions within genes. As galectins are expressed by organisms as diverse as some fungi, C. elegans, fish, birds, and mammals, and biological activities attributed to galectins are equally diverse, it becomes essential to identify, clone, and characterize galectins from many sources. Glutathione S-transferase (GST) fused to the amino-terminus of galectin cDNAs has proven to be especially useful for preparation of recombinant galectins in bacteria for use on glycan arrays, in experiments with cultured or isolated cells, and in pull-down assays with immunopurified glycoproteins. Many galectins are stabilized by reducing reagents, such that binding and elution of GST-galectins from glutathione-conjugated Sepharose with excess glutathione is both efficient and innocuous. The ability to bind and elute GST-galectins from lactose-conjugated Sepharose with excess lactose provides a relatively easy means to insure that galectins are competent for glycoconjugate binding prior to experimentation. This chapter focuses primarily on the varied approaches to use GST-galectin binding to glutathione- and lactose-conjugated Sepharose to purify recombinant galectins and then develop effective experimental protocols to characterize the specificity, interactions, and function of galectins cloned from any source. We provide one example where a pull-down assay with all the GST-tagged canine galectins reveals that the C-terminal carbohydrate recognition domain of galectin-9 (Gal-9C) specifically recognizes the glycan-dependent apical targeting signal from the glycoprotein MUC1. PMID:25253131

  3. Optimization of procedures for cloning by somatic cell nuclear transfer in mice.

    PubMed

    Chung, Young Gie; Gao, Shaorong; Latham, Keith E

    2006-01-01

    Cloning by somatic cell nuclear transfer is a complex procedure that is dependent on correct interactions between oocyte and donor cell genome. These interactions require minimal insult to either the oocyte or the transplanted nucleus. Available data also indicate that reprogramming the donor cell genome may be slow, so that the cloned embryo expresses genes typical of the donor cell, and thus has different characteristics from normal embryos. Procedures that minimize damage to the donor genome and that address the unique characteristics of the cloned construct should enhance the efficacy of the method.

  4. MicroRNA expression profiling of elongated cloned and in vitro-fertilized bovine embryos.

    PubMed

    Castro, F O; Sharbati, S; Rodríguez-Alvarez, L L; Cox, J F; Hultschig, C; Einspanier, R

    2010-01-01

    The objective of this study was to identify microRNAs (miRNAs) expressed in bovine (Bos Taurus) cloned embryos at Day 17 of development (Day 0=day of nucleus transfer or in vitro fertilization) during elongation. Day 7 bovine expanded blastocysts produced by hand made cloning (HMC) or in vitro fertilization were bulk-transferred to synchronized recipient cattle (48 HMC embryos to 10 recipients and 28 in vitro-produced embryos to four recipients). Elongated embryos were retrieved at Day 17; miRNAs were isolated and subjected to microarray screening using custom composite slides spotted with human, mouse, and rat and in silico-predicted miRNAs. An initial profile of expressed miRNAs was determined in cloned embryos and somatic donor cells; this profile changed after somatic cell nucleus transfer, identifying differentially expressed miRNAs between cloned and in vitro-produced bovine embryos. Furthermore, microarray data were validated using a miRNA-specific quantitative reverse transcription-polymerase chain reaction (qRT-PCR) approach (miR-Q). There was an 83% correlation (P=0.01) between microarray and qPCR data. Based on qRT-PCR, correct reprogramming of some miRNAs from the donor cells was confirmed in cloned bovine embryos, whereas other somatic miRNAs were not appropriately reprogrammed. Some of the miRNAs that were equally reprogrammed clustered on the same chromosomal location in the bovine genome. In conclusion, reprogramming of miRNAs seemed to occur in cloned bovine embryos. This could have profound implications for elucidating nuclear reprogramming in somatic cloning, as well as for the role of miRNAs in preimplantation mammalian development.

  5. Telomere elongation facilitated by trichostatin a in cloned embryos and pigs by somatic cell nuclear transfer.

    PubMed

    Kong, Qingran; Ji, Guangzhen; Xie, Bingteng; Li, Jingyu; Mao, Jian; Wang, Juan; Liu, Shichao; Liu, Lin; Liu, Zhonghua

    2014-06-01

    Telomere attrition and genomic instability are associated with organism aging. Concerns still exist regarding telomere length resetting in cloned embryos and ntES cells, and possibilities of premature aging of cloned animals achieved by somatic cell nuclear transfer (SCNT). Trichostatin A (TSA), a histone deacetylase inhibitor, effectively improves the developmental competence of cloned embryos and animals, and recently contributes to successful generation of human ntES cells by SCNT. To test the function of TSA on resetting telomere length, we analyzed telomeres in cloned blastocysts and pigs following treatment of SCNT embryos with TSA. Here, we show that telomeres of cloned pigs generated by standard SCNT methods are not effectively restored, compared with those of donor cells, however TSA significantly increases telomere lengths in cloned pigs. Telomeres elongate in cloned porcine embryos during early cleavage from one-cell to four-cell stages. Notably, TSA facilitates telomere lengthening of cloned embryos mainly at morula-blastocyst stages. Knockdown of pTert by shRNA in donor cells reduces telomerase activity in cloned blastocysts but does not abrogate telomere elongation in the TSA-treated embryos (p > 0.05). However, genes associated with recombination or telomerase-independent mechanism of alternative lengthening of telomeres (ALT) Rad50 and BLM show increased expression in TSA-treated embryos. These data suggest that TSA may promote telomere elongation of cloned porcine embryos by ALT. Together, TSA can elongate telomeres in cloned embryos and piglets, and this could be one of the mechanisms underlying improved development of cloned embryos and animals treated with TSA. PMID:24510582

  6. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    NASA Astrophysics Data System (ADS)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  7. Pharmacological comparison of the cloned human and rat M2 muscarinic receptor genes expressed in the murine fibroblast (B82) cell line.

    PubMed

    Kovacs, I; Yamamura, H I; Waite, S L; Varga, E V; Roeske, W R

    1998-02-01

    The coding sequence of the human m2 receptor gene was amplified by polymerase chain reaction and stably transfected into a murine fibroblast cell line (B82). We have compared the human M2 clonal cell line (HM2-B10) with the previously established B82 cell line (M2LKB2-2) expressing the rat M2 receptor to assess drug specificity, drug selectivity and effector coupling. Both transfected cell lines showed a high level of specific, saturable [3H](-)-N-methyl-3-quinuclidinyl benzilate binding with Kd values of 243 pM (155-352 pM) and 345 pM (234-539 pM) and Bmax values of 97 +/- 4 and 338 +/- 16 fmol/10(6) cells, respectively. Inhibition of [3H](-)-N-methyl-3-quinuclidinyl benzilate binding to HM2-B10 cells and M2LKB2-2 cells showed the same rank order of potency for the antagonists: atropine > dexetimide > 4-diphenylacetoxy-N-methylpiperidine methiodide > himbacine > methoctramine > 11-[[2-[(diethylamino) methyl]-1-piperidinyl]acetyl]-5,11-dihidro-6H-pyrido-[2,3-b](1, 4)-benzodiazepine-6-one > hexahydro-sila-difenidol hydro-chloride > pirenzepine. Correlation analysis of the pKi values indicate that the expressed human and rat M2 receptors have nearly identical ligand-binding characteristics. Carbachol inhibited forskolin-stimulated cAMP formation with similar potency in both cell lines [EC50 = 2.4 microM (0.2-2.8) and 1.1 microM (0.2-5.3) for the human and rat M2 receptor, respectively]. In the M2LKB2-2 cells, carbachol slightly stimulated the [3H]inositol monophosphate formation but had no significant effect in HM2-B10 cells. In conclusion, the human and rat M2 receptors expressed in the B82 cell line have very similar binding properties but exhibit slight differences in effector coupling mechanisms. PMID:9454790

  8. Tightly regulated vectors for the cloning and expression of toxic genes.

    PubMed

    Anthony, Larry C; Suzuki, Hideki; Filutowicz, Marcin

    2004-08-01

    A series of low-copy expression vectors that permits the stable maintenance and regulated expression of highly toxic gene products has been developed. These vectors utilize the lactose promoter/operator system, and protect against read-through transcription from other promoters on the plasmid by placement of the rrnB T1T2 terminators upstream of the lactose promoter. For additional regulatory control, the vectors utilize low-copy origins of replication. Either the pMPP6 origin (pSC101-derived) is used for cloning into Escherichia coli or related species, or the broad-host-range RK2 origin of replication is utilized for cloning into the majority of Gram-negative bacteria. The resulting plasmids have no detectable leaky expression. To test these vectors, the genes for the bacteriocidal colicins D, E3, and E7 were cloned and stably maintained in the absence of their immunity genes. Upon induction with isopropyl-beta-D-thiogalactopyranoside (IPTG), cell death was observed, indicating expression of each colicin. These low-copy expression vectors will be useful for the cloning and expression of toxic genes in bacterial systems. PMID:15234522

  9. Molecular cloning of Reteplase and its expression in E. coli using tac promoter

    PubMed Central

    Aghaabdollahian, Safieh; Rabbani, Mohammad; Ghaedi, Kamran; Sadeghi, Hamid Mir Mohammad

    2014-01-01

    Background and Aims: This study aimed to clone and express the reteplase cDNA, a thrombolytic agent used for the treatment of acute myocardial infarction and stroke, in E. coli, utilizing tac promoter for its expression. Materials and Methods: Reteplase cDNA was amplified by polymerase chain reaction (PCR) with designed primers. The product was then cloned into pTZ57R plasmid. The cloned cDNA was digested out and ligated into pGEX-5x-1 expression vector. The presence of the insert was confirmed by restriction digestion. By using 0.2, 0.5 and 1 mM isopropyl beta-D thiogalactopyranoside (IPTG), expression of reteplase was induced in E. coli TOP10 cells and analyzed by SDS-PAGE. Results: Electrophoresis of PCR product and also double digested recombinant pTZ57R plasmid, also, pGEX-5x-1 vector, showed a 1068bp band of reteplase. SDS-PAGE analysis showed a 60 KDa band of protein product induced with different concentrations of IPTG. Conclusion: In the present study, reteplase cDNA was successfully cloned and expressed using tac promoter. This vector will be used for the optimization of the expression of reteplase in E. coli. PMID:25298959

  10. Molecular cloning and nucleotide sequence of the 1,2-alpha-D-mannosidase gene, msdS, from Aspergillus saitoi and expression of the gene in yeast cells.

    PubMed

    Inoue, T; Yoshida, T; Ichishima, E

    1995-12-01

    A full-length cDNA encoding 1,2-alpha-D-mannosidase (EC 3.2.1.113) from Aspergillus saitoi was cloned. Analysis of the 1718 bp nucleotide sequence of the cDNA revealed a single open reading frame with 1539 nucleotides of 1,2-alpha-D-mannosidase gene, msdS. The predicted amino-acid sequence of 1,2-alpha-D-mannosidase consists of 513 residues with a molecular mass of 55,767 and is 70%, 26% and 35% identity with those of Penicillium citrinum 1,2-alpha-D-mannosidase, yeast alpha-mannosidase, and mouse alpha-mannosidase. The cDNA of the msdS gene has been cloned and expressed in yeast cells. To identify the activity of expression product methyl-2-O-alpha-mannopyranosyl-alpha-mannopyranoside (Man alpha 1-->2Man-OMe) was used as a substrate at pH 5.0. PMID:8519794

  11. Cloning mice and men: prohibiting the use of iPS cells for human reproductive cloning.

    PubMed

    Lo, Bernard; Parham, Lindsay; Alvarez-Buylla, Arturo; Cedars, Marcelle; Conklin, Bruce; Fisher, Susan; Gates, Elena; Giudice, Linda; Halme, Dina Gould; Hershon, William; Kriegstein, Arnold; Kwok, Pui-Yan; Wagner, Richard

    2010-01-01

    The use of iPSCs and tetraploid complementation for human reproductive cloning would raise profound ethical objections. Professional standards and laws that ban human reproductive cloning by somatic cell nuclear transfer should be revised to also forbid it by other methods, such as iPSCs via tetraploid complementation.

  12. Cloning, characterization, and tissue expression pattern of mouse Nma/BAMBI during odontogenesis.

    PubMed

    Knight, C; Simmons, D; Gu, T T; Gluhak-Heinrich, J; Pavlin, D; Zeichner-David, M; MacDougall, M

    2001-10-01

    Degenerate oligonucleotides to consensus serine kinase functional domains previously identified a novel, partial rabbit tooth cDNA (Zeichner-David et al., 1992) that was used in this study to identify a full-length mouse clone. A 1390-base-pair cDNA clone was isolated encoding a putative 260-amino-acid open reading frame containing a hydrophobic 25-amino-acid potential transmembrane domain. This clone shares some homology with the TGF-beta type I receptor family, but lacks the intracellular kinase domain. DNA database analysis revealed that this clone has 86% identity to a newly isolated human gene termed non-metastatic gene A and 80% identity to a Xenopus cDNA clone termed BMP and activin membrane bound inhibitor. Here we report the mouse Nma/BAMBI cDNA sequence, the tissue expression pattern, and confirmed expression in dental cell lines. This study demonstrates that Nma/BAMBI is a highly conserved protein across species and is expressed at high levels during odontogenesis.

  13. Transplantation and differentiation of donor cells in the cloned pigs

    SciTech Connect

    Shimada, Arata; Tomii, Ryo; Kano, Koichiro; Nagashima, Hiroshi . E-mail: hnagas@isc.meiji.ac.jp

    2006-06-02

    The application of nuclear transfer technology is an interesting approach to investigate stem and progenitor cell transplantation therapy. If stem cells are used as a nuclear donor, donor cells can engraft into cloned animals without histocompatible problems. However, it is still uncertain whether donor cells can engraft to cloned animal and differentiate in vivo. To address this problem, we transplanted donor cells to dermal tissues of cloned pigs developed by using preadipocytes as donor cells. Preadipocytes are adipocytic progenitor which can differentiate to mature adipocytes in vitro. We showed that the donor preadipocytes were successfully transplanted into the cloned pigs without immune rejection and they differentiated into mature adipocytes in vivo 3 weeks after transplantation. In contrast, allogenic control preadipocytes, which can differentiate in vitro, did not differentiate in vivo. These results indicate that donor progenitor cells can differentiate in cloned animal.

  14. Cloning and Expression of a Hexose Transporter Gene Expressed during the Ripening of Grape Berry1

    PubMed Central

    Fillion, Laurent; Ageorges, Agnès; Picaud, Sarah; Coutos-Thévenot, Pierre; Lemoine, Rémi; Romieu, Charles; Delrot, Serge

    1999-01-01

    The ripening of grape (Vitis vinifera L.) is characterized by massive sugar import into the berries. The events triggering this process and the pathways of assimilate transport are still poorly known. A genomic clone Vvht1 (Vitis vinifera hexose transporter1) and the corresponding cDNA encoding a hexose transporter whose expression is induced during berry ripening have been isolated. Vvht1 is expressed mainly in the berries, with a first peak of expression at anthesis, and a second peak about 5 weeks after véraison (a viniculture term for the inception of ripening). Vvht is strictly conserved between two grape cultivars (Pinot Noir and Ugni-Blanc). The organization of the Vvht1 genomic sequence is homologous to that of the Arabidopsis hexose transporter, but differs strongly from that of the Chlorella kessleri hexose transporter genes. The Vvht1 promoter sequence contains several potential regulating cis elements, including ethylene-, abscisic acid-, and sugar-responsive boxes. Comparison of the Vvht1 promoter with the promoter of grape alcohol dehydrogenase, which is expressed at the same time during ripening, also allowed the identification of a 15-bp consensus sequence, which suggests a possible co-regulation of the expression of these genes. The expression of Vvht1 during ripening indicates that sucrose is at least partially cleaved before uptake into the flesh cells. PMID:10444092

  15. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    SciTech Connect

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  16. Functional heterogeneity among cytotoxic clones derived from natural killer cells.

    PubMed

    Christmas, S E; Moore, M

    1987-01-01

    Clones were obtained from highly purified populations of human peripheral blood natural killer (NK) cells propagated in the presence of interleukin-2 and phytohaemagglutinin. Almost all clones were cytotoxic against standard NK targets and many were also able to kill the B lymphoblastoid cell line BSM. This latter property was not necessarily a result of the incorporation of this cell line into the feeder mixture used to derive the clones. In most cloning experiments there was a high degree of concordance between the killing of the NK targets K562 and Molt 4 by panels of clones. In some cases this extended to the killing of BSM targets but in other instances there was no relationship or even an inverse correlation between killing of BSM and other targets. In a single cloning experiment there was no relationship between killing of BSM and Raji targets. In some cases a panel of clones could be divided into two or more distinct groups based on their differential activity towards BSM and K562. Such differences were not solely due to inter-donor variation. These findings were extended by cold target inhibition experiments in which at least three types of clone were identified. In one group of clones, which was nonreactive towards BSM, cold BSM significantly enhanced the killing of K562 in a dose-dependent fashion. These experiments provide evidence for a limited degree of functional heterogeneity among clones derived from human peripheral blood NK cells.

  17. Development and Gene Expression of Porcine Cloned Embryos Derived from Bone Marrow Stem Cells with Overexpressing Oct4 and Sox2

    PubMed Central

    Lee, Jeong-Hyeon; Lee, Won-Jae; Jeon, Ryoung-Hoon; Lee, Yeon-Mi; Jang, Si-Jung; Lee, Sung-Lim; Jeon, Byung-Geun; Ock, Sun-A; King, W. Allen

    2014-01-01

    Abstract The present study compared the potential of porcine bone marrow mesenchymal stem cells (pBMSCs) at different passages as nuclear transfer (NT) donors and the developmental efficiency of NT embryos from donor cells transfected with/without Oct4 and Sox2. Early-passage pBMSCs showed higher proliferation and expression of Oct4 and Sox2 and differentiation potential into mesenchymal lineages than middle- and late-passage pBMSCs. Cleavage rate did not differ among pBMSCs at different passages, but NT embryos with early-passage pBMSCs and middle-passage pBMSCs transfected with Oct4 (Oct4-pBMSCs) had significantly (p<0.05) higher blastocyst development than those with middle-passage pBMSCs. The incidence of apoptotic bodies in NT blastocysts from late-passage pBMSCs and Sox2-transfected middle-passage pBMSCs (Sox2-pBMSCs) was significantly (p<0.05) higher than others. The transcriptional levels of Oct4, Sox2, Nanog, Cdx2, Dnmt3a, and Igf2r genes were significantly (p<0.05) higher in Oct4- and Sox2-pBMSCs NT embryos. Middle-passage pBMSCs NT embryos revealed lower transcriptional levels of Bcl2 than others, except Sox2-pBMSCs NT embryos. The transcriptional level of Bax increased gradually in NT embryos derived from pBMSCs following extended passages and was significantly (p<0.05) higher in Sox2-pBMSCs NT embryos. Our results demonstrated that early-passage pBMSCs are more potent in expressing transcription factors and displayed higher differentiation ability, and middle-passage pBMSCs transfected with Oct4 improved the developmental efficiency of NT embryos, suggesting that high Oct4 expression cells are more efficient as NT donors. PMID:25437870

  18. Analysis of nuclear reprogramming in cloned miniature pig embryos by expression of Oct-4 and Oct-4 related genes

    SciTech Connect

    Lee, Eugine; Lee, So Hyun; Kim, Sue

    2006-10-06

    Xenotransplantation is a rapidly expanding field of research and cloned miniature pigs have been considered as a model animal for it. However, the efficiency of somatic cell nuclear transfer (SCNT) is extremely low, with most clones resulting in early lethality and several kinds of aberrant development. A possible explanation for the developmental failure of SCNT embryos is insufficient reprogramming of the somatic cell nucleus by the oocyte. In order to test this, we analyzed the reprogramming capacity of differentiated fibroblast cell nuclei and embryonic germ cell nuclei with Oct-4 and Oct-4 related genes (Ndp5211, Dppa2, Dppa3, and Dppa5), which are important for embryonic development, Hand1 and GATA-4, which are important for placental development, as molecular markers using RT-PCR. The Oct-4 expression level was significantly lower (P < 0.05) in cloned hatched blastocysts derived from fibroblasts and many of fibroblast-derived clones failed to reactivate at least one of the tested genes, while most of the germ cell clones and control embryos correctly expressed these genes. In conclusion, our results suggest that the reprogramming of fibroblast-derived cloned embryos is highly aberrant and this improper reprogramming could be one reason of the early lethality and post-implantation anomalies of somatic cell-derived clones.

  19. Cloning and Expression of Recombinant Human Endostatin in Periplasm of Escherichia coli Expression System

    PubMed Central

    Mohajeri, Abbas; Pilehvar-Soltanahmadi, Yones; Pourhassan-Moghaddam, Mohammad; Abdolalizadeh, Jalal; Karimi, Pouran; Zarghami, Nosratollah

    2016-01-01

    Purpose: Recombinant human endostatin (rhEs) is an angiogenesis inhibitor which is used as a specific drug in the treatment of non-small-cell lung cancer. In the current research, we developed an efficient method for expressing soluble form of the rhEs protein in the periplasmic space of Escherichia coli via fusing with pelB signal peptide. Methods: The human endostatin (hEs) gene was amplified using synthetic (hEs) gene as a template; then, cloned and expressed under T7 lac promoter. IPTG was used as an inducer for rhEs expression. Next, the osmotic shock was used to extraction of protein from the periplasmic space. The presence of rhEs in the periplasmic space was approved by SDS-PAGE and Western blotting. Results: The results show the applicability of pelB fusion protein system usage for secreting rhEs in the periplasm of E. coli in the laboratory scale. The rhEs represents approximately 35 % (0.83mg/l) of the total cell protein. Conclusion: The present study apparently is the first report of codon-optimized rhEs expression as a fusion with pelB signal peptide. The results presented the successful secretion of soluble rhEs to the periplasmic space. PMID:27478780

  20. [Product safety analysis of somatic cell cloned bovine].

    PubMed

    Hua, Song; Lan, Jie; Song, Yongli; Lu, Chenglong; Zhang, Yong

    2010-05-01

    Somatic cell cloning (nuclear transfer) is a technique through which the nucleus (DNA) of a somatic cell is transferred into an enucleated oocyte for the generation of a new individual, genetically identical to the somatic cell donor. It could be applied for the enhancement of reproduction rate and the improvement of food products involving quality, yield and nutrition. In recent years, the United States, Japan and Europe as well as other countries announced that meat and milk products made from cloned cattle are safe for human consumption. Yet, cloned animals are faced with a wide range of health problems, with a high death rate and a high incidence of disease. The precise causal mechanisms for the low efficiency of cloning remain unclear. Is it safe that any products from cloned animals were allowed into the food supply? This review focuses on the security of meat, milk and products from cloned cattle based on the available data.

  1. Comparison of Gene Expression and Genome-Wide DNA Methylation Profiling between Phenotypically Normal Cloned Pigs and Conventionally Bred Controls

    PubMed Central

    Li, Shengting; Li, Jian; Lin, Lin; Nielsen, Anders Lade; Sørensen, Charlotte Brandt; Vajta, Gábor; Wang, Jun; Zhang, Xiuqing; Du, Yutao; Yang, Huanming; Bolund, Lars

    2011-01-01

    Animal breeding via Somatic Cell Nuclear Transfer (SCNT) has enormous potential in agriculture and biomedicine. However, concerns about whether SCNT animals are as healthy or epigenetically normal as conventionally bred ones are raised as the efficiency of cloning by SCNT is much lower than natural breeding or In-vitro fertilization (IVF). Thus, we have conducted a genome-wide gene expression and DNA methylation profiling between phenotypically normal cloned pigs and control pigs in two tissues (muscle and liver), using Affymetrix Porcine expression array as well as modified methylation-specific digital karyotyping (MMSDK) and Solexa sequencing technology. Typical tissue-specific differences with respect to both gene expression and DNA methylation were observed in muscle and liver from cloned as well as control pigs. Gene expression profiles were highly similar between cloned pigs and controls, though a small set of genes showed altered expression. Cloned pigs presented a more different pattern of DNA methylation in unique sequences in both tissues. Especially a small set of genomic sites had different DNA methylation status with a trend towards slightly increased methylation levels in cloned pigs. Molecular network analysis of the genes that contained such differential methylation loci revealed a significant network related to tissue development. In conclusion, our study showed that phenotypically normal cloned pigs were highly similar with normal breeding pigs in their gene expression, but moderate alteration in DNA methylation aspects still exists, especially in certain unique genomic regions. PMID:22022462

  2. Cloning of a Gene Whose Expression is Increased in Scrapie and in Senile Plaques in Human Brain

    NASA Astrophysics Data System (ADS)

    Wietgrefe, S.; Zupancic, M.; Haase, A.; Chesebro, B.; Race, R.; Frey, W.; Rustan, T.; Friedman, R. L.

    1985-12-01

    A complementary DNA library was constructed from messenger RNA's extracted from the brains of mice infected with the scrapie agent. The library was differentially screened with the objectives of finding clones that might be used as markers of infection and finding clones of genes whose increased expression might be correlated with the pathological changes common to scrapie and Alzheimer's disease. A gene was identified whose expression is increased in scrapie. The complementary DNA corresponding to this gene hybridized preferentially and focally to cells in the brains of scrapie-infected animals. The cloned DNA also hybridized to the neuritic plaques found with increased frequency in brains of patients with Alzheimer's disease.

  3. Cloning and Expression of TNF Related Apoptosis Inducing Ligand in Nicotiana tabacum.

    PubMed

    Heidari, Hamid Reza; Bandehpour, Mojgan; Vahidi, Hossein; Barar, Jaleh; Kazemi, Bahram; Naderi-Manesh, Hossein

    2015-01-01

    Molecular farming has been considered as a secure and economical approach for production of biopharmaceuticals. Human TNF Related Apoptosis Inducing Ligand (TRAIL) as a promising biopharmaceutical candidate has been produced in different expression hosts. However, little attention has been paid to molecular farming of the TRAIL in spite of numerous advantages of plant expression systems. Therefore, in this study the cytoplasmic production of the TRAIL was tackled in Nicotiana tabacum using Agrobacterium tumefaciens LBA 4404. Initially, the desired coding sequence was obtained using PCR technique on the constructed human cDNA library. Afterward, the necessary requirements for expression of the TRAIL in plant cell system were provided through sub-cloning into 35S-CaMV (Cauliflower Mosaic Virus) helper and final 0179-pGreen expression vectors. Then, the final TRAIL-pGreen expression vector was cloned into A. tumefaciens LBA 4404. Subsequently, the N. tabacum cells were transformed through co-culture method and expression of the TRAIL was confirmed by western blot analysis. Finally, the recombinant TRAIL was extracted through chromatographic technique and biological activity was evaluated through MTT assay (Methylthiazol Tetrazolium Assay). The result of western blot analysis indicated that only monomer and oxidized dimer forms of the TRAIL can be extracted from the N. tabacum cells. Moreover, the lack of trimeric assembly of the extracted TRAIL diminished its biological activity in sensitive A549 cell line. In conclusion, although N. tabacum cells can successfully produce the TRAIL, proper assembly and functionality of the TRAIL were unfavorable.

  4. Expression cloning of genes encoding human peroxisomal proteins

    SciTech Connect

    Spathaky, J.M.; Tate, A.W.; Cox, T.M.

    1994-09-01

    Numerous metabolic disorders associated with diverse peroxisomal defects have been identified but their molecular characterization has been hampered by difficulties associated with the purification of proteins from this fragile organelle. We have utilized antibodies directed against the C-terminal tripeptide peroxisomal targeting signal to detect hitherto unknown peroxisomal proteins in tissue fractions and to isolate genes encoding peroxisonal proteins from human expression libraries. We immunized rabbits with a peptide conjugate encompassing the C-terminal nine amino acids of rat peroxisomal acyl CoA oxidase. Immunoprecipitation assays using radio-labelled peptide showed that the antibody specifically recognizes the terminal SKL motif as well as C-terminal SHL and SRL but not SHL at an internal position. Affinity-purified antibody was used to probe Western blots of crude and peroxisome-enriched monkey liver preparations and detected 8-10 proteins specifically in the peroxisome fractions. 100 positive clones were identified on screening a human liver cDNA expression library in {lambda}-gt11. Sequence analysis has confirmed the identity of cDNA clones for human acyl CoA oxidase and epoxide hydrolase. Four clones show no sequence identity and their putative role in the human peroxisome is being explored.

  5. Cloning-free regulated monitoring of reporter and gene expression

    PubMed Central

    al-Haj, Latifa; Al-Ahmadi, Wijdan; Al-Saif, Maher; Demirkaya, Omer; Khabar, Khalid SA

    2009-01-01

    Background The majority of the promoters, their regulatory elements, and their variations in the human genome remain unknown. Reporter gene technology for transcriptional activity is a widely used tool for the study of promoter structure, gene regulation, and signaling pathways. Construction of transcriptional reporter vectors, including use of cis-acting sequences, requires cloning and time-demanding manipulations, particularly with introduced mutations. Results In this report, we describe a cloning-free strategy to generate transcriptionally-controllable linear reporter constructs. This approach was applied in common transcriptional models of inflammatory response and the interferon system. In addition, it was used to delineate minimal transcriptional activity of selected ribosomal protein promoters. The approach was tested for conversion of genes into TetO-inducible/repressible expression cassettes. Conclusion The simple introduction and tuning of any transcriptional control in the linear DNA product renders promoter activation and regulated gene studies simple and versatile. PMID:19267938

  6. Cloning and expression of the potato alternative oxidase gene

    SciTech Connect

    Hiser, C.; McIntosh, L. Michigan State Univ., East Lansing )

    1990-05-01

    Mitochondria from 24-hour-aged potato slices possess an alternative path capacity and a 36kD protein not present in fresh potato mitochondria. This 36kD protein was identified by a monoclonal antibody against the Sauromatum guttatum alternative oxidase. These results suggest de novo synthesis of the 36kD protein during the aging process. To investigate this phenomenon, a clone containing a potato alternative oxidase gene was isolated from a cDNA library using the S. guttatum gene as a probe. This clone shows areas of high homology to the S. guttatum gene. Norther blots of RNA from fresh and 24-hour-aged potato slices are being probed with the potato gene to examine its expression in relation to the appearance of the 36kD protein.

  7. Cloning animals by somatic cell nuclear transfer--biological factors.

    PubMed

    Tian, X Cindy; Kubota, Chikara; Enright, Brian; Yang, Xiangzhong

    2003-11-13

    Cloning by nuclear transfer using mammalian somatic cells has enormous potential application. However, somatic cloning has been inefficient in all species in which live clones have been produced. High abortion and fetal mortality rates are commonly observed. These developmental defects have been attributed to incomplete reprogramming of the somatic nuclei by the cloning process. Various strategies have been used to improve the efficiency of nuclear transfer, however, significant breakthroughs are yet to happen. In this review we will discuss studies conducted, in our laboratories and those of others, to gain a better understanding of nuclear reprogramming. Because cattle are a species widely used for nuclear transfer studies, and more laboratories have succeeded in cloning cattle than any other species, this review will be focused on somatic cell cloning of cattle.

  8. Pre-weaning performance and health of pigs born to cloned (fetal cell derived) swine versus non-cloned swine.

    PubMed

    Martin, M; Adams, C; Wiseman, B

    2004-07-01

    The objective of this study was to compare the pre-weaning performance of pigs derived from cloned versus non-cloned parents. Five cloned gilts and one cloned boar were used to produce five litters of pigs. One of five cloned females and the cloned boar were derived from two genetically unmanipulated fetal fibroblast cell lines. The remaining female clones were derived from a fetal fibroblast cell line in which random insertion of a alpha-1,3-galactosyltransferase gene targeting construct had occurred. Fetal cell lines had similar genetic backgrounds and were derived from three different fetuses in three different litters. Five litters of pigs were also generated from matings between two non-cloned boars and five non-cloned gilts. The mean gestation length, mean litter size, mean birth and weaning weights for male and female pigs were similar for litters derived from cloned parents versus non-cloned parents. The proportions of pigs born live and pigs that survived to weaning were also similar for pigs born to cloned as compared to non-cloned parents. In summary, matings between cloned swine derived from fetal fibroblast cell lines yielded litters of pigs that were similar in the number born, piglet birth weight and perinatal and pre-weaning mortality to litters produced by non-cloned swine.

  9. Construction and characterization of a human T-cell lymphotropic virus type 3 infectious molecular clone.

    PubMed

    Chevalier, Sébastien Alain; Ko, Nga Ling; Calattini, Sara; Mallet, Adeline; Prévost, Marie-Christine; Kehn, Kylene; Brady, John N; Kashanchi, Fatah; Gessain, Antoine; Mahieux, Renaud

    2008-07-01

    We and others have uncovered the existence of human T-cell lymphotropic virus type 3 (HTLV-3). We have now generated an HTLV-3 proviral clone. We established that gag, env, pol, pro, and tax/rex as well as minus-strand mRNAs are present in cells transfected with the HTLV-3 clone. HTLV-3 p24(gag) protein is detected in the cell culture supernatant. Transfection of 293T-long terminal repeat (LTR)-green fluorescent protein (GFP) cells with the HTLV-3 clone promotes formation of syncytia, a hallmark of Env expression, together with the appearance of fluorescent cells, demonstrating that Tax is expressed. Viral particles are visible by electron microscopy. These particles are infectious, as demonstrated by infection experiments with purified virions.

  10. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-11-03

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  11. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-10-20

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  12. Cloning and expression of autogenes encoding RNA poly,erases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  13. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  14. Influence of cloning by chromatin transfer on placental gene expression at Day 45 of pregnancy in cattle.

    PubMed

    Mesquita, Fernando S; Machado, Sergio A; Drnevich, Jenny; Borowicz, Pawel; Wang, Zhongde; Nowak, Romana A

    2013-01-30

    Poor success rates in somatic cell cloning are often attributed to abnormal early embryonic development as well as late abnormal fetal growth and placental development. Although promising results have been reported following chromatin transfer (CT), a novel cloning method that includes the remodeling of the donor nuclei in vitro prior to their transfer into enucleated oocytes, animals cloned by CT show placental abnormalities similar to those observed following conventional nuclear transfer. We hypothesized that the placental gene expression pattern from cloned fetuses was ontologically related to the frequently observed placental phenotype. The aim of the present study was to compare global gene expression by microarray analysis of Day 44-47 cattle placentas derived from CT cloned fetuses with those derived from in vitro fertilization (i.e. control), and confirm the altered mRNA and protein expression of selected molecules by qRT-PCR and immunohistochemistry, respectively. The differentially expressed genes identified in the present study are known to be involved in a range of activities associated with cell adhesion, cell cycle control, intracellular transport and proteolysis. Specifically, an imprinted gene, involved with cell proliferation and placentomegaly in humans (CDKN1C) and a peptidase that serves as a marker for non-invasive trophoblast cells in human placentas (DPP4), had mRNA and protein altered in CT placentas. It was concluded that the altered pattern of gene expression observed in CT samples may contribute to the abnormal placental development phenotypes commonly identified in cloned offspring, and that expression of imprinted as well as trophoblast invasiveness-related genes is altered in cattle cloned by CT.

  15. [Cloning and expression of Tachypleus tridentatus factor C].

    PubMed

    Wang, Dong-Ning; Liu, Jie-Wu; Chen, Lin; Wang, Lie; Yang, Guan-Zhen; Wu, Xiang-Fu; Zhang, Wei-Jie

    2002-01-01

    Factor C is an endotoxin-sensitive, intracellular serine protease zymogen which initiates the coagulation cascade system in the horseshoe crab hemolymph. The special lipopolysaccharide (LPS) binding activation of FC makes it a potential drug for anti-LPS treatment and has a high commercial value. Based on the sequence of reported FC from Japan horseshoe crab, two pairs of primers were designed. The total RNA was extracted from amebocytes of Chinese Tachypleus tridentatus and the cDNA was separated into two parts and were cloned using RT-PCR, respectively. FCs from different geographical areas showed high homology in sequence. The whole FC cDNA was cloned into pET-28a (+) containing T7 promoter and recombinant expression plasmid pET-FC was constructed. The recombinant plasmid was transformed into E. coli BL21 (DE3). Recombinant FC was expressed as inclusion body when the expression strain was induced with 1 mmol/L IPTG. Refolded recombinant FC was confirmed to be active by bacteriostatic assay in vitro. The results of Western blot also suggested the recombinant FC may be able to cleave itself partly and produced an extra immunoblot band. PMID:11958140

  16. Cloning, bacterial expression and crystallization of Fv antibody fragments

    NASA Astrophysics Data System (ADS)

    E´, Jean-Luc; Boulot, Ginette; Chitarra, V´ronique; Riottot, Marie-Madeleine; Souchon, H´le`ne; Houdusse, Anne; Bentley, Graham A.; Narayana Bhat, T.; Spinelli, Silvia; Poljak, Roberto J.

    1992-08-01

    The variable Fv fragments of antibodies, cloned in recombinant plasmids, can be expressed in bacteria as functional proteins having immunochemical properties which are very similar or identical with those of the corresponding parts of the parent eukaryotic antibodies. They offer new possibilities for the study of antibody-antigen interactions since the crystals of Fv fragments and of their complexes with antigen reported here diffract X-rays to a higher resolution that those obtained with the cognate Fab fragments. The Fv approach should facilitate the structural study of the combining site of antibodies and the further characterization of antigen-antibody interactions by site-directed mutagenesis experiments.

  17. GLUT3 is present in Clone 9 liver cells and translocates to the plasma membrane in response to insulin.

    PubMed

    Defries, Danielle M; Taylor, Carla G; Zahradka, Peter

    2016-08-26

    Clone 9 cells have been reported to express only the GLUT1 facilitative glucose transporter; however, previous studies have not examined Clone 9 cells for GLUT3 content. The current study sought to profile the presence of glucose transporters in Clone 9 cells, H4IIE hepatoma cells, and L6 myoblasts and myotubes. While the other cell types contained the expected complement of transporters, Clone 9 cells had GLUT3 which was previously not reported. Interestingly, both GLUT3 mRNA and protein were detected in Clone 9 cells, but only mRNA for GLUT1 was detected. Glucose transport in Clone 9 cells was insulin-sensitive in a concentration-dependent manner, concomitant with the presence of GLUT3 in the plasma membrane after insulin treatment. Although basal glucose uptake was unaffected, insulin-stimulated glucose uptake was abolished with siRNA-mediated GLUT3 knockdown. These results contradict previous reports that Clone 9 cells exclusively express GLUT1 and suggest GLUT3 is a key insulin-sensitive glucose transporter required for insulin-stimulated glucose uptake by Clone 9 cells.

  18. Cloning and Expression of Yak Active Chymosin in Pichia pastoris

    PubMed Central

    Luo, Fan; Jiang, Wei Hua; Yang, Yuan Xiao; Li, Jiang; Jiang, Ming Feng

    2016-01-01

    Rennet, a complex of enzymes found in the stomachs of ruminants, is an important component for cheese production. In our study, we described that yak chymosin gene recombinant Pichia pastoris strain could serve as a novel source for rennet production. Yaks total RNA was extracted from the abomasum of an unweaned yak. The yak preprochymosin, prochymosin, and chymosin genes from total RNA were isolated using gene specific primers based on cattle chymosin gene sequence respectively and analyzed their expression pattern byreal time-polymerase chain reaction. The result showed that the chymosin gene expression level of the sucking yaks was 11.45 times higher than one of adult yaks and yak chymosin belongs to Bovidae family in phylogenetic analysis. To express each, the preprochymosin, prochymosin, and chymosin genes were ligated into the expression vector pPICZαA, respectively, and were expressed in Pichia pastoris X33. The results showed that all the recombinant clones of P. pastoris containing the preprochymosin, prochymosin or chymosin genes could produce the active form of recombinant chymosin into the culture supernatant. Heterologous expressed prochymosin (14.55 Soxhlet unit/mL) had the highest enzyme activity of the three expressed chymosin enzymes. Therefore, we suggest that the yak chymosin gene recombinant Pichia pastoris strain could provide an alternative source of rennet production. PMID:27004812

  19. Cloning and Expression of Yak Active Chymosin in Pichia pastoris.

    PubMed

    Luo, Fan; Jiang, Wei Hua; Yang, Yuan Xiao; Li, Jiang; Jiang, Ming Feng

    2016-09-01

    Rennet, a complex of enzymes found in the stomachs of ruminants, is an important component for cheese production. In our study, we described that yak chymosin gene recombinant Pichia pastoris strain could serve as a novel source for rennet production. Yaks total RNA was extracted from the abomasum of an unweaned yak. The yak preprochymosin, prochymosin, and chymosin genes from total RNA were isolated using gene specific primers based on cattle chymosin gene sequence respectively and analyzed their expression pattern byreal time-polymerase chain reaction. The result showed that the chymosin gene expression level of the sucking yaks was 11.45 times higher than one of adult yaks and yak chymosin belongs to Bovidae family in phylogenetic analysis. To express each, the preprochymosin, prochymosin, and chymosin genes were ligated into the expression vector pPICZαA, respectively, and were expressed in Pichia pastoris X33. The results showed that all the recombinant clones of P. pastoris containing the preprochymosin, prochymosin or chymosin genes could produce the active form of recombinant chymosin into the culture supernatant. Heterologous expressed prochymosin (14.55 Soxhlet unit/mL) had the highest enzyme activity of the three expressed chymosin enzymes. Therefore, we suggest that the yak chymosin gene recombinant Pichia pastoris strain could provide an alternative source of rennet production.

  20. Plasticity of marrow mesenchymal stem cells from human first-trimester fetus: from single-cell clone to neuronal differentiation.

    PubMed

    Zhang, Yihua; Shen, Wenzheng; Sun, Bingjie; Lv, Changrong; Dou, Zhongying

    2011-02-01

    Recent results have shown that bone marrow mesenchymal stem cells (BMSCs) from human first-trimester abortus (hfBMSCs) are closer to embryonic stem cells and perform greater telomerase activity and faster propagation than mid- and late-prophase fetal and adult BMSCs. However, no research has been done on the plasticity of hfBMSCs into neuronal cells using single-cell cloned strains without cell contamination. In this study, we isolated five single cells from hfBMSCs and obtained five single-cell cloned strains, and investigated their biological property and neuronal differentiation potential. We found that four of the five strains showed similar expression profile of surface antigen markers to hfBMSCs, and most of them differentiated into neuron-like cells expressing Nestin, Pax6, Sox1, β-III Tubulin, NF-L, and NSE under induction. One strain showed different expression profile of surface antigen markers from the four strains and hfBMSCs, and did not differentiate toward neuronal cells. We demonstrated for the first time that some of single-cell cloned strains from hfBMSCs can differentiate into nerve tissue-like cell clusters under induction in vitro, and that the plasticity of each single-cell cloned strain into neuronal cells is different.

  1. Molecular cloning and expression of a human heat shock factor, HSF1

    SciTech Connect

    Rabindran, S.K.; Giorgi, G.; Clos, J.; Wu, C. )

    1991-08-15

    Human cells respond to heat stress by inducing the binding of a preexisting transcriptional activator (heat shock factor, HSF) to DNA. The authors isolated recombinant DNA clones for a human cDNA fragment. The human HSF1 probe was produced by the PCR with primers deduced from conserved amino acids in the Drosophila and yeast HSF sequences. The human HSF1 mRNA is constitutively expressed in HeLa cells under nonshock conditions and encodes a protein with four conserved leucine zipper motifs. Like its counterpart in Drosophila, human HSF1 produced in Escherichia coli in the absence of heat shock is active as a DNA binding transcription factor, suggesting that the intrinsic activity of HSF is under negative control in human cells. Surprisingly, an independently isolated human HSF clone, HSF2, is related to but significantly different from HSF.

  2. Molecular Cloning and Gene Expression of Canine Apoptosis Inhibitor of Macrophage

    PubMed Central

    TOMURA, Shintaro; UCHIDA, Mona; YONEZAWA, Tomohiro; KOBAYASHI, Masato; BONKOBARA, Makoto; ARAI, Satoko; MIYAZAKI, Toru; TAMAHARA, Satoshi; MATSUKI, Naoaki

    2014-01-01

    Apoptosis inhibitor of macrophage (AIM) plays roles in survival of macrophages. In this study, we cloned canine AIM cDNA and observed its transcriptional expression levels in various tissues. The coding sequence of canine AIM was 1,023 bp encoding 340 amino acid residues, which had around 65% homology with those of the human, mouse and rat. Transcriptional expression of AIM was observed in the spleen, lung, liver and lymph node, which confirmed the expression of canine AIM in tissue macrophages. Moreover, AIM was highly expressed in one of the canine histiocytic sarcoma cell lines. CD36, the receptor of AIM, was also expressed in various tissues and these cell lines. These findings are useful to reveal the actual functions of canine AIM. PMID:25649949

  3. Molecular cloning and functional expression of a chicken intestinal peptide transporter (cPepT1) in Xenopus oocytes and Chinese hamster ovary cells.

    PubMed

    Chen, Hong; Pan, YuanXiang; Wong, Eric A; Bloomquist, Jeffrey R; Webb, Kenneth E

    2002-03-01

    To study peptide absorption in chickens, an intestinal peptide transporter cDNA (cPepT1) was isolated from a chicken duodenal cDNA library. The cDNA was 2914 bp long and encoded a protein of 714 amino acid residues with an estimated molecular size of 79.3 kDa and an isoelectric point of 7.48. cPepT1 protein is similar60% identical to PepT1 from rabbits, humans, mice, rats and sheep. Sixteen dipeptides, three tripeptides and four tetrapeptides that contained the essential amino acids Met, Lys and(or) Trp were used for functional analysis of cPepT1 in Xenopus oocytes and Chinese hamster ovary cells. For most di- and tripeptides tested, the substrate affinities were in the micromolar range, indicating that cPepT1 has high affinity for these peptides. Lys-Lys and Lys-Trp-Lys were exceptions, with substrate affinities in the millimolar range. Neither free amino acids nor tetrapeptides were transported by cPepT1. Northern blot analysis using a full-length cPepT1 cDNA as the probe demonstrated that cPepT1 is expressed strongly in the duodenum, jejunum and ileum, and at lower levels in kidney and ceca. The present study demonstrated for the first time the presence and functional characteristics of a peptide transport system from an avian species.

  4. Recent advancements in cloning by somatic cell nuclear transfer

    PubMed Central

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model. PMID:23166393

  5. Recent advancements in cloning by somatic cell nuclear transfer.

    PubMed

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.

  6. [Cloning and expression analysis of GGPPS gene from Panax notoginseng].

    PubMed

    Min, Dan-dan; Tang, Mei-qiong; Li, Gang; Qu, Xiao-sheng; Miao, Jian-hua

    2015-06-01

    According to the transcriptome dataset of Panax notoginseng, the key geranylgeranyl pyrophosphate synthase gene (GGPPS) in terpenoid backbone biosynthesis was selected to be cloned. Using specific primer pairs combining with RACE (rapid amplification of cDNA ends) technique, the full-length cDNA sequence with 1 203 bp, which containing a 1 035 bp open reading frame, was cloned and named as PnGGPPS. The corresponding full-length DNA sequence contained 2 370 bp, consisted of 1 intron and 2 exons. The deduced protein PnGGPPS contained 344 amino acids and shared more than 73% identity with GGPPS from Ricinus communis and Salvia miltiorrhiza. PnGGPPS also had specific Aspartic acid enrichment regions and other conserved domains, which belonged to the Isoprenoid-Biosyn-C1 superfamily. The quantitative real-time PCR showed that PnGGPPS expressed in different tissues of 1, 2, 3 years old root, stem, leaf and 3 years old flower, and the expression level in 3 years old leaf was significant higher than that in other organs, which suggested that it might not only be involved in the regulation of the growth and development, but also be associated with the biosynthesis of chlorophyll and carotenoids, the development of chloroplast, the shade habit and the quality formation of P. notoginseng. PMID:26552162

  7. Cloning and expression of buffalo active chymosin in Pichia pastoris.

    PubMed

    Vallejo, Juan Andres; Ageitos, Jose Manuel; Poza, Margarita; Villa, Tomas G

    2008-11-26

    To date, only recombinant chymosin has been obtained in its active form from supernatants of filamentous fungi, which are not as good candidates as yeasts for large-scale fermentations. Since Bos taurus chymosin was cloned and expressed, the world demand for this protease has increased to such an extent that the cheesemaking industry has been looking for novel sources of chymosin. In this sense because buffalo chymosin has properties that are more stable than those of B. taurus chymosin, it may occupy a space of its own in the chymosin market. The main objective of the present work was the production of active recombinant buffalo chymosin in the culture supernatant of Pichia pastoris . This yeast has demonstrated its usefulness as an excellent large-scale fermentation tool for the secretion of recombinant foreign proteins. RNA was extracted from the abomasum of a suckling calf water buffalo ( Bubalus arnee bubalis ). Preprochymosin, prochymosin, and chymosin DNA sequences were isolated and expressed into P. pastoris. Only the recombinant clones of P. pastoris containing the prochymosin sequence gene were able to secrete the active form of the chymosin to the culture supernatant. This paper describes for the first time the production of active recombinant chymosin in P. pastoris without the need of a previous in vitro activation. The new recombinant yeast strain could represent a novel and excellent source of rennet for the cheesemaking industry.

  8. Molecular cloning and expression of hardening-induced genes in Chlorella vulgaris C-27: the most abundant clone encodes a late embryogenesis abundant protein.

    PubMed

    Joh, T; Honjoh, K; Yoshimoto, M; Funabashi, J; Miyamoto, T; Hatano, S

    1995-01-01

    To investigate the effects of hardening on gene expression in Chlorella vulgaris Beijerink IAM C-27 (formerly Chlorella ellipsoidea Gerneck IAM C-27), a frost-hardy strain, 17 cDNA clones corresponding to hardening-induced Chlorella (hiC) genes were isolated by differential screening of a cDNA library from 6-h hardened cells. Northern blot analysis of transcripts of hiC genes showed that these genes are specifically induced by hardening and that their patterns of induction vary. Southern blots of genomic DNAs from two strains (Chlorella ellipsoidea Gerneck IAM C-102, chilling-sensitive; and C. vulgaris C-27, frost-hardy) of Chlorella indicated that ten hiC clones out of 17 hybridized only with DNA of strain C-27 and the other seven clones hybridized with DNA of both strains. However, of these seven clones, transcripts corresponding to six clones did not accumulate in strain C-102 at low temperatures. The sequence of a deduced protein encoded by the most abundant clone, hiC6, exhibited homology to sequences of Group III LEA (late embryogenesis abundant) proteins and had an amino-terminal amino acid sequence that was similar to the sequences of chloroplast transit peptides. PMID:7719632

  9. Aberrant gene expression patterns in extraembryonic tissue from cloned porcine embryos.

    PubMed

    Park, Mi-Ryung; Im, Gi-Sun; Kim, Sung Woo; Hwang, Seongsoo; Park, Jae-Hong; Kim, Hyun; Do, Yoon Jung; Park, Soo Bon; Yang, Bo-Suck; Song, Young Min; Cho, Jae-Hyeon; Ko, Yeoung-Gyu

    2013-06-01

    The abnormal development of embryos reconstructed by somatic cell nuclear transfer (SCNT) is considered to be associated with consequent changes in gene expression following errors in epigenetic reprogramming. In this study, we carried out SCNT using donor fibroblast cells derived from 3-way hybrids (Landrace×Duroc×Yorkshire). A total of 655 SCNT embryos were transferred, and 6.97±2.3 cloned fetuses were successfully recovered from three surrogates at gestational day 30. An analysis of the 6.97±2.3 cloned embryos revealed that most had severe extraembryonic defects. The extraembryonic tissue from the SCNT embryos was abnormally small compared with that of the control. To investigate the differentially expressed genes between the SCNT and control extraembryonic tissues, we compared the gene expression profiles of the extraembryonic tissues from gestational day 30 cloned pig embryos with those from the control using an annealing control primer-based GeneFishing polymerase chain reaction. As a result, we found that a total of 50 genes were differentially expressed by utilizing 120 ACPs, 38 genes of which were known. Among them, 26 genes were up-regulated, whereas 12 genes were down-regulated. Real-time RT-PCR showed that apoptosis-related genes were expressed significantly higher in SCNT extraembryonic tissue than in the control, whereas metabolism-related genes were expressed at significantly lower levels in the SCNT extraembryonic tissue. These observations strongly indicate that early gestational death of SCNT embryo is caused, at least in part, by the disruption of developing extraembryonic tissues as a result of aberrant gene expression, which results in abnormal apoptosis and metabolism.

  10. Irreversible barrier to the reprogramming of donor cells in cloning with mouse embryos and embryonic stem cells.

    PubMed

    Ono, Yukiko; Kono, Tomohiro

    2006-08-01

    Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as

  11. Cloning and Expression of cDNA for Rat Heme Oxygenase

    NASA Astrophysics Data System (ADS)

    Shibahara, Shigeki; Muller, Rita; Taguchi, Hayao; Yoshida, Tadashi

    1985-12-01

    Two cDNA clones for rat heme oxygenase have been isolated from a rat spleen cDNA library in λ gt11 by immunological screening using a specific polyclonal antibody. One of these clones has an insert of 1530 nucleotides that contains the entire protein-coding region. To confirm that the isolated cDNA encodes heme oxygenase, we transfected monkey kidney cells (COS-7) with the cDNA carried in a simian virus 40 vector. The heme oxygenase was highly expressed in endoplasmic reticulum of transfected cells. The nucleotide sequence of the cloned cDNA was determined and the primary structure of heme oxygenase was deduced. Heme oxygenase is composed of 289 amino acids and has one hydrophobic segment at its carboxyl terminus, which is probably important for the insertion of heme oxygenase into endoplasmic reticulum. The cloned cDNA was used to analyze the induction of heme oxygenase in rat liver by treatment with CoCl2 or with hemin. RNA blot analysis showed that both CoCl2 and hemin increased the amount of hybridizable mRNA, suggesting that these substances may act at the transcriptional level to increase the amount of heme oxygenase.

  12. Positive-selection and ligation-independent cloning vectors for large scale in planta expression for plant functional genomics.

    PubMed

    Oh, Sang-Keun; Kim, Saet-Byul; Yeom, Seon-In; Lee, Hyun-Ah; Choi, Doil

    2010-12-01

    Transient expression is an easy, rapid and powerful technique for producing proteins of interest in plants. Recombinational cloning is highly efficient but has disadvantages, including complicated, time consuming cloning procedures and expensive enzymes for large-scale gene cloning. To overcome these limitations, we developed new ligation-independent cloning (LIC) vectors derived from binary vectors including tobacco mosaic virus (pJL-TRBO), potato virus X (pGR106) and the pBI121 vector-based pMBP1. LIC vectors were modified to enable directional cloning of PCR products without restriction enzyme digestion or ligation reactions. In addition, the ccdB gene, which encodes a potent cell-killing protein, was introduced between the two LIC adapter sites in the pJL-LIC, pGR-LIC, and pMBP-LIC vectors for the efficient selection of recombinant clones. This new vector does not require restriction enzymes, alkaline phosphatase, or DNA ligase for cloning. To clone, the three LIC vectors are digested with SnaBI and treated with T4 DNA polymerase, which includes 3' to 5' exonuclease activity in the presence of only one dNTP (dGTP for the inserts and dCTP for the vector). To make recombinants, the vector plasmid and the insert PCR fragment were annealed at room temperature for 20 min prior to transformation into the host. Bacterial transformation was accomplished with 100% efficiency. To validate the new LIC vector systems, we were used to coexpressed the Phytophthora AVR and potato resistance (R) genes in N. benthamiana by infiltration of Agrobacterium. Coexpressed AVR and R genes in N. benthamiana induced the typical hypersensitive cell death resulting from in vivo interaction of the two proteins. These LIC vectors could be efficiently used for high-throughput cloning and laboratory-scale in planta expression. These vectors could provide a powerful tool for high-throughput transient expression assays for functional genomic studies in plants. PMID:21340673

  13. In vitro proliferation and cloning of CD3- CD16+ cells from human thymocyte precursors

    PubMed Central

    1991-01-01

    Purified CD3-4- thymocytes were obtained by depletion of CD3+ and CD4+ cells from fresh thymocyte suspensions. 5-15% of these cells were found to express CD16 antigen, while other natural killer (NK) cell markers were virtually absent. Double fluorescence analysis revealed that 20- 40% of thymic CD16+ cells coexpressed CD1, while approximately half were cyCD3+. When cultured in the presence of peripheral blood lymphocytes and H9 leukemia cell line as a source of irradiated feeder cells and interleukin 2 (IL-2), CD3-4- thymocytes underwent extensive proliferation. In addition, after 1-2 wk of culture, 30-50% of these cells were found to express CD16 surface antigen. Cloning under limiting dilution conditions of either CD3-4- or CD3-4-16- thymocytes in the presence of irradiated H9 cells resulted in large proportions (approximately 50%) of CD16+ clones. On the basis of the expression of surface CD16 and/or cyCD3 antigen, clones could be grouped in the following subsets: CD16+ cyCD3+; CD16+ cyCD3-; CD16- cyCD3+; and CD16- cyCD3-. All clones expressed CD56 surface antigen, displayed a strong cytolytic activity against NK sensitive (K562) and NK-resistant (M14) target cells, and produced IFN-gamma and tumor necrosis factor, but not IL-2. Similar to peripheral NK cells, thymic CD16+ cells expressed transcripts for CD16 and for CD3 epsilon (Biassoni, R., S. Ferrini, I. Prigione, A. Moretta, and E.O. Long, 1988. J. Immunol. 140:1685.) and zeta chains (Anderson, P., M. Caligiuri, J. Ritz, and S.F. Schlossman. 1989. Nature [Lond.]. 341:159). Therefore, it appears that cells that are phenotypically and functionally similar to CD3- CD16+ NK cells may arise from immature thymocytes. PMID:1711562

  14. Cloning from stem cells: different lineages, different species, same story.

    PubMed

    Oback, Björn

    2009-01-01

    Following nuclear transfer (NT), the most stringent measure of extensive donor cell reprogramming is development into viable offspring. This is referred to as cloning efficiency and quantified as the proportion of cloned embryos transferred into surrogate mothers that survive into adulthood. Cloning efficiency depends on the ability of the enucleated recipient cell to carry out the reprogramming reactions ('reprogramming ability') and the ability of the nuclear donor cell to be reprogrammed ('reprogrammability'). It has been postulated that reprogrammability of the somatic donor cell epigenome is inversely proportional to its differentiation status. In order to test this hypothesis, reprogrammability was compared between undifferentiated stem cells and their differentiated isogenic progeny. In the mouse, cells of divergent differentiation status from the neuronal, haematopoietic and skin epithelial lineage were tested. In cattle and deer, skeletal muscle and antler cells, respectively, were used as donors. No conclusive correlation between differentiation status and cloning efficiency was found, indicating that somatic donor cell type may not be the limiting factor for cloning success. This may reflect technical limitations of the NT-induced reprogramming assay. Alternatively, differentiation status and reprogrammability may be unrelated, making all cells equally difficult to reprogramme once they have left the ground state of pluripotency.

  15. Cloning and expression of ADAM related metalloproteases in Equine Laminitis

    PubMed Central

    Coyne, Michael J.; Cousin, Hélène; Loftus, John P.; Johnson, Philip J.; Belknap, James K.; Gradil, Carlos M.; Black, Samuel J.; Alfandari, Dominique

    2010-01-01

    Equine laminitis is a debilitating disease affecting the digital laminae that suspends the distal phalanx within the hoof. While the clinical progression of the disease has been well documented, the molecular events associated with its pathogenesis remain largely unknown. We have investigated the expression of genes coding for proteins containing a Disintegrin and Metalloprotease domain (ADAM), as well as genes encoding the natural inhibitors of these enzymes (Tissue Inhibitor of MetalloProtease; TIMP) in horses with naturally acquired (acute, chronic and aggravated chronic cases collected in clinic) or experimentally-induced (black walnut extract and starch gruel models) laminitis using real time quantitative RT-PCR. Changes in expression of these enzymes and regulators may underlie the pathologic remodeling of lamellar tissue in laminitis. Genes encoding ADAMs involved in inflammation (ADAM-10 and ADAM-17), as well as those implicated in arthritis (ADAMTS-1, ADAMTS-4 and ADAMTS-5) were cloned, and the sequences used to generate specific oligonucleotide primers for the RT-qPCR experiments. Our results show that genes encoding ADAM-10 and 17 were not induced in most laminitic animals whereas ADAMTS-4 gene expression was strongly upregulated in practically all cases of experimentally induced and naturally acquired laminitis. The expression of MMP-9 and ADAMTS-5 was also increased in many of the laminitic horses. In addition, TIMP-2 gene expression was decreased in most laminitic horses, whereas expression of genes encoding other TIMPs, namely TIMP-1 and TIMP-3 was randomly increased or decreased in the various models. We conclude that elevated expression of lamellar ADAMTS-4 is a common feature of laminitis consistent with a central role of the gene product in the pathophysiology of laminitis. PMID:19131116

  16. Cloning, expression in Escherichia coli, and reconstitution of human myoglobin.

    PubMed Central

    Varadarajan, R; Szabo, A; Boxer, S G

    1985-01-01

    A full-length cDNA clone for human myoglobin has been isolated from a human skeletal muscle cDNA library. The clone as isolated has a cDNA insert approximately one kilobase long and has 5' and 3' untranslated regions of approximately 80 and 530 base pairs, respectively. The sequence of the translated region corresponds exactly to that predicted for human myoglobin. The cDNA was expressed in high yield in Escherichia coli as a fusion protein consisting of the first 31 amino acids of the phage lambda cII gene, the tetrapeptide Ile-Glu-Gly-Arg, and the myoglobin sequence by following the approach of Nagai and Thogersen [Nagai, K. & Thogersen, M. C. (1984) Nature (London) 309, 810-812]. The fusion product was isolated, reconstituted with heme, cleaved with trypsin, and purified to generate a protein whose properties are indistinguishable from those for authentic human myoglobin. Myoglobin can be readily prepared on a gram scale by using these methods. Images PMID:3898068

  17. Protocols for Cloning, Expression, and Functional Analysis of Sirtuin2 (SIRT2).

    PubMed

    Ji, Shaoping; Doucette, J Ronald; Nazarali, Adil J

    2016-01-01

    SIRT2 is a NAD(+)-dependent deacetylase that belongs to the sirtuin family, which is comprised of seven members (SIRT1-SIRT7) in humans. Furthermore, recent study shows that the Sirt2 gene has three transcript variants in mice. Several diverse proteins have been identified as SIRT2 substrates. SIRT2 activity involves multiple cell processes including growth, differentiation, and energy metabolism. However, little is known of SIRT2's role in oligodendrocytes or in the myelin sheath, where it is an important component. Here we describe procedures that detail Sirt2 gene cloning, identification, expression, and biological analysis in cultured cells. PMID:27246216

  18. RaSH, a rapid subtraction hybridization approach for identifying and cloning differentially expressed genes

    PubMed Central

    Jiang, Hongping; Kang, Dong-chul; Alexandre, Deborah; Fisher, Paul B.

    2000-01-01

    Human melanoma cells growth-arrest irreversibly and terminally differentiate on treatment with a combination of fibroblast interferon and the protein kinase C activator mezerein. This experimental protocol also results in a loss of tumorigenic potential and profound changes in gene expression. Various cloning and cDNA microarray strategies are being used to determine the complete spectrum of gene expression changes underlying these alterations in human melanoma cells. An efficient approach, Rapid Subtraction Hybridization (RaSH), has been developed that is permitting the identification of genes of potential relevance to cancer growth control and terminal cell differentiation. RaSH cDNA libraries are prepared from double-stranded cDNAs that are enzymatically digested into small fragments, ligated to adapters, and PCR amplified followed by incubation of tester and driver PCR fragments. This subtraction hybridization scheme is technically simple and results in the identification of a high proportion of differentially expressed sequences, including known genes and those not described in current DNA databases. The RaSH approach represents an efficient methodology for identifying and cloning genes displaying differential expression that associate with and potentially regulate complex biological processes. PMID:11058161

  19. Vertebrate Cells Express Protozoan Antigen after Hybridization

    NASA Astrophysics Data System (ADS)

    Crane, Mark St. J.; Dvorak, James A.

    1980-04-01

    Epimastigotes, the invertebrate host stage of Trypanosoma cruzi, the protozoan parasite causing Chagas' disease in man, were fused with vertebrate cells by using polyethylene glycol. Hybrid cells were selected on the basis of T. cruzi DNA complementation of biochemical deficiencies in the vertebrate cells. Some clones of the hybrid cells expressed T. cruzi-specific antigen. It might be possible to use selected antigens obtained from the hybrids as vaccines for immunodiagnosis or for elucidation of the pathogenesis of Chagas' disease.

  20. Mouse embryos and chimera cloned from neural cells in the postnatal cerebral cortex.

    PubMed

    Makino, Hatsune; Yamazaki, Yukiko; Hirabayashi, Takahiro; Kaneko, Ryosuke; Hamada, Shun; Kawamura, Yoshimi; Osada, Tomoharu; Yanagimachi, Ryuzo; Yagi, Takeshi

    2005-01-01

    Cloning of mice has been achieved by transferring nuclei of various types of somatic cell nuclei into enucleated oocytes. However, all attempts to produce live cloned offspring using the nuclei of neurons from adult cerebral cortex have failed. Previously we obtained cloned mice using the nuclei of neural cells collected from fetal cerebral cortex. Here, we attempted to generate cloned mice using differentiated neurons from the cerebral cortex of postnatal (day 0-4) mice. Although we were unable to obtain live cloned pups, many fetuses reached day 10.5 days of development. These fetuses showed various abnormalities such as spherical omission of the neuroepithelium, collapsed lumen of neural tube, and aberrant expressions of marker proteins of neurons. We produced chimeric mice in which some hair cells and kidney cells were originated from differentiated neurons. In chimeric fetuses, LacZ-positive donor cells were in all three germ cell layers. However, chimeras with large contribution of donor-derived cells were not obtained. These results indicate that nuclei of differentiated neurons have lost their developmental totipotency. In other words, the conventional nuclear transfer technique does not allow nuclei of differentiated neurons to undergo complete genomic reprogramming required for normal embryonic development.

  1. Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae).

    PubMed

    Willis, Jonathan D; Oppert, Brenda; Oppert, Cris; Klingeman, William E; Jurat-Fuentes, Juan L

    2011-02-01

    The availability of sequenced insect genomes has allowed for discovery and functional characterization of novel genes and proteins. We report use of the Tribolium castaneum (Herbst) (red flour beetle) genome to identify, clone, express, and characterize a novel endo-β-1,4-glucanase we named TcEG1 (T. castaneum endoglucanase 1). Sequence analysis of a full-length TcEG1 cDNA clone (1356bp) revealed sequence homology to enzymes in glycosyl hydrolase family 9 (GHF9), and verified presence of a change (Gly for Ser) in the conserved catalytic domain for GHF9 cellulases. This TcEG1 cDNA clone was predicted to encode a 49.5kDa protein with a calculated pI of 5.39. Heterologous expression of TcEG1 in Drosophila S2 cell cultures resulted in secretion of a 51-kDa protein, as determined by Western blotting. The expressed protein was used to characterize TcEG1 enzymatic activity against two cellulose substrates to determine its specificity and stability. Our data support that TcEG1 as a novel endo-β-1,4-glucanase, the first functional characterization of a cellulase enzyme derived from an insect genome with potential applications in the biofuel industry due to its high relative activity at alkaline pH.

  2. Human GluR6 kainate receptor (GRIK2): Molecular cloning, expression, polymorphism, and chromosomal assignment

    SciTech Connect

    Paschen, W.; Blackstone, C.D.; Huganir, R.L. ); Ross, C.A. Max-Planck-Institute for Neurological Research, Koeln )

    1994-04-01

    Glutamate receptors mediate the majority of excitatory neurotransmission in the brain, and molecular cloning studies have revealed several distinct families. Because neuropathological states and possibly human disorders may involve kainate-preferring glutamate receptors, the authors have isolated a cDNA clone for the human GluR6 kainate-preferring receptor. This clone shows a very high sequence similarity with that of the rat, except for a part of the 3[prime] untranslated region in which there is a TAA triplet repeat. When the protein was overexpressed in human embryonic kidney 293 cells, it had a molecular weight, an antibody recognition, and a glutamate ligand-binding profile similar to those of the rate GluR6 receptor. Northern analysis showed expression in both human cerebral and cerebellar cortices. By PCR analysis of rodent-human monochromosomal cell lines, the human GluR6 could be assigned to chromosome 6. The length of the TAA triplet repeat was polymorphic in the normal population, with at least four alleles and an observed heterozygosity of about 45%. These studies should provide the basis for expression or linkage studies of the GluR6 kainate receptor in human disease or neuropathologic states. 53 refs., 7 figs.

  3. Generation and characterization of gp100 peptide-specific NK-T cell clones.

    PubMed

    Saeterdal, I; thor Straten, P; Myklebust, J H; Kirkin, A F; Gjertsen, M K; Gaudernack, G

    1998-03-01

    MHC-restricted cytotoxic T lymphocytes (CTLs) specific for antigens expressed by malignant cells are important components of immune responses against human cancer. Peripheral blood monocytes of HLA-A2+ healthy donors were used to induce dendritic cells (DCs) by granulocyte-macrophage colony-stimulating factor and interleukin-4 and loaded with a gp100 peptide (YLEPGPVTA). By applying these peptide-loaded DCs, a CTL line that displayed high cytotoxic reactivity with peptide-loaded target cells was generated. A total of 11 gp100 peptide-specific CTL clones were generated from this cell line. Several of these CTL clones were studied in detail. Of particular interest was clone CTL-45, which, contrary to the parental cell line, displayed strong NK activity and, by flow-cytometric analysis, revealed a CD3+, TCR BV17, CD8+ and CD56+ phenotype. This clone was strictly peptide-specific and effectively killed a panel of melanoma cells expressing HLA-A2 and gp100. Tumor-specific T cells with this kind of dual function are potentially of great clinical importance as they have a backup mechanism that may go into action when tumor cells escape specific killing by losing their HLA-class I molecules.

  4. Characterization, cloning, and expression of porcine alpha B crystallin.

    PubMed

    Liao, J H; Hung, C C; Lee, J S; Wu, S H; Chiou, S H

    1998-03-01

    alpha-Crystallin is a major lens protein present in the lenses of all vertebrate species. Recent studies have revealed that bovine alpha-crystallins possess genuine chaperone activity similar to small heat-shock proteins. In order to compare this chaperone-like structural protein from the eye lenses of different mammalian species, we have cloned and expressed one of the main alpha-crystallin subunits, i.e., alpha B crystallin, from the porcine lenses in order to facilitate the structure-function evaluation and comparison of this chaperonin protein. cDNA encoding alpha B subunit chain was obtained using a new "Marathon cDNA amplification" protocol of Polymerase Chain Reaction (PCR). PCR-amplified product corresponding to alpha B subunit was then ligated into pGEM-T plasmid and prepared for nucleotide sequencing by the dideoxy-nucleotide chain-termination method. Sequencing several positive clones containing DNA inserts coding for alpha B-crystallin subunit constructed only one complete full-length reading frame of 525 base pairs similar to human and bovine alpha B subunits, covering a deduced protein sequence of 175 amino acids including the universal translation-initiating methionine. The porcine alpha B crystallin shows only 3 and 7 residues difference to bovine and human alpha B crystallins respectively, revealing the close relatedness among mammalian eye lens proteins. The sequence differences between porcine and sub-mammalian species such as chicken and bullfrog are much greater, especially at the N- and C-terminal regions of these alpha B crystallins. Expression of alpha B subunit chain in E. coli vector generated a polypeptide which can cross-react with the antiserum against the native and purified alpha B subunit from the native porcine lenses albeit with a much lower activity.

  5. Somatic cell nuclear transfer cloning: practical applications and current legislation.

    PubMed

    Niemann, H; Lucas-Hahn, A

    2012-08-01

    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved.

  6. Cloning and expression of the leukotoxin gene of Pasteurella haemolytica A1 in Escherichia coli K-12.

    PubMed Central

    Lo, R Y; Shewen, P E; Strathdee, C A; Greer, C N

    1985-01-01

    A clone bank of Pasteurella haemolytica A1 was constructed by partial digestion of the genomic DNA with Sau3A and ligation of 5- to 10-kilobase-pair fragments into the BamHI site of the plasmid vector pBR322. After transformation into Escherichia coli K-12, a total of 4 X 10(3) recombinant clones was obtained. These were screened for the production of P. haemolytica soluble antigens by a colony enzyme-linked immunosorbent assay blot method with a rabbit antiserum raised against the soluble antigens. The clones producing P. haemolytica soluble antigens were then analyzed for the production of the leukotoxin by a cytotoxicity assay with cells from a bovine leukemia-derived B-lymphocyte cell line as the target cells. Positive clones were identified, and subsequent restriction analysis of the recombinant plasmids showed that the same 6.3 kilobase pairs of insert DNA was cloned in either of the two orientations into the plasmid vector pBR322. One of the clones was selected for further characterization of the leukotoxin as produced in E. coli. Tests for heat lability and target cell species specificity with canine, porcine, and human peripheral blood lymphocytes indicated that the activity of the cloned leukotoxin was identical to that of the P. haemolytica leukotoxin. Furthermore, the E. coli-produced leukotoxin was also neutralized by bovine or rabbit antiserum known to have antitoxic activity. When cellular proteins from the E. coli clones were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis, a 100,000-dalton protein was identified which corresponded to one of the soluble antigens found in the leukotoxic culture supernatant of P. haemolytica. These results demonstrated that the gene(s) for the P. haemolytica leukotoxin have been cloned and that the leukotoxin was expressed in E. coli. Images PMID:3905610

  7. Developmental expression and molecular cloning of REMP, a novel retinal epithelial membrane protein.

    PubMed

    Philp, N; Chu, P; Pan, T C; Zhang, R Z; Chu, M L; Stark, K; Boettiger, D; Yoon, H; Kieber-Emmons, T

    1995-07-01

    The retinal pigment epithelium (RPE), like other transport epithelia, has a polarized distribution of membrane and cytoskeletal proteins. The establishment of a polarized phenotype is an essential step in the differentiation of the RPE and the development and maintenance of visual function. Using a monoclonal antibody (MAb 3C4) we have identified a novel membrane protein that is uniquely expressed in chick RPE. We have referred to this protein as REMP for retinal epithelial membrane protein. In these studies we characterized the expression and distribution of this protein during embryonic development and determined its primary structure by cDNA cloning. The developmental expression of REMP was examined by immunocytochemical localization. REMP was first detected in the chick RPE at Embryonic Day 5 (E5) in both apical and basolateral membranes. By E14 the distribution of REMP was restricted to the basolateral surface of the RPE cells. Biochemical fractionation and surface labeling of RPE cells suggested that REMP was an integral protein. The gene encoding REMP was isolated from an E15 chick RPE cDNA library, cloned into lambda gt11, and screened with MAb 3C4. The cDNA was sequenced and found to contain one 1350-bp open reading frame encoding for a 450-amino-acid protein. The deduced amino-acid sequence of REMP shares 32.9% identity with MCT1, a monocarboxylate transporter (Garcia, Goldstein, Pathak, Anderson, and Brown, Cell, 76, 865-873, 1994). By Northern blot analysis, REMP mRNA was detected only in RPE cells. There was an increase in the expression REMP transcript during development but when RPE cells were grown in primary culture the expression of REMP was turned off. The unique expression of REMP in the RPE in vivo would suggest a role for this protein in development and maintenance of normal retinal function.

  8. Cloning, expression and characterization of phycoerythrin gene from Ceramium boydenn.

    PubMed

    Zhang, Xiaowen; Zhao, Fangqing; Qin, Song; Yan, Binlun

    2006-04-01

    Phycobiliproteins function as a major light harvesting protein-pigment complex in the cyanobacteria and the eukaryotic algae. Phycoerythrin (PE) is a kind of phycobiliproteins, widely located in all rhodophytes, some species of cyanobacteria and cryptophytes, and different ecotypes of Prochlorococcus populations. PeBA encoding beta and alpha subunits of PE from Ceramium boydenn was cloned and sequenced in this research. A peBA specific PCR primer was synthesized, based on the peBA gene conserved sequences. The beta subunit encoding gene (peB) contained an open reading frame of 534 bp, while the alpha subunit (peA) was 495 bp. Recombinant expression plasmid pET-peAB was constructed and expressed in Escherichia coli BL21. The molecular weight of expressive product of peB and peA was about 23.3 and 18.2 KD, respectively. Results of codon usage analysis show that G + C content is heterogeneous among different groups of PE and spacers have dramatically lower G + C contents than coding regions. Also there is a high variance in G + C content among sequences at the third position sites. It is also found in this paper that several sequence regions, which might reflect functional or structural requirements of the PE organization, and several residues known for their functional importance are conserved in almost all the sequences.

  9. Prokaryotic expression cloning of a novel human tyrosine kinase

    SciTech Connect

    Beeler, J.F.; LaRochelle, W.J.; Chedid, M.

    1994-02-01

    Screening of a human embryonic lung fibroblast cDNA expression library with antiphosphotyrosine antibodies led to isolation of a novel protein kinase. A clone, designated A6, contained a 3-kb cDNA insert with a predicted open reading frame of 350 amino acids. DNA sequence analysis failed to reveal any detectable similarity with previously known genes, and the predicted A6 protein lacked any of the motifs commonly conserved in the catalytic domains of protein kinases. However, the bacterially expressed {beta}-galactosidase-A6 fusion protein demonstrated both tyrosine and serine phosphorylation in an in vitro kinase assay and phosphorylated exogenous substrates including myelin basic protein specifically on tyrosine residues. The enzyme also displayed biochemical properties analogous to those of other protein tyrosine kinases. The A6 gene was found to be expressed widely at the transcript level in normal tissues and was evolutionarily conserved. Thus, A6 represents a novel tyrosine kinase which is highly divergent from previously described members of this important class of regulatory molecules. 29 refs., 8 figs., 1 tab.

  10. Mammalian mediator 19 mediates H1299 lung adenocarcinoma cell clone conformation, growth, and metastasis.

    PubMed

    Xu, Lu-Lu; Guo, Shu-Liang; Ma, Su-Ren; Luo, Yong-Ai

    2012-01-01

    Mammalian mediator (MED) is a multi-protein coactivator that has been identified by several research groups. The involvement of the MED complex subunit 19 (MED 19) in the metastasis of lung adenocarcinoma cell line (H1299), which expresses the MED 19 subunit, was here investigated. When MED 19 expression was decreased by RNA interference H1299 cells demonstrated reduced clone formation, arrest in the S phase of the cell cycle, and lowered metastatic capacity. Thus, MED 19 appears to play important roles in the biological behavior of non-small cell lung carcinoma cells. These findings may be important for the development of novel lung carcinoma treatments.

  11. Human carbon catabolite repressor protein (CCR4)-associative factor 1: cloning, expression and characterization of its interaction with the B-cell translocation protein BTG1.

    PubMed Central

    Bogdan, J A; Adams-Burton, C; Pedicord, D L; Sukovich, D A; Benfield, P A; Corjay, M H; Stoltenborg, J K; Dicker, I B

    1998-01-01

    The human BTG1 protein is thought to be a potential tumour suppressor because its overexpression inhibits NIH 3T3 cell proliferation. However, little is known about how BTG1 exerts its anti-proliferative activity. In this study, we used the yeast 'two-hybrid' system to screen for interacting protein partners and identified human carbon catabolite repressor protein (CCR4)-associative factor 1 (hCAF-1), a homologue of mouse CAF-1 (mCAF-1) and Saccharomyces cerevisiae yCAF-1/POP2. In vitro the hCAF-1/BTG1 complex formation was dependent on the phosphorylation of a putative p34cdc2 kinase site on BTG1 (Ser-159). In yeast, the Ala-159 mutant did not interact with hCAF-1. In addition, phosphorylation of Ser-159 in vitro showed specificity for the cell cycle kinases p34CDK2/cyclin E and p34CDK2/cyclin A, but not for p34CDK4/cyclin D1 or p34cdc2/cyclin B. Cell synchrony experiments with primary cultures of rat aortic smooth-muscle cells (RSMCs) demonstrated that message and protein levels of rat CAF-1 (rCAF-1) were up-regulated under conditions of cell contact, as previously reported for BTG1 [Wilcox, Scott, Subramanian, Ross, Adams-Burton, Stoltenborg and Corjay (1995) Circulation 92, I34-I35]. Western blot and immunohistochemical analysis showed that rCAF-1 localizes to the nucleus of contact-inhibited RSMCs, where it was physically associated with BTG1, as determined by co-immunoprecipitation with anti-hCAF-1 antisera. Overexpression of hCAF-1 in NIH 3T3 and osteosarcoma (U-2-OS) cells was itself anti-proliferative with colony formation reduced by 67% and 90% respectively. Taken together, these results indicate that formation of the hCAF-1/BTG1 complex is driven by phosphorylation at BTG1 (Ser-159) and implicates this complex in the signalling events of cell division that lead to changes in cellular proliferation associated with cell-cell contact. PMID:9820826

  12. Induction of lytic pathways in T cell clones derived from wild-type or protein tyrosine kinase Fyn mutant mice.

    PubMed

    Lancki, D W; Fields, P; Qian, D; Fitch, F W

    1995-08-01

    The OVA-reactive CD4+ Th1 clones and alloreactive CD8+ clones derived from wild-type or fyn-/- mice serve as model systems which have allowed us to investigate several aspects of the molecular events associated with T cell-mediated cytotoxicity, including 1) the differential utilization of two distinct cytolytic pathways by CD4+ Th1 clones and CD8+ CTL, 2) a comparison of the pathways of lysis induced by stimulation of the TCR or by alternative stimuli, 3) the requirement of Fyn for derivation of antigen-specific T-cell clones having properties of CD4+ Th1 and CD8+ CTL cells 4) the differential requirement of Fyn in the induction of responses by TCR and the alternative stimuli. Stimulation through the TCR, either by APC bearing relevant antigen or by immobilized anti-CD3 mAb, resulted in comparable levels of target cell lysis by clones from both wild-type and fyn-/- mice. These clones also utilize the Fas pathway to lyse target cells. Thus, Fyn does not appear to be required for expression of the Fas pathway when triggered through the TCR. In contrast, lysis of target cells by T-cell clones lacking Fyn was deficient when stimulated through Thy-1 or Ly-6C (using mAb) or with Con A or phorbol ester as compared to clones derived from wild-type mice. The basis for the defect in response to stimulation through the GPI-linked molecules appears to be a signaling defect which affects all of the functional responses we measured, while the defect in response to Con A stimulation appears to affect lysis but not lymphokine production. Thus, Fyn expression is selectively required for efficient activation of the Fas pathway of lysis through Thy-1, Ly-6C, and by Con A or phorbol ester in these T-cell clones. CD8+ clones derived from fyn-/- mutant mice, like clones derived from wild-type mice, display antigen-specific lysis, and appear to express perforin message and perforin protein. A Ca(++)-dependent (presumably perforin/exocytosis) component and Fas component of lysis was

  13. T cell receptor junctional regions of V gamma 9+/V delta 2+ T cell clones in relation to non-MHC restricted cytotoxic activity.

    PubMed

    Flanagan, B F; Wheatcroft, N J; Thornton, S M; Christmas, S E

    1993-05-01

    Human gamma delta T cell clones having V gamma 9JP and V delta 2DJ1 T cell receptor (TCR) gene rearrangements were isolated form an individual donor and tested for non-MHC restricted cytotoxicity against the B lymphoblastoid cell line, BSM. Most clones were highly cytotoxic but 3/9 clones had very low activity, comparable to that of CD4+ alpha beta T cell clones. Although there was a tendency for clones with low cytotoxic function to produce high levels of interferon-gamma and tumor necrosis factor-alpha, this correlation was not complete. TCR gamma and delta junctional sequences were obtained and were found to be different for all clones. There were no consistent structural differences between gamma delta TCRs of cytotoxic and non-cytotoxic clones, but gamma or delta junctional regions of all three non-cytotoxic clones had unusual features. One clone had a particularly short gamma chain junctional sequence, one had a short delta chain junctional sequence and the third clone was the only one of the panel which failed to utilise the D delta 3 segment. If the gamma delta TCR is involved in target cell recognition in this model of non-MHC restricted killing, such variations in receptor structure may be sufficient to inhibit recognition and thereby reduce the cytotoxic capacity of a minority of V gamma 9+/V delta 2+ clones. Also, a panel of gamma delta T cell clones expressing V gamma 8/V delta 3 isolated from a different donor, were all highly cytotoxic against BSM, indicating that these target cells can be recognised by effector cells expressing a TCR other than the V gamma 9/V delta 2 receptor. The possible influence of other cell surface molecules on non-MHC restricted cytotoxic function is discussed.

  14. Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning.

    PubMed

    Smith, Sadie L; Everts, Robin E; Tian, X Cindy; Du, Fuliang; Sung, Li-Ying; Rodriguez-Zas, Sandra L; Jeong, Byeong-Seon; Renard, Jean-Paul; Lewin, Harris A; Yang, Xiangzhong

    2005-12-01

    Nuclear transfer (NT) has potential applications in agriculture and biomedicine, but the technology is hindered by low efficiency. Global gene expression analysis of clones is important for the comprehensive study of nuclear reprogramming. Here, we compared global gene expression profiles of individual bovine NT blastocysts with their somatic donor cells and fertilized control embryos using cDNA microarray technology. The NT embryos' gene expression profiles were drastically different from those of their donor cells and closely resembled those of the naturally fertilized embryos. Our findings demonstrate that the NT embryos have undergone significant nuclear reprogramming by the blastocyst stage; however, problems may occur during redifferentiation for tissue genesis and organogenesis, and small reprogramming errors may be magnified downstream in development.

  15. Treatment of porcine donor cells and reconstructed embryos with the antioxidant melatonin enhances cloning efficiency.

    PubMed

    Pang, Yun-Wei; An, Lei; Wang, Peng; Yu, Yong; Yin, Qiu-Dan; Wang, Xiao-Hong; Xin-Zhang; Qian-Zhang; Yang, Mei-Ling; Min-Guo; Wu, Zhong-Hong; Tian, Jian-Hui

    2013-05-01

    This study was conducted to investigate the effect of melatonin during the culture of donor cells and cloned embryos on the in vitro developmental competence and quality of cloned porcine embryos. At concentrations of 10(-6 )M or 10(-8) M, melatonin significantly enhanced the proliferation of porcine fetal fibroblasts (PFFs), and the blastocyst rate was significantly increased in the 10(-10) M melatonin-treated donor cell group. Cloned embryo development was also improved in embryo culture medium that was supplemented with 10(-9) M or 10(-12) M melatonin. When both donor cells and cloned embryos were treated with melatonin, the cleavage rate and total cell number of blastocysts were not significantly affected; however, the blastocyst rate was increased significantly (20.0% versus 11.7%). TUNEL assays showed that combined melatonin treatment reduced the rate of apoptotic nuclei (3.6% versus 6.1%). Gene expression analysis of the apoptosis-related genes BAX, BCL2L1, and p53 showed that the expression of BCL2L1 was significantly elevated 2.7-fold relative to the control group, while the expression of BAX and p53 was significantly decreased by 3.7-fold and 23.2-fold, respectively. In addition, we detected the expression of two melatonin receptors (MT1 and MT2) in PFFs but not in porcine cloned embryos. We conclude that exogenous melatonin enhances the development of porcine cloned embryos and improves embryo quality by inhibiting p53-mediated apoptotic pathway. The proliferation of PFFs may be mediated by receptor binding, but the beneficial effects of melatonin on embryonic development may be receptor-independent, possibly through melatonin's ability to directly scavenge free radicals.

  16. The search for truth and freedom: ethical issues surrounding human cloning and stem cell research.

    PubMed

    Bruce, Alex

    2002-02-01

    The reality of cloning and stem cell research has provoked wonder, fear and anger. These developments have the potential fundamentally to alter humanity. But how well informed is the range of views being expressed? Is progress being threatened by understandable but uninformed fears? Or are scientists rushing toward an ethical abyss, so concerned with what they can do that they never stop to ask what they should do? This article identifies some of the fears and hopes surrounding cloning and stem cell research. It aims to provoke ethical debate in evaluating such research.

  17. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    PubMed

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  18. In vitro cloning of complex mixtures of DNA on microbeads: Physical separation of differentially expressed cDNAs

    PubMed Central

    Brenner, Sydney; Williams, Steven R.; Vermaas, Eric H.; Storck, Thorsten; Moon, Keith; McCollum, Christie; Mao, Jen-I; Luo, Shujun; Kirchner, James J.; Eletr, Sam; DuBridge, Robert B.; Burcham, Timothy; Albrecht, Glenn

    2000-01-01

    We describe a method for cloning nucleic acid molecules onto the surfaces of 5-μm microbeads rather than in biological hosts. A unique tag sequence is attached to each molecule, and the tagged library is amplified. Unique tagging of the molecules is achieved by sampling a small fraction (1%) of a very large repertoire of tag sequences. The resulting library is hybridized to microbeads that each carry ≈106 strands complementary to one of the tags. About 105 copies of each molecule are collected on each microbead. Because such clones are segregated on microbeads, they can be operated on simultaneously and then assayed separately. To demonstrate the utility of this approach, we show how to label and extract microbeads bearing clones differentially expressed between two libraries by using a fluorescence-activated cell sorter (FACS). Because no prior information about the cloned molecules is required, this process is obviously useful where sequence databases are incomplete or nonexistent. More importantly, the process also permits the isolation of clones that are expressed only in given tissues or that are differentially expressed between normal and diseased states. Such clones then may be spotted on much more cost-effective, tissue- or disease-directed, low-density planar microarrays. PMID:10677516

  19. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    USGS Publications Warehouse

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  20. Establishment of bipotent progenitor cell clone from rat skeletal muscle.

    PubMed

    Murakami, Yousuke; Yada, Erica; Nakano, Shin-ichi; Miyagoe-Suzuki, Yuko; Hosoyama, Tohru; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2011-12-01

    The present study describes the isolation, cloning and characterization of adipogenic progenitor cells from rat skeletal muscle. Among the obtained 10 clones, the most highly adipogenic progenitor, 2G11 cells, were further characterized. In addition to their adipogenicity, 2G11 cells retain myogenic potential as revealed by formation of multinucleated myotubes when co-cultured with myoblasts. 2G11 cells were resistant to an inhibitory effect of basic fibroblast growth factor on adipogenesis, while adipogenesis of widely used preadipogenic cell line, 3T3-L1 cells, was suppressed almost completely by the same treatment. In vivo transplantation experiments revealed that 2G11 cells are able to possess both adipogenicity and myogenicity in vivo. These results indicate the presence of bipotent progenitor cells in rat skeletal muscle, and suggest that such cells may contribute to ectopic fat formation in skeletal muscle.

  1. Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression.

    PubMed

    Chow, Brian A; Hamilton, Jason; Alsop, Derek; Cattet, Marc R L; Stenhouse, Gordon; Vijayan, Mathilakath M

    2010-06-01

    Serum corticosteroid levels are routinely measured as markers of stress in wild animals. However, corticosteroid levels rise rapidly in response to the acute stress of capture and restraint for sampling, limiting its use as an indicator of chronic stress. We hypothesized that serum corticosteroid binding globulin (CBG), the primary transport protein for corticosteroids in circulation, may be a better marker of the stress status prior to capture in grizzly bears (Ursus arctos). To test this, a full-length CBG cDNA was cloned and sequenced from grizzly bear testis and polyclonal antibodies were generated for detection of this protein in bear sera. The deduced nucleotide and protein sequences were 1218 bp and 405 amino acids, respectively. Multiple sequence alignments showed that grizzly bear CBG (gbCBG) was 90% and 83% identical to the dog CBG nucleotide and amino acid sequences, respectively. The affinity purified rabbit gbCBG antiserum detected grizzly bear but not human CBG. There were no sex differences in serum total cortisol concentration, while CBG expression was significantly higher in adult females compared to males. Serum cortisol levels were significantly higher in bears captured by leg-hold snare compared to those captured by remote drug delivery from helicopter. However, serum CBG expression between these two groups did not differ significantly. Overall, serum CBG levels may be a better marker of chronic stress, especially because this protein is not modulated by the stress of capture and restraint in grizzly bears.

  2. Cloning and expression of hepatic synaptotagmin 1 in mouse.

    PubMed

    Sancho-Knapik, Sara; Guillén, Natalia; Osada, Jesús

    2015-05-15

    Mouse hepatic synaptotagmin 1 (SYT1) cDNA was cloned, characterized and compared to the brain one. The hepatic transcript was 1807 bp in length, smaller than the brain, and only encoded by 9 of 11 gene exons. In this regard, 5'-and 3'-untranslated regions were 66 and 476 bp, respectively; the open reading frame of 1266 bp codified for a protein of 421 amino acids, identical to the brain, with a predicted molecular mass of 47.4 kDa and highly conserved across different species. Immunoblotting of protein showed two isoforms of higher molecular masses than the theoretical prediction based on amino acid sequence suggesting posttranslational modifications. Subcellular distribution of protein isoforms corresponded to plasma membrane, lysosomes and microsomes and was identical between the brain and liver. Nonetheless, the highest molecular weight isoform was smaller in the liver, irrespective of subcellular location. Quantitative mRNA tissue distribution showed that it was widely expressed and that the highest values corresponded to the brain, followed by the liver, spleen, abdominal fat, intestine and skeletal muscle. These findings indicate tissue-specific splicing of the gene and posttranslational modification and the variation in expression in the different tissues might suggest a different requirement of SYT1 for the specific function in each organ. PMID:25735570

  3. Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression.

    PubMed

    Chow, Brian A; Hamilton, Jason; Alsop, Derek; Cattet, Marc R L; Stenhouse, Gordon; Vijayan, Mathilakath M

    2010-06-01

    Serum corticosteroid levels are routinely measured as markers of stress in wild animals. However, corticosteroid levels rise rapidly in response to the acute stress of capture and restraint for sampling, limiting its use as an indicator of chronic stress. We hypothesized that serum corticosteroid binding globulin (CBG), the primary transport protein for corticosteroids in circulation, may be a better marker of the stress status prior to capture in grizzly bears (Ursus arctos). To test this, a full-length CBG cDNA was cloned and sequenced from grizzly bear testis and polyclonal antibodies were generated for detection of this protein in bear sera. The deduced nucleotide and protein sequences were 1218 bp and 405 amino acids, respectively. Multiple sequence alignments showed that grizzly bear CBG (gbCBG) was 90% and 83% identical to the dog CBG nucleotide and amino acid sequences, respectively. The affinity purified rabbit gbCBG antiserum detected grizzly bear but not human CBG. There were no sex differences in serum total cortisol concentration, while CBG expression was significantly higher in adult females compared to males. Serum cortisol levels were significantly higher in bears captured by leg-hold snare compared to those captured by remote drug delivery from helicopter. However, serum CBG expression between these two groups did not differ significantly. Overall, serum CBG levels may be a better marker of chronic stress, especially because this protein is not modulated by the stress of capture and restraint in grizzly bears. PMID:20347821

  4. College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning

    ERIC Educational Resources Information Center

    Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn

    2010-01-01

    In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…

  5. Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses.

    PubMed

    Hao, Yu-Jin; Zhang, Zilian; Kitashiba, Hiroyasu; Honda, Chikako; Ubi, Benjamin; Kita, Masayuki; Moriguchi, Takaya

    2005-04-25

    Two full-length S-adenosylmethionine decarboxylase (SAMDC) cDNAs, MdSAMDC1 and MdSAMDC2, were isolated from apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.]. Both cDNAs encoded tiny and small ORFs in addition to the SAMDC ORFs, and genomic sequences of MdSAMDC1 and MdSAMDC2 contained two or three introns in the 5' upstream regions, respectively. Yeast complementation experiment indicated that two MdSAMDCs encoded functional proteins, and that the tiny and small ORFs possibly repressed their translation efficiency. RNA gel blot analysis showed that MdSAMDC1 were differentially regulated in fruits depending on the developmental stage and in cell suspension during the culture period, but MdSAMDC2 did not. In contrast, MdSAMDC2 was positively induced by cold and salt stresses, but MdSAMDC1 was not. These results suggest that MdSAMDC1 is mainly involved in fruit development and cell growth while MdSAMDC2 in stress responses, compared with their respective counterpart.

  6. The atypical antipsychotic, olanzapine, potentiates ghrelin-induced receptor signaling: An in vitro study with cells expressing cloned human growth hormone secretagogue receptor.

    PubMed

    Tagami, Keita; Kashiwase, Yohei; Yokoyama, Akinobu; Nishimura, Hitomi; Miyano, Kanako; Suzuki, Masami; Shiraishi, Seiji; Matoba, Motohiro; Ohe, Yuichiro; Uezono, Yasuhito

    2016-08-01

    The growth hormone secretagogue receptor (GHS-R) belongs to Gαq-coupled G protein-coupled receptor (GPCR) that mediates growth hormone release, food intake, appetite, glucose metabolism and body composition. Ghrelin has been identified as an endogenous ligand for GHS-R, and it is the only orexigenic peptide found in the peripheral organs. Olanzapine, an atypical antipsychotic agent that binds to and inhibits the activation of GPCR for several neurotransmitters, has metabolic side effects such as excessive appetite and weight gain. Recently, studies have revealed that the orexigenic mechanism of olanzapine is mediated via GHS-R signaling, although the precise mechanisms have not been clarified. In this study, we investigated the effect of olanzapine on ghrelin-mediated GHS-R signaling by using an electrical impedance-based receptor biosensor assay system (CellKey™). Olanzapine at concentrations of 10(-7) and 10(-6)mol/L enhanced ghrelin-induced (10(-10)-10(-8)mol/L) GHS-R activation. A Ca(2+) imaging assay revealed that olanzapine (10(-7) and 10(-6)mol/L) enhanced ghrelin (10(-7) M)-induced GHS-R activity. In contrast, haloperidol (an antipsychotic agent) failed to enhance this ghrelin-mediated GHS-R activation, as demonstrated by both the CellKey™ and Ca(2+) imaging assays. Together, these results suggest that olanzapine, but not haloperidol, promotes appetite by enhancing ghrelin-mediated GHS-R signaling. PMID:26775231

  7. Production of Cloned Mice by Nuclear Transfer of Cumulus Cells

    PubMed Central

    Kurd, Soleiman; Zarei, Mohammad Ali; Fathi, Fardin; Ghadimi, Tayyeb; Hakhamaneshi, Mohammad Saeed; Jalili, Ali

    2013-01-01

    Background Over the past several years, mammals have been successfully cloned by either the splitting of an early stage embryo or nuclear transfer of adult somatic cells (NT) into oocytes. Although it has been 15 years since the generation of the first cloned mammals from somatic cells by NT, the success rate for producing live offspring by this technique is low regardless of the cell type and animal species used. However, these techniques have the potential to be important tools for future research in basic biology. In the present study, we described our experiences in producing successfully cloned mouse using NT method and piezo-actuated micromanipulator. Methods B6D2F1 mice, 8-12 weeks old, were superovulated with injections of 5 IU of pregnant mare serum gonadotropin and 5 IU of human chorionic gonadotropin administered 48 hr apart. Enucleation and donor nuclei cumulus cell injection were performed with a piezo-actuated micromanipulator after which activation and trichostatin A treatment were used for reconstructed oocytes. Two-cell stage cloned embryos that developed in the mWM medium were transferred into the oviducts of pseudopregnant NMRI mice. Results Of 367 oocytes collected, 131 (69%) developed into 2-cell stage embryos. Of these, 5 (1%) live pups were successfully delivered. We used NMRI foster mother to raise the pups by lactation. One adult cloned mouse was mated, after which she delivered and raised normal offspring. Conclusion For mouse cloning, the present study also successfully tested the capability of somatic cell nuclear transfer SCNT using a piezo unit. PMID:23919122

  8. CLONING AND EXPRESSING TRYPSIN MODULATING OOSTATIC FACTOR IN Chlorella desiccata TO CONTROL MOSQUITO LARVAE.

    PubMed

    Borovsky, Dov; Sterner, Andeas; Powell, Charles A

    2016-01-01

    The insect peptide hormone trypsin modulating oostatic factor (TMOF), a decapeptide that is synthesized by the mosquito ovary and controls the translation of the gut's trypsin mRNA was cloned and expressed in the marine alga Chlorella desiccata. To express Aedes aegypti TMOF gene (tmfA) in C. desiccata cells, two plasmids (pYES2/TMOF and pYDB4-tmfA) were engineered with pKYLX71 DNA (5 Kb) carrying the cauliflower mosaic virus (CaMV) promoter 35S(2) and the kanamycin resistant gene (neo), as well as, a 8 Kb nitrate reductase gene (nit) from Chlorella vulgaris. Transforming C. desiccata with pYES2/TMOF and pYDB4-tmfA show that the engineered algal cells express TMOF (20 ± 4 μg ± SEM and 17 ± 3 μg ± SEM, respectively in 3 × 10(8) cells) and feeding the cells to mosquito larvae kill 75 and 60% of Ae. aegypti larvae in 4 days, respectively. Southern and Northern blots analyses show that tmfA integrated into the genome of C. desiccata by homologous recombination using the yeast 2 μ circle of replication and the nit in pYES2/TMOF and pYDB4-tmfA, respectively, and the transformed algal cells express tmfA transcript. Using these algal cells it will be possible in the future to control mosquito larvae in the marsh.

  9. Cloning and expression of the tumor-associated antigen L6.

    PubMed Central

    Marken, J S; Schieven, G L; Hellström, I; Hellström, K E; Aruffo, A

    1992-01-01

    The L6 cell surface antigen, which is highly expressed on lung, breast, colon, and ovarian carcinomas, has attracted attention as a therapeutic target for murine monoclonal antibodies and their humanized counterparts. Its molecular nature has, however, remained elusive. Here we describe the expression cloning of a cDNA encoding the L6 antigen. COS cells transfected with this cDNA direct the expression of an approximately 24-kDa surface protein that reacts with the two anti-L6 monoclonal antibodies available. The predicted L6 peptide sequence is 202 amino acids long and contains three predicted NH2-terminal hydrophobic transmembrane regions, which are followed by a hydrophilic region containing two potential N-linked glycosylation sites and a COOH-terminal hydrophobic transmembrane region. The L6 antigen is related to a number of cell surface proteins with similar predicted membrane topology that have been implicated in cell growth. Two other members of this family of proteins, CD63 (ME491) and CO-029, are also highly expressed on tumor cells. The present findings should make it possible to further study the role of the L6-defined antigen in normal and neoplastic cells and to construct animal models for development of improved agents for active and passive cancer immunotherapy. Images PMID:1565644

  10. CLONING AND EXPRESSING TRYPSIN MODULATING OOSTATIC FACTOR IN Chlorella desiccata TO CONTROL MOSQUITO LARVAE.

    PubMed

    Borovsky, Dov; Sterner, Andeas; Powell, Charles A

    2016-01-01

    The insect peptide hormone trypsin modulating oostatic factor (TMOF), a decapeptide that is synthesized by the mosquito ovary and controls the translation of the gut's trypsin mRNA was cloned and expressed in the marine alga Chlorella desiccata. To express Aedes aegypti TMOF gene (tmfA) in C. desiccata cells, two plasmids (pYES2/TMOF and pYDB4-tmfA) were engineered with pKYLX71 DNA (5 Kb) carrying the cauliflower mosaic virus (CaMV) promoter 35S(2) and the kanamycin resistant gene (neo), as well as, a 8 Kb nitrate reductase gene (nit) from Chlorella vulgaris. Transforming C. desiccata with pYES2/TMOF and pYDB4-tmfA show that the engineered algal cells express TMOF (20 ± 4 μg ± SEM and 17 ± 3 μg ± SEM, respectively in 3 × 10(8) cells) and feeding the cells to mosquito larvae kill 75 and 60% of Ae. aegypti larvae in 4 days, respectively. Southern and Northern blots analyses show that tmfA integrated into the genome of C. desiccata by homologous recombination using the yeast 2 μ circle of replication and the nit in pYES2/TMOF and pYDB4-tmfA, respectively, and the transformed algal cells express tmfA transcript. Using these algal cells it will be possible in the future to control mosquito larvae in the marsh. PMID:26440910

  11. Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression.

    PubMed

    Unger, Tamar; Jacobovitch, Yossi; Dantes, Ada; Bernheim, Reut; Peleg, Yoav

    2010-10-01

    Molecular manipulations, including DNA cloning and mutagenesis are basic tools used on a routine basis in all life-science disciplines. Over the last decade new methodologies have emerged that facilitated and expanded the applications for DNA cloning and mutagenesis. Ligation-Independent Cloning (LIC) techniques were developed and replaced the classical Ligation Dependent Cloning (LDC) platform. Restriction Free (RF) cloning was originally developed for introduction of foreign DNA into a plasmid at any predetermined position. RF cloning is based on PCR amplification of a DNA fragment, which serves as a mega-primer for the linear amplification of the vector and insert. Here we present several novel applications of the Restriction Free (RF) cloning platform for DNA cloning and mutagenesis. The new applications include simultaneous cloning of several DNA fragments into distinct positions within an expression vector, simultaneous multi-component assembly, and parallel cloning of the same PCR product into a series of different vectors. In addition, we have expanded the application of the RF cloning platform for multiple alterations of the target DNA, including simultaneous multiple-site mutagenesis and simultaneous introduction of deletions and insertions at different positions. We further demonstrate the robustness of the new applications for facilitating recombinant protein expression in the Escherichia coli system. PMID:20600952

  12. Rat kidney thromboxane receptor: molecular cloning, signal transduction, and intrarenal expression localization.

    PubMed Central

    Abe, T; Takeuchi, K; Takahashi, N; Tsutsumi, E; Taniyama, Y; Abe, K

    1995-01-01

    Thromboxane (TX) plays important roles in control of renal hemodynamics and water and electrolyte metabolism, and is involved in the pathophysiology of many renal diseases. The aim of the present study is to isolate a rat kidney cDNA encoding functional TX receptor, and to reveal its intrarenal expression localization. A clone (rTXR2) was isolated from a rat kidney cDNA library by a homology screening approach. rTXR2 was shown to encode the amino acid sequence containing seven transmembrane spanning domains representing rat (r) TX receptor. The membrane from COS-7 cells transiently transfected with rTXR2 cDNA was shown to be specifically bound by a thromboxane receptor antagonist, SQ29548. Either in Xenopus oocyte expression or in transfected COS-7 cells, rTX receptor was shown to be linked with Ca2+ messenger system. TX receptor-mediated increase in cytosolic Ca2+ was also observed in cultured glomerular mesangial cells. In situ hybridization showed that rTX receptor mRNA was detected in renal glomeruli, smooth muscle cells in renal arterioles, and transitional cell epithelium of renal pelvis. Reverse transcription linked to PCR applied to microdissected nephron segments indicated the presence of rTX receptor mRNA exclusively in the glomerulus. In conclusion, we have cloned a functional rat kidney TX receptor, which is expressed specifically in renal glomerulus, arterial smooth muscle cells, and transitional cell epithelium of renal pelvis. The present study will provide important insights into the etiology and pathophysiology of renal diseases with relation to TX metabolism. Images PMID:7635958

  13. Treating Cloned Embryos, But Not Donor Cells, with 5-aza-2’-deoxycytidine Enhances the Developmental Competence of Porcine Cloned Embryos

    PubMed Central

    HUAN, Yan Jun; ZHU, Jiang; XIE, Bing Teng; WANG, Jian Yu; LIU, Shi Chao; ZHOU, Yang; KONG, Qing Ran; HE, Hong Bin; LIU, Zhong Hua

    2013-01-01

    The efficiency of cloning by somatic cell nuclear transfer (SCNT) has remained low. In most cloned embryos, epigenetic reprogramming is incomplete, and usually the genome is hypermethylated. The DNA methylation inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) could improve the developmental competence of cow, pig, cat and human SCNT embryos in previous studies. However, the parameters of 5-aza-dC treatment among species are different, and whether 5-aza-dC could enhance the developmental competence of porcine cloned embryos has still not been well studied. Therefore, in this study, we treated porcine fetal fibroblasts (PFF) that then were used as donor nuclei for nuclear transfer or fibroblast-derived reconstructed embryos with 5-aza-dC, and the concentration- and time-dependent effects of 5-aza-dC on porcine cloned embryos were investigated by assessing pseudo-pronucleus formation, developmental potential and pluripotent gene expression of these reconstructed embryos. Our results showed that 5-aza-dC significantly reduced the DNA methylation level in PFF (0 nM vs. 10 nM vs. 25 nM vs. 50 nM, 58.70% vs. 37.37% vs. 45.43% vs. 39.53%, P<0.05), but did not improve the blastocyst rate of cloned embryos derived from these cells. Treating cloned embryos with 25 nM 5-aza-dC for 24 h significantly enhanced the blastocyst rate compared with that of the untreated group. Furthermore, treating cloned embryos, but not donor cells, significantly promoted pseudo-pronucleus formation at 4 h post activation (51% for cloned embryos treated, 34% for donor cells treated and 36% for control, respectively, P<0.05) and enhanced the expression levels of pluripotent genes (Oct4, Nanog and Sox2) up to those of in vitro fertilized embryos during embryo development. In conclusion, treating cloned embryos, but not donor cells, with 5-aza-dC enhanced the developmental competence of porcine cloned embryos by promotion of pseudo-pronucleus formation and improvement of pluripotent gene expression. PMID

  14. Cloning and expression of an A1 adenosine receptor from rat brain

    SciTech Connect

    Mahan, L.C.; McVittie, L.D.; Smyk-Randall, E.M.; Nakata, H.; Monsma, F.J. Jr.; Gerfen, C.R.; Sibley, D.R. )

    1991-07-01

    The authors have used the polymerase chain reaction technique to selectively amplify guanine nucleotide-binding regulatory protein (G protein)-coupled receptor cDNA sequences from rat striatal mRNA, using sets of highly degenerate primers derived from transmembrane sequences of previously cloned G protein-coupled receptors. A novel cDNA fragment was identified, which exhibits considerable homology to various members of the G protein-coupled receptor family. This fragment was used to isolate a full-length cDNA from a rat striatal library. A 2.2-kilobase clone was obtained that encodes a protein of 326 amino acids with seven transmembrane domains, as predicted by hydropathy analysis. Stably transfected mouse A9-L cells and Chinese hamster ovary cells that expressed mRNA for this clone were screened with putative receptor ligands. Saturable and specific binding sites for the A1 adenosine antagonist (3H)-1,3-dipropyl-8-cyclopentylxanthine were identified on membranes from transfected cells. The rank order of potency and affinities of various adenosine agonist and antagonist ligands confirmed the identity of this cDNA clone as an A1 adenosine receptor. The high affinity binding of A1 adenosine agonists was shown to be sensitive to the nonhydrolyzable GTP analog guanylyl-5{prime}-imidodiphosphate. In adenylyl cyclase assays, adenosine agonists inhibited forskolin-stimulated cAMP production by greater than 50%, in a pharmacologically specific fashion. Northern blot and in situ hybridization analyses of receptor mRNA in brain tissues revealed two transcripts of 5.6 and 3.1 kilobases, both of which were abundant in cortex, cerebellum, hippocampus, and thalamus, with lower levels in olfactory bulb, striatum, mesencephalon, and retina. These regional distribution data are in good agreement with previous receptor autoradiographic studies involving the A1 adenosine receptor.

  15. Cloning and Expression of Beta Subunit Gene of Phycocyanin From Spirulina platensis in Escherichia coli

    PubMed Central

    Shoja, Zahra; Rajabi Memari, Hamid; Roayaei Ardakani, Mohammd

    2015-01-01

    Background: C-Phycocyanin (C-PC) from blue-green algae such as Spirulina has been reported to have various pharmacological characteristics, including anti-inflammatory and anti-tumor activities. Recombinant β-subunit of C-PC (C-PC/β) is an inhibitor of cell proliferation and an inducer of cancer cell apoptosis. Objectives: Since C-PC/β has a big potential to be used as a promising cancer prevention or therapy agent, the purpose of this study was to clone and express Spirulina platensis cpcB gene in a bacterial expression system. This is a significant step for the production of this compound. Materials and Methods: The cpcB gene was amplified using specific primers and cloned in a bacterial expression vector, namely pET43.1a+. Gene expression of cpcB was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and the dot blotting technique. Results: The SDS-PAGE analysis and dot blotting confirmed the production of recombinant C-PC/β in the bacterial expression system. Over-expression of cpcB gene was optimized in induction by 1 mM Isopropyl-β-D-Thiogalactoside (IPTG), after four hours of inoculation at 30°C. Conclusions: Over-expression of the synthetic CPC/β protein in the bacterial system (Escherichia coli BL-21) showed that E. coli can be used as a basis for further research to produce this desired protein in large quantities. PMID:26464761

  16. Production of Cloned Miniature Pigs Expressing High Levels of Human Apolipoprotein(a) in Plasma.

    PubMed

    Ozawa, Masayuki; Himaki, Takehiro; Ookutsu, Shoji; Mizobe, Yamato; Ogawa, Junki; Miyoshi, Kazuchika; Yabuki, Akira; Fan, Jianglin; Yoshida, Mitsutoshi

    2015-01-01

    High lipoprotein(a) [Lp(a)] levels are a major risk factor for the development of atherosclerosis. However, because apolipoprotein(a) [apo(a)], the unique component of Lp(a), is found only in primates and humans, the study of human Lp(a) has been hampered due to the lack of appropriate animal models. Using somatic cell nuclear transfer (SCNT) techniques, we produced transgenic miniature pigs expressing human apo(a) in the plasma. First, we placed the hemagglutinin (HA)-tagged cDNA of human apo(a) under the control of the β-actin promoter and cytomegalovirus enhancer, and then introduced this construct into kidney epithelial cells. Immunostaining of cells with anti-HA antibody allowed identification of cells stably expressing apo(a); one of the positive clones was used to provide donor cells for SCNT, yielding blastocysts that expressed apo(a). Immunohistochemical analysis of tissue sections and RT-PCR analysis of total RNA from organs of cloned piglet revealed that apo(a) is expressed in various tissues/organs including heart, liver, kidney, and intestine. More importantly, a transgenic line exhibited a high level (>400 mg/dL) of Lp(a) in plasma, and the transgenic apo(a) gene was transmitted to the offspring. Thus, we generated a human apo(a)-transgenic miniature pig that can be used as a model system to study advanced atherosclerosis related to human disease. The anatomical and physiological similarities between the swine and human cardiovascular systems will make this pig model a valuable source of information on the role of apo(a) in the formation of atherosclerosis, as well as the mechanisms underlying vascular health and disease. PMID:26147378

  17. Production of Cloned Miniature Pigs Expressing High Levels of Human Apolipoprotein(a) in Plasma

    PubMed Central

    Ozawa, Masayuki; Himaki, Takehiro; Ookutsu, Shoji; Mizobe, Yamato; Ogawa, Junki; Miyoshi, Kazuchika; Yabuki, Akira; Fan, Jianglin; Yoshida, Mitsutoshi

    2015-01-01

    High lipoprotein(a) [Lp(a)] levels are a major risk factor for the development of atherosclerosis. However, because apolipoprotein(a) [apo(a)], the unique component of Lp(a), is found only in primates and humans, the study of human Lp(a) has been hampered due to the lack of appropriate animal models. Using somatic cell nuclear transfer (SCNT) techniques, we produced transgenic miniature pigs expressing human apo(a) in the plasma. First, we placed the hemagglutinin (HA)-tagged cDNA of human apo(a) under the control of the β-actin promoter and cytomegalovirus enhancer, and then introduced this construct into kidney epithelial cells. Immunostaining of cells with anti-HA antibody allowed identification of cells stably expressing apo(a); one of the positive clones was used to provide donor cells for SCNT, yielding blastocysts that expressed apo(a). Immunohistochemical analysis of tissue sections and RT-PCR analysis of total RNA from organs of cloned piglet revealed that apo(a) is expressed in various tissues/organs including heart, liver, kidney, and intestine. More importantly, a transgenic line exhibited a high level (>400 mg/dL) of Lp(a) in plasma, and the transgenic apo(a) gene was transmitted to the offspring. Thus, we generated a human apo(a)–transgenic miniature pig that can be used as a model system to study advanced atherosclerosis related to human disease. The anatomical and physiological similarities between the swine and human cardiovascular systems will make this pig model a valuable source of information on the role of apo(a) in the formation of atherosclerosis, as well as the mechanisms underlying vascular health and disease. PMID:26147378

  18. A catalog of human cDNA expression clones and its application to structural genomics

    PubMed Central

    Büssow, Konrad; Quedenau, Claudia; Sievert, Volker; Tischer, Janett; Scheich, Christoph; Seitz, Harald; Hieke, Brigitte; Niesen, Frank H; Götz, Frank; Harttig, Ulrich; Lehrach, Hans

    2004-01-01

    We describe here a systematic approach to the identification of human proteins and protein fragments that can be expressed as soluble proteins in Escherichia coli. A cDNA expression library of 10,825 clones was screened by small-scale expression and purification and 2,746 clones were identified. Sequence and protein-expression data were entered into a public database. A set of 163 clones was selected for structural analysis and 17 proteins were prepared for crystallization, leading to three new structures. PMID:15345055

  19. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 reductase.

    PubMed

    Kong, Sandra; Ngo, Suong N T; McKinnon, Ross A; Stupans, Ieva

    2009-07-01

    The cloning, expression and characterization of hepatic NADPH-cytochrome P450 reductase (CPR) from koala (Phascolarctos cinereus) is described. Two 2059 bp koala liver CPR cDNAs, designated CPR1 and CPR2, were cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CPR cDNAs encode proteins of 678 amino acids and share 85% amino acid sequence identity to human CPR. Transfection of the koala CPR cDNAs into Cos-7 cells resulted in the expression of proteins, which were recognized by a goat-antihuman CPR antibody. The koala CPR1 and 2 cDNA-expressed enzymes catalysed cytochrome c reductase at the rates of 4.9 +/- 0.5 and 2.6 +/- 0.4 nmol/min/mg protein (mean +/- SD, n = 3), respectively which were comparable to that of rat CPR cDNA-expressed enzyme. The apparent Km value for CPR activity in koala liver microsomes was 11.61 +/- 6.01 microM, which is consistent with that reported for rat CPR enzyme. Northern analysis detected a CPR mRNA band of approximately 2.6 kb. Southern analysis suggested a single PCR gene across species. The present study provides primary molecular data regarding koala CPR1 and CPR2 genes in this unique marsupial species.

  20. Cloning Endangered Felids by Interspecies Somatic Cell Nuclear Transfer.

    PubMed

    Gómez, Martha C; Pope, C Earle

    2015-01-01

    In 2003, the first wild felid was produced by interspecies somatic cell nuclear transfer. Since then other wild felid clone offspring have been produced by using the same technique with minor modifications. This chapter describes detailed protocols used in our laboratory for (1) the isolation, culture, and preparation of fibroblast cells as donor nucleus, and (2) embryo reconstruction with domestic cat enucleated oocytes to produce cloned embryos that develop to the blastocyst stage in vitro and, after transfer into synchronized recipients, establish successful pregnancies.

  1. Effects of donor fibroblast cell type and transferred cloned embryo number on the efficiency of pig cloning.

    PubMed

    Li, Zicong; Shi, Junsong; Liu, Dewu; Zhou, Rong; Zeng, Haiyu; Zhou, Xiu; Mai, Ranbiao; Zeng, Shaofen; Luo, Lvhua; Yu, Wanxian; Zhang, Shouquan; Wu, Zhenfang

    2013-02-01

    Currently, cloning efficiency in pigs is very low. Donor cell type and number of cloned embryos transferred to an individual surrogate are two major factors that affect the successful rate of somatic cell nuclear transfer (SCNT) in pigs. This study aimed to compare the influence of different donor fibroblast cell types and different transferred embryo numbers on recipients' pregnancy rate and delivery rate, the average number of total clones born, clones born alive and clones born healthy per litter, and the birth rate of healthy clones (=total number of healthy cloned piglets born /total number of transferred cloned embryos). Three types of donor fibroblasts were tested in large-scale production of cloned pigs, including fetal fibroblasts (FFBs) from four genetically similar Western swine breeds of Pietrain (P), Duroc (D), Landrace (L), and Yorkshire (Y), which are referred to as P,D,LY-FFBs, adult fibroblasts (AFBs) from the same four breeds, which are designated P,D,L,Y-AFBs, and AFBs from a Chinese pig breed of Laiwu (LW), which is referred to as LW-AFBs. Within each donor fibroblast cell type group, five transferred cloned embryo number groups were tested. In each embryo number group, 150-199, 200-249, 250-299, 300-349, or 350-450 cloned embryos were transferred to each individual recipient sow. For the entire experiment, 92,005 cloned embryos were generated from nearly 115,000 matured oocytes and transferred to 328 recipients; in total, 488 cloned piglets were produced. The results showed that the mean clones born healthy per litter resulted from transfer of embryos cloned from LW-AFBs (2.53 ± 0.34) was similar with that associated with P,D,L,Y-FFBs (2.72 ± 0.29), but was significantly higher than that resulted from P,D,L,Y-AFBs (1.47 ± 0.18). Use of LW-AFBs as donor cells for SCNT resulted in a significantly higher pregnancy rate (72.00% vs. 59.30% and 48.11%) and delivery rate (60.00% vs. 45.93% and 35.85%) for cloned embryo recipients, and a

  2. Cloning, expression, and regulation of tissue-specific genes in Drosophila

    SciTech Connect

    Korochkin, L.I.

    1995-08-01

    The family of esterase genes was studied in various Drosophilia species. These genes are classified as tissue-specific and housekeeping ones. The expression of tissue-specific esterases in the male reproductive system of Drosophilia species from the virilis and melanogaster groups was thoroughly examined. Modifier genes controlling activity level, time of synthesis, and distribution in cells of the tissue-specific esterase isozyme from the ejaculatory bulb were revealed. The structural gene coding of this enzyme was isolated, cloned, and sequenced. This gene was shown to be similar in different Drosophilia species; the transcriptional level of tissue specificity of this gene was determined. The possibility of transformating the tissue-specific gene into a housekeeping one was demonstrated. In different Drosophilia species, this gene can be expressed in different parts of the reproductive system. In transgenic males carrying the gene of another species, the foreign gene is expressed as in the donor. 68 refs., 11 figs.

  3. Cloning mammary cell cDNAs from 17q12-q23 using interspecific somatic cell hybrids and subtractive hybridization

    SciTech Connect

    Cerosaletti, K.M.; Shapero, M.H.; Fournier, R.E.K.

    1995-01-01

    We have cloned human genes that are encoded in the region 17q12-q23 and expressed in breast tissue using interspecific somatic cell hybrids and subtractive hybridization. Two mouse microcell hybrids containing fragments of human chromosome 17 with a nonoverlap region at 17q12-q23 were generated by microcell transfer. Radiolabeled cDNA was synthesized from the hybrid cell containing the 17q12-q23 interval and was subtracted with an excess of RNA from the hybrid cell lacking the interval. Resulting cDNA probes enriched for sequences from 17q12-q23 were used to screen a human premenopausal breast cDNA library, and 60 cDNAs were identified. Three of these cDNAs mapped to the hybrid cell nonoverlap region. These cDNAs were expressed in mammary epithelial cell hybrids, although none appeared to be breast-specific. Sequence analysis of the cDNAs revealed that clone 93A represents a previously unidentified gene, clone 98C has homology to an expressed sequence tag from goat mammary tissue, and clone 200A is identical to the human homologue of the Drosophila melanogaster flightless-I gene. These genes map outside a 1-cM region linked to early onset familial breast cancer but may be useful genetic markers in the 17q12-q23 region. 47 refs., 6 figs.

  4. Production of interferon and tumour necrosis factor by cloned human natural cytotoxic lymphocytes and T cells.

    PubMed

    Christmas, S E; Meager, A; Moore, M

    1987-08-01

    Cell lines and clones, derived from natural killer (NK) cell-enriched (B73.1+) peripheral blood lymphocytes (PBL) from several human donors, that expressed distinct surface phenotypes and were cytolytically active against K562 target cells were tested for their capacity to produce interferon (IFN) and tumour necrosis factor (TNF), IFN and TNF were measured firstly in biological assays and secondly in specific immunoassays for alpha-IFN, gamma-IFN and tumour necrosis factor (TNF alpha). It was found that the majority of NK-derived lines and clones were highly cytotoxic towards K562, but generally produced relatively low or undetectable levels of gamma-IFN and TNF alpha following stimulation with phytohaemagglutinin. No alpha-IFN was detected in supernatants from these cells. In comparison, cell lines and clones, derived from T lymphocyte (B73.1-) enriched PBL from the same donors were poorly cytotoxic towards K562, but generally produced higher levels of gamma-IFN and TNF than NK-derived cells. Thus, neither gamma-IFN nor TNF production were shown to correlate well with the capacity of NK-derived or T cell clones to effect cytotoxic action towards K562 in vitro. These results suggest that the co-production of gamma-IFN and TNF is not indicative of cytotoxic potential.

  5. Cloning and Variation of Ground State Intestinal Stem Cells

    PubMed Central

    Wang, Xia; Yamamoto, Yusuke; Wilson, Lane H.; Zhang, Ting; Howitt, Brooke; Farrow, Melissa A.; Kern, Florian; Ning, Gang; Hong, Yue; Khor, Chiea Chuen; Chevalier, Benoit; Bertrand, Denis; Wu, Lingyan; Nagarajan, Niranjan; Sylvester, Francisco A.; Hyams, Jeffrey S.; Devers, Thomas; Bronson, Roderick; Lacy, D. Borden; Ho, Khek Yu; Crum, Christopher P.; McKeon, Frank; Xian, Wa

    2016-01-01

    Summary Stem cells of the gastrointestinal tract, pancreas, liver, and other columnar epithelia collectively resist cloning in their elemental states. Here we demonstrate the cloning and propagation of highly clonogenic, “ground state” stem cells of the human intestine and colon. We show that derived stem cell pedigrees sustain limited copy number and sequence variation despite extensive serial passaging and display exquisitely precise, cell-autonomous commitment to epithelial differentiation consistent with their origins along the intestinal tract. This developmentally patterned and epigenetically maintained commitment of stem cells likely enforces the functional specificity of the adult intestinal tract. Using clonally-derived colonic epithelia, we show that toxins A or B of the enteric pathogen C. difficile recapitulate the salient features of pseudomembranous colitis. The stability of the epigenetic commitment programs of these stem cells, coupled with their unlimited replicative expansion and maintained clonogenicity, suggests certain advantages for their use in disease modeling and regenerative medicine. PMID:26040716

  6. Human cloning, stem cell research. An Islamic perspective.

    PubMed

    Al-Aqeel, Aida I

    2009-12-01

    The rapidly changing technologies that involve human subjects raise complex ethical, legal, social, and religious issues. Recent advances in the field of cloning and stem cell research have introduced new hopes for the treatment of serious diseases. But this promise has raised many complex questions. This field causes debate and challenge, not only among scientists but also among ethicists, religious scholars, governments, and politicians. There is no consensus on the morality of human cloning, even within specific religious traditions. In countries in which religion has a strong influence on political decision making, the moral status of the human embryo is at the center of the debate. Because of the inevitable consequences of reproductive cloning, it is prohibited in Islam. However, stem cell research for therapeutic purposes is permissible with full consideration, and all possible precautions in the pre-ensoulment stages of early fetus development, if the source is legitimate.

  7. Derivation and characterization of putative embryonic stem cells from cloned rabbit embryos.

    PubMed

    Intawicha, Payungsuk; Siriboon, Chawalit; Chen, Chien-Hong; Chiu, Yung-Tsung; Lin, Tzu-An; Kere, Michel; Lo, Neng-Wen; Lee, Kun-Hsiung; Chang, Li-Yung; Chiang, Hsing-I; Ju, Jyh-Cherng

    2016-10-15

    The present study aimed to establish embryonic stem (ES) cell lines, i.e., ntES cells, using rabbit blastocyst stage embryos cloned by somatic cell nuclear transfer. First, we investigated the development of cloned rabbit embryos reconstructed with normal fibroblasts and fibroblasts transfected with enhanced green fluorescence protein (eGFP). Blastocyst rates were 27.4% and 23.9%, respectively, for the embryos reconstructed with normal fibroblasts and fibroblasts transfected with eGFP compared with that from the parthenogenetic group (43.1%). One ntES cell line was established from embryos reconstructed with eGFP-transfected fibroblasts (1 of 17, 5.9%), and three ntES cell lines were derived from those with normal fibroblasts (3 of 17, 17.6%). All the ntES cell lines retained alkaline phosphatase activity and expressed ES cell-specific markers SSEA-4, Oct-4, TRA-1-60, and TRA-1-81. The pluripotency was further confirmed by reverse transcription-polymerase chain reaction analyses of Oct-4, Nanog, and Sox-2 expressions in ntES cell lines. The differentiation capacity of ntES cells was also examined in vitro and in vivo, by which these ntES cell lines were able to differentiate into all three germ layers through embryoid bodies and teratomas. In conclusion, it is apparent that the efficiency of ntES cells derived using eGFP-transfected donor cells is lower than that with nontransfected, normal fibroblasts donor cells. Similar to those from parthenogenetic embryos, all ntES cell lines derived from cloned rabbit embryos are able to express pluripotency markers and retain their capability to differentiate into various cell lineages both in vitro and in vivo. PMID:27395085

  8. Expression cloning of the murine interferon gamma receptor cDNA.

    PubMed Central

    Munro, S; Maniatis, T

    1989-01-01

    A cDNA encoding a receptor for murine interferon gamma (IFN-gamma) was isolated from an expression library made from murine thymocytes. The clone was identified by transfecting the library into monkey COS cells and probing the transfected monolayer with radiolabeled murine IFN-gamma. Cells expressing the receptor were identified by autoradiography and plasmids encoding the receptor were directly rescued from those cells producing a positive signal. A partial cDNA so obtained was used to isolate a full-length cDNA from mouse L929 cells by conventional means. When this cDNA was expressed in COS cells it produced a specific binding site for murine IFN-gamma with an affinity constant similar to that of the receptor found on L929 cells. The predicted amino acid sequence of the murine IFN-gamma receptor shows homology to that previously reported for the human IFN-gamma receptor. However, although the two proteins are clearly related, they show less than 60% identity in both the putative extracellular domain and the intracellular domain. Images PMID:2531896

  9. Cloned Hemoglobin Genes Enhance Growth Of Cells

    NASA Technical Reports Server (NTRS)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  10. Identification of T-cell stimulatory antigens of Chlamydia trachomatis using synovial fluid-derived T-cell clones.

    PubMed Central

    Hassell, A B; Reynolds, D J; Deacon, M; Gaston, J S; Pearce, J H

    1993-01-01

    Chlamydia trachomatis is a major cause of sexually transmitted disease, infertility and reactive arthritis in the Western world, and of trachoma in the developing world. There is evidence that the chronic inflammatory reaction seen in diseases associated with chlamydiae represents a delayed-type hypersensitivity response to chlamydial antigens. Little is known about which chlamydial antigens elicit T-cell responses yet such information could have important implications in terms of both immunopathological understanding of these diseases and immunoprophylaxis design. In this study, 61 chlamydia-specific T-cell clones have been produced from the synovial fluid of an individual with sexually acquired reactive arthritis (SARA). Ten clones have been characterized in detail and used to identify T-cell stimulatory antigens of chlamydiae by means of T-cell immunoblotting. Two distinct antigenic fractions have been identified, one recognized by three of the clones (molecular weight 18,000), the other recognized by six of the clones (molecular weight 30,000). The fractions are distinct from the major outer membrane protein, the 57,000 MW stress protein and the 60,000 MW cysteine-rich membrane protein of chlamydiae. The major histocompatibility complex (MHC) restriction of the response to these antigens differed: clones recognizing the 18,000 MW antigen required antigen-presenting cells expressing DR1 subtype DRB1*0101 or DRB1*0102 which only differ at amino acids 85 and 86 on the DR beta-chain; by contrast clones recognizing the 30,000 MW antigen were presented to only by antigen-presenting cells from DRB1*0101 individuals, reflecting extreme sensitivity of these clones to the polymorphism at positions 85 and 86 on the DR beta-chain. Images Figure 4 PMID:7691730

  11. In vitro differentiation of a cloned bovine mammary epithelial cell.

    PubMed

    Rose, Michael T; Aso, Hisashi; Yonekura, Shinichi; Komatsu, Tokushi; Hagino, Akihiko; Ozutsumi, Kyouhei; Obara, Yoshiaki

    2002-08-01

    The aim of the study was to establish in vitro a bovine mammary epithelial cell (MEC) clone, able to respond to mitogenic growth factors and to lactogenic hormones. Mammary tissue from a 200-d pregnant Holstein cow was used as a source of MEC, from which a clone was established through a process of limiting dilution. When plated on plastic, the cells assumed a monolayer, cobblestone, epithelial-like morphology, with close contact between cells. Inclusion of IGF-1 and EGF in the media significantly increased the number of cells 5 d after plating. All cells stained strongly for cytokeratin and moderately for vimentin at young and old passage stages, indicating the epithelial nature of this cell clone. When the cells were plated at a high density on a thin layer of a commercial extracellular matrix preparation (Matrigel), lobular, alveoli-like structures developed within approximately 5 d, with a clearly visible lumen. When cells were plated onto Matrigel in differentiation media (containing lactogenic hormones), detectable quantities of alpha-casein were present in the media and particularly on the lumen side of the structures. Omission of one of the lactogenic hormones (insulin, prolactin or hydrocortisone) reduced alpha-casein release to the limit of detection of the assay used. Lactoferrin was also produced when the cells were plated on Matrigel, again principally on the lumen side of the lobules, though this was independent of the lactogenic hormones. By passage 40, the cells had senesced, and it was not possible to induce alpha-casein or lactoferrin production. This study notes the establishment of a functional bovine mammary epithelial cell clone, which is responsive to mitogenic and lactogenic hormones and an extracellular matrix.

  12. Molecular cloning, expression, and sequence of the pilin gene from nontypeable Haemophilus influenzae M37.

    PubMed Central

    Coleman, T; Grass, S; Munson, R

    1991-01-01

    Nontypeable Haemophilus influenzae M37 adheres to human buccal epithelial cells and exhibits mannose-resistant hemagglutination of human erythrocytes. An isogenic variant of this strain which was deficient in hemagglutination was isolated. A protein with an apparent molecular weight of 22,000 was present in the sodium dodecyl sulfate-polyacrylamide gel profile of sarcosyl-insoluble proteins from the hemagglutination-proficient strain but was absent from the profile of the isogenic hemagglutination-deficient variant. A monoclonal antibody which reacts with the hemagglutination-proficient isolate but not with the hemagglutination-deficient isolate has been characterized. This monoclonal antibody was employed in an affinity column for purification of the protein as well as to screen a genomic library for recombinant clones expressing the gene. Several clones which contained overlapping genomic fragments were identified by reaction with the monoclonal antibody. The gene for the 22-kDa protein was subcloned and sequenced. The gene for the type b pilin from H. influenzae type b strain MinnA was also cloned and sequenced. The DNA sequence of the strain MinnA gene was identical to that reported previously for two other type b strains. The DNA sequence of the strain M37 gene is 77% identical to that of the type b pilin gene, and the derived amino acid sequence is 68% identical to that of the type b pilin. Images PMID:1673447

  13. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system.

    PubMed Central

    Hagenbuch, B; Stieger, B; Foguet, M; Lübbert, H; Meier, P J

    1991-01-01

    Liver parenchymal cells continuously extract high amounts of bile acids from portal blood plasma. This uptake process is mediated by a Na+/bile acid cotransport system. A cDNA encoding the rat liver bile acid uptake system has been isolated by expression cloning in Xenopus laevis oocytes. The cloned transporter is strictly sodium-dependent and can be inhibited by various non-bile-acid organic compounds. Sequence analysis of the cDNA revealed an open reading frame of 1086 nucleotides coding for a protein of 362 amino acids (calculated molecular mass 39 kDa) with five possible N-linked glycosylation sites and seven putative transmembrane domains. Translation experiments in vitro and in oocytes indicate that the transporter is indeed glycosylated and that its polypeptide backbone has an apparent molecular mass of 33-35 kDa. Northern blot analysis with the cloned probe revealed crossreactivity with mRNA species from rat kidney and intestine as well as from liver tissues of mouse, guinea pig, rabbit, and man. Images PMID:1961729

  14. Cloning, Expression and Purification of the SRCR domains of glycoprotein 340

    PubMed Central

    Purushotham, Sangeetha; Deivanayagam, Champion

    2013-01-01

    Glycoprotein 340 (gp340), an innate immunity molecule is secreted luminally by monolayered epithelia and associated glands within the human oral cavity. Gp340 contains 14 scavenger receptor cysteine rich (SRCR) domains, two CUB (C1r/C1s Uegf Bmp1) domains and one zona - pellucida (ZP) domain. Oral streptococci are known to adhere to the tooth immobilized gp340 via its surface protein Antigen I/II (AgI/II), which is considered to be the critical first step in pathogenesis that eventually results in colonization and infection. In order to decipher the interactions between gp340's domains and oral streptococcal AgI/II domains, we undertook to express human gp340's first SRCR domain (SRCR1) and the first three tandem SRCR domains (SRCR123) in Drosophila S2 cells. While our initial attempts with human codons did not produce optimal results, codon-optimization for expression in Drosophila S2 cells and usage of inducible/secretory Drosophila Expression System (DES) pMT/BiP/V5-HisA vector greatly enhanced the expression of the SRCR domains. Here we report the successful cloning, expression, and purification of the SRCR domains of gp340. Recognition of expressed SRCRs by the conformational dependent gp340 antibody indicate that these domains are appropriately folded and furthermore, surface plasmon resonance studies confirmed functional adherence of the SRCR domains to AgI/II. PMID:23707657

  15. Characterization, cDNA cloning and expression pattern of relaxin gene during embryogenesis of Danio rerio.

    PubMed

    Fiengo, Marcella; Donizetti, Aldo; del Gaudio, Rosanna; Minucci, Sergio; Aniello, Francesco

    2012-06-01

    We report the identification, the cDNA cloning, the temporal and spatial expression pattern analysis of the rln gene in the zebrafish Danio rerio. The deduced Rln B and A domains show different evolutionary conservation. Rln B domain shows higher similarity when compared to zebrafish and human RLN3 B domain than human RLN1 and RLN2 B domain. Differently, the zebrafish Rln A domain shows relatively low amino acid sequence similarity when compared with the same sequences. The rln gene is transcribed both during embryogenesis and in adult organism, where higher transcript level has been particularly evidenced in the brain. Moreover, we provide the first description of rln spatial expression pattern during embryonic development. In particular, we show restricted transcript localization starting at the pharyngula stage in olfactory placode, branchial arch region, and in a cell cluster near to otic vesicle. In larval stage, new transcription territories have been detected in both neural and non-neural regions. In particular, in the brain, rln expression has been revealed in telencephalic region around anterior commissure, in the preoptic area, and in restricted rombencephalic cell clusters. Expression of rln gene in extra-neural territories has been detected in the pancreatic and thyroid gland regions. Danio rerio rln expression pattern analysis reveals shared features with the mammalian RLN gene, particularly in the brain, where it might have a role in the neurophysiological processes. In addition, expression in the thyroid and pancreas region suggests a function as a paracrine and endocrine hormone.

  16. Expression of a foreign gene by recombinant canine distemper virus recovered from cloned DNAs.

    PubMed

    Parks, Christopher L; Wang, Hai-Ping; Kovacs, Gerald R; Vasilakis, Nikos; Kowalski, Jacek; Nowak, Rebecca M; Lerch, Robert A; Walpita, Pramila; Sidhu, Mohinderjit S; Udem, Stephen A

    2002-02-26

    A canine distemper virus (CDV) genomic cDNA clone and expression plasmids required to establish a CDV rescue system were generated from a laboratory-adapted strain of the Onderstepoort vaccine virus. In addition, a CDV minireplicon was prepared and used in transient expression studies performed to identify optimal virus rescue conditions. Results from the transient expression experiments indicated that minireplicon-encoded reporter gene activity was increased when transfected cell cultures were maintained at 32 rather than 37 degrees C, and when the cellular stress response was induced by heat shock. Applying these findings to rescue of recombinant CDV (rCDV) resulted in efficient recovery of virus after transfected HEp2 or A549 cells were co-cultured with Vero cell monolayers. Nucleotide sequence determination and analysis of restriction site polymorphisms confirmed that rescued virus was rCDV. A rCDV strain also was engineered that contained the luciferase gene inserted between the P and M genes; this virus directed high levels of luciferase expression in infected cells. PMID:11864746

  17. Cloning of ES cells and mice by nuclear transfer.

    PubMed

    Wakayama, Sayaka; Kishigami, Satoshi; Wakayama, Teruhiko

    2009-01-01

    We have been able to develop a stable nuclear transfer (NT) method in the mouse, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Although the piezo unit is a complex tool, once mastered it is of great help not only in NT experiments, but also in almost all other forms of micromanipulation. Using this technique, embryonic stem (ntES) cell lines established from somatic cell nuclei can be generated relatively easily from a variety of mouse genotypes and cell types. Such ntES cells can be used not only for experimental models of human therapeutic cloning but also as a means of preserving mouse genomes instead of preserving germ cells. Here, we describe our most recent protocols for mouse cloning.

  18. Molecular cloning and developmental expression of plakophilin 2 in zebrafish

    SciTech Connect

    Moriarty, Miriam A.; Martin, Eva D.; Byrnes, Lucy; Grealy, Maura

    2008-02-29

    Armadillo proteins are involved in providing strength and support to cells and tissues, nuclear transport, and transcriptional activation. In this report, we describe the identification and characterisation of the cDNA of the desmosomal armadillo protein plakophilin 2 in zebrafish. The 2448 bp coding sequence encodes a predicted 815 amino acid protein, with nine armadillo repeats characteristic of the p120-catenin subfamily. It shares conserved N-glycosylation, myristoylation, and glycogen synthase kinase 3, casein kinase 2, and protein kinase C phosphorylation sites with mammalian armadillo proteins including plakoglobin and {beta}-catenin. Semi-quantitative reverse transcription polymerase chain reaction and whole mount in situ hybridisation show that it is expressed both maternally and zygotically. It is ubiquitously expressed during blastula stages but becomes restricted to epidermal and cardiac tissue during gastrulation. These results provide evidence that zebrafish plakophilin 2 is developmentally regulated with potential roles in cell adhesion, signalling, and cardiac and skin development.

  19. Cloning, expression and purification of the factor H binding protein and its interaction with factor H

    PubMed Central

    Yarian, Fatemeh; Bandehpour, Mojgan; Seyed, Negar; Kazemi, Bahram

    2016-01-01

    Background and Objective: Neisseria meningitidis is a leading cause of meningitis and sepsis worldwide. The factor H binding protein (fHBP) is a key virulence factor of Neisseria meningitidis that is able to selectively bind to human factor H, the key regulator of the alternative complement pathway, which it has important implications for meningococcal pathogenesis and vaccine design. The aims of present research were cloning, expression, purification of fHbp and confirmation of the interaction between serum factor H (fH) and produced factor H binding protein. Materials and Methods: A 820 base pairs fhbp gene fragment was amplified by PCR and cloned into expression vector pET28a (+) in Bam HI and SalI restriction enzymes sites. Recombinant DNA was expressed in BL21 (DE3) cell. fHBP protein was purified by Ni-NTA agarose resin. Coupling of recombinant protein into CNBr activated Sepharose 4B resin was carried out for application in serum fH protein purification. (fH-fHBP) interaction was confirmed by SDS-PAGE and far-western blotting. Results and Conclusions: SDS-PAGE results showed a 35 kDa protein band. 150 kDa fH protein was purified by designed Sepharose 4B resin. Far-western blotting confirmed (fH-fHBP) interaction and proper folding of factor H binding protein. PMID:27092222

  20. Molecular cloning and functional expression of a brain-specific somatostatin receptor.

    PubMed Central

    Bruno, J F; Xu, Y; Song, J; Berelowitz, M

    1992-01-01

    The PCR and conventional library screening were used to clone the brain-specific somatostatin receptor rSSTR-4 from a rat genomic library. The deduced amino acid sequence encodes a protein of 384 amino acids and displays structural and sequence homologies with members of the G protein-receptor superfamily. The amino acid sequence of rSSTR-4 is 60% and 48% identical to that of somatostatin receptors SSTR-1 and SSTR-2, respectively, two recently cloned subtypes. Competition curve analysis of the binding properties of the receptor transiently expressed in COS-1 cells revealed a higher apparent affinity for somatostatin 14 than for somatostatin 28. In contrast, the somatostatin analogs SMS 201-995, IM 4-28, and MK-678 failed to displace specific binding in transfected cells. These characteristics resemble the pharmacological binding properties of the previously described brain-specific somatostatin-receptor subtype. Examination of the tissue distribution of mRNA for rSSTR-4 revealed expression limited to various brain regions with highest levels in the cortex and hippocampus. Thus, based on the pharmacology and tissue localization of this receptor, we conclude that rSSTR-4 represents a brain-specific somatostatin receptor. Images PMID:1360663

  1. Murine muscle-specific enolase: cDNA cloning, sequence, and developmental expression.

    PubMed Central

    Lamandé, N; Mazo, A M; Lucas, M; Montarras, D; Pinset, C; Gros, F; Legault-Demare, L; Lazar, M

    1989-01-01

    In vertebrates, the glycolytic enzyme enolase (EC 4.2.1.11) is present as homodimers and heterodimers formed from three distinct subunits of identical molecular weight, alpha, beta, and gamma. We report the cloning and sequencing of a cDNA encoding the beta subunit of murine muscle-specific enolase. The corresponding amino acid sequence shows greater than 80% homology with the beta subunit from chicken obtained by protein sequencing and with alpha and gamma subunits from rat and mouse deduced from cloned cDNAs. In contrast, there is no homology between the 3' untranslated regions of mouse alpha, beta, and gamma enolase mRNAs, which also differ greatly in length. The short 3' untranslated region of beta enolase mRNA accounts for its distinct length, 1600 bases. It is known that a progressive transition from alpha alpha to beta beta enolase occurs in developing skeletal muscle. We show that this transition mainly results from a differential regulation of alpha and beta mRNA levels. Analysis of myogenic cell lines shows that beta enolase gene is expressed at the myoblast stage. Moreover, transfection of premyogenic C3H10T1/2 cells with MyoD1 cDNA shows that the initial expression of beta transcripts occurs during the very first steps of the myogenic pathway, suggesting that it could be a marker event of myogenic lineage determination. Images PMID:2734297

  2. First cloned swamp buffalo produced from adult ear fibroblast cell.

    PubMed

    Tasripoo, K; Suthikrai, W; Sophon, S; Jintana, R; Nualchuen, W; Usawang, S; Bintvihok, A; Techakumphu, M; Srisakwattana, K

    2014-07-01

    The world's first cloned swamp buffalo (Bubalus bubalis) derived from adult ear skin fibroblast has been reported. Donor fibroblast cells were produced from biopsies taken from adult male ear skin and in vitro matured oocytes obtained from a slaughterhouse were used as cytoplasts. A total of 39 blastocysts and 19 morulae fresh embryos were transferred into 12 recipient buffaloes. Progesterone assays indicated establishment of pregnancy in 10 of the 12 buffaloes (83.3%) after 45 days, with six animals still pregnant at 3 months. One recipient maintained pregnancy to term and naturally delivered a 40 kg male calf after 326 days of gestation. DNA analysis showed that the cloned calf was genetically identical to the donor cells. Genotype analyses, using 12 buffalo microsatellite markers, confirmed that the cloned calf was derived from the donor cell lines. In conclusion, the present study reports, for the first time, the establishment of pregnancy and birth of the first cloned Thai swamp buffalo derived from adult ear skin fibroblast cells.

  3. Molecular cloning and expression analysis of mulberry MAPK gene family.

    PubMed

    Wei, Congjin; Liu, Xueqin; Long, Dingpei; Guo, Qing; Fang, Yuan; Bian, Chenkai; Zhang, Dayan; Zeng, Qiwei; Xiang, Zhonghuai; Zhao, Aichun

    2014-04-01

    Mitogen-activated protein kinase (MAPK) cascades play an important role in regulating various biotic and abiotic stresses in plants. Although MAPKs have been identified and characterized in a few model plants, there is little information available for mulberry Morus sp. L., one of the most ecologically and economically important perennial trees. This study identified 47 mulberry Morus notabilis MAPK (MnMAPK) family genes: 32 MnMAPKKK, five MnMAPKK and ten MnMAPK genes, and cloned ten MnMAPK cDNA genes based on a genome-wide analysis of the morus genome database. Comparative analysis with MAPK gene families from other plants suggested that MnMAPKs could be divided into five subfamilies (groups A, B, C, D and E) and they could have similar functions in response to abiotic and biotic stresses. MnMAPK gene expression analysis of different stresses (high/low temperature, salt and drought) and signal molecules (ABA, SA, H2O2 and methyl jasmonate (MeJA)) revealed that all ten MnMAPK genes responded to high/low temperature, salt and drought stresses, and that nine of the ten MnMAPKs (MnMAPK7 excepted) could be induced by ABA, SA, H2O2 and MeJA, which suggested that MnMAPKs may play pivotal roles in signal transduction pathways. Our results indicated that almost all of the MnMAPKs may be involved in environmental stress and defense responses, which provides the basis for further characterization of the physiological functions of MnMAPKs.

  4. Molecular Cloning, Expression and Purification of Truncated hpd Fragment of Haemophilus influenzae in Escherichia coli

    PubMed Central

    Behrouzi, Ava; Bouzari, Saeid; Siadat, Seyed Davar; Jafari, Anis; Irani, Shiva

    2015-01-01

    Background: Nontypeable Haemophilus influenzae (NTHi) is a significant pathogen in children, causing otitis media, sinusitis, conjunctivitis, pneumonia, and occasionally invasive infections. Protein D (PD) belongs to the minor outer-membrane proteins of H. influenza. Moreover, it has been shown that this protein is one of the most potent vaccine candidates against the NTHi strain. Objectives: In the present study, a new truncated form of PD was designed based on conserved areas, and recombinant truncated PD was expressed. Materials and Methods: Truncated PD was designed using bioinformatics tools, and a 345 bp fragment of the truncated hpd gene was amplified by polymerase chain reaction (PCR) from H. influenzae and subsequently cloned into the prokaryotic expression vector pBAD-gIIIA. In addition, for the expression of the recombinant protein, the pBAD-truncated PD plasmid was transformed into competent TOP10 cells. The recombinant protein was expressed with Arabinose. The expressed protein was purified by affinity chromatography using Ni-NTA resin. Results: The cloning of PD was confirmed by colony-PCR and enzymatic digestion. Arabinose 0.2% was able to efficiently induce protein expression. The SDS-PAGE analysis showed that our constructed pBAD-PD-TOP10 efficiently produced a target recombinant protein with a molecular weight of 16 kDa. A high concentration of the recombinant protein was obtained via the purification process by affinity chromatography. The recombinant PD was reacted with peroxidase-conjugated rabbit anti-mouse immunoglobulins. Conclusions: Our results showed that the recombinant protein produced by the pBAD vector in the Escherichia coli system was very efficient. PMID:26464772

  5. Re-Cloning the N27 Dopamine Cell Line to Improve a Cell Culture Model of Parkinson's Disease

    PubMed Central

    Symmes, Breanna; Freed, Curt R.

    2016-01-01

    Parkinson’s disease is characterized by the death of dopaminergic neurons in the substantia nigra. To understand the molecular mechanisms of the disease, an in vitro model is important. In the 1990s, we used the SV40 large T antigen to immortalize dopaminergic neurons derived from Embryonic Day 14 rat mesencephalon. We selected a clone for its high expression of dopaminergic neuron markers such as tyrosine hydroxylase (TH), and we named it 1RB3AN27 (N27). Because the original N27 cell line has been passaged many times, the line has become a mixture of cell types with highly variable expression of TH. In the current study, we have performed multiple rounds of clonal cultures and have identified a dopaminergic cell clone expressing high levels of TH and the dopamine transporter (DAT). We have named this new clone N27-A. Nearly 100% of N27-A cells express TH, DAT and Tuj1. Western blots have confirmed that N27-A cells have three to four times the levels of TH and DAT compared to the previous mixed population in N27. Further analysis has shown that the new clone expresses the dopamine neuron transcription factors Nurr1, En1, FoxA2 and Pitx3. The N27-A cells express the vesicular monoamine transporter (VMAT2), but do not express dopamine-beta-hydroxylase (DβH), the enzyme responsible for converting dopamine to norepinephrine. Functional analysis has shown that N27-A cells are more sensitive than N27 cells to neurotoxins taken up by the dopamine transporter such as 6-hydroxydopamine and 1-methyl-4-phenylpyridine (MPP+). The DAT inhibitor nomifensine can block MPP+ induced toxicity. The non-selective toxic effects of hydrogen peroxide were similar in both cell lines. The N27-A cells show dopamine release under basal and depolarization conditions. We conclude that the new N27-A clone of the immortalized rat dopaminergic cell line N27 should provide an improved in vitro model for Parkinson’s disease research. PMID:27512998

  6. Re-Cloning the N27 Dopamine Cell Line to Improve a Cell Culture Model of Parkinson's Disease.

    PubMed

    Gao, Lu; Zhou, Wenbo; Symmes, Breanna; Freed, Curt R

    2016-01-01

    Parkinson's disease is characterized by the death of dopaminergic neurons in the substantia nigra. To understand the molecular mechanisms of the disease, an in vitro model is important. In the 1990s, we used the SV40 large T antigen to immortalize dopaminergic neurons derived from Embryonic Day 14 rat mesencephalon. We selected a clone for its high expression of dopaminergic neuron markers such as tyrosine hydroxylase (TH), and we named it 1RB3AN27 (N27). Because the original N27 cell line has been passaged many times, the line has become a mixture of cell types with highly variable expression of TH. In the current study, we have performed multiple rounds of clonal cultures and have identified a dopaminergic cell clone expressing high levels of TH and the dopamine transporter (DAT). We have named this new clone N27-A. Nearly 100% of N27-A cells express TH, DAT and Tuj1. Western blots have confirmed that N27-A cells have three to four times the levels of TH and DAT compared to the previous mixed population in N27. Further analysis has shown that the new clone expresses the dopamine neuron transcription factors Nurr1, En1, FoxA2 and Pitx3. The N27-A cells express the vesicular monoamine transporter (VMAT2), but do not express dopamine-beta-hydroxylase (DβH), the enzyme responsible for converting dopamine to norepinephrine. Functional analysis has shown that N27-A cells are more sensitive than N27 cells to neurotoxins taken up by the dopamine transporter such as 6-hydroxydopamine and 1-methyl-4-phenylpyridine (MPP+). The DAT inhibitor nomifensine can block MPP+ induced toxicity. The non-selective toxic effects of hydrogen peroxide were similar in both cell lines. The N27-A cells show dopamine release under basal and depolarization conditions. We conclude that the new N27-A clone of the immortalized rat dopaminergic cell line N27 should provide an improved in vitro model for Parkinson's disease research. PMID:27512998

  7. International policy failures: cloning and stem-cell research.

    PubMed

    Tauer, Carol A

    In late 2003, two international bodies were unable to resolve disagreements that involved bioethical issues. First, the United Nations General Assembly failed to pass a treaty on reproductive cloning because of insistence by some countries that the treaty include a ban on cloning for research. In view of the importance of enacting prohibition of reproductive cloning, the two issues should be separated and each argued on its own merits. Relevant objections to separation of the two issues can be refuted. Second, the European Union (EU) failed to agree on conditions for funding stem-cell research because of the diversity of views and policies of the countries of the EU. Because a stalemate was reached, funding decisions in the next programme cycle will be made on an ad hoc basis. Scientists will not have information they need to plan research programmes, suggesting that clear guidelines, even if restrictive, are preferable to vague unpublicised criteria.

  8. [Stem cells--cloning, plasticity, bioethic].

    PubMed

    Pflegerl, Pamina; Keller, Thomas; Hantusch, Brigitte; Hoffmann, Thomas Sören; Kenner, Lukas

    2008-01-01

    Stem cells with certain characteristics have become promising tools for molecular medicine. They have the potential to self-regenerate and to differentiate into specific tissues. Besides their great potential, embryonic stem cells (ESC) run the risk of enhanced tumorigenesis. The use of human embryonic stem cells (hESC) is ethically problematic because their isolation involves the destruction of human embryos. Recently developed methods generate are able to pluripotent stem cells from fibroblasts. Alternatives for ESC are adult stem cells (ASC) derived from bone marrow, cord blood, amniotic fluid and other tissues. The following article is on the basis of testimony of Lukas Kenner for the German Bundestag about the use of ESC for research, therapy and drug development. Ethical aspects are taken into consideration.

  9. Somatic cell nuclear transfer (cloning): implications for the medical practitioner.

    PubMed

    Tong, W F; Ng, Y F; Ng, S C

    2002-07-01

    The current century will bring tremendous changes to the science and the practice of medicine. This century will be acknowledged as the century of Biology as the fusion of molecular genetics and experimental embryology pushes the barriers of science beyond perimeters that we have thought existed, as much as the past century was the century of Physics, with all the exact scientific calculations and predictions, resulting in electricity, nuclear power and quantum physics. The first major breakthrough has been the pioneering work of Wilmut and Campbell, first with the birth of Megan and Moran in 1995 (1), followed by the birth of Dolly the sheep, the first reported mammalian clone from a fully differentiated adult cell, reported in July 1996 (2). However, current cloning techniques are an extension of over 40 years of research using nuclei derived from non-human embryonic and fetal cells. However, following the birth of Dolly, the prospects of cloning technology have extended to ethically hazier areas of human cloning and embryonic stem cell research. This review hopes to bring the reader closer to the science and the ethics of this new technology, and what the implications are for the medical practitioner.

  10. Somatic cell nuclear transfer (cloning): implications for the medical practitioner.

    PubMed

    Tong, W F; Ng, Y F; Ng, S C

    2002-07-01

    The current century will bring tremendous changes to the science and the practice of medicine. This century will be acknowledged as the century of Biology as the fusion of molecular genetics and experimental embryology pushes the barriers of science beyond perimeters that we have thought existed, as much as the past century was the century of Physics, with all the exact scientific calculations and predictions, resulting in electricity, nuclear power and quantum physics. The first major breakthrough has been the pioneering work of Wilmut and Campbell, first with the birth of Megan and Moran in 1995 (1), followed by the birth of Dolly the sheep, the first reported mammalian clone from a fully differentiated adult cell, reported in July 1996 (2). However, current cloning techniques are an extension of over 40 years of research using nuclei derived from non-human embryonic and fetal cells. However, following the birth of Dolly, the prospects of cloning technology have extended to ethically hazier areas of human cloning and embryonic stem cell research. This review hopes to bring the reader closer to the science and the ethics of this new technology, and what the implications are for the medical practitioner. PMID:12437047

  11. Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer.

    PubMed

    Li, Zicong; He, Xiaoyan; Chen, Liwen; Shi, Junsong; Zhou, Rong; Xu, Weihua; Liu, Dewu; Wu, Zhenfang

    2013-10-01

    The somatic cell nuclear transfer (SCNT) technique has been widely applied to clone pigs or to produce genetically modified pigs. Currently, this technique relies mainly on using terminally differentiated fibroblasts as donor cells. To improve cloning efficiency, only partially differentiated multipotent mesenchymal stem cells (MSCs), thought to be more easily reprogrammed to a pluripotent state, have been used as nuclear donors in pig SCNT. Although in vitro-cultured embryos cloned from porcine MSCs (MSCs-embryos) were shown to have higher preimplantation developmental ability than cloned embryos reconstructed from fibroblasts (Fs-embryos), the difference in in vivo full-term developmental rate between porcine MSCs-embryos and Fs-embryos has not been investigated so far. In this study, we demonstrated that blastocyst total cell number and full-term survival abilities of MSCs-embryos were significantly higher than those of Fs-embryos cloned from the same donor pig. The enhanced developmental potential of MSCs-embryos may be associated with their nuclear donors' DNA methylation profile, because we found that the methylation level of imprinting genes and repeat sequences differed between MSCs and fibroblasts. In addition, we showed that use of transgenic porcine MSCs generated from transgene plasmid transfection as donor cells for SCNT can produce live transgenic cloned pigs. These results strongly suggest that porcine bone marrow MSCs are a desirable donor cell type for production of cloned pigs and genetically modified cloned pigs via SCNT.

  12. Cloning, pharmacological characterization and expression analysis of Atlantic cod (Gadus morhua, L.) nuclear progesterone receptor.

    PubMed

    Chen, Shi X; Almeida, Fernanda F L; Andersson, Eva; Taranger, Geir Lasse; Schmidt, Ruben; Schulz, Rüdiger W; Bogerd, Jan

    2012-10-01

    To better understand the role(s) of progesterone in fish spermatogenesis, we cloned the nuclear progesterone receptor (Pgr) of Atlantic cod. The open-reading frame of the cod pgr consists of 2076 bp, coding for a 691-amino acids-long protein that shows the highest similarity with other piscine Pgr proteins. Functional characterization of the receptor expressed in mammalian cells revealed that the cod Pgr exhibited progesterone-specific, dose-dependent induction of reporter gene expression, with 17α,20β-dihydroxy-4-pregnen-3-one (DHP), a typical piscine progesterone, showing the highest potency in activating the receptor. During ontogenesis, the pgr mRNA was undetectable in embryo's 24 h after fertilization, but became detectable 4 days after fertilization. During the larval stage, the expression levels increased steadily with the development of the larvae. In adult fish, pgr was predominantly expressed in gonads of both sexes. During the onset of puberty, testicular pgr transcript levels started to increase during rapid spermatogonial proliferation, and peaked when spermiation started. In situ hybridization studies using testis tissue during the rapid growth phase containing all germ cell stages indicated that in cod, pgr mRNA is predominantly located in Sertoli cells that are in contact with proliferating spermatogonia. Taken together, our data suggests that the Pgr is involved in mediating progestagen stimulation of the mitotic expansion of spermatogonia, and in processes associated with the spermiation/spawning period in Atlantic cod. PMID:22885560

  13. Cloning and expression of hemicellulases from Aspergillus nidulans in Pichia pastoris.

    PubMed

    Vasu, Prasanna; Bauer, Stefan; Savary, Brett J

    2012-01-01

    The methylotrophic yeast Pichia pastoris is increasingly used for heterologous expression of high quality proteins in laboratory-scale (milligram) quantities. Commercially available polysaccharide-active enzyme preparations have limited applications in plant cell wall research due to their heterogeneous mix of hydrolytic activities. P. pastoris provides an ideal in vitro expression system for producing monocomponent enzymes, since it lacks endogenous plant cell wall-active enzymes and can perform eukaryotic post-translational modifications (i.e., glycosylation). We have routinely prepared cDNA constructs from Aspergillus nidulans encoding a broad array of hydrolases active on various linkages contained in plant cell wall polysaccharides. The cDNAs were inserted into the pPICZα C shuttle vector (Invitrogen) in-frame with the Saccharomyces cerevisiae α-secretion factor and expressed under the transcriptional control of the highly inducible alcohol oxidase 1 (AOX1) promoter. The enzyme products were efficiently secreted into buffered complex methanol medium (BMMY) as C-terminal his-tagged proteins for simple one-step affinity purification. The insertion of the c-Myc epitope enabled easy immunodetection. Here we present the detailed protocols for primer design, cloning, expression, and activity assays for a representative set of xylan-acting hemicellulases produced in P. pastoris.

  14. Generation of human lactoferrin transgenic cloned goats using donor cells with dual markers and a modified selection procedure.

    PubMed

    An, Li-You; Yuan, Yu-Guo; Yu, Bao-Li; Yang, Ting-Jia; Cheng, Yong

    2012-10-01

    The objective was to use dual markers to accurately select genetically modified donor cells and ensure that the resulting somatic cell nuclear transfer kids born were transgenic. Fetal fibroblast cells were transfected with dual marking gene vector (pCNLF-ng) that contained the red-shifted variant of the jellyfish green fluorescent protein (LGFP) and neomycin resistance (Neo) markers. Cell clones that were G418-resistant and polymerase chain reaction-positive were subcultured for several passages; individual cells of the clones were examined with fluorescence microscopy to confirm transgenic integration. Clones in which every cell had bright green fluorescence were used as donor cells for nuclear transfer. In total, 86.7% (26/30) cell clones were confirmed to have transgenic integration of the markers by polymerase chain reaction, 76.7% (23/30) exhibited fluorescence, but only 40% (12/30) of these fluorescent cell clones had fluorescence in all cell populations. Moreover, through several cell passages, only 20% (6/30) of the cell clones exhibited stable LGFP expression. Seven transgenic cloned offspring were produced from these cells by nuclear transfer. Overall, the reconstructed embryo fusion rate was 76.6%, pregnancy rates at 35 and 60 days were 39.1% and 21.7%, respectively, and the offspring birth rate was 1.4%. There were no significant differences between nuclear transfer with dual versus a single (Neo) marker (overall, 73.8% embryo fusion rate, 53.8% and 26.9% pregnancy rates, and 1.9% birth rate with five offspring). In conclusion, the use of LGFP/Neo dual markers and an optimized selection procedure reliably screened genetically modified donor cells, excluded pseudotransgenic cells, and led to production of human lactoferrin transgenic goats. Furthermore, the LGFP/Neo markers had no adverse effects on the efficiency of somatic cell nuclear transfer.

  15. Expression of cloned α6* nicotinic acetylcholine receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Lindstrom, Jon

    2015-09-01

    Nicotinic acetylcholine receptors (AChRs) are ACh-gated ion channels formed from five homologous subunits in subtypes defined by their subunit composition and stoichiometry. Some subtypes readily produce functional AChRs in Xenopus oocytes and transfected cell lines. α6β2β3* AChRs (subtypes formed from these subunits and perhaps others) are not easily expressed. This may be because the types of neurons in which they are expressed (typically dopaminergic neurons) have unique chaperones for assembling α6β2β3* AChRs, especially in the presence of the other AChR subtypes. Because these relatively minor brain AChR subtypes are of major importance in addiction to nicotine, it is important for drug development as well as investigation of their functional properties to be able to efficiently express human α6β2β3* AChRs. We review the issues and progress in expressing α6* AChRs. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.

  16. Cloning and expression of a rat brain. alpha. sub 2B -adrenergic receptor

    SciTech Connect

    Flordellis, C.S.; Handy, D.E.; Bresnahan, M.R.; Zannis, V.I.; Gavras, H. )

    1991-02-01

    The authors isolated a cDNA clone (RB{alpha}{sub 2B}) and its homologous gene (GR{alpha}{sub 2B}) encoding an {alpha}{sub 2B}-adrenergic receptor subtype by screening a rat brain cDNA and a rat genomic library. Nucleotide sequence analysis showed that both clones code for a protein of 458 amino acids, which is 87% homologous to the human kidney glycosylated adrenergic receptor ({alpha}{sub 2}-C4) and divergent from the rat kidney nonglycosylated {alpha}{sub 2B} subtype (RNG{alpha}{sub 2}). Transient expression of RB{alpha}{sub 2B} in COS-7 cells resulted in high-affinity saturable binding for ({sup 3}H)rauwolscine and a high receptor number in the membranes of transfected COS-7 cells. Pharmacological analysis demonstrated that the expressed receptor bound adrenergic ligands with the following order of potency: rauwolscine {gt} yohimbine {gt} prazosin {gt} oxymetazoline, with a prazosin-to-oxymetazoline K{sub i} ratio of 0.34. This profile is characteristic of the {alpha}{sub 2B}-adrenergic receptor subtype. Blotting analysis of rat brain mRNA gave one major and two minor mRNA species, and hybridization with strand-specific probes showed that both DNA strands of GR{alpha}{sub 2B} may be transcriptionally active. These findings show that rat brain expresses an {alpha}{sub 2B}-adrenergic receptor subtype that is structurally different from the rat kidney nonglycosylated {alpha}{sub 2B} subtype. Thus the rat expresses at least two divergent {alpha}{sub 2B}-adrenergic receptors.

  17. Cloning, expression, and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum

    SciTech Connect

    Hao, Z.; Chen, S.; Wilson, D.B.

    1999-11-01

    An Mn{sup 2+} and Cd{sup 2+} uptake gene, mntA, was cloned from Lactobacillus plantarum ATCC 14917 into Escherichia coli. Its expression conferred on E. coli cells increased Cd{sup 2+} sensitivity as well as energy-dependent Cd{sup 2+} uptake activity. Both transcription and translation of mntA were induced by Mn{sup 2+} starvation in L. plantarum, as indicated by reverse transcriptase PCR and immunoblotting. Two Cd{sup 2+} uptake systems have been identified in L. plantarum: one is a high-affinity Mn{sup 2+} and Cd{sup 2+} uptake system that is expressed in Mn{sup 2+}-starved cells, and the other is a nonsaturable Cd{sup 2+} uptake system that is expressed in Cd{sup 2+}-sufficient cells. MntA was not detected in an Mn{sup 2+}-dependent mutant of L. plantarum which had lost high-affinity Mn{sup 2+} and Cd{sup 2+} uptake activity. The results suggest that mntA is the gene encoding the high-affinity Mn{sup 2+} and Cd{sup 2+} transporter. On the basis of its predicted amino acid sequence, MntA belongs to the family of P-type cation-translocating ATPases. The topology and potential Mn{sup 2+}- and Cd{sup 2+}-binding sites of MntA are discussed. A second clone containing a low-affinity Cd{sup 2+} transport system was also isolated.

  18. Molecular cloning and expression of a unique rabbit osteoclastic phosphotyrosyl phosphatase.

    PubMed Central

    Wu, L W; Baylink, D J; Lau, K H

    1996-01-01

    Tyrosyl phosphorylation plays an important regulatory role in osteoclast formation and activity. Phosphotyrosyl phosphatases (PTPs), in addition to tyrosyl kinases, are key determinants of intracellular tyrosyl phosphorylation levels. To identify the PTP that might play an important regulatory role in osteoclasts, we sought to clone an osteoclast-specific PTP. A putative full-length clone encoding a unique PTP (referred to as PTP-oc) was isolated from a 10-day-old rabbit osteoclastic cDNA library and sequenced. A single open reading frame predicts a protein with 405 amino acid residues containing a putative extracellular domain, a single transmembrane region, and an intracellular portion. PTP-oc is structurally unique in that, unlike most known transmembrane PTPs, it has a short extracellular region (eight residues), lacks a signal peptide proximal to the N-terminus, and contains only a single 'PTP catalytic domain'. The PTP catalytic domain shows 45-50% sequence identity with the catalytic domain of human HPTP beta and with the first catalytic domain of LCA. The PTP-oc gene exists as a single copy in the rabbit genome. The corresponding mRNA (3.8 kb) is expressed in osteoclasts but not in other bone-derived cells (e.g. osteoblasts and stromal cells). The 3.8 kb PTP-oc mRNA transcript was also expressed in the rabbit brain, kidney and spleen. However, the brain and kidney, but not osteoclasts or spleen, also expressed a larger transcript (6.5 kb). The PTP catalytic domain of PTP-oc was expressed as a GST-cPTP-oc fusion protein. In vitro phosphatase assays indicated that the purified fusion protein exhibited phosphatase activities at neutral pH values toward p-nitrophenyl phosphate, phosphotyrosyl Raytide, and phosphotyrosyl histone, whereas it had no appreciable activity toward phosphoseryl casein. In summary, we have: (a) cloned and sequenced the putative full-length cDNA of a unique PTP (PTP-oc) from rabbit osteoclasts; (b) shown that the mature 3.8 kb PTP-oc m

  19. Establishment of a vascular endothelial cell-reactive type II NKT cell clone from a rat model of autoimmune vasculitis.

    PubMed

    Iinuma, Chihiro; Waki, Masashi; Kawakami, Ai; Yamaguchi, Madoka; Tomaru, Utano; Sasaki, Naomi; Masuda, Sakiko; Matsui, Yuki; Iwasaki, Sari; Baba, Tomohisa; Kasahara, Masanori; Yoshiki, Takashi; Paletta, Daniel; Herrmann, Thomas; Ishizu, Akihiro

    2015-02-01

    We previously generated a rat model that spontaneously developed small vessel vasculitis (SVV). In this study, a T cell clone reactive with rat vascular endothelial cells (REC) was established and named VASC-1. Intravenous injection of VASC-1 induced SVV in normal recipients. VASC-1 was a TCRαβ/CD3-positive CD4/CD8 double-negative T cell clone with expression of NKG2D. The cytokine mRNA profile under unstimulated condition was positive for IL-4 and IFN-γ but negative for IL-2 and IL-10. After interaction with REC, the mRNA expression of IL-2, IL-5 and IL-6 was induced in VASC-1, which was inhibited by blocking of CD1d on the REC surface. Although the protein levels of these cytokines seemed to be lower than the detection limit in the culture medium, IFN-γ was detectable. The production of IFN-γ from the VASC-1 stimulated with LPS-pre-treated REC was inhibited by the CD1d blockade on the REC. These findings indicated VASC-1 as an NKT cell clone. The NKT cell pool includes two major subsets, namely types I and II. Type I NKT cells are characterized by expression of semi-invariant TCRs and the potential to bind to marine sponge-derived α-galactosylceramide (α-GalCer) loaded on CD1d; whereas, type II NKT cells do not manifest these characteristics. VASC-1 exhibited a usage of TCR other than the type I invariant TCR α chain and did not bind to α-GalCer-loaded CD1d; therefore, it was determined as a type II NKT cell clone. The collective evidence suggested that REC-reactive type II NKT cells could be involved in the pathogenesis of SVV in rats.

  20. An array of Escherichia coli clones over-expressing essential proteins: A new strategy of identifying cellular targets of potent antibacterial compounds

    SciTech Connect

    Xu, H. Howard . E-mail: hxu3@calstatela.edu; Real, Lilian; Bailey, Melissa Wu

    2006-11-03

    With the advancement of high throughput screening, it has become easier and faster to discover hit compounds that inhibit proliferation of bacterial cells. However, development in technologies used to identify cellular targets of potent antibacterial inhibitors has lagged behind. Here, we describe a novel strategy of target identification for antibacterial inhibitors using an array of Escherichia coli clones each over-expressing one essential protein. In a proof-of-concept study, eight essential genes were cloned into pLex5BA vector under the control of an inducible promoter. Over-expression of target proteins was confirmed. For two clones, one over-expressing FabI and the other over-expressing MurA enzymes, the host cells became 17- and 139-fold more resistant to the specific inhibitors triclosan and phosphomycin, respectively, while the susceptibility of other clones towards these inhibitors remained unchanged after induction of gene expression. Target identification via target protein over-expression was demonstrated using both mixed clone and individual clone assay formats.

  1. Cloning, expression, crystallization and preliminary X-ray data analysis of norcoclaurine synthase from Thalictrum flavum

    SciTech Connect

    Pasquo, Alessandra; Bonamore, Alessandra; Franceschini, Stefano; Macone, Alberto; Boffi, Alberto; Ilari, Andrea

    2008-04-01

    The cloning, expression, crystallization and preliminary X-ray data analysis of norcoclaurine synthase from T. flavum, a protein which catalyzes the first committed step in the biosynthesis of benzylisoquinoline alkaloids, are reported. Norcoclaurine synthase (NCS) catalyzes the condensation of 3,4-dihydroxyphenylethylamine (dopamine) and 4-hydroxyphenylacetaldehyde (4-HPAA) as the first committed step in the biosynthesis of benzylisoquinoline alkaloids in plants. The protein was cloned, expressed and purified. Crystals were obtained at 294 K by the hanging-drop vapour-diffusion method using ammonium sulfate and sodium chloride as precipitant agents and diffract to better than 3.0 Å resolution using a synchrotron-radiation source. The crystals belong to the trigonal space group P3{sub 1}21, with unit-cell parameters a = b = 86.31, c = 118.36 Å. A selenomethionine derivative was overexpressed, purified and crystallized in the same space group. A complete MAD data set was collected at 2.7 Å resolution. The model is under construction.

  2. Molecular cloning and expression of bovine kappa-casein in Escherichia coli

    SciTech Connect

    Kang, Y.C.; Richardson, T.

    1988-01-01

    A cDNA library was constructed using poly(A)/sup +/RNA from bovine mammary gland. This cDNA library of 6000 clones was screened employing colony hybridization using /sup 32/P-labelled oligonucleotide probes and restriction endonuclease mapping. The cDNA from the selected plasmid, pKR76, was sequenced using the dideoxy-chain termination method. The cDNA insert of pKR76 carries the full-length sequence, which codes for mature kappa-casein protein. The amino acid sequence deduced from the cDNA sequence fits the published amino acid sequence with three exceptions; the reported pyroglutamic acid at position 1, tyrosine at position 35, and aspartic acid at position 81 are, respectively, a glutamine, a histidine, and an asparagine in the clone containing pKR76. The MspI-, NlaIV-cleaved fragment (630 base pair) from the kappa-casein cDNA insert has been subcloned into expression vectors pUC18 and pKK233-2, which contain a lac promoter and a trc promoter, respectively. Escherichia coli cells carrying the recombinant expression plasmids were shown to produce kappa-casein protein having the expected mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and being recognized by specific antibodies raised against natural bovine kappa-casein.

  3. [Cloning, expression and characterization of a new hybrid AMP gene of Hex-Mag].

    PubMed

    Li, Gui-ping; Chen, Yi-ben

    2007-02-01

    To enhance the antibacterial ability of Magaininl-12, its N side was joined with an alkaline peptide named Hexapeptide( RRWQWR), which would make Magaininl-12 cling to the membrane of bacterial cells even tighter. According to the partiality codon of Pichia pastoris, a new hybrid antibacterial peptide Hex-Mag was designed based on the sequence of Hexapeptide and Magainin( 1-12). Synthesized through gene splicing by overlap extension, the hybrid gene was cloned into pPIC9 to construct the expression vector pPIC9-HM. After restriction enzyme analysis and purification, the pPIC9-HM was transformed into Pichia pastoris GS115. And the positive clones screened by the phenotype were induced by methanol. After optimized the requirements for the flask-shaking culture fermentation, the hybrid antibacterial peptide was expressed on high level. The new peptide, which has a weight of 2.3kDa, could remain its inhibition activity after treating for more than 3 hours in boiled water. Detected by agrose diffusion assay, Hex-Mag showed its broad-spectrum antibacterial abilities not only to Gram-negative bacteria but also to Gram-positive bacteria. The function of additive positive charges were testified by the antibacterial experiments, and the results showed the activity of Hex-Mag was stronger than that of Magainin1-12 obviously.

  4. Rabbit somatic cell cloning: effects of donor cell type, histone acetylation status and chimeric embryo complementation.

    PubMed

    Yang, Feikun; Hao, Ru; Kessler, Barbara; Brem, Gottfried; Wolf, Eckhard; Zakhartchenko, Valeri

    2007-01-01

    The epigenetic status of a donor nucleus has an important effect on the developmental potential of embryos produced by somatic cell nuclear transfer (SCNT). In this study, we transferred cultured rabbit cumulus cells (RCC) and fetal fibroblasts (RFF) from genetically marked rabbits (Alicia/Basilea) into metaphase II oocytes and analyzed the levels of histone H3-lysine 9-lysine 14 acetylation (acH3K9/14) in donor cells and cloned embryos. We also assessed the correlation between the histone acetylation status of donor cells and cloned embryos and their developmental potential. To test whether alteration of the histone acetylation status affects development of cloned embryos, we treated donor cells with sodium butyrate (NaBu), a histone deacetylase inhibitor. Further, we tried to improve cloning efficiency by chimeric complementation of cloned embryos with blastomeres from in vivo fertilized or parthenogenetic embryos. The levels of acH3K9/14 were higher in RCCs than in RFFs (P<0.05). Although the type of donor cells did not affect development to blastocyst, after transfer into recipients, RCC cloned embryos induced a higher initial pregnancy rate as compared to RFF cloned embryos (40 vs 20%). However, almost all pregnancies with either type of cloned embryos were lost by the middle of gestation and only one fully developed, live RCC-derived rabbit was obtained. Treatment of RFFs with NaBu significantly increased the level of acH3K9/14 and the proportion of nuclear transfer embryos developing to blastocyst (49 vs 33% with non-treated RFF, P<0.05). The distribution of acH3K9/14 in either group of cloned embryos did not resemble that in in vivo fertilized embryos suggesting that reprogramming of this epigenetic mark is aberrant in cloned rabbit embryos and cannot be corrected by treatment of donor cells with NaBu. Aggregation of embryos cloned from NaBu-treated RFFs with blastomeres from in vivo derived embryos improved development to blastocyst, but no cloned

  5. Cloning

    MedlinePlus

    ... mammals. These twins are produced when a fertilized egg splits, creating two or more embryos that carry ... of the donor animal's somatic cell into an egg cell, or oocyte, that has had its own ...

  6. Transcript levels of several epigenome regulatory genes in bovine somatic donor cells are not correlated with their cloning efficiency.

    PubMed

    Zhou, Wenli; Sadeghieh, Sanaz; Abruzzese, Ronald; Uppada, Subhadra; Meredith, Justin; Ohlrichs, Charletta; Broek, Diane; Polejaeva, Irina

    2009-09-01

    Among many factors that potentially affect somatic cell nuclear transfer (SCNT) embryo development is the donor cell itself. Cloning potentials of somatic donor cells vary greatly, possibly because the cells have different capacities to be reprogrammed by ooplasma. It is therefore intriguing to identify factors that regulate the reprogrammability of somatic donor cells. Gene expression analysis is a widely used tool to investigate underlying mechanisms of various phenotypes. In this study, we conducted a retrospective analysis investigating whether donor cell lines with distinct cloning efficiencies express different levels of genes involved in epigenetic reprogramming including histone deacetylase-1 (HDAC1), -2 (HDAC2); DNA methyltransferase-1 (DNMT1), -3a (DNMT3a),-3b (DNMT3b), and the bovine homolog of yeast sucrose nonfermenting-2 (SNF2L), a SWI/SNF family of ATPases. Cell samples from 12 bovine donor cell lines were collected at the time of nuclear transfer experiments and expression levels of the genes were measured using quantitative polymerase chain reaction (PCR). Our results show that there are no significant differences in expression levels of these genes between donor cell lines of high and low cloning efficiency defined as live calving rates, although inverse correlations are observed between in vitro embryo developmental rates and expression levels of HDAC2 and SNF2L. We also show that selection of stable reference genes is important for relative quantification, and different batches of cells can have different gene expression patterns. In summary, we demonstrate that expression levels of these epigenome regulatory genes in bovine donor cells are not correlated with cloning potential. The experimental design and data analysis method reported here can be applied to study any genes expressed in donor cells.

  7. Human CD4-8- -derived clones. Phenotypic and functional characteristics and variation between donors in patterns of T-cell receptor gamma gene rearrangements.

    PubMed

    Christmas, S E

    1989-06-01

    Clones were derived from highly purified human CD4-8- lymphocytes from three different donors and maintained in the presence of interleukin 2 and phytohaemagglutinin. Considerable variation was noted between donors in the phenotype and T-cell receptor (TCR) gamma gene rearrangements of CD4-8- -derived clones. In one donor, most clones remained CD4-8- and all were CD3+WT31- and therefore expressed gamma/delta heterodimers. TCR gamma gene rearrangements almost all involved C gamma 1. In contrast, most clones from a second donor were CD3+WT31+, and therefore expressed alpha/beta heterodimers, and many were positive for CD4 or CD8. Most clones from a third donor were CD3+WT31- with a high proportion of TCR gamma gene rearrangements involving C gamma 2. The V gamma 9JP rearrangement was exclusively confined to CD3+WT31- clones and was present in the majority of clones. Almost all CD3+WT31- clones showed TCR beta as well as gamma gene rearrangements. Most CD3+WT31- clones with at least one chromosome rearranged to C gamma 1 exhibited high non-major histocompatibility complex (MHC)-restricted cytotoxic activity, while most of those with two C gamma 2 rearrangements, and therefore expressing a non-disulphide-linked gamma/delta heterodimer, had low activity. Preincubation of effector cells with anti-CD3 strongly inhibited the cytotoxicity of CD3+WT31- clones while that of CD3+WT31+ clones was enhanced. This implicates the CD3-gamma/delta complex in target cell recognition by cytotoxic gamma/delta-bearing T-cell clones. The results show that there is heterogeneity between donors in the relative proportions of CD4-8- -derived clones expressing alpha/beta heterodimers and the different forms of the gamma/delta heterodimer.

  8. Cloning and in vitro expression of a melanoma-associated antigen immunogenic in patients with melanoma.

    PubMed

    Hayashibe, K; Mishima, Y; Ferrone, S

    1991-08-01

    The purpose of this study was to identify human melanoma-associated Ag (MAA) that are immunogenic in patients, because these molecules may be useful immunogens to implement active specific immunotherapy. To this end, an expression cDNA library constructed from the human melanoma cell line A375 was screened with sera from patients with melanoma. A 1029-bp cDNA (designated D-1) was isolated. Its nucleotide sequence showed no significant homology with viral and mammalian sequences stored in GE-NETYX. cDNA D-1 hybridized to a 2.0-kb mRNA species from human melanoma, neuroblastoma, erythroleukemia, B lymphoid, and T lymphoid cell lines but not from a renal carcinoma cell line, PBL, and cultured skin fibroblasts. The D-1 clone produced a fusion protein that displayed a significantly higher reactivity with sera from patients with melanoma than from healthy controls. Furthermore, D-1 fusion protein induced in mice antibodies that immunoprecipitated a 50-kDa component from cultured human melanoma cells. The structural properties of D-1 MAA are different from those of previously described MAA. These results suggest that the approach we have applied may be useful to identify novel MAA expressed by melanoma cells. Furthermore, the immunogenicity of recombinant D-1 protein suggests that it may be a valuable immunogen to implement active specific immunotherapy in patients with melanoma, if additional experiments show that it has the appropriate tissue distribution.

  9. Cloning, expression and methylation analysis of piwil2 in half-smooth tongue sole (Cynoglossus semilaevis).

    PubMed

    Zhang, Liyan; Liu, Wanjun; Shao, Changwei; Zhang, Ning; Li, Hailong; Liu, Kun; Dong, Zhongdian; Qi, Qian; Zhao, Wen; Chen, Songlin

    2014-12-01

    piwi is an important regulator gene in germ cell division during spermatogenesis. piwi homologous genes are involved in gametogenesis and germline specification, and knocking down these genes could affect germ cell meiotic progression. To understand the function of piwi-related genes in spermatogenesis, we cloned a Piwi-subfamily member (piwil2 gene) from the gonad of Cynoglossus semilaevis. The full-length of piwil2 cDNA was 3314bp, including a 3162bp open reading frame (ORF), a 60bp 5'-UTR, along with a 92bp 3'-UTR, and encoded a predicted protein of 1053 amino acid residues. Phylogenetic analysis showed that the PIWIL2 putative protein belonged to the Argonaute protein family, and Piwi-subfamily, with typical PAZ and Piwi domains. Ultrathin sections of different gonadal stages, and real-time quantitative PCR showed that the relative expression of the piwil2 gene couldn't be detected until day 95 (95days) larvae, when germ cell divided rapidly in C. semilaevis. The piwil2 transcripts were more abundant in gonads of males and neo-males than in females, and weakly expressed in other tissues and organs. Compared with the relative expression of piwil2 in gonads, the CpG methylation levels were significantly higher in females. Chromosomal fluorescence in situ hybridization (FISH) showed that the piwil2 gene was located on the Z sex chromosome of C. semilaevis. These results suggest that piwil2 plays an important role in spermatogenesis of C. semilaevis. PMID:24794875

  10. Cloning, characterization, and expression of a cDNA encoding an inducible nitric oxide synthase from the human chondrocyte.

    PubMed Central

    Charles, I G; Palmer, R M; Hickery, M S; Bayliss, M T; Chubb, A P; Hall, V S; Moss, D W; Moncada, S

    1993-01-01

    Incubation of human articular chondrocytes with interleukin 1 beta results in the time-dependent expression of nitric oxide (NO) synthase. We report here the isolation of a cDNA clone which encodes a protein of 1153 amino acids with a molecular mass of 131,213 Da and a calculated isoelectric point of 7.9. CHO cells transfected with a plasmid harboring this cDNA clone expressed NO synthase activity that was inhibited by some L-arginine analogues. The deduced amino acid sequence of the human chondrocyte inducible NO synthase shows 51% identity and 68% similarity with the endothelial NO synthase and 54% identity and 70% similarity with the neuronal NO synthase. The similarity (88%) between the human chondrocyte NO synthase cDNA sequence and that reported for the murine macrophage suggests that the inducible class of enzyme is conserved between different cell types and across species. Images Fig. 1 PMID:7504305

  11. Cloning and expression of pinB gene from Triticum monococum seeds.

    PubMed

    Mohammadi, M; Kane, V; Ng, A; Zaidi, M A; Altosaar, I; Ni, F; Tanchak, M

    2003-01-01

    Puroindolines (PIN) are low molecular weight, cysteine-rich, endosperm-specific, basic proteins with a unique tryptophan-rich domain found in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) as well as other members of Triticaceae. PINs appear to be involved in both flour softness as well as resistance against fungal diseases. These proteins are known to be the major components of 'friabilin' associated with the surface of water washed starch grains and possess lipid binding properties. Structural characterization of puroindolines from Triticum monococum was initiated by amplifying and subsequently cloning the corresponding pin gene into an expression vector, known as pET-32a(+). The protein contains five tryptophanin domains and ten cysteine residues. The pinB gene was fused with the 109aa Trx.Tag thioredoxin for a high-level expression. The cloning sites used for producing fusion proteins also contained cleavable His.Tag and S.tag sequences for detection and purification. After transformation of competent Origami cells, fusion protein expression was detected by growing a transformant in LB medium in the presence of 0.1 mM IPTG at room temperature for 6 hrs on a shaker. Both soluble and insoluble fusion proteins were extracted from Origami cells after sonication. Ni-NTA column (Qiagen) was used to extract and purify these fractions. Following an overnight digestion of the recombinant protein with enterokinase at room temperature, the corresponding fractions were electrophoresed in polyacrylamide gel, electroblotted onto a nitrocellulose membrane and cross-reacted with the anti-friabilin monoclonal antibody. We found that the recombinant PINB protein had a molecular weight of 16 kDa whereas TrxB was 21 kDa. Fusion protein ran at 34 kDa. PINB protein from wheat was shown to be immunologically related to a homologue, tryptophanin, in oat seed. Further study is currently underway to characterize these proteins structurally using NMR.

  12. Elongation and gene expression in bovine cloned embryos transferred to temporary recipients.

    PubMed

    Rodríguez-Alvarez, Lleretny; Cox, José; Navarrete, Felipe; Valdés, Cristián; Zamorano, Teresa; Einspanier, Ralf; Castro, Fidel Ovidio

    2009-11-01

    SummaryElongated embryos provide a unique source of information about trophoblastic differentiation, gene expression and maternal-embryonic interactions; however they are difficult and costly to obtain, especially elongated cloned embryos. One alternative is their production in heterologous temporary recipients such as sheep and goats. We aimed to produce elongated bovine cloned embryos using heterologous transfer to temporary recipients. Day-7 cloned cattle blastocysts were transferred to the uteri of ewes and goats and recovered as elongated structures at day 17. We evaluated elongation, length, presence of embryonic disc and expression of several important genes for embryonic development. We also produced homologous (cloned cattle embryos transferred into cattle uteri). Cloned bovine blastocysts were able to proceed with preimplantation development through elongation with high efficiency despite the species to which they were transferred. In qualitative and quantitative RT-PCR experiments we found differences in the pattern of gene expression among embryos recovered from different species. Sox2, Nanog and FGF-4 were markedly deregulated. No previous reports about the expression pattern of the studied genes had been published for elongated bovine cloned embryos produced in intermediate recipients, furthermore, the pattern of expression of Nanog, Oct4, Eomes, Cdx2, IFN-tau, Dicer, FGF-4 and Sox2 shown here are novel for elongated cloned bovine embryos created by hand-made cloning. Our data confirmed that sheep and goats can be used as temporary recipients. This model could serve as a basis for further research on gene expression and cellular changes during bovine peri-implantation development.

  13. Molecular cloning and expression of a GABA receptor subunit from the crayfish Procambarus clarkii.

    PubMed

    Jiménez-Vázquez, Eric N; Díaz-Velásquez, Clara E; Uribe, R M; Arias, Juan M; García, Ubaldo

    2016-02-01

    Molecular cloning has introduced an unexpected, large diversity of neurotransmitter hetero- oligomeric receptors. Extensive research on the molecular structure of the γ-aminobutyric acid receptor (GABAR) has been of great significance for understanding how the nervous system works in both vertebrates and invertebrates. However, only two examples of functional homo-oligomeric GABA-activated Cl(-) channels have been reported. In the vertebrate retina, the GABAρ1 subunit of various species forms homo-oligomeric receptors; in invertebrates, a cDNA encoding a functional GABA-activated Cl(-) channel has been isolated from a Drosophila melanogaster head cDNA library. When expressed in Xenopus laevis oocytes, these subunits function efficiently as a homo-oligomeric complex. To investigate the structure-function of GABA channels from the crayfish Procambarus clarkii, we cloned a subunit and expressed it in human embryonic kidney cells. Electrophysiological recordings show that this subunit forms a homo-oligomeric ionotropic GABAR that gates a bicuculline-insensitive Cl(-) current. The order of potency of the agonists was GABA > trans-4-amino-crotonic acid = cis-4-aminocrotonic acid > muscimol. These data support the notion that X-organ sinus gland neurons express at least two GABA subunits responsible for the formation of hetero-oligomeric and homo-oligomeric receptors. In addition, by in situ hybridization studies we demonstrate that most X-organ neurons from crayfish eyestalk express the isolated pcGABAA β subunit. This study increases the knowledge of the genetics of the crayfish, furthers the understanding of this important neurotransmitter receptor family, and provides insight into the evolution of these genes among vertebrates and invertebrates.

  14. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  15. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    SciTech Connect

    Woon, J. S. K. Murad, A. M. A. Abu Bakar, F. D.

    2015-09-25

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  16. Murine erythropoietin gene: cloning, expression, and human gene homology.

    PubMed Central

    Shoemaker, C B; Mitsock, L D

    1986-01-01

    The gene for murine erythropoietin (EPO) was isolated from a mouse genomic library with a human EPO cDNA probe. Nucleotide sequence analysis permitted the identification of the murine EPO coding sequence and the prediction of the encoded amino acid sequence based on sequence conservation between the mouse and human EPO genes. Both the coding DNA and the amino acid sequences were 80% conserved between the two species. Transformation of COS-1 cells with a mammalian cell expression vector containing the murine EPO coding region resulted in secretion of murine EPO with biological activity on both murine and human erythroid progenitor cells. The transcription start site for the murine EPO gene in kidneys was determined. This permitted tentative identification of the transcription control region. The region included 140 base pairs upstream of the cap site which was over 90% conserved between the murine and human genes. Surprisingly, the first intron and much of the 5'- and 3'-untranslated sequences were also substantially conserved between the genes of the two species. Images PMID:3773894

  17. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.

    PubMed

    Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo

    2016-01-01

    Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, P<0.05) and in vivo (cloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression.

  18. [Cloning goat producing human lactoferrin with genetically modified donor cells selected by single or dual markers].

    PubMed

    An, Liyou; Yuan, Yuguo; Yu, Baoli; Yang, Tingjia; Cheng, Yong

    2012-12-01

    We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.

  19. Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene.

    PubMed

    Montpetit, Jonatan; Vivancos, Julien; Mitani-Ueno, Namiki; Yamaji, Naoki; Rémus-Borel, Wilfried; Belzile, François; Ma, Jian Feng; Bélanger, Richard R

    2012-05-01

    Silicon (Si) is known to be beneficial to plants, namely in alleviating biotic and abiotic stresses. The magnitude of such positive effects is associated with a plant's natural ability to absorb Si. Many grasses can accumulate as much as 10% on a dry weight basis while most dicots, including Arabidopsis, will accumulate less than 0.1%. In this report, we describe the cloning and functional characterization of TaLsi1, a wheat Si transporter gene. In addition, we developed a heterologous system for the study of Si uptake in plants by introducing TaLsi1 and OsLsi1, its ortholog in rice, into Arabidopsis, a species with a very low innate Si uptake capacity. When expressed constitutively under the control of the CaMV 35S promoter, both TaLsi1 and OsLsi1 were expressed in cells of roots and shoots. Such constitutive expression of TaLsi1 or OsLsi1 resulted in a fourfold to fivefold increase in Si accumulation in transformed plants compared to WT. However, this Si absorption caused deleterious symptoms. When the wheat transporter was expressed under the control of a root-specific promoter (a boron transporter gene (AtNIP5;1) promoter), a similar increase in Si absorption was noted but the plants did not exhibit symptoms and grew normally. These results demonstrate that TaLsi1 is indeed a functional Si transporter as its expression in Arabidopsis leads to increased Si uptake, but that this expression must be confined to root cells for healthy plant development. The availability of this heterologous expression system will facilitate further studies into the mechanisms and benefits of Si uptake. PMID:22351076

  20. Generation of cloned mice and nuclear transfer embryonic stem cell lines from urine-derived cells

    PubMed Central

    Mizutani, Eiji; Torikai, Kohei; Wakayama, Sayaka; Nagatomo, Hiroaki; Ohinata, Yasuhide; Kishigami, Satoshi; Wakayama, Teruhiko

    2016-01-01

    Cloning animals by nuclear transfer provides the opportunity to preserve endangered mammalian species. However, there are risks associated with the collection of donor cells from the body such as accidental injury to or death of the animal. Here, we report the production of cloned mice from urine-derived cells collected noninvasively. Most of the urine-derived cells survived and were available as donors for nuclear transfer without any pretreatment. After nuclear transfer, 38–77% of the reconstructed embryos developed to the morula/blastocyst, in which the cell numbers in the inner cell mass and trophectoderm were similar to those of controls. Male and female cloned mice were delivered from cloned embryos transferred to recipient females, and these cloned animals grew to adulthood and delivered pups naturally when mated with each other. The results suggest that these cloned mice had normal fertility. In additional experiments, 26 nuclear transfer embryonic stem cell lines were established from 108 cloned blastocysts derived from four mouse strains including inbreds and F1 hybrids with relatively high success rates. Thus, cells derived from urine, which can be collected noninvasively, may be used in the rescue of endangered mammalian species by using nuclear transfer without causing injury to the animal. PMID:27033801

  1. Generation of cloned mice and nuclear transfer embryonic stem cell lines from urine-derived cells.

    PubMed

    Mizutani, Eiji; Torikai, Kohei; Wakayama, Sayaka; Nagatomo, Hiroaki; Ohinata, Yasuhide; Kishigami, Satoshi; Wakayama, Teruhiko

    2016-01-01

    Cloning animals by nuclear transfer provides the opportunity to preserve endangered mammalian species. However, there are risks associated with the collection of donor cells from the body such as accidental injury to or death of the animal. Here, we report the production of cloned mice from urine-derived cells collected noninvasively. Most of the urine-derived cells survived and were available as donors for nuclear transfer without any pretreatment. After nuclear transfer, 38-77% of the reconstructed embryos developed to the morula/blastocyst, in which the cell numbers in the inner cell mass and trophectoderm were similar to those of controls. Male and female cloned mice were delivered from cloned embryos transferred to recipient females, and these cloned animals grew to adulthood and delivered pups naturally when mated with each other. The results suggest that these cloned mice had normal fertility. In additional experiments, 26 nuclear transfer embryonic stem cell lines were established from 108 cloned blastocysts derived from four mouse strains including inbreds and F1 hybrids with relatively high success rates. Thus, cells derived from urine, which can be collected noninvasively, may be used in the rescue of endangered mammalian species by using nuclear transfer without causing injury to the animal. PMID:27033801

  2. Molecular cloning, functional expression, and chromosomal localization of mouse hepatocyte nuclear factor 1.

    PubMed Central

    Kuo, C J; Conley, P B; Hsieh, C L; Francke, U; Crabtree, G R

    1990-01-01

    The homeodomain-containing transcription factor hepatocyte nuclear factor 1 (HNF-1) most likely plays an essential role during liver organogenesis by transactivating a family of greater than 15 predominantly hepatic genes. We have isolated cDNA clones encoding mouse HNF-1 and expressed them in monkey COS cells and in the human T-cell line Jurkat, producing HNF-1 DNA-binding activity as well as transactivation of reporter constructs containing multimerized HNF-1 binding sites. In addition, the HNF-1 gene was assigned by somatic cell hybrids and recombinant inbred strain mapping to mouse chromosome 5 near Bcd-1 and to human chromosome 12 region q22-qter, revealing a homologous chromosome region in these two species. The presence of HNF-1 mRNA in multiple endodermal tissues (liver, stomach, intestine) suggests that HNF-1 may constitute an early marker for endodermal, rather than hepatocyte, differentiation. Further, that HNF-1 DNA-binding and transcriptional activity can be conferred by transfecting the HNF-1 cDNA into several cell lines indicates that it is sufficient to activate transcription in the context of ubiquitously expressed factors. Images PMID:2263635

  3. The murine ufo receptor: molecular cloning, chromosomal localization and in situ expression analysis.

    PubMed

    Faust, M; Ebensperger, C; Schulz, A S; Schleithoff, L; Hameister, H; Bartram, C R; Janssen, J W

    1992-07-01

    We have cloned the mouse homologue of the ufo oncogene. It encodes a novel tyrosine kinase receptor characterized by a unique extracellular domain containing two immunoglobulin-like and two fibronectin type III repeats. Comparison of the predicted ufo amino acid sequences of mouse and man revealed an overall identity of 87.6%. The ufo locus maps to mouse chromosome 7A3-B1 and thereby extends the known conserved linkage group between mouse chromosome 7 and human chromosome 19. RNA in situ hybridization analysis established the onset of specific ufo expression in the late embryogenesis at day 12.5 post coitum (p.c.) and localized ufo transcription to distinct substructures of a broad spectrum of developing tissues (e.g. subepidermal cells of the skin, mesenchymal cells of the periosteum). In adult animals ufo is expressed in cells forming organ capsules as well as in connective tissue structures. ufo may function as a signal transducer between specific cell types of mesodermal origin.

  4. Promethean medicine: spirituality, stem cells, and cloning.

    PubMed

    Sulmasy, Daniel P

    2006-12-01

    Every ethos implies a mythos. That is, every ethical system depends upon some fundamental story disclosing its assumptions about human nature, freedom, good and evil, and the workings of the universe. A romanticized version of the myth of Prometheus, who stole fire from the gods and was punished by being chained to a rock and having his liver plucked out by vultures, seems to under-gird much of contemporary healthcare. Christianity offers a different view--one in which the universe is not a zero sum game and human beings do not need to steal fire because God has already freely given them all the fire they need in Christ and in his spirit. A critical virtue for physicians, taught by Christianity, is sagacious engagement--the ability to engage the world practically, discerning what can and should be changed and what should be accepted as unchangeable and given. The illusory quest for immortality through the practice of regenerative medicine using stem cells is a gross violation of that virtue. PMID:17233215

  5. Cloning and expression of Klebsiella pneumoniae genes coding for citrate transport and fermentation.

    PubMed

    Schwarz, E; Oesterhelt, D

    1985-06-01

    Three Escherichia coli clones (DH1/Cit1, DH1/Cit2 and DH1/Cit3) capable of utilizing citrate as a sole carbon source were isolated from a cosmid bank of Klebsiella pneumoniae wild-type DNA. Two of these clones (DH1/Cit1 and DH1/Cit2) only grew aerobically on citrate minimal medium, the third clone (DH1/Cit3) could also be cultured under fermentative conditions. The aerobic as well as the anaerobic generation times of the three clones were from 4.5 to 7 h. Whereas clone DH1/Cit3 showed a pronounced lag phase on citrate when the cells were pre-grown in medium without citrate, clone DH1/Cit1 immediately started growth, while with clone DH1/Cit2 a short lag phase could be observed upon transfer to citrate minimal medium. Restriction analyses of the three plasmids showed that no common fragments had been cloned. The length of the inserts were 13 and 6 kb for the aerobic Cit+ clones and 27 kb (10 kb) for the anaerobic one. Cultures of the anaerobic Cit+ clone were analyzed by immunoblotting techniques and shown to contain oxaloacetate decarboxylase, which confers citrate utilization under anaerobic conditions to K. pneumoniae. Enzyme assays demonstrated the active state of this biotin-containing membrane protein. The specific activity in vesicle preparations from the E. coli clone was 30% of the wild-type K. pneumoniae vesicles. Citrate acts as an inducer of enzyme protein synthesis in the E. coli clone as it does in K. pneumoniae.

  6. Molecular cloning of abscisic acid-responsive mRNAs expressed during the induction of freezing tolerance in bromegrass (Bromus inermis Leyss) suspension culture.

    PubMed

    Lee, S P; Chen, T H

    1993-03-01

    Abscisic acid (ABA) increases the freezing tolerance of bromegrass (Bromus inermis Leyss) cell-suspension cultures at 23 degrees C and elicits many metabolic changes similar to those observed during cold acclimation. Induction and maintenance of freezing tolerance by ABA is accompanied by the expression of novel polypeptides and translatable RNAs. The objective of this study was to isolate and characterize ABA-responsive cDNAs associated with ABA-induced freezing tolerance in bromegrass cell cultures. Among the 16 ABA-responsive cDNA clones isolated, 9 were expressed only with ABA treatment, 7 showed increased transcript level, and 1 was transiently expressed. Cold responsiveness was determined in three clones with increased transcript levels and in the transiently expressed clone. Deacclimation of ABA-hardened cells was a relatively slow process, because all of the novel transcripts persisted for at least 7 d after cells were cultured in ABA-free medium. Preliminary sequencing of cDNAs has identified several clones that share high sequence homology with genes associated with sugar metabolism, osmotic stress, and protease activity. Clone pBGA61 was fully sequenced and tentatively identified as an NADPH-dependent aldose reductase. The predicted amino acid sequence of the coding region shared 92% similarity with that predicted for barley aldose reductase cDNA. It is proposed that expression of genes related to sugar metabolism and osmotic stress may be required for ABA-induced hardening. PMID:8310047

  7. T-cell clones expressing different T-cell receptors accumulate in the brains of dying and surviving mice after peripheral infection with far eastern strain of tick-borne encephalitis virus.

    PubMed

    Fujii, Yoshiki; Hayasaka, Daisuke; Kitaura, Kazutaka; Takasaki, Tomohiko; Suzuki, Ryuji; Kurane, Ichiro

    2011-08-01

    Tick-borne encephalitis virus (TBEV), a representative acute central nervous system disease-inducible virus, is known to elicit dose-independent mortality in a mouse model. We previously reported that subcutaneous infection with a wide range of TBEV Oshima strain challenge doses (10(2)-10(6) PFU) produced an approximately 50% mortality rate. However, the factors playing critical roles in mortality and severity remain unclear. In this study, we distinguished surviving and dying mice by their degree of weight loss after TBEV infection, and investigated qualitative differences in brain-infiltrating T cells between each group by analyzing T-cell receptor (TCR) repertoire and complementary determining region 3 (CDR3) sequences. TCR repertoire analysis revealed that the expression levels of VA8-1, VA15-1, and VB8-2 families were increased in brains derived from both surviving and dying mice. CDR3 amino acid sequence characteristics differed between each group. In dying mice, high frequencies of VA15-1/AJ12 and VB8-2/BJ1.1 gene usage were observed. While in surviving mice, high frequencies of VA8-1/AJ15 or VA8-1/AJ23 gene usage were observed. VB8-2/BJ2.7 gene usage and short CDR3 were observed frequently in both surviving and dying mice. However, no differences in T-cell activation markers and apoptosis-related genes were observed between these groups using quantitative real-time PCR analysis. These results suggest that TBEV-infection severity may be involved in antigen specificity, but not in the number or activation level of brain-infiltrating T cells.

  8. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene.

    PubMed Central

    Plowman, G D; Whitney, G S; Neubauer, M G; Green, J M; McDonald, V L; Todaro, G J; Shoyab, M

    1990-01-01

    Epidermal growth factor (EGF), transforming growth factor alpha (TGF-alpha), and amphiregulin are structurally and functionally related growth regulatory proteins. These secreted polypeptides all bind to the 170-kDa cell-surface EGF receptor, activating its intrinsic kinase activity. However, amphiregulin exhibits different activities than EGF and TGF-alpha in a number of biological assays. Amphiregulin only partially competes with EGF for binding EGF receptor, and amphiregulin does not induce anchorage-independent growth of normal rat kidney cells (NRK) in the presence of TGF-beta. Amphiregulin also appears to abrogate the stimulatory effect of TGF-alpha on the growth of several aggressive epithelial carcinomas that overexpress EGF receptor. These findings suggest that amphiregulin may interact with a separate receptor in certain cell types. Here we report the cloning of another member of the human EGF receptor (HER) family of receptor tyrosine kinases, which we have named "HER3/ERRB3." The cDNA was isolated from a human carcinoma cell line, and its 6-kilobase transcript was identified in various human tissues. We have generated peptide-specific antisera that recognizes the 160-kDa HER3 protein when transiently expressed in COS cells. These reagents will allow us to determine whether HER3 binds amphiregulin or other growth regulatory proteins and what role HER3 protein plays in the regulation of cell growth. Images PMID:2164210

  9. Cloning and expression of a rat brain GABA transporter

    SciTech Connect

    Guastella, J.; Czyzyk, L.; Davidson, N.; Lester, H.A. ); Nelson, N.; Nelson, H.; Miedel, M.C. ); Keynan, S.; Kanner, B.I. )

    1990-09-14

    A complementary DNA clone (designated GAT-1) encoding a transporter for the neurotransmitter {gamma}-aminobutyric acid (GABA) has been isolated from rat brain, and its functional properties have been examined in Xenopus oocytes. Oocytes injected with GAT-1 synthetic messenger RNA accumulated ({sup 3}H)GABA to levels above control values. The transporter encoded by GAT-1 has a high affinity for GABA, is sodium- and chloride-dependent, and is pharmacologically similar to neuronal GABA transporters. The GAT-1 protein shares antigenic determinants with a native rat brain GABA transporter. The nucleotide sequence of GAT-1 predicts a protein of 599 amino acids with a molecular weight of 67 kilodaltons. Hydropathy analysis of the deduced protein suggests multiple transmembrane regions, a feature shared by several cloned transporters; however, database searches indicate that GAT-1 is not homologous to any previously identified proteins. Therefore, GAT-1 appears to be a member of a previously uncharacterized family of transport molecules.

  10. Molecular cloning and functional expression of a human intestinal lactoferrin receptor.

    PubMed

    Suzuki, Y A; Shin, K; Lönnerdal, B

    2001-12-25

    Lactoferrin (Lf), a major iron-binding protein in human milk, has been suggested to have multiple biological roles such as facilitating iron absorption, modulating the immune system, embryonic development, and cell proliferation. Our previous binding studies suggested the presence of a specific receptor for Lf (LfR) in the small intestine of newborn infants, which may facilitate iron absorption. We here report the cloning and the functional expression of the human intestinal LfR and the evidence of its involvement in iron metabolism. The entire coding region of the LfR cDNA was cloned by PCR based on amino acid sequences of the purified native LfR (nLfR). The recombinant LfR (rLfR) was then expressed in a baculovirus-insect cell system and purified by immobilized human Lf (hLf) affinity chromatography where binding of hLf to the rLfR was partially Ca(2+) dependent. The apparent molecular mass was 136 kDa under nonreducing conditions and 34 kDa under reducing conditions. 125I-hLf bound to the rLfR with an apparent K(d) of approximately 360 nM. These biochemical properties of the rLfR are similar to those of the nLfR. RT-PCR revealed that the gene was expressed at high levels in fetal small intestine and in adult heart and at lower levels in Caco-2 cells. PI-PLC treatment of Caco-2 cells indicated that the LfR is GPI anchored. In Caco-2 cells transfected with the LfR gene, 125I-hLf binding and 59Fe-hLf uptake were increased by 1.7 and 3.4 times, respectively, compared to those in mock-transfected cells. Our findings demonstrate the presence of a unique receptor-mediated mechanism for nutrient uptake by the newborn.

  11. Small RNA cloning and sequencing strategy affects host and viral microRNA expression signatures.

    PubMed

    Stik, Grégoire; Muylkens, Benoît; Coupeau, Damien; Laurent, Sylvie; Dambrine, Ginette; Messmer, Mélanie; Chane-Woon-Ming, Béatrice; Pfeffer, Sébastien; Rasschaert, Denis

    2014-07-10

    The establishment of the microRNA (miRNA) expression signatures is the basic element to investigate the role played by these regulatory molecules in the biology of an organism. Marek's disease virus 1 (MDV-1) is an avian herpesvirus that naturally infects chicken and induces T cells lymphomas. During latency, MDV-1, like other herpesviruses, expresses a limited subset of transcripts. These include three miRNA clusters. Several studies identified the expression of virus and host encoded miRNAs from MDV-1 infected cell cultures and chickens. But a high discrepancy was observed when miRNA cloning frequencies obtained from different cloning and sequencing protocols were compared. Thus, we analyzed the effect of small RNA library preparation and sequencing on the miRNA frequencies obtained from the same RNA samples collected during MDV-1 infection of chicken at different steps of the oncoviral pathogenesis. Qualitative and quantitative variations were found in the data, depending on the strategy used. One of the mature miRNA derived from the latency-associated-transcript (LAT), mdv1-miR-M7-5p, showed the highest variation. Its cloning frequency was 50% of the viral miRNA counts when a small scale sequencing approach was used. Its frequency was 100 times less abundant when determined through the deep sequencing approach. Northern blot analysis showed a better correlation with the miRNA frequencies found by the small scale sequencing approach. By analyzing the cellular miRNA repertoire, we also found a gap between the two sequencing approaches. Collectively, our study indicates that next-generation sequencing data considered alone are limited for assessing the absolute copy number of transcripts. Thus, the quantification of small RNA should be addressed by compiling data obtained by using different techniques such as microarrays, qRT-PCR and NB analysis in support of high throughput sequencing data. These observations should be considered when miRNA variations are studied

  12. Cloning, nucleotide sequence, and expression of Achromobacter protease I gene.

    PubMed

    Ohara, T; Makino, K; Shinagawa, H; Nakata, A; Norioka, S; Sakiyama, F

    1989-12-01

    Achromobacter protease I (API) is a lysine-specific serine protease which hydrolyzes specifically the lysyl peptide bond. A gene coding for API was cloned from Achromobacter lyticus M497-1. Nucleotide sequence of the cloned DNA fragment revealed that the gene coded for a single polypeptide chain of 653 amino acids. The N-terminal 205 amino acids, including signal peptide and the threonine/serine-rich C-terminal 180 amino acids are flanking the 268 amino acid-mature protein which was identified by protein sequencing. Escherichia coli carrying a plasmid containing the cloned API gene overproduced and secreted a protein of Mr 50,000 (API') into the periplasm. This protein exhibited a distinct endopeptidase activity specific for lysyl bonds as well. The N-terminal amino acid sequence of API' was the same as mature API, suggesting that the enzyme retained the C-terminal extended peptide chain. The present experiments indicate that API, an extracellular protease produced by gram-negative bacteria, is synthesized in vivo as a precursor protein bearing long extended peptide chains at both N and C termini. PMID:2684982

  13. Cloning and retinal expression of melatonin receptors in the European sea bass, Dicentrarchus labrax.

    PubMed

    Sauzet, Sandrine; Besseau, Laurence; Herrera Perez, Patricia; Covès, Denis; Chatain, Béatrice; Peyric, Elodie; Boeuf, Gilles; Muñoz-Cueto, José Antonio; Falcón, Jack

    2008-06-01

    Melatonin contributes to synchronizing behaviors and physiological functions to daily and seasonal rhythm in fish. However, no coherent vision emerges because the effects vary with the species, sex, age, moment of the year or sexual cycle. And, scarce information is available concerning the melatonin receptors, which is crucial to our understanding of the role melatonin plays. We report here the full length cloning of three different melatonin receptor subtypes in the sea bass Dicentrarchus labrax, belonging, respectively, to the MT1, MT2 and Mel1c subtypes. MT1, the most abundantly expressed, was detected in the central nervous system, retina, and gills. MT2 was detected in the pituitary gland, blood cells and, to a lesser extend, in the optic tectum, diencephalon, liver and retina. Mel1c was mainly expressed in the skin; traces were found in the retina. The cellular sites of MT1 and MT2 expressions were investigated by in situ hybridization in the retina of pigmented and albino fish. The strongest signals were obtained with the MT1 riboprobes. Expression was seen in cells also known to express the enzymes of the melatonin biosynthesis, i.e., in the photoreceptor, inner nuclear and ganglion cell layers. MT1 receptor mRNAs were also abundant in the retinal pigment epithelium. The results are consistent with the idea that melatonin is an autocrine (neural retina) and paracrine (retinal pigment epithelium) regulator of retinal function. The molecular tools provided here will be of valuable interest to further investigate the targets and role of melatonin in nervous and peripheral tissues of fish.

  14. Cloning and expression analysis of three novel CC chemokine genes from Japanese flounder (Paralichthys olivaceus).

    PubMed

    Zou, Gang-gang; Nozaki, Reiko; Kondo, Hidehiro; Hirono, Ikuo

    2014-10-01

    Chemokines are small cytokines secreted by various cell types. They not only function in cell activation, differentiation and trafficking, but they also have influences on many biological processes. In this study, three novel CC chemokine genes Paol-SCYA105, 106 and 107 in Japanese flounder (Paralichthys olivaceus) were cloned and characterized. Paol-SCYA105 was mainly detected in gill, kidney and spleen, Paol-SCYA106 was detected in all tissues examined and Paol-SCYA107 was mainly detected in the spleen and kidney. Paol-SCYA105 and Paol-SCYA106 gene expressions peaked in kidney at day 3 after viral hemorrhagic septicemia virus infection and decreased at day 6, but Paol-SCYA106 still remained at a high level at day 6. Paol-SCYA107 gene expression was significantly up-regulated in kidney at day 6 after viral hemorrhagic septicemia virus infection. In response to infection by Gram-negative Edwardsiella tarda and Gram-positive Streptococcus iniae in kidney, only Paol-SCYA106 gene expression significantly increased. Together, these results indicate that these three novel CC chemokines are involved in the immune response against pathogen infections.

  15. Molecular cloning, genomic organization, and expression of a testicular isoform of hormone-sensitive lipase

    SciTech Connect

    Holst, L.S.; Laurell, H.; Holm, C.

    1996-08-01

    By catalyzing the rate-limiting step in adipose tissue lipolysis, hormone-sensitive lipase (HSL) is an important regulator of energy homeostasis. The role and importance of HSL in tissues other than adipose are poorly understood. We report here the cloning and expression of a testicular isoform, designated HSL{sub tes}. Due to an addition of amino acids at the NH{sub 2}-termini, rat and human HSL{sub tes} consist of 1068 and 1076 amino acids, respectively, compared to the 768 and 775 amino acids, respectively, of the adipocyte isoform (HSL{sub adi}). A novel exon of 1.2 kb, encoding the human testis-specific amino acids, was isolated and mapped to the HSL gene, 16 kb upstream of the exons encoding HSL{sub adi}. The transcribed mRNA of 3.9 kb was specifically expressed in testis. No significant similarity with other known proteins was found for the testis-specific sequence. The amino acid composition differs from the HSL{sub adi} sequence, with a notable hydrophilic character and a high content of prolines and glutamines. COS cells, transfected by the 3.9-kb human testis cDNA, expressed a protein of the expected molecular mass (M{sub r} {approximately}120,000) that exhibited catalytic activity similar to that of HSL{sub adi}. Immunocytochemistry localized HSL to elongating spermatids and spermatozoa; HSL was not detected in interstitial cells. 34 refs., 5 figs.

  16. Expression of somatostatin and cDNA cloning in the thymus of the African ostrich.

    PubMed

    Min, Chen; Min, He; Kemei, Peng; Ke, Xiao; Haibo, Huang; Daiyun, Zhu; Xinting, Zheng

    2014-01-01

    The thymus in addition to being a central lymphoid organ is also an endocrine organ which produces various neuropeptides that influence the function of this gland. Somatostatin is a neuropeptide that was isolated initially in the hypothalamus and which inhibits the release of growth hormone. The distribution of somatostatin-producing cells and the sequence of somatostatin have been determined in many species. In the present study, we investigated the expression of somatostatin in the thymus of the African ostrich and its sequence by reverse-transcriptase polymerase chain reaction and immunohistochemistry. The results showed that somatostatin mRNA was expressed in the thymus and somatostatin immunoreative cells were distributed in both the cortical and medullary regions of the thymus. Results of cDNA cloning revealed that the nucleotide sequence and the encoded protein of African ostrich somatostatin were 348 bases and 116 amino acids in length and that it is highly conserved to that of other reported species. These findings indicated that the somatostatin expressed in the thymus of ostrich might play an important role in the function of the gland. In addition, this research has provided novel molecular data allowing further study of somatostatin in the ostrich.

  17. Cloning, Expression, Purification, Crystallization and Preliminary X-ray Analysis of Mycoplasma Genitalium Protein MG289

    SciTech Connect

    Sippel, K.; Boehlein, S; Sakai, Y; Quirit, J; Agbandje-McKenna, M; Rosser, C; McKenna, R

    2009-01-01

    Mycoplasma genitalium is a human pathogen that is associated with nongonococcal urethritis in men and cervicitis in women. The cloning, expression, purification and crystallization of the protein MG289 from M. genitalium strain G37 are reported here. Crystals of MG289 diffracted X-rays to 2.8 {angstrom} resolution. The crystals belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 49.7, b = 90.9, c = 176.1 {angstrom}. The diffraction data after processing had an overall R{sub merge} of 8.7%. The crystal structure of Cypl, the ortholog of MG289 from M. hyorhinis, has recently been determined, providing a reasonable phasing model; molecular replacement is currently under way.

  18. Gene cloning and prokaryotic expression of recombinant flagellin A from Vibrio parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Liu, Yang; Ge, Hui; Qiu, Xuemei

    2010-11-01

    The Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. Bacteria flagellins play an important role during infection and induction of the host immune response. Thus, flagellin proteins are an ideal target for vaccines. We amplified the complete flagellin subunit gene ( flaA) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 62.78 kDa. We purified and characterized the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for further studies into the utility of the FlaA protein as a vaccine candidate against infection by Vibrio parahaemolyticus. In addition, the purified FlaA protein can be used for further functional and structural studies.

  19. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei

    2011-06-01

    Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.

  20. Molecular cloning of bovine lymphocyte activation gene-3 and its expression characteristics in bovine leukemia virus-infected cattle.

    PubMed

    Shirai, Tatsuya; Konnai, Satoru; Ikebuchi, Ryoyo; Okagawa, Tomohiro; Suzuki, Saori; Sunden, Yuji; Onuma, Misao; Murata, Shiro; Ohashi, Kazuhiko

    2011-12-15

    Lymphocyte activation gene-3 (LAG-3), a major histocompatibility complex (MHC) class II binding CD4 homologue has recently been shown as one of the mechanisms for down-regulating immune responses during chronic disease progression. For the first time, we cloned LAG-3 from two breeds of cattle (Holstein and Japanese Black), and analyzed its expression levels in cattle infected with bovine leukemia virus (BLV), a chronic viral infection that leads to immuno-suppression. The cloned cDNA of bovine LAG-3 have an open reading frame of 1551 nucleotides, encoding a polypeptide of 515 amino acids in length. Similar to the swine LAG-3, the bovine LAG-3 protein sequence consisted of four extracellular domains, a transmembrane domain and an inhibitory motif, KTGELE. We found that the bovine LAG-3 mRNA transcripts were expressed predominantly on T-cells such as CD4(+) and CD8(+) cells, among peripheral blood mononuclear cells. In subsequent expression analysis, LAG-3 mRNA expression on CD4(+) T-cells from BLV-infected cattle was upregulated compared to that in normal cattle. Comparable results were obtained with CD8(+) T-cells from cattle infected with BLV. We further observed strong upregualtion of MHC class II molecule, the ligand for LAG-3 in BLV-infected cattle. These findings indicate an important role for inhibitory receptor molecules such as LAG-3 in chronic bovine infections and future studies will elucidate the specific role of LAG-3 in bovine diseases.

  1. Cloned transgenic farm animals produce a bispecific antibody for T cell-mediated tumor cell killing.

    PubMed

    Grosse-Hovest, Ludger; Müller, Sigrid; Minoia, Rosa; Wolf, Eckhard; Zakhartchenko, Valeri; Wenigerkind, Hendrik; Lassnig, Caroline; Besenfelder, Urban; Müller, Mathias; Lytton, Simon D; Jung, Gundram; Brem, Gottfried

    2004-05-01

    Complex recombinant antibody fragments for modulation of immune function such as tumor cell destruction have emerged at a rapid pace and diverse anticancer strategies are being developed to benefit patients. Despite improvements in molecule design and expression systems, the quantity and stability, e.g., of single-chain antibodies produced in cell culture, is often insufficient for treatment of human disease, and the costs of scale-up, labor, and fermentation facilities are prohibitive. The ability to yield mg/ml levels of recombinant antibodies and the scale-up flexibility make transgenic production in plants and livestock an attractive alternative to mammalian cell culture as a source of large quantities of biotherapeutics. Here, we report on the efficient production of a bispecific single-chain antibody in the serum of transgenic rabbits and a herd of nine cloned, transgenic cattle. The bispecific protein, designated r28M, is directed to a melanoma-associated proteoglycan and the human CD28 molecule on T cells. Purified from the serum of transgenic animals, the protein is stable and fully active in mediating target cell-restricted T cell stimulation and tumor cell killing.

  2. Human DNA ligase I cDNA: Cloning and functional expression in Saccharomyces cerevisiae

    SciTech Connect

    Barnes, D.E.; Kodama, Kenichi; Tomkinson, A.E.; Lindahl, T.; Lasko, D.D. ); Johnston, L.H. )

    1990-09-01

    Human cDNA clones encoding the major DNA ligase activity in proliferating cells, DNA ligase I, were isolated by two independent methods. In one approach, a human cDNA library was screened by hybridization with oligonucleotides deduced from partial amino acid sequence of purified bovine DNA ligase I. In an alternative approach, a human cDNA library was screened for functional expression of a polypeptide able to complement a cdc9 temperature-sensitive DNA ligase mutant of Saccharomuces cerevisiae. The sequence of an apparently full-length cDNA encodes a 102-kDa protein, indistinguishable in size from authentic human DNA ligase I. The deduced amino acid sequence of the human DNA ligase I cDNA is 40% homologous to the smaller DNA ligases of S. cerevisiae and Schizosaccharomyces pombe, homology being confined to the carboxyl-terminal regions of the respective proteins. Hybridization between the cloned sequences and mRNA and genomic DNA indicates that the human enzyme is transcribed from a single-copy gene on chromosome 19.

  3. Cloning, sequencing, and expression of interferon-γ from elk in North America

    USGS Publications Warehouse

    Sweeney, Steven J.; Emerson, Carlene; Eriks, Inge S.

    2001-01-01

    Eradication of Mycobacterium bovis relies on accurate detection of infected animals, including potential domestic and wildlife reservoirs. Available diagnostic tests lack the sensitivity and specificity necessary for accurate detection, particularly in infected wildlife populations. Recently, an in vitro diagnostic test for cattle which measures plasma interferon-gamma (IFN-γ) levels in blood following in vitro incubation with M. bovis purified protein derivative has been enveloped. This test appears to have increased sensitivity over traditional testing. Unfortunately, it does not detect IFN-γ from Cervidae. To begin to address this problem, the IFN-γ gene from elk (Cervus elaphus) was cloned, sequenced, expressed, and characterized. cDNA was cloned from mitogen stimulated peripheral blood mononuclear cells. The predicted amino acid (aa) sequence was compared to known sequences from cattle, sheep, goats, red deer (Cervus elaphus), humans, and mice. Biological activity of the recombinant elk IFN-γ (rElkIFN-γ) was confirmed in a vesicular stomatitis virus cytopathic effect reduction assay. Production of monoclonal antibodies to IFN-γ epitopes conserved between ruminant species could provide an important tool for the development of reliable, practical diagnostic assays for detection of a delayed type hypersensitivity response to a variety of persistent infectious agents in ruminants, including M. bovis and Brucella abortus. Moreover, development of these reagents will aid investigators in studies to explore immunological responses of elk that are associated with resistance to infectious diseases.

  4. Molecular cloning and functional expression of a sodium bicarbonate cotransporter from guinea-pig parotid glands.

    PubMed

    Koo, Na-Youn; Li, Jingchao; Hwang, Sung Min; Choi, Se-Young; Lee, Sung Joong; Oh, Seog-Bae; Kim, Joong-Soo; Lee, Jong Heun; Park, Kyungpyo

    2006-04-21

    We recently found that the concentration of HCO3- in guinea-pig saliva is very similar to that of human saliva; however, the entity that regulates HCO3- transport has not yet been fully characterized. In order to investigate the mechanism of HCO3- transport, we identified, cloned, and characterized a sodium bicarbonate (Na(+)/HCO3- cotransporter found in guinea-pig parotid glands (gpNBC1). The gpNBC1 gene encodes a 1079-amino acid protein that has 95% and 96% homology with human and mouse parotid NBC1, respectively. Oocytes expressing gpNBC1 were exposed to HCO3- or Na(+)-free solutions, which resulted in a marked change in membrane potentials (V(m)), suggesting that gpNBC1 is electrogenic. Likewise, a gpNBC1-mediated pH recovery was observed in gpNBC1 transfected human hepatoma cells; however, in the presence of 4, 4-diisothiocyanostilbene-2,2-disulfonic acid, a specific NBC1 inhibitor, such changes in V(m) and pH(i) were not observed. Together, the data show that the cloned guinea-pig gene is a functional, as well as sequence homologue of human NBC1. PMID:16513089

  5. Molecular cloning of the mouse CCK gene: expression in different brain regions and during cortical development.

    PubMed Central

    Vitale, M; Vashishtha, A; Linzer, E; Powell, D J; Friedman, J M

    1991-01-01

    In this paper we describe experiments that address specific issues concerning the regulation of the mouse cholecystokinin gene in brain and intestine. The mouse cholecystokinin gene was cloned and sequenced. Extensive homology among the mouse, man and rat genes was noted particularly in the three exons and the regions upstream of the RNA start site. RNAse protection assays for each of the three exons were used to demonstrate that CCK is expressed in only a subset of tissues and that the same cap site and splice choices are used in brain, intestine as well as in cerebellum, cortex, midbrain, hypothalamus and hippocampus. CCK RNA was also noted to be detectable in kidney. Thus the same gene using the same promoter is expressed in subsets of cells that differ in their biochemical, morphologic and functional characteristics. The level of expression of CCK was also monitored during mouse cortical development and the appearance of CCK RNA was compared to glutamate decarboxylase (GAD), enkephalin and somatostatin. It was noted that each of these cortical markers was first expressed at different times during cortical development. The appearance of CCK RNA during intestinal development was also measured and found to precede appearance in cortex by several days. Images PMID:2011497

  6. Possible Function of the ribT Gene of Bacillus subtilis: Theoretical Prediction, Cloning, and Expression.

    PubMed

    Yakimov, A P; Seregina, T A; Kholodnyak, A A; Kreneva, R A; Mironov, A S; Perumov, D A; Timkovskii, A L

    2014-07-01

    The complete decipherment of the functions and interactions of the elements of the riboflavin biosynthesis operon (rib operon) of Bacillus subtilis are necessary for the development of superproducers of this important vitamin. The function of its terminal ribT gene has not been established to date. In this work, a search for homologs of the hypothetical amino acid sequence of the gene product through databases, as well as an analysis of the homolgs, was performed; the distribution of secondary structure elements was theoretically predicted; and the tertiary structure of the RibT protein was proposed. The ribT gene nucleotide sequence was amplified and cloned into the standard high-copy expression vector pET15b and then expressed after induction with IPTG in E. coli BL21 (DE3) strain cells containing the inducible phage T7 RNA polymerase gene. The ribT gene expression was confirmed by SDS-PAGE. The protein product of the expression was purified by affinity chromatography. Therefore, the real possibility of RibT protein production in quantities sufficient for further investigation of its structure and functional activity was demonstrated. PMID:25349719

  7. Molecular cloning, characterization, and expression studies of water buffalo (Bubalus bubalis) somatotropin.

    PubMed

    Sadaf, S; Khan, M A; Wilson, D B; Akhtar, M W

    2007-02-01

    Cloning, high-level expression, and characterization of the somatotropin (ST) gene of an indigenous Nili-Ravi breed of water buffalo Bubalus bubalis (BbST) are described. Coding, non-coding, and promoter regions of BbST were amplified and sequenced. Sequence analysis revealed several silent and two interesting point mutations on comparison with STs of other vertebrate species. One interesting variation in the BbST sequence was the replacement of a conserved glutamine residue by arginine. A plasmid was also constructed for the production of BbST in Escherichia coli BL21 (RIPL) CodonPlus, under the control of IPTG-inducible T7-lac promoter. High-level expression could be obtained by synthesizing a codon-optimized ST gene and expressing it in the form of inclusion bodies. The inclusion bodies represented over 20% of the E. coli cellular proteins. The biologically active conformation of purified BbST was confirmed by its efficient growth promoting activity in Nb2 cell proliferation assay. The expression system and purification strategy employed promise to be a useful approach to produce BbST for further use in structure-function studies and livestock industry.

  8. Cloning, characterization and expression analysis of interleukin-10 from the zebrafish (Danio rerion).

    PubMed

    Zhang, Dian-Chang; Shao, Yan-Qing; Huang, Yan-Qin; Jiang, Shi-Gui

    2005-09-30

    Cytokines are proteins produced by many different cells of the immune system and play a significant role in initiating and regulating the inflammatory process. In this research, an important cytokine, interleukin-10 (IL-10) gene, has been identified and characterized from zebrafish (Danio rerio) genome database. Zebrafish IL-10 is located within a 2690 bp fragment and contains five exons and four introns, sharing the same organization with mammalian IL-10 genes. An open reading frame of 543 bp was found to encode a putative 180 amino acid protein with a signal peptide of 22 amino acids, which shares 29.7-80.9 % homology with amino acid sequences of other known IL-10. The signature motif of IL-10 is also conserved in zebrafish IL-10. The predicted transcript was finally confirmed by sequencing of cDNA clones. Multi-tissue reverse transcriptase PCR (RT-PCR) was performed to examine the tissue distribution and expression regulation of this gene in seven organs of normal and lipopolysaccharide (LPS) stimulation zebrafish. The results demonstrated that this gene was expressed slightly in normal kidney, gill and gut, no expression was detected in other four tissues. The expression was clearly upregulated after LPS stimulation. Using the ideal zebrafish model, further study of IL-10 characterization and function may provide insight on the understanding of the innate immune system.

  9. [Out of natural order: nature in discourses about cloning and stem cell research in Brazilian newspapers].

    PubMed

    Medeiros, Flavia Natércia da Silva

    2013-11-30

    Different conceptions of nature influence media coverage and public opinion about biotechnology. This study reports on a discourse analysis of the ideas about nature and what is natural expressed in Brazilian media coverage of cloning and stem cell research. In the discourse against this research, the biotechnologies in question are placed outside the natural order of things and deemed immoral. In the discourse of those who defend it, nature is portrayed as indifferent to the fate of humans or even cruel, or else a barrier to be overcome, while cloning and embryonic stem cells are naturalized and Dolly the sheep is anthropomorphized. The mythifying or transcendental representations of nature do not just influence public opinion, but also have ethical and political implications.

  10. In silico cloning and B/T cell epitope prediction of triosephosphate isomerase from Echinococcus granulosus.

    PubMed

    Wang, Fen; Ye, Bin

    2016-10-01

    Cystic echinococcosis is a worldwide zoonosis caused by Echinococcus granulosus. Because the methods of diagnosis and treatment for cystic echinococcosis were limited, it is still necessary to screen target proteins for the development of new anti-hydatidosis vaccine. In this study, the triosephosphate isomerase gene of E. granulosus was in silico cloned. The B cell and T cell epitopes were predicted by bioinformatics methods. The cDNA sequence of EgTIM was composition of 1094 base pairs, with an open reading frame of 753 base pairs. The deduced amino acid sequences were composed of 250 amino acids. Five cross-reactive epitopes, locating on 21aa-35aa, 43aa-57aa, 94aa-107aa, 115-129aa, and 164aa-183aa, could be expected to serve as candidate epitopes in the development of vaccine against E. granulosus. These results could provide bases for gene cloning, recombinant expression, and the designation of anti-hydatidosis vaccine.

  11. [Out of natural order: nature in discourses about cloning and stem cell research in Brazilian newspapers].

    PubMed

    Medeiros, Flavia Natércia da Silva

    2013-11-30

    Different conceptions of nature influence media coverage and public opinion about biotechnology. This study reports on a discourse analysis of the ideas about nature and what is natural expressed in Brazilian media coverage of cloning and stem cell research. In the discourse against this research, the biotechnologies in question are placed outside the natural order of things and deemed immoral. In the discourse of those who defend it, nature is portrayed as indifferent to the fate of humans or even cruel, or else a barrier to be overcome, while cloning and embryonic stem cells are naturalized and Dolly the sheep is anthropomorphized. The mythifying or transcendental representations of nature do not just influence public opinion, but also have ethical and political implications. PMID:24346197

  12. Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning.

    PubMed

    Niemann, Heiner; Tian, X Cindy; King, W Allan; Lee, Rita S F

    2008-02-01

    The birth of 'Dolly', the first mammal cloned from an adult donor cell, has sparked a flurry of research activities to improve cloning technology and to understand the underlying mechanism of epigenetic reprogramming of the transferred somatic cell nucleus. Especially in ruminants, somatic cell nuclear transfer (SCNT) is frequently associated with pathological changes in the foetal and placental phenotype and has significant consequences for development both before and after birth. The most critical factor is epigenetic reprogramming of the transferred somatic cell nucleus from its differentiated status into the totipotent state of the early embryo. This involves an erasure of the gene expression program of the respective donor cell and the establishment of the well-orchestrated sequence of expression of an estimated number of 10 000-12 000 genes regulating embryonic and foetal development. The following article reviews the present knowledge on the epigenetic reprogramming of the transferred somatic cell nucleus, with emphasis on DNA methylation, imprinting, X-chromosome inactivation and telomere length restoration in bovine development. Additionally, we briefly discuss other approaches towards epigenetic nuclear reprogramming, including the fusion of somatic and embryonic stem cells and the overexpression of genes crucial in the formation and maintenance of the pluripotent status. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realising the great potential of SCNT for basic biological research and for various agricultural and biomedical applications.

  13. Cloning and characterization of avocado fruit mRNAs and their expression during ripening and low-temperature storage.

    PubMed

    Dopico, B; Lowe, A L; Wilson, I D; Merodio, C; Grierson, D

    1993-02-01

    Differential screening of a cDNA library made from RNA extracted from avocado (Persea americana Mill cv. Hass) fruit stored at low temperature (7 degrees C) gave 23 cDNA clones grouped into 10 families, 6 of which showed increased expression during cold storage and normal ripening. Partial DNA sequencing was carried out for representative clones. Database searches found homologies with a polygalacturonase (PG), endochitinase, cysteine proteinase inhibitor and several stress-related proteins. No homologies were detected for clones from six families and their biological role remains to be elucidated. A full-length cDNA sequence for avocado PG was obtained and the predicted amino acid sequence compared with those from other PGs. mRNA encoding PG increased markedly during normal ripening, slightly later than mRNAs for cellulase and ethylene-forming enzyme (EFE). Low-temperature storage delayed ripening and retarded the appearance of mRNAs for enzymes known to be involved in cell wall metabolism and ethylene synthesis, such as cellulase, PG and EFE, and also other mRNAs of unknown function. The removal of ethylene from the atmosphere surrounding stored fruit delayed the appearance of the mRNAs encoding cellulase and PG more than the cold storage itself, although it hardly affected the expression of the EFE mRNA or the accumulation of mRNAs homologous to some other unidentified clones.

  14. Differential expression pattern of rubber elongation factor (REF) mRNA transcripts from high and low yielding clones of rubber tree (Hevea brasiliensis Muell. Arg.).

    PubMed

    Priya, P; Venkatachalam, P; Thulaseedharan, A

    2007-10-01

    In Hevea tree, rubber elongation factor (REF) is a key gene involved in rubber biosynthesis. Since the immaturity period for Hevea is 6 years, identification of molecular marker for latex yield potential will be beneficial for early selection of high yielding clones. The main objective of this research is to study the expression pattern of the REF gene in contrasting latex yield rubber clones (high and low yielding) by Northern blot as well as RT-PCR analysis. Accumulation of REF mRNA transcripts was significantly higher in latex cells compared to other cells of seedlings and mature Hevea trees. Northern results revealed that the level of REF gene expression in latex cells of high yielding rubber clones was significantly higher than in low yielders. According to RT-PCR results, the abundance of REF mRNA transcripts in latex cells was fivefold higher in the RRII105 clone, one of the most high yielding rubber clones. It is evident from the results that both tapping and ethephon treatment had a direct effect on induction of REF gene expression. Results demonstrate a positive correlation between REF gene expression pattern and latex yield.

  15. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DsrEFH from Allochromatium vinosum

    SciTech Connect

    Dahl, Christiane; Schulte, Andrea; Shin, Dong Hae

    2007-10-01

    DsrEFH from Allochromatium vinosum has been cloned, expressed, purified, and crystallized. A preliminary X-ray study of DsrEFH has been performed with a good quality crystal. In purple sulfur bacteria, the proteins encoded by dsr genes play an essential role in the oxidation of intracellular sulfur, which is an obligate intermediate during the oxidation of sulfide and thiosulfate. One such gene product, DsrEFH from Allochromatium vinosum, has been cloned, expressed, purified and crystallized. Synchrotron data were collected to 2.5 Å from a crystal of selenomethionine-substituted DsrEFH. The crystal belongs to the primitive monoclinic space group P2{sub 1}, with unit-cell parameters a = 56.6, b = 183.1, c = 107.8 Å, β = 99.6°. A full structure determination is under way in order to provide insight into the structure–function relationships of this protein.

  16. [SPREADING OF NCTC CLONE 929 CELLS AFTER RESEEDING].

    PubMed

    Petrov, Yu P; Negulyaev, Yu A; Tsupkina, N V

    2015-01-01

    The period (1 h after reseeding) of behaviour of mouse NCTC clone 929 cells to the conditions of artificial cultivation was studied. The time-lapse imaging followed the processing of the cells with ImageJ program was applied. To characterize the parametres cell status we used the cell area (projection of the cell on substrate) and Rp/Ra ratio introduced earlier as a spreading coefficient (Kuz'minykh, Petrov, 2004). After attaching a substratum, cells have a form of sphere (the phase "sphere") as the daughter cells after a mitosis. We revealed however that after this phase the reseeded cells do not start usual spreading and migration along substratum. They pass a phase of equally spreading in all directions and shaping their area as a circle (phase "circle"). This phase is absent of the daughter cells spreading after mitosis. We assume that the phase "circle" is a result of adaptation of the cells to reseedings at artificial cultivation. It is necessary for formation of a substrate composed of own extracellular matrix components (ECM) of the cells. Own ECM facilitates transition of the cells to their usual spreading and migration along substratum.

  17. Amphibian and mammal somatic-cell cloning: different species, common results?

    PubMed

    Loi, Pasqualino; Fulka, Josef; Ptak, Grazyna

    2003-11-01

    Since the production of Dolly the sheep cloning methods for somatic cells have been thoroughly described and are becoming routine. However, the rate at which live clones are produced remains low in all mammalian species tested so far. Remarkably, irrespective of the cloning protocol or the donor-cell type, all clones display common abnormalities, particularly in the placenta. The process is also complicated by early mortality of somatic-cell clones and the founder mammalian clone, Dolly the sheep, died in February 2003 aged six years. Based on published data and on our own experience, our view is that mammalian somatic-cell cloning and the pioneer nuclear-transfer data from amphibians have much in common. We suggest that the only way to improve nuclear reprogramming is to modify the chromatin structure of somatic cells before nuclear transfer, to provide the oocyte with a chromosomal structure that is more compatible with the natural reprogramming machinery of the oocyte.

  18. Amphibian and mammal somatic-cell cloning: different species, common results?

    PubMed

    Loi, Pasqualino; Fulka, Josef; Ptak, Grazyna

    2003-11-01

    Since the production of Dolly the sheep cloning methods for somatic cells have been thoroughly described and are becoming routine. However, the rate at which live clones are produced remains low in all mammalian species tested so far. Remarkably, irrespective of the cloning protocol or the donor-cell type, all clones display common abnormalities, particularly in the placenta. The process is also complicated by early mortality of somatic-cell clones and the founder mammalian clone, Dolly the sheep, died in February 2003 aged six years. Based on published data and on our own experience, our view is that mammalian somatic-cell cloning and the pioneer nuclear-transfer data from amphibians have much in common. We suggest that the only way to improve nuclear reprogramming is to modify the chromatin structure of somatic cells before nuclear transfer, to provide the oocyte with a chromosomal structure that is more compatible with the natural reprogramming machinery of the oocyte. PMID:14573358

  19. Molecular cloning and characterization of cDNAs for anionic and neutral peroxidases from suspension-cultured-cells of sweet potato and their differential expression in response to stress.

    PubMed

    Huh, G H; Lee, S J; Bae, Y S; Liu, J R; Kwak, S S

    1997-07-01

    Two peroxidase (POD) cDNAs, swpal and swpn1, were isolated and characterized from suspension-cultured cells of sweet potato in order to understand the physiological function of POD isozymes. Sequence analysis showed that swpa1 encoded an anionic POD and swpn1 encoded a neutral POD. The swpa1 and swpn1 genes were both highly expressed in suspension-cultured cells in accordance with the high POD activity of these cells. Although both gene transcripts were detected in the stems of intact plants, their transcription levels were much lower than in suspension-cultured cells. During cell growth the pattern of mRNA accumulation of swpa1 differed from that of swpn1, suggesting that expression of these genes is differentially regulated by cell growth stage. In addition, the swpa1 and swpn1 genes responded differently to oxidative stress induced by chilling. The expression of swpa1 was weakly induced by 15 degrees C acclimation and strongly induced by 4 degrees C chilling, whereas the mRNA level of swpn1 was increased by 15 degrees C acclimation and reduced by 4 degrees chilling. This indicates that the two isozymes encoded by swpa1 and swpn1 might contribute to protection against cold-induced oxidative stress through different signaling pathways. In leaves, both genes were induced by wounding with broadly similar expression. patterns. Genomic analysis suggests that the two isozymes are encoded by different loci in the sweet potato genome.

  20. Conventional and Regulatory CD4+ T Cells That Share Identical TCRs Are Derived from Common Clones.

    PubMed

    Wolf, Kyle J; Emerson, Ryan O; Pingel, Jeanette; Buller, R Mark; DiPaolo, Richard J

    2016-01-01

    Results from studies comparing the diversity and specificity of the TCR repertoires expressed by conventional (Tconv) and regulatory (Treg) CD4+ T cell have varied depending on the experimental system employed. We developed a new model in which T cells express a single fixed TCRα chain, randomly rearranged endogenous TCRβ chains, and a Foxp3-GFP reporter. We purified CD4+Foxp3- and CD4+Foxp3+ cells, then performed biased controlled multiplex PCR and high throughput sequencing of endogenous TCRβ chains. We identified >7,000 different TCRβ sequences in the periphery of 5 individual mice. On average, ~12% of TCR sequences were expressed by both conventional and regulatory populations within individual mice. The CD4+ T cells that expressed shared TCR sequences were present at higher frequencies compared to T cells expressing non-shared TCRs. Furthermore, nearly all (>90%) of the TCR sequences that were shared within mice were identical at the DNA sequence level, indicating that conventional and regulatory T cells that express shared TCRs are derived from common clones. Analysis of TCR repertoire overlap in the thymus reveals that a large proportion of Tconv and Treg sharing observed in the periphery is due to clonal expansion in the thymus. Together these data show that there are a limited number of TCR sequences shared between Tconv and Tregs. Also, Tconv and Tregs sharing identical TCRs are found at relatively high frequencies and are derived from common progenitors, of which a large portion are generated in the thymus. PMID:27100298

  1. Conventional and Regulatory CD4+ T Cells That Share Identical TCRs Are Derived from Common Clones

    PubMed Central

    Emerson, Ryan O.; Pingel, Jeanette; Buller, R. Mark; DiPaolo, Richard J.

    2016-01-01

    Results from studies comparing the diversity and specificity of the TCR repertoires expressed by conventional (Tconv) and regulatory (Treg) CD4+ T cell have varied depending on the experimental system employed. We developed a new model in which T cells express a single fixed TCRα chain, randomly rearranged endogenous TCRβ chains, and a Foxp3-GFP reporter. We purified CD4+Foxp3- and CD4+Foxp3+ cells, then performed biased controlled multiplex PCR and high throughput sequencing of endogenous TCRβ chains. We identified >7,000 different TCRβ sequences in the periphery of 5 individual mice. On average, ~12% of TCR sequences were expressed by both conventional and regulatory populations within individual mice. The CD4+ T cells that expressed shared TCR sequences were present at higher frequencies compared to T cells expressing non-shared TCRs. Furthermore, nearly all (>90%) of the TCR sequences that were shared within mice were identical at the DNA sequence level, indicating that conventional and regulatory T cells that express shared TCRs are derived from common clones. Analysis of TCR repertoire overlap in the thymus reveals that a large proportion of Tconv and Treg sharing observed in the periphery is due to clonal expansion in the thymus. Together these data show that there are a limited number of TCR sequences shared between Tconv and Tregs. Also, Tconv and Tregs sharing identical TCRs are found at relatively high frequencies and are derived from common progenitors, of which a large portion are generated in the thymus. PMID:27100298

  2. An Entry/Gateway® cloning system for general expression of genes with molecular tags in Drosophila melanogaster

    PubMed Central

    Akbari, Omar S; Oliver, Daniel; Eyer, Katie; Pai, Chi-Yun

    2009-01-01

    Background Tagged fusion proteins are priceless tools for monitoring the activities of biomolecules in living cells. However, over-expression of fusion proteins sometimes leads to the unwanted lethality or developmental defects. Therefore, vectors that can express tagged proteins at physiological levels are desirable tools for studying dosage-sensitive proteins. We developed a set of Entry/Gateway® vectors for expressing fluorescent fusion proteins in Drosophila melanogaster. The vectors were used to generate fluorescent CP190 which is a component of the gypsy chromatin insulator. We used the fluorescent CP190 to study the dynamic movement of related chromatin insulators in living cells. Results The Entry/Gateway® system is a timesaving technique for quickly generating expression constructs of tagged fusion proteins. We described in this study an Entry/Gateway® based system, which includes six P-element destination vectors (P-DEST) for expressing tagged proteins (eGFP, mRFP, or myc) in Drosophila melanogaster and a TA-based cloning vector for generating entry clones from unstable DNA sequences. We used the P-DEST vectors to express fluorecent CP190 at tolerable levels. Expression of CP190 using the UAS/Gal4 system, instead, led to either lethality or underdeveloped tissues. The expressed eGFP- or mRFP-tagged CP190 proteins are fully functional and rescued the lethality of the homozygous CP190 mutation. We visualized a wide range of CP190 distribution patterns in living cell nuclei, from thousands of tiny particles to less than ten giant ones, which likely reflects diverse organization of higher-order chromatin structures. We also visualized the fusion of multiple smaller insulator bodies into larger aggregates in living cells, which is likely reflective of the dynamic activities of reorganization of chromatin in living nuclei. Conclusion We have developed an efficient cloning system for expressing dosage-sensitive proteins in Drosophila melanogaster. This system

  3. Express Primer Tool for high-throughput gene cloning and expression

    2002-12-01

    A tool to assist in the design of primers for DNA amplification. The Express Primer web-based tool generates primer sequences specifically for the generation of expression clones for both lab scale and high-throughput projects. The application is designed not only to allow the user complete flexibility to specify primer design parameters but also to minimize the amount of manual intervention needed to generate a large number of primers for simultaneous amplification of multiple target genes.more » The Express Primer Tool enables the user to specify various experimental parameters (e.g. optimal Tm, Tm range, maximum Tm difference) for single or multiple candidate sequence(s) in FASTA format input as a flat text (ASCII) file. The application generates condidate primers, selects optimal primer pairs, and writes the forward and reverse primers pairs to an Excel file that is suitable for electronic submission to a synthesis facility. The program parameters emphasize high-throughput but allow for target atrition at various stages of the project.« less

  4. Alteration of the DNA methylation status of donor cells impairs the developmental competence of porcine cloned embryos

    PubMed Central

    HUAN, Yan Jun; WU, Zhan Feng; ZHANG, Ji Guang; ZHU, Jiang; XIE, Bing Teng; WANG, Jian Yu; LI, Jing Yu; XUE, Bing Hua; KONG, Qing Ran; LIU, Zhong Hua

    2015-01-01

    Nuclear reprogramming induced by somatic cell nuclear transfer is an inefficient process, and donor cell DNA methylation status is thought to be a major factor affecting cloning efficiency. Here, the role of donor cell DNA methylation status regulated by 5-aza-2'-deoxycytidine (5-aza-dC) or 5-methyl-2'-deoxycytidine-5'-triphosphate (5-methyl-dCTP) in the early development of porcine cloned embryos was investigated. Our results showed that 5-aza-dC or 5-methyl-dCTP significantly reduced or increased the global methylation levels and altered the methylation and expression levels of key genes in donor cells. However, the development of cloned embryos derived from these cells was reduced. Furthermore, disrupted pseudo-pronucleus formation and transcripts of early embryo development-related genes were observed in cloned embryos derived from these cells. In conclusion, our results demonstrated that alteration of the DNA methylation status of donor cells by 5-aza-dC or 5-methyl-dCTP disrupted nuclear reprogramming and impaired the developmental competence of porcine cloned embryos. PMID:26537205

  5. Cloning higher plants from aseptically cultured tissues and cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  6. The regulation of science and the Charter of Rights: would a ban on non-reproductive human cloning unjustifiably violate freedom of expression?

    PubMed

    Billingsley, Barbara; Caulfield, Timothy

    2004-01-01

    Non-Reproductive Human Cloning (NRHC) allows researchers to develop and clone cells, including non-reproductive cells, and to research the etiology and transmission of disease. The ability to clone specific stem cells may also allow researchers to clone cells with genetic defects and analyze those cells with more precisions. Despite those potential benefits, Parliament has banned such cloning due to a myriad of social and ethical concerns. In May 2002, the Canadian Government introduced Bill C-13 on assisted human reproductive technologies. Bill C-13 deals with both the scientific and the clinical use of human reproductive materials, and it prohibits a number of other activities, including NRHC. Although the Supreme Court of Canada has never ruled on whether scientific experiments area form of expression, academic support exists for this notion. The authors go through the legal analysis that would be required to find that scientific experiments are expression, focusing in part on whether NRHC could be considered violent and thus fall outside the protection of section 2(b). The latter question is complicated by the ongoing policy debate over whether an "embryonic cell" is property of human life. The authors then consider whether a ban on NRHC could be justified under section 1 of the Charter. They conclude that both the breadth of the legislative purpose and the proportionality of the measure are problematic. Proportionality is a specific concern because the ban could be viewed as an outright denial of scientific freedom of expression. Although consistent with current jurisprudence on freedom of expression, this paper runs against the flow of government policy in the areas of regulation and prohibition of non-reproductive human cloning. As there has been no Charter litigation to date on whether scientific research is a form of expression, the authors introduce a new way of looking at the legality of the regulation of new reproductive technologies.

  7. Cloning and expression of a cohemolysin, the CAMP factor of Actinobacillus pleuropneumoniae.

    PubMed Central

    Frey, J; Perrin, J; Nicolet, J

    1989-01-01

    The genetic determinant of the cohemolysin which is responsible for the CAMP phenomenon, a cohemolysis, of Actinobacillus pleuropneumoniae was cloned in Escherichia coli. Total DNA from the A. pleuropneumoniae serotype 1 type strain 4074 was used to construct a gene library in plasmid pUC18 in E. coli JM83. A total of 10,500 clones containing recombinant plasmids have been screened for hemolysis on blood plates. Fifty-five clones which showed a weak hemolytic response after 24 to 48 h of incubation were screened for the CAMP reaction with Staphylococcus aureus. This led to the identification of one clone which showed a positive CAMP reaction. Immunoblot analysis revealed that the recombinant strain expressed a protein with a molecular mass of 27,000 daltons, similar in size to the CAMP protein of the group B streptococci. Rabbit antibodies against the CAMP+ clone neutralized the CAMP reaction mediated by the E. coli strain containing the cloned CAMP gene as well as that of A. pleuropneumoniae. Antibodies raised against the cloned CAMP cohemolysin cross-reacted with Streptococcus agalactiae protein B. We designate the 27,000-dalton molecule CAMP factor protein and name its corresponding gene cfp. Images PMID:2659534

  8. Molecular cloning, characterization and expression of cathepsin D from grass carp (Ctenopharyngodon idella).

    PubMed

    Dong, Zhong-dian; Zhang, Jiao; Ji, Xiang-shan; Zhou, Fen-na; Fu, Yong; Chen, Weiyun; Zeng, Yong-qing; Li, Tong-ming; Wang, Hui

    2012-11-01

    Cathepsin D is a lysosomal aspartic proteinase which participates in various degradation functions within the cell. In this current study, we cloned and characterized the complete cDNA of grass carp cathepsin D through 5'- and 3'-RACE. The cathepsin D contained a 56 bp 5' terminal untranslated region (5'-UTR), a 1197 bp open reading frame encoding 398 amino acids, and a 394 bp 3'-UTR. Grass carp cathepsin D shared high similarity with those from other species, and showed the highest amino acid identity of 91% to Danio rerio. Unlike many other organisms, the grass carp cathepsin D contains only one N-glycosylation site closest to the N-terminal. Real-time quantitative RT-PCR demonstrated that Cathepsin D expressed in all twelve tissues (bladder, brain, liver, heart, gill, muscle, fin, eye, intestines, spleen, gonad and head kidney). The relative expression levels of Cathepsin D in gonad and liver were 26.58 and 24.95 times as much as those in fin, respectively. The expression level of Cathepsin D in muscle approximately 16-fold higher, in intestines and spleen were 12-fold higher. The cathepsin D expression showed an upward trend during embryonic development. After challenged with Aeromonas hydrophil, the expression of grass carp cathepsin D gene showed significant changes in the four test tissues (liver, head kidney, spleen and intestines). The fact that the bacterial infection can obviously improve the cathepsin D expression in immune-related organs, may suggest that cathepsin D plays an important role in the innate immune response of grass carp.

  9. Immortalization of human myogenic progenitor cell clone retaining multipotentiality

    SciTech Connect

    Hashimoto, Naohiro . E-mail: nao@nils.go.jp; Kiyono, Tohru; Wada, Michiko R.; Shimizu, Shirabe; Yasumoto, Shigeru; Inagawa, Masayo

    2006-10-06

    Human myogenic cells have limited ability to proliferate in culture. Although forced expression of telomerase can immortalize some cell types, telomerase alone delays senescence of human primary cultured myogenic cells, but fails to immortalize them. In contrast, constitutive expression of both telomerase and the E7 gene from human papillomavirus type 16 immortalizes primary human myogenic cells. We have established an immortalized primary human myogenic cell line preserving multipotentiality by ectopic expression of telomerase and E7. The immortalized human myogenic cells exhibit the phenotypic characteristics of their primary parent, including an ability to undergo myogenic, osteogenic, and adipogenic terminal differentiation under appropriate culture conditions. The immortalized cells will be useful for both basic and applied studies aimed at human muscle disorders. Furthermore, immortalization by transduction of telomerase and E7 represents a useful method by which to expand human myogenic cells in vitro without compromising their ability to differentiate.

  10. Vacuolar invertases in sweet potato: molecular cloning, characterization, and analysis of gene expression.

    PubMed

    Wang, Li-Ting; Wang, Ai-Yu; Hsieh, Chang-Wen; Chen, Chih-Yu; Sung, Hsien-Yi

    2005-05-01

    Two cDNAs (Ib beta fruct2 and Ib beta fruct3) encoding vacuolar invertases were cloned from sweet potato leaves, expressed in Pichia pastoris, and the recombinant proteins were purified by ammonium sulfate fractionation and chromatography on Ni-NTA agarose. The deduced amino acid sequences encoded by the cDNAs contained characteristic conserved elements of vacuolar invertases, including the sequence R[G/A/P]xxxGVS[E/D/M]K[S/T/A/R], located in the prepeptide region, Wxxx[M/I/V]LxWQ, located around the starting site of the mature protein, and an intact beta-fructosidase motif. The pH optimum, the substrate specificity, and the apparent K(m) values for sucrose exhibited by the recombinant proteins were similar to those of vacuolar invertases purified from sweet potato leaves and cell suspensions, thus confirming that the proteins encoded by Ib beta fruct2 and Ib beta fruct3 are vacuolar invertases. Moreover, northern analysis revealed that the expression of the two genes was differentially regulated. With the exception of mature leaves and sprouting storage roots, Ib beta fruct2 mRNA is widely expressed among the tissues of the sweet potato and is more abundant in young sink tissues. By contrast, Ib beta fruct3 mRNA was only detected in shoots and in young and mature leaves. It appears, therefore, that these two vacuolar invertases play different physiological roles during the development of the sweet potato plant.

  11. Molecular Cloning, Recombinant Expression, and Funtional Characterization of APRIL (TNFSF13) in Cat (felis catus).

    PubMed

    Liu, Hong-Zhen; Song, Ren; Zhang, Jia-Xin; Li, Jian-Feng; Gu, Wei; Zhang, Shuang-Quan

    2016-01-01

    A proliferation-inducing ligand (APRIL) is a critical member of the tumor necrosis factor (TNF) superfamily, which is involved in immune regulation. In the present study, the cDNA of cat APRIL (cAPRIL) was successfully amplified. Sequence analysis showed that the open reading frame (ORF) of cAPRIL contains a putative furin protease cleavage site (R-R-K-R), a conserved putative N-glycosylation site (Asn(124)), and two conservative cysteine residues (Cys(196) and Cys(211)). Real-time quantitative PCR (qPCR) analysis revealed that cAPRIL could be detected in various tissues. The phylogenetic analysis and predicted three dimensional (3D) structure revealed that it is similar to its counterparts. The extracellular soluble domain of the cAPRIL (csAPRIL) fragment was cloned into the expression vector pET43.1a. SDS-PAGE and Western blotting analysis indicated a high-level expression of csAPRIL protein in Escherichia coli BL21 (DE3). MTT assays revealed that purified recombinant csAPRIL protein was able to stimulate proliferation of mouse B-cells. These findings indicate that cAPRIL plays an important role in proliferation of B-cells and provide the basis for investigation on the roles of APRIL in this important domestic species. PMID:26485397

  12. Cloning, characterization, and expression analysis of a thioredoxin from orange-spotted grouper (Epinephelus coioides).

    PubMed

    Wei, Jingguang; Guo, Minglan; Ji, Huasong; Yan, Yang; Ouyang, Zhengliang; Huang, Xiaohong; Hang, Youhua; Qin, Qiwei

    2012-09-01

    Thioredoxins (TRXs) are a family of small, highly conserved proteins that are essential for the maintenance of cellular homeostasis. In this study, a thioredoxin gene was cloned from orange-spotted grouper, Epinephelus coioides (designated as Ec-TRX). The full-length cDNA of Ec-TRX was comprised of 767bp with a 327bp open reading frame that encodes a putative protein of 108 amino acids. Quantitative real-time PCR analysis revealed that the Ec-TRX mRNA was distributed abundantly in grouper, E. coioides skin and liver, and the expression in liver was up-regulated after viral challenge with Singapore grouper iridovirus (SGIV). Recombinant Ec-TRX (rEc-TRX) was expressed in Escherichia coli BL21 (DE3) and purified for mouse anti-Ec-TRX serum preparation. The rEc-TRX fusion protein was demonstrated to possess the expected redox activity in enzymatic analysis, and scavenge free radicals and protect supercoiled DNA from oxidative damage induced by a metal-ion catalyzed oxidation reaction. Subcellular localization revealed that Ec-TRX was distributed in both cytoplasm and nucleus. Overexpression of Ec-TRX in grouper spleen (GS) cells could promote the growth of GS cells and inhibit the replication of SGIV. These results suggest that Ec-TRX could function as an important antioxidant in a physiological context, and perhaps is involved in the responses to viral challenge.

  13. Induced overexpression of OCT4A in human embryonic stem cells increases cloning efficiency.

    PubMed

    Tsai, Steven C; Chang, David F; Hong, Chang-Mu; Xia, Ping; Senadheera, Dinithi; Trump, Lisa; Mishra, Suparna; Lutzko, Carolyn

    2014-06-15

    Our knowledge of the molecular mechanisms underlying human embryonic stem cell (hESC) self-renewal and differentiation is incomplete. The level of octamer-binding transcription factor 4 (Oct4), a critical regulator of pluripotency, is precisely controlled in mouse embryonic stem cells. However, studies of human OCT4 are often confounded by the presence of three isoforms and six expressed pseudogenes, which has complicated the interpretation of results. Using an inducible lentiviral overexpression and knockdown system to manipulate OCT4A above or below physiological levels, we specifically examine the functional role of the OCT4A isoform in hESC. (We also designed and generated a comparable series of vectors, which were not functional, for the overexpression and knockdown of OCT4B.) We show that specific knockdown of OCT4A results in hESC differentiation, as indicated by morphology changes, cell surface antigen expression, and upregulation of ectodermal genes. In contrast, inducible overexpression of OCT4A in hESC leads to a transient instability of the hESC phenotype, as indicated by changes in morphology, cell surface antigen expression, and transcriptional profile, that returns to baseline within 5 days. Interestingly, sustained expression of OCT4A past 5 days enhances hESC cloning efficiency, suggesting that higher levels of OCT4A can support self-renewal. Overall, our results indicate that high levels of OCT4A increase hESC cloning efficiency and do not induce differentiation (whereas OCT4B expression cannot be induced in hESC), highlighting the importance of isoform-specific studies in a stable and inducible expression system for human OCT4. Additionally, we demonstrate the utility of an efficient method for conditional gene expression in hESC.

  14. Effects of donor cells' sex on nuclear transfer efficiency and telomere lengths of cloned goats.

    PubMed

    Liu, H-J; Peng, H; Hu, C-C; Li, X-Y; Zhang, J-L; Zheng, Z; Zhang, W-C

    2016-10-01

    The aim of this study was to investigate the effects of donor cells' sex on nuclear transfer efficiency and telomere length of cloned goats from adult skin fibroblast cells. The telomere length of somatic cell cloned goats and their offspring was determined by measuring their mean terminal restriction fragment (TRF) length. The result showed that (i) reconstructed embryos with fibroblast cells from males Boer goats obtained significantly higher kids rate and rate of live kids than those of female embryos and (ii) the telomere lengths of four female cloned goats were shorter compared to their donor cells, but five male cloned goats had the same telomere length with their donor cells, mainly due to great variation existed among them. The offspring from female cloned goats had the same telomere length with their age-matched counterparts. In conclusion, the donor cells' sex had significant effects on nuclear transfer efficiency and telomere lengths of cloned goats.

  15. Effects of donor cells' sex on nuclear transfer efficiency and telomere lengths of cloned goats.

    PubMed

    Liu, H-J; Peng, H; Hu, C-C; Li, X-Y; Zhang, J-L; Zheng, Z; Zhang, W-C

    2016-10-01

    The aim of this study was to investigate the effects of donor cells' sex on nuclear transfer efficiency and telomere length of cloned goats from adult skin fibroblast cells. The telomere length of somatic cell cloned goats and their offspring was determined by measuring their mean terminal restriction fragment (TRF) length. The result showed that (i) reconstructed embryos with fibroblast cells from males Boer goats obtained significantly higher kids rate and rate of live kids than those of female embryos and (ii) the telomere lengths of four female cloned goats were shorter compared to their donor cells, but five male cloned goats had the same telomere length with their donor cells, mainly due to great variation existed among them. The offspring from female cloned goats had the same telomere length with their age-matched counterparts. In conclusion, the donor cells' sex had significant effects on nuclear transfer efficiency and telomere lengths of cloned goats. PMID:27558653

  16. "Mouse Clone Model" for evaluating the immunogenicity and tumorigenicity of pluripotent stem cells.

    PubMed

    Zhang, Gang; Zhang, Yi

    2015-01-01

    To investigate the immune-rejection and tumor-formation potentials of induced pluripotent stem cells and other stem cells, we devised a model-designated the "Mouse Clone Model"-which combined the theory of somatic animal cloning, tetraploid complementation, and induced pluripotent stem cells to demonstrate the applicability of stem cells for transplantation therapy. PMID:26687081

  17. "Mouse Clone Model" for evaluating the immunogenicity and tumorigenicity of pluripotent stem cells.

    PubMed

    Zhang, Gang; Zhang, Yi

    2015-12-18

    To investigate the immune-rejection and tumor-formation potentials of induced pluripotent stem cells and other stem cells, we devised a model-designated the "Mouse Clone Model"-which combined the theory of somatic animal cloning, tetraploid complementation, and induced pluripotent stem cells to demonstrate the applicability of stem cells for transplantation therapy.

  18. Protective natural autoantibodies to apoptotic cells: evidence of convergent selection of recurrent innate-like clones.

    PubMed

    Silverman, Gregg J

    2015-12-01

    During murine immune development, recurrent B cell clones arise in a predictable fashion. Among these B cells, an archetypical clonotypic set that recognizes phosphorylcholine (PC) antigens and produces anti-PC IgM, first implicated for roles in microbial protection, was later found to become expanded in hyperlipidemic mice and in response to an increased in vivo burden of apoptotic cells. These IgM natural antibodies can enhance clearance of damaged cells and induce intracellular blockade of inflammatory signaling cascades. In clinical populations, raised levels of anti-PC IgM correlate with protection from atherosclerosis and may also downmodulate the severity of autoimmune disease. Human anti-PC-producing clones without hypermutation have been isolated that can similarly discriminate apoptotic from healthy cells. An independent report on unrelated adults has described anti-PC-producing B cells with IgM genes that have conserved CDR3 motifs, similar to stereotypic clonal sets of B cell chronic lymphocytic leukemia. Taken together, emerging evidence suggests that, despite the capacity to form an effectively limitless range of Ig receptors, the human immune system may often recurrently generate lymphocytes expressing structurally convergent B cell receptors with protective and homeostatic roles.

  19. Chloroplast-Based Expression of Recombinant Proteins by Gateway® Cloning Technology.

    PubMed

    Gottschamel, Johanna; Lössl, Andreas

    2016-01-01

    Plastid transformation for the expression of recombinant proteins and entire enzymatic pathways has become a promising tool for plant biotechnology in the past decade. Several improvements of the technology have turned plant plastids into robust and dependable expression platforms for multiple high value compounds. In this chapter, we describe our current methodology based on Gateway(®) recombinant cloning, which we have adapted for plastid transformation. We describe the steps required for cloning, biolistic transformation, identification, and regeneration of transplastomic plant lines and Western blot analysis. PMID:26614278

  20. Cloning, secretory expression and characterization of recombinant β-mannanase from Bacillus circulans NT 6.7.

    PubMed

    Piwpankaew, Yotthachai; Sakulsirirat, Supa; Nitisinprasert, Sunee; Nguyen, Thu-Ha; Haltrich, Dietmar; Keawsompong, Suttipun

    2014-01-01

    The mannanase gene of B. circulans NT 6.7 was cloned and expressed in an Escherichia coli expression system. The B. circulans NT 6.7 mannanase gene consists of 1,083 nucleotides encoding a 360-amino acid residue long polypeptide, belonging to glycoside hydrolase family 26. The full-length mannanase gene including its native signal sequence was cloned into the vector pET21d and expressed in E. coli BL21 (DE3). β-Mannanase activities in the culture supernatant and crude cell extract were 37.10 and 515 U per ml, respectively, with most of the activity in the cell extract attributed to the periplasmic fraction. In contrast, expression of mannanase was much lower when using the B. circulans NT 6.7 mannanase gene without its signal sequence. The optimum temperature of recombinant β-mannanase activity was 50°C and the optimum pH was 6.0. The enzyme was very specific for β-mannan substrates with a preference for galactomannan. Hydrolysis products of locust bean gum were various mannooligosaccharides including mannohexaose, mannopentaose, mannotetraose, mannotriose and mannobiose, while mannose could not be detected. In conclusion, this expression system is efficient for the secretory production of recombinant β-mannanase from B. circulans NT 6.7, which shows good characteristics for various applications. PMID:25157333

  1. Exogenous expression of OCT4 facilitates oocyte-mediated reprogramming in cloned porcine embryos.

    PubMed

    Ji, Qianqian; Cong, Peiqing; Zhao, Haijing; Song, Zhenwei; Zhao, Guangyin; Gao, Jintao; Nie, Yu; Chen, Yaosheng

    2014-09-01

    OCT4 is a well-established regulator of pluripotency and nuclear reprogramming. To determine if improving OCT4 abundance can facilitate oocyte-mediated reprogramming in cloned porcine embryos, we artificially increased OCT4 levels by co-incubating donor cells with 50 ng/µl OCT4 plasmid. We observed higher rates of blastocyst formation (P < 0.05) and lower levels of blastocyst apoptosis in nuclear-transfer-derived embryos carrying OCT4-incubated donor nuclei (OCT4-SCNT). The beneficial effect caused by exogenous expression of OCT4 involves epigenetic changes, wherein increased histone acetylation (AcH3K9) appeared in OCT4-SCNT embryos at the one-cell and blastocyst stages and reduced histone methylation (H3K9me2) was observed at the one-cell stage (P < 0.05). There was a transient increase in exogenous OCT4 and an up-regulation of endogenous OCT4 level in OCT4-SCNT embryos (P < 0.05), while the expression pattern of epigenetic enzymes was changed. These modifications were accompanied by an up-regulation of CDX2, whose interaction with OCT4 is instrumental for implantation, and a down-regulation of XIST, a negative indicator of reprogramming (P < 0.05). Taken together, our results support a role for exogenous expression of OCT4 in improving the efficiency of nuclear reprogramming while establishing a convenient and timesaving method to improve nuclear-transfer outcomes.

  2. Phenotypic abnormalities observed in aged cloned mice from embryonic stem cells after long-term maintenance.

    PubMed

    Shimozawa, Nobuhiro; Sotomaru, Yusuke; Eguchi, Natsuko; Suzuki, Shuzo; Hioki, Kyoji; Usui, Toshimi; Kono, Tomohiro; Ito, Mamoru

    2006-09-01

    Somatic/embryonic stem cell cloning has made it possible to produce an individual genomically identical to another individual. However, the cloned animals have a variety of abnormalities caused by the aberrant gene modification, with insufficient reprogramming in cloning. We previously reported abnormalities in cloned mice at birth. In this study, we examined what abnormalities could be seen in cloned mice after long-term maintenance. The aged cloned mice showed multiple abnormalities: increase of body weight, some phenotypic abnormalities in the kidneys, testes and thymus, and lower urea nitrogen in their serum biochemical values. The kidneys of all cloned mice were hypertrophied, with a metamorphic or whitish appearance. The multiple lesions, including the enlarged renal pelvis and distension of the renal veins in histology, might be the result of urine accumulation by urinary tract obstruction. The testes of the cloned mice were atrophied, and showed no sperm formation in histology. In contrast, the thymus was rather hypertrophied, and a comparably increased number of lymphocytes were observed in the medulla, consisting mainly of T cells. By conducting a progeny test between the cloned mice, it was confirmed that these abnormalities in the aged cloned mice were not transmitted to their offspring, indicating that the incomplete reprogramming in clones might be in part responsible for the abnormalities detected in aged clones. These results indicate that the postnatal abnormalities observed in aged cloned mice are varied and can be restored through the germ line. PMID:16940284

  3. Histone deacetylase inhibitor significantly improved the cloning efficiency of porcine somatic cell nuclear transfer embryos.

    PubMed

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Yao, Chaogang; Zhou, Yang; Zhu, Jianguo; Lai, Liangxue; Ouyang, Hongsheng; Pang, Daxin

    2011-12-01

    Valproic acid (VPA), a histone deacetylase inbibitor, has been shown to generate inducible pluripotent stem (iPS) cells from mouse and human fibroblasts with a significant higher efficiency. Because successful cloning by somatic cell nuclear transfer (SCNT) undergoes a full reprogramming process in which the epigenetic state of a differentiated donor nuclear is converted into an embryonic totipotent state, we speculated that VPA would be useful in promoting cloning efficiency. Therefore, in the present study, we examined whether VPA can promote the developmental competence of SCNT embryos by improving the reprogramming state of donor nucleus. Here we report that 1 mM VPA for 14 to 16 h following activation significantly increased the rate of blastocyst formation of porcine SCNT embryos constructed from Landrace fetal fibroblast cells compared to the control (31.8 vs. 11.4%). However, we found that the acetylation level of Histone H3 lysine 14 and Histone H4 lysine 5 and expression level of Oct4, Sox2, and Klf4 was not significantly changed between VPA-treated and -untreated groups at the blastocyst stage. The SCNT embryos were transferred to 38 surrogates, and the cloning efficiency in the treated group was significantly improved compared with the control group. Taken together, we have demonstrated that VPA can improve both in vitro and in vivo development competence of porcine SCNT embryos.

  4. Prominent expression of transforming growth factor beta2 gene in the chicken embryonic gonad as revealed by suppressive subtraction cloning.

    PubMed

    Hattori Ma, Masa-aki; Furuta, Hiroki; Hiyama, Yoshio; Kato, Yukio; Fujihara, Noboru

    2002-02-01

    cDNA cloning from chicken embryonic gonad subtracted from tissues of the brain, heart, liver, gizzard, mesonephros, and muscle was performed to identify growth factor genes with expression unique to embryonic ovary and testis. We obtained several cDNA clones encoding known and many unknown genes. We found for the first time that the transforming growth factor beta2 (TGF-beta2) is preferentially expressed in the chicken embryonic ovary and testis. cDNA subtraction cloning with respect to the selective expression of TGF-beta2 in the ovary and testis was further analyzed by reverse transcription-polymerase chain reaction analyses of other embryonic tissues. The ontogeny of TGF-beta2 was evaluated in chicken embryonic ovary and testis. In both testis and ovary, the levels of TGF-beta2 transcripts were high during the early period of embryonic development (E7), gradually decreased until the late embryonic days (E14--E17), and then slightly increased at the last embryonic day (E21). There was no difference in the TGF-beta2 transcripts per RNA between the left and the right ovaries. TGF-beta2 may have a critical role in the regulation of the development of chicken ovarian and testicular germ cells during the embryonic period.

  5. Expression cloning of a periodontitis-associated apoptotic effector, cagE homologue, in Actinobacillus actinomycetemcomitans.

    PubMed

    Teng, Yen-Tung A; Hu, Wenqi

    2003-04-18

    To study anti-bacterial immunity and to identify critical bacterial antigens associated with specific periodontal infection, we screened the genomic library of Actinobacillus actinomycetemcomitans, a major Gram(-) anaerobe causing human periodontitis, by expression cloning using disease-associated periodontal CD4(+)T cells derived from HuPBL-engrafted NOD/SCID mice. Here, we report one of the novel genes identified and designated, cagE homologue (in short: cagE) of A. actinomycetemcomitans, which encodes a putative bacterial type IV secretion system with significant homology to Helicobacter pylori CagE and Agrobacterium tumefaciens VirB4. All serum samples from A. actinomycetemcomitans-infected periodontitis patients, but not from the healthy controls, readily recognized CagE by ELISA and Western blot, suggesting its biological and clinical significance. The CagE protein, upon secretion, elicited significant apoptosis on primary human epithelia, endothelia, osteoblasts, and T cells by 4-12h in vitro. Importantly, both cagE(-) mutant strain and N-terminus truncated CagE protein drastically reduced (p<0.001) the induction of apoptosis on human epithelia in vitro. These data strongly suggest that a novel effector protein, CagE in A. actinomycetemcomitans, induces apoptosis of human cells and destructive immunity, thereby it may play an important role in the pathogenesis of A. actinomycetemcomitans-mediated infections. PMID:12684047

  6. Using Transcriptomics to Identify Differential Gene Expression in Response to Salinity among Australian Phragmites australis Clones.

    PubMed

    Holmes, Gareth D; Hall, Nathan E; Gendall, Anthony R; Boon, Paul I; James, Elizabeth A

    2016-01-01

    Common Reed (Phragmites australis) is a frequent component of inland and coastal wetlands in temperate zones worldwide. Ongoing environmental changes have resulted in the decline of this species in many areas and invasive expansion in others. In the Gippsland Lakes coastal waterway system in south-eastern Australia, increasing salinity is thought to have contributed to the loss of fringing P. australis reed beds leading to increased shoreline erosion. A major goal of restoration in this waterway is to address the effect of salinity by planting a genetically diverse range of salt-tolerant P. australis plants. This has prompted an interest in examining the variation in salinity tolerance among clones and the underlying basis of this variation. Transcriptomics is an approach for identifying variation in genes and their expression levels associated with the exposure of plants to environmental stressors. In this paper we present initial results of the first comparative culm transcriptome analysis of P. australis clones. After sampling plants from sites of varied surface water salinity across the Gippsland Lakes, replicates from three clones from highly saline sites (>18 g L(-1) TDS) and three from low salinity sites (<6 g L(-1)) were grown in containers irrigated with either fresh (<0.1 g L(-1)) or saline water (16 g L(-1)). An RNA-Seq protocol was used to generate sequence data from culm tissues from the 12 samples allowing an analysis of differential gene expression. Among the key findings, we identified several genes uniquely up- or down-regulated in clones from highly saline sites when irrigated with saline water relative to clones from low salinity sites. These included the higher relative expression levels of genes associated with photosynthesis and lignan biosynthesis indicative of a greater ability of these clones to maintain growth under saline conditions. Combined with growth data from a parallel study, our data suggests local adaptation of certain clones to

  7. Using Transcriptomics to Identify Differential Gene Expression in Response to Salinity among Australian Phragmites australis Clones

    PubMed Central

    Holmes, Gareth D.; Hall, Nathan E.; Gendall, Anthony R.; Boon, Paul I.; James, Elizabeth A.

    2016-01-01

    Common Reed (Phragmites australis) is a frequent component of inland and coastal wetlands in temperate zones worldwide. Ongoing environmental changes have resulted in the decline of this species in many areas and invasive expansion in others. In the Gippsland Lakes coastal waterway system in south-eastern Australia, increasing salinity is thought to have contributed to the loss of fringing P. australis reed beds leading to increased shoreline erosion. A major goal of restoration in this waterway is to address the effect of salinity by planting a genetically diverse range of salt-tolerant P. australis plants. This has prompted an interest in examining the variation in salinity tolerance among clones and the underlying basis of this variation. Transcriptomics is an approach for identifying variation in genes and their expression levels associated with the exposure of plants to environmental stressors. In this paper we present initial results of the first comparative culm transcriptome analysis of P. australis clones. After sampling plants from sites of varied surface water salinity across the Gippsland Lakes, replicates from three clones from highly saline sites (>18 g L-1 TDS) and three from low salinity sites (<6 g L-1) were grown in containers irrigated with either fresh (<0.1 g L-1) or saline water (16 g L-1). An RNA-Seq protocol was used to generate sequence data from culm tissues from the 12 samples allowing an analysis of differential gene expression. Among the key findings, we identified several genes uniquely up- or down-regulated in clones from highly saline sites when irrigated with saline water relative to clones from low salinity sites. These included the higher relative expression levels of genes associated with photosynthesis and lignan biosynthesis indicative of a greater ability of these clones to maintain growth under saline conditions. Combined with growth data from a parallel study, our data suggests local adaptation of certain clones to salinity

  8. Using Transcriptomics to Identify Differential Gene Expression in Response to Salinity among Australian Phragmites australis Clones.

    PubMed

    Holmes, Gareth D; Hall, Nathan E; Gendall, Anthony R; Boon, Paul I; James, Elizabeth A

    2016-01-01

    Common Reed (Phragmites australis) is a frequent component of inland and coastal wetlands in temperate zones worldwide. Ongoing environmental changes have resulted in the decline of this species in many areas and invasive expansion in others. In the Gippsland Lakes coastal waterway system in south-eastern Australia, increasing salinity is thought to have contributed to the loss of fringing P. australis reed beds leading to increased shoreline erosion. A major goal of restoration in this waterway is to address the effect of salinity by planting a genetically diverse range of salt-tolerant P. australis plants. This has prompted an interest in examining the variation in salinity tolerance among clones and the underlying basis of this variation. Transcriptomics is an approach for identifying variation in genes and their expression levels associated with the exposure of plants to environmental stressors. In this paper we present initial results of the first comparative culm transcriptome analysis of P. australis clones. After sampling plants from sites of varied surface water salinity across the Gippsland Lakes, replicates from three clones from highly saline sites (>18 g L(-1) TDS) and three from low salinity sites (<6 g L(-1)) were grown in containers irrigated with either fresh (<0.1 g L(-1)) or saline water (16 g L(-1)). An RNA-Seq protocol was used to generate sequence data from culm tissues from the 12 samples allowing an analysis of differential gene expression. Among the key findings, we identified several genes uniquely up- or down-regulated in clones from highly saline sites when irrigated with saline water relative to clones from low salinity sites. These included the higher relative expression levels of genes associated with photosynthesis and lignan biosynthesis indicative of a greater ability of these clones to maintain growth under saline conditions. Combined with growth data from a parallel study, our data suggests local adaptation of certain clones to

  9. Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter.

    PubMed Central

    Boll, M; Herget, M; Wagener, M; Weber, W M; Markovich, D; Biber, J; Clauss, W; Murer, H; Daniel, H

    1996-01-01

    The presence of a proton-coupled electrogenic high-affinity peptide transporter in the apical membrane of tubular cells has been demonstrated by microperfusion studies and by use of brush border membrane vesicles. The transporter mediates tubular uptake of filtered di- and tripeptides and aminocephalosporin antibiotics. We have used expression cloning in Xenopus laevis oocytes for identification and characterization of the renal high-affinity peptide transporter. Injection of poly(A)+ RNA isolated from rabbit kidney cortex into oocytes resulted in expression of a pH-dependent transport activity for the aminocephalosporin antibiotic cefadroxil. After size fractionation of poly(A)+ RNA the transport activity was identified in the 3.0- to 5.0-kb fractions, which were used for construction of a cDNA library. The library was screened for expression of cefadroxil transport after injection of complementary RNA synthesized in vitro from different pools of clones. A single clone (rPepT2) was isolated that stimulated cefadroxil uptake into oocytes approximately 70-fold at a pH of 6.0. Kinetic analysis of cefadroxil uptake expressed by the transporter's complementary RNA showed a single saturable high-affinity transport system shared by dipeptides, tripeptides, and selected amino-beta-lactam antibiotics. Electrophysiological studies established that the transport activity is electrogenic and affected by membrane potential. Sequencing of the cDNA predicts a protein of 729 amino acids with 12 membrane-spanning domains. Although there is a significant amino acid sequence identity (47%) to the recently cloned peptide transporters from rabbit and human small intestine, the renal transporter shows distinct structural and functional differences. Images Fig. 7 PMID:8552623

  10. Vector for regulated expression of cloned genes in a wide range of gram-negative bacteria.

    PubMed Central

    Mermod, N; Ramos, J L; Lehrbach, P R; Timmis, K N

    1986-01-01

    A pKT231-based broad-host-range plasmid vector was constructed which enabled regulation of expression of cloned genes in a wide range of gram-negative bacteria. This vector, pNM185, contained upstream of its EcoRI, SstI, and SstII cloning sites the positively activated pm twin promoters of the TOL plasmid and xylS, the gene of the positive regulator of these promoters. Expression of cloned genes was induced with micromolar quantities of benzoate or m-toluate, the inexpensive coinducers of the pm promoters. Expression of a test gene, xylE, which specifies catechol 2,3-dioxygenase, cloned in this vector was tested in representative strains of a variety of gram-negative bacteria. Regulated expression of xylE was observed in most strains examined, and induced levels of enzyme representing up to 5% of total cellular protein and ratios of induced:noninduced levels of enzyme up to a factor of 600 were observed. The level of xylE gene expression in different bacteria tended to be correlated with their phylogenetic distance from Pseudomonas putida. Images PMID:3525513

  11. Identification and cloning of Bradyrhizobium japonicum genes expressed strain selectively in soil and rhizosphere.

    PubMed Central

    Bhagwat, A A; Keister, D L

    1992-01-01

    The growth of Bradyrhizobium japonicum USDA 110 and USDA 438 in soil extract-supplemented medium led to transcription of a large amount of DNA not expressed in basal medium. Strain USDA 438 was more competitive for the nodulation of soybean than strain USDA 110. To identify and isolate DNA regions which were expressed specifically in strain USDA 438 but not in strain USDA 110 in response to soil extract or soybean root exudate, we developed a subtractive RNA hybridization procedure. Several cosmid clones which showed strain-specific gene expression were isolated from a USDA 438 gene library. Two clones enhanced competitive nodulation when mobilized to USDA 110. The method described may be useful for identifying genes expressed in response to environmental stimuli or genes expressed differently in related microbial strains. Images PMID:1377899

  12. To clone or not to clone? Induced pluripotent stem cells can be generated in bulk culture.

    PubMed

    Willmann, Charlotte A; Hemeda, Hatim; Pieper, Lisa A; Lenz, Michael; Qin, Jie; Joussen, Sylvia; Sontag, Stephanie; Wanek, Paul; Denecke, Bernd; Schüler, Herdit M; Zenke, Martin; Wagner, Wolfgang

    2013-01-01

    Induced pluripotent stem cells (iPSCs) are usually clonally derived. The selection of fully reprogrammed cells generally involves picking of individual colonies with morphology similar to embryonic stem cells (ESCs). Given that fully reprogrammed cells are highly proliferative and escape from cellular senescence, it is conceivable that they outgrow non-pluripotent and partially reprogrammed cells during culture expansion without the need of clonal selection. In this study, we have reprogrammed human dermal fibroblasts (HDFs) with episomal plasmid vectors. Colony frequency was higher and size was larger when using murine embryonic fibroblasts (MEFs) as stromal support instead of HDFs or human mesenchymal stromal cells (MSCs). We have then compared iPSCs which were either clonally derived by manual selection of a single colony, or derived from bulk-cultures of all initial colonies. After few passages their morphology, expression of pluripotency markers, and gene expression profiles did not reveal any significant differences. Furthermore, clonally-derived and bulk-cultured iPSCs revealed similar in vitro differentiation potential towards the three germ layers. Therefore, manual selection of individual colonies does not appear to be necessary for the generation of iPSCs - this is of relevance for standardization and automation of cell culture procedures.

  13. Mouse K-Cl cotransporter KCC1: cloning, mapping, pathological expression, and functional regulation.

    PubMed

    Su, W; Shmukler, B E; Chernova, M N; Stuart-Tilley, A K; de Franceschi, L; Brugnara, C; Alper, S L

    1999-11-01

    Although K-Cl cotransporter (KCC1) mRNA is expressed in many tissues, K-Cl cotransport activity has been measured in few cell types, and detection of endogenous KCC1 polypeptide has not yet been reported. We have cloned the mouse erythroid KCC1 (mKCC1) cDNA and its flanking genomic regions and mapped the mKCC1 gene to chromosome 8. Three anti-peptide antibodies raised against recombinant mKCC1 function as immunoblot and immunoprecipitation reagents. The tissue distributions of mKCC1 mRNA and protein are widespread, and mKCC1 RNA is constitutively expressed during erythroid differentiation of ES cells. KCC1 polypeptide or related antigen is present in erythrocytes of multiple species in which K-Cl cotransport activity has been documented. Erythroid KCC1 polypeptide abundance is elevated in proportion to reticulocyte counts in density-fractionated cells, in bleeding-induced reticulocytosis, in mouse models of sickle cell disease and thalassemia, and in the corresponding human disorders. mKCC1-mediated uptake of (86)Rb into Xenopus oocytes requires extracellular Cl(-), is blocked by the diuretic R(+)-[2-n-butyl-6,7-dichloro-2-cyclopentyl-2, 3-dihydro-1-oxo-1H-indenyl-5-yl-)oxy]acetic acid, and exhibits an erythroid pattern of acute regulation, with activation by hypotonic swelling, N-ethylmaleimide, and staurosporine and inhibition by calyculin and okadaic acid. These reagents and findings will expedite studies of KCC1 structure-function relationships and of the pathobiology of KCC1-mediated K-Cl cotransport.

  14. Cloning, characterization and expression analysis of porcine microRNAs

    PubMed Central

    Reddy, Alavala Matta; Zheng, Yun; Jagadeeswaran, Guru; Macmil, Simone L; Graham, Wiley B; Roe, Bruce A; Desilva, Udaya; Zhang, Weixiong; Sunkar, Ramanjulu

    2009-01-01

    Background MicroRNAs (miRNAs) are small ~22-nt regulatory RNAs that can silence target genes, by blocking their protein production or degrading the mRNAs. Pig is an important animal in the agriculture industry because of its utility in the meat production. Besides, pig has tremendous biomedical importance as a model organism because of its closer proximity to humans than the mouse model. Several hundreds of miRNAs have been identified from mammals, humans, mice and rats, but little is known about the miRNA component in the pig genome. Here, we adopted an experimental approach to identify conserved and unique miRNAs and characterize their expression patterns in diverse tissues of pig. Results By sequencing a small RNA library generated using pooled RNA from the pig heart, liver and thymus; we identified a total of 120 conserved miRNA homologs in pig. Expression analysis of conserved miRNAs in 14 different tissue types revealed heart-specific expression of miR-499 and miR-208 and liver-specific expression of miR-122. Additionally, miR-1 and miR-133 in the heart, miR-181a and miR-142-3p in the thymus, miR-194 in the liver, and miR-143 in the stomach showed the highest levels of expression. miR-22, miR-26b, miR-29c and miR-30c showed ubiquitous expression in diverse tissues. The expression patterns of pig-specific miRNAs also varied among the tissues examined. Conclusion Identification of 120 miRNAs and determination of the spatial expression patterns of a sub-set of these in the pig is a valuable resource for molecular biologists, breeders, and biomedical investigators interested in post-transcriptional gene regulation in pig and in related mammals, including humans. PMID:19196471

  15. Frequent occurrence of highly expanded but unrelated B-cell clones in patients with multiple myeloma.

    PubMed

    Kriangkum, Jitra; Motz, Sarah N; Debes Marun, Carina S; Lafarge, Sandrine T; Gibson, Spencer B; Venner, Christopher P; Johnston, James B; Belch, Andrew R; Pilarski, Linda M

    2013-01-01

    Clonal diversity in multiple myeloma (MM) includes both MM-related and MM-unrelated clonal expansions which are subject to dominance exerted by the MM clone. Here we show evidence for the existence of minor but highly expanded unrelated B-cell clones in patients with MM defined by their complementary determining region 3 (CDR3) peak. We further characterize these clones over the disease and subsequent treatment. Second clones were identified by their specific IgH-VDJ sequences that are distinct from those of dominant MM clones. Clonal frequencies were determined through semi-quantitative PCR, quantitative PCR and single-cell polymerase chain reaction of the clone-specific sequence. In 13/74 MM patients, more than one dominant CDR3 peak was identified with 12 patients (16%) being truly biclonal. Second clones had different frequencies, were found in different locations and were found in different cell types from the dominant MM clone. Where analysis was possible, they were shown to have chromosomal characteristic distinct from those of the MM clone. The frequency of the second clone also changed over the course of the disease and often persisted despite treatment. Molecularly-defined second clones are infrequent in monoclonal gammopathy of undetermined significance (MGUS, 1/43 individuals or 2%), suggesting that they may arise at relatively late stages of myelomagenesis. In further support of our findings, biclonal gammopathy and concomitant MM and CLL (chronic lymphocytic leukemia) were confirmed to originate from two unrelated clones. Our data supports the idea that the clone giving rise to symptomatic myeloma exerts clonal dominance to prevent expansion of other clones. MM and second clones may arise from an underlying niche permissive of clonal expansion. The clinical significance of these highly expanded but unrelated clones remains to be confirmed. Overall, our findings add new dimensions to evaluating related and unrelated clonal expansions in MM and the

  16. The complete primary structure of the T-cell receptor genes from an alloreactive cytotoxic human T-lymphocyte clone.

    PubMed

    Leiden, J M; Fraser, J D; Strominger, J L

    1986-01-01

    The complete primary structure of the cDNAs encoding the alpha and beta chains of the T-lymphocyte receptor for antigen from a human alloreactive, cytotoxic T-cell clone, L17, is presented. Sequence analysis of these genes reveals that both are related to immunoglobulins and are composed of variable, diversity (at least in the case of the Ti beta clone), joining, and constant region sequences. Comparison of the sequence of the alpha-chain cDNA to that of previously sequenced mouse and human alpha cDNAs suggests the presence of human T-cell receptor alpha D-region sequences. Southern blot analysis confirms the finding that these cDNAs represent the functional receptor genes expressed by the L17 cytotoxic T-cell clone. The availability of these full-length T-cell receptor cDNA clones from a human T-lymphocyte clone of known antigen specificity should allow an analysis of the relationship between T-cell receptor structure and function. PMID:2426193

  17. A human oncogene of the RAS superfamily unmasked by expression cDNA cloning.

    PubMed Central

    Chan, A M; Miki, T; Meyers, K A; Aaronson, S A

    1994-01-01

    As an approach to identify human oncogenes, we generated an expression cDNA library from an ovarian carcinoma line. A potent transforming gene was detected by transfection analysis and identified as TC21, a recently cloned member of the RAS gene superfamily. A single point mutation substituting glutamine for leucine at position 72 was shown to be responsible for activation of transforming properties. While the cDNA clone possessed high transforming activity, the ovarian tumor genomic DNA, which contained the mutated TC21 allele, failed to induce transformed foci. Thus, expression cDNA cloning made it possible to identify and isolate a human oncogene that has evaded detection by conventional approaches. Images PMID:8052619

  18. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  19. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  20. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  1. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  2. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1990-01-01

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  3. cDNA cloning and expression of potato polyphenol oxidase.

    PubMed

    Hunt, M D; Eannetta, N T; Yu, H; Newman, S M; Steffens, J C

    1993-01-01

    Polyphenol oxidases (PPOs) of plants are copper metalloproteins which catalyze the oxidation of mono- and o-diphenols to o-diquinones. Although PPOs are believed to be primarily responsible for the deleterious browning of many fruit and vegetable crops and are thought to be involved in plant-pest interactions, direct evidence for these roles is lacking. We report the cloning of two PPO cDNAs from Solanum tuberosum leaves. These cDNAs exhibit 97% and 98% sequence similarity at the DNA and deduced amino acid levels, respectively. Putative copper-binding regions of both cDNAs are very similar to those of mammalian, bacterial and Neurospora tyrosinases. Both leaf PPO cDNAs appear to encode polypeptides which are processed to a mature molecular weight of 57,000. In potato leaves, petioles, roots, and flowers, PPO is encoded by ca. 2 kb transcripts. Leaf PPO mRNA is developmentally regulated and only detectable in young foliage. In contrast, the protein profile of immunologically detectable PPO remains constant from the apical node through the eleventh leaf node. PMID:7678763

  4. Molecular characterization and expression of cloned human galanin receptors GALR2 and GALR3.

    PubMed

    Kolakowski, L F; O'Neill, G P; Howard, A D; Broussard, S R; Sullivan, K A; Feighner, S D; Sawzdargo, M; Nguyen, T; Kargman, S; Shiao, L L; Hreniuk, D L; Tan, C P; Evans, J; Abramovitz, M; Chateauneuf, A; Coulombe, N; Ng, G; Johnson, M P; Tharian, A; Khoshbouei, H; George, S R; Smith, R G; O'Dowd, B F

    1998-12-01

    Galanin is a 29- or 30-amino acid peptide with wide-ranging effects on hormone release, feeding behavior, smooth muscle contractility, and somatosensory neuronal function. Three distinct galanin receptor (GALR) subtypes, designated GALR1, 2, and 3, have been cloned from the rat. We report here the cloning of the human GALR2 and GALR3 genes, an initial characterization of their pharmacology with respect to radioligand binding and signal transduction pathways, and a profile of their expression in brain and peripheral tissues. Human GALR2 and GALR3 show, respectively, 92 and 89% amino acid sequence identity with their rat homologues. Radioligand binding studies with 125I-galanin show that recombinant human GALR2 binds with high affinity to human galanin (K(D) = 0.3 nM). Human GALR3 binds galanin with less affinity (IC50 of 12 nM for porcine galanin and 75 nM for human galanin). Human GALR2 was shown to couple to phospholipase C and elevation of intracellular calcium levels as assessed by aequorin luminescence in HEK-293 cells and by Xenopus melanophore pigment aggregation and dispersion assays, in contrast to human GALR1 and human GALR3, which signal predominantly through inhibition of adenylate cyclase. GALR2 mRNA shows a wide distribution in the brain (mammillary nuclei, dentate gyrus, cingulate gyrus, and posterior hypothalamic, supraoptic, and arcuate nuclei), and restricted peripheral tissue distribution with highest mRNA levels detected in human small intestine. In comparison, whereas GALR3 mRNA was expressed in many areas of the rat brain, there was abundant expression in the primary olfactory cortex, olfactory tubercle, the islands of Calleja, the hippocampal CA regions of Ammon's horn, and the dentate gyrus. GALR3 mRNA was highly expressed in human testis and was detectable in adrenal gland and pancreas. The genes for human GALR2 and 3 were localized to chromosomes 17q25 and 22q12.2-13.1, respectively.

  5. Further characterization of protective Trypanosoma cruzi-specific CD4+ T-cell clones: T helper type 1-like phenotype and reactivity with shed trypomastigote antigens.

    PubMed Central

    Nickell, S P; Keane, M; So, M

    1993-01-01

    We previously reported the isolation from immune mice of a panel of murine clonal T-cell lines which specifically recognize antigens expressed by the trypomastigote stage of the protozoan parasite Trypanosoma cruzi, the causative agent of human Chagas' disease. Our analysis indicated that distinct clones which recognize common as well as strain-specific antigenic determinants were represented. The immunoprotective potential of several of these T-cell clones was demonstrated by adoptive transfer of protection to naive syngeneic recipients. Here we report that these T-cell clones are all of the TH1 phenotype, as determined from their lymphokine secretion patterns. Significant levels of stimulatory activity for each clone were detected in trypomastigote supernatants, and the release of this activity was time and temperature dependent. Seven of 10 T-cell clones tested responded to nitrocellulose-immunoblotted trypomastigote proteins in the range of 90 to 47 kDa; no fewer than six distinct epitopes residing on at least five distinct polypeptide species were recognized by this panel of clones. Two clones (2G8 and 4B10) previously shown to protect in vivo responded to immunoblotted proteins in the range of 65 to 53 and 90 to 80 kD, respectively. Stimulatory activity for the latter clone was shown to be expressed on the surface of trypomastigotes and to bind specifically to wheat germ agglutinin, indicating that its target antigen is an 85-kDa trypomastigote surface glycoprotein. PMID:8335358

  6. Chemical definition, cloning, and expression of the major protein of the leprosy bacillus.

    PubMed

    Rivoire, B; Pessolani, M C; Bozic, C M; Hunter, S W; Hefta, S A; Mehra, V; Brennan, P J

    1994-06-01

    The decline in prevalence of leprosy is not necessarily matched by a fall in incidence, emphasizing the need for new antigens to measure disease transmission and reservoirs of infection. Mycobacterium leprae obtained from armadillo tissues was disrupted and subjected to differential centrifugation to arrive at preparations of cell wall, cytoplasmic membrane, and cytosol. By committing 0.3 g of M. leprae to the task, it was possible to isolate from the cytosol and fully define the major cytosolic protein. Amino-terminus sequencing and chemical and enzymatic cleavage, followed by more sequencing and fast atom bombardment-mass spectrometry of fragments, allowed description of the entire amino acid sequence of a protein of 10,675-Da molecular mass. The sequence derived by chemical means is identical to that deduced previously from DNA analysis of the gene of a 10-kDa protein, a GroES analog. The work represents the first complete chemical definition of an M. leprae protein. PCR amplification of the 10-kDa protein gene, when cloned into Escherichia coli with a pTRP expression vector, allowed production of the recombinant protein. Chemical analysis of the expressed protein demonstrated that it exactly reflected the native protein. The recombinant major cytosolic protein appears to be a promising reagent for skin testing, still probably the most appropriate and pragmatic means of measuring incidence of leprosy.

  7. Cloning and heterologous expression of a thermostable pectate lyase from Penicillium occitanis in Escherichia coli.

    PubMed

    Damak, Naourez; Abdeljalil, Salma; Koubaa, Aida; Trigui, Sameh; Ayadi, Malika; Trigui-Lahiani, Hèla; Kallel, Emna; Turki, Nadia; Djemal, Lamia; Belghith, Hafeth; Taieb, Noomen Hadj; Gargouri, Ali

    2013-11-01

    The entire pectate lyase cDNA (Pel1) of Penicillium occitanis was cloned from a cDNA bank and sequenced. The ORF exhibited a great homology to Penicillium marneffei and conservation of all features of fungal pectate lyases such as the barrel structure with "eight right-handed parallel β-helix" architecture. The structure modeling also showed the interesting resemblance with thermostable pectate lyases since several specific residues were also shared by Pel1 and these thermostable enzymes. Having shown that the enzyme retains its activity after endoH-mediated deglycosylation, we investigated its expression in Escherichia coli BL21 using the pET28-a vector. This expression was shown to be optimum when cells were induced at room temperature in 2YT medium rather than at 37 °C and LB medium. In such conditions, the recombinant protein was apparently produced more in soluble form than as inclusion bodies. The effect of NaCl concentration was investigated during the binding and elution steps of recombinant His-tagged enzyme on MagneHis Ni-particles. The purified enzyme was shown to retain its thermo-activity as well as a great tolerance to high concentration of NaCl and imidazole.

  8. Molecular cloning and expression analysis of an apoptosis-associated gene Daxx from zebrafish, Danio rerio.

    PubMed

    Qi, Lin; Xiang, Zhiming

    2015-07-01

    The death domain-associated protein Daxx exerts many functions including the induction and inhibition of apoptosis, regulation of chromatin remodeling and gene transcription. In this report, we have cloned and characterized a Daxx ortholog from the zebrafish, Danio rerio. The bioinformatics analysis results indicated that the open reading frame (ORF) of zebrafish Daxx is 2,151bp long and encodes a putative protein of 716 amino acids containing Daxx domain. Though quantitative PCR analyses, Daxx mRNA was detected in embryonic development from 6 h to 120 h and in all 11 selected zebrafish tissues, and the expression of Daxx was increased first and then decreased during megalocytivirus infectious spleen and kidney necrosis virus (ISKNV) infection. Fluorescence microscopy indicated that the full-length protein was located in the nuclei of the tested Hela cells uniformly but punctiform distribution in HEK293T. In the luciferase report assays, the GAL4-Daxx fusion protein inhibited the transcriptional activity of L8G5-Luc reporter gene showed that Daxx might act as a transcriptional repressor, following the over-expression in HEK293T, the activation of NF-κB-Luc and p53/p21-Luc reporter genes were repressed by the protein. These results suggested that Daxx might play definite role in apoptosis and innate immunity in zebrafish.

  9. Molecular cloning, phylogenetic analysis and expression of beluga whale (Delphinapterus leucas) interleukin 6.

    PubMed

    St-Laurent, G; Archambault, D

    2000-01-31

    Interleukin 6 (IL-6) is a cytokine produced primarily by the monocytes/macrophages with regulatory effects in hematopoiesis, acute phase response, and multiple aspects of the immune response. IL-6 exerts its activity through its binding to specific high affinity receptors at the surface of target cells. As yet, no molecular data have been reported for the beluga whale IL-6. In this study, we cloned and determined the entire beluga whale IL-6-encoding cDNA sequence by reverse transcription-polymerase chain reaction (RT-PCR) sequencing, and analysed its genetic relationship with those from several mammalian species including human, rodent, ruminant, carnivore and other marine species. The identity levels of beluga whale IL-6 nucleic and deduced amino acid sequences with those from these mammalian species ranged from 62.3 to 97.3%, and 42.9 to 95.6%, respectively. Phylogenetic analysis based on amino acid sequences showed that the beluga whale IL-6 was most closely related to that of the killer whale. Thereafter, beluga whale IL-6-encoding sequence was successfully expressed in Escherichia coli by using the pTHIOHisA expression vector for the production of a recombinant fusion protein. The immunogenicity of the recombinant fusion protein was then confirmed as determined by the production of a beluga whale IL-6-specific rabbit antiserum.

  10. Lysis of cells infected with typhus group rickettsiae by a human cytotoxic T cell clone

    SciTech Connect

    Carl, M.; Robbins, F.; Hartzman, R.J.; Dasch, G.A.

    1987-12-15

    Cytolytic human T cells clones generated in response to the intracellular bacterium Rickettsia typhi were characterized. Growing clones were tested for their ability to proliferate specifically in response to antigens derived from typhus group rickettsiae or to lyse targets infected with R. typhi or Rickettsia prowazekii, as measured by /sup 51/Cr-release from target cells. Two clones were able to lyse targets infected with typhus group rickettsiae. One of these clones was more fully characterized because of its rapid growth characteristics. This cytolytic clone was capable of lysing an autologous infected target as well as a target matched for class I and II histocompatibility leukocyte antigens (HLA). It was not capable, however, of lysing either a target mismatched for both class I and II HLA or a target partially matched for class I HLA. In addition, the clone exhibited specificity in that it was able to lyse an autologous target infected with typhus group rickettsiae, but did not lyse an autologous target infected with an antigenically distinct rickettsial species, Rickettsia tsutsugamushi. These results demonstrate, for the first time, that cells infected with intracellular bacteria can be lysed by human cytotoxic T lymphocytes.

  11. Cloning of Porcine Pituitary Tumor Transforming Gene 1 and Its Expression in Porcine Oocytes and Embryos.

    PubMed

    Xie, Bingkun; Qin, Zhaoxian; Liu, Shuai; Nong, Suqun; Ma, Qingyan; Chen, Baojian; Liu, Mingjun; Pan, Tianbiao; Liao, D Joshua

    2016-01-01

    The maternal-to-embryonic transition (MET) is a complex process that occurs during early mammalian embryogenesis and is characterized by activation of the zygotic genome, initiation of embryonic transcription, and replacement of maternal mRNA with embryonic mRNA. The objective of this study was to reveal the temporal expression and localization patterns of PTTG1 during early porcine embryonic development and to establish a relationship between PTTG1 and the MET. To achieve this goal, reverse transcription-polymerase chain reaction (RT-PCR) was performed to clone porcine PTTG1. Subsequently, germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, zygotes, 2-, 4-, and 8-cell-stage embryos, morulas, and blastocysts were produced in vitro and their gene expression was analyzed. The results revealed that the coding sequence of porcine PTTG1 is 609-bp in length and that it encodes a 202-aa polypeptide. Using qRT-PCR, PTTG1 mRNA expression was observed to be maintained at high levels in GV- and MII-stage oocytes. The transcript levels in oocytes were also significantly higher than those in embryos from the zygote to blastocyst stages. Immunohistochemical analyses revealed that porcine PTTG1 was primarily localized to the cytoplasm and partially localized to the nucleus. Furthermore, the PTTG1 protein levels in MII-stage oocytes and zygotes were significantly higher than those in embryos from the 2-cell to blastocyst stage. After fertilization, the level of this protein began to decrease gradually until the blastocyst stage. The results of our study suggest that porcine PTTG1 is a new candidate maternal effect gene (MEG) that may participate in the processes of oocyte maturation and zygotic genome activation during porcine embryogenesis. PMID:27058238

  12. Cloning of Porcine Pituitary Tumor Transforming Gene 1 and Its Expression in Porcine Oocytes and Embryos

    PubMed Central

    Liu, Shuai; Nong, Suqun; Ma, Qingyan; Chen, Baojian; Liu, Mingjun; Pan, Tianbiao; Liao, D. Joshua

    2016-01-01

    The maternal-to-embryonic transition (MET) is a complex process that occurs during early mammalian embryogenesis and is characterized by activation of the zygotic genome, initiation of embryonic transcription, and replacement of maternal mRNA with embryonic mRNA. The objective of this study was to reveal the temporal expression and localization patterns of PTTG1 during early porcine embryonic development and to establish a relationship between PTTG1 and the MET. To achieve this goal, reverse transcription-polymerase chain reaction (RT-PCR) was performed to clone porcine PTTG1. Subsequently, germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, zygotes, 2-, 4-, and 8-cell-stage embryos, morulas, and blastocysts were produced in vitro and their gene expression was analyzed. The results revealed that the coding sequence of porcine PTTG1 is 609-bp in length and that it encodes a 202-aa polypeptide. Using qRT-PCR, PTTG1 mRNA expression was observed to be maintained at high levels in GV- and MII-stage oocytes. The transcript levels in oocytes were also significantly higher than those in embryos from the zygote to blastocyst stages. Immunohistochemical analyses revealed that porcine PTTG1 was primarily localized to the cytoplasm and partially localized to the nucleus. Furthermore, the PTTG1 protein levels in MII-stage oocytes and zygotes were significantly higher than those in embryos from the 2-cell to blastocyst stage. After fertilization, the level of this protein began to decrease gradually until the blastocyst stage. The results of our study suggest that porcine PTTG1 is a new candidate maternal effect gene (MEG) that may participate in the processes of oocyte maturation and zygotic genome activation during porcine embryogenesis. PMID:27058238

  13. Activation of resting human B cells by helper T-cell clone supernatant: characterization of a human B-cell-activating factor.

    PubMed Central

    Diu, A; Gougeon, M L; Moreau, J L; Reinherz, E L; Thèze, J

    1987-01-01

    The effects of helper T-cell clone supernatants on resting human B cells were investigated. Four different helper T-cell clones (two T4+ and two T8+) were stimulated by anti-T3 monoclonal antibodies on Sepharose beads or anti-T11(2) plus anti-T11(3) monoclonal antibodies. The supernatants from these activated clones induced the proliferation of highly purified resting B lymphocytes from the peripheral blood. The B cells exhibited a cell size and a surface-antigen pattern (4F2 antigen and transferrin receptor) of phase G0 B cells, and they were functionally resting. In response to T-cell supernatants a large fraction of the B cells enlarged and expressed 4F2 antigens and transferrin receptors. In gel filtration, the corresponding activity migrated with an apparent Mr of 12,000-15,000. Our findings strongly support the existence of a human B-cell-activating factor acting on resting B cells and causing them to enter phase G1 of the cell cycle. PMID:2962196

  14. RNA Extraction from Xenopus Auditory and Vestibular Organs for Molecular Cloning and Expression Profiling with RNA-Seq and Microarrays.

    PubMed

    Trujillo-Provencio, Casilda; Powers, TuShun R; Sultemeier, David R; Ramirez-Gordillo, Daniel; Serrano, Elba E

    2016-01-01

    The amphibian Xenopus offers a unique model system for uncovering the genetic basis of auditory and vestibular function in an organism that is well-suited for experimental manipulation during animal development. However, many procedures for analyzing gene expression in the peripheral auditory and vestibular systems mandate the ability to isolate intact RNA from inner ear tissue. Methods presented here facilitate preparation of high-quality inner ear RNA from larval and post-metamorphic Xenopus specimens that can be used for a variety of purposes. We demonstrate that RNA isolated with these protocols is suitable for microarray analysis and Illumina-Solexa sequencing (RNA-Seq) of inner ear organs, and for cloning of large transcripts, such as those for ion channels. Genetic sequences cloned with these procedures can be used for transient transfection of Xenopus kidney cell lines with fluorescent protein fusion constructs. PMID:27259922

  15. RNA Extraction from Xenopus Auditory and Vestibular Organs for Molecular Cloning and Expression Profiling with RNA-Seq and Microarrays.

    PubMed

    Trujillo-Provencio, Casilda; Powers, TuShun R; Sultemeier, David R; Ramirez-Gordillo, Daniel; Serrano, Elba E

    2016-01-01

    The amphibian Xenopus offers a unique model system for uncovering the genetic basis of auditory and vestibular function in an organism that is well-suited for experimental manipulation during animal development. However, many procedures for analyzing gene expression in the peripheral auditory and vestibular systems mandate the ability to isolate intact RNA from inner ear tissue. Methods presented here facilitate preparation of high-quality inner ear RNA from larval and post-metamorphic Xenopus specimens that can be used for a variety of purposes. We demonstrate that RNA isolated with these protocols is suitable for microarray analysis and Illumina-Solexa sequencing (RNA-Seq) of inner ear organs, and for cloning of large transcripts, such as those for ion channels. Genetic sequences cloned with these procedures can be used for transient transfection of Xenopus kidney cell lines with fluorescent protein fusion constructs.

  16. Cloning and expression of an atrazine inducible cytochrome P450 from Chironomus tentans (Diptera: Chironomidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies performed in our lab have measured the effect of atrazine exposure on cytochrome P450-dependent monooxygenase activity and have found increased activity in midge larvae (Chironomus tentans) as a result of atrazine exposure (1-10 ppm). Here we report the cloning and expression of a ...

  17. Cloning and expression of a beta-xylosidase from the fungus Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In silico analysis of the genome of Fusarium verticillioides, an endophyte and pathogen of maize, revealed several genes with potential use in the hydrolysis of hemicelluloses. We have cloned a gene, FVEG_05677.3, with putative xylosidase and arabinofuranosidase activities. The gene was expressed ...

  18. CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE (CYT19)

    EPA Science Inventory

    CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE (cyt19)

    Stephen B. Waters1 , Felicia Walton1 , Miroslav Styblo1 , Karen Herbin-Davis2, and David J. Thomas2 1 School of Medicine, University of North Carolina at Chape...

  19. CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT S-ADENOSYL-1-METHIONINE: ARSENIC (III) METHYLTRANSFERASE

    EPA Science Inventory

    CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT
    S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE

    Stephen B. Waters, Ph.D., Miroslav Styblo, Ph.D., Melinda A. Beck, Ph.D., University of North Carolina at Chapel Hill; David J. Thomas, Ph.D., U.S. Environmental...

  20. Cloning of alginate lyase gene (alxM) and expression in Escherichia coli.

    PubMed Central

    Brown, B J; Preston, J F; Ingram, L O

    1991-01-01

    The alxM gene encoding a D-mannuronan-specific alginate lyase has been cloned from a marine bacterium isolated as an epiphyte on the brown alga, Sargassum fluitans. Expression of this gene in Escherichia coli provides a source of this enzyme for probing alginate structure and modifying the mannuronan-rich alginate polymers produced by bacterial pathogens. Images PMID:1872617

  1. Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of sequenced insect genomes has allowed for discovery and functional characterization of novel genes and proteins. We report use of the Tribolium castaneum (Herbst) (red flour beetle) genome to identify, clone, express, and characterize a novel endo-ß-1,4-glucanase we named TcEG1 (...

  2. Cloning of a yeast alpha-amylase promoter and its regulated heterologous expression

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR; Hooker, Brian S [Kennewick, WA; Anderson, Daniel B [Pasco, WA

    2003-04-01

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  3. Cloning and expression of a species-specific early immunogenic 36-kilodalton protein of Mycoplasma hyopneumoniae in Escherichia coli.

    PubMed Central

    Strasser, M; Frey, J; Bestetti, G; Kobisch, M; Nicolet, J

    1991-01-01

    Mycoplasma hyopneumoniae, the etiologic agent of porcine enzootic pneumonia, synthesizes a 36-kDa protein which is an early and strong immunogenic factor in experimentally and naturally infected swine. The gene encoding this protein was cloned by screening a gene library of M. hyopneumoniae DNA with rabbit hyperimmune serum made against whole M. hyopneumoniae cells and convalescent-phase swine serum. Analysis of the recombinant protein expressed in Escherichia coli by immunoblot techniques showed that the protein is expressed in E. coli in its full length and does not cross-react with proteins from M. flocculare or M. hyorhinis. Genetic analysis showed that the gene was expressed from the lac promoter of the vector and seems to be translationally initiated from its own ribosome binding site. Subcloning in a transcriptional fusion vector to optimize expression resulted in production of the 36-kDa protein in E. coli at levels up to 30% of total protein. Images PMID:2004806

  4. Construction of a directional T vector for cloning PCR products and expression in Escherichia coli.

    PubMed

    Liang, Xiu-Yi; Liang, Zhi-Cheng; Zhang, Zhi; Zhou, Jiao-Jiao; Liu, Shi-Yu; Tian, Sheng-Li

    2015-05-01

    In order to clone PCR products and express them effectively in Escherichia coli, a directional cloning system was constructed by generating a T vector based on pQE-30Xa. The vector was prepared by inserting an XcmI cassette containing an endonuclease XcmI site, a kanamycin selective marker, a multiple-cloning-site (MCS) region and an opposite endonuclease XcmI site into the vector pQE-30Xa. The T vector pQE-T with single overhanging dT residues at both 3' ends was obtained by digesting with the restriction enzyme XcmI. For directional cloning, a BamHI site was introduced to the ends of the PCR products. A BamHI site was also located on the multiple cloning site of pQE-T. The PCR products were ligated with pQE-T. The directionally inserted recombinants were distinguished by using BamHI to digest the recombinants because there are two BamHI sites located on the both sides of PCR fragment. In order to identify the T-vector functions, the 14-3-3-ZsGreen and hRBP genes were amplified and a BamHI site was added to the ends of the genes to confirm this vector by ligation with pQE-T. Results showed that the 14-3-3-ZsGreen and hRBP were cloned to the vector pQE-T directly and corresponding proteins were successfully produced. It was here demonstrated that this directional vector is capable of gene cloning and is used to manipulate gene expression very easily. The methodology proposed here involves easy incorporation of the construct into other vectors in various hosts.

  5. High-throughput Cloning and Expression of Integral Membrane Proteins in Escherichia coli

    PubMed Central

    Bruni, Renato

    2014-01-01

    Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression and screening of membrane proteins using high throughput methodologies developed in our laboratory. Basic Protocol 1 deals with the cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that express at the miniscale, basic protocols 3 and 4 outline the methods employed for the expression and purification of targets at the midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable. PMID:24510647

  6. Cloning and expression of quorum sensing N-acyl-homoserine synthase (LuxI) gene detected in Acinetobacter baumannii

    PubMed Central

    Modarresi, Farzan; Azizi, Omid; Shakibaie, Mohammad Reza; Motamedifar, Mohammad; Mansouri, Shahla

    2016-01-01

    Background and Objectives: In present study we aimed to clone the luxI gene encoding N-acyl-homoserine synthase detected in clinical isolates of Acinetobacter baumannii and study its expression in Escherichia coli transformants. Materials and Methods: Four A. baumannii hospital strains which demonstrated strong biofilm activity were selected in this investigation. The presence of luxI gene was detected using PCR technique. Purified PCR product DNA was initially cloned into pTG19 and transformed to E. coli DH5α. The gene was then recovered from agarose gel and ligated by T4 DNA ligase into pET28a expression vector using NdeI and XhoI enzymes. pET28a + luxI was transformed into E. coli BL21 (DE3). The luxI putative gene was further detected in the transformants by colony PCR. Expression of the luxI gene in the recombinant E. coli BL21 cells was studied by quantitative real time PCR (qRT-PCR) and the presence of N-acylhomoserine lactone (AHL) was checked by colorimetric assay and Fourier Transform Infra-Red (FT-IR) spectroscopy. Results: We successfully cloned AHL gene from A. baumannii strain 23 to pET28a expression vector. There was four fold increases in expression of luxI in the transformants (P ≤ 0.05). It was found that, strain 23 and the transformants showed highest amount of AHL activity (OD = 1.524). The FT-IR analysis indicated stretching C=O bond of the lactone ring and primary amides (N=H) at 1764.69 cm−1 and 1659.23 cm−1 respectively. Conclusion: From above results we concluded that, luxI in A. baumannii is indeed responsible for AHL production and not regulation and pET28a vector allows efficient AHL expression in E. coli BL21 transformants. PMID:27307980

  7. Molecular cloning, expression and characterization of pyridoxamine–pyruvate aminotransferase

    PubMed Central

    Yoshikane, Yu; Yokochi, Nana; Ohnishi, Kouhei; Hayashi, Hideyuki; Yagi, Toshiharu

    2006-01-01

    Pyridoxamine–pyruvate aminotransferase is a PLP (pyridoxal 5′-phosphate) (a coenzyme form of vitamin B6)-independent aminotransferase which catalyses a reversible transamination reaction between pyridoxamine and pyruvate to form pyridoxal and L-alanine. The gene encoding the enzyme has been identified, cloned and overexpressed for the first time. The mlr6806 gene on the chromosome of a symbiotic nitrogen-fixing bacterium, Mesorhizobium loti, encoded the enzyme, which consists of 393 amino acid residues. The primary sequence was identical with those of archaeal aspartate aminotransferase and rat serine–pyruvate aminotransferase, which are PLP-dependent aminotransferases. The results of fold-type analysis and the consensus amino acid residues found around the active-site lysine residue identified in the present study showed that the enzyme could be classified into class V aminotransferases of fold type I or the AT IV subfamily of the α family of the PLP-dependent enzymes. Analyses of the absorption and CD spectra of the wild-type and point-mutated enzymes showed that Lys197 was essential for the enzyme activity, and was the active-site lysine residue that corresponded to that found in the PLP-dependent aminotransferases, as had been suggested previously [Hodsdon, Kolb, Snell and Cole (1978) Biochem. J. 169, 429–432]. The Kd value for pyridoxal determined by means of CD was 100-fold lower than the Km value for it, suggesting that Schiff base formation between pyridoxal and the active-site lysine residue is partially rate determining in the catalysis of pyridoxal. The active-site structure and evolutionary aspects of the enzyme are discussed. PMID:16545075

  8. Cloning, expression and characterization of sugarcane (Saccharum officinarum L.) transketolase.

    PubMed

    Kalhori, Nahid; Nulit, R; Go, Rusea

    2013-10-01

    Pentose phosphate pathway (PPP) composed of two functionally-connected phases, the oxidative and non-oxidative phase. Both phases catalysed by a series of enzymes. Transketolase is one of key enzymes of non-oxidative phase in which transfer two carbon units from fructose-6-phosphate to erythrose-4-phosphate and convert glyceraldehyde-3-phosphate to xylulose-5-phosphate. In plant, erythrose-4-phosphate enters the shikimate pathway which is produces many secondary metabolites such as aromatic amino acids, flavonoids, lignin. Although transketolase in plant system is important, study of this enzyme is still limited. Until to date, TKT genes had been isolated only from seven plants species, thus, the aim of present study to isolate, study the similarity and phylogeny of transketolase from sugarcane. Unlike bacteria, fungal and animal, PPP is complete in the cytosol and all enzymes are found cytosolic. However, in plant, the oxidative phase found localised in the cytosol but the sub localisation for non-oxidative phase might be restricted to plastid. Thus, this study was conducted to determine subcellular localization of sugarcane transketolase. The isolation of sugarcane TKT was done by reverse transcription polymerase chain reaction, followed by cloning into pJET1.2 vector and sequencing. This study has isolated 2,327 bp length of sugarcane TKT. The molecular phylogenetic tree analysis found that transketolase from sugarcane and Zea mays in one group. Classification analysis found that both plants showed closer relationship due to both plants in the same taxon i.e. family Poaceae. Target P 1.1 and Chloro P predicted that the compartmentation of sugarcane transketolase is localised in the chloroplast which is 85 amino acids are plant plastid target sequence. This led to conclusion that the PPP is incomplete in the cytosol of sugarcane. This study also found that the similarity sequence of sugarcane TKT closely related with the taxonomy plants.

  9. Cloning and functional expression of a human pancreatic islet glucose-transporter cDNA

    SciTech Connect

    Permutt, M.A.; Koranyi, L.; Keller, K.; Lacy, P.E.; Scharp, D.W.; Mueckler, M. )

    1989-11-01

    Previous studies have suggested that pancreatic islet glucose transport is mediated by a high-K{sub m}, low-affinity facilitated transporter similar to that expressed in liver. To determine the relationship between islet and liver glucose transporters, liver-type glucose-transporter cDNA clones were isolated from a human liver cDNA library. The liver-type glucose-transporter cDNA clone hybridized to mRNA transcripts of the same size in human liver and pancreatic islet RNA. A cDNA library was prepared from purified human pancreatic islet tissue and screened with human liver-type glucose-transporter cDNA. The authors isolated two overlapping cDNA clones encompassing 2600 base pairs, which encode a pancreatic islet protein identical in sequence to that of the putative liver-type glucose-transporter protein. Xenopus oocytes injected with synthetic mRNA transcribed from a full-length cDNA construct exhibited increased uptake of 2-deoxyglucose, confirming the functional identity of the clone. These cDNA clones can now be used to study regulation of expression of the gene and to assess the role of inherited defects in this gene as a candidate for inherited susceptibility to non-insulin-dependent diabetes mellitus.

  10. Transfer of cloned human class I major histocompatibility complex genes into HLA mutant human lymphoblastoid cells.

    PubMed Central

    Shimizu, Y; Koller, B; Geraghty, D; Orr, H; Shaw, S; Kavathas, P; DeMars, R

    1986-01-01

    Three new kinds of recombinant DNA constructs were used to transfer cloned human class I HLA genes (A2 and B8) into unique HLA mutant lymphoblastoid cells: pHeBo(x): a class I gene, "x," in plasmid vector pHeBo, which contains a hygromycin resistance gene and Epstein-Barr virus oriP element that sustains extrachromosomal replication; pHPT(x): gene x in a vector with a hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene; pHPTe(x): gene x in a vector with the HPRT gene and oriP element. Cell surface class I antigen expression was strong in transferents made with class I-deficient lymphoblastoid cell line mutants .144 (A-null), .53 (B-null), and .184 (A-null, B-null). Transferents expressing HLA-A2 were recognized specifically by HLA-A2-specific cytotoxic T lymphocytes. When introduced on either of the vectors with the Epstein-Barr virus oriP element, the class I gene replicated extrachromosomally and was lost at rates of 0.2 to 0.3 per cell division. When introduced with vector pHPT (lacking Epstein-Barr virus oriP), the B8 gene was inserted at different chromosomal locations. Introduction of the HLA-B8 gene failed to restore antigen expression by HLA-B-null mutant .174, providing evidence that, unlike mutants exemplified by .53, .144, and .184, some HLA antigen loss mutants are deficient in a trans-acting function needed for class I antigen expression. Of more general interest, the results obtained with HLA class I genes in vectors that replicate extrachromosomally suggest ways of relating genic expression to chromatin structure and function and of attempting to clone functional human centromeres. Images PMID:3023867

  11. Transfer of cloned human class I major histocompatibility complex genes into HLA mutant human lymphoblastoid cells.

    PubMed

    Shimizu, Y; Koller, B; Geraghty, D; Orr, H; Shaw, S; Kavathas, P; DeMars, R

    1986-04-01

    Three new kinds of recombinant DNA constructs were used to transfer cloned human class I HLA genes (A2 and B8) into unique HLA mutant lymphoblastoid cells: pHeBo(x): a class I gene, "x," in plasmid vector pHeBo, which contains a hygromycin resistance gene and Epstein-Barr virus oriP element that sustains extrachromosomal replication; pHPT(x): gene x in a vector with a hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene; pHPTe(x): gene x in a vector with the HPRT gene and oriP element. Cell surface class I antigen expression was strong in transferents made with class I-deficient lymphoblastoid cell line mutants .144 (A-null), .53 (B-null), and .184 (A-null, B-null). Transferents expressing HLA-A2 were recognized specifically by HLA-A2-specific cytotoxic T lymphocytes. When introduced on either of the vectors with the Epstein-Barr virus oriP element, the class I gene replicated extrachromosomally and was lost at rates of 0.2 to 0.3 per cell division. When introduced with vector pHPT (lacking Epstein-Barr virus oriP), the B8 gene was inserted at different chromosomal locations. Introduction of the HLA-B8 gene failed to restore antigen expression by HLA-B-null mutant .174, providing evidence that, unlike mutants exemplified by .53, .144, and .184, some HLA antigen loss mutants are deficient in a trans-acting function needed for class I antigen expression. Of more general interest, the results obtained with HLA class I genes in vectors that replicate extrachromosomally suggest ways of relating genic expression to chromatin structure and function and of attempting to clone functional human centromeres. PMID:3023867

  12. Cloning and expression of a cDNA encoding human sterol carrier protein 2

    SciTech Connect

    Yamamoto, Ritsu; Kallen, C.B.; Babalola, G.O.; Rennert, H.; Strauss, J.F. III ); Billheimer, J.T. )

    1991-01-15

    The authors report the cloning and expression of a cDNA encoding human sterol carrier protein 2 (SCP{sub 2}). The 1.3-kilobase (kb) cDNA contains an open reading frame which encompasses a 143-amino acid sequence which is 89% identical to the rat SCP{sub 2} amino acid sequence. The deduced amino acid sequence of the polypeptide reveals a 20-residue amino-terminal leader sequence in front of the mature polypeptide, which contains a carboxyl-terminal tripeptide (Ala-Lys-Leu) related to the peroxisome targeting sequence. The expressed cDNA in COS-7 cells yields a 15.3-kDa polypeptide and increased amounts of a 13.2-kDa polypeptide, both reacting with a specific rabbit antiserum to rat liver SCP{sub 2}. The cDNA insert hybridizes with 3.2- and 1.8-kb mRNA species in human liver poly(A){sup +} RNA. In human fibroblasts and placenta the 1.8-kb mRNA was most abundant. Southern blot analysis suggests either that there are multiple copies of the SCP{sub 2} gene in the human genome or that the SCP{sub 2} gene is very large. Coexpression of the SCP{sub 2} cDNA with expression vectors for cholesterol side-chain cleavage enzyme and adrenodoxin resulted in a 2.5-fold enhancement of progestin synthesis over that obtained with expression of the steroidogenic enzyme system alone. These findings are concordant with the notion that SCP{sub 2} plays a role in regulating steroidogenesis, among other possible functions.

  13. Cloning, expression, and crystallization of recoverin, a calcium sensor in vision.

    PubMed Central

    Ray, S; Zozulya, S; Niemi, G A; Flaherty, K M; Brolley, D; Dizhoor, A M; McKay, D B; Hurley, J; Stryer, L

    1992-01-01

    Recoverin, a recently discovered 23-kDa calcium-binding protein, activates retinal rod guanylate cyclase when the calcium level is lowered in the submicromolar range. We report here the cloning and sequencing of a cDNA for recoverin from a bovine retinal expression library. The recoverin coding sequence was inserted into a pET-11a expression vector under control of the T7 phage promoter. A second expression system, in which the coding sequence was placed under control of the lambda phage PR promoter, gave 10-fold higher yields (10 mg of purified recoverin per liter of Escherichia coli culture). The finding that retinal recoverin is myristoylated at its amino terminus led us to coexpress the recombinant protein and N-myristoyltransferase (EC 2.3.1.97). Myristoylated recombinant recoverin formed in this way in E. coli is like retinal recoverin in exhibiting a large calcium-induced shift in its tryptophan fluorescence emission spectrum. The availability of abundant protein enabled us to crystallize unmyristoylated recombinant recoverin and initiate x-ray studies. The space group of tetragonal crystals obtained from 75% saturation ammonium sulfate is I4 with unit cell dimensions a = 85.1 A and c = 59.8 A. These crystals of the calcium-bound form of the protein diffracted to a resolution of 2.2 A. The expression systems described here open the door to high-resolution x-ray crystallographic and nuclear magnetic resonance studies of this new member of the EF-hand superfamily and to the elucidation of its precise mode of action as a calcium switch. Images PMID:1385864

  14. Type 3 lodothyronine deiodinase: cloning, in vitro expression, and functional analysis of the placental selenoenzyme.

    PubMed Central

    Salvatore, D; Low, S C; Berry, M; Maia, A L; Harney, J W; Croteau, W; St Germain, D L; Larsen, P R

    1995-01-01

    Type 3 iodothyronine deiodinase (D3) catalyzes the conversion of T4 and T3 to inactive metabolites. It is highly expressed in placenta and thus can regulate circulating fetal thyroid hormone concentrations throughout gestation. We have cloned and expressed a 2.1-kb human placental D3 cDNA which encodes a 32-kD protein with a Km of 1.2 nM for 5 deiodination of T3 and 340 nM for 5' deiodination of reverse T3. The reaction requires DTT and is not inhibited by 6n-propylthiouracil. We quantitated transiently expressed D3 by specifically labeling the protein with bromoacetyl [125I]T3. The Kcat/Km ratio for 5 deiodination of T3 was over 1,000-fold that for 5' deiodination of reverse T3. Human D3 is a selenoenzyme as evidenced by (a) the presence of an in frame UGA codon at position 144, (b) the synthesis of a 32-kD 75Se-labeled protein in D3 cDNA transfected cells, and (c) the presence of a selenocysteine insertion sequence element in the 3' untranslated region of the mRNA which is required for its expression. The D3 selenocysteine insertion sequence element is more potent than that in the type 1 deiodinase or glutathione peroxidase gene, suggesting a high priority for selenocysteine incorporation into this enzyme. The conservation of this enzyme from Xenopus laevis tadpoles to humans implies an essential role for regulation of thyroid hormone inactivation during embryological development. Images PMID:7593630

  15. Cloning of an ovule specific promoter from Arabidopsis thaliana and expression of beta-glucuronidase.

    PubMed

    Nain, Vikrant; Verma, Anju; Kumar, Neeraj; Sharma, Priyanka; Ramesh, B; Kumar, P Ananda

    2008-04-01

    Tissue specific expression of transgenes in plant species has several advantages over constitutive expression. Identification of ovule specific promoters would be useful in genetic engineering of plants with a variety of desirable traits such as genetically engineered parthenocarpy, female sterile plants or seedless fruits. Relative inaccessibility and difficulty in harvesting adequate amounts of tissue at known developmental stages has impeded the progress in cloning of promoters involved in ovule development. In the present study an ovule specific promoter was cloned from Arabidopsis AGL11 gene and used to express GUS (beta-glucuronidase) gene in transgenic Arabidopsis. Histochemical staining of GUS appeared in the center of young ovary (ovules), but no detectable GUS activity was observed in vegetative plant tissues, sepals, petals and androecium. AGL11 gene promoter can be useful to modify the developmental path of plants by expressing either plant hormones or lethal genes for agronomic purpose. PMID:18512328

  16. Problem-Solving Test: Expression Cloning of the Erythropoietin Receptor

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Terms to be familiar with before you start to solve the test: cytokines, cytokine receptors, cDNA library, cDNA synthesis, poly(A)[superscript +] RNA, primer, template, reverse transcriptase, restriction endonucleases, cohesive ends, expression vector, promoter, Shine-Dalgarno sequence, poly(A) signal, DNA helicase, DNA ligase, topoisomerases,…

  17. Cloning, Expression, and Cost Effective Purification of Authentic Human Epidermal Growth Factor With High Activity

    PubMed Central

    Pouranvari, Sara; Ebrahimi, Firouz; Javadi, Gholamreza; Maddah, Bozorgmehr

    2016-01-01

    Background: Epidermal growth factor (EGF) plays a fundamental role in the healing of wounds relating to skin damage, the cornea, and the gastrointestinal tract. Objectives: The aim of this study is the cloning, expression, and purification of recombinant human EGF (rhEGF), and an assessment of its activity. Materials and Methods: In the present experimental study, a synthetic pET28a (+) -hEGF construct was prepared. In order to ligate hEGF into pET24a (+), the PCR technique was performed, using special primers that possess restriction enzyme sites, which are also located in appropriate sites in pET24a (+). After transferring this construct into E. coli cells, protein expression was performed under standard conditions. Protein solubilization was done by urea. hEGF purification and refolding were carried out using gradient dialysis against the urea. We used RP-HPLC to compare between rhEGF and commercial rhEGF as a control. Finally, an MTT assay was performed to assess the viability of the NIH 3T3 cells treated with various concentrations of rhEGF. Results: Dialysis after urea solubilization caused precipitation of unwanted proteins, resulting in achievement of purified EGF with > 90% purity, without the need for expensive and time-consuming process. The MTT assay results showed that our rhEGF activate significantly higher proliferation of NIH 3T3 cells in comparison to the control (P-values were < 0.0001), in total concentrations and times evaluated Conclusions: Via our purification protocol, a sufficient amount of bioactive recombinant human epidermal growth factor was obtained in just a few affordable steps, with superlative purity. PMID:27247796

  18. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared (NIR) ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of-cavity pulse- stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two-photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two- photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond layers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  19. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular, we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond(s) pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of- cavity pulse-stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two- photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two-photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond lasers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  20. Malignant progressive tumor cell clone exhibits significant up-regulation of cofilin-2 and 27-kDa modified form of cofilin-1 compared to regressive clone.

    PubMed

    Kuramitsu, Yasuhiro; Wang, Yufeng; Okada, Futoshi; Baron, Byron; Tokuda, Kazuhiro; Kitagawa, Takao; Akada, Junko; Nakamura, Kazuyuki

    2013-09-01

    QR-32 is a regressive murine fibrosarcoma cell clone which cannot grow when they are transplanted in mice; QRsP-11 is a progressive malignant tumor cell clone derived from QR-32 which shows strong tumorigenicity. A recent study showed there to be differentially expressed up-regulated and down-regulated proteins in these cells, which were identified by proteomic differential display analyses by using two-dimensional gel electrophoresis and mass spectrometry. Cofilins are small proteins of less than 20 kDa. Their function is the regulation of actin assembly. Cofilin-1 is a small ubiquitous protein, and regulates actin dynamics by means of binding to actin filaments. Cofilin-1 plays roles in cell migration, proliferation and phagocytosis. Cofilin-2 is also a small protein, but it is mainly expressed in skeletal and cardiac muscles. There are many reports showing the positive correlation between the level of cofilin-1 and cancer progression. We have also reported an increased expression of cofilin-1 in pancreatic cancer tissues compared to adjacent paired normal tissues. On the other hand, cofilin-2 was significantly less expressed in pancreatic cancer tissues. Therefore, the present study investigated the comparison of the levels of cofilin-1 and cofilin-2 in regressive QR-32 and progressive QRsP-11cells by western blotting. Cofilin-2 was significantly up-regulated in QRsP-11 compared to QR-32 cells (p<0.001). On the other hand, the difference of the intensities of the bands of cofilin-1 (18 kDa) in QR-32 and QRsP-11 was not significant. However, bands of 27 kDa showed a quite different intensity between QR-32 and QRsP-11, with much higher intensities in QRsP-11 compared to QR-32 (p<0.001). These results suggested that the 27-kDa protein recognized by the antibody against cofilin-1 is a possible biomarker for progressive tumor cells.

  1. Cloning and expression of prion protein encoding gene of flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwen; Sun, Xiuqin; Zhang, Jinxing; Zan, Jindong

    2008-02-01

    The prion protein (PrP) encoding gene of flounder ( Paralichthys olivaceus) was cloned. It was not interrupted by an intron. This gene has two promoters in its 5' upstream, indicating that its transcription may be intensive, and should have an important function. It was expressed in all 14 tissues tested, demonstrating that it is a house-keeping gene. Its expression in digestion and reproduction systems implies that the possible prions of fish may transfer horizontally.

  2. Cloning, Sequencing, and Expression of Selenoprotein Transcripts in the Turkey (Meleagris gallopavo).

    PubMed

    Sunde, Roger A; Sunde, Gavin R; Sunde, Colin M; Sunde, Milton L; Evenson, Jacqueline K

    2015-01-01

    The minimum Se requirement for male turkey poults is 0.3 μg Se/g--three times higher than requirements found in rodents--based on liver and gizzard glutathione peroxidase-4 (GPX4) and GPX1 activities. In addition, turkey liver GPX4 activity is 10-fold higher and GPX1 activity is 10-fold lower than in rats, and both GPX1 and GPX4 mRNA levels are dramatically down-regulated by Se deficiency. Currently, the sequences of all annotated turkey selenoprotein transcripts and proteins in the NCBI database are only "predicted." Thus we initiated cloning and sequencing of the full turkey selenoprotein transcriptome to demonstrate expression of selenoprotein transcripts in the turkey, and to develop tools to investigate Se regulation of the full selenoproteome. Total RNA was isolated from six tissues of Se-adequate adult tom turkeys, and used to prepare reverse-transcription cDNA libraries. PCR primers were designed, based initially on chicken, rodent, porcine, bovine and human sequences and later on turkey shotgun cloning sequences. We report here the cloning of full transcript sequences for 9 selenoproteins, and 3'UTR portions for 15 additional selenoproteins, which include SECIS elements in 22 3'UTRs, and in-frame Sec (UGA) codons within coding regions of 19 selenoproteins, including 12 Sec codons in SEPP1. In addition, we sequenced the gap between two contigs from the shotgun cloning of the turkey genome, and found the missing sequence for the turkey Sec-tRNA. RTPCR was used to determine the relative transcript expression in 6 tissues. GPX3 expression was high in all tissues except kidney, GPX1 expression was high in kidney, SEPW1 expression was high in heart, gizzard and muscle, and SELU expression was high in liver. SEPP2, a selenoprotein not found in mammals, was highly expressed in liver but not in other tissues. In summary, transcripts for 24 selenoproteins are expressed in the turkey, not just predicted.

  3. Recombinant expression library of Pyrococcus furiosus constructed by high-throughput cloning: a useful tool for functional and structural genomics

    PubMed Central

    Yuan, Hui; Peng, Li; Han, Zhong; Xie, Juan-Juan; Liu, Xi-Peng

    2015-01-01

    Hyperthermophile Pyrococcus furiosus grows optimally near 100°C and is an important resource of many industrial and molecular biological enzymes. To study the structure and function of P. furiosus proteins at whole genome level, we constructed expression plasmids of each P. furiosus gene using a ligase-independent cloning method, which was based on amplifying target gene and vector by PCR using phosphorothioate-modified primers and digesting PCR products by λ exonuclease. Our cloning method had a positive clone percentage of ≥ 80% in 96-well plate cloning format. Small-scale expression experiment showed that 55 out of 80 genes were efficiently expressed in Escherichia coli Strain Rosetta 2(DE3)pLysS. In summary, this recombinant expression library of P. furiosus provides a platform for functional and structural studies, as well as developing novel industrial enzymes. Our cloning scheme is adaptable to constructing recombinant expression library of other sequenced organisms. PMID:26441878

  4. Cloning and expression in Escherichia coli of chromosomal mercury resistance genes from a Bacillus sp

    SciTech Connect

    Wang, Y.; Mahler, I.; Levinson, H.S.; Halvorson, H.O.

    1987-10-01

    A 7.9-kilobase (kb) chromosomal fragment was cloned from a mercury-resistant Bacillus sp. In Escherichia coli, in the presence of a second plasmid carrying functional transport genes, resistance to HgCl/sub 2/ and to phenylmercury acetate (PMA) was expressed. Shortening the cloned fragment to 3.8 kb abolished resistance to PMA but not to HgCl/sub 2/. In Bacillus subtilis, the 3.8-kb fragment produced mercuric reductase constitutively but did not produce resistance to HgCl/sub 2/ or to PMA.

  5. Quantitative and qualitative characterization of expanded CD4+ T cell clones in rheumatoid arthritis patients

    PubMed Central

    Ishigaki, Kazuyoshi; Shoda, Hirofumi; Kochi, Yuta; Yasui, Tetsuro; Kadono, Yuho; Tanaka, Sakae; Fujio, Keishi; Yamamoto, Kazuhiko

    2015-01-01

    Rheumatoid arthritis (RA) is an autoimmune destructive arthritis associated with CD4+ T cell-mediated immunity. Although expanded CD4+ T cell clones (ECs) has already been confirmed, the detailed characteristics of ECs have not been elucidated in RA. Using combination of a single-cell analysis and next-generation sequencing (NGS) in TCR repertoire analysis, we here revealed the detailed nature of ECs by examining peripheral blood (PB) from 5 RA patients and synovium from 1 RA patient. When we intensively investigated the single-cell transcriptome of the most expanded clones in memory CD4+ T cells (memory-mECs) in RA-PB, senescence-related transcripts were up-regulated, indicating circulating ECs were constantly stimulated. Tracking of the transcriptome shift within the same memory-mECs between PB and the synovium revealed the augmentations in senescence-related gene expression and the up-regulation of synovium-homing chemokine receptors in the synovium. Our in-depth characterization of ECs in RA successfully demonstrated the presence of the specific immunological selection pressure, which determines the phenotype of ECs. Moreover, transcriptome tracking added novel aspects to the underlying sequential immune processes. Our approach may provide new insights into the pathophysiology of RA. PMID:26245356

  6. Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism.

    PubMed

    Wüthrich, K L; Bovet, L; Hunziker, P E; Donnison, I S; Hörtensteiner, S

    2000-01-01

    Red chlorophyll catabolite (RCC) reductase (RCCR) and pheophorbide (Pheide) a oxygenase (PaO) catalyse the key reaction of chlorophyll catabolism, porphyrin macrocycle cleavage of Pheide a to a primary fluorescent catabolite (pFCC). RCCR was purified from barley and a partial gene sequence was cloned (pHvRCCR). The gene was expressed at all stages of leaf development and in roots. By comparison with different databases, genomic sequences and expressed sequence tags similar to RCCR were found in phylogenetically diverse species, and activity of RCCR was demonstrated in two of them, Arabidopsis thaliana and Marchantia polymorpha. The gene of A. thaliana (AtRCCR) was employed for molecular cloning, heterologous expression and the production of polyclonal antibodies. With recombinant RCCR, the major product of RCC reduction was pFCC-1, but small quantities of its C1 epimer, pFCC-2, also accumulated. The reaction required reduced ferredoxin and was sensitive to oxygen. AtRCCR encoded a 35 kDa protein which was used for chloroplast import experiments. Upon transport, it was processed to a mature form of 31 kDa. The significance of cloning of RCCR is discussed in respect to the evolution of chlorophyll catabolism and to the cloning of PaO.

  7. Molecular cloning, characterization and expression of goose Toll-like receptor 5.

    PubMed

    Fang, Qiang; Pan, Zhiming; Geng, Shizhong; Kang, Xilong; Huang, Jinlin; Sun, Xiaolin; Li, Qiuchun; Cai, Yinqiang; Jiao, Xinan

    2012-10-01

    Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that are vital to activation of the innate immune system in response to invading pathogens through their recognition of pathogen-associated molecular patterns (PAMPs). TLR5 is responsible for the recognition of bacterial flagellin in vertebrates. In this study, we cloned the goose TLR5 gene using rapid amplification of cDNA ends (RACE). The open reading frame (ORF) of goose TLR5 cDNA is 2583 bp in length and encodes an 860 amino acid protein. The entire coding region of the TLR5 gene was successfully amplified from genomic DNA and contained a single exon. The putative amino acid sequence of goose TLR5 consisted of a signal peptide sequence, 11 leucine-rich repeat (LRR) domains, a leucine-rich repeat C-terminal (LRR-CT) domain, a transmembrane domain and an intracellular Toll-interleukin-1 receptor (TIR) domain. The amino acid sequence of goose TLR5 shared 50.5% identity with human (Homo sapiens), 49.8% with mouse (Mus musculus) and 82.7% with chicken (Gallus gallus). The goose TLR5 gene was highly expressed in the spleen, liver and brain; moderately expressed in PBMCs, kidney, lung, heart, bone marrow, small intestine and large intestine; and minimally expressed in the cecum. HEK293 cells transfected with goose TLR5 and NF-κB-luciferase containing plasmids significantly responded to flagellin from Salmonella typhimurium indicating that it is a functional TLR5 homologue. In response to infection with S. enterica serovar Enteritidis (SE), the level of TLR5 mRNA significantly increased over the control in PBMCs at 1 d post infection (p.i.) and was slightly elevated in the spleen at 1 d or 3 d p.i. IL-6 was expressed below control levels in PBMCs but was upregulated in the spleen. In contrast to IL-6, an evident decrease in the expression level of IL-8 was observed in both PBMCs and spleens at 1 d or 3 d p.i. SE challenge also resulted in an increase in the mRNA expression of IL-18 and IFN-γ in PBMCs

  8. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 CYP4A15.

    PubMed

    Ngo, Suong Ngoc Thi; McKinnon, Ross Allan; Stupans, Ieva

    2006-07-01

    In the present study, the cloning, expression and characterization of hepatic cytochrome P450 (CYP) CYP4A from koala (Phascolarctos cinereus), an obligate eucalyptus feeder, is described. It has been previously reported that microsomal lauric acid hydroxylase activity (a CYP4A marker) and CYP content were higher in koala liver in comparison to that in human, rat or wallaby, species that do not ingest eucalyptus leaves as food [Ngo, S., Kong, S., Kirlich, A., Mckinnon, R.A., Stupans, I., 2000. Cytochrome P450 4A, peroxisomal enzymes and nicotinamide cofactors in koala liver. Comp. Biochem. Physiol., C 127, 327-334]. A 1544 bp koala liver CYP4A cDNA, designated CYP4A15, was cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CYP4A15 cDNA encodes a protein of 500 amino acids and shares 69% nucleotide and 65% amino acid sequence identity to human CYP4A11. Transfection of the koala CYP4A15 cDNA into Cos-7 cells resulted in the expression of a protein with lauric acid hydroxylase activity. The koala CYP4A15 cDNA-expressed enzyme catalysed lauric acid hydroxylation at the rates of 0.45+/-0.18 nmol/min/mg protein and 4.79+/-1.91 nmol/min/nmol CYP (mean+/-SD, n=3), which were comparable to that of rat CYP4A subfamilies. Total CYP content for koala CYP4A15-expressed protein in Cos-7 cells was 0.094+/-0.001 nmol/mg protein (mean+/-SD, n=3) with negligible CYP content in untransfected Cos-7 cells lysate. Immunoblot analysis, using a sheep anti-rat CYP4A polyclonal antibody, detected multiple CYP4A immunoreactive bands in the liver from all species studied. The koala bands were found to be fainter and less confined but appeared much broader as compared to rat, human and wallaby. Northern blot analysis, utilising the koala CYP4A15 cDNA 417 bp probe, detected a mRNA species of approximately 2.6 kb in the koala liver and a mRNA species of approximately 2.4 kb in other species studied. Relative to the intensity of the beta

  9. CD8+ T Cell Clones Specific for the 5T4 Antigen Target Renal Cell Carcinoma Tumor-Initiating Cells in a Murine Xenograft Model

    PubMed Central

    Tykodi, Scott S.; Satoh, Shoko; Deming, Janise D.; Chou, Jeffrey; Harrop, Richard; Warren, Edus H.

    2012-01-01

    The tumor antigen 5T4 is frequently expressed at high levels on renal cell carcinoma (RCC) and other epithelial carcinomas. Surveys of normal tissues demonstrate abundant 5T4 expression on placental trophoblast cells with limited expression elsewhere. 5T4 is the target for a therapeutic cancer vaccine (MVA-5T4) that elicits 5T4-specific serological, proliferative, and CTL responses. However, the anti-tumor activity of 5T4-specific CTL has not been extensively characterized. CD8+ T cells from HLA-A2+ healthy donors (n=4) or RCC patients (n=2) were stimulated in vitro with the HLA-A2-binding nonamer peptides 5T417–25 or 5T497–105 and screened by flow cytometry with specific tetramers (TET). CD8+/TET+ T cell clones specific for 5T417–25 or 5T497–105 peptide were isolated from 4/6 and 1/4 donors respectively. A subset of clones specific for 5T417–25 was cytolytic for MVA-5T4 infected HLA-A2+ LCL target cells and for constitutively HLA-A2- and 5T4- expressing RCC tumor cell lines (including A498 RCC). In a xenoengraftment assay, the co-inoculation of a representative 5T417–25-specific CTL clone with A498 RCC tumors cells into immune deficient mice completely prevented growth of A498 tumors. Taken together, these data demonstrate high avidity CD8+ CTL able to recognize the naturally-processed 5T417–25 epitope on RCC tumor cells including putative tumor-initiating cells are present in peripheral blood of both healthy donors and RCC patients. CD8+ T cell immunity targeting 5T417–25 is therefore of substantial interest both as a potential target for further development of vaccination or adoptive cellular immunotherapy and for immune monitoring studies in association with nonspecific immunotherapies. PMID:22892449

  10. Identification, cDNA cloning and heterologous expression of a hyaluronidase from the tarantula Brachypelma vagans venom.

    PubMed

    Clement, Herlinda; Olvera, Alejandro; Rodríguez, Mabel; Zamudio, Fernando; Palomares, Laura A; Possani, Lourival D; Odell, George V; Alagón, Alejandro; Sánchez-López, Rosana

    2012-12-01

    Hyaluronidases (Hyal) present in the venom of poisonous animals have been considered as "spreading factors" that facilitate a fast penetration of the venom in the prey. We have found that hyaluronidase from the tarantula Brachypelma vagans venom (BvHyal) displays a substrate-specific Hyal activity against hyaluronan. By using a combined strategy based on peptide sequencing and RT-PCR, we have cloned a BvHyal cDNA. Active recombinant BvHyal was efficiently expressed in a baculovirus system in insect cell. PMID:22982117

  11. Hydrogen peroxide-inducible clone-5 regulates mesangial cell proliferation in proliferative glomerulonephritis in mice.

    PubMed

    Jamba, Ariunbold; Kondo, Shuji; Urushihara, Maki; Nagai, Takashi; Kim-Kaneyama, Joo-Ri; Miyazaki, Akira; Kagami, Shoji

    2015-01-01

    Hydrogen peroxide-inducible clone-5 (Hic-5) is a transforming growth factor (TGF)-β1-inducible focal adhesion protein. We previously demonstrated that Hic-5 was localized in mesangial cells and its expression was associated with glomerular cell proliferation and matrix expansion in human and rat glomerulonephritis (GN). In the present study, we first assessed the role of Hic-5 in mesangioproliferative GN by injecting Habu venom into heminephrectomized wild type (Hic-5+/+) and Hic-5-deficient (Hic-5-/-) mice. Hic-5+/+ GN mice exhibited glomerular cell proliferation on day 7. Surprisingly, glomerular cell number and Ki-67-positive cells in Hic-5-/- GN mice were significantly greater than those in Hic-5+/+ GN mice on day 7, although the number of glomerular apoptotic cells and the expression of growth factors (platelet-derived growth factor-BB and TGF-β1) and their receptors were similarly increased in both Hic-5+/+ and Hic-5-/- GN mice. In culture experiments, proliferation assays showed that platelet-derived growth factor-BB and TGF-β1 enhanced the proliferation of Hic-5-/- mesangial cells compared with Hic-5+/+ mesangial cells. In addition, mitogenic regulation by Hic-5 was associated with altered and coordinated expression of cell cycle-related proteins including cyclin D1 and p21. The present results suggest that Hic-5 might regulate mesangial cell proliferation in proliferative GN in mice. In conclusion, modulation of Hic-5 expression might have a potential to prevent mesangial cell proliferation in the acute mitogenic phase of glomerulonephritis.

  12. Cloning and expression of a novel lactococcal aggregation factor from Lactococcus lactis subsp. lactis BGKP1

    PubMed Central

    2011-01-01

    Background Aggregation may play a main role in the adhesion of bacteria to the gastrointestinal epithelium and their colonization ability, as well as in probiotic effects through co-aggregation with intestinal pathogens and their subsequent removal. The aggregation phenomenon in lactococci is directly associated with the sex factor and lactose plasmid co-integration event or duplication of the cell wall spanning (CWS) domain of PrtP proteinase. Results Lactococcus lactis subsp. lactis BGKP1 was isolated from artisanal semi-hard homemade cheese and selected due to its strong auto-aggregation phenotype. Subsequently, non-aggregating derivative (Agg-) of BGKP1, designated as BGKP1-20, was isolated, too. Comparative analysis of cell surface proteins of BGKP1 and derivative BGKP1-20 revealed a protein of approximately 200 kDa only in the parental strain BGKP1. The gene involved in aggregation (aggL) was mapped on plasmid pKP1 (16.2 kb), cloned and expressed in homologous and heterologous lactococci and enterococci. This novel lactococcal aggregation protein was shown to be sufficient for cell aggregation in all tested hosts. In addition to the aggL gene, six more ORFs involved in replication (repB and repX), restriction and modification (hsdS), transposition (tnp) and possible interaction with mucin (mbpL) were also located on plasmid pKP1. Conclusion AggL is a new protein belonging to the collagen-binding superfamily of proteins and is sufficient for cell aggregation in lactococci. PMID:22182285

  13. Engineering of a wheat germ expression system to provide compatibility with a high throughput pET-based cloning platform.

    PubMed

    Zhao, Li; Zhao, Kate Q; Hurst, Robin; Slater, Michael R; Acton, Thomas B; Swapna, G V T; Shastry, Ritu; Kornhaber, Gregory J; Montelione, Gaetano T

    2010-09-01

    Wheat germ cell-free methods provide an important approach for the production of eukaryotic proteins. We have developed a protein expression vector for the TNT((R)) SP6 High-Yield Wheat Germ Cell-Free (TNT WGCF) expression system (Promega) that is also compatible with our T7-based Escherichia coli intracellular expression vector pET15_NESG. This allows cloning of the same PCR product into either one of several pET_NESG vectors and this modified WGCF vector (pWGHisAmp) by In-Fusion LIC cloning (Zhu et al. in Biotechniques 43:354-359, 2007). Integration of these two vector systems allowed us to explore the efficacy of the TNT WGCF system by comparing the expression and solubility characteristics of 59 human protein constructs in both WGCF and pET15_NESG E. coli intracellular expression. While only 30% of these human proteins could be produced in soluble form using the pET15_NESG based system, some 70% could be produced in soluble form using the TNT WGCF system. This high success rate underscores the importance of eukaryotic expression host systems like the TNT WGCF system for eukaryotic protein production in a structural genomics sample production pipeline. To further demonstrate the value of this WGCF system in producing protein suitable for structural studies, we scaled up, purified, and analyzed by 2D NMR two (15)N-, (13)C-enriched human proteins. The results of this study indicate that the TNT WGCF system is a successful salvage pathway for producing samples of difficult-to-express small human proteins for NMR studies, providing an important complementary pathway for eukaryotic sample production in the NESG NMR structure production pipeline. PMID:20574660

  14. Cloning of a marine cyanobacterial promoter for foreign gene expression using a promoter probe vector

    SciTech Connect

    Sode, Koji; Hatano, Naoaki; Tatara, Masahiro

    1996-06-01

    A marine cyanobacterial promoter was cloned to allow efficient foreign gene expression. This was carried out using chloramphenicol acetyl transferase (CAT) as a marker protein. For rapid and simple measurement of CAT activity, a method based on a fluorescently labeled substrate was improved by utilizing HPLC equipped with a flow-through fluorescent spectrophotometer. This method was used in conjunction with a newly constructed promoter probe vector. Cyanobacterial transformants, harboring plasmid containing a cloned 2-kbp marine cyanobacterial genomic fragment, showed a 10-fold higher CAT activity, compared with that achieved using the kanamycin-resistant gene promoter. From the sequence analysis of the cloned fragment, a putative promoter region was found. 20 refs., 7 figs., 2 tabs.

  15. Monoterpene metabolism. Cloning, expression, and characterization of (-)-isopiperitenol/(-)-carveol dehydrogenase of peppermint and spearmint.

    PubMed

    Ringer, Kerry L; Davis, Edward M; Croteau, Rodney

    2005-03-01

    The essential oils of peppermint (Mentha x piperita) and spearmint (Mentha spicata) are distinguished by the oxygenation position on the p-menthane ring of the constitutive monoterpenes that is conferred by two regiospecific cytochrome P450 limonene-3- and limonene-6-hydroxylases. Following hydroxylation of limonene, an apparently similar dehydrogenase oxidizes (-)-trans-isopiperitenol to (-)-isopiperitenone in peppermint and (-)-trans-carveol to (-)-carvone in spearmint. Random sequencing of a peppermint oil gland secretory cell cDNA library revealed a large number of clones that specified redox-type enzymes, including dehydrogenases. Full-length dehydrogenase clones were screened by functional expression in Escherichia coli using a recently developed in situ assay. A single full-length acquisition encoding (-)-trans-isopiperitenol dehydrogenase (ISPD) was isolated. The (-)-ISPD cDNA has an open reading frame of 795 bp that encodes a 265-residue enzyme with a calculated molecular mass of 27,191. Nondegenerate primers were designed based on the (-)-trans-ISPD cDNA sequence and employed to screen a spearmint oil gland secretory cell cDNA library from which a 5'-truncated cDNA encoding the spearmint homolog, (-)-trans-carveol-dehydrogenase, was isolated. Reverse transcription-PCR amplification and RACE were used to acquire the remaining 5'-sequence from RNA isolated from oil gland secretory cells of spearmint leaf. The full-length spearmint dehydrogenase shares >99% amino acid identity with its peppermint homolog and both dehydrogenases are capable of utilizing (-)-trans-isopiperitenol and (-)-trans-carveol. These isopiperitenol/carveol dehydrogenases are members of the short-chain dehydrogenase/reductase superfamily and are related to other plant short-chain dehydrogenases/reductases involved in secondary metabolism (lignan biosynthesis), stress responses, and phytosteroid biosynthesis, but they are quite dissimilar (approximately 13% identity) to the monoterpene

  16. Expression of a cloned Staphylococcus aureus alpha-hemolysin determinant in Bacillus subtilis and Staphylococcus aureus.

    PubMed Central

    Fairweather, N; Kennedy, S; Foster, T J; Kehoe, M; Dougan, G

    1983-01-01

    A DNA sequence encoding Staphylococcus aureus alpha-hemolysin, which had been previously cloned and mapped in Escherichia coli K-12, was introduced into Bacillus subtilis BD170 and several strains of S. aureus by using plasmid vectors, some of which could replicate in all three organisms. The determinant was cloned on a 3.3-kilobase pair DNA fragment into B. subtilis by using the vector plasmid pXZ105 to form the hybrid plasmid pXZ111. B. subtilis cells harboring pXZ111 produced large zones of alpha-hemolysis after 18 h of growth at 37 degrees C on rabbit blood agar plates, and alpha-hemolysin activity was detected in supernatants prepared from growing cultures of this strain. The alpha-hemolysin was apparently secreted across the B. subtilis cell envelope. Polypeptides of molecular weights 34,000 and 33,000 were precipitated with anti-alpha-hemolysin serum from lysates prepared from BD170 cells harboring pXZ111. A hybrid replicon which could replicate in both E. coli and S. aureus was constructed in E. coli by ligating a HindIII fragment encoding the replication functions and chloramphenicol resistance genes of S. aureus plasmid pCW59 to the pBR322 alpha-hemolysin hybrid plasmid pDU1150. The DNA of this plasmid, pDU1212, was prepared in E. coli and used to transform protoplasts prepared from a non-alpha-hemolytic, nonrestricting strain of S. aureus RN4220. Some of the transformants contained plasmids which had suffered extensive deletions. Some plasmids, however, were transformed intact into RN4220. Such plasmids were subsequently maintained in a stable manner. pDU1212 DNA was prepared from RN4220 and transformed into alpha-hemolytic S. aureus 8325-4 and two mutant derivatives defective in alpha-hemolysin synthesis. All three strains expressed alpha-hemolysin when harboring pDU1212. Images PMID:6411618

  17. Monoterpene metabolism. Cloning, expression, and characterization of (-)-isopiperitenol/(-)-carveol dehydrogenase of peppermint and spearmint.

    PubMed

    Ringer, Kerry L; Davis, Edward M; Croteau, Rodney

    2005-03-01

    The essential oils of peppermint (Mentha x piperita) and spearmint (Mentha spicata) are distinguished by the oxygenation position on the p-menthane ring of the constitutive monoterpenes that is conferred by two regiospecific cytochrome P450 limonene-3- and limonene-6-hydroxylases. Following hydroxylation of limonene, an apparently similar dehydrogenase oxidizes (-)-trans-isopiperitenol to (-)-isopiperitenone in peppermint and (-)-trans-carveol to (-)-carvone in spearmint. Random sequencing of a peppermint oil gland secretory cell cDNA library revealed a large number of clones that specified redox-type enzymes, including dehydrogenases. Full-length dehydrogenase clones were screened by functional expression in Escherichia coli using a recently developed in situ assay. A single full-length acquisition encoding (-)-trans-isopiperitenol dehydrogenase (ISPD) was isolated. The (-)-ISPD cDNA has an open reading frame of 795 bp that encodes a 265-residue enzyme with a calculated molecular mass of 27,191. Nondegenerate primers were designed based on the (-)-trans-ISPD cDNA sequence and employed to screen a spearmint oil gland secretory cell cDNA library from which a 5'-truncated cDNA encoding the spearmint homolog, (-)-trans-carveol-dehydrogenase, was isolated. Reverse transcription-PCR amplification and RACE were used to acquire the remaining 5'-sequence from RNA isolated from oil gland secretory cells of spearmint leaf. The full-length spearmint dehydrogenase shares >99% amino acid identity with its peppermint homolog and both dehydrogenases are capable of utilizing (-)-trans-isopiperitenol and (-)-trans-carveol. These isopiperitenol/carveol dehydrogenases are members of the short-chain dehydrogenase/reductase superfamily and are related to other plant short-chain dehydrogenases/reductases involved in secondary metabolism (lignan biosynthesis), stress responses, and phytosteroid biosynthesis, but they are quite dissimilar (approximately 13% identity) to the monoterpene

  18. Cloning, characterization and functional expression of Taenia solium 17 beta-hydroxysteroid dehydrogenase.

    PubMed

    Aceves-Ramos, A; de la Torre, P; Hinojosa, L; Ponce, A; García-Villegas, R; Laclette, J P; Bobes, R J; Romano, M C

    2014-07-01

    The 17β-hydroxysteroid dehydrogenases (17β-HSD) are key enzymes involved in the formation (reduction) and inactivation (oxidation) of sex steroids. Several types have been found in vertebrates including fish, as well as in invertebrates like Caenorhabditis elegans, Ciona intestinalis and Haliotis diversicolor supertexta. To date limited information is available about this enzyme in parasites. We showed previously that Taenia solium cysticerci are able to synthesize sex steroid hormones in vitro when precursors are provided in the culture medium. Here, we identified a T. solium 17β-HSD through in silico blast searches in the T. solium genome database. This coding sequence was amplified by RT-PCR and cloned into the pcDNA 3.1(+) expression vector. The full length cDNA contains 957bp, corresponding to an open reading frame coding for 319 aa. The highest identity (84%) at the protein level was found with the Echinococcus multilocularis 17β-HSD although significant similarities were also found with other invertebrate and vertebrate 17β-HSD sequences. The T. solium Tsol-17βHSD belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily. HEK293T cells transiently transfected with Tsol17β-HSD induced expression of Tsol17β-HSD that transformed 3H-androstenedione into testosterone. In contrast, 3H-estrone was not significantly transformed into estradiol. In conclusion, T. solium cysticerci express a 17β-HSD that catalyzes the androgen reduction. The enzyme belongs to the short chain dehydrogenases/reductase family and shares motifs and activity with the type 3 enzyme of some other species.

  19. Images of cloning and stem cell research in editorial cartoons in the United States.

    PubMed

    Giarelli, Ellen

    2006-01-01

    Through semiotic analysis of manifest and latent meanings in editorial cartoons, the author uncovers how cloning and stem cell research are represented in a popular mass medium. She identified 86 editorial cartoons published in the United States between 2001 and 2004 that referred to cloning and 20 that referred to stem cell research. Cartoonists portrayed people individually 224 times and 4 times in groups of more than 10. Men were portrayed in 64% of cartoons. Stem cell research was depicted as having a potential positive value, and cloning was depicted negatively. Some major messages are that cloning will lead to the mass production of evil, cloning creates monsters, and politics will influence who or what will be cloned. Analyzing popular images can allow access to public understanding about genetic technology and evaluation of public beliefs, preconceptions, and expectations as the public is educated on the use and value of services.

  20. Cloning and expression of rapeseed procruciferin in Escherichia coli and crystallization of the purified recombinant protein.

    PubMed

    Tandang, Mary Rose G; Adachi, Motoyasu; Utsumi, Shigeru

    2004-03-01

    Two rapeseed cruciferin cDNAs (cru2/3a and cru2/3b) were cloned and sequenced. A comparison of their DNA and protein sequences with other cruciferins, indicated cru2/3b to be a novel clone and, among them, an inherent and highly conserved sequence of twelve amino acids was identified. Procruciferin 2/3a and 2/3b were expressed in Eschericha coli, and procruciferin 2/3a was obtained in a soluble form. The expressed procruciferin 2/3a has a trimeric structure and formed crystals although the quality was not good, suggesting that this expression system is useful for protein engineering of procruciferin 2/3a.

  1. Molecular cloning, DNA structure and expression of the Escherichia coli D-xylose isomerase.

    PubMed Central

    Briggs, K A; Lancashire, W E; Hartley, B S

    1984-01-01

    The D-xylose isomerase (EC 5.3.1.5) gene from Escherichia coli was cloned and isolated by complementation of an isomerase-deficient E. coli strain. The insert containing the gene was restriction mapped and further subcloning located the gene in a 1.6-kb Bg/II fragment. This fragment was sequenced by the chain termination method, and showed the gene to be 1002 bp in size. The Bg/II fragment was cloned into a yeast expression vector utilising the CYCl yeast promoter. This construct allowed expression in E. coli grown on xylose but not glucose suggesting that the yeast promoter is responding to the E. coli catabolite repression system. No expression was detected in yeast from this construct and this is discussed in terms of the upstream region in the E. coli insert with suggestions of how improved constructs may permit achievement of the goal of a xylose-fermenting yeast. PMID:6325179

  2. Modulation of antigen presentation by autoreactive B cell clones specific for GAD65 from a type I diabetic patient

    PubMed Central

    BANGA, J P; MOORE, J K; DUHINDAN, N; MADEC, A M; VAN ENDERT, P M; ORGIAZZI, J; ENDL, J

    2004-01-01

    We used a GAD65-specific human B–T cell line cognate system in vitro to investigate the modulation of GAD65 presentation by autoantibody, assessed in a proliferation assay. Generally, if the T cell determinant overlaps or resides within the antibody epitope, effects of presentation are blunted while if they are distant can lead to potent presentation. For three different autoreactive B–T cell line cognate pairs, the modulation of GAD65 presentation followed the mode of overlapping or distant epitopes with resultant potent or undetectable presentation. However, other cognate pairs elicited variability in this pattern of presentation. Notably, one B cell line, DPC, whose antibody epitope did not overlap with the T cell determinants, was consistently poor in presenting GAD65. Using the fluorescent dye Alexa Fluor 647 conjugated to GAD65 to study receptor-mediated antigen endocytosis showed that all the antigen-specific B cell clones were efficient in intracellular accumulation of the antigen. Additionally, multicolour immunofluorescence microscopy showed that the internalized GAD65/surface IgG complexes were rapidly targeted to a perinuclear compartment in all GAD-specific B cell clones. This analysis also demonstrated that HLA-DM expression was reduced strongly in DPC compared to the stimulatory B cell clones. Thus the capability of antigen-specific B cells to capture and present antigen to human T cell lines is dependent on the spatial relationship of B and T cell epitopes as well other factors which contribute to the efficiency of presentation. PMID:14678267

  3. Isolation and characterization of an Huh.7.5.1-derived cell clone highly permissive to hepatitis C virus.

    PubMed

    Shirasago, Yoshitaka; Sekizuka, Tsuyoshi; Saito, Kyoko; Suzuki, Tetsuro; Wakita, Takaji; Hanada, Kentaro; Kuroda, Makoto; Abe, Ryo; Fukasawa, Masayoshi

    2015-01-01

    An efficient cell culture and infection system for hepatitis C virus (HCV) facilitates analyses of the complete virus life cycle. Human hepatic Huh7.5.1 cells and an HCV-JFH1 strain have been widely employed in infection experiments. In the present study, cultured Huh7.5.1 cells exhibited heterogeneous phenotypes of HCV infection. Using single-cell cloning of Huh7.5.1 cells, we isolated a clone highly permissive to HCV (Huh7.5.1-8) and a CD81-defective clone nonpermissive to HCV (Huh7.5.1-5). Expression of CD81 in Huh7.5.1-5 cells restored permissiveness to HCV, indicating that CD81 is essential for HCV infection and a defect in CD81 causes nonpermissiveness to HCV in Huh7.5.1-5 cells. Huh7.5.1-8 cells had approximately 10-fold higher HCV replication rates, with cellular HCV RNA copy numbers of >10(9) copies/μg of cellular RNA and viral titers of >10(6) infectious units/ml of culture supernatant. Permissiveness of Huh7.5.1-8 cells to HCV infection was phenotypically very stable because there was no difference in permissiveness after more than 100 passages (1-year culture). This efficient cell culture system for HCV using Huh7.5.1-8 cell provides a powerful tool for studying the HCV life cycle and constructing antiviral strategies.

  4. [Molecular cloning and expression of Nattokinase gene in Bacillus subtilis].

    PubMed

    Liu, B Y; Song, H Y

    2002-05-01

    In order to characterize biochemically the nattokinase,the nucleotide sequence of the nattokinase gene was amplified from the chromosomal DNA of B.subtilis (natto) by PCR. The expression plasmid pBL NK was constructed and was used to transform Bacillus subtilis containing a chromosomal deletion in its subtilisin gene. The supernatant of the culture was collected after 15 h culture. The target proteins were identified by SDS-PAGE. Nattokinase was purified by a method including ultrafiltration, Sephacryl S-100 gel filtration and S-Sepharose ion-exchange chromatography, and 100 mg of purified nattokinase was obtained from one liter of culture. The purity of the protein and the specific activity were 95% and 12 000 u/mg (compared to tPA), respectively.

  5. Human Endothelial Cells: Use of Heparin in Cloning and Long-Term Serial Cultivation

    NASA Astrophysics Data System (ADS)

    Thornton, Susan C.; Mueller, Stephen N.; Levine, Elliot M.

    1983-11-01

    Endothelial cells from human blood vessels were cultured in vitro, with doubling times of 17 to 21 hours for 42 to 79 population doublings. Cloned human endothelial cell strains were established for the first time and had similar proliferative capacities. This vigorous cell growth was achieved by addition of heparin to culture medium containing reduced concentrations of endothelial cell growth factor. The routine cloning and long-term culture of human endothelial cells will facilitate studying the human endothelium in vitro.

  6. Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.

    PubMed

    Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P

    2012-01-01

    Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum.

  7. Identification of two T-cell epitopes on the candidate Epstein-Barr virus vaccine glycoprotein gp340 recognized by CD4+ T-cell clones.

    PubMed Central

    Wallace, L E; Wright, J; Ulaeto, D O; Morgan, A J; Rickinson, A B

    1991-01-01

    Current efforts to develop an Epstein-Barr virus subunit vaccine are based on the major envelope glycoprotein gp340. Given the central role of CD4+ T cells in regulating immune responses to subunit vaccine antigens, the present study has begun the work of identifying linear epitopes which are recognized by human CD4+ T cells within the 907-amino-acid sequence of gp340. A panel of gp340-specific CD4+ T-cell clones from an Epstein-Barr virus-immune donor were first assayed for their proliferative responses to a series of truncated gp340 molecules expressed from recombinant DNA vectors in rat GH3 cells, by using an autologous B lymphoblastoid cell line as a source of antigen-presenting cells. The first four T-cell clones analyzed all responded to a truncated form of gp340 which contained only the first 260 N-terminal amino acids. These clones were subsequently screened for responses to each of a panel of overlapping synthetic peptides (15-mers) corresponding to the primary amino acid sequence of the first 260 N-terminal amino acids of gp340. One clone (CG2.7) responded specifically to peptides from the region spanning amino acids 61 to 81, while three other clones (CG5.15, CG5.24, and CG5.36) responded specifically to peptides from the region spanning amino acids 163 to 183. Work with individual peptides from these regions allowed finer mapping of the T-cell epitopes and also revealed the highly dose-dependent nature of peptide-induced responses, with inhibitory effects apparent when the most antigenic peptides were present at supraoptimal concentrations. Experiments using homozygous typing B lymphoblastoid cell lines as antigen-presenting cells showed that the T-cell clones with different epitope specificities were restricted through different HLA class II antigens; clone CG2.7 recognized epitope 61-81 in the context of HLA DRw15, whereas clones CG5.15, CG5.24, and CG5.36 recognized epitope 163-183 in the context of HLA DRw11. The present protocol therefore makes a

  8. Telomere-to-centromere ratio of bovine clones, embryos, gametes, fetal cells, and adult cells.

    PubMed

    Meerdo, Lora N; Reed, William A; White, Kenneth L

    2005-01-01

    In 1997, Dolly, the first animal cloned from an adult cell, was born. It was announced in 1999 that Dolly might be aging faster than normal because her telomeres were shorter than age-matched control sheep. Telomeres, a repeated DNA sequence located at the ends of linear chromosomes, allow for base pair loss during DNA replication. Telomere shortening ac