Photovoltaics Innovation Roadmap Request for Information Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
On June 28, 2017, the U.S. Department of Energy’s Solar Energy Technologies Office (SETO) released the Photovoltaics (PV) Innovation Roadmap Request for Information (RFI) for public response and comment. The RFI sought feedback from PV stakeholders, including research and commercial communities, about the most important research and development (R&D) pathways to improve PV cell and module technology to reach the SETO’s SunShot 2030 cost targets of $0.03/W for utility PV installations, $0.04/W for commercial scale installations, and $0.05/W for residential PV installations.
Research & Development Roadmap for Next-Generation Appliances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Sutherland, Timothy; Foley, Kevin
2012-03-01
Appliances present an attractive opportunity for near-term energy savings in existing building, because they are less expensive and replaced more regularly than heating, ventilation, and air-conditioning (HVAC) systems or building envelope components. This roadmap targets high-priority research and development (R&D), demonstration and commercialization activities that could significantly reduce residential appliance energy consumption. The main objective of the roadmap is to seek activities that accelerate the commercialization of high-efficiency appliance technologies while maintaining the competitiveness of American industry. The roadmap identified and evaluated potential technical innovations, defined research needs, created preliminary research and development roadmaps, and obtained stakeholder feedback on themore » proposed initiatives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ardani, K.; Seif, D.; Margolis, R.
2013-08-01
The objective of this analysis is to roadmap the cost reductions and innovations necessary to achieve the U.S. Department of Energy (DOE) SunShot Initiative's total soft-cost targets by 2020. The roadmap focuses on advances in four soft-cost areas: (1) customer acquisition; (2) permitting, inspection, and interconnection (PII); (3) installation labor; and (4) financing. Financing cost reductions are in terms of the weighted average cost of capital (WACC) for financing PV system installations, with real-percent targets of 3.0% (residential) and 3.4% (commercial).
MAPSIT and a Roadmap for Lunar and Planetary Spatial Data Infrastructure
NASA Astrophysics Data System (ADS)
Radebaugh, J.; Archinal, B.; Beyer, R.; DellaGiustina, D.; Fassett, C.; Gaddis, L.; Hagerty, J.; Hare, T.; Laura, J.; Lawrence, S. J.; Mazarico, E.; Naß, A.; Patthoff, A.; Skinner, J.; Sutton, S.; Thomson, B. J.; Williams, D.
2017-10-01
We describe MAPSIT, and the development of a roadmap for lunar and planetary SDI, based on previous relevant documents and community input, and consider how to best advance lunar science, exploration, and commercial development.
An Evolved International Lunar Decade Global Exploration Roadmap
NASA Astrophysics Data System (ADS)
Dunlop, D.; Holder, K.
2015-10-01
An Evolved Global Exploration Roadmap (GER) reflecting a proposed International Lunar Decade is presented by an NSS chapter to address many of the omissions and new prospective commercial mission developments since the 2013 edition of the ISECG GER.
Proposed roadmap for overcoming legal and financial obstacles to carbon capture and sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Wendy; Chohen, Leah; Kostakidis-Lianos, Leah
Many existing proposals either lack sufficient concreteness to make carbon capture and geological sequestration (CCGS) operational or fail to focus on a comprehensive, long term framework for its regulation, thus failing to account adequately for the urgency of the issue, the need to develop immediate experience with large scale demonstration projects, or the financial and other incentives required to launch early demonstration projects. We aim to help fill this void by proposing a roadmap to commercial deployment of CCGS in the United States.This roadmap focuses on the legal and financial incentives necessary for rapid demonstration of geological sequestration in themore » absence of national restrictions on CO2 emissions. It weaves together existing federal programs and financing opportunities into a set of recommendations for achieving commercial viability of geological sequestration.« less
National Algal Biofuels Technology Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, John; Sarisky-Reed, Valerie
The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status ofmore » algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.« less
Roadmap on semiconductor-cell biointerfaces
NASA Astrophysics Data System (ADS)
Tian, Bozhi; Xu, Shuai; Rogers, John A.; Cestellos-Blanco, Stefano; Yang, Peidong; Carvalho-de-Souza, João L.; Bezanilla, Francisco; Liu, Jia; Bao, Zhenan; Hjort, Martin; Cao, Yuhong; Melosh, Nicholas; Lanzani, Guglielmo; Benfenati, Fabio; Galli, Giulia; Gygi, Francois; Kautz, Rylan; Gorodetsky, Alon A.; Kim, Samuel S.; Lu, Timothy K.; Anikeeva, Polina; Cifra, Michal; Krivosudský, Ondrej; Havelka, Daniel; Jiang, Yuanwen
2018-05-01
This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.
Runaas, Lyndsey; Hanauer, David; Maher, Molly; Bischoff, Evan; Fauer, Alex; Hoang, Tiffany; Munaco, Anna; Sankaran, Roshun; Gupta, Rahael; Seyedsalehi, Sajjad; Cohn, Amy; An, Larry; Tewari, Muneesh; Choi, Sung Won
2017-05-01
Health information technology (HIT) has great potential for increasing patient engagement. Pediatric hematopoietic cell transplantation (HCT) is a setting ripe for using HIT but in which little research exists. "BMT Roadmap" is a web-based application that integrates patient-specific information and includes several domains: laboratory results, medications, clinical trial details, photos of the healthcare team, trajectory of transplant process, and discharge checklist. BMT Roadmap was provided to 10 caregivers of patients undergoing first-time HCT. Research assistants performed weekly qualitative interviews throughout the patient's hospitalization and at discharge and day 100 to assess the impact of BMT Roadmap. Rigorous thematic analysis revealed 5 recurrent themes: emotional impact of the HCT process itself; critical importance of communication among patients, caregivers, and healthcare providers; ways in which BMT Roadmap was helpful during inpatient setting; suggestions for improving BMT Roadmap; and other strategies for organization and management of complex healthcare needs that could be incorporated into BMT Roadmap. Caregivers found the tool useful and easy to use, leading them to want even greater access to information. BMT Roadmap was feasible, with no disruption to inpatient care. Although this initial study is limited by the small sample size and single-institution experience, these initial findings are encouraging and support further investigation. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Research and Development Roadmaps for Liquid Metal Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T. K.; Grandy, C.; Natesan, K.
The United States Department of Energy (DOE) commissioned the development of technology roadmaps for advanced (non-light water reactor) reactor concepts to help focus research and development funding over the next five years. The roadmaps show the research and development needed to support demonstration of an advanced (non-LWR) concept by the early 2030s, consistent with DOE’s Vision and Strategy for the Development and Deployment of Advanced Reactors. The intent is only to convey the technical steps that would be required to achieve such a goal; the means by which DOE will determine whether to invest in specific tasks will be treatedmore » separately. The starting point for the roadmaps is the Technical Readiness Assessment performed as part of an Advanced Test and Demonstration Reactor study released in 2016. The roadmaps were developed based upon a review of technical reports and vendor literature summarizing the technical maturity of each concept and the outstanding research and development needs. Critical path tasks for specific systems were highlighted on the basis of time and resources needed to complete the tasks and the importance of the system to the performance of the reactor concept. The roadmaps are generic, i.e. not specific to a particular vendor’s design but vendor design information may have been used as representative of the concept family. In the event that both near-term and more advanced versions of a concept are being developed, either a single roadmap with multiple branches or separate roadmaps for each version were developed. In each case, roadmaps point to a demonstration reactor (engineering or commercial) and show the activities that must be completed in parallel to support that demonstration in the 2030-2035 window. This report provides the roadmaps for two fast reactor concepts, the Sodium-cooled Fast Reactor (SFR) and the Lead-cooled Fast Reactor (LFR). The SFR technology is mature enough for commercial demonstration by the early 2030s, and the remaining critical paths and R&D needs are generally related to the completion of qualification of fuel and structural materials, validation of reactor design codes and methods, and support of the licensing frameworks. The LFR’s technology is instead less-mature compared to the SFR’s, and will be at the engineering demonstration stage by the early 2030s. Key LFR technology development activities will focus on resolving remaining design challenges and demonstrating the viability of systems and components in the integral system, which will be done in parallel with addressing the gaps shared with SFR technology. The approach and timeline presented here assume that, for the first module demonstration, vendors would pursue a two-step licensing process based on 10CFR Part 50.« less
NASA Technical Reports Server (NTRS)
Lauenstein, Jean-Marie; Casey, Megan; Campola, Michael; Ladbury, Raymond; Label, Kenneth; Wilcox, Ted; Phan, Anthony; Kim, Hak; Topper, Alyson
2017-01-01
Recent work for the NASA Electronic Parts and Packaging Program Power MOSFET task is presented. The Task technology focus, roadmap, and partners are given. Recent single-event effect test results on commercial, automotive, and radiation hardened trench power MOSFETs are summarized with an emphasis on risk of using commercial and automotive trench-gate power MOSFETs in space applications.
sCO2 Brayton Cycle: Roadmap to sCO2 Power Cycles NE Commercial Applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez Cruz, Carmen Margarita; Rochau, Gary E.
The mission of the Energy Conversion (EC) area of the Advanced Reactor Technology (ART) program is to commercialize the sCO2 Brayton cycle for Advance Reactors and for the Supercritical Transformational Electric Production (STEP) program. The near-term objective of the EC team efforts is to support the development of a commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the first STEP demonstration system with the lowest risk possible. This document details the status of technology, policy and market considerations, documentation of gaps and needs, and outlines the steps necessary for the successful development and deployment of commercial sCO2more » Brayton Power Systems along the path to nuclear reactor applications. Document Control Version Creation Date Revisions Created By Release Date 1.0 2/29/2016 Preliminary Draft Mendez, C. 3/2/2016 2.0 7/29/2016 Preliminaty/Partial Report -- updated Focus Area structure, added commercial path forward Mendez, C. 8/10/16 3.0 5/1/2018 Updated Roadmap supports timeline changes and inclusion of grid qualification goals Mendez, C. 6/6/18« less
Accurate and reproducible functional maps in 127 human cell types via 2D genome segmentation
Hardison, Ross C.
2017-01-01
Abstract The Roadmap Epigenomics Consortium has published whole-genome functional annotation maps in 127 human cell types by integrating data from studies of multiple epigenetic marks. These maps have been widely used for studying gene regulation in cell type-specific contexts and predicting the functional impact of DNA mutations on disease. Here, we present a new map of functional elements produced by applying a method called IDEAS on the same data. The method has several unique advantages and outperforms existing methods, including that used by the Roadmap Epigenomics Consortium. Using five categories of independent experimental datasets, we compared the IDEAS and Roadmap Epigenomics maps. While the overall concordance between the two maps is high, the maps differ substantially in the prediction details and in their consistency of annotation of a given genomic position across cell types. The annotation from IDEAS is uniformly more accurate than the Roadmap Epigenomics annotation and the improvement is substantial based on several criteria. We further introduce a pipeline that improves the reproducibility of functional annotation maps. Thus, we provide a high-quality map of candidate functional regions across 127 human cell types and compare the quality of different annotation methods in order to facilitate biomedical research in epigenomics. PMID:28973456
Carbon Dioxide Utilization (CO2U) ICEF Roadmap 2.0. Draft October 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandalow, David; Aines, Roger; Friedmann, Julio
Last year, experts from CO 2 Sciences, Columbia University and Valence Strategic came together to develop a roadmap. That document, Carbon Dioxide Utilization ICEF Roadmap 1.0, released at the UNFCCC Marrakesh Climate Change Conference in 2016, surveyed the commercial and technical landscape of CO 2 conversion and use. The document provided extensive background and analysis and has helped to provide a foundation for additional studies, including this one.This roadmap is meant to complement and expand upon the work of its predecessor. Based in part on a workshop at Columbia University’s Center on Global Energy Policy in July 2017, it exploresmore » three distinct categories of CO 2-based products, the technologies that can be harnessed to convert CO2 to these products, and the associated research and development needs. It also explores the complicated topic of life cycle analysis—critically important when considering the climate impacts of CO 2 conversion and use—as well as policy tools that could be used to promote CO 2-based products.« less
Design, Construction and Test of a Supercapacitor Bank for Space Applications
NASA Astrophysics Data System (ADS)
Buergler, Brandon; Simon, Evelyne; Vasina, Petr; Latif, David; Diblik, Lukas; Gineste, Valery; Simcak, Marek
2014-08-01
Electrochemical double layer capacitors also referred to as supercapacitors offer a wide range of applications for space flight. The aim of this activity was to evaluate commercial off-the-shelf supercapacitors from different manufacturers in terms of suitability for space applications. Characterisation tests, environmental tests, life tests and abuse tests were carried out. In a second step, a bank of supercapacitors was designed, constructed and subsequentially tested in similar conditions as the individual cells. Based on the results of this work, the application of supercapacitors in future spacecrafts looks promising. The impact of supercapacitors application on system level shall be discussed and a roadmap towards further development activities shall also be outlined.
Eco-approach and Eco-departure planning study : final report.
DOT National Transportation Integrated Search
2016-01-31
A long term (10 year) research roadmap is proposed to guide the development and potential deployment of Eco-Approach and Departure (Eco A/D) functionality at signalized intersections, with a focus on commercialization of initial system concepts in 5+...
Roadmap to risk evaluation and mitigation strategies (REMS) success
Balian, John D.; Malhotra, Rachpal; Perentesis, Valerie
2010-01-01
Medical safety-related risk management is a rapidly evolving and increasingly important aspect of drug approval and market longevity. To effectively meet the challenges of this new era, we describe a risk management roadmap that proactively yet practically anticipates risk-management requirements, provides the foundation for enduring yet appropriately flexible risk-management practices, and leverages these techniques to efficiently and effectively utilize risk evaluation and mitigation strategies (REMS)/risk minimization programs as market access enablers. This fully integrated risk-management paradigm creates exciting opportunities for newer tools, techniques, and approaches to more successfully optimize product development, approval, and commercialization, with patients as the ultimate beneficiaries. PMID:25083193
Partnerships and the Future of NASA
NASA Technical Reports Server (NTRS)
Blome, Elizabeth; Gowan, John W.; Sampson, Margarita
2015-01-01
Partnerships have become a more integral part of the journey to Mars as NASA continues to lead human space exploration. The current budgetary and political reality requires that partnerships be a key component of moving beyond Low Earth Orbit. This paper will discuss the challenge of finding innovative partnerships that take advantage of the capabilities of the growing commercial space market. Challenges include identifying specific technological needs, recognizing the growing expertise and desires of commercial space to move beyond Low Earth Orbit, incorporating commercial partners into the Mars Roadmap, and working with international partners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, Rick; Moezzi, Mithra
Within the energy research community, social sciences tends to be viewed fairly narrowly, often as simply a marketing tool to change the behavior of consumers and decision makers, and to ''attack market barriers''. As we see it, social sciences, which draws on sociology, psychology, political science, business administration, and other academic disciplines, is capable of far more. A social science perspective can re-align questions in ways that can lead to the development of technologies and technology policy that are much stronger and potentially more successful than they would be otherwise. In most energy policies governing commercial buildings, the prevailing Rmore » and D directives are firmly rooted in a technology framework, one that is generally more quantitative and evaluative than that fostered by the social sciences. To illustrate how social science thinking would approach the goal of achieving high energy performance in the commercial building sector, they focus on the US Department of Energy's Roadmap for commercial buildings (DOE 2000) as a starting point. By ''deconstructing'' the four strategies provided by the Roadmap, they set the stage for proposing a closer partnership between advocates of technology-based and social science-based approaches.« less
Development priorities for in-space propulsion technologies
NASA Astrophysics Data System (ADS)
Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold
2013-02-01
During the summer of 2010, NASA's Office of Chief Technologist assembled 15 civil service teams to support the creation of a NASA integrated technology roadmap. The Aero-Space Technology Area Roadmap is an integrated set of technology area roadmaps recommending the overall technology investment strategy and prioritization for NASA's technology programs. The integrated set of roadmaps will provide technology paths needed to meet NASA's strategic goals. The roadmaps have been reviewed by senior NASA management and the National Research Council. With the exception of electric propulsion systems used for commercial communications satellite station-keeping and a handful of deep space science missions, almost all of the rocket engines in use today are chemical rockets; that is, they obtain the energy needed to generate thrust by combining reactive chemicals to create a hot gas that is expanded to produce thrust. A significant limitation of chemical propulsion is that it has a relatively low specific impulse. Numerous concepts for advanced propulsion technologies with significantly higher values of specific impulse have been developed over the past 50 years. Advanced in-space propulsion technologies will enable much more effective exploration of our solar system, near and far, and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are 'best' for future missions is a difficult one. A portfolio of technologies to allow optimum propulsion solutions for a diverse set of missions and destinations are described in the roadmap and herein.
Clonal analysis of lineage fate in native haematopoiesis.
Rodriguez-Fraticelli, Alejo E; Wolock, Samuel L; Weinreb, Caleb S; Panero, Riccardo; Patel, Sachin H; Jankovic, Maja; Sun, Jianlong; Calogero, Raffaele A; Klein, Allon M; Camargo, Fernando D
2018-01-11
Haematopoiesis, the process of mature blood and immune cell production, is functionally organized as a hierarchy, with self-renewing haematopoietic stem cells and multipotent progenitor cells sitting at the very top. Multiple models have been proposed as to what the earliest lineage choices are in these primitive haematopoietic compartments, the cellular intermediates, and the resulting lineage trees that emerge from them. Given that the bulk of studies addressing lineage outcomes have been performed in the context of haematopoietic transplantation, current models of lineage branching are more likely to represent roadmaps of lineage potential than native fate. Here we use transposon tagging to clonally trace the fates of progenitors and stem cells in unperturbed haematopoiesis. Our results describe a distinct clonal roadmap in which the megakaryocyte lineage arises largely independently of other haematopoietic fates. Our data, combined with single-cell RNA sequencing, identify a functional hierarchy of unilineage- and oligolineage-producing clones within the multipotent progenitor population. Finally, our results demonstrate that traditionally defined long-term haematopoietic stem cells are a significant source of megakaryocyte-restricted progenitors, suggesting that the megakaryocyte lineage is the predominant native fate of long-term haematopoietic stem cells. Our study provides evidence for a substantially revised roadmap for unperturbed haematopoiesis, and highlights unique properties of multipotent progenitors and haematopoietic stem cells in situ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.
2012-09-14
The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineeringmore » Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.
2012-09-01
Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S.more » Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trost, Alan L.
The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) has developed a research and development (R&D) roadmap for its research, development, and demonstration (RD&D) activities to ensure nuclear energy remains a compelling and viable energy option for the U.S. The roadmap defines NE RD&D activities and objectives that address the challenges to research, develop and demonstrate options to the current U.S commercial fuel cycle to enable the safe, secure, economic, and sustainable expansion of nuclear energy, while minimizing proliferation and terrorism risks expanding the use of nuclear power. The roadmap enables the development of technologies and other solutionsmore » that can improve the reliability, sustain the safety, and extend the life of current reactors. In addition, it will help to develop improvements in the affordability of the new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals.« less
Rajagopal, Adharsh; Yao, Kai; Jen, Alex K-Y
2018-06-08
High-efficiency and low-cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar-based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure-property-processing-performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state-of-the-art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge-transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability-durability-sustainability considerations pivotal for facilitating laboratory to industry translation are presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
FuzzyCLIPS from research to product
NASA Technical Reports Server (NTRS)
Bochsler, Dan; Dohmann, Edgar
1994-01-01
This paper describes the commercial productization of FuzzyCLIPS which was developed under a NASA Phase 2 SBIR contract. The intent of this paper is to provide a general roadmap of the processes that are required to make a viable, marketable product once its concept and development are complete.
Roadmap to Guide U.S. Photovoltaics Industry in 21st Century
industry wants them to have it. Solar-cell manufacturers and suppliers see photovoltaics (PV) producing at Roadmap to Guide U.S. Photovoltaics Industry in 21st Century Solar energy will provide emergency Douglas Golden, Colo., Jan. 20, 2000 - Americans want clean solar electricity. The U.S. photovoltaics
A Commercialization Roadmap for Carbon-Negative Energy Systems
NASA Astrophysics Data System (ADS)
Sanchez, D.
2016-12-01
The Intergovernmental Panel on Climate Change (IPCC) envisages the need for large-scale deployment of net-negative CO2 emissions technologies by mid-century to meet stringent climate mitigation goals and yield a net drawdown of atmospheric carbon. Yet there are few commercial deployments of BECCS outside of niche markets, creating uncertainty about commercialization pathways and sustainability impacts at scale. This uncertainty is exacerbated by the absence of a strong policy framework, such as high carbon prices and research coordination. Here, we propose a strategy for the potential commercial deployment of BECCS. This roadmap proceeds via three steps: 1) via capture and utilization of biogenic CO2 from existing bioenergy facilities, notably ethanol fermentation, 2) via thermochemical co-conversion of biomass and fossil fuels, particularly coal, and 3) via dedicated, large-scale BECCS. Although biochemical conversion is a proven first market for BECCS, this trajectory alone is unlikely to drive commercialization of BECCS at the gigatonne scale. In contrast to biochemical conversion, thermochemical conversion of coal and biomass enables large-scale production of fuels and electricity with a wide range of carbon intensities, process efficiencies and process scales. Aside from systems integration, primarily technical barriers are involved in large-scale biomass logistics, gasification and gas cleaning. Key uncertainties around large-scale BECCS deployment are not limited to commercialization pathways; rather, they include physical constraints on biomass cultivation or CO2 storage, as well as social barriers, including public acceptance of new technologies and conceptions of renewable and fossil energy, which co-conversion systems confound. Despite sustainability risks, this commercialization strategy presents a pathway where energy suppliers, manufacturers and governments could transition from laggards to leaders in climate change mitigation efforts.
The Open Gateway: Lunar Exploration in 2050
NASA Technical Reports Server (NTRS)
Lawrence, S.; Neal, C.
2017-01-01
The Moon, with its fundamental science questions and abundant, potentially useful re-sources, is the most viable destination for near-term future human and robotic exploration. Given what we have learned since Apollo, the lunar frontier now presents an entirely new paradigm for planetary exploration. The Lunar Exploration Roadmap [1], which was jointly developed by engineers, planetary scientists, commercial entities, and policymakers, is the cohesive strategic plan for using the Moon and its resources to enable the exploration of all other destinations within the Solar system by leveraging incremental, affordable investments in cislunar infrastructure. Here, we summarize the Lunar Exploration Roadmap, and describe the immense benefits that will arise from its successful implementation.
NASA Technical Reports Server (NTRS)
Hooker, John R.; Wick, Andrew T.; Hardin, Christopher J.
2017-01-01
LM has leveraged our partnership with the Air Force Research Laboratory (AFRL) and NASA on the advanced hybrid wing body (HWB) concept to develop a commercial freighter which addresses the NASA Advanced Air Transport Technology (AATT) Project goals for improved efficiency beyond 2025. The current Air Force Research Laboratory (AFRL) Revolutionary Configurations for Energy Efficiency (RCEE) program established the HWB configuration and technologies needed for military transports to achieve aerodynamic and fuel efficiencies well beyond the commercial industry's most modern designs. This study builds upon that effort to develop a baseline commercial cargo aircraft and two HWB derivative commercial cargo aircraft to quanitify the benefit of the HWB and establish a technology roadmap for further development.
Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods
Shi, Zhengqi; Jayatissa, Ahalapitiya H.
2018-01-01
With the rapid increase of efficiency up to 22.1% during the past few years, hybrid organic-inorganic metal halide perovskite solar cells (PSCs) have become a research “hot spot” for many solar cell researchers. The perovskite materials show various advantages such as long carrier diffusion lengths, widely-tunable band gap with great light absorption potential. The low-cost fabrication techniques together with the high efficiency makes PSCs comparable with Si-based solar cells. But the drawbacks such as device instability, J-V hysteresis and lead toxicity reduce the further improvement and the future commercialization of PSCs. This review begins with the discussion of crystal and electronic structures of perovskite based on recent research findings. An evolution of PSCs is also analyzed with a greater detail of each component, device structures, major device fabrication methods and the performance of PSCs acquired by each method. The following part of this review is the discussion of major barriers on the pathway for the commercialization of PSCs. The effects of crystal structure, fabrication temperature, moisture, oxygen and UV towards the stability of PSCs are discussed. The stability of other components in the PSCs are also discussed. The lead toxicity and updated research progress on lead replacement are reviewed to understand the sustainability issues of PSCs. The origin of J-V hysteresis is also briefly discussed. Finally, this review provides a roadmap on the current needs and future research directions to address the main issues of PSCs. PMID:29734667
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong
2013-08-06
This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in termsmore » of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.« less
The European Hematology Association Roadmap for European Hematology Research: a consensus document.
Engert, Andreas; Balduini, Carlo; Brand, Anneke; Coiffier, Bertrand; Cordonnier, Catherine; Döhner, Hartmut; de Wit, Thom Duyvené; Eichinger, Sabine; Fibbe, Willem; Green, Tony; de Haas, Fleur; Iolascon, Achille; Jaffredo, Thierry; Rodeghiero, Francesco; Salles, Gilles; Schuringa, Jan Jacob
2016-02-01
The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap.The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders.The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. Copyright© Ferrata Storti Foundation.
The European Hematology Association Roadmap for European Hematology Research: a consensus document
Engert, Andreas; Balduini, Carlo; Brand, Anneke; Coiffier, Bertrand; Cordonnier, Catherine; Döhner, Hartmut; de Wit, Thom Duyvené; Eichinger, Sabine; Fibbe, Willem; Green, Tony; de Haas, Fleur; Iolascon, Achille; Jaffredo, Thierry; Rodeghiero, Francesco; Salles, Gilles; Schuringa, Jan Jacob
2016-01-01
The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. PMID:26819058
Stem cell roadmap - The industrial point of view.
Elzaabi, Mazen; Thevenin, Agnès; Lirsac, Pierre-Noël
2017-01-01
CELLforCURE is a French Contract Development and Manufacturing Organization (CDMO) dedicated to industrialization and process development for routine manufacturing, GMP manufacturing for clinical and commercial batches and regulatory services and associated logistics. CELLforCURE is a subsidiary of LFB Group.Stem cells fields of application gather cell and gene therapy as well as tissue engineering. According to VisionGain survey, cell therapy medicinal products will remain predominant in the future.Clinical trials are sponsored either by universities or private companies. Most of clinical trials are performed in oncology (53%). More than 100 clinical trials are currently performed in France, involving 36 products in clinical phases II or II/III.Tomorrow's regenerative medicine will be organ reconstruction using scaffolds and bioprinting technologies. The expected applications in the near future could be skin, cornea, blood vessels, retina, urethra and trachea. There are still important issues to overcome: create the vasculature and neuron connection.Solutions are expected regarding I) fundamental biology, in particular better understanding of IPS behavior and metabolism, precursor differentiation conditions, sustainability of induced genetic changes, II) technical approaches which involves injectable preservation medium, high density cells and centrifugation system.
A technology roadmap of smart biosensors from conventional glucose monitoring systems.
Shende, Pravin; Sahu, Pratiksha; Gaud, Ram
2017-06-01
The objective of this review article is to focus on technology roadmap of smart biosensors from a conventional glucose monitoring system. The estimation of glucose with commercially available devices involves analysis of blood samples that are obtained by pricking finger or extracting blood from the forearm. Since pain and discomfort are associated with invasive methods, the non-invasive measurement techniques have been investigated. The non-invasive methods show advantages like non-exposure to sharp objects such as needles and syringes, due to which there is an increase in testing frequency, improved control of glucose concentration and absence of pain and biohazard materials. This review study is aimed to describe recent invasive techniques and major noninvasive techniques, viz. biosensors, optical techniques and sensor-embedded contact lenses for glucose estimation.
Community resources and technologies developed through the NIH Roadmap Epigenomics Program.
Satterlee, John S; Beckel-Mitchener, Andrea; McAllister, Kim; Procaccini, Dena C; Rutter, Joni L; Tyson, Frederick L; Chadwick, Lisa Helbling
2015-01-01
This chapter describes resources and technologies generated by the NIH Roadmap Epigenomics Program that may be useful to epigenomics researchers investigating a variety of diseases including cancer. Highlights include reference epigenome maps for a wide variety of human cells and tissues, the development of new technologies for epigenetic assays and imaging, the identification of novel epigenetic modifications, and an improved understanding of the role of epigenetic processes in a diversity of human diseases. We also discuss future needs in this area including exploration of epigenomic variation between individuals, single-cell epigenomics, environmental epigenomics, exploration of the use of surrogate tissues, and improved technologies for epigenome manipulation.
ERIC Educational Resources Information Center
Ojo, Michael A.
2017-01-01
The roadmap towards the commercialization of goods and services has been continually enhanced and modified to accommodate a more digital landscape. Businesses are building more robust websites and point-of-service opportunities that do not require human intervention. In turn, consumer shopping patterns and behaviors have shifted in response to…
A roadmap for cost-of-goods planning to guide economic production of cell therapy products.
Lipsitz, Yonatan Y; Milligan, William D; Fitzpatrick, Ian; Stalmeijer, Evelien; Farid, Suzanne S; Tan, Kah Yong; Smith, David; Perry, Robert; Carmen, Jessica; Chen, Allen; Mooney, Charles; Fink, John
2017-12-01
Cell therapy products are frequently developed and produced without incorporating cost considerations into process development, contributing to prohibitively costly products. Herein we contextualize individual process development decisions within a broad framework for cost-efficient therapeutic manufacturing. This roadmap guides the analysis of cost of goods (COG) arising from tissue procurement, material acquisition, facility operation, production, and storage. We present the specific COG considerations related to each of these elements as identified through a 2013 International Society for Cellular Therapy COG survey, highlighting the differences between autologous and allogeneic products. Planning and accounting for COG at each step in the production process could reduce costs, allowing for more affordable market pricing to improve the long-term viability of the cell therapy product and facilitate broader patient access to novel and transformative cell therapies. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
NASA Technology Area 07: Human Exploration Destination Systems Roadmap
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near-Earth objects (NEOs), which > 95% are asteroidal bodies, Phobos, Deimos, Mars, and beyond. The HEDS technology roadmap will strategically guide NASA and other U.S. Government agency technology investments that will result in capabilities enabling human exploration missions to diverse destinations generating high returns on investments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronnebro, Ewa
PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale thatmore » is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.« less
The NIH Roadmap Epigenomics Program data resource
Chadwick, Lisa Helbling
2012-01-01
The NIH Roadmap Reference Epigenome Mapping Consortium is developing a community resource of genome-wide epigenetic maps in a broad range of human primary cells and tissues. There are large amounts of data already available, and a number of different options for viewing and analyzing the data. This report will describe key features of the websites where users will find data, protocols and analysis tools developed by the consortium, and provide a perspective on how this unique resource will facilitate and inform human disease research, both immediately and in the future. PMID:22690667
The NIH Roadmap Epigenomics Program data resource.
Chadwick, Lisa Helbling
2012-06-01
The NIH Roadmap Reference Epigenome Mapping Consortium is developing a community resource of genome-wide epigenetic maps in a broad range of human primary cells and tissues. There are large amounts of data already available, and a number of different options for viewing and analyzing the data. This report will describe key features of the websites where users will find data, protocols and analysis tools developed by the consortium, and provide a perspective on how this unique resource will facilitate and inform human disease research, both immediately and in the future.
Lorenzi, Bruno; Contento, Gaetano; Sabatelli, Vincenzo; Rizzo, Antonella; Narducci, Dario
2017-03-01
The development and commercialization of Photovoltaic (PV) cells with good cost-efficiency trade-off not using critical raw materials (CRMs) is one of the strategies chosen by the European Community (EC) to address the Energy Roadmap 2050. In this context Cu2ZnSnS4 (CZTS) solar cells are attracting a major interest since they have the potential to combine low price with relatively high conversion efficiencies. Although a ≈9% lab scale efficiency has already been reported for CZTS this technology is still far from being competitive in terms of cost per peak-power (€/Wp) with other common materials. One possible near-future solution to increase the CZTS competiveness comes from thermoelectrics. Actually it has already been shown that Hybrid Thermoelectric-Photovoltaic Systems (HTEPVs) based on CIGS, another kesterite very similar to CZTS, can lead to a significant efficiency improvement. However it has been also clarified how the optimal hybridization strategy cannot come from the simple coupling of solar cells with commercial TEGs, but special layouts have to be implemented. Furthermore, since solar cell performances are well known to decrease with temperature, thermal decoupling strategies of the PV and TEG sections have to be taken. To address these issues, we developed a model for two different HTEPV solutions, both coupled with CZTS solar cells. In the first case we considered a Thermally-Coupled HTEPV device (TC-HTEPV) in which the TEG is placed underneath the solar cell and in thermal contact with it. The second system consists instead of an Optically-Coupled but thermally decoupled device (OC-HTEPV) in which part of the solar spectrum is focused by a non-imaging optical concentrator on the TEG hot side. For both solutions the model returns conversion efficiencies higher than that of the CZTS solar cell alone. Specifically, increases of ≈30% are predicted for both kind of systems considered.
High power density superconducting rotating machines—development status and technology roadmap
NASA Astrophysics Data System (ADS)
Haran, Kiruba S.; Kalsi, Swarn; Arndt, Tabea; Karmaker, Haran; Badcock, Rod; Buckley, Bob; Haugan, Timothy; Izumi, Mitsuru; Loder, David; Bray, James W.; Masson, Philippe; Stautner, Ernst Wolfgang
2017-12-01
Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably because the threshold for value versus cost and technology risk has not yet been crossed. One likely path for disruptive superconducting technology in commercial products could be in applications where its advantages become key enablers for systems which are not practical with conventional technology. To help systems engineers assess the viability of such future solutions, we present a technology roadmap for superconducting machines. The timeline considered was ten years to attain a Technology Readiness Level of 6+, with systems demonstrated in a relevant environment. Future projections, by definition, are based on the judgment of specialists, and can be subjective. Attempts have been made to obtain input from a broad set of organizations for an inclusive opinion. This document was generated through a series of teleconferences and in-person meetings, including meetings at the 2015 IEEE PES General meeting in Denver, CO, the 2015 ECCE in Montreal, Canada, and a final workshop in April 2016 at the University of Illinois, Urbana-Champaign that brought together a broad group of technical experts spanning the industry, government and academia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Cyrus M; Nanstad, Randy K; Clayton, Dwight A
2012-09-01
The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin nextmore » year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.« less
Systems study of transport aircraft incorporating advanced aluminum alloys
NASA Technical Reports Server (NTRS)
Sakata, I. F.
1982-01-01
A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.
Capabilities Roadmap Briefings to the National Research Council
NASA Technical Reports Server (NTRS)
2005-01-01
High energy power and propulsion capability roadmap - general background and introduction. Advanced telescopes and observatories and scientific instruments and sensors capability roadmaps - general background and introduction. Space communications capability roadmap interim review. Robotic access to planetary surface capability roadmap. Human health and support systems capability roadmap progress review.
MEMS and MOEMS for national security applications
NASA Astrophysics Data System (ADS)
Scott, Marion W.
2003-01-01
Major opportunities for microsystem insertion into commercial applications, such as telecommunications and medical prosthesis, are well known. Less well known are applications that ensure the security of our nation, the protection of its armed forces, and the safety of its citizens. Microsystems enable entirely new possibilities to meet National Security needs, which can be classed along three lines: anticipating security needs and threats, deterring the efficacy of identified threats, and defending against the application of these threats. In each of these areas, specific products that are enabled by MEMS and MOEMS are discussed. In the area of anticipating needs and threats, sensored microsystems designed for chem/bio/nuclear threats, and sensors for border and asset protection can significantly secure our borders, ports, and transportation systems. Key features for these applications include adaptive optics and spectroscopic capabilities. Microsystems to monitor soil and water quality can be used to secure critical infrastructure, food safety can be improved by in-situ identification of pathogens, and sensored buildings can ensure the architectural safety of our homes and workplaces. A challenge to commercializing these opportunities, and thus making them available for National Security needs, is developing predictable markets and predictable technology roadmaps. The integrated circuit manufacturing industry provides an example of predictable technology maturation and market insertion, primarily due to the existence of a "unit cell" that allows volume manufacturing. It is not clear that microsystems can follow an analogous path. The possible paths to affordable low-volume production, as well as the prospects of a microsystems unit cell, are discussed.
NASA Technical Reports Server (NTRS)
Inman, Thomas
2005-01-01
General Background and Introduction of Capability Roadmaps: Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Technology and Capability Readiness Levels. Relationships Between Roadmaps. Purpose of NRC Review. Capability Roadmap Development (Team Progress to Date).
Reliable, Practical Kilowatt-class Cryogenics for Superconducting Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spoor, Philip
2016-12-15
Following the successful development of a Flexibly-Attached Remote cryocooler for ~200W at 80K under a Phase II DOE grant, Clever Fellows Innovation Consortium, Inc. (dba CFIC-Qdrive; acquired by Chart Industries in 2012) was invited by the DOE to scale up this technology to ~1000W/80K in a Phase III program. This target is responsive to the “Cryogenics Roadmap” developed by the DOE to accelerate the development of cryogenic cooling necessary to support the emerging superconducting power applications. Mirroring the Roadmap, our proposal included a capacity target (1000W at 80K) and a cost target (<$40/watt, at 80K), but unlike the Roadmap, wemore » did not formally propose to meet a specific efficiency target. We achieved 75% of the capacity target, with a record-size coaxial “pulse-tube” coldfinger, but only by working on the project well beyond the original “period of performance” on unfunded extension. We believe 100% of the capacity target was within reach, but our own budget and time constraints forbade additional effort. We were less successful in meeting the cost targets. Ultimately, the specific configuration that was the subject of Phase III was not commercialized, largely because the market for superconducting devices has not been nearly as robust as was expected at the advent of the Roadmap.« less
NASA Technical Reports Server (NTRS)
Mueller, Rob
2005-01-01
General Background and Introduction of Capability Roadmaps Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date)
The data distribution satellite system
NASA Technical Reports Server (NTRS)
Bruno, Ronald C.; Weinberg, Aaron
1991-01-01
The Data Distributed Satellite (DDS) will be capable of providing the space research community with inexpensive and easy access to space payloads and space data. Furthermore, the DDS is shown to be a natural outgrowth of advances and evolution in both NASA's Space Network and commercial satellite communications. The roadmap and timescale for this evolution is described along with key demonstrations, proof-of-concept models, and required technology development that will support the projected system evolution toward the DDS.
Power Systems for Future Missions: Appendices A-L
NASA Technical Reports Server (NTRS)
Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.
1994-01-01
Selection of power system technology for space applications is typically based on mass, readiness of a particular technology to meet specific mission requirements, and life cycle costs (LCC). The LCC is typically used as a discriminator between competing technologies for a single mission application. All other future applications for a given technology are usually ignored. As a result, development cost of a technology becomes a dominant factor in the LCC comparison. Therefore, it is common for technologies such as DIPS and LMR-CBC to be potentially applicable to a wide range of missions and still lose out in the initial LCC comparison due to high development costs. This collection of appendices (A through L) contains the following power systems technology plans: CBC DIPS Technology Roadmap; PEM PFC Technology Roadmap; NAS Battery Technology Roadmap; PV/RFC Power System Technology Roadmap; PV/NAS Battery Technology Roadmap; Thermionic Reactor Power System Technology Roadmap; SP-100 Power System Technology Roadmap; Dynamic SP-100 Power System Technology Roadmap; Near-Term Solar Dynamic Power System Technology Roadmap; Advanced Solar Dynamic Power System Technology Roadmap; Advanced Stirling Cycle Dynamic Isotope Power System Technology Roadmap; and the ESPPRS (Evolutionary Space Power and Propulsion Requirements System) User's Guide.
NASA Technical Reports Server (NTRS)
Poniatowski, Karen
2005-01-01
Contents include the following: Overview/Introduction. Roadmap Approach/Considerations. Roadmap Timeline/Spirals. Requirements Development. Spaceport/Range Capabilities. Mixed Range Architecture. User Requirements/Customer Considerations. Manifest Considerations. Emerging Launch User Requirements. Capability Breakdown Structure/Assessment. Roadmap Team Observations. Transformational Range Test Concept. Roadmap Team Conclusions. Next Steps.
NASA Technical Reports Server (NTRS)
Crooke, Julie A.
2005-01-01
Contents include the following: General Background and Introduction of Capability Roadmaps "Title." Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
NASA Technical Reports Server (NTRS)
Aikins, Jan
2005-01-01
Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
NASA Technical Reports Server (NTRS)
Aikins, Jan
2005-01-01
Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
NASA's New Thermal Management Systems Roadmap; Whats in it, What it Means
NASA Technical Reports Server (NTRS)
Swanson, Ted
2016-01-01
In July of 2015 NASA publically released a new set of Technology Area Roadmaps that will be used to help guide future NASA-funded technology development efforts. One of these was the Thermal Management Systems Roadmap, often identified as TA14. This Roadmap identifies the time sequencing and interdependencies of high priority, advanced thermal control technology for the next 5 to 20 years. Available funding limits the development of new technology. The Roadmaps are the first step in the process of prioritizing HQ-supported technology funding. The 2015 Roadmaps are focused on planned mission architectures and needs, as identified in the NRC-led science Decadals and HEOMD's Design Reference Missions. Additionally, the 2015 Roadmaps focus on "applied " R&D as opposed to more basic research. The NASA Mission Directorates were all closely involved in development of 2015 Roadmaps, and an extensive external review was also conducted. This talk will discuss the Technology Roadmaps in general, and then focus on the specific technologies identified for TA 14, Thermal Management Systems.
A roadmap towards personalized immunology.
Delhalle, Sylvie; Bode, Sebastian F N; Balling, Rudi; Ollert, Markus; He, Feng Q
2018-01-01
Big data generation and computational processing will enable medicine to evolve from a "one-size-fits-all" approach to precise patient stratification and treatment. Significant achievements using "Omics" data have been made especially in personalized oncology. However, immune cells relative to tumor cells show a much higher degree of complexity in heterogeneity, dynamics, memory-capability, plasticity and "social" interactions. There is still a long way ahead on translating our capability to identify potentially targetable personalized biomarkers into effective personalized therapy in immune-centralized diseases. Here, we discuss the recent advances and successful applications in "Omics" data utilization and network analysis on patients' samples of clinical trials and studies, as well as the major challenges and strategies towards personalized stratification and treatment for infectious or non-communicable inflammatory diseases such as autoimmune diseases or allergies. We provide a roadmap and highlight experimental, clinical, computational analysis, data management, ethical and regulatory issues to accelerate the implementation of personalized immunology.
High Energy Power and Propulsion Capability Roadmap: General Background and Introduction
NASA Technical Reports Server (NTRS)
Bankston, Perry
2005-01-01
Agency objective are: Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
Roadmap on optical energy conversion
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang
2016-07-01
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.
Small Aircraft Transportation System Concept and Technologies
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Durham, Michael H.; Tarry, Scott E.
2005-01-01
This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements.
NASA Technical Reports Server (NTRS)
Skelly, Darin M.
2005-01-01
Viewgraphs on the National Research Council's diaglog to assess progress on NASA's transformational spaceport and range technologies capability roadmap development is presented. The topics include: 1) Agency Goals and Objectives; 2) Strategic Planning Transformation; 3) Advanced Planning Organizational Roles; 4) Public Involvement in Strategic Planning; 5) Strategic Roadmaps; 6) Strategic Roadmaps Schedule; 7) Capability Roadmaps; 8) Capability Charter; 9) Process for Team Selection; 10) Capability Roadmap Development Schedule Overview; 11) Purpose of NRC Review; 12) Technology Readiness Levels; 13) Capability Readiness Levels; 14) Crosswalk Matrix Trans Spaceport & Range; 15) Example linkage to other roadmaps; 16) Capability Readiness Levels Defined; and 17) Crosswalk Matrix Ratings Work In-progress.
NASA Technical Reports Server (NTRS)
Coulter, Dan; Bankston, Perry
2005-01-01
Agency objective are: Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
A Suggested Approach for Producing VAMS Air Transportation System Technology Roadmaps
NASA Technical Reports Server (NTRS)
Weathers, Del
2002-01-01
This viewgraph presentation provides an overview on the use of technology 'roadmaps' in order to facilitate the research development of VAMS (Virtual Airspace Modeling and Simulation). These roadmaps are to be produced by each concept team, updated annually, discussed at the technical interchange meetings (TIMs), shared among all VAMS participants, and made available electronically. These concept-specific technology roadmaps will be subsequently blended into an integrated catalog of roadmaps, technical discussions, and research recommendations. A historical example of ATM (Air Traffic Management) research and technology from 1940 to 1999 as shown in a series of 'roadmaps' is also included.
Patterning roadmap: 2017 prospects
NASA Astrophysics Data System (ADS)
Neisser, Mark
2017-06-01
Road mapping of semiconductor chips has been underway for over 20 years, first with the International Technology Roadmap for Semiconductors (ITRS) roadmap and now with the International Roadmap for Devices and Systems (IRDS) roadmap. The original roadmap was mostly driven bottom up and was developed to ensure that the large numbers of semiconductor producers and suppliers had good information to base their research and development on. The current roadmap is generated more top-down, where the customers of semiconductor chips anticipate what will be needed in the future and the roadmap projects what will be needed to fulfill that demand. The More Moore section of the roadmap projects that advanced logic will drive higher-resolution patterning, rather than memory chips. Potential solutions for patterning future logic nodes can be derived as extensions of `next-generation' patterning technologies currently under development. Advanced patterning has made great progress, and two `next-generation' patterning technologies, EUV and nanoimprint lithography, have potential to be in production as early as 2018. The potential adoption of two different next-generation patterning technologies suggests that patterning technology is becoming more specialized. This is good for the industry in that it lowers overall costs, but may lead to slower progress in extending any one patterning technology in the future.
NASA Technical Reports Server (NTRS)
Regenie, Victoria
2005-01-01
Contents include the following: General Background and Introduction of Capability. Roadmaps for Systems Engineering Cost/Risk Analysis. Agency Objectives. Strategic Planning Transformation. Review Capability Roadmaps and Schedule. Review Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
Human Planetary Landing System (HPLS) Capability Roadmap NRC Progress Review
NASA Technical Reports Server (NTRS)
Manning, Rob; Schmitt, Harrison H.; Graves, Claude
2005-01-01
Capability Roadmap Team. Capability Description, Scope and Capability Breakdown Structure. Benefits of the HPLS. Roadmap Process and Approach. Current State-of-the-Art, Assumptions and Key Requirements. Top Level HPLS Roadmap. Capability Presentations by Leads. Mission Drivers Requirements. "AEDL" System Engineering. Communication & Navigation Systems. Hypersonic Systems. Super to Subsonic Decelerator Systems. Terminal Descent and Landing Systems. A Priori In-Situ Mars Observations. AEDL Analysis, Test and Validation Infrastructure. Capability Technical Challenges. Capability Connection Points to other Roadmaps/Crosswalks. Summary of Top Level Capability. Forward Work.
Book of Knowledge (BOK) for NASA Electronic Packaging Roadmap
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2015-01-01
The objective of this document is to update the NASA roadmap on packaging technologies (initially released in 2007) and to present the current trends toward further reducing size and increasing functionality. Due to the breadth of work being performed in the area of microelectronics packaging, this report presents only a number of key packaging technologies detailed in three industry roadmaps for conventional microelectronics and a more recently introduced roadmap for organic and printed electronics applications. The topics for each category were down-selected by reviewing the 2012 reports of the International Technology Roadmap for Semiconductor (ITRS), the 2013 roadmap reports of the International Electronics Manufacturing Initiative (iNEMI), the 2013 roadmap of association connecting electronics industry (IPC), the Organic Printed Electronics Association (OE-A). The report also summarizes the results of numerous articles and websites specifically discussing the trends in microelectronics packaging technologies.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
...-01] NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0 (Draft... draft version of the NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0... Roadmap for Smart Grid Interoperability Standards, Release 2.0 (Release 2.0) (Draft) for public review and...
N+3 Small Commercial Efficient and Quiet Transportation for Year 2030-2035
NASA Technical Reports Server (NTRS)
DAngelo, Martin M.; Gallman, John; Johnson, Vicki; Garcia, Elena; Tai, Jimmy; Young, Russell
2010-01-01
This study develops a future scenario that enables convenient point-to-point commercial air travel via a large network of community airports and a new class of small airliners. A network demand and capacity study identifies current and future air travel demands and the capacity of this new network to satisfy these demands. A current technology small commercial airliner is defined to meet the needs of the new network, as a baseline for evaluating the improvement brought about by advanced technologies. Impact of this new mode of travel on the infrastructure and surrounding communities of the small airports in this new N+3 network are also evaluated. Year 2030-2035 small commercial airliner technologies are identified and a trade study conducted to evaluate and select those with the greatest potential for enhancing future air travel and the study metrics. The selected advanced air vehicle concept is assessed against the baseline aircraft, and an advanced, but conventional aircraft, and the study metrics. The key technologies of the selected advanced air vehicle are identified, their impact quantified, and risk assessments and roadmaps defined.
Scientific Assessment of NASA's Solar System Exploration Roadmap
NASA Technical Reports Server (NTRS)
1996-01-01
At its June 24-28, 1996, meeting, the Space Studies Board's Committee on Planetary and Lunar Exploration (COMPLEX), chaired by Ronald Greeley of Arizona State University, conducted an assessment of NASA's Mission to the Solar System Roadmap report. This assessment was made at the specific request of Dr. Jurgen Rahe, NASA's science program director for solar system exploration. The assessment includes consideration of the process by which the Roadmap was developed, comparison of the goals and objectives of the Roadmap with published National Research Council (NRC) recommendations, and suggestions for improving the Roadmap.
Flight Avionics Hardware Roadmap
NASA Technical Reports Server (NTRS)
Hodson, Robert; McCabe, Mary; Paulick, Paul; Ruffner, Tim; Some, Rafi; Chen, Yuan; Vitalpur, Sharada; Hughes, Mark; Ling, Kuok; Redifer, Matt;
2013-01-01
As part of NASA's Avionics Steering Committee's stated goal to advance the avionics discipline ahead of program and project needs, the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces.
Concentrating Solar Power Gen3 Demonstration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehos, Mark; Turchi, Craig; Vidal, Judith
Today's power-tower concentrating solar power (CSP) technology exists in large part as a result of Department of Energy (DOE) and utility industry funding of demonstration systems in the 1980s and 1990s. Today's most advanced towers are integrated with molten-salt thermal energy storage, delivering thermal energy at 565 degrees C for integration with conventional steam-Rankine cycles. The supercritical carbon dioxide power cycle has been identified as a likely successor to the steam-Rankine power cycle due to its potential for high efficiency when operating at elevated temperatures of 700 degrees C or greater. Over the course of the SunShot Initiative, DOE hasmore » supported a number of technology pathways that can operate efficiently at these temperatures and that hold promise to be reliable and cost effective. Three pathways - molten salt, particle, and gaseous - were selected for further investigation based on a two-day workshop held in August of 2016. The information contained in this roadmap identifies research and development challenges and lays out recommended research activities for each of the three pathways. DOE foresees that by successfully addressing the challenges identified in this roadmap, one or more technology pathways will be positioned for demonstration and subsequent commercialization within the next ten years. Based on current knowledge of the three power tower technologies, all three have the potential to achieve the SunShot goal of 6 cents/kilowatt-hour. Further development, modeling, and testing are now required to bring one or more of the technologies to a stage where integrated system tests and pilot demonstrations are feasible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Chandrayee; Ghatikar, Girish
The United States and India have among the largest economies in the world, and they continue to work together to address current and future challenges in reliable electricity supply. The acceleration to efficient, grid-responsive, resilient buildings represents a key energy security objective for federal and state agencies in both countries. The weaknesses in the Indian grid system were manifest in 2012, in the country’s worst blackout, which jeopardized the lives of half of India’s 1.2 billion people. While both countries are investing significantly in power sector reform, India, by virtue of its colossal growth rate in commercial energy intensity andmore » commercial floor space, is better placed than the United States to integrate and test state-of-art Smart Grid technologies in its future grid-responsive commercial buildings. This paper presents a roadmap of technical collaboration between the research organizations, and public-private stakeholders in both countries to accelerate the building-to-grid integration through pilot studies in India.« less
Roadmap on optical energy conversion
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; ...
2016-06-24
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in themore » optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. As a result, it is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.« less
The USET Tribal-FERST Roadmap was developed by the United South and Eastern Tribes (USET), in collaboration with the EPA, as a general roadmap for other tribes to follow and modify as needed fortheir unique applications.
CASH 2021: commercial access and space habitation.
Aldrin, Andrew; Amara, Adam; Aris, Lodewijk; Baierl, Nida; Beatty, Patrick; Beaulieu, Catherine; Behnke, Torsten; Castegini, Roberta; Chauhan, Amitabh; Cojanis, Philip; Dayawansa, Pelawa; Diop, Marie; Eito, Kinya; Engle, Steve; Feretti, Stefano; Gassama, Hamet; Genova, Bojana; Goulding, Colin; Janjua, Jameel; Jansaeng, Thidarat; Jousset, Frederic; Kopik, Anatoly; Laurin, Catherine; Leggatt, Jason; Li, Hengnian; Mezzadri, Monica; Miura, Amane; Nolet, Simon; Ogami, Satoshi; Patry, Johanne; Patten, Laryssa; Payerne, Cyril; Peer, Guy; Prampolini, Marco; Rheaume, Caroline; Saary, Joan; Spehar, Daniela; Sufi, Atiya; Sun, Baosheng; Thompson, J Barry; Thomson, Ward; Trautner, Roland; Tursunmuratov, Murat; Venet, Vrata; Wilems, Elizabeth; Wilson, Helen; Wittwer, Karl; Wokke, Frank; Wu, Yansheng; Zhou, Shaobin; Zilioli, Ilaria
2002-01-01
Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.
River Protection Project Technology and Innovation Roadmap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, D. S.; Wooley, T. A.; Kelly, S. E.
The Technology and Innovation Roadmap is a planning tool for WRPS management, DOE ORP, DOE EM, and others to understand the risks and technology gaps associated with the RPP mission. The roadmap identifies and prioritizes technical areas that require technology solutions and underscores where timely and appropriate technology development can have the greatest impact to reduce those risks and uncertainties. The roadmap also serves as a tool for determining allocation of resources.
Current Status of Study on Hydrogen Production with Space Solar Power Systems (SSPS)
NASA Astrophysics Data System (ADS)
Mori, M.; Kagawa, H.; Nagayama, H.; Saito, Y.
2004-12-01
Japan Aerospace Exploration Agency (JAXA) has been conducting studies on Space Solar Power Systems (SSPS) using microwave and laser beams for years since FY1998 organizing a special committee and working groups. The microwave based SSPS are huge solar power systems that generate GW power by solar cells. The electric power is transmitted via microwave from the SSPS to the ground. In the laser based SSPS, a solar condenser equipped with lenses or mirrors and laser-generator would be put into orbit. A laser beam would be sent to Earth-based hydrogen generating device. We are proposing a roadmap that consists of a stepwise approach to achieve commercial SSPS in 20-30 years. The first step is 50kW class Technology Demonstration Satellite to demonstrate microwave power transmission. The second step is to demonstrate robotic assembly of 10MW class large scale flexible structure in space on ISS co-orbit. The third step is to build a prototype SSPS in GEO. The final step is to build commercial SSPS in GEO. We continue the study of SSPS concepts and architectures, technology flight demonstration and major technology development. System design of tens of kW class Technology Demonstration Satellite and conceptual study of 10MW class demonstration system on ISS co-orbit are also conducted. Several key technologies which are needed to be developed in appropriate R&D roadmap, such as high-voltage solar cell array, fiber type of direct solar pumping solid-state laser, high efficiency magnetron, thermal control technology and control technology of large scale flexible structure etc. are also investigated. In the study of concept design of commercial SSPS mentioned above, we have studied some configurations of both microwave based SSPS and laser based SSPS. In case of microwave based SSPS, the solar energy must be converted to electricity and then converted to a microwave beam. The on-ground rectifying antenna will collect the microwave beam and convert it to electricity to connect to commercial power grids. From the past experiences of the conceptual design of the1GW class SSPS, it is clear that system with the mirrors and modularized unit which integrated solar cells and microwave power transmitters is promising. In this type of SSPS, the solar lights are directed to the energy conversion unit integrated solar cells and microwave power transmitters using mirrors. The key factor in designing systems is feasibility of thermal system. Considering above these factors, some reference models are being considered now. FY2003 reference model is the model for formation flight without the center truss which connect to primary mirrors to energy conversion unit. Using this model as basis, we are carrying out examination from various viewpoints aiming at the cost minimum to build and maintain the systems. In case of laser based SSPS, the laser beam would be directly produced from the solar light using the direct solar pumping solid-state laser device. This laser beams would be collected on ground and used to produce hydrogen from seawater. The receiving / energy conversion station is settled on an ocean, and producing hydrogen can be stored and transported by ships to consumers. In designing laser based SSPS, conversion efficiency of the direct solar pumping solid-state laser and feasibility of thermal system are critical factors. Since magnification of solar concentrator is very high, improvement of thermal control system is important. Feasibility of its ground facilities and production technology of hydrogen using laser beams has been also studied. Both hydrogen generating systems with photo-catalyst device and electrolytic ones have been examined. From the past experiences of this study, high efficient electric power generating technology using the solar cell which suited the wavelength of laser is promising. The life cycle cost model of laser based SSPS was created and evaluated its validity. Sensitivity analysis of laser based SSPS are also continued aiming at hydrogen generating cost of around 20 cent per Nm3 . This paper presents a summary of studies on SSPS that JAXA has examined.
Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, James H.; Cox, Philip; Harrington, William J
2013-09-03
ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focusedmore » on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel containment. PROJECT OVERVIEW The University of North Florida (UNF), with project partner the University of Florida, recently completed the Department of Energy (DOE) project entitled “Advanced Direct Methanol Fuel Cell for Mobile Computing”. The primary objective of the project was to advance portable fuel cell system technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a 20-watt, direct methanol fuel cell (DMFC), portable power supply based on the UNF innovative “passive water recovery” MEA. Extensive component, sub-system, and system development and testing was undertaken to meet the rigorous demands of the consumer electronic application. Numerous brassboard (nonpackaged) systems were developed to optimize the integration process and facilitating control algorithm development. The culmination of the development effort was a fully-integrated, DMFC, power supply (referred to as DP4). The project goals were 40 W/kg for specific power, 55 W/l for power density, and 575 Whr/l for energy density. It should be noted that the specific power and power density were for the power section only, and did not include the hybrid battery. The energy density is based on three, 200 ml, fuel cartridges, and also did not include the hybrid battery. The results show that the DP4 system configured without the methanol concentration sensor exceeded all performance goals, achieving 41.5 W/kg for specific power, 55.3 W/l for power density, and 623 Whr/l for energy density. During the project, the DOE revised its technical targets, and the definition of many of these targets, for the portable power application. With this revision, specific power, power density, specific energy (Whr/kg), and energy density are based on the total system, including fuel tank, fuel, and hybridization battery. Fuel capacity is not defined, but the same value is required for all calculations. Test data showed that the DP4 exceeded all 2011 Technical Status values; for example, the DP4 energy density was 373 Whr/l versus the DOE 2011 status of 200 Whr/l. For the DOE 2013 Technical Goals, the operation time was increased from 10 hours to 14.3 hours. Under these conditions, the DP4 closely approached or surpassed the technical targets; for example, the DP4 achieved 468 Whr/l versus the goal of 500 Whr/l. Thus, UNF has successfully met the project goals. A fully-operational, 20-watt DMFC power supply was developed based on the UNF passive water recovery MEA. The power supply meets the project performance goals and advances portable power technology towards the commercialization targets set by the DOE.« less
Challenges for Product Roadmapping in Inter-company Collaboration
NASA Astrophysics Data System (ADS)
Suomalainen, Tanja; Tihinen, Maarit; Parviainen, Päivi
Product roadmapping is a critical activity in product development, as it provides a link between business aspects and requirements engineering and thus helps to manage a high-level view of the company’s products. Nowadays, inter-company collaboration, such as outsourcing, is a common way of developing software products, as through collaboration, organisations gain advantages, such as flexibility with in-house resources, savings in product development costs and gain a physical presence in important markets. The role of product roadmapping becomes even more critical in collaborative settings, since different companies need to align strategies and work together to create products. In order to support companies in improving their own product roadmapping processes, this paper first gives an overview of product roadmapping and then discusses in detail an empirical study of the current practices in industry. The presented results particularly focus on the most challenging and important activities of product roadmapping in collaboration.
NASA Technical Reports Server (NTRS)
Waid, Michael
2011-01-01
Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Perspective on opportunities in industrial biotechnology in renewable chemicals.
Erickson, Brent; Nelson; Winters, Paul
2012-02-01
From biomass to renewable chemicals: while industrial biotechnology offers a clear value proposition, a number of hurdles need to be addressed to fully realize the commercial potential of bio-based products and chemicals over the coming decade. A review of an early roadmap for biological production of chemicals from renewable sugars reveals a focus on those that would provide co-products for integrated biorefineries producing biofuels and bioenergy. A growing number of companies are now focusing on specialty chemicals as an entry point to build the bio-based economy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2013-01-01
The use of printed electronics technologies (PETs), 2D or 3D printing approaches either by conventional electronic fabrication or by rapid graphic printing of organic or nonorganic electronic devices on various small or large rigid or flexible substrates, is projected to grow exponentially in commercial industry. This has provided an opportunity to determine whether or not PETs could be applicable for low volume and high-reliability applications. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the current status of organic and printed electronics technologies. It reviews three key industry roadmaps- on this subject-OE-A, ITRS, and iNEMI-each with a different name identification for this emerging technology. This followed by a brief review of the status of the industry on standard development for this technology, including IEEE and IPC specifications. The report concludes with key technologies and applications and provides a technology hierarchy similar to those of conventional microelectronics for electronics packaging. Understanding key technology roadmaps, parameters, and applications is important when judicially selecting and narrowing the follow-up of new and emerging applicable technologies for evaluation, as well as the low risk insertion of organic, large area, and printed electronics.
NASA Astrophysics Data System (ADS)
Debout, Vincent; Pettier, Sophie
2014-06-01
Airbus Defence and Space, Space System is involved in a global roadmap for launchers in order to substitute hexavalent chromium (CrVI) and Cadmium in the current surface treatments on metallic structures.Within this framework, a screening of trivalent chromium (CrIII) conversion solutions for touch-up applications has been carried out since this step is crucial to perform local application or to repair minor damages on launcher structures but it leads to higher risks of exposure for the workers.Three commercial CrIII conversion solutions have been evaluated on high performance aluminum alloys such as AA2024 T3 and AA7175 T7351 that are often used as structural materials.This preliminary investigation highlights the effect of surface preparation, rinsing and conversion process on the final corrosion performance of conversion coatings (CCs). The results are also discussed in terms of visual aspect and adhesion with new Cr-free primers.Two operating sets of parameters are identified with promising results that represent the first steps towards the development of a new Cr-free touch-up process.
NASA Astrophysics Data System (ADS)
Evetts, S. N.
2014-08-01
The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.
NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing
NASA Technical Reports Server (NTRS)
Clements, Greg
2011-01-01
This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather forecasting for example for the effect of these process improvements on our daily lives.
Multiyear Program Plan for the High Temperature Materials Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arvid E. Pasto
2000-03-17
Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly,more » the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.« less
U.S. Army unmanned aircraft systems roadmap 2010-2035
DOT National Transportation Integrated Search
2010-01-01
The Unmanned Aircraft System (UAS) Roadmap outlines how the U.S. Army will develop, organize, and employ UAS from 2010 to 2035 across full spectrum operations. The Army UAS Roadmap is nested with the Unmanned Systems (UMS) Initial Capabilities Docume...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Over a full two day period, February 2–3, 2016, the Office of High Energy Physics convened a workshop in Gaithersburg, MD to seek community input on development of an Advanced Accelerator Concepts (AAC) research roadmap. The workshop was in response to a recommendation by the HEPAP Accelerator R&D Subpanel [1] [2] to “convene the university and laboratory proponents of advanced acceleration concepts to develop R&D roadmaps with a series of milestones and common down selection criteria towards the goal for constructing a multi-TeV e+e– collider” (the charge to the workshop can be found in Appendix A). During the workshop, proponentsmore » of laser-driven plasma wakefield acceleration (LWFA), particle-beam-driven plasma wakefield acceleration (PWFA), and dielectric wakefield acceleration (DWFA), along with a limited number of invited university and laboratory experts, presented and critically discussed individual concept roadmaps. The roadmap workshop was preceded by several preparatory workshops. The first day of the workshop featured presentation of three initial individual roadmaps with ample time for discussion. The individual roadmaps covered a time period extending until roughly 2040, with the end date assumed to be roughly appropriate for initial operation of a multi-TeV e+e– collider. The second day of the workshop comprised talks on synergies between the roadmaps and with global efforts, potential early applications, diagnostics needs, simulation needs, and beam issues and challenges related to a collider. During the last half of the day the roadmaps were revisited but with emphasis on the next five to ten years (as specifically requested in the charge) and on common challenges. The workshop concluded with critical and unanimous endorsement of the individual roadmaps and an extended discussion on the characteristics of the common challenges. (For the agenda and list of participants see Appendix B.)« less
Flight Avionics Hardware Roadmap
NASA Technical Reports Server (NTRS)
Some, Raphael; Goforth, Monte; Chen, Yuan; Powell, Wes; Paulick, Paul; Vitalpur, Sharada; Buscher, Deborah; Wade, Ray; West, John; Redifer, Matt;
2014-01-01
The Avionics Technology Roadmap takes an 80% approach to technology investment in spacecraft avionics. It delineates a suite of technologies covering foundational, component, and subsystem-levels, which directly support 80% of future NASA space mission needs. The roadmap eschews high cost, limited utility technologies in favor of lower cost, and broadly applicable technologies with high return on investment. The roadmap is also phased to support future NASA mission needs and desires, with a view towards creating an optimized investment portfolio that matures specific, high impact technologies on a schedule that matches optimum insertion points of these technologies into NASA missions. The roadmap looks out over 15+ years and covers some 114 technologies, 58 of which are targeted for TRL6 within 5 years, with 23 additional technologies to be at TRL6 by 2020. Of that number, only a few are recommended for near term investment: 1. Rad Hard High Performance Computing 2. Extreme temperature capable electronics and packaging 3. RFID/SAW-based spacecraft sensors and instruments 4. Lightweight, low power 2D displays suitable for crewed missions 5. Radiation tolerant Graphics Processing Unit to drive crew displays 6. Distributed/reconfigurable, extreme temperature and radiation tolerant, spacecraft sensor controller and sensor modules 7. Spacecraft to spacecraft, long link data communication protocols 8. High performance and extreme temperature capable C&DH subsystem In addition, the roadmap team recommends several other activities that it believes are necessary to advance avionics technology across NASA: center dot Engage the OCT roadmap teams to coordinate avionics technology advances and infusion into these roadmaps and their mission set center dot Charter a team to develop a set of use cases for future avionics capabilities in order to decouple this roadmap from specific missions center dot Partner with the Software Steering Committee to coordinate computing hardware and software technology roadmaps and investment recommendations center dot Continue monitoring foundational technologies upon which future avionics technologies will be dependent, e.g., RHBD and COTS semiconductor technologies
Leveraging Federal Funding for Longitudinal Data Systems: A Roadmap for States. Fiscal Year 2011
ERIC Educational Resources Information Center
Data Quality Campaign, 2011
2011-01-01
States should use this roadmap to identify and leverage federal funding sources for data-related activities. This roadmap presents such opportunities for FY 2011, and provides guidance on some of the ways the funds may be used.
Idaho National Engineering Laboratory Waste Management Operations Roadmap Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, M.
1992-04-01
At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Jarrod; Barr, Jonathan L.; Burtner, Edwin R.
A key challenge for research roadmapping in the crisis response and management domain is articulation of a shared vision that describes what the future can and should include. Visioning allows for far-reaching stakeholder engagement that can properly align research with stakeholders needs. Engagement includes feedback from researchers, policy makers, general public, and end-users on technical and non-technical factors. This work articulates a process and framework for the construction and maintenance of a stakeholder-centric research vision and roadmap in the emergency management domain. This novel roadmapping process integrates three pieces: analysis of the research and technology landscape, visioning, and stakeholder engagement.more » Our structured engagement process elicits research foci for the roadmap based on relevance to stakeholder mission, identifies collaborators, and builds consensus around the roadmap priorities. We find that the vision process and vision storyboard helps SMEs conceptualize and discuss a technology's strengths, weaknesses, and alignment with needs« less
Mission to the Solar System: Exploration and Discovery. A Mission and Technology Roadmap
NASA Technical Reports Server (NTRS)
Gulkis, S. (Editor); Stetson, D. S. (Editor); Stofan, E. R. (Editor)
1998-01-01
Solar System exploration addresses some of humanity's most fundamental questions: How and when did life form on Earth? Does life exist elsewhere in the Solar System or in the Universe? - How did the Solar System form and evolve in time? - What can the other planets teach us about the Earth? This document describes a Mission and Technology Roadmap for addressing these and other fundamental Solar System Questions. A Roadmap Development Team of scientists, engineers, educators, and technologists worked to define the next evolutionary steps in in situ exploration, sample return, and completion of the overall Solar System survey. Guidelines were to "develop aa visionary, but affordable, mission and technology development Roadmap for the exploration of the Solar System in the 2000 to 2012 timeframe." The Roadmap provides a catalog of potential flight missions. (Supporting research and technology, ground-based observations, and laboratory research, which are no less important than flight missions, are not included in this Roadmap.)
The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering
NASA Technical Reports Server (NTRS)
Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen
2006-01-01
This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.
In-Situ Resource Utilization (ISRU) Capability Roadmap Progress Review
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Duke, Michael
2005-01-01
A progress review on In-Situ Resource Utilization (ISRU) capability is presented. The topics include: 1) In-Situ Resource Utilization (ISRU) Capability Roadmap: Level 1; 2) ISRU Emphasized Architecture Overview; 3) ISRU Capability Elements: Level 2 and below; and 4) ISRU Capability Roadmap Wrap-up.
Highly Survivable Avionics Systems for Long-Term Deep Space Exploration
NASA Technical Reports Server (NTRS)
Alkalai, L.; Chau, S.; Tai, A. T.
2001-01-01
The design of highly survivable avionics systems for long-term (> 10 years) exploration of space is an essential technology for all current and future missions in the Outer Planets roadmap. Long-term exposure to extreme environmental conditions such as high radiation and low-temperatures make survivability in space a major challenge. Moreover, current and future missions are increasingly using commercial technology such as deep sub-micron (0.25 microns) fabrication processes with specialized circuit designs, commercial interfaces, processors, memory, and other commercial off the shelf components that were not designed for long-term survivability in space. Therefore, the design of highly reliable, and available systems for the exploration of Europa, Pluto and other destinations in deep-space require a comprehensive and fresh approach to this problem. This paper summarizes work in progress in three different areas: a framework for the design of highly reliable and highly available space avionics systems, distributed reliable computing architecture, and Guarded Software Upgrading (GSU) techniques for software upgrading during long-term missions. Additional information is contained in the original extended abstract.
Wearable sensors: modalities, challenges, and prospects.
Heikenfeld, J; Jajack, A; Rogers, J; Gutruf, P; Tian, L; Pan, T; Li, R; Khine, M; Kim, J; Wang, J; Kim, J
2018-01-16
Wearable sensors have recently seen a large increase in both research and commercialization. However, success in wearable sensors has been a mix of both progress and setbacks. Most of commercial progress has been in smart adaptation of existing mechanical, electrical and optical methods of measuring the body. This adaptation has involved innovations in how to miniaturize sensing technologies, how to make them conformal and flexible, and in the development of companion software that increases the value of the measured data. However, chemical sensing modalities have experienced greater challenges in commercial adoption, especially for non-invasive chemical sensors. There have also been significant challenges in making significant fundamental improvements to existing mechanical, electrical, and optical sensing modalities, especially in improving their specificity of detection. Many of these challenges can be understood by appreciating the body's surface (skin) as more of an information barrier than as an information source. With a deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.
Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV),
2017-2030 | Solar Research | NREL Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030 Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030 This report Office (SETO) residential 2030 photovoltaics (PV) cost target of $0.05 per kilowatt-hour by identifying
The 2017 Plasma Roadmap: Low temperature plasma science and technology
USDA-ARS?s Scientific Manuscript database
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic upd...
NASA Strategic Roadmap Committees Final Roadmaps. Volumes 1 and 2
NASA Technical Reports Server (NTRS)
2005-01-01
Volume 1 contains NASA strategic roadmaps for the following Advanced Planning and Integration Office (APIO) committees: Earth Science and Applications from Space; Sun - Solar System Connection. Volume 2 contains NASA strategic roadmaps for the following APIO committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-like Planets; Universe Exploration, as well as membership rosters and charters for all APIO committees, including those above and the following: Exploration Transportation System; Nuclear Systems; Robotic and Human Lunar Exploration; Aeronautical Technologies; Space Shuttle; International Space Station; Education.
Roadmap for Computer-Aided Modeling of Theranostics and Related Nanosystems
NASA Astrophysics Data System (ADS)
Ulicny, Jozef; Kozar, Tibor
2018-02-01
Detailed understanding of the interactions of novel metal-containing nanoparticles with biological membranes, macromolecules and other molecular targets of the living cell is crucial for the elucidation of the biological actions of such functionalized nanosystems. We present here the construction and modeling of thiolate-protected gold clusters and the prediction of their static and dynamic properties.
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Sampson, Michael J.
2015-01-01
This presentation is a NASA Electronic Parts and Packaging (NEPP) Program: Roadmap for FY15 and Beyond. This roadmap provides a snapshot for current plans and collaborations on testing and evaluation of electronics as well as a discussion of the technology selection approach.
Lopatina, Elena; Damani, Zaheed; Bohm, Eric; Noseworthy, Tom W; Conner-Spady, Barbara; MacKean, Gail; Simpson, Chris S; Marshall, Deborah A
2017-09-01
Long waiting times for elective services continue to be a challenging issue. Single-entry models (SEMs) are used to increase access to and flow through the healthcare system. This paper provides a roadmap for healthcare decision-makers, managers, physicians, and researchers to guide implementation and management of successful and sustainable SEMs. The roadmap was informed by an inductive qualitative synthesis of the findings from a deliberative process (a symposium on SEMs, with clinicians, researchers, senior policy-makers, healthcare managers, and patient representatives) and focus groups with the symposium participants. SEMs are a promising strategy to improve the management of referrals and represent one approach to reduce waiting times. The SEMs roadmap outlines current knowledge about SEMs and critical success factors for SEMs' implementation and management. This SEM roadmap is intended to help clinicians, decision-makers, managers, and researchers interested in developing new or strengthening existing SEMs. We consider this roadmap to be a living document that will continue to evolve as we learn more about implementing and managing sustainable SEMs. Copyright © 2017 Elsevier B.V. All rights reserved.
The 2017 Plasma Roadmap: Low temperature plasma science and technology
NASA Astrophysics Data System (ADS)
Adamovich, I.; Baalrud, S. D.; Bogaerts, A.; Bruggeman, P. J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J. G.; Favia, P.; Graves, D. B.; Hamaguchi, S.; Hieftje, G.; Hori, M.; Kaganovich, I. D.; Kortshagen, U.; Kushner, M. J.; Mason, N. J.; Mazouffre, S.; Mededovic Thagard, S.; Metelmann, H.-R.; Mizuno, A.; Moreau, E.; Murphy, A. B.; Niemira, B. A.; Oehrlein, G. S.; Petrovic, Z. Lj; Pitchford, L. C.; Pu, Y.-K.; Rauf, S.; Sakai, O.; Samukawa, S.; Starikovskaia, S.; Tennyson, J.; Terashima, K.; Turner, M. M.; van de Sanden, M. C. M.; Vardelle, A.
2017-08-01
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.
Antenna Test Facility (ATF): User Test Planning Guide
NASA Technical Reports Server (NTRS)
Lin, Greg
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Chamber B Thermal/Vacuum Chamber: User Test Planning Guide
NASA Technical Reports Server (NTRS)
Montz, Mike E.
2012-01-01
Test process, milestones and inputs are unknowns to first-time users of Chamber B. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Audio Development Laboratory (ADL) User Test Planning Guide
NASA Technical Reports Server (NTRS)
Romero, Andy
2012-01-01
Test process, milestones and inputs are unknowns to first-time users of the ADL. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Radiant Heat Test Facility (RHTF): User Test Planning Guide
NASA Technical Reports Server (NTRS)
DelPapa, Steven
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the RHTF. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Electronic Systems Test Laboratory (ESTL) User Test Planning Guide
NASA Technical Reports Server (NTRS)
Robinson, Neil
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the ESTL. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Communication Systems Simulation Laboratory (CSSL): Simulation Planning Guide
NASA Technical Reports Server (NTRS)
Schlesinger, Adam
2012-01-01
The simulation process, milestones and inputs are unknowns to first-time users of the CSSL. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.
Advanced Materials Laboratory User Test Planning Guide
NASA Technical Reports Server (NTRS)
Orndoff, Evelyne
2012-01-01
Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Structures Test Laboratory (STL). User Test Planning Guide
NASA Technical Reports Server (NTRS)
Zipay, John J.
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the STL. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Systems Engineering Simulator (SES) Simulator Planning Guide
NASA Technical Reports Server (NTRS)
McFarlane, Michael
2011-01-01
The simulation process, milestones and inputs are unknowns to first-time users of the SES. The Simulator Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.
Computational Electromagnetics (CEM) Laboratory: Simulation Planning Guide
NASA Technical Reports Server (NTRS)
Khayat, Michael A.
2011-01-01
The simulation process, milestones and inputs are unknowns to first-time users of the CEM Laboratory. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.
Wüst, Matthias
2018-04-11
Recent research has shown that the biosynthesis of several key odorants is controlled by genes whose expression is altered or even induced by biotic or abiotic stress. These new findings provide a roadmap for improvement of flavor quality by the application of moderate, well-controlled stress. This strategy aims at reducing the flavor deficiencies in modern commercial varieties as a "green" alternative to genetic engineering. The workflow for a successful implementation of this approach, from the identification of key odorants by molecular science techniques to the investigation of mechanisms controlling their biosynthesis, is complex and calls for interdisciplinary research.
National roadmap for research infrastructure
NASA Astrophysics Data System (ADS)
Bonev, Tanyu
In 2010 the Council of Ministers of Republic of Bulgaria passed a National roadmap for research infrastructure (Decision Num. 692 from 21.09.2010). Part of the roadmap is the project called Regional Astronomical Center for Research and Education (RACIO). Distinctive feature of this project is the integration of the existing in the country research and educational organizations in the field of astronomy. The project is a substantial part of the strategy for the development of astronomy in Bulgaria over the next decade. What is the content of this strategis project? How it was possible to include RACIO in the roadmap? Does the national roadmap charmonize with the strategic plans for the development of astronomy in Europe, elaborated by Astronet (http://www.astronet-eu.org/)? These are some of the questions which I try to give answers in this paper.
Gottlieb, Sami L; Deal, Carolyn D; Giersing, Birgitte; Rees, Helen; Bolan, Gail; Johnston, Christine; Timms, Peter; Gray-Owen, Scott D; Jerse, Ann E; Cameron, Caroline E; Moorthy, Vasee S; Kiarie, James; Broutet, Nathalie
2016-06-03
In 2014, the World Health Organization, the US National Institutes of Health, and global technical partners published a comprehensive roadmap for development of new vaccines against sexually transmitted infections (STIs). Since its publication, progress has been made in several roadmap activities: obtaining better epidemiologic data to establish the public health rationale for STI vaccines, modeling the theoretical impact of future vaccines, advancing basic science research, defining preferred product characteristics for first-generation vaccines, and encouraging investment in STI vaccine development. This article reviews these overarching roadmap activities, provides updates on research and development of individual vaccines against herpes simplex virus, Chlamydia trachomatis, Neisseria gonorrhoeae, and Treponema pallidum, and discusses important next steps to advance the global roadmap for STI vaccine development. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.
Maher, Molly; Hanauer, David A; Kaziunas, Elizabeth; Ackerman, Mark S; Derry, Holly; Forringer, Rachel; Miller, Kristen; O'Reilly, Dennis; An, Lawrence; Tewari, Muneesh; Choi, Sung Won
2015-10-27
Pediatric hematopoietic cell transplantation (HCT), commonly referred to as blood and marrow transplantation (BMT), is an intense treatment modality that requires the involvement of engaged caregivers during the patient's (child's) prolonged hospitalization. The ubiquity of electronic health records (EHRs) and a trend toward patient-centered care could allow a novel health information technology (IT) system to increase parental engagement. The paucity of research on acute care, hospital-based (inpatient) health IT applications for patients or caregivers provides an opportunity for testing the feasibility of such applications. The pediatric BMT population represents an ideal patient group to conduct an evaluation due to the lengthy inpatient stays and a heightened need for patient activation. The primary objective of this study is to assess the feasibility of implementing the BMT Roadmap in caregivers as an intervention during their child's inpatient hospitalization. The BMT Roadmap is an inpatient portal prototype optimized for tablet with a user-centered design. It integrates patient-specific laboratory and medication data from the EHR in real-time and provides support in terms of discharge goals, home care education, and other components. Feasibility will be proven if (1) the BMT Roadmap functions and can be managed by the study team without unexpected effort, (2) the system is accessed by users at a defined minimum threshold, and (3) the qualitative and quantitative research conducted provides quality data that address the perceived usefulness of the BMT Roadmap and could inform a study in a larger sample size. This will be a single-arm, nonrandomized feasibility study. We aim to enroll 10 adult caregivers (age ≥ 18 years) of pediatric patients (aged 0-25 years) undergoing autologous (self-donor) or allogeneic (alternative donor) BMT. Assenting minors (aged 10-18) will also be invited to participate. Recruitment of study participants will take place in the outpatient pediatric BMT clinic. After signing an informed consent, the research study team will provide participants with the BMT Roadmap, available on an Apple iPad, which will used throughout the inpatient hospitalization. To measure the study outcomes, approximately 6-8 semistructured qualitative interviews will be conducted periodically from pre-BMT to 100 days post-BMT and an additional 15-20 semistructured interviews will be conducted among BMT health care providers to assess perceived usefulness and usability of the system, as well as any associated workflow impacts. Quantitative survey instruments will only be administered to adult participants (age ≥ 18 years). Recruitment will begin in September 2015, and preliminary findings are expected in 2016. This protocol offers a framework for the design and analysis of a personalized health IT system that has the potential to increase patient and caregiver engagement in acute care, hospital-based contexts.
NASA capabilities roadmap: advanced telescopes and observatories
NASA Technical Reports Server (NTRS)
Feinberg, Lee D.
2005-01-01
The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
A review of safety-focused mechanical modeling of commercial lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zhu, Juner; Wierzbicki, Tomasz; Li, Wei
2018-02-01
We are rapidly approaching an inflection point in the adoption of electric vehicles on the roads. All major automotive companies are having well-funded plans for mass market affordable branded EV product line models, which can open the floodgates. A rapid growth of battery energy density, accompanied by an aggressive progress of reduction of costs of lithium-ion batteries, brings safety concerns. While more energy stored in the battery pack of an EV translates to a longer range, the downside is that accidents will be more violent due to battery inevitable explosion. With today's technology, severe crashes involving intrusion into the battery pack will potentially result in a thermal runaway, fire, and explosion. Most of research on lithium-ion batteries have been concerned with the electrochemistry of cells. However, in most cases failure and thermal runaway is caused by mechanical loading due to crash events. There is a growing need to summarize the already published results on mechanical loading and response of batteries and offer a critical evaluation of work in progress. The objective of this paper is to present such review with a discussion of many outstanding issues and outline of a roadmap for future research.
Hasse, J U; Weingaertner, D E
2016-01-01
As the central product of the BMBF-KLIMZUG-funded Joint Network and Research Project (JNRP) 'dynaklim - Dynamic adaptation of regional planning and development processes to the effects of climate change in the Emscher-Lippe region (North Rhine Westphalia, Germany)', the Roadmap 2020 'Regional Climate Adaptation' has been developed by the various regional stakeholders and institutions containing specific regional scenarios, strategies and adaptation measures applicable throughout the region. This paper presents the method, elements and main results of this regional roadmap process by using the example of the thematic sub-roadmap 'Water Sensitive Urban Design 2020'. With a focus on the process support tool 'KlimaFLEX', one of the main adaptation measures of the WSUD 2020 roadmap, typical challenges for integrated climate change adaptation like scattered knowledge, knowledge gaps and divided responsibilities but also potential solutions and promising chances for urban development and urban water management are discussed. With the roadmap and the related tool, the relevant stakeholders of the Emscher-Lippe region have jointly developed important prerequisites to integrate their knowledge, to clarify vulnerabilities, adaptation goals, responsibilities and interests, and to foresightedly coordinate measures, resources, priorities and schedules for an efficient joint urban planning, well-grounded decision-making in times of continued uncertainties and step-by-step implementation of adaptation measures from now on.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werling, Eric
This report presents the Building America Research-to-Market Plan (Plan), including the integrated Building America Technology-to-Market Roadmaps (Roadmaps) that will guide Building America’s research, development, and deployment (RD&D) activities over the coming years. The Plan and Roadmaps will be updated as necessary to adapt to research findings and evolving stakeholder needs, and they will reflect input from DOE and stakeholders.
Advanced Microelectronics Technologies for Future Small Satellite Systems
NASA Technical Reports Server (NTRS)
Alkalai, Leon
1999-01-01
Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.
Hookworm vaccines: past, present, and future.
Loukas, Alex; Bethony, Jeffrey; Brooker, Simon; Hotez, Peter
2006-11-01
Hookworms are gastrointestinal nematodes that infect almost 1 billion people in developing countries. The main clinical symptom of human hookworm infections is iron-deficiency anaemia, a direct consequence of the intestinal blood loss resulting from the parasite's feeding behaviour. Although treatment is available and currently used for the periodic removal of adult hookworms from patients, this approach has not effectively controlled hookworm in areas of rural poverty. Furthermore, treated individuals remain susceptible to reinfection following exposure to third-stage infective hookworm larvae in the soil as early as 4-12 months after drug treatment. Therefore, a prophylactic vaccine against hookworm infection would provide an attractive additional tool for the public-health control of this disease. The feasibility of developing a vaccine is based on the previous success of an attenuated larval vaccine against canine hookworm. Several laboratory and field studies have explored the development of a human anti-hookworm vaccine, describing potential protective mechanisms and identifying candidate antigens, one of which is now in clinical trials. The current roadmap that investigators have conceived has been influenced by vaccine development for blood-feeding nematodes of livestock and companion animals; however, recombinant vaccines have yet to be developed for nematodes that parasitise animals or human beings. The roadmap also addresses the obstacles facing development of a vaccine for developing countries, where there is no commercial market.
NASA Astrophysics Data System (ADS)
Cokely, J.; Rankin, W.; Heinrich, P.; McAuliffe, M.
The 2008 NASA Astrobiology Roadmap provides one way of theorising this developing field, a way which has become the normative model for the discipline: science-and scholarship-driven funding for space. By contrast, a novel re-evaluation of funding policies is undertaken in this article to reframe astrobiology, terraforming and associated space travel and research. Textual visualisation, discourse and numeric analytical methods, and value theory are applied to historical data and contemporary sources to re-investigate significant drivers and constraints on the mechanisms of enabling space exploration. Two data sets are identified and compared: the business objectives and outcomes of major 15th-17th century European joint-stock exploration and trading companies and a case study of a current space industry entrepreneur company. Comparison of these analyses suggests that viable funding policy drivers can exist outside the normative science and scholarship-driven roadmap. The two drivers identified in this study are (1) the intrinsic value of space as a territory to be experienced and enjoyed, not just studied, and (2) the instrumental, commercial value of exploiting these experiences by developing infrastructure and retail revenues. Filtering of these results also offers an investment rationale for companies operating in, or about to enter, the space business marketplace.
TA-13: Ground and Launch Systems, 2015 NASA Technology Roadmaps
NASA Technical Reports Server (NTRS)
Fox, Jack J.
2015-01-01
This presentation is a summary of new content contained in the 2015 update of Technology Area-13, Ground and Launch Systems technology roadmap beyond the content contained in the 2010 version. Also included are brief assessments of benefits, alignments, challenges, technical risk and reasonableness, sequencing and timing, and time and effort to achieve goals. This presentation is part of overall presentations of new content only for the 2015 update of the 15 NASA Technology Roadmaps that will be conducted in a public forum managed by the National Research Council on September 28-29, 2015. The 15 roadmaps have already been publically released via the STI process.
The 2017 Plasma Roadmap: Low temperature plasma science and technology
Adamovich, I.; Baalrud, S. D.; Bogaerts, A.; ...
2017-07-14
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The currentmore » state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.« less
The 2017 Plasma Roadmap: Low temperature plasma science and technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamovich, I.; Baalrud, S. D.; Bogaerts, A.
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The currentmore » state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.« less
Human cells are constructed in large part from proteins whose activity can be altered by the incorporation of oxygen in what are known as redox modifications. Jing Yang, Ph.D., and colleagues are working to identify oxygen modifications at the cellular level that can create a pathway to certain diseases. (photo by Susan Urmy)
NASA Strategic Roadmap Summary Report
NASA Technical Reports Server (NTRS)
Wilson, Scott; Bauer, Frank; Stetson, Doug; Robey, Judee; Smith, Eric P.; Capps, Rich; Gould, Dana; Tanner, Mike; Guerra, Lisa; Johnston, Gordon
2005-01-01
In response to the Vision, NASA commissioned strategic and capability roadmap teams to develop the pathways for turning the Vision into a reality. The strategic roadmaps were derived from the Vision for Space Exploration and the Aldrich Commission Report dated June 2004. NASA identified 12 strategic areas for roadmapping. The Agency added a thirteenth area on nuclear systems because the topic affects the entire program portfolio. To ensure long-term public visibility and engagement, NASA established a committee for each of the 13 areas. These committees - made up of prominent members of the scientific and aerospace industry communities and senior government personnel - worked under the Federal Advisory Committee Act. A committee was formed for each of the following program areas: 1) Robotic and Human Lunar Exploration; 2) Robotic and Human Exploration of Mars; 3) Solar System Exploration; 4) Search for Earth-Like Planets; 5) Exploration Transportation System; 6) International Space Station; 7) Space Shuttle; 8) Universe Exploration; 9) Earth Science and Applications from Space; 10) Sun-Solar System Connection; 11) Aeronautical Technologies; 12) Education; 13) Nuclear Systems. This document contains roadmap summaries for 10 of these 13 program areas; The International Space Station, Space Shuttle, and Education are excluded. The completed roadmaps for the following committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-Like Planets; Universe Exploration; Earth Science and Applications from Space; Sun-Solar System Connection are collected in a separate Strategic Roadmaps volume. This document contains memebership rosters and charters for all 13 committees.
Cost-Reduction Roadmap Outlines Two Pathways to Meet DOE Residential Solar
Cost Target for 2030 | News | NREL Cost-Reduction Roadmap Outlines Two Pathways to Meet DOE Residential Solar Cost Target for 2030 News Release: Cost-Reduction Roadmap Outlines Two Pathways to Meet DOE Residential Solar Cost Target for 2030 Installing photovoltaics at the time of roof replacement or as part of
Promising roadmap alternatives for the SpaceLiner
NASA Astrophysics Data System (ADS)
Sippel, Martin
2010-06-01
The paper describes the vision and potential roadmap alternatives of an ultrafast intercontinental passenger transport based on a rocket powered two-stage reusable vehicle. An operational scenario and the latest technical lay-out of the configuration's preliminary design including flight performance are described. The question of how the revolutionary ultrafast transport can be realized is addressed by an assessment of the different technological and programmatic roadmap alternatives.
NASA Technical Reports Server (NTRS)
Sawin, Charles F.
1999-01-01
The product of the critical path roadmap project is an integrated strategy for mitigating the risks associated with human exploration class missions. It is an evolving process that will assure the ability to communicate the integrated critical path roadmap. Unlike previous reports, this one will not sit on a shelf - it has the full support of the JSC Space and Life Sciences Directorate (SA) and is already being used as a decision making tool (e.g., budget and investigation planning for Shuttle and Space Station mission). Utility of this product depends on many efforts, namely: providing the required information (completed risk data sheets, critical question information, technology data). It is essential to communicate the results of the critical path roadmap to the scientific community - this meeting is a good opportunity to do so. The web site envisioned for the critical path roadmap will provide the capability to communicate to a broader community and to track and update the system routinely.
The OPTICON technology roadmap for optical and infrared astronomy
NASA Astrophysics Data System (ADS)
Cunningham, Colin; Melotte, David; Molster, Frank
2010-07-01
The Key Technology Network (KTN) within the OPTICON programme has been developing a roadmap for the technology needed to meet the challenges of optical and infrared astronomy over the next few years, with particular emphasis on the requirements of Extremely Large Telescopes. The process and methodology so far will be described, along with the most recent roadmap. The roadmap shows the expected progression of ground-based astronomy facilities and the technological developments which will be required to realise these new facilities. The roadmap highlights the key stages in the development of these technologies. In some areas, such as conventional optics, gradual developments in areas such as light-weighting of optics will slowly be adopted into future instruments. In other areas, such as large area IR detectors, more rapid progress can be expected as new processing techniques allow larger and faster arrays. Finally, other areas such as integrated photonics have the potential to revolutionise astronomical instrumentation. Future plans are outlined, in particular our intention to look at longer term development and disruptive technologies.
Collaboration process for integrated social and health care strategy implementation.
Korpela, Jukka; Elfvengren, Kalle; Kaarna, Tanja; Tepponen, Merja; Tuominen, Markku
2012-01-01
To present a collaboration process for creating a roadmap for the implementation of a strategy for integrated health and social care. The developed collaboration process includes multiple phases and uses electronic group decision support system technology (GDSS). A case study done in the South Karelia District of Social and Health Services in Finland during 2010-2011. An expert panel of 13 participants was used in the planning process of the strategy implementation. The participants were interviewed and observed during the case study. As a practical result, a roadmap for integrated health and social care strategy implementation has been developed. The strategic roadmap includes detailed plans of several projects which are needed for successful integration strategy implementation. As an academic result, a collaboration process to create such a roadmap has been developed. The collaboration process and technology seem to suit the planning process well. The participants of the meetings were satisfied with the collaboration process and the GDSS technology. The strategic roadmap was accepted by the participants, which indicates satisfaction with the developed process.
NASA Strategic Roadmap: Origin, Evolution, Structure, and Destiny of the Universe
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2005-01-01
The NASA strategic roadmap on the Origin, Evolution, Structure and Destiny of the Universe is one of 13 roadmaps that outline NASA s approach to implement the vision for space exploration. The roadmap outlines a program to address the questions: What powered the Big Bang? What happens close to a Black Hole? What is Dark Energy? How did the infant universe grow into the galaxies, stars and planets, and set the stage for life? The roadmap builds upon the currently operating and successful missions such as HST, Chandra and Spitzer. The program contains two elements, Beyond Einstein and Pathways to Life, performed in three phases (2005-2015, 2015-2025 and >2025) with priorities set by inputs received from reviews undertaken by the National Academy of Sciences and technology readiness. The program includes the following missions: 2005-2015 GLAST, JWST and LISA; 2015-2025 Constellation-X and a series of Einstein Probes; and >2025 a number of ambitious vision missions which will be prioritized by results from the previous two phases.
Dubé, Laurette; Labban, Alice; Moubarac, Jean-Claude; Heslop, Gabriela; Ma, Yu; Paquet, Catherine
2014-12-01
Building greater reciprocity between traditional and modern food systems and better convergence of human and economic development outcomes may enable the production and consumption of accessible, affordable, and appealing nutritious food for all. Information being key to such transformations, this roadmap paper offers a strategy that capitalizes on Big Data and advanced analytics, setting the foundation for an integrative intersectoral knowledge platform to better inform and monitor behavioral change and ecosystem transformation. Building upon the four P's of marketing (product, price, promotion, placement), we examine digital commercial marketing data through the lenses of the four A's of food security (availability, accessibility, affordability, appeal) using advanced consumer choice analytics for archetypal traditional (fresh fruits and vegetables) and modern (soft drinks) product categories. We demonstrate that business practices typically associated with the latter also have an important, if not more important, impact on purchases of the former category. Implications and limitations of the approach are discussed. © 2014 New York Academy of Sciences.
Subsonic Ultra Green Aircraft Research
NASA Technical Reports Server (NTRS)
Bradley, Marty K.; Droney, Christopher K.
2011-01-01
This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.
NASA Technical Reports Server (NTRS)
Welge, H. Robert; Bonet, John; Magee, Todd; Tompkins, Daniel; Britt, Terry R.; Nelson, Chet; Miller, Gregory; Stenson, Douglas; Staubach, J. Brent; Bala, Naushir;
2011-01-01
Boeing, with Pratt & Whitney, General Electric, Rolls-Royce, M4 Engineering, Wyle Laboratories and Georgia Institute of Technology, conducted a study of supersonic commercial aircraft concepts and enabling technologies for the year 2030-2035 timeframe. The work defined the market and environmental/regulatory conditions that could evolve by the 2030/35 time period, from which vehicle performance goals were derived. Relevant vehicle concepts and technologies are identified that are anticipated to meet these performance and environmental goals. A series of multidisciplinary analyses trade studies considering vehicle sizing, mission performance and environmental conformity determined the appropriate concepts. Combinations of enabling technologies and the required technology performance levels needed to meet the desired goals were identified. Several high priority technologies are described in detail, including roadmaps with risk assessments that outline objectives, key technology challenges, detailed tasks and schedules and demonstrations that need to be performed. A representative configuration is provided for reference purposes, along with associated performance estimates based on these key technologies.
Vibration and Acoustic Test Facility (VATF): User Test Planning Guide
NASA Technical Reports Server (NTRS)
Fantasia, Peter M.
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the VATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Six-Degree-of-Freedom Dynamic Test System (SDTS) User Test Planning Guide
NASA Technical Reports Server (NTRS)
Stokes, LeBarian
2012-01-01
Test process, milestones and inputs are unknowns to first-time users of the SDTS. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Materials and Nondestructive Evaluation Laboratoriers: User Test Planning Guide
NASA Technical Reports Server (NTRS)
Schaschl, Leslie
2011-01-01
The Materials and Nondestructive Evaluation Laboratory process, milestones and inputs are unknowns to first-time users. The Materials and Nondestructive Evaluation Laboratory Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware developers. It is intended to assist their project engineering personnel in materials analysis planning and execution. Material covered includes a roadmap of the analysis process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define scope of analysis, cost, and schedule are included as an appendix to the guide.
Specialized Environmental Chamber Test Complex: User Test Planning Guide
NASA Technical Reports Server (NTRS)
Montz, Michael E.
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the Specialized Environmental Test Complex. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF). User Test Planning Guide
NASA Technical Reports Server (NTRS)
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the ARMSEF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Energy Systems Test Area (ESTA) Battery Test Operations User Test Planning Guide
NASA Technical Reports Server (NTRS)
Salinas, Michael
2012-01-01
Test process, milestones and inputs are unknowns to first-time users of the ESTA Battery Test Operations. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
NASA Technical Reports Server (NTRS)
Scully, Robert C.
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the EMI/EMC Test Facility. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
NIRPS - Solutions Facilitator Team Overview and Accomplishments
NASA Technical Reports Server (NTRS)
Brown, Thomas M., III; Childress, Rhonda
2013-01-01
National Institute for Rocket Propulsion Systems (NIRPS) purpose is to help preserve and align government and private rocket propulsion capabilities to meet present and future US commercial, civil, and defense needs, while providing authoritative insight and recommendations to National decisional authorities. Stewardship: Monitor and analyze the state of the industry in order to formulate and recommend National Policy options and strategies that promote a healthy industrial base and ensure best-value for the American taxpayer. Technology: Identify technology needs and recommend technology insertions by leading roadmap assessments and actively participating in program formulation activities. Solutions Facilitator/Provider: Maintain relationships and awareness across the Government, industry and academia, to align available capacity with emerging demand.
A Roadmap for Thermal Metrology
NASA Astrophysics Data System (ADS)
Bojkovski, J.; Fischer, J.; Machin, G.; Pavese, F.; Peruzzi, A.; Renaot, E.; Tegeler, E.
2009-02-01
A provisional roadmap for thermal metrology was developed in Spring 2006 as part of the EUROMET iMERA activity toward increasing impact from national investment in European metrology R&D. This consisted of two parts: one addressing the influence of thermal metrology on society, industry, and science, and the other specifying the requirements of enabling thermal metrology to serve future needs. The roadmap represents the shared vision of the EUROMET TC Therm committee as to how thermal metrology should develop to meet future requirements over the next 15 years. It is important to stress that these documents are a first attempt to roadmap the whole of thermal metrology and will certainly need regular review and revision to remain relevant and useful to the community they seek to serve. The first part of the roadmap, “Thermal metrology for society, industry, and science,” identifies the main social and economic triggers driving developments in thermal metrology—notably citizen safety and security, new production technologies, environment and global climate change, energy, and health. Stemming from these triggers, key targets are identified that require improved thermal measurements. The second part of the roadmap, “Enabling thermal metrology to serve future needs” identifies another set of triggers, like global trade and interoperability, future needs in transport, and the earth radiation budget. Stemming from these triggers, key targets are identified, such as improved realizations and dissemination of the SI unit the kelvin, anchoring the kelvin to the Boltzmann constant, k B, and calculating thermal properties from first principles. To facilitate these outcomes, the roadmap identifies the technical advances required in thermal measurement standards.
Evaluation of Roadmap to Achieve Energy Delivery Systems Cybersecurity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavez, Adrian R.
The Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) Cybersecurity for Energy Delivery Systems (CEDS) program is currently evaluating the Roadmap to Achieve Energy Delivery Systems Cybersecurity document that sets a vision and outlines a set of milestones. The milestones are divided into five strategic focus areas that include: 1. Build a Culture of Security; 2. Assess and Monitor Risk; 3. Develop and Implement New Protective Measures to Reduce Risk; 4. Manage Incidents; and 5. Sustain Security Improvements. The most current version of the roadmap was last updated in September of 2016. Sandia National Laboratories (SNL) has beenmore » tasked with revisiting the roadmap to update the current state of energy delivery systems cybersecurity protections. SNL is currently working with previous and current partners to provide feedback on which of the roadmap milestones have been met and to identify any preexisting or new gaps that are not addressed by the roadmap. The specific focus areas SNL was asked to evaluate are: 1. Develop and Implement New Protective Measures to Reduce Risk and 2. Sustain Security Improvements. SNL has formed an Industry Advisory Board (IAB) to assist in answering these questions. The IAB consists of previous partners on past CEDS funded efforts as well as new collaborators that have unique insights into the current state of cybersecurity within energy delivery systems. The IAB includes asset owners, utilities and vendors of control systems. SNL will continue to maintain regular communications with the IAB to provide various perspectives on potential future updates to further improve the breadth of cybersecurity coverage of the roadmap.« less
NASA Technical Reports Server (NTRS)
2003-01-01
Contents include the following: About the roadmap. Summary of key elements. Science objectives. Mission roadmap. Technology. Research and analysis. Education and public outreach. Appendix - Road map framework.
A relativity concept in mesenchymal stromal cell manufacturing.
Martin, Ivan; De Boer, Jan; Sensebe, Luc
2016-05-01
Mesenchymal stromal cells (MSCs) are being experimentally tested in several biological systems and clinical settings with the aim of verifying possible therapeutic effects for a variety of indications. MSCs are also known to be heterogeneous populations, with phenotypic and functional features that depend heavily on the individual donor, the harvest site, and the culture conditions. In the context of this multidimensional complexity, a recurrent question is whether it is feasible to produce MSC batches as "standard" therapeutics, possibly within scalable manufacturing systems. Here, we provide a short overview of the literature on different culture methods for MSCs, including those employing innovative technologies, and of some typically assessed functional features (e.g., growth, senescence, genomic stability, clonogenicity, etc.). We then offer our perspective of a roadmap on how to identify and refine manufacturing systems for MSCs intended for specific clinical indications. We submit that the vision of producing MSCs according to a unique standard, although commercially attractive, cannot yet be scientifically substantiated. Instead, efforts should be concentrated on standardizing methods for characterization of MSCs generated by different groups, possibly covering a vast gamut of functionalities. Such assessments, combined with hypotheses on the therapeutic mode of action and associated clinical data, should ultimately allow definition of in-process controls and measurable release criteria for MSC manufacturing. These will have to be validated as predictive of potency in suitable pre-clinical models and of therapeutic efficacy in patients. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Methodology for Constructing a Modernization Roadmap for Air Force Automatic Test Systems
2012-01-01
Constructing a Modernization Roadmap for Air Force Automatic Test Systems Lionel A. Galway , Rachel Rue, James M. Masters, Ben D. Van Roo, Manuel...constructing a modernization roadmap for Air Force automatic test systems / Lionel A. Galway ... [et al.]. p. cm. Includes bibliographical...references. ISBN 978-0-8330-5899-7 (pbk. : alk. paper) 1. United States. Air Force—Weapons systems—Testing. I. Galway , Lionel A., 1950- UG633.M3445
Live-cell imaging of cyanobacteria.
Yokoo, Rayka; Hood, Rachel D; Savage, David F
2015-10-01
Cyanobacteria are a diverse bacterial phylum whose members possess a high degree of ultrastructural organization and unique gene regulatory mechanisms. Unraveling this complexity will require the use of live-cell fluorescence microscopy, but is impeded by the inherent fluorescent background associated with light-harvesting pigments and the need to feed photosynthetic cells light. Here, we outline a roadmap for overcoming these challenges. Specifically, we show that although basic cyanobacterial biology creates challenging experimental constraints, these restrictions can be mitigated by the careful choice of fluorophores and microscope instrumentation. Many of these choices are motivated by recent successful live-cell studies. We therefore also highlight how live-cell imaging has advanced our understanding of bacterial microcompartments, circadian rhythm, and the organization and segregation of the bacterial nucleoid.
Forest Products Industry Technology Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2010-04-01
This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sailer, Anna M., E-mail: anni.sailer@mumc.nl; Haan, Michiel W. de, E-mail: m.de.haan@mumc.nl; Graaf, Rick de, E-mail: r.de.graaf@mumc.nl
PurposeThis study was designed to evaluate the feasibility of endovascular guidance by means of live fluoroscopy fusion with magnetic resonance angiography (MRA) and computed tomography angiography (CTA).MethodsFusion guidance was evaluated in 20 endovascular peripheral artery interventions in 17 patients. Fifteen patients had received preinterventional diagnostic MRA and two patients had undergone CTA. Time for fluoroscopy with MRA/CTA coregistration was recorded. Feasibility of fusion guidance was evaluated according to the following criteria: for every procedure the executing interventional radiologists recorded whether 3D road-mapping provided added value (yes vs. no) and whether PTA and/or stenting could be performed relying on the fusionmore » road-map without need for diagnostic contrast-enhanced angiogram series (CEAS) (yes vs. no). Precision of the fusion road-map was evaluated by recording maximum differences between the position of the vasculature on the virtual CTA/MRA images and conventional angiography.ResultsAverage time needed for image coregistration was 5 ± 2 min. Three-dimensional road-map added value was experienced in 15 procedures in 12 patients. In half of the patients (8/17), intervention was performed relying on the fusion road-map only, without diagnostic CEAS. In two patients, MRA roadmap showed a false-positive lesion. Excluding three patients with inordinate movements, mean difference in position of vasculature on angiography and MRA/CTA road-map was 1.86 ± 0.95 mm, implying that approximately 95 % of differences were between 0 and 3.72 mm (2 ± 1.96 standard deviation).ConclusionsFluoroscopy with MRA/CTA fusion guidance for peripheral artery interventions is feasible. By reducing the number of CEAS, this technology may contribute to enhance procedural safety.« less
Roadmap for the international, accelerator-based neutrino programme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, J.; de Gouvêa, A.; Duchesneau, D.
In line with its terms of reference the ICFA Neutrino Panel has developed a roadmap for the international, accelerator-based neutrino programme. A "roadmap discussion document" was presented in May 2016 taking into account the peer-group-consultation described in the Panel's initial report. The "roadmap discussion document" was used to solicit feedback from the neutrino community---and more broadly, the particle- and astroparticle-physics communities---and the various stakeholders in the programme. The roadmap, the conclusions and recommendations presented in this document take into account the comments received following the publication of the roadmap discussion document. With its roadmap the Panel documents the approved objectivesmore » and milestones of the experiments that are presently in operation or under construction. Approval, construction and exploitation milestones are presented for experiments that are being considered for approval. The timetable proposed by the proponents is presented for experiments that are not yet being considered formally for approval. Based on this information, the evolution of the precision with which the critical parameters governinger the neutrino are known has been evaluated. Branch or decision points have been identified based on the anticipated evolution in precision. The branch or decision points have in turn been used to identify desirable timelines for the neutrino-nucleus cross section and hadro-production measurements that are required to maximise the integrated scientific output of the programme. The branch points have also been used to identify the timeline for the R&D required to take the programme beyond the horizon of the next generation of experiments. The theory and phenomenology programme, including nuclear theory, required to ensure that maximum benefit is derived from the experimental programme is also discussed.« less
The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.
2011-01-01
ER D C TR -0 6- 10 , S up pl em en t 2 Building Information Modeling ( BIM ) Roadmap Supplement 2 – BIM Implementation Plan for Military...release; distribution is unlimited. ERDC TR-06-10, Supplement 2 January 2011 Building Information Modeling ( BIM ) Roadmap Supplement 2 – BIM ...ERDC TR-06-10, Supplement 2 (January 2011) 2 Abstract: Building Information Modeling ( BIM ) technology provides the communities of practice in
A CFD validation roadmap for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.
1992-01-01
A roadmap for computational fluid dynamics (CFD) code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments would provide the needed validation data.
A CFD validation roadmap for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.
1993-01-01
A roadmap for computational fluid dynamics (CFD) code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments would provide the needed validation data.
Biogas Opportunities Roadmap Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
In support of the Obama Administration's Climate Action Plan, the U.S. Department of Energy, the U.S. Environmental Protection Agency, and U.S. Department of Agriculture jointly released the Biogas Opportunities Roadmap Progress Report, updating the federal government's progress to reduce methane emissions through biogas systems since the Biogas Opportunities Roadmap was completed by the three agencies in July 2014. The report highlights actions taken, outlines challenges and opportunities, and identifies next steps to the growth of a robust biogas industry.
A European Roadmap for Thermophysical Properties Metrology
NASA Astrophysics Data System (ADS)
Filtz, J.-R.; Wu, J.; Stacey, C.; Hollandt, J.; Monte, C.; Hay, B.; Hameury, J.; Villamañan, M. A.; Thurzo-Andras, E.; Sarge, S.
2015-03-01
A roadmap for thermophysical properties metrology was developed in spring 2011 by the Thermophysical Properties Working Group in the EURAMET Technical Committee in charge of Thermometry, Humidity and Moisture, and Thermophysical Properties metrology. This roadmapping process is part of the EURAMET (European Association of National Metrology Institutes) activities aiming to increase impact from national investment in European metrology R&D. The roadmap shows a shared vision of how the development of thermophysical properties metrology should be oriented over the next 15 years to meet future social and economic needs. Since thermophysical properties metrology is a very broad and varied field, the authors have limited this roadmap to the following families of properties: thermal transport properties (thermal conductivity, thermal diffusivity, etc.), radiative properties (emissivity, absorbance, reflectance, and transmittance), caloric quantities (specific heat, enthalpy, etc.), thermodynamic properties (PVT and phase equilibria properties), and temperature-dependent quantities (thermal expansion, compressibility, etc.). This roadmap identifies the main societal and economical triggers that drive developments in thermophysical properties metrology. The key topics considered are energy, environment, advanced manufacturing and processing, public safety, security, and health. Key targets that require improved thermophysical properties measurements are identified in order to address these triggers. Ways are also proposed for defining the necessary skills and the main useful means to be implemented. These proposals will have to be revised as needs and technologies evolve in the future.
Prosperity game for the national electronics manufacturing initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, M.; VanDevender, J.P.; Berry, I.
1995-05-01
Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games are unique in that both the game format and the player contributions vary from game to game. This report documents the Prosperity Game conducted under the sponsorship of the Electronics Subcommittee of the Civilian Industrialmore » Technology Committee (under the National Science and Technology Council), and the Electronics Partnership Project. Players were drawn from the electronics industry, from government, national laboratories, and universities, and from Japan and Austria. The primary objectives of this game were: To connect the technical and non-technical (i.e., policy) issues that were developed in the roadmap-making endeavor of the National Electronics Manufacturing Initiative (NENI);to provide energy, enthusiasm and people to help the roadmap succeed; and to provide insight into high-leverage public and private investments. The deliberations and recommendations of these teams provide valuable insights as to the views of this diverse group of decision makers concerning policy changes, foreign competition, the robustness of strategic thinking and planning, and the development, delivery and commercialization of new technologies.« less
Scoping study on trends in the economic value of electricity reliability to the U.S. economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eto, Joseph; Koomey, Jonathan; Lehman, Bryan
During the past three years, working with more than 150 organizations representing public and private stakeholders, EPRI has developed the Electricity Technology Roadmap. The Roadmap identifies several major strategic challenges that must be successfully addressed to ensure a sustainable future in which electricity continues to play an important role in economic growth. Articulation of these anticipated trends and challenges requires a detailed understanding of the role and importance of reliable electricity in different sectors of the economy. This report is intended to contribute to that understanding by analyzing key aspects of trends in the economic value of electricity reliability inmore » the U.S. economy. We first present a review of recent literature on electricity reliability costs. Next, we describe three distinct end-use approaches for tracking trends in reliability needs: (1) an analysis of the electricity-use requirements of office equipment in different commercial sectors; (2) an examination of the use of aggregate statistical indicators of industrial electricity use and economic activity to identify high reliability-requirement customer market segments; and (3) a case study of cleanrooms, which is a cross-cutting market segment known to have high reliability requirements. Finally, we present insurance industry perspectives on electricity reliability as an example of a financial tool for addressing customers' reliability needs.« less
Advanced Industrial Materials (AIM) Program annual progress report, FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-05-01
The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are themore » aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.« less
TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages
Bontempi, Gianluca; Ceccarelli, Michele; Noushmehr, Houtan
2016-01-01
Biotechnological advances in sequencing have led to an explosion of publicly available data via large international consortia such as The Cancer Genome Atlas (TCGA), The Encyclopedia of DNA Elements (ENCODE), and The NIH Roadmap Epigenomics Mapping Consortium (Roadmap). These projects have provided unprecedented opportunities to interrogate the epigenome of cultured cancer cell lines as well as normal and tumor tissues with high genomic resolution. The Bioconductor project offers more than 1,000 open-source software and statistical packages to analyze high-throughput genomic data. However, most packages are designed for specific data types (e.g. expression, epigenetics, genomics) and there is no one comprehensive tool that provides a complete integrative analysis of the resources and data provided by all three public projects. A need to create an integration of these different analyses was recently proposed. In this workflow, we provide a series of biologically focused integrative analyses of different molecular data. We describe how to download, process and prepare TCGA data and by harnessing several key Bioconductor packages, we describe how to extract biologically meaningful genomic and epigenomic data. Using Roadmap and ENCODE data, we provide a work plan to identify biologically relevant functional epigenomic elements associated with cancer. To illustrate our workflow, we analyzed two types of brain tumors: low-grade glioma (LGG) versus high-grade glioma (glioblastoma multiform or GBM). This workflow introduces the following Bioconductor packages: AnnotationHub, ChIPSeeker, ComplexHeatmap, pathview, ELMER, GAIA, MINET, RTCGAToolbox, TCGAbiolinks. PMID:28232861
TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages.
Silva, Tiago C; Colaprico, Antonio; Olsen, Catharina; D'Angelo, Fulvio; Bontempi, Gianluca; Ceccarelli, Michele; Noushmehr, Houtan
2016-01-01
Biotechnological advances in sequencing have led to an explosion of publicly available data via large international consortia such as The Cancer Genome Atlas (TCGA), The Encyclopedia of DNA Elements (ENCODE), and The NIH Roadmap Epigenomics Mapping Consortium (Roadmap). These projects have provided unprecedented opportunities to interrogate the epigenome of cultured cancer cell lines as well as normal and tumor tissues with high genomic resolution. The Bioconductor project offers more than 1,000 open-source software and statistical packages to analyze high-throughput genomic data. However, most packages are designed for specific data types (e.g. expression, epigenetics, genomics) and there is no one comprehensive tool that provides a complete integrative analysis of the resources and data provided by all three public projects. A need to create an integration of these different analyses was recently proposed. In this workflow, we provide a series of biologically focused integrative analyses of different molecular data. We describe how to download, process and prepare TCGA data and by harnessing several key Bioconductor packages, we describe how to extract biologically meaningful genomic and epigenomic data. Using Roadmap and ENCODE data, we provide a work plan to identify biologically relevant functional epigenomic elements associated with cancer. To illustrate our workflow, we analyzed two types of brain tumors: low-grade glioma (LGG) versus high-grade glioma (glioblastoma multiform or GBM). This workflow introduces the following Bioconductor packages: AnnotationHub, ChIPSeeker, ComplexHeatmap, pathview, ELMER, GAIA, MINET, RTCGAToolbox, TCGAbiolinks.
5.0 Aerodynamic and Propulsive Decelerator Systems
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Powell, Richard; Masciarelli, James; Brown, Glenn; Witkowski, Al; Guernsey, Carl
2005-01-01
Contents include the following: Introduction. Capability Breakdown Structure. Decelerator Functions. Candidate Solutions. Performance and Technology. Capability State-of-the-Art. Performance Needs. Candidate Configurations. Possible Technology Roadmaps. Capability Roadmaps.
NASA Astrophysics Data System (ADS)
Rubinsztein-Dunlop, Halina; Forbes, Andrew; Berry, M. V.; Dennis, M. R.; Andrews, David L.; Mansuripur, Masud; Denz, Cornelia; Alpmann, Christina; Banzer, Peter; Bauer, Thomas; Karimi, Ebrahim; Marrucci, Lorenzo; Padgett, Miles; Ritsch-Marte, Monika; Litchinitser, Natalia M.; Bigelow, Nicholas P.; Rosales-Guzmán, C.; Belmonte, A.; Torres, J. P.; Neely, Tyler W.; Baker, Mark; Gordon, Reuven; Stilgoe, Alexander B.; Romero, Jacquiline; White, Andrew G.; Fickler, Robert; Willner, Alan E.; Xie, Guodong; McMorran, Benjamin; Weiner, Andrew M.
2017-01-01
Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Phil; Feinberg, Lee
2006-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
ILEWG technology roadmap for Moon exploration
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
2008-04-01
We discuss the charter and activities of the International Lunar Exploration Working Group (ILEWG), and give an update from the related ILEWG task groups. We discuss the different rationale and technology roadmap for Moon exploration, as debated in previous ILEWG conferences. The Technology rationale includes: 1) The advancement of instrumentation: 2) Technologies in robotic and human exploration 3) Moon-Mars Exploration can inspire solutions to global Earth sustained development. We finally discuss a possible roadmap for development of technologies necessary for Moon and Mars exploration.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Feinberg, Lee
2007-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
NASA Astrophysics Data System (ADS)
Javidi, Bahram; Carnicer, Artur; Yamaguchi, Masahiro; Nomura, Takanori; Pérez-Cabré, Elisabet; Millán, María S.; Nishchal, Naveen K.; Torroba, Roberto; Fredy Barrera, John; He, Wenqi; Peng, Xiang; Stern, Adrian; Rivenson, Yair; Alfalou, A.; Brosseau, C.; Guo, Changliang; Sheridan, John T.; Situ, Guohai; Naruse, Makoto; Matsumoto, Tsutomu; Juvells, Ignasi; Tajahuerce, Enrique; Lancis, Jesús; Chen, Wen; Chen, Xudong; Pinkse, Pepijn W. H.; Mosk, Allard P.; Markman, Adam
2016-08-01
Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Pérez-Cabré], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections: Sheridan reviews phase retrieval algorithms to perform different attacks, whereas Situ discusses nonlinear optical encryption techniques and the development of a rigorous optical information security theory. The fourth category with two contributions reports how encryption could be implemented at the nano- or micro-scale. Naruse discusses the use of nanostructures in security applications and Carnicer proposes encoding information in a tightly focused beam. In the fifth category, encryption based on ghost imaging using single-pixel detectors is also considered. In particular, the authors [Chen, Tajahuerce] emphasize the need for more specialized hardware and image processing algorithms. Finally, in the sixth category, Mosk and Javidi analyze in their corresponding papers how quantum imaging can benefit optical encryption systems. Sources that use few photons make encryption systems much more difficult to attack, providing a secure method for authentication.
Researches on regenerative medicine-current state and prospect.
Wang, Zheng-Guo; Xiao, Kai
2012-01-01
Since 1980s, the rapid development of tissue engineering and stem cell research has pushed regenerative medicine to a new fastigium, and regenerative medicine has become a noticeable research field in the international biology and medicine. In China, about 100 million patients need repair and regeneration treatment every year, while the number is much larger in the world. Regenerative medicine could provide effective salvation for these patients. Both Chinese Academy of Sciences and Chinese Academy of Engineering have made roadmaps of 2010-2050 and 2011-2030 for regenerative medicine. The final goal of the two roadmaps is to make China go up to leading position in most research aspects of regenerative medicine. In accord with this strategy, the government and some enterprises have invested 3-5 billion RMB (0.5-0.8 billion USD) for the research on regenerative medicine. In order to push the translation of regenerative medicine forward-from bench to bedside, a strategic alliance has been established, and it includes 27 top-level research institutes, medical institutes, colleges, universities and enterprises in the field of stem cell and regeneration medicine. Recently the journal, Science, has published a special issue-Regenerative Medicine in China, consisting of 35 papers dealing with stem cell and regeneration, tissue engineering and regeneration, trauma and regeneration and bases for tissue repair and regenerative medicine. It is predicated that a greater breakthrough in theory and practice of regenerative medicine will be achieved in the near future (20 to 30 years).
Roadmap to Long-Term Monitoring Optimization
This roadmap focuses on optimization of established long-term monitoring programs for groundwater. Tools and techniques discussed concentrate on methods for optimizing the monitoring frequency and spatial (three-dimensional) distribution of wells ...
These Roadmaps identify scientific gaps that inform the National Research Programs in the development of their Strategic Research Action Plans. EPA expects to use this approach to integrate existing research efforts and to identify needed work.
An Interim Report on NASA's Draft Space Technology Roadmaps
NASA Technical Reports Server (NTRS)
2011-01-01
NASA has developed a set of 14 draft roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist (OCT). Each of these roadmaps focuses on a particular technology area (TA). The roadmaps are intended to foster the development of advanced technologies and concepts that address NASA's needs and contribute to other aerospace and national needs. OCT requested that the National Research Council conduct a study to review the draft roadmaps, gather and assess relevant community input, and make recommendations and suggest priorities to inform NASA's decisions as it finalizes its roadmaps. The statement of task states that "based on the results of the community input and its own deliberations, the steering committee will prepare a brief interim report that addresses high-level issues associated with the roadmaps, such as the advisability of modifying the number or technical focus of the draft NASA roadmaps." This interim report, which does not include formal recommendations, addresses that one element of the study charge. NASA requested this interim report so that it would have the opportunity to make an early start in modifying the draft roadmaps based on feedback from the panels and steering committee. The final report will address all other tasks in the statement of task. In particular, the final report will include a prioritization of technologies, will describe in detail the prioritization process and criteria, and will include specific recommendations on a variety of topics, including many of the topics mentioned in this interim report. In developing both this interim report and the final report to come, the steering committee draws on the work of six study panels organized by technical area, loosely following the organization of the 14 roadmaps, as follows: A Panel 1: Propulsion and Power TA01 Launch Propulsion Systems TA02 In-Space Propulsion Technologies TA03 Space Power and Energy Storage Systems TA13 Ground and Launch Systems Processing B Panel 2: Robotics, Communications, and Navigation TA04 Robotics, TeleRobotics, and Autonomous Systems TA05 Communication and Navigation Systems C Panel 3: Instruments and Computing TA08 Science Instruments, Observatories, and Sensor Systems TA11 Modeling, Simulation, Information Technology, and Data Processing D Panel 4: Human Health and Surface Exploration TA06 Human Health, Life Support, and Habitation Systems TA07 Human Exploration Destination Systems E Panel 5: Materials Panel TA10 Nanotechnology TA12 Materials, Structures, Mechanical Systems, and Manufacturing TA14 Thermal Management Systems F Panel 6: Entry, Descent, and Landing Panel TA09 Entry, Descent, and Landing Systems In addition to drawing on the expertise represented on the steering committee and panels, the committee obtained input from each of 14 public workshops held on each of the 14 roadmaps. At these 1-day workshops, invited speakers, guests, and members of the public engaged in discussions on the different technology areas and their value to NASA. Broad community input was also solicited from a public website, where more than 240 public comments were received on the draft roadmaps in response to application of criteria (such as benefit, risk and reasonableness, and alignment with NASA and national goals) that the steering committee established. This interim report reflects the results of deliberations by the steering committee in light of these public inputs as well as additional inputs from the six panels. The steering committee's final report will be completed early in 2012. That report will prioritize the technologies that span the entire scope of the 14 roadmaps and provide additional guidance on crosscutting themes and other relevant topics.
Long life Regenerative Fuel Cell technology development plan
NASA Technical Reports Server (NTRS)
Littman, Franklin D.; Cataldo, Robert L.; Mcelroy, James F.; Stedman, Jay K.
1992-01-01
This paper summarizes a technology roadmap for completing advanced development of a Proton Exchange Membrane (PEM) Regenerative Fuel Cell (RFC) to meet long life (20,000 hrs at 50 percent duty cycle) mobile or portable power system applications on the surface of the moon and Mars. Development of two different sized RFC power system modules is included in this plan (3 and 7.5 kWe). A conservative approach was taken which includes the development of a Ground Engineering System, Qualification Unit, and Flight Unit. This paper includes a concept description, technology assessment, development issues, development tasks, and development schedule.
NASA Technical Reports Server (NTRS)
Van Dalsem, William; Krishnakumar, Kalmanje Srinivas
2016-01-01
This is a powerpoint presentation that highlights autonomy across the 15 NASA technology roadmaps, including specific examples of projects (past and present) at NASA Ames Research Center. The NASA technology roadmaps are located here: http:www.nasa.govofficesocthomeroadmapsindex.html
NASA Astrophysics Data System (ADS)
Kramer, G. Y.; Lawrence, D. J.; Neal, C. R.; Clark, P. E.; Green, R. O.; Horanyi, M.; Johnson, M. D.; Kelso, R. M.; Sultana, M.; Thompson, D. R.
2016-11-01
A Lunar Capabilities Roadmap (LCR) is required to highlight capabilities critical for science and exploration of the Moon as well as beyond. The LCR will focus mainly on capabilities with examples of specific technologies to satisfy those needs.
Development of the INEEL Site Wide Vadose Zone Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonk, Alan Keith
2001-09-01
The INEEL Vadose Zone Roadmap was developed to identify inadquacies in current knowledge, to assist in contaminant management capabilities relative to the INEEL vadose zone, and to ensure that ongoing and planned Science and Technology developments will meet the risk management challenges facing the INEEL in coming years. The primary objective of the Roadmap is to determine the S&T needs that will facilitate monitoring, characterization, prediction, and assessment activities necessary to support INEEL risk management decisions and to ensure that long-term stewardship of contaminated sites at the INEEL is achieved. The mission of the Roadmap is to insure that themore » long-term S&T strategy is aligned with site programs, that it takes advantage of progress made to date, and that it can assist in meeting the milestones and budgets of operations.« less
Energy Systems Test Area (ESTA) Electrical Power Systems Test Operations: User Test Planning Guide
NASA Technical Reports Server (NTRS)
Salinas, Michael J.
2012-01-01
Test process, milestones and inputs are unknowns to first-time users of the ESTA Electrical Power Systems Test Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
A roadmap for acute care training of frontline Healthcare workers in LMICs.
Shah, Nirupa; Bhagwanjee, Satish; Diaz, Janet; Gopalan, P D; Appiah, John Adabie
2017-10-01
This 10-step roadmap outlines explicit procedures for developing, implementing and evaluating short focused training programs for acute care in low and middle income countries (LMICs). A roadmap is necessary to develop resilient training programs that achieve equivalent outcomes despite regional variability in human capacity and infrastructure. Programs based on the roadmap should address shortfalls in human capacity and access to care in the short term and establish the ground work for health systems strengthening in the long term. The primary targets for acute care training are frontline healthcare workers at the clinic level. The programs will differ from others currently available with respect to the timelines, triage method, therapeutic interventions and potential for secondary prevention. The roadmap encompasses multiple iterative cycles of the Plan-Do-Study-Act framework. Core features are integration of frontline trainees with the referral system while promoting research, quality improvement and evaluation from the bottom-up. Training programs must be evidence based, developed along action timelines and use adaptive training methods. A systems approach is essential because training programs that take cognizance of all factors that influence health care delivery have the potential to produce health systems strengthening (HSS). Copyright © 2017 Elsevier Inc. All rights reserved.
Lunar Surface Systems Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony;
2011-01-01
The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.
Technology Roadmaps for Compound Semiconductors
Bennett, Herbert S.
2000-01-01
The roles cited for compound semiconductors in public versions of existing technology roadmaps from the National Electronics Manufacturing Initiative, Inc., Optoelectronics Industry Development Association, Microelectronics Advanced Research Initiative on Optoelectronic Interconnects, and Optoelectronics Industry and Technology Development Association (OITDA) are discussed and compared within the context of trends in the Si CMOS industry. In particular, the extent to which these technology roadmaps treat compound semiconductors at the materials processing and device levels will be presented for specific applications. For example, OITDA’s Optical Communications Technology Roadmap directly connects the information demand of delivering 100 Mbit/s to the home to the requirement of producing 200 GHz heterojunction bipolar transistors with 30 nm bases and InP high electron mobility transistors with 100 nm gates. Some general actions for progress towards the proposed International Technology Roadmap for Compound Semiconductors (ITRCS) and methods for determining the value of an ITRCS will be suggested. But, in the final analysis, the value added by an ITRCS will depend on how industry leaders respond. The technical challenges and economic opportunities of delivering high quality digital video to consumers provide concrete examples of where the above actions and methods could be applied. PMID:27551615
OBPR Free Flyer draft roadmap overview
NASA Technical Reports Server (NTRS)
Israelsson, Ulf
2005-01-01
OBPR Free Flyer Roadmap Purpose is to describe the OBPR research which is enabled by a free flying spacecraft capability To illustrate how research performed on free flying spacecrafts complement current and planned OBPR ISS activities.
Cyber S&T Priority Steering Council Research Roadmap
2011-11-08
Priority Steering Council Research Roadmap for the National Defense Industrial Association Disruptive Technologies Conference 8 November 2011...AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Presented at the NDIA Disruptive Technologies Conference
INTEGRATED ENVIRONMENTAL STRATEGIES HANDBOOK
Chapter 1: Introduction, Background, Roadmap: History and motivation behind IES, historical background, where the program is going, roadmap (brief paragraphs explaining content of each chapter and possibly the audience sector who will benefit from reading the chapter). Chapt...
Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review
NASA Technical Reports Server (NTRS)
Antonsson, Erik; Gombosi, Tamas
2005-01-01
Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.
Strategic Directions in Heliophysics Research Related to Weakly Ionized Plasmas
NASA Technical Reports Server (NTRS)
Spann, James F.
2010-01-01
In 2009, the Heliophysics Division of NASA published its triennial roadmap entitled "Heliophysics; the solar and space physics of a new era." In this document contains a science priority that is recommended that will serve as input into the recently initiated NRC Heliophysics Decadal Survey. The 2009 roadmap includes several science targets recommendations that are directly related to weakly ionized plasmas, including on entitled "Ion-Neutral Coupling in the Atmosphere." This talk will be a brief overview of the roadmap with particular focus on the science targets relevant to weakly ionized plasmas.
NASA Technical Reports Server (NTRS)
Feingold, Harvey; ONeil, Dan (Technical Monitor)
2002-01-01
In response to a recommendation from OMB, NASA's Fiscal Year 2001 budget included a new program within the HEDS (Human Exploration and Development of Space) Enterprise called HEDS Technology/ Commercialization Initiative (HTCI). HTCI had three overarching goals: to support REDS analysis and planning for safe, affordable and effective future programs and projects that advance human exploration, scientific discovery, and the commercial development of space; to pursue research, development, and validation of breakthrough technologies and highly innovative systems concepts; and to advance die creation of strong partnerships within NASA, with U.S. industry and universities, and internationally. As part of its contracted effort, SAIC was to write a report contribution, describing die results of its task activities, to a final HTCI report prepared by MSFC. Unfortunately, government cancellation of the HTCI program in the summer of 2001 curtailed all efforts on the program including die Final HTCI report. In the absence of that report, SAIC has issued this final report in an attempt to document some of the technical material it produced. The report contains SAIC presentations for both HTCI workshops; a set of roadmap charts for the Systems Analysis, Integration and Modeling; and charts showing the evolution of the current TITAN modeling architecture.
EURO-CARES as Roadmap for a European Sample Curation Facility
NASA Astrophysics Data System (ADS)
Brucato, J. R.; Russell, S.; Smith, C.; Hutzler, A.; Meneghin, A.; Aléon, J.; Bennett, A.; Berthoud, L.; Bridges, J.; Debaille, V.; Ferrière, L.; Folco, L.; Foucher, F.; Franchi, I.; Gounelle, M.; Grady, M.; Leuko, S.; Longobardo, A.; Palomba, E.; Pottage, T.; Rettberg, P.; Vrublevskis, J.; Westall, F.; Zipfel, J.; Euro-Cares Team
2018-04-01
EURO-CARES is a three-year multinational project funded under the European Commission Horizon2020 research program to develop a roadmap for a European Extraterrestrial Sample Curation Facility for samples returned from solar system missions.
Implementation Plan for Chemical Industry R&D Roadmap for Nanomaterials by Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2006-04-01
The purpose of this effort is to develop an implementation plan to realize the vision and goals identified in the Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function.
Unmanned Aircraft Systems Roadmap 2005-2030
DOT National Transportation Integrated Search
2005-01-01
This document presents the Department of Defense's (DoD) roadmap for developing and employing unmanned aircraft systems over the next 25 years (2005 to 2030). It describes the missions identified by theater warfighters to which systems could be appli...
EV Charging Infrastructure Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, Donald; Garetson, Thomas; Francfort, Jim
2016-08-01
As highlighted in the U.S. Department of Energy’s EV Everywhere Grand Challenge, vehicle technology is advancing toward an objective to “… produce plug-in electric vehicles that are as affordable and convenient for the average American family as today’s gasoline-powered vehicles …” [1] by developing more efficient drivetrains, greater battery energy storage per dollar, and lighter-weight vehicle components and construction. With this technology advancement and improved vehicle performance, the objective for charging infrastructure is to promote vehicle adoption and maximize the number of electric miles driven. The EV Everywhere Charging Infrastructure Roadmap (hereafter referred to as Roadmap) looks forward and assumesmore » that the technical challenges and vehicle performance improvements set forth in the EV Everywhere Grand Challenge will be met. The Roadmap identifies and prioritizes deployment of charging infrastructure in support of this charging infrastructure objective for the EV Everywhere Grand Challenge« less
NASA Astrophysics Data System (ADS)
Stockman, Mark I.; Kneipp, Katrin; Bozhevolnyi, Sergey I.; Saha, Soham; Dutta, Aveek; Ndukaife, Justus; Kinsey, Nathaniel; Reddy, Harsha; Guler, Urcan; Shalaev, Vladimir M.; Boltasseva, Alexandra; Gholipour, Behrad; Krishnamoorthy, Harish N. S.; MacDonald, Kevin F.; Soci, Cesare; Zheludev, Nikolay I.; Savinov, Vassili; Singh, Ranjan; Groß, Petra; Lienau, Christoph; Vadai, Michal; Solomon, Michelle L.; Barton, David R., III; Lawrence, Mark; Dionne, Jennifer A.; Boriskina, Svetlana V.; Esteban, Ruben; Aizpurua, Javier; Zhang, Xiang; Yang, Sui; Wang, Danqing; Wang, Weijia; Odom, Teri W.; Accanto, Nicolò; de Roque, Pablo M.; Hancu, Ion M.; Piatkowski, Lukasz; van Hulst, Niek F.; Kling, Matthias F.
2018-04-01
Plasmonics is a rapidly developing field at the boundary of physical optics and condensed matter physics. It studies phenomena induced by and associated with surface plasmons—elementary polar excitations bound to surfaces and interfaces of good nanostructured metals. This Roadmap is written collectively by prominent researchers in the field of plasmonics. It encompasses selected aspects of nanoplasmonics. Among them are fundamental aspects, such as quantum plasmonics based on the quantum-mechanical properties of both the underlying materials and the plasmons themselves (such as their quantum generator, spaser), plasmonics in novel materials, ultrafast (attosecond) nanoplasmonics, etc. Selected applications of nanoplasmonics are also reflected in this Roadmap, in particular, plasmonic waveguiding, practical applications of plasmonics enabled by novel materials, thermo-plasmonics, plasmonic-induced photochemistry and photo-catalysis. This Roadmap is a concise but authoritative overview of modern plasmonics. It will be of interest to a wide audience of both fundamental physicists and chemists, as well as applied scientists and engineers.
The WHF Roadmap for Reducing CV Morbidity and Mortality Through Prevention and Control of RHD.
Palafox, Benjamin; Mocumbi, Ana Olga; Kumar, R Krishna; Ali, Sulafa K M; Kennedy, Elizabeth; Haileamlak, Abraham; Watkins, David; Petricca, Kadia; Wyber, Rosemary; Timeon, Patrick; Mwangi, Jeremiah
2017-03-01
Rheumatic heart disease (RHD) is a preventable non-communicable condition that disproportionately affects the world's poorest and most vulnerable. The World Heart Federation Roadmap for improved RHD control is a resource designed to help a variety of stakeholders raise the profile of RHD nationally and globally, and provide a framework to guide and support the strengthening of national, regional and global RHD control efforts. The Roadmap identifies the barriers that limit access to and uptake of proven interventions for the prevention and control of RHD. It also highlights a variety of established and promising solutions that may be used to overcome these barriers. As a general guide, the Roadmap is meant to serve as the foundation for the development of tailored plans of action to improve RHD control in specific contexts. Copyright © 2016 World Heart Federation (Geneva). Published by Elsevier B.V. All rights reserved.
NASA's Launch Propulsion Systems Technology Roadmap
NASA Technical Reports Server (NTRS)
McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.
2012-01-01
Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.
Backenroth, Daniel; He, Zihuai; Kiryluk, Krzysztof; Boeva, Valentina; Pethukova, Lynn; Khurana, Ekta; Christiano, Angela; Buxbaum, Joseph D; Ionita-Laza, Iuliana
2018-05-03
We describe a method based on a latent Dirichlet allocation model for predicting functional effects of noncoding genetic variants in a cell-type- and/or tissue-specific way (FUN-LDA). Using this unsupervised approach, we predict tissue-specific functional effects for every position in the human genome in 127 different tissues and cell types. We demonstrate the usefulness of our predictions by using several validation experiments. Using eQTL data from several sources, including the GTEx project, Geuvadis project, and TwinsUK cohort, we show that eQTLs in specific tissues tend to be most enriched among the predicted functional variants in relevant tissues in Roadmap. We further show how these integrated functional scores can be used for (1) deriving the most likely cell or tissue type causally implicated for a complex trait by using summary statistics from genome-wide association studies and (2) estimating a tissue-based correlation matrix of various complex traits. We found large enrichment of heritability in functional components of relevant tissues for various complex traits, and FUN-LDA yielded higher enrichment estimates than existing methods. Finally, using experimentally validated functional variants from the literature and variants possibly implicated in disease by previous studies, we rigorously compare FUN-LDA with state-of-the-art functional annotation methods and show that FUN-LDA has better prediction accuracy and higher resolution than these methods. In particular, our results suggest that tissue- and cell-type-specific functional prediction methods tend to have substantially better prediction accuracy than organism-level prediction methods. Scores for each position in the human genome and for each ENCODE and Roadmap tissue are available online (see Web Resources). Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
A HUMAN FACTORS META MODEL FOR U.S. NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe, Jeffrey C.
Over the last several years, the United States (U.S.) Department of Energy (DOE) has sponsored human factors research and development (R&D) and human factors engineering (HFE) activities through its Light Water Reactor Sustainability (LWRS) program to modernize the main control rooms (MCR) of commercial nuclear power plants (NPP). Idaho National Laboratory (INL), in partnership with numerous commercial nuclear utilities, has conducted some of this R&D to enable the life extension of NPPs (i.e., provide the technical basis for the long-term reliability, productivity, safety, and security of U.S. NPPs). From these activities performed to date, a human factors meta model formore » U.S. NPP control room modernization can now be formulated. This paper discusses this emergent HFE meta model for NPP control room modernization, with the goal of providing an integrated high level roadmap and guidance on how to perform human factors R&D and HFE for those in the U.S. nuclear industry that are engaging in the process of upgrading their MCRs.« less
Biais, Benoît; Bénard, Camille; Beauvoit, Bertrand; Colombié, Sophie; Prodhomme, Duyên; Ménard, Guillaume; Bernillon, Stéphane; Gehl, Bernadette; Gautier, Hélène; Ballias, Patricia; Mazat, Jean-Pierre; Sweetlove, Lee; Génard, Michel; Gibon, Yves
2014-01-01
To assess the influence of the environment on fruit metabolism, tomato (Solanum lycopersicum ‘Moneymaker’) plants were grown under contrasting conditions (optimal for commercial, water limited, or shaded production) and locations. Samples were harvested at nine stages of development, and 36 enzyme activities of central metabolism were measured as well as protein, starch, and major metabolites, such as hexoses, sucrose, organic acids, and amino acids. The most remarkable result was the high reproducibility of enzyme activities throughout development, irrespective of conditions or location. Hierarchical clustering of enzyme activities also revealed tight relationships between metabolic pathways and phases of development. Thus, cell division was characterized by high activities of fructokinase, glucokinase, pyruvate kinase, and tricarboxylic acid cycle enzymes, indicating ATP production as a priority, whereas cell expansion was characterized by enzymes involved in the lower part of glycolysis, suggesting a metabolic reprogramming to anaplerosis. As expected, enzymes involved in the accumulation of sugars, citrate, and glutamate were strongly increased during ripening. However, a group of enzymes involved in ATP production, which is probably fueled by starch degradation, was also increased. Metabolites levels seemed more sensitive than enzymes to the environment, although such differences tended to decrease at ripening. The integration of enzyme and metabolite data obtained under contrasting growth conditions using principal component analysis suggests that, with the exceptions of alanine amino transferase and glutamate and malate dehydrogenase and malate, there are no links between single enzyme activities and metabolite time courses or levels. PMID:24474652
The 2017 terahertz science and technology roadmap
Dhillon, S. S.; Vitiello, M. S.; Linfield, E. H.; ...
2017-01-04
Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and maymore » also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. Lastly, we also feel that this review should serve as a useful guide for government and funding agencies.« less
The 2017 terahertz science and technology roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhillon, S. S.; Vitiello, M. S.; Linfield, E. H.
Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and maymore » also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. Lastly, we also feel that this review should serve as a useful guide for government and funding agencies.« less
The 2017 terahertz science and technology roadmap
NASA Astrophysics Data System (ADS)
Dhillon, S. S.; Vitiello, M. S.; Linfield, E. H.; Davies, A. G.; Hoffmann, Matthias C.; Booske, John; Paoloni, Claudio; Gensch, M.; Weightman, P.; Williams, G. P.; Castro-Camus, E.; Cumming, D. R. S.; Simoens, F.; Escorcia-Carranza, I.; Grant, J.; Lucyszyn, Stepan; Kuwata-Gonokami, Makoto; Konishi, Kuniaki; Koch, Martin; Schmuttenmaer, Charles A.; Cocker, Tyler L.; Huber, Rupert; Markelz, A. G.; Taylor, Z. D.; Wallace, Vincent P.; Axel Zeitler, J.; Sibik, Juraj; Korter, Timothy M.; Ellison, B.; Rea, S.; Goldsmith, P.; Cooper, Ken B.; Appleby, Roger; Pardo, D.; Huggard, P. G.; Krozer, V.; Shams, Haymen; Fice, Martyn; Renaud, Cyril; Seeds, Alwyn; Stöhr, Andreas; Naftaly, Mira; Ridler, Nick; Clarke, Roland; Cunningham, John E.; Johnston, Michael B.
2017-02-01
Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz-30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to ‘real world’ applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.
An ontology of and roadmap for mHealth research.
Cameron, Joshua D; Ramaprasad, Arkalgud; Syn, Thant
2017-04-01
Mobile health or mHealth research has been growing exponentially in recent years. However, the research on mHealth has been ad-hoc and selective without a clear definition of the mHealth domain. Without a roadmap for research we may not realize the full potential of mHealth. In this paper, we present an ontological framework to define the mHealth domain and illuminate a roadmap. We present an ontology of mHealth. The ontology is developed by systematically deconstructing the domain into its primary dimensions and elements. We map the extent research on mHealth in 2014 onto the ontology and highlight the bright, light, and blind/blank spots which represent the emphasis of mHealth research. The emphases of mHealth research in 2014 are very uneven. There are a few bright spots and many light spots. The research predominantly focuses on individuals' use of mobile devices and applications to capture or obtain health-related data mostly to improve quality of care through mobile intervention. We argue that the emphases can be balanced in the roadmap for mHealth research. The ontological mapping plays an integral role in developing and maintaining the roadmap which can be updated periodically to continuously assess and guide mHealth research. Copyright © 2017 Elsevier B.V. All rights reserved.
Weiss, Brian A.; Vogl, Gregory; Helu, Moneer; Qiao, Guixiu; Pellegrino, Joan; Justiniano, Mauricio; Raghunathan, Anand
2017-01-01
The National Institute of Standards and Technology (NIST) hosted the Roadmapping Workshop – Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) in Fall 2014 to discuss the needs and priorities of stakeholders in the PHM4SMS technology area. The workshop brought together over 70 members of the PHM community. The attendees included representatives from small, medium, and large manufacturers; technology developers and integrators; academic researchers; government organizations; trade associations; and standards bodies. The attendees discussed the current and anticipated measurement science challenges to advance PHM methods and techniques for smart manufacturing systems; the associated research and development needed to implement condition monitoring, diagnostic, and prognostic technologies within manufacturing environments; and the priorities to meet the needs of PHM in manufacturing. This paper will summarize the key findings of this workshop, and present some of the critical measurement science challenges and corresponding roadmaps, i.e., suggested courses of action, to advance PHM for manufacturing. Milestones and targeted capabilities will be presented for each roadmap across three areas: PHM Manufacturing Process Techniques; PHM Performance Assessment; and PHM Infrastructure – Hardware, Software, and Integration. An analysis of these roadmaps and crosscutting themes seen across the breakout sessions is also discussed. PMID:28664163
Innovative Technologies for Global Space Exploration
NASA Technical Reports Server (NTRS)
Hay, Jason; Gresham, Elaine; Mullins, Carie; Graham, Rachael; Williams-Byrd; Reeves, John D.
2012-01-01
Under the direction of NASA's Exploration Systems Mission Directorate (ESMD), Directorate Integration Office (DIO), The Tauri Group with NASA's Technology Assessment and Integration Team (TAIT) completed several studies and white papers that identify novel technologies for human exploration. These studies provide technical inputs to space exploration roadmaps, identify potential organizations for exploration partnerships, and detail crosscutting technologies that may meet some of NASA's critical needs. These studies are supported by a relational database of more than 400 externally funded technologies relevant to current exploration challenges. The identified technologies can be integrated into existing and developing roadmaps to leverage external resources, thereby reducing the cost of space exploration. This approach to identifying potential spin-in technologies and partnerships could apply to other national space programs, as well as international and multi-government activities. This paper highlights innovative technologies and potential partnerships from economic sectors that historically are less connected to space exploration. It includes breakthrough concepts that could have a significant impact on space exploration and discusses the role of breakthrough concepts in technology planning. Technologies and partnerships are from NASA's Technology Horizons and Technology Frontiers game-changing and breakthrough technology reports as well as the External Government Technology Dataset, briefly described in the paper. The paper highlights example novel technologies that could be spun-in from government and commercial sources, including virtual worlds, synthetic biology, and human augmentation. It will consider how these technologies can impact space exploration and will discuss ongoing activities for planning and preparing them.
NASA Technical Reports Server (NTRS)
Trinh, Huu P.
2015-01-01
NASA's exploration roadmap is focused on developing technologies and performing precursor missions to advance the state of the art for eventual human missions to Mars. One of the key components of this roadmap is various robotic missions to Near-Earth Objects, the Moon, and Mars to fill in some of the strategic knowledge gaps. The Resource Prospector (RP) project is one of these robotic precursor activities in the roadmap. RP is a multi-center and multi-institution project to investigate the polar regions of the Moon in search of volatiles. The mission is rated Class D and is approximately 10 days, assuming a five day direct Earth to Moon transfer. Because of the mission cost constraint, a trade study of the propulsion concepts was conducted with a focus on available low-cost hardware for reducing cost in development, while technical risk, system mass, and technology advancement requirements were also taken into consideration. The propulsion system for the lander is composed of a braking stage providing a high thrust to match the lander's velocity with the lunar surface and a lander stage performing the final lunar descent. For the braking stage, liquid oxygen (LOX) and liquid methane (LCH4) propulsion systems, derived from the Morpheus experimental lander, and storable bi-propellant systems, including the 4th stage Peacekeeper (PK) propulsion components and Space Shuttle orbital maneuvering engine (OME), and a solid motor were considered for the study. For the lander stage, the trade study included miniaturized Divert Attitude Control System (DACS) thrusters (Missile Defense Agency (MDA) heritage), their enhanced thruster versions, ISE-100 and ISE-5, and commercial-off-the-shelf (COTS) hardware. The lowest cost configuration of using the solid motor and the PK components while meeting the requirements was selected. The reference concept of the lander is shown in Figure 1. In the current reference configuration, the solid stage is the primary provider of delta-V. It will generate 15,000-lbf of thrust with a single burn of 80's seconds. The lander stage is a bi-propellant, pressure-regulated, pulsing liquid propulsion system to perform all other functions.
EPA Nitrogen and Co-Pollutant Roadmap
Cross-media, integrated, multi-disciplinary approach to sustainably manage reactive nitrogen and co-pollutant loadings to air and water to reduce adverse impacts on the environment and human health. The goal of the Roadmap is to develop a common understanding of the Agency's rese...
Stem cells: roadmap to the clinic
Daley, George Q.
2010-01-01
Over the last decade, a remarkable number of papers have been published in which the biology of stem cells is introduced with words and phrases such as “promise,” “rapid progress,” and “future therapies.” To separate myth and hype from reality, the articles in this Stem Cells Review series comprise a rich resource on the state of this fast-paced field and provide a balanced perspective on some of the major advances. They recount what the field has achieved over the past decade and where the field is headed. They also highlight the challenges to be faced in translating what is indeed highly promising science into proven therapies that will regenerate and repair diseased tissues. PMID:20051631
Technology Projections for Solar Dynamic Power
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1999-01-01
Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency, long life without performance degradation, and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite, a low power Space Based Radar, and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis, a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA, DOD, and commercial missions.
NASA Technical Reports Server (NTRS)
2012-01-01
Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, Barmac K.
2009-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA's Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of "supportability", in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in a environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test & Verification, Maintenance & Repair, and Scavenging & Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, barmac K.
2011-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program.
Synthesis-Spectroscopy Roadmap Problems: Discovering Organic Chemistry
ERIC Educational Resources Information Center
Kurth, Laurie L.; Kurth, Mark J.
2014-01-01
Organic chemistry problems that interrelate and integrate synthesis with spectroscopy are presented. These synthesis-spectroscopy roadmap (SSR) problems uniquely engage second-year undergraduate organic chemistry students in the personal discovery of organic chemistry. SSR problems counter the memorize-or-bust strategy that many students tend to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, Eric J.; Mone, Christopher D.; DeMeo, Edgar
IIn March 2015, the U.S. Department of Energy (DOE) released Wind Vision: A New Era for Wind Power in the United States (DOE 2015), which explores a scenario in which wind provides 10 percent of U.S. electricity in 2020, 20 percent in 2030, and 35 percent in 2050. The Wind Vision report also includes a roadmap of recommended actions aimed at pursuit of the vision and its underlying wind-deployment scenario. The roadmap was compiled by the Wind Vision project team, which included representatives from the industrial, electric-power, government-laboratory, academic, environmental-stewardship, regulatory, and permitting stakeholder groups. The roadmap describes high-level activitiesmore » suitable for all sectors with a stake in wind power and energy development. It is intended to be a 'living document,' and DOE expects to engage the wind community from time to time to track progress.« less
NASA Technical Reports Server (NTRS)
Crouch, Roger
2004-01-01
Viewgraphs on NASA's transition to its vision for space exploration is presented. The topics include: 1) Strategic Directives Guiding the Human Support Technology Program; 2) Progressive Capabilities; 3) A Journey to Inspire, Innovate, and Discover; 4) Risk Mitigation Status Technology Readiness Level (TRL) and Countermeasures Readiness Level (CRL); 5) Biological And Physical Research Enterprise Aligning With The Vision For U.S. Space Exploration; 6) Critical Path Roadmap Reference Missions; 7) Rating Risks; 8) Current Critical Path Roadmap (Draft) Rating Risks: Human Health; 9) Current Critical Path Roadmap (Draft) Rating Risks: System Performance/Efficiency; 10) Biological And Physical Research Enterprise Efforts to Align With Vision For U.S. Space Exploration; 11) Aligning with the Vision: Exploration Research Areas of Emphasis; 12) Code U Efforts To Align With The Vision For U.S. Space Exploration; 13) Types of Critical Path Roadmap Risks; and 14) ISS Human Support Systems Research, Development, and Demonstration. A summary discussing the vision for U.S. space exploration is also provided.
The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025
NASA Astrophysics Data System (ADS)
Fellous, Jean-Louis
2016-07-01
The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international cooperation.
Kunisaki, Shaun M.
2012-01-01
Over the past decade, amniotic fluid-derived stem cells have emerged as a novel, experimental approach for the treatment of a wide variety of congenital anomalies diagnosed either in utero or postnatally. There are a number of unique properties of amniotic fluid stem cells that have allowed it to become a major research focus. These include the relative ease of accessing amniotic fluid cells in a minimally invasive fashion by amniocentesis as well as the relatively rich population of progenitor cells obtained from a small aliquot of fluid. Mesenchymal stem cells, c-kit positive stem cells, as well as induced pluripotent stem cells have all been derived from human amniotic fluid in recent years. This article gives a pediatric surgeon’s perspective on amniotic fluid stem cell therapy for the management of congenital anomalies. The current status in the use of amniotic fluid-derived stem cells, particularly as they relate as substrates in tissue engineering-based applications, is described in various animal models. A roadmap for further study and eventual clinical application is also proposed. PMID:22986340
A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development.
Yao, Zizhen; Mich, John K; Ku, Sherman; Menon, Vilas; Krostag, Anne-Rachel; Martinez, Refugio A; Furchtgott, Leon; Mulholland, Heather; Bort, Susan; Fuqua, Margaret A; Gregor, Ben W; Hodge, Rebecca D; Jayabalu, Anu; May, Ryan C; Melton, Samuel; Nelson, Angelique M; Ngo, N Kiet; Shapovalova, Nadiya V; Shehata, Soraya I; Smith, Michael W; Tait, Leah J; Thompson, Carol L; Thomsen, Elliot R; Ye, Chaoyang; Glass, Ian A; Kaykas, Ajamete; Yao, Shuyuan; Phillips, John W; Grimley, Joshua S; Levi, Boaz P; Wang, Yanling; Ramanathan, Sharad
2017-01-05
During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/β-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
76 FR 11308 - Aviation Noise Impacts Roadmap Annual Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
... impacts. The purpose of the meeting is to update and advance our collective scientific knowledge of the... Aviation Administration (FAA), National Aeronautics and Space Administration (NASA), Department of Defense... knowledge gaps and future research activities. The intent of the Roadmap is to define systematic, focused...
The Risk Assessment in the 21st Century (RISK21): Roadmap and Matrix
The RISK21 integrated evaluation strategy is a problem formulation-based exposure-driven risk assessment roadmap that takes advantage of existing information to graphically represent the intersection of exposure and toxicity data on a highly visual matrix. This paper describes i...
Materials Technical Team Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2013-08-01
Roadmap identifying the efforts of the Materials Technical Team (MTT) to focus primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks) which enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed.
NASA's Deep Space Telecommunications Roadmap
NASA Technical Reports Server (NTRS)
Edwards, C., Jr.; Stelzried, C.; Deutsch, L.; Swanson, L.
1998-01-01
This paper will present this roadmap, describe how it will support an increasing mission set while also providing significantly increased science data return, summarize the current state of key Ka-band and optical communications technologies, and identify critical path items in terms of technology developments, demonstrations, and mission users.
NASA Technical Reports Server (NTRS)
Chiaramonte, Fran
2003-01-01
This viewgraph presentation discusses the status and goals for the NASA OBPR Physical Science Research Program. The following text was used to summarize the presentation. The OBPR Physical Sciences Research program has been comprehensively reviewed and endorsed by National Research Council. The value and need for the research have been re-affirmed. The research program has been prioritized and resource re-allocations have been carried out through an OBPR-wide process. An increasing emphasis on strategic, mission-oriented research is planned. The program will strive to maintain a balance between strategic and fundamental research. A feasible ISS flight research program fitting within the budgetary and ISS resource envelopes has been formulated for the near term (2003-2007). The current ISS research program will be significantly strengthened starting 2005 by using discipline dedicated research facility racks. A research re-planning effort has been initiated and will include active participation from the research community in the next few months. The research re-planning effort will poise PSR to increase ISS research utilization for a potential enhancement beyond ISS IP Core Complete. The Physical Sciences research program readily integrates the cross-disciplinary requirements of the NASA and OBPR strategic objectives. Each fundamental research thrust will develop a roadmap through technical workshops and Discipline Working Groups (DWGs). Most fundamental research thrusts will involve cross-disciplinary efforts. A Technology Roadmap will guide the Strategic Research for Exploration thrust. The Research Plan will integrate and coordinate fundamental Research Thrusts Roadmaps with the Technology Roadmap. The Technology Roadmap will be developed in coordination with other OBPR programs as well as other Enterprise (R,S,M,N). International Partners will contribute to the roadmaps and through research coordination. The research plan will be vetted with the discipline working groups, the BPRAC subcommittees, and with the BPRAC. Recommendations from NRC past and current committees will be implemented whenever appropriate.Proposed theme element content will be "missionized" around planned content and potential new projects (facilities, modules, initiatives) on approximately a five-year horizon, with the approval of PSRD management. Center/science working group teams will develop descriptions of "mission" objectives, value, and requirements. Purpose is to create a competitive environment for concept development and to stimulate community ownership/advocacy. Proposed theme elements reviewed and approved by PSRD management. Strawman roadmaps for themes developed. Program budget and technology requirements verified. Theme elements are prioritized with the input of advisory groups. Integration into program themes (questions) and required technology investments are defined by science and technology roadmaps. Review and assessment by OBPR management.
Sensors for process control Focus Team report
NASA Astrophysics Data System (ADS)
At the Semiconductor Technology Workshop, held in November 1992, the Semiconductor Industry Association (SIA) convened 179 semiconductor technology experts to assess the 15-year outlook for the semiconductor manufacturing industry. The output of the Workshop, a document entitled 'Semiconductor Technology: Workshop Working Group Reports,' contained an overall roadmap for the technology characteristics envisioned in integrated circuits (IC's) for the period 1992-2007. In addition, the document contained individual roadmaps for numerous key areas in IC manufacturing, such as film deposition, thermal processing, manufacturing systems, exposure technology, etc. The SIA Report did not contain a separate roadmap for contamination free manufacturing (CFM). A key component of CFM for the next 15 years is the use of sensors for (1) defect reduction, (2) improved product quality, (3) improved yield, (4) improved tool utilization through contamination reduction, and (5) real time process control in semiconductor fabrication. The objective of this Focus Team is to generate a Sensors for Process Control Roadmap. Implicit in this objective is the identification of gaps in current sensor technology so that research and development activity in the sensor industry can be stimulated to develop sensor systems capable of meeting the projected roadmap needs. Sensor performance features of interest include detection limit, specificity, sensitivity, ease of installation and maintenance, range, response time, accuracy, precision, ease and frequency of calibration, degree of automation, and adaptability to in-line process control applications.
Roadmap for In-Space Propulsion Technology
NASA Technical Reports Server (NTRS)
Meyer, Michael; Johnson, Les; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold
2012-01-01
NASA has created a roadmap for the development of advanced in-space propulsion technologies for the NASA Office of the Chief Technologist (OCT). This roadmap was drafted by a team of subject matter experts from within the Agency and then independently evaluated, integrated and prioritized by a National Research Council (NRC) panel. The roadmap describes a portfolio of in-space propulsion technologies that could meet future space science and exploration needs, and shows their traceability to potential future missions. Mission applications range from small satellites and robotic deep space exploration to space stations and human missions to Mars. Development of technologies within the area of in-space propulsion will result in technical solutions with improvements in thrust, specific impulse (Isp), power, specific mass (or specific power), volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability, durability, and of course, cost. These types of improvements will yield decreased transit times, increased payload mass, safer spacecraft, and decreased costs. In some instances, development of technologies within this area will result in mission-enabling breakthroughs that will revolutionize space exploration. There is no single propulsion technology that will benefit all missions or mission types. The requirements for in-space propulsion vary widely according to their intended application. This paper provides an updated summary of the In-Space Propulsion Systems technology area roadmap incorporating the recommendations of the NRC.
Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC
NASA Technical Reports Server (NTRS)
2005-01-01
This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.
Roadmap for Navy Family Research.
1980-08-01
of methodological limitations, including: small, often non -representative or narrowly defined samples; inadequate statistical controls, inadequate...1-1 1.2 Overview of the Research Roadmap ..................... 1-2 2. Methodology ...the Office of Naval Research by the Westinghouse Public Applied Systems Division, and is designed to provide the Navy with a systematic framework for
DOT National Transportation Integrated Search
2001-08-01
This roadmap explains how your community can join forces with the nationwide network of Clean Cities to increase the use of alternative fuels and alternative fuel vehicles (AFVs). You will learn how the U.S. Department of Energy (DOE) can help your c...
Leveraging Our Expertise To Inform International RE Roadmaps | Energy
energy targets to support Mexico's renewable energy goal. NREL and its Mexico partners developed the institutions need to take to determine how the electricity infrastructure and systems must change to accommodate high levels of renewables. The roadmap focuses on analysis methodologies-including grid expansion
Human Health and Support Systems Capability Roadmap Progress Review
NASA Technical Reports Server (NTRS)
Grounds, Dennis; Boehm, Al
2005-01-01
The Human Health and Support Systems Capability Roadmap focuses on research and technology development and demonstration required to ensure the health, habitation, safety, and effectiveness of crews in and beyond low Earth orbit. It contains three distinct sub-capabilities: Human Health and Performance. Life Support and Habitats. Extra-Vehicular Activity.
Roadmap to Measuring Distance Education Instructional Design Competencies
ERIC Educational Resources Information Center
Dooley, Kim E.; Lindner, James R.; Telg, Ricky W.; Irani, Tracy; Moore, Lori; Lundy, Lisa
2007-01-01
This study was designed to measure instructional design competencies as a result of participation in a 9-month Web-based training program called "Roadmap to Effective Distance Education Instructional Design." The researchers used a self-assessment pre- and posttest to determine participant initial and final competence in 12 areas: adult…
Roadmapping towards Sustainability Proficiency in Engineering Education
ERIC Educational Resources Information Center
Rodriguez-Andara, Alejandro; Río-Belver, Rosa María; Rodríguez-Salvador, Marisela; Lezama-Nicolás, René
2018-01-01
Purpose: The purpose of this paper is to deliver a roadmap that displays pathways to develop sustainability skills in the engineering curricula. Design/methodology/approach: The selected approach to enrich engineering students with sustainability skills was active learning methodologies. First, a survey was carried out on a sample of 189 students…
Six Tips for Successful IEP Meetings
ERIC Educational Resources Information Center
Diliberto, Jennifer A.; Brewer, Denise
2012-01-01
Individuals with Disabilities Education Improvement Act (IDEIA, 2004) mandates that each student with a disability has an individualized education program (IEP). The IEP serves as the curriculum roadmap for special education services. In order to generate a clear roadmap, full team communication is necessary. The purpose of this paper is to…
An Imaging Roadmap for Biology Education: From Nanoparticles to Whole Organisms
ERIC Educational Resources Information Center
Kelley, Daniel J.; Davidson, Richard J.; Nelson, David L.
2008-01-01
Imaging techniques provide ways of knowing structure and function in biology at different scales. The multidisciplinary nature and rapid advancement of imaging sciences requires imaging education to begin early in the biology curriculum. Guided by the National Institutes of Health (NIH) Roadmap initiatives, we incorporated a nanoimaging, molecular…
Science Instruments and Sensors Capability Roadmap: NRC Dialogue
NASA Technical Reports Server (NTRS)
Barney, Rich; Zuber, Maria
2005-01-01
The Science Instruments and Sensors roadmaps include capabilities associated with the collection, detection, conversion, and processing of scientific data required to answer compelling science questions driven by the Vision for Space Exploration and The New Age of Exploration (NASA's Direction for 2005 & Beyond). Viewgraphs on these instruments and sensors are presented.
The Roadmap presents critical issues and research questions for each theme. For Theme 1, the issues for limiting the harm from materials and process in electronics industry include identifying the chemicals in products, production process, in the extraction of virgin materials, i...
Review of the Semiconductor Industry and Technology Roadmap.
ERIC Educational Resources Information Center
Kumar, Sameer; Krenner, Nicole
2002-01-01
Points out that the semiconductor industry is extremely competitive and requires ongoing technological advances to improve performance while reducing costs to remain competitive and how essential it is to gain an understanding of important facets of the industry. Provides an overview of the initial and current semiconductor technology roadmap that…
NASA Astrophysics Data System (ADS)
Sander, D.; Valenzuela, S. O.; Makarov, D.; Marrows, C. H.; Fullerton, E. E.; Fischer, P.; McCord, J.; Vavassori, P.; Mangin, S.; Pirro, P.; Hillebrands, B.; Kent, A. D.; Jungwirth, T.; Gutfleisch, O.; Kim, C. G.; Berger, A.
2017-09-01
Building upon the success and relevance of the 2014 Magnetism Roadmap, this 2017 Magnetism Roadmap edition follows a similar general layout, even if its focus is naturally shifted, and a different group of experts and, thus, viewpoints are being collected and presented. More importantly, key developments have changed the research landscape in very relevant ways, so that a novel view onto some of the most crucial developments is warranted, and thus, this 2017 Magnetism Roadmap article is a timely endeavour. The change in landscape is hereby not exclusively scientific, but also reflects the magnetism related industrial application portfolio. Specifically, Hard Disk Drive technology, which still dominates digital storage and will continue to do so for many years, if not decades, has now limited its footprint in the scientific and research community, whereas significantly growing interest in magnetism and magnetic materials in relation to energy applications is noticeable, and other technological fields are emerging as well. Also, more and more work is occurring in which complex topologies of magnetically ordered states are being explored, hereby aiming at a technological utilization of the very theoretical concepts that were recognised by the 2016 Nobel Prize in Physics. Given this somewhat shifted scenario, it seemed appropriate to select topics for this Roadmap article that represent the three core pillars of magnetism, namely magnetic materials, magnetic phenomena and associated characterization techniques, as well as applications of magnetism. While many of the contributions in this Roadmap have clearly overlapping relevance in all three fields, their relative focus is mostly associated to one of the three pillars. In this way, the interconnecting roles of having suitable magnetic materials, understanding (and being able to characterize) the underlying physics of their behaviour and utilizing them for applications and devices is well illustrated, thus giving an accurate snapshot of the world of magnetism in 2017. The article consists of 14 sections, each written by an expert in the field and addressing a specific subject on two pages. Evidently, the depth at which each contribution can describe the subject matter is limited and a full review of their statuses, advances, challenges and perspectives cannot be fully accomplished. Also, magnetism, as a vibrant research field, is too diverse, so that a number of areas will not be adequately represented here, leaving space for further Roadmap editions in the future. However, this 2017 Magnetism Roadmap article can provide a frame that will enable the reader to judge where each subject and magnetism research field stands overall today and which directions it might take in the foreseeable future. The first material focused pillar of the 2017 Magnetism Roadmap contains five articles, which address the questions of atomic scale confinement, 2D, curved and topological magnetic materials, as well as materials exhibiting unconventional magnetic phase transitions. The second pillar also has five contributions, which are devoted to advances in magnetic characterization, magneto-optics and magneto-plasmonics, ultrafast magnetization dynamics and magnonic transport. The final and application focused pillar has four contributions, which present non-volatile memory technology, antiferromagnetic spintronics, as well as magnet technology for energy and bio-related applications. As a whole, the 2017 Magnetism Roadmap article, just as with its 2014 predecessor, is intended to act as a reference point and guideline for emerging research directions in modern magnetism.
VERAM, for a sustainable and competitive future for EU Raw Materials
NASA Astrophysics Data System (ADS)
Mobili, A.; Tittarelli, F.; Revel, G. M.; Wall, P.
2018-03-01
The project, VERAM “Vision and Roadmap for European Raw Materials”, aims to deliver a mapping of on-going initiatives on non-food, non-energy raw materials (including metals, industrial minerals, aggregates and wood) at European, Member State, and regional levels both from the Research and Innovation (R&I), industry, and policy perspectives. Moreover, based on a comprehensive gap analysis, VERAM will propose a common long term 2050 Vision and Roadmap in coordination and cooperation with all stakeholders across the value chain. For the first time, two European Technology Platforms (ETPs) together with their corresponding European Research Area Networks (ERA-NETs) are joining forces to develop a common roadmap.
Progress along the E-ELT instrumentation roadmap
NASA Astrophysics Data System (ADS)
Ramsay, Suzanne; Casali, Mark; Cirasuolo, Michele; Egner, Sebastian; Gray, Peter; Gonzáles Herrera, Juan Carlos; Hammersley, Peter; Haupt, Christoph; Ives, Derek; Jochum, Lieselotte; Kasper, Markus; Kerber, Florian; Lewis, Steffan; Mainieri, Vincenzo; Manescau, Antonio; Marchetti, Enrico; Oberti, Sylvain; Padovani, Paolo; Schmid, Christian; Schimpelsberger, Johannes; Siebenmorgen, Ralf; Szecsenyi, Orsolya; Tamai, Roberto; Vernet, Joël.
2016-08-01
A suite of seven instruments and associated AO systems have been planned as the "E-ELT Instrumentation Roadmap". Following the E-ELT project approval in December 2014, rapid progress has been made in organising and signing the agreements for construction with European universities and institutes. Three instruments (HARMONI, MICADO and METIS) and one MCAO module (MAORY) have now been approved for construction. In addition, Phase-A studies have begun for the next two instruments - a multi-object spectrograph and high-resolution spectrograph. Technology development is also ongoing in preparation for the final instrument in the roadmap, the planetary camera and spectrograph. We present a summary of the status and capabilities of this first set of instruments for the E-ELT.
Fundamental Physics Changes in Response to Evolving NASA Needs
NASA Technical Reports Server (NTRS)
Israelsson, Ulf
2003-01-01
To continue growing as a discipline, we need to establish a new vision of where we are going that is consistent with today s physics, NASA s strategic plan, and the new OBPR direction. 1998 Roadmap focused exclusively on Physics, and did not worry about boundaries between OBPR and OSS. Updated Roadmap: Must incorporate some strategic research activities to be fully responsive to the current OBPR direction. Must capture the imagination of OBPR leadership, OMB, and Congress. Must delineate OBPR from the "beyond Einstein" program in OSS. Must address relevancy to Society explicitly. Status of the Roadmap development will be discussed after lunch today. Seeking community inputs and endorsement. Draft update targeted for June, final in August.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-01
...-1659-01] Request for Comments on NIST Special Publication 500-293, US Government Cloud Computing... Publication 500-293, US Government Cloud Computing Technology Roadmap, Release 1.0 (Draft). This document is... (USG) agencies to accelerate their adoption of cloud computing. The roadmap has been developed through...
Space Communications Capability Roadmap Interim Review
NASA Technical Reports Server (NTRS)
Spearing, Robert; Regan, Michael
2005-01-01
Contents include the following: Identify the need for a robust communications and navigation architecture for the success of exploration and science missions. Describe an approach for specifying architecture alternatives and analyzing them. Establish a top level architecture based on a network of networks. Identify key enabling technologies. Synthesize capability, architecture and technology into an initial capability roadmap.
FY2009-2034 Unmanned Systems Integrated Roadmap
2009-04-20
FY2009–2034 Unmanned Systems Integrated Roadmap Page i Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...56 A.1.7 XM-156 Class I ...60 A.1.11 Improved Gnat Extended Range ( I -Gnat-ER) “Warrior Alpha” / Extended Range/Multi- purpose (ER/MP) Block
The Idaho National Engineering & Environmental Lab (INEEL) was charged by DOE EM to develop a complex-wide science and technology roadmap for the characterization, modeling and simulation of the fate and transport of contamination in the vadose zone. Various types of hazardous, r...
Virtual Learning and Instructional Tools: Perfecting the Weekly Roadmap
ERIC Educational Resources Information Center
Cicco, Gina
2015-01-01
This article will provide details on the importance of providing structure within an online graduate counseling course in the form of a weekly roadmap tool. There are various instructional tools that may be useful in providing students with differing levels of structure, to meet their learning style preferences for structural stimuli (Cicco,…
Occurrence, Genotoxicity, and Carcinogenicity of Emerging Disinfection By-products in Drinking Water: A Review and Roadmap for Research
Summary of Paper
What is study?
This is the first review of the 30 year's research effort on the occurrence, genotoxicity,...
Roadmap for cardiovascular circulation model
Bradley, Christopher P.; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R.; Omholt, Stig W.; Chase, J. Geoffrey; Müller, Lucas O.; Watanabe, Sansuke M.; Blanco, Pablo J.; de Bono, Bernard; Hunter, Peter J.
2016-01-01
Abstract Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well‐established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo‐skeletal system. The computational infrastructure for the cardiovascular model should provide for near real‐time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. PMID:27506597
Roadmap for cardiovascular circulation model.
Safaei, Soroush; Bradley, Christopher P; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R; Omholt, Stig W; Chase, J Geoffrey; Müller, Lucas O; Watanabe, Sansuke M; Blanco, Pablo J; de Bono, Bernard; Hunter, Peter J
2016-12-01
Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well-established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo-skeletal system. The computational infrastructure for the cardiovascular model should provide for near real-time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
NASA Technical Reports Server (NTRS)
Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.;
2003-01-01
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.
The NASA Astrobiology Roadmap.
Des Marais, David J; Allamandola, Louis J; Benner, Steven A; Boss, Alan P; Deamer, David; Falkowski, Paul G; Farmer, Jack D; Hedges, S Blair; Jakosky, Bruce M; Knoll, Andrew H; Liskowsky, David R; Meadows, Victoria S; Meyer, Michael A; Pilcher, Carl B; Nealson, Kenneth H; Spormann, Alfred M; Trent, Jonathan D; Turner, William W; Woolf, Neville J; Yorke, Harold W
2003-01-01
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.
The NASA Astrobiology Roadmap.
Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M
2008-08-01
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.
Industrialization of Biology. A Roadmap to Accelerate the Advanced Manufacturing of Chemicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, Douglas C.
The report stresses the need for efforts to inform the public of the nature of industrial biotechnology and of its societal benefits, and to make sure that concerns are communicated effectively between the public and other stakeholders. In addition to scientific advances, a number of governance and societal factors will influence the industrialization of biology. Industry norms and standards need to be established in areas such as read/write accuracy for DNA, data and machine technology specifications, and organism performance in terms of production rates and yields. An updated regulatory regime is also needed to accelerate the safe commercialization of newmore » host organisms, metabolic pathways, and chemical products, and regulations should be coordinated across nations to enable rapid, safe, and global access to new technologies and products.« less
Vision 21: The NASA strategic plan
NASA Technical Reports Server (NTRS)
1992-01-01
The NASA Strategic Plan, Vision 21, is a living roadmap to the future to guide the men and women of the NASA team as they ensure U.S. leadership in space exploration and aeronautics research. This multiyear plan consists of a set of programs and activities that will retain our leadership in space science and the exploration of the solar system; help rebuild our nation's technology base and strengthen our leadership in aviation and other key industries; encourage commercial applications of space technology; use the unique perspective of space to better understand our home planet; provide the U.S. and its partners with a permanent space based research facility; expand on the legacy of Apollo and initiate precursor activities to establish a lunar base; and allow us a journey into tomorrow, journey to another planet (Mars), and beyond.
Tran, Duy Phu; Pham, Thuy Thi Thanh; Wolfrum, Bernhard; Offenhäusser, Andreas; Thierry, Benjamin
2018-05-11
Owing to their two-dimensional confinements, silicon nanowires display remarkable optical, magnetic, and electronic properties. Of special interest has been the development of advanced biosensing approaches based on the field effect associated with silicon nanowires (SiNWs). Recent advancements in top-down fabrication technologies have paved the way to large scale production of high density and quality arrays of SiNW field effect transistor (FETs), a critical step towards their integration in real-life biosensing applications. A key requirement toward the fulfilment of SiNW FETs' promises in the bioanalytical field is their efficient integration within functional devices. Aiming to provide a comprehensive roadmap for the development of SiNW FET based sensing platforms, we critically review and discuss the key design and fabrication aspects relevant to their development and integration within complementary metal-oxide-semiconductor (CMOS) technology.
Web-based Academic Roadmaps for Careers in the Geosciences
NASA Astrophysics Data System (ADS)
Murray, D. P.; Veeger, A. I.; Grossman-Garber, D.
2007-12-01
To a greater extent than most science programs, geology is underrepresented in K-12 curricula and the media. Thus potential majors have scant knowledge of academic requirements and career trajectories, and their idea of what geologists do--if they have one at all--is outdated. We have addressed these concerns by developing a dynamic, web-based academic roadmap for current and prospective students, their families, and others who are contemplating careers in the geosciences. The goals of this visually attractive "educational pathway" are to not only improve student recruitment and retention, but to empower student learning by creating better communication and advising tools that can render our undergraduate program transparent for learners and their families. Although we have developed academic roadmaps for four environmental and life science programs at the University of Rhode Island, we focus here on the roadmap for the geosciences, which illustrates educational pathways along the academic and early-career continuum for current and potential (i.e., high school) students who are considering the earth sciences. In essence, the Geosciences Academic Roadmap is a "one-stop'" portal to the discipline. It includes user- friendly information about our curriculum, outcomes (which at URI are tightly linked to performance in courses and the major), extracurricular activities (e.g., field camp, internships), careers, graduate programs, and training. In the presentation of this material extensive use is made of streaming video, interviews with students and earth scientists, and links to other relevant sites. Moreover, through the use of "Hot Topics", particular attention is made to insure that examples of geoscience activities are not only of relevance to today's students, but show geologists using the modern methods of the discipline in exciting ways. Although this is a "work-in-progress", evaluation of the sites, by high school through graduate students, has been strongly positive. Our presentation will include a demonstration of the Academic Roadmap, and a template that can be used by other geoscience departments to easily design websites.
Fleischhacker, Sheila E; Ballard, Rachel M; Starke-Reed, Pamela E; Galuska, Deborah A; Neuhouser, Marian L
2017-10-01
The Interagency Committee on Human Nutrition Research (ICHNR) is charged with improving the planning, coordination, and communication among federal agencies engaged in nutrition research and with facilitating the development and updating of plans for federal research programs to meet current and future domestic and international needs for nutrition. The ICHNR is co-chaired by the USDA Under Secretary for Research, Education, and Economics and Chief Scientist and the US Department of Health and Human Services Assistant Secretary for Health and is made up of >10 departments and agencies. Once the ICHNR was reassembled after a 10-y hiatus, the ICHNR recognized a need for a written roadmap to identify critical human nutrition research gaps and opportunities. This commentary provides an overview of the process the ICHNR undertook to develop a first-of-its-kind National Nutrition Research Roadmap, which was publicly released on 4 March 2016. The primary audience for the Roadmap is federal science agency leaders, along with relevant program and policy staff who rely on federally supported human nutrition research, in addition to the broader scientific community. The Roadmap is framed around the following 3 questions: 1 ) How can we better understand and define eating patterns to improve and sustain health? 2 ) What can be done to help people choose healthy eating patterns? 3 ) How can we develop and engage innovative methods and systems to accelerate discoveries in human nutrition? Within these 3 questions, 11 topical areas were identified on the basis of the following criteria: population impact, feasibility given current technological capacities, and emerging scientific opportunities. This commentary highlights initial federal and some professional research society efforts to address the Roadmap's research and resource priorities. We conclude by noting examples of early collaborations and partnerships to move human nutrition research forward in the 21st century. © 2017 American Society for Nutrition.
Rosenthal, Mariana; Anderson, Katey; Tengelsen, Leslie; Carter, Kris; Hahn, Christine; Ball, Christopher
2017-08-24
The Right Size Roadmap was developed by the Association of Public Health Laboratories and the Centers for Disease Control and Prevention to improve influenza virologic surveillance efficiency. Guidelines were provided to state health departments regarding representativeness and statistical estimates of specimen numbers needed for seasonal influenza situational awareness, rare or novel influenza virus detection, and rare or novel influenza virus investigation. The aim of this study was to compare Roadmap sampling recommendations with Idaho's influenza virologic surveillance to determine implementation feasibility. We calculated the proportion of medically attended influenza-like illness (MA-ILI) from Idaho's influenza-like illness surveillance among outpatients during October 2008 to May 2014, applied data to Roadmap-provided sample size calculators, and compared calculations with actual numbers of specimens tested for influenza by the Idaho Bureau of Laboratories (IBL). We assessed representativeness among patients' tested specimens to census estimates by age, sex, and health district residence. Among outpatients surveilled, Idaho's mean annual proportion of MA-ILI was 2.30% (20,834/905,818) during a 5-year period. Thus, according to Roadmap recommendations, Idaho needs to collect 128 specimens from MA-ILI patients/week for situational awareness, 1496 influenza-positive specimens/week for detection of a rare or novel influenza virus at 0.2% prevalence, and after detection, 478 specimens/week to confirm true prevalence is ≤2% of influenza-positive samples. The mean number of respiratory specimens Idaho tested for influenza/week, excluding the 2009-2010 influenza season, ranged from 6 to 24. Various influenza virus types and subtypes were collected and specimen submission sources were representative in terms of geographic distribution, patient age range and sex, and disease severity. Insufficient numbers of respiratory specimens are submitted to IBL for influenza laboratory testing. Increased specimen submission would facilitate meeting Roadmap sample size recommendations. ©Mariana Rosenthal, Katey Anderson, Leslie Tengelsen, Kris Carter, Christine Hahn, Christopher Ball. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 24.08.2017.
2017-01-01
Background The Right Size Roadmap was developed by the Association of Public Health Laboratories and the Centers for Disease Control and Prevention to improve influenza virologic surveillance efficiency. Guidelines were provided to state health departments regarding representativeness and statistical estimates of specimen numbers needed for seasonal influenza situational awareness, rare or novel influenza virus detection, and rare or novel influenza virus investigation. Objective The aim of this study was to compare Roadmap sampling recommendations with Idaho’s influenza virologic surveillance to determine implementation feasibility. Methods We calculated the proportion of medically attended influenza-like illness (MA-ILI) from Idaho’s influenza-like illness surveillance among outpatients during October 2008 to May 2014, applied data to Roadmap-provided sample size calculators, and compared calculations with actual numbers of specimens tested for influenza by the Idaho Bureau of Laboratories (IBL). We assessed representativeness among patients’ tested specimens to census estimates by age, sex, and health district residence. Results Among outpatients surveilled, Idaho’s mean annual proportion of MA-ILI was 2.30% (20,834/905,818) during a 5-year period. Thus, according to Roadmap recommendations, Idaho needs to collect 128 specimens from MA-ILI patients/week for situational awareness, 1496 influenza-positive specimens/week for detection of a rare or novel influenza virus at 0.2% prevalence, and after detection, 478 specimens/week to confirm true prevalence is ≤2% of influenza-positive samples. The mean number of respiratory specimens Idaho tested for influenza/week, excluding the 2009-2010 influenza season, ranged from 6 to 24. Various influenza virus types and subtypes were collected and specimen submission sources were representative in terms of geographic distribution, patient age range and sex, and disease severity. Conclusions Insufficient numbers of respiratory specimens are submitted to IBL for influenza laboratory testing. Increased specimen submission would facilitate meeting Roadmap sample size recommendations. PMID:28838883
Results from the NASA Capability Roadmap Team for In-Situ Resource Utilization (ISRU)
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Romig, Kris A.; Larson, William E.; Johnson, Robert; Rapp, Don; Johnson, Ken R.; Sacksteder, Kurt; Linne, Diane; Curreri, Peter; Duke, Michael;
2005-01-01
On January 14, 2004, the President of the United States unveiled a new vision for robotic and human exploration of space entitled, "A Renewed Spirit of Discovery". As stated by the President in the Vision for Space Exploration (VSE), NASA must "... implement a sustained and affordable human and robotic program to explore the solar system and beyond " and ".. .develop new technologies and harness the moon's abundant resources to allow manned exploration of more challenging environments." A key to fulfilling the goal of sustained and affordable human and robotic exploration will be the ability to use resources that are available at the site of exploration to "live off the land" instead of bringing everything from Earth, known as In-Situ Resource Utilization (ISRU). ISRU can significantly reduce the mass, cost, and risk of exploration through capabilities such as: mission consumable production (propellants, fuel cell reagents, life support consumables, and feedstock for manufacturing & construction); surface construction (radiation shields, landing pads, walls, habitats, etc.); manufacturing and repair with in-situ resources (spare parts, wires, trusses, integrated systems etc.); and space utilities and power from space resources. On January 27th, 2004 the President's Commission on Implementation of U.S. Space Exploration Policy (Aldridge Committee) was created and its final report was released in June 2004. One of the report's recommendations was to establish special project teams to evaluate enabling technologies, of which "Planetary in situ resource utilization" was one of them. Based on the VSE and the commission's final report, NASA established fifteen Capability Roadmap teams, of which ISRU was one of the teams established. From Oct. 2004 to May 2005 the ISRU Capability Roadmap team examined the capabilities, benefits, architecture and mission implementation strategy, critical decisions, current state-of-the-art (SOA), challenges, technology gaps, and risks of ISRU for future human Moon and Mars exploration. This presentation will provide an overview of the ISRU capability, architecture, and implementation strategy examined by the ISRU Capability Roadmap team, along with a top-level review of ISRU benefits, resources and products of interest, and the current SOA in ISRU processes and systems. The presentation will also highlight the challenges of incorporating ISRU into future missions and the gaps in technologies and capabilities that need to be filled to enable ISRU.
A Comparison of Risk Sensitive Path Planning Methods for Aircraft Emergency Landing
NASA Technical Reports Server (NTRS)
Meuleau, Nicolas; Plaunt, Christian; Smith, David E.; Smith, Tristan
2009-01-01
Determining the best site to land a damaged aircraft presents some interesting challenges for standard path planning techniques. There are multiple possible locations to consider, the space is 3-dimensional with dynamics, the criteria for a good path is determined by overall risk rather than distance or time, and optimization really matters, since an improved path corresponds to greater expected survival rate. We have investigated a number of different path planning methods for solving this problem, including cell decomposition, visibility graphs, probabilistic road maps (PRMs), and local search techniques. In their pure form, none of these techniques have proven to be entirely satisfactory - some are too slow or unpredictable, some produce highly non-optimal paths or do not find certain types of paths, and some do not cope well with the dynamic constraints when controllability is limited. In the end, we are converging towards a hybrid technique that involves seeding a roadmap with a layered visibility graph, using PRM to extend that roadmap, and using local search to further optimize the resulting paths. We describe the techniques we have investigated, report on our experiments with these techniques, and discuss when and why various techniques were unsatisfactory.
Branchi, Federica; Locatelli, Martina; Tomba, Carolina; Conte, Dario; Ferretti, Francesca; Elli, Luca
2016-06-01
Celiac disease is the most common autoimmune enteropathy in Western countries, and is usually associated with a good response to the gluten free diet and an excellent prognosis. However, a minority of patients develop complications of the disease, such as refractory celiac disease, ulcerative jejunoileitis and neoplastic complications such as adenocarcinoma of the small bowel and enteropathy associated T cell lymphoma. Neoplastic complications described in association with celiac disease have a high mortality rate, due to their aggressive behavior and to the usual advanced stage at the time of diagnosis. In recent years, the detection of small bowel lesions has dramatically improved thank to the availability of highly performing radiologic and endoscopic techniques. The diagnostic delay of malignant complications in patients with celiac disease may be improved by establishing a pragmatic flowchart for the identification and follow up of "at risk" patients. We performed a comprehensive review of the articles published on this issue in order to promote a roadmap to be applied when facing with celiac patients with suspected small bowel complications. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Basketter, David A; Clewell, Harvey; Kimber, Ian; Rossi, Annamaria; Blaauboer, Bas; Burrier, Robert; Daneshian, Mardas; Eskes, Chantra; Goldberg, Alan; Hasiwa, Nina; Hoffmann, Sebastian; Jaworska, Joanna; Knudsen, Thomas B; Landsiedel, Robert; Leist, Marcel; Locke, Paul; Maxwell, Gavin; McKim, James; McVey, Emily A; Ouédraogo, Gladys; Patlewicz, Grace; Pelkonen, Olavi; Roggen, Erwin; Rovida, Costanza; Ruhdel, Irmela; Schwarz, Michael; Schepky, Andreas; Schoeters, Greet; Skinner, Nigel; Trentz, Kerstin; Turner, Marian; Vanparys, Philippe; Yager, James; Zurlo, Joanne; Hartung, Thomas
2012-01-01
Systemic toxicity testing forms the cornerstone for the safety evaluation of substances. Pressures to move from traditional animal models to novel technologies arise from various concerns, including: the need to evaluate large numbers of previously untested chemicals and new products (such as nanoparticles or cell therapies), the limited predictivity of traditional tests for human health effects, duration and costs of current approaches, and animal welfare considerations. The latter holds especially true in the context of the scheduled 2013 marketing ban on cosmetic ingredients tested for systemic toxicity. Based on a major analysis of the status of alternative methods (Adler et al., 2011) and its independent review (Hartung et al., 2011), the present report proposes a roadmap for how to overcome the acknowledged scientific gaps for the full replacement of systemic toxicity testing using animals. Five whitepapers were commissioned addressing toxicokinetics, skin sensitization, repeated-dose toxicity, carcinogenicity, and reproductive toxicity testing. An expert workshop of 35 participants from Europe and the US discussed and refined these whitepapers, which were subsequently compiled to form the present report. By prioritizing the many options to move the field forward, the expert group hopes to advance regulatory science.
Chemical Vapor Deposition for Ultra-lightweight Thin-film Solar Arrays for Space
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Jin, Michael H.; Lau, Janice E.; Harris, Jerry D.; Cowen, Jonathan E.; Duraj, Stan A.
2002-01-01
The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. A key technical issues outlined in the 2001 U.S. Photovoltaic Roadmap, is the need to develop low cost, high throughput manufacturing for high-efficiency thin film solar cells. At NASA GRC we have focused on the development of new single-source-precursors (SSPs) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV devices.
Teacher Quality Roadmap: Improving Policies and Practices in the Miami-Dade County Public Schools
ERIC Educational Resources Information Center
National Council on Teacher Quality, 2012
2012-01-01
In partnership with the Urban League of Greater Miami, the National Council on Teacher Quality (NCTQ) released "Teacher Quality Roadmap: Improving Policies and Practices in Miami," an in-depth study of the work rules Miami-Dade teachers. This look at the state of teacher policies in Miami-Dade County Public Schools explores the…
ERIC Educational Resources Information Center
Veliyath, Rajaram; Adams, Janet S.
2005-01-01
The course syllabus is a contract between instructor and students, a schedule of course assignments and activities, and a roadmap delineating objectives and checkpoints in the course. It is also a planning and reference tool for both students and instructor, and it models professors' expectations for their students. This study investigated whether…
Going Further: A Roadmap to the Works of the ACCLAIM Research Initiative. Working Paper No. 42
ERIC Educational Resources Information Center
Wilson, Zach; Howley, Craig
2012-01-01
"Going Further" presents a roadmap to the works of the ACCLAIM (Appalachian Collaborative Center for Learning, Assessment, and Instruction in Mathematics) Research Initiative, the research effort of one the Centers for Learning and Teaching (CLTs) created with a grant (2001-2005) from the National Science Foundation. The Center began…
Reducing Energy Burden with Solar: Colorado's Strategy and Roadmap for
-income residents suffer from a high energy burden, which can force these residents to choose between . The report concludes with a roadmap other states might consider when developing their own low-income states might learn from the state's experience when they design their own programs. The report concludes
NASA Technology Area 1: Launch Propulsion Systems
NASA Technical Reports Server (NTRS)
McConnaughey, Paul; Femminineo, Mark; Koelfgen, Syri; Lepsch, Roger; Ryan, Richard M.; Taylor, Steven A.
2011-01-01
This slide presentation reviews the technology advancements plans for the NASA Technology Area 1, Launch Propulsion Systems Technology Area (LPSTA). The draft roadmap reviews various propulsion system technologies that will be developed during the next 25 + years. This roadmap will be reviewed by the National Research Council which will issue a final report, that will include findings and recommendations.
ERIC Educational Resources Information Center
Fox, Lise; Veguilla, Myrna; Perez Binder, Denise
2014-01-01
The Technical Assistance Center on Social Emotional Intervention for Young Children (TACSEI) Roadmap on "Data Decision-Making and Program-Wide Implementation of the Pyramid Model" provides programs with guidance on how to collect and use data to ensure the implementation of the Pyramid Model with fidelity and decision-making that…
U.S. Department of Energy Office of Indian Energy Policy and Programs: Strategic Roadmap 2025
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy Office of Indian Energy Policy and Programs Strategic Roadmap 2025 outlines strategic target areas and tactical actions to ensure the Office remains aligned with its congressional mandates and DOE goals, and that it can be responsive to changing conditions in Indian Country and the nation.
Defining the role of silvicultural research in the Northeastern Forest Experiment Station
Chris Nowak; Susan Stout; John Brissette; Laura Kenefic; Gary Miller; Bill Leak; Dan Yaussy; Tom Schuler; Kurt Gottschalk
1997-01-01
Research planning in the Northeastern Forest Experiment Station has followed a grass roots model for more than two years-ROADMAP, a research and development management plan. The goals for research within ROADMAP include understanding, protecting, managing, and utilizing forest ecosystems. There are nine research themes set to help achieve these goals, each with a set...
The technology roadmap for plant/crop-based renewable resources 2020
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaren, J.
1999-02-22
The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hitmore » the vision target of a fivefold increase in renewable resource use by 2020.« less
The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1999-02-01
The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hitmore » the vision target of a fivefold increase in renewable resource use by 2020.« less
NASA Technical Reports Server (NTRS)
McNeal, Curtis I., Jr.; Anderson, William
1999-01-01
NASA's current focus on technology roadmaps as a tool for guiding investment decisions leads naturally to a discussion of NASA's roadmap for peroxide propulsion system development. NASA's new Second Generation Space Transportation System roadmap calls for an integrated Reusable Upper-Stage (RUS) engine technology demonstration in the FY03/FY04 time period. Preceding this integrated demonstration are several years of component developments and subsystem technology demonstrations. NASA and the Air Force took the first steps at developing focused upper stage technologies with the initiation of the Upper Stage Flight Experiment with Orbital Sciences in December 1997. A review of this program's peroxide propulsion development is a useful first step in establishing the peroxide propulsion pathway that could lead to a RUS demonstration in 2004.
A roadmap to effective urban climate change adaptation
NASA Astrophysics Data System (ADS)
Setiadi, R.
2018-03-01
This paper outlines a roadmap to effective urban climate change adaptation built from our practical understanding of the evidence and effects of climate change and the preparation of climate change adaptation strategies and plans. This roadmap aims to drive research in achieving fruitful knowledge and solution-based achievable recommendations in adapting to climate change in urban areas with effective and systematic manner. This paper underscores the importance of the interplay between local government initiatives and a national government for effective adaptation to climate change and takes into account the policy process and politics. This paper argues that effective urban climate change adaptation has a contribution to build urban resilience and helps the achievement of national government goals and targets in climate change adaptation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stukel, Laura; Hoen, Ben; Adomatis, Sandra
Capturing the Sun: A Roadmap for Navigating Data-Access Challenges and Auto-Populating Solar Home Sales Listings supports a vision of solar photovoltaic (PV) advocates and real estate advocates evolving together to make information about solar homes more accessible to home buyers and sellers and to simplify the process when these homes are resold. The Roadmap is based on a concept in the real estate industry known as automatic population of fields. Auto-population (also called auto-pop in the industry) is the technology that allows data aggregated by an outside industry to be matched automatically with home sale listings in a multiple listingmore » service (MLS).« less
Comparing ESC and iPSC-Based Models for Human Genetic Disorders.
Halevy, Tomer; Urbach, Achia
2014-10-24
Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients' somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn't be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovel, Harold; Prettyman, Kevin
A side-by-side analysis was done on then currently available technology, along with roadmaps to push each particular option forward. Variations in turnkey line processes can and do result in finished solar device performance. Together with variations in starting material quality, the result is a distribution of effciencies. Forensic analysis and characterization of each crystalline Si based technology will determine the most promising approach with respect to cost, efficiency and reliability. Forensic analysis will also shed light on the causes of binning variations. Si solar cells were forensically analyzed from each turn key supplier using a host of techniques
Sackstein, Robert
2009-07-01
During evolution of the vertebrate cardiovascular system, the vast endothelial surface area associated with branching vascular networks mandated the development of molecular processes to efficiently and specifically recruit circulating sentinel host defense cells and tissue repair cells at localized sites of inflammation/tissue injury. The forces engendered by high-velocity blood flow commensurately required the evolution of specialized cell surface molecules capable of mediating shear-resistant endothelial adhesive interactions, thus literally capturing relevant cells from the blood stream onto the target endothelial surface and permitting subsequent extravasation. The principal effectors of these shear-resistant binding interactions comprise a family of C-type lectins known as 'selectins' that bind discrete sialofucosylated glycans on their respective ligands. This review explains the 'intelligent design' of requisite reagents to convert native CD44 into the sialofucosylated glycoform known as hematopoietic cell E-/L-selectin ligand (HCELL), the most potent E-selectin counter-receptor expressed on human cells, and will describe how ex vivo glycan engineering of HCELL expression may open the 'avenues' for the efficient vascular delivery of cells for a variety of cell therapies.
Comparative Effectiveness Research: A Roadmap for Physical Activity and Lifestyle
Jakicic, John M.; Sox, Harold; Blair, Steven N.; Bensink, Mark; Johnson, William G.; King, Abby C.; Lee, I-Min; Nahum-Shani, Inbal; Sallis, James F.; Sallis, Robert E.; Craft, Lynette; Whitehead, James R.; Ainsworth, Barbara E.
2017-01-01
Purpose Comparative Effectiveness Research (CER) is designed to support informed decision making at both the individual, population, and policy levels. The American College of Sports Medicine and partners convened a conference with the focus of building an agenda for CER within the context of physical activity and non-pharmacological lifestyle approaches in the prevention and treatment of chronic disease. This report summarizes the conference content and consensus recommendations that culminated in a CER Roadmap for Physical Activity and Lifestyle approaches to reducing the risk of chronic disease. Methods This conference focused on presentations and discussion around the following topic areas: 1) defining CER, 2) identifying the current funding climate to support CER, 3) summarizing methods for conducting CER, and 4) identifying CER opportunities for physical activity. Results This conference resulted in consensus recommendations to adopt a CER Roadmap for Physical Activity and Lifestyle approaches to reducing the risk of chronic disease. In general, this roadmap provides a systematic framework by which CER for physical activity can move from a planning phase, to a phase of engagement in CER related to lifestyle factors with particular emphasis on physical activity, to a societal change phase that results in changes in policy, practice, and health. Conclusions It is recommended that physical activity researchers and healthcare providers use the roadmap developed from this conference as a method to systematically engage in and apply CER to the promotion of physical activity as a key lifestyle behavior that can be effective at impacting a variety of health-related outcomes. PMID:25426735
Linking Six Sigma to simulation: a new roadmap to improve the quality of patient care.
Celano, Giovanni; Costa, Antonio; Fichera, Sergio; Tringali, Giuseppe
2012-01-01
Improving the quality of patient care is a challenge that calls for a multidisciplinary approach, embedding a broad spectrum of knowledge and involving healthcare professionals from diverse backgrounds. The purpose of this paper is to present an innovative approach that implements discrete-event simulation (DES) as a decision-supporting tool in the management of Six Sigma quality improvement projects. A roadmap is designed to assist quality practitioners and health care professionals in the design and successful implementation of simulation models within the define-measure-analyse-design-verify (DMADV) or define-measure-analyse-improve-control (DMAIC) Six Sigma procedures. A case regarding the reorganisation of the flow of emergency patients affected by vertigo symptoms was developed in a large town hospital as a preliminary test of the roadmap. The positive feedback from professionals carrying out the project looks promising and encourages further roadmap testing in other clinical settings. The roadmap is a structured procedure that people involved in quality improvement can implement to manage projects based on the analysis and comparison of alternative scenarios. The role of Six Sigma philosophy in improvement of the quality of healthcare services is recognised both by researchers and by quality practitioners; discrete-event simulation models are commonly used to improve the key performance measures of patient care delivery. The two approaches are seldom referenced and implemented together; however, they could be successfully integrated to carry out quality improvement programs. This paper proposes an innovative approach to bridge the gap and enrich the Six Sigma toolbox of quality improvement procedures with DES.
Leading from the Front of the Classroom: A Roadmap to Teacher Leadership That Works
ERIC Educational Resources Information Center
Aspen Institute, 2014
2014-01-01
In this paper, Leading Educators and the Aspen Institute propose a roadmap to empower teachers to lead from the front of the classroom. This paper outlines key phases that system administrators will need to consider as they build teacher leadership systems that address their highest priorities. For each phase, the Aspen Institute offers a…
ERIC Educational Resources Information Center
Castro, Helio; Putnik, Goran D.; Shah, Vaibhav
2012-01-01
Purpose: The aim of this paper is to analyze international and national research and development (R&D) programs and roadmaps for the manufacturing sector, presenting how agile and lean manufacturing models are addressed in these programs. Design/methodology/approach: In this review, several manufacturing research and development programs and…
ERIC Educational Resources Information Center
Data Quality Campaign, 2014
2014-01-01
High school feedback reports let school and district leaders know where their students go after graduation and how well they are prepared for college and beyond. This roadmap discusses the seven key focus areas the Data Quality Campaign (DQC) recommends states work on to ensure quality implementation of high school feedback reports.
Reducing Human Radiation Risks on Deep Space Missions
2017-09-01
Roadmap (2016). .........................................................108 Figure 53. Risk Assessment for Acute Radiation Syndrome Due to SPEs...Risk of Acute Radiation Syndromes Due to Solar Particle Events Figure 53 highlights the fact that acute radiation syndrome is a short-term risk...acceptable for long-term missions. Figure 53. Risk Assessment for Acute Radiation Syndrome Due to SPEs. Source: NASA Human Research Roadmap (2016
ERIC Educational Resources Information Center
Data Quality Campaign, 2014
2014-01-01
State licensure polices are meant to provide teacher preparation programs with direction about the skills teachers need to be qualified to teach, including skills to use data. This roadmap discusses the 10 key data use skills that states can include in a licensure policy with a quality focus on effective data use.
ERIC Educational Resources Information Center
Data Quality Campaign, 2016
2016-01-01
Every state can create secure, robust linkages between early childhood and K-12 data systems, and effectively use the information from these linkages to implement initiatives to support programs and children, answer key policy questions, and be transparent about how the state's early childhood investments prepare students for success in school and…
Unmanned Systems Integrated Roadmap FY2011-2036
2011-10-01
neuroscience , and cognition science may lead to the implementation of some of the most critical functionalities of heterogeneous, sensor net...Roadmap FY2011-2036 69 7.4.5.4 Encryption Unmanned systems incorporation of data encryption includes National Security Agency ( NSA ) Type 1 (for...see DODI 4660). Numerous other policies and initiatives are under development within the NSA to significantly streamline the certification processes
NASA Astrophysics Data System (ADS)
Corbisier, Christopher
2005-09-01
Research in Europe, as documented by an FHWA/AASHTO European Scan Tour held in May 2004, and recent activity in Arizona and California, has fostered much interest in ``quiet pavements.'' On September 14-16, 2004, an FHWA sponsored Roadmap to Quieter Highways workshop was held at Purdue University. Participants were from the disciplines of pavement, safety, and noise from FHWA, State departments of transportation, industry (paving associations, general contractors, tire, and vehicle manufacturers), and academia. After several breakout sessions in the areas of policy, construction, maintenance, analysis (measurement and prediction), research, and design, the group had identified the knowledge gaps and developed a plan to fill those gaps. Several activities have been implemented based on the Roadmap to Quieter Highways. An Expert Task Group was formed to provide a draft provisional standard for the measurement methodologies, e.g., source, wayside, pavement absorption. A Tire/Pavement 101 workshop is being developed to educate pavement practitioners in noise concepts and noise practitioners in pavement concepts. A Tire/Pavement Noise clearinghouse is being developed as a one-stop location for all current tire/pavement noise or quiet pavement activities. Several research studies have been started and a second workshop will be held in 2006 to assess progress of the Roadmap.
Enhancing the Therapeutic Efficacy of Cancer Treatment With Cannabinoids
Yasmin-Karim, Sayeda; Moreau, Michele; Mueller, Romy; Sinha, Neeharika; Dabney, Raymond; Herman, Allen; Ngwa, Wilfred
2018-01-01
Over the years, many in vitro and in vivo studies have shown the antineoplastic effects of cannabinoids (CBDs), with reports advocating for investigations of combination therapy approaches that could better leverage these effects in clinical translation. This study explores the potential of combination approaches employing CBDs with radiotherapy (RT) or smart biomaterials toward enhancing therapeutic efficacy during treatment of pancreatic and lung cancers. In in vitro studies, clonogenic assay results showed greater effective tumor cell killing, when combining CBDs and RT. Meanwhile, in vivo study results revealed major increase in survival when employing smart biomaterials for sustained delivery of CBDs to tumor cells. The significance of these findings, considerations for further research, and viable roadmap to clinical translation are discussed. PMID:29740535
Recombinant modified vaccinia virus Ankara-based malaria vaccines.
Sebastian, Sarah; Gilbert, Sarah C
2016-01-01
A safe and effective malaria vaccine is a crucial part of the roadmap to malaria elimination/eradication by the year 2050. Viral-vectored vaccines based on adenoviruses and modified vaccinia virus Ankara (MVA) expressing malaria immunogens are currently being used in heterologous prime-boost regimes in clinical trials for induction of strong antigen-specific T-cell responses and high-titer antibodies. Recombinant MVA is a safe and well-tolerated attenuated vector that has consistently shown significant boosting potential. Advances have been made in large-scale MVA manufacture as high-yield producer cell lines and high-throughput purification processes have recently been developed. This review describes the use of MVA as malaria vaccine vector in both preclinical and clinical studies in the past 5 years.
NASA Capability Roadmaps Executive Summary
NASA Technical Reports Server (NTRS)
Willcoxon, Rita; Thronson, Harley; Varsi, Guilio; Mueller, Robert; Regenie, Victoria; Inman, Tom; Crooke, Julie; Coulter, Dan
2005-01-01
This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps.
Svingen, Terje; Koopman, Peter
2013-01-01
Development of testes in the mammalian embryo requires the formation and assembly of several cell types that allow these organs to achieve their roles in male reproduction and endocrine regulation. Testis development is unusual in that several cell types such as Sertoli, Leydig, and spermatogonial cells arise from bipotential precursors present in the precursor tissue, the genital ridge. These cell types do not differentiate independently but depend on signals from Sertoli cells that differentiate under the influence of transcription factors SRY and SOX9. While these steps are becoming better understood, the origins and roles of many testicular cell types and structures—including peritubular myoid cells, the tunica albuginea, the arterial and venous blood vasculature, lymphatic vessels, macrophages, and nerve cells—have remained unclear. This review synthesizes current knowledge of how the architecture of the testis unfolds and highlights the questions that remain to be explored, thus providing a roadmap for future studies that may help illuminate the causes of XY disorders of sex development, infertility, and testicular cancers. PMID:24240231
The 2016 oxide electronic materials and oxide interfaces roadmap
NASA Astrophysics Data System (ADS)
Lorenz, M.; Ramachandra Rao, M. S.; Venkatesan, T.; Fortunato, E.; Barquinha, P.; Branquinho, R.; Salgueiro, D.; Martins, R.; Carlos, E.; Liu, A.; Shan, F. K.; Grundmann, M.; Boschker, H.; Mukherjee, J.; Priyadarshini, M.; DasGupta, N.; Rogers, D. J.; Teherani, F. H.; Sandana, E. V.; Bove, P.; Rietwyk, K.; Zaban, A.; Veziridis, A.; Weidenkaff, A.; Muralidhar, M.; Murakami, M.; Abel, S.; Fompeyrine, J.; Zuniga-Perez, J.; Ramesh, R.; Spaldin, N. A.; Ostanin, S.; Borisov, V.; Mertig, I.; Lazenka, V.; Srinivasan, G.; Prellier, W.; Uchida, M.; Kawasaki, M.; Pentcheva, R.; Gegenwart, P.; Miletto Granozio, F.; Fontcuberta, J.; Pryds, N.
2016-11-01
Oxide electronic materials provide a plethora of possible applications and offer ample opportunity for scientists to probe into some of the exciting and intriguing phenomena exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum of properties, the nanoscale form of oxides provides a new dimension of hitherto unknown phenomena due to the increased surface-to-volume ratio. Oxide electronic materials are becoming increasingly important in a wide range of applications including transparent electronics, optoelectronics, magnetoelectronics, photonics, spintronics, thermoelectrics, piezoelectrics, power harvesting, hydrogen storage and environmental waste management. Synthesis and fabrication of these materials, as well as processing into particular device structures to suit a specific application is still a challenge. Further, characterization of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap on ‘oxide electronic materials and oxide interfaces’. This roadmap envisages the potential applications of oxide materials in cutting edge technologies and focuses on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide-based devices. The contents of this roadmap will highlight the functional and correlated properties of oxides in bulk, nano, thin film, multilayer and heterostructure forms, as well as the theoretical considerations behind both present and future applications in many technologically important areas as pointed out by Venkatesan. The contributions in this roadmap span several thematic groups which are represented by the following authors: novel field effect transistors and bipolar devices by Fortunato, Grundmann, Boschker, Rao, and Rogers; energy conversion and saving by Zaban, Weidenkaff, and Murakami; new opportunities of photonics by Fompeyrine, and Zuniga-Perez; multiferroic materials including novel phenomena by Ramesh, Spaldin, Mertig, Lorenz, Srinivasan, and Prellier; and concepts for topological oxide electronics by Kawasaki, Pentcheva, and Gegenwart. Finally, Miletto Granozio presents the European action ‘towards oxide-based electronics’ which develops an oxide electronics roadmap with emphasis on future nonvolatile memories and the required technologies. In summary, we do hope that this oxide roadmap appears as an interesting up-to-date snapshot on one of the most exciting and active areas of solid state physics, materials science, and chemistry, which even after many years of very successful development shows in short intervals novel insights and achievements. Guest editors: M S Ramachandra Rao and Michael Lorenz
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.
2010-01-01
Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.
Han, Xiaoping; Chen, Haide; Huang, Daosheng; Chen, Huidong; Fei, Lijiang; Cheng, Chen; Huang, He; Yuan, Guo-Cheng; Guo, Guoji
2018-04-05
Human pluripotent stem cells (hPSCs) provide powerful models for studying cellular differentiations and unlimited sources of cells for regenerative medicine. However, a comprehensive single-cell level differentiation roadmap for hPSCs has not been achieved. We use high throughput single-cell RNA-sequencing (scRNA-seq), based on optimized microfluidic circuits, to profile early differentiation lineages in the human embryoid body system. We present a cellular-state landscape for hPSC early differentiation that covers multiple cellular lineages, including neural, muscle, endothelial, stromal, liver, and epithelial cells. Through pseudotime analysis, we construct the developmental trajectories of these progenitor cells and reveal the gene expression dynamics in the process of cell differentiation. We further reprogram primed H9 cells into naïve-like H9 cells to study the cellular-state transition process. We find that genes related to hemogenic endothelium development are enriched in naïve-like H9. Functionally, naïve-like H9 show higher potency for differentiation into hematopoietic lineages than primed cells. Our single-cell analysis reveals the cellular-state landscape of hPSC early differentiation, offering new insights that can be harnessed for optimization of differentiation protocols.
Synthesis of many different types of organic small molecules using one automated process.
Li, Junqi; Ballmer, Steven G; Gillis, Eric P; Fujii, Seiko; Schmidt, Michael J; Palazzolo, Andrea M E; Lehmann, Jonathan W; Morehouse, Greg F; Burke, Martin D
2015-03-13
Small-molecule synthesis usually relies on procedures that are highly customized for each target. A broadly applicable automated process could greatly increase the accessibility of this class of compounds to enable investigations of their practical potential. Here we report the synthesis of 14 distinct classes of small molecules using the same fully automated process. This was achieved by strategically expanding the scope of a building block-based synthesis platform to include even C(sp3)-rich polycyclic natural product frameworks and discovering a catch-and-release chromatographic purification protocol applicable to all of the corresponding intermediates. With thousands of compatible building blocks already commercially available, many small molecules are now accessible with this platform. More broadly, these findings illuminate an actionable roadmap to a more general and automated approach for small-molecule synthesis. Copyright © 2015, American Association for the Advancement of Science.
Wolfrum, Bernhard; Thierry, Benjamin
2018-01-01
Owing to their two-dimensional confinements, silicon nanowires display remarkable optical, magnetic, and electronic properties. Of special interest has been the development of advanced biosensing approaches based on the field effect associated with silicon nanowires (SiNWs). Recent advancements in top-down fabrication technologies have paved the way to large scale production of high density and quality arrays of SiNW field effect transistor (FETs), a critical step towards their integration in real-life biosensing applications. A key requirement toward the fulfilment of SiNW FETs’ promises in the bioanalytical field is their efficient integration within functional devices. Aiming to provide a comprehensive roadmap for the development of SiNW FET based sensing platforms, we critically review and discuss the key design and fabrication aspects relevant to their development and integration within complementary metal-oxide-semiconductor (CMOS) technology. PMID:29751688
NASA Workshop on Technology for Human Robotic Exploration and Development of Space
NASA Technical Reports Server (NTRS)
Mankins, J. C.; Marzwell, N.; Mullins, C. A.; Christensen, C. B.; Howell, J. T.; O'Neil, D. A.
2004-01-01
Continued constrained budgets and growing interests in the industrialization and development of space requires NASA to seize every opportunity for assuring the maximum return on space infrastructure investments. This workshop provided an excellent forum for reviewing, evaluating, and updating pertinent strategic planning, identifying advanced concepts and high-risk/high-leverage research and technology requirements, developing strategies and roadmaps, and establishing approaches, methodologies, modeling, and tools for facilitating the commercial development of space and supporting diverse exploration and scientific missions. Also, the workshop addressed important topic areas including revolutionary space systems requiring investments in innovative advanced technologies; achieving transformational space operations through the insertion of new technologies; revolutionary science in space through advanced systems and new technologies enabling experiments to go anytime to any location; and, innovative and ambitious concepts and approaches essential for promoting advancements in space transportation. Details concerning the workshop process, structure, and results are contained in the ensuing report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, Theodore E.
2013-05-06
The technical paper summarizes the project work conducted in the development of Kerf-Free silicon wafering equipment for silicon solar wafering. This new PolyMax technology uses a two step process of implantation and cleaving to exfoliate 50um to 120um wafers with thicknesses ranging from 50um to 120um from a 125mm or 156mm pseudo-squared silicon ingot. No kerf is generated using this method of wafering. This method of wafering contrasts with the current method of making silicon solar wafers using the industry standard wire saw equipment. The report summarizes the activity conducted by Silicon Genesis Corporation in working to develop this technologymore » further and to define the roadmap specifications for the first commercial proto-type equipment for high volume solar wafer manufacturing using the PolyMax technology.« less
Transition in Gas Turbine Control System Architecture: Modular, Distributed, and Embedded
NASA Technical Reports Server (NTRS)
Culley, Dennis
2010-01-01
Controls systems are an increasingly important component of turbine-engine system technology. However, as engines become more capable, the control system itself becomes ever more constrained by the inherent environmental conditions of the engine; a relationship forced by the continued reliance on commercial electronics technology. A revolutionary change in the architecture of turbine-engine control systems will change this paradigm and result in fully distributed engine control systems. Initially, the revolution will begin with the physical decoupling of the control law processor from the hostile engine environment using a digital communications network and engine-mounted high temperature electronics requiring little or no thermal control. The vision for the evolution of distributed control capability from this initial implementation to fully distributed and embedded control is described in a roadmap and implementation plan. The development of this plan is the result of discussions with government and industry stakeholders
SpaceView (Viral Space Situational Awareness) One Year Update
NASA Astrophysics Data System (ADS)
Gleckler, A.; Butterfield, M.; Copenhaver, R.; Wade, A.; Apponi, A.
2013-09-01
Viral SSA takes advantage of the amateur astronomy community to provide an extremely low-cost and geographically-diverse network of optical SSA sites. In the spirit of programs such as DARPA's Grand Challenge and the National Weather Service's program of providing amateur meteorologists with weather stations linked to a central professional meteorological facility, we form a cooperative bond with a willing community of technicallyminded individuals. We term this program "viral" because we will qualify an initial set of astronomers for SSA operation and then use word of mouth in the astronomy community, as well as an outreach program, to pull in new observers. The use of modern remote controlled telescopes allows the incorporation of certified amateur, university, and commercial telescope systems. The availability of the local Viral SSA member for troubleshooting eliminates most significant costs of operating a large network. In this talk, we discuss the project's first year and the roadmap for the next two years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Darryn D.; Holschuh, Thomas Vernon,; Conboy, Thomas M.
2013-11-01
Small-scale supercritical CO2 demonstration loops are successful at identifying the important technical issues that one must face in order to scale up to larger power levels. The Sandia National Laboratories supercritical CO2 Brayton cycle test loops are identifying technical needs to scale the technology to commercial power levels such as 10 MWe. The small size of the Sandia 1 MWth loop has demonstration of the split flow loop efficiency and effectiveness of the Printed Circuit Heat Exchangers (PCHXs) leading to the design of a fully recuperated, split flow, supercritical CO2 Brayton cycle demonstration system. However, there were many problems thatmore » were encountered, such as high rotational speeds in the units. Additionally, the turbomachinery in the test loops need to identify issues concerning the bearings, seals, thermal boundaries, and motor controller problems in order to be proved a reliable power source in the 300 kWe range. Although these issues were anticipated in smaller demonstration units, commercially scaled hardware would eliminate these problems caused by high rotational speeds at small scale. The economic viability and development of the future scalable 10 MWe solely depends on the interest of DOE and private industry. The Intellectual Property collected by Sandia proves that the ~10 MWe supercritical CO2 power conversion loop to be very beneficial when coupled to a 20 MWth heat source (either solar, geothermal, fossil, or nuclear). This paper will identify a commercialization plan, as well as, a roadmap from the simple 1 MWth supercritical CO2 development loop to a power producing 10 MWe supercritical CO2 Brayton loop.« less
A New Security Paradigm for Anti-Counterfeiting: Guidelines and an Implementation Roadmap
NASA Astrophysics Data System (ADS)
Lehtonen, Mikko
Product counterfeitingand piracy continue to plague brand and trademark owners across industry sectors. This chapter analyses the reasons for ineffectiveness of past technical anti-counterfeitingstrategies and formulates managerial guidelines for effective use of RFID in anti-counterfeiting. An implementation roadmap toward secure authentication of products tagged with EPC Gen-2 tags is proposed and possible supply chain locations for product checks are discussed.
A Roadmap for Cybersecurity Research
2009-11-01
Compile and compare existing studies relating to the insider threat. (Detect) �� Develop data collection mechanisms and collect data. (Detect...for capturing provenance. The model aims to make it easier for provenance to be exchanged between systems, to support development of provenance... It is the opinion of those involved in creating this research roadmap that government-funded research and development (R&D) must play an increasing
The ASTRONET Infrastructure Roadmap: A Twenty Year Strategy for European Astronomy
NASA Astrophysics Data System (ADS)
Bode, M.; Monnet, G.
2008-12-01
The process followed by ASTRONET to build a long-term strategy for European astronomy is presented. The main conclusions and priorities given in the recently unveiled report on the Infrastructure Roadmap for the next 20 years, following the establishment of a Science Vision last year, are summarised. These reports together hopefully represent a blueprint for a bright future for European astronomy.
Sol-Terra - AN Operational Space Weather Forecasting Model Framework
NASA Astrophysics Data System (ADS)
Bisi, M. M.; Lawrence, G.; Pidgeon, A.; Reid, S.; Hapgood, M. A.; Bogdanova, Y.; Byrne, J.; Marsh, M. S.; Jackson, D.; Gibbs, M.
2015-12-01
The SOL-TERRA project is a collaboration between RHEA Tech, the Met Office, and RAL Space funded by the UK Space Agency. The goal of the SOL-TERRA project is to produce a Roadmap for a future coupled Sun-to-Earth operational space weather forecasting system covering domains from the Sun down to the magnetosphere-ionosphere-thermosphere and neutral atmosphere. The first stage of SOL-TERRA is underway and involves reviewing current models that could potentially contribute to such a system. Within a given domain, the various space weather models will be assessed how they could contribute to such a coupled system. This will be done both by reviewing peer reviewed papers, and via direct input from the model developers to provide further insight. Once the models have been reviewed then the optimal set of models for use in support of forecast-based SWE modelling will be selected, and a Roadmap for the implementation of an operational forecast-based SWE modelling framework will be prepared. The Roadmap will address the current modelling capability, knowledge gaps and further work required, and also the implementation and maintenance of the overall architecture and environment that the models will operate within. The SOL-TERRA project will engage with external stakeholders in order to ensure independently that the project remains on track to meet its original objectives. A group of key external stakeholders have been invited to provide their domain-specific expertise in reviewing the SOL-TERRA project at critical stages of Roadmap preparation; namely at the Mid-Term Review, and prior to submission of the Final Report. This stakeholder input will ensure that the SOL-TERRA Roadmap will be enhanced directly through the input of modellers and end-users. The overall goal of the SOL-TERRA project is to develop a Roadmap for an operational forecast-based SWE modelling framework with can be implemented within a larger subsequent activity. The SOL-TERRA project is supported within the UK Space Agency's National Space Technology Programme under contract number RP10G0348A03.
NASA Technical Reports Server (NTRS)
Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert
2011-01-01
At present, NASA has considered a number of future human space exploration mission concepts . Yet, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents a roadmap for development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed by NASA subject matter experts. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capabilities needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs will, in many cases, directly benefit the ISS operational capability, benefit the Multi-Purpose Crew Vehicle (MPCV), and guide long-term technology investments for longer duration missions The final product of this paper is an agreed-to ECLSS roadmap detailing ground and flight testing to support the three mission scenarios previously mentioned. This information will also be used to develop the integrated NASA budget submit in January 2012.
Scientific and technical challenges on the road towards fusion electricity
NASA Astrophysics Data System (ADS)
Donné, A. J. H.; Federici, G.; Litaudon, X.; McDonald, D. C.
2017-10-01
The goal of the European Fusion Roadmap is to deliver fusion electricity to the grid early in the second half of this century. It breaks the quest for fusion energy into eight missions, and for each of them it describes a research and development programme to address all the open technical gaps in physics and technology and estimates the required resources. It points out the needs to intensify industrial involvement and to seek all opportunities for collaboration outside Europe. The roadmap covers three periods: the short term, which runs parallel to the European Research Framework Programme Horizon 2020, the medium term and the long term. ITER is the key facility of the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. Thus, the vast majority of present resources are dedicated to ITER and its accompanying experiments. The medium term is focussed on taking ITER into operation and bringing it to full power, as well as on preparing the construction of a demonstration power plant DEMO, which will for the first time demonstrate fusion electricity to the grid around the middle of this century. Building and operating DEMO is the subject of the last roadmap phase: the long term. Clearly, the Fusion Roadmap is tightly connected to the ITER schedule. Three key milestones are the first operation of ITER, the start of the DT operation in ITER and reaching the full performance at which the thermal fusion power is 10 times the power put in to the plasma. The Engineering Design Activity of DEMO needs to start a few years after the first ITER plasma, while the start of the construction phase will be a few years after ITER reaches full performance. In this way ITER can give viable input to the design and development of DEMO. Because the neutron fluence in DEMO will be much higher than in ITER, it is important to develop and validate materials that can handle these very high neutron loads. For the testing of the materials, a dedicated 14 MeV neutron source is needed. This DEMO Oriented Neutron Source (DONES) is therefore an important facility to support the fusion roadmap.
Rapid Cost Assessment of Space Mission Concepts Through Application of Complexity-Based Cost Indices
NASA Technical Reports Server (NTRS)
Peterson, Craig E.; Cutts, James; Balint, Tibor; Hall, James B.
2008-01-01
This slide presentation reviews the development of a rapid cost assessment models for evaluation of exploration missions through the application of complexity based cost indices. In Fall of 2004, NASA began developing 13 documents, known as "strategic roadmaps," intended to outline a strategy for space exploration over the next 30 years. The Third Strategic Roadmap, The Strategic Roadmap for Solar System Exploration, focused on strategy for robotic exploration of the Solar System. Development of the Strategic Roadmap for Solar System Exploration led to the investigation of a large variety of missions. However, the necessity of planning around scientific inquiry and budgetary constraints made it necessary for the roadmap development team to evaluate potential missions not only for scientific return but also cost. Performing detailed cost studies for each of the large number of missions was impractical given the time constraints involved and lack of detailed mission studies; so a method of rapid cost assessment was developed by us to allow preliminary analysis. It has been noted that there is a strong correlation between complexity and cost and schedule of planetary missions. While these correlations were made after missions had been built and flown (successfully or otherwise), it seemed likely that a similar approach could provide at least some relative cost ranking. Cost estimation relationships (CERs) have been developed based on subsystem design choices. These CERs required more detailed information than available, forcing the team to adopt a more high level approach. Costing by analogy has been developed for small satellites, however, planetary exploration missions provide such varying spacecraft requirements that there is a lack of adequately comparable missions that can be used for analogy.
Roadmap to achieve 25% hypertension control in Africa by 2025
Dzudie, Anastase; Kingue, Samuel; Dzudie, Anastase; Sliwa, Karen; Mayosi, Bongani; Dzudie, Anastase; Sliwa, Karen; Rayner, Brian; Ojji, Dike; Schutte, Aletta E; Twagirumukiza, Marc; Damasceno, Albertino; Ba, Seringe Abdou; Kane, Abdoul; Kramoh, Euloge; Kacou, Jean Baptiste Anzouan; Onwubere, Basden; Cornick, Ruth; Anisiuba, Benedict; Mocumbi, Ana Olga; Ogola, Elijah; Awad, Mohamed; Nel, George; Otieno, Harun; Toure, Ali Ibrahim; Kengne, Andre Pascal; Perel, Pablo; Adler, Alm; Poulter, Neil
2017-01-01
Summary Background and aim: The Pan-African Society of Cardiology (PASCAR) has identified hypertension as the highest area of priority for action to reduce heart disease and stroke on the continent. The aim of this PASCAR roadmap on hypertension was to develop practical guidance on how to implement strategies that translate existing knowledge into effective action and improve detection, treatment and control of hypertension and cardiovascular health in sub-Saharan Africa (SSA) by the year 2025. Methods: Development of this roadmap started with the creation of a consortium of experts with leadership skills in hypertension. In 2014, experts in different fields, including physicians and non-physicians, were invited to join. Via faceto- face meetings and teleconferences, the consortium made a situation analysis, set a goal, identified roadblocks and solutions to the management of hypertension and customised the World Heart Federation roadmap to Africa. Results: Hypertension is a major crisis on the continent but very few randomised, controlled trials have been conducted on its management. Also, only 25.8% of the countries have developed or adopted guidelines for the management of hypertension. Other major roadblocks are either government and health-system related or healthcare professional or patient related. The PASCAR hypertension task force identified a 10-point action plan to be implemented by African ministries of health to achieve 25% control of hypertension in Africa by 2025. Conclusions: Hypertension affects millions of people in SSA and if left untreated, is a major cause of heart disease and stroke. Very few SSA countries have a clear hypertension policy. This PASCAR roadmap identifies practical and effective solutions that would improve detection, treatment and control of hypertension on the continent and could be implemented as is or adapted to specific national settings. PMID:28906541
World Health Organization Public Health Model: A Roadmap for Palliative Care Development.
Callaway, Mary V; Connor, Stephen R; Foley, Kathleen M
2018-02-01
The Open Society Foundation's International Palliative Care Initiative (IPCI) began to support palliative care development in Central and Eastern Europe and the Former Soviet Union in 1999. Twenty-five country representatives were invited to discuss the need for palliative care in their countries and to identify key areas that should be addressed to improve the care of adults and children with life-limiting illnesses. As a public health concern, progress in palliative care requires integration into health policy, education and training of health care professionals, availability of essential pain relieving medications, and health care services. IPCI created the Palliative Care Roadmap to serve as a model for government and/or nongovernment organizations to use to frame the necessary elements and steps for palliative care integration. The roadmap includes the creation of multiple Ministry of Health-approved working groups to address: palliative care inclusion in national health policy, legislation, and finance; availability of essential palliative care medications, especially oral opioids; education and training of health care professionals; and the implementation of palliative care services at home or in inpatient settings for adults and children. Each working group is tasked with developing a pathway with multiple signposts as indicators of progress made. The roadmap may be entered at different signposts depending upon the state of palliative care development in the country. The progress of the working groups often takes place simultaneously but at variable rates. Based on our experience, the IPCI Roadmap is one possible framework for palliative care development in resource constrained countries but requires both health care professional engagement and political will for progress to be made. Copyright © 2017. Published by Elsevier Inc.
Earth Observations and the Role of UAVs: A Capabilities Assessment. Version 1.1
NASA Technical Reports Server (NTRS)
Cox, Timothy H.; Somers, Ivan; Fratello, David J.
2006-01-01
This document provides an assessment of the civil UAV missions and technologies and is intended to parallel the Office of the Secretary of Defense UAV Roadmap. The intent of this document is four-fold: 1. Determine and document desired future missions of Earth observation UAVs based on user-defined needs 2. Determine and document the technologies necessary to support those missions 3. Discuss the present state of the platform capabilities and required technologies, identifying those in progress, those planned, and those for which no current plans exist 4. Provide the foundations for development of a comprehensive civil UAV roadmap to complement the Department of Defense (DoD) effort (http://www.acq.osd.mil/uas/). Two aspects of the President's Management Agenda (refer to the document located at: www.whitehouse.gov/omb/budget/fy2002/mgmt.pdf ) are supported by this undertaking. First, it is one that will engage multiple Agencies in the effort as stakeholders and benefactors of the systems. In that sense, the market will be driven by the user requirements and applications. The second aspect is one of supporting economic development in the commercial sector. Market forecasts for the civil use of UAVs have indicated an infant market stage at present with a sustained forecasted growth. There is some difficulty in quantifying the value of the market since the typical estimate excludes system components other than the aerial platforms. Section 2.4 addresses the civil UAV market forecast and lists several independent forecasts. One conclusion that can be drawn from these forecasts is that all show a sustained growth for the duration of each long-term forecast.
Light Water Reactor Sustainability Program Integrated Program Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce
2014-04-01
Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution tomore » the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.« less
NASA Astrophysics Data System (ADS)
Zhang, Jiankang
2017-06-01
There are two roadmaps of accomplishing exhibition electronic-commerce innovation and development. The first roadmap is that the exhibition organizers should seek mutual benefit cooperation with professional electronic-commerce platform of correspondent area with exhibition projects, thus help exhibitors realize their market object. The second roadmap is to promote innovation and development of electronic-commerce (Business-to-Customer) between both exhibitors and purchasers. Exhibition electronic-commerce must focus on innovative development in the following functions: market research and information service; advertising and business negotiation; online trading and online payment. With the aid of electronic-commerce, exhibition enterprise could have distinctive strengths such as transactions with virtualization, transparency, high efficiency and low cost, enhancing market link during enterprise research and development, promoting the efficiency of internal team collaboration and the individuation of external service, and optimizing resource allocation.
Spacecraft Onboard Interface Services: Current Status and Roadmap
NASA Astrophysics Data System (ADS)
Prochazka, Marek; Lopez Trescastro, Jorge; Krueger, Sabine
2016-08-01
Spacecraft Onboard Interface Services (SOIS) is a set of CCSDS standards defining communication stack services to interact with hardware equipment onboard spacecraft. In 2014 ESA kicked off three parallel activities to critically review the SOIS standards, use legacy spacecraft flight software (FSW), make it compliant to a preselected subset of SOIS standards and make performance and architecture assessment. As a part of the three parallel activities, led by Airbus DS Toulouse, OHB Bremen and Thales Alenia Space Cannes respectively, it was to provide feedback back to ESA and CCSDS and also to propose a roadmap of transition towards an operational FSW system fully compliant to applicable SOIS standards. The objective of the paper is twofold: Firstly it is to summarise main results of the three parallel activities and secondly, based on the results, to propose a roadmap for the future.
Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
NASA Astrophysics Data System (ADS)
Ferrari, Andrea C.; Bonaccorso, Francesco; Fal'Ko, Vladimir; Novoselov, Konstantin S.; Roche, Stephan; Bøggild, Peter; Borini, Stefano; Koppens, Frank H. L.; Palermo, Vincenzo; Pugno, Nicola; Garrido, José A.; Sordan, Roman; Bianco, Alberto; Ballerini, Laura; Prato, Maurizio; Lidorikis, Elefterios; Kivioja, Jani; Marinelli, Claudio; Ryhänen, Tapani; Morpurgo, Alberto; Coleman, Jonathan N.; Nicolosi, Valeria; Colombo, Luigi; Fert, Albert; Garcia-Hernandez, Mar; Bachtold, Adrian; Schneider, Grégory F.; Guinea, Francisco; Dekker, Cees; Barbone, Matteo; Sun, Zhipei; Galiotis, Costas; Grigorenko, Alexander N.; Konstantatos, Gerasimos; Kis, Andras; Katsnelson, Mikhail; Vandersypen, Lieven; Loiseau, Annick; Morandi, Vittorio; Neumaier, Daniel; Treossi, Emanuele; Pellegrini, Vittorio; Polini, Marco; Tredicucci, Alessandro; Williams, Gareth M.; Hee Hong, Byung; Ahn, Jong-Hyun; Min Kim, Jong; Zirath, Herbert; van Wees, Bart J.; van der Zant, Herre; Occhipinti, Luigi; Di Matteo, Andrea; Kinloch, Ian A.; Seyller, Thomas; Quesnel, Etienne; Feng, Xinliang; Teo, Ken; Rupesinghe, Nalin; Hakonen, Pertti; Neil, Simon R. T.; Tannock, Quentin; Löfwander, Tomas; Kinaret, Jari
2015-03-01
We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
NASA Astrophysics Technology Needs
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2012-01-01
July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.
2007 Precision Strike PEO Summer Forum - Joint Perspectives on Precision Engagement
2007-07-11
Status,” Colonel Richard Justice, USAF—Commander of the Miniature Munitions Systems Group (MMSG), Eglin Air Force Base “Unmanned Systems (UAS) Roadmap...Role in the Roadmap Implementation Methods & Processes Working Group Issues delineated in Implementation Plan form basis for JTEM methodology...Test and Evaluation JMETC – Joint Mission Environment Test Capability WG – Working Group DOT&E AT&L DOT&E Unclassified 5 Background: JTEM Problem
Operational Resiliency Management: An Introduction to the Resiliency Engineering Framework
2006-09-20
Maturity Model Integration (CMMI) . 5 © 2006 Carnegie Mellon University y FRB Bus Con Conference 2006 Managing Today’s Operational Risk Challenges ...Bus Con Conference 2006 A model is needed to. . . Identify and prioritize risk exposures Define a process improvement roadmap Measure and facilitate...University y FRB Bus Con Conference 2006 Why use a “model” approach? Provides an operational risk roadmap Vendor-neutral, standardized, unbiased
ERIC Educational Resources Information Center
Darrow, Rob; Friend, Bruce; Powell, Allison
2013-01-01
This roadmap was designed to provide guidance to the New York City Department of Education (NYCDOE) school administrators in implementing blended learning programs in their own schools. Over the 2012-13 school year, the International Association for K-12 Online Learning (iNACOL) worked with 8 NYCDOE Lab Schools, each with its own blended learning…
2014-05-01
A Roadmap for Recovery/Decontamination Plan for Critical Infrastructure after CBRN Event Involving Drinking Water Utilities: Scoping Study... Drinking Water Utilities was supported by the Canadian Safety and Security Program (CSSP) which is led by Defence Research and Development Canada’s Centre...after CBRN Event Involving Drinking Water Utilities Scoping Study Prepared by: Vladimir Blinov Konstantin Volchek Emergencies Science and
U.S. Geological Survey Unmanned Aircraft Systems (UAS) Roadmap 2014
Cress, Jill J.; Hutt, Michael E.; Sloan, Jeff L.; Bauer, Mark A.; Feller, Mark R.; Goplen, Susan E.
2015-01-01
This Roadmap provides operational procedures and lessons learned from completed proof-of-concept UAS missions in areas such as wildlife management, resource monitoring, and public land inspections. This information provides not only an implementation framework but can also help increase the awareness by resource managers, scientists, and others of the ability of UAS technology to advance data quality, improve personnel safety, and reduce data acquisition costs.
2012-11-01
Building Information Modeling ( BIM ...12-2, Supplement 2 November 2012 The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling ( BIM ) Supplement 2 – BIM ...39180 ERDC SR-12-2, Supplement 2 (November 2012) ii Abstract Building Information Modeling ( BIM ) technology has rapidly gained ac-
2012-11-01
Building Information Modeling ( BIM ...12-2, Supplement 1 November 2012 The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling ( BIM ) Supplement 1 – BIM ...ERDC SR-12-2, Supplement 1 (November 2012) ii Abstract Building Information Modeling ( BIM ) technology has rapidly gained ac- ceptance throughout
Considering new methodologies in strategies for safety assessment of foods and food ingredients.
Blaauboer, Bas J; Boobis, Alan R; Bradford, Bobbie; Cockburn, Andrew; Constable, Anne; Daneshian, Mardas; Edwards, Gareth; Garthoff, Jossie A; Jeffery, Brett; Krul, Cyrille; Schuermans, Jeroen
2016-05-01
Toxicology and safety assessment are changing and require new strategies for evaluating risk that are less depending on apical toxicity endpoints in animal models and relying more on knowledge of the mechanism of toxicity. This manuscript describes a number of developments that could contribute to this change and implement this in a stepwise roadmap that can be applied for the evaluation of food and food ingredients. The roadmap was evaluated in four case studies by using literature and existing data. This preliminary evaluation was shown to be useful. However, this experience should be extended by including examples where experimental work needs to be included. To further implement these new insights in toxicology and safety assessment for the area of food and food ingredients, the recommendation is that stakeholders take action in addressing gaps in our knowledge, e.g. with regard to the applicability of the roadmap for mixtures and food matrices. Further development of the threshold of toxicological concern is needed, as well as cooperation with other sectors where similar schemes are under development. Moreover, a more comprehensive evaluation of the roadmap, also including the identification of the need for in vitro experimental work is recommended. Copyright © 2016 ILSI Europe. Published by Elsevier Ltd.. All rights reserved.
AstRoMap European Astrobiology Roadmap
Horneck, Gerda; Westall, Frances; Grenfell, John Lee; Martin, William F.; Gomez, Felipe; Leuko, Stefan; Lee, Natuschka; Onofri, Silvano; Tsiganis, Kleomenis; Saladino, Raffaele; Pilat-Lohinger, Elke; Palomba, Ernesto; Harrison, Jesse; Rull, Fernando; Muller, Christian; Strazzulla, Giovanni; Brucato, John R.; Rettberg, Petra; Capria, Maria Teresa
2016-01-01
Abstract The European AstRoMap project (supported by the European Commission Seventh Framework Programme) surveyed the state of the art of astrobiology in Europe and beyond and produced the first European roadmap for astrobiology research. In the context of this roadmap, astrobiology is understood as the study of the origin, evolution, and distribution of life in the context of cosmic evolution; this includes habitability in the Solar System and beyond. The AstRoMap Roadmap identifies five research topics, specifies several key scientific objectives for each topic, and suggests ways to achieve all the objectives. The five AstRoMap Research Topics are • Research Topic 1: Origin and Evolution of Planetary Systems• Research Topic 2: Origins of Organic Compounds in Space• Research Topic 3: Rock-Water-Carbon Interactions, Organic Synthesis on Earth, and Steps to Life• Research Topic 4: Life and Habitability• Research Topic 5: Biosignatures as Facilitating Life Detection It is strongly recommended that steps be taken towards the definition and implementation of a European Astrobiology Platform (or Institute) to streamline and optimize the scientific return by using a coordinated infrastructure and funding system. Key Words: Astrobiology roadmap—Europe—Origin and evolution of life—Habitability—Life detection—Life in extreme environments. Astrobiology 16, 201–243. PMID:27003862
Alharbi, Hulayel; Alkhateeb, Sultan; Murshid, Esam; Alotaibi, Mohammed; Abusamra, Ashraf; Rabah, Danny; Almansour, Mubarak; Alghamdi, Abdullah; Aljubran, Ali; Eltigani, Amin; Alkushi, Hussein; Ahmed, Imran; Alsharm, Abdullah; Bazarbashi, Shouki
2018-01-01
This is an update to the previously published Saudi guidelines for the evaluation and medical/surgical management of patients diagnosed with urothelial cell carcinoma of the urinary bladder. It is categorized according to the stage of the disease using the tumor node metastasis staging system, 7 th edition. The guidelines are presented with their accompanying supporting evidence level, which is based on comprehensive literature review, several internationally recognized guidelines, and the collective expertise of the guidelines committee members (authors) who were selected by the Saudi Oncology Society and Saudi Urological Association. Considerations to the local availability of drugs, technology, and expertise have been regarded. These guidelines should serve as a roadmap for the urologists, oncologists, general physicians, support groups, and health-care policymakers in the management of patients diagnosed with urothelial cell carcinoma of the urinary bladder.
Status of commercial fuel cell powerplant system development
NASA Technical Reports Server (NTRS)
Warshay, Marvin
1987-01-01
The primary focus is on the development of commercial Phosphoric Acid Fuel Cell (PAFC) powerplant systems because the PAFC, which has undergone extensive development, is currently the closest fuel cell system to commercialization. Shorter discussions are included on the high temperature fuel cell systems which are not as mature in their development, such as the Molten Carbonate Fuel Cell (MCFC) and the Solid Oxide Fuel Cell (SOFC). The alkaline and the Solid Polymer Electrolyte (SPE) fuel cell systems, are also included, but their discussions are limited to their prospects for commercial development. Currently, although the alkaline fuel cell continues to be used for important space applications there are no commercial development programs of significant size in the USA and only small efforts outside. The market place for fuel cells and the status of fuel cell programs in the USA receive extensive treatment. The fuel cell efforts outside the USA, especially the large Japanese programs, are also discussed.
NASA Technical Reports Server (NTRS)
Davidoff, Larry D.; Reichert, Jack M.
1999-01-01
NASA continues to focus on improving safety and reliability while reducing the annual cost of meeting human space flight and unique ISS and exploration needs. NASA's Space Transportation Architecture Study (STAS) Phase 2 in early 1998 focused on space transportation options. Subsequently, NASA directed parallel industry and government teams to conduct the Integrated Space Transportation Plan effort (STAS Phase 3). The objective of ISTP was to develop technology requirements, roadmaps, and risk reduction portfolio that considered expanded definition of "clean-sheet" and Shuttle-derived second generation ETO transportation systems in support of a 2005 RLV competition for NASA missions beginning 2010. NASA provided top-level requirements for improvements in safety, reliability, and cost and a set of design reference missions representing NASA ISS, human exploration, commercial, and other civil and government needs. This paper addresses the challenges of meeting NASA's objectives while servicing the varied market segments represented in the ISTP design reference missions and provides a summary of technology development needs and candidate system concepts. A comparison of driving requirements, architectures and technology needs is discussed and descriptions of viable Shuttle-derived and next generation systems to meet the market needs are presented.
Cytokinetic study of MCF-7 cells treated with commercial and recombinant bromelain.
Fouz, Nour; Amid, Azura; Hashim, Yumi Zuhanis Has-Yun
2014-01-01
Breast cancer is a leading cause of death in women. The available chemotherapy drugs have been associated with many side effects. Bromelain has novel medicinal qualities including anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Commercially available bromelain is obtained through tedious methods; therefore, recombinant bromelain may provide a cheaper and simpler choice with similar quality. This study aimed to assess the effects of commercial and recombinant bromelain on the cytokinetic behavior of MCF-7 breast cancer cells and their potential as therapeutic alternatives in cancer treatment. Cytotoxic activities of commercial and recombinant bromelain were determined using (sulforhodamine) SRB assay. Next, cell viability assays were conducted to determine effects of commercial and recombinant bromelain on MCF-7 cell cytokinetic behavior. Finally, the established growth kinetic data were used to modify a model that predicts the effects of commercial and recombinant bromelain on MCF-7 cells. Commercial and recombinant bromelain exerted strong effects towards decreasing the cell viability of MCF-7 cells with IC50 values of 5.13 μg/mL and 6.25 μg/mL, respectively, compared to taxol with an IC50 value of 0.063 μg/mL. The present results indicate that commercial and recombinant bromelain both have anti-proliferative activity, reduced the number of cell generations from 3.92 to 2.81 for commercial bromelain and to 2.86 for recombinant bromelain, while with taxol reduction was to 3.12. Microscopic observation of bromelain-treated MCF-7 cells demonstrated detachment. Inhibition activity was verified with growth rates decreased dynamically from 0.009 h-1 to 0.0059 h-1 for commercial bromelain and to 0.0063 h-1 for recombinant bromelain. Commercial and recombinant bromelain both affect cytokinetics of MCF-7 cells by decreasing cell viability, demonstrating similar strength to taxol.
Tolar, Jakub; Adair, Jennifer E; Antoniou, Michael; Bartholomae, Cynthia C; Becker, Pamela S; Blazar, Bruce R; Bueren, Juan; Carroll, Thomas; Cavazzana-Calvo, Marina; Clapp, D Wade; Dalgleish, Robert; Galy, Anne; Gaspar, H Bobby; Hanenberg, Helmut; Von Kalle, Christof; Kiem, Hans-Peter; Lindeman, Dirk; Naldini, Luigi; Navarro, Susana; Renella, Raffaele; Rio, Paula; Sevilla, Julián; Schmidt, Manfred; Verhoeyen, Els; Wagner, John E; Williams, David A; Thrasher, Adrian J
2011-07-01
Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA.
Novel antioxidants are not toxic to normal tissues but effectively kill cancer cells.
Kovalchuk, Anna; Aladedunye, Felix; Rodriguez-Juarez, Rocio; Li, Dongping; Thomas, James; Kovalchuk, Olga; Przybylski, Roman
2013-10-01
Free radicals are formed as a result of cellular processes and play a key role in predisposition to and development of numerous diseases and of premature aging. Recently, we reported the syntheses of a number of novel phenolic antioxidants for possible application in food industry. In the present study, analyses of the cellular processes and molecular gene expression effects of some of the novel antioxidants in normal human tissues and in cancer cells were undertaken. Results indicated that whereas the examined antioxidants showed no effects on morphology and gene expression of normal human oral and gingival epithelial tissues, they exerted a profound cell killing effect on breast cancer cells, including on chemotherapy-resistant breast cancer cells and on oral squamous carcinoma cells. Among the tested antioxidants, N-decyl-N-(3-methoxy-4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide and N-decyl-N-(3,5-dimethoxy-4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide were the most promising, with excellent potential for cancer treatment. Moreover, our gene expression databases can be used as a roadmap for future analysis of mechanisms of antioxidant action.
Guo, Fei; Li, Ning; Fecher, Frank W.; Gasparini, Nicola; Quiroz, Cesar Omar Ramirez; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V.; Radmilović, Velimir R.; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.
2015-01-01
The multi-junction concept is the most relevant approach to overcome the Shockley–Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies. PMID:26177808
Guo, Fei; Li, Ning; Fecher, Frank W; Gasparini, Nicola; Ramirez Quiroz, Cesar Omar; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V; Radmilović, Velimir R; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J
2015-07-16
The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.
CFD validation experiments for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.
1992-01-01
A roadmap for CFD code validation is introduced. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments could provide new validation data.
Transport processes in biomedical systems: a roadmap for future research directions.
Schmid-Schönbein, Geert W; Diller, Kenneth R
2005-09-01
A workshop was convened at Bethesda, Maryland on May 5 and 6, 2004 under the sponsorship of the NSF and NIH with the objectives of identifying emerging intellectual opportunities and applications in biotransport sciences and of guiding future research in the field. Approximately 50 leading researchers in the fields of fluid, heat, and mass biotransport were presented forward-looking perspectives and discussed how to synthesize broad cross-disciplinary areas: this defined guidelines for a roadmap document. Applications were presented in the context of disease analysis and diagnosis, therapy and prevention, and for physiologic and engineered living systems. The roadmap prioritizes specific research thrusts that reflect projected impacts on intellectuals, medical, and biological advances. Several overarching themes emerged. Most central is the expanded integration of fundamental transport sciences into the understanding of living systems and the great potential of patient specific modeling in designing a broad array of medical procedures.
Engineering Effort Needed to Design Spacecraft with Radiation Constraints
NASA Technical Reports Server (NTRS)
Singleterry, Robert C., Jr.
2005-01-01
A roadmap is articulated that describes what is needed to allow designers, to include researchers, management, and engineers, to investigate, design, build, test, and fly spacecraft that meet the mission requirements yet, be as low cost as possible. This roadmap describes seven levels of tool fidelity and application: 1) Mission Speculation, 2) Management Overview, 3) Mission Design, 4) Detailed Design, 5) Simulation and Training, 6) Operations, and 7) Research. The interfaces and output are described in top-level detail along with the transport engines needed, and deficiencies are noted. This roadmap, if implemented, will allow Multidisciplinary Optimization (MDO) ideas to incorporate radiation concerns. Also, as NASA moves towards Simulation Based Acquisition (SBA), these tools will facilitate the appropriate spending of government money. Most of the tools needed to serve these levels do not exist or exist in pieces and need to be integrated to create the tool.
Technology Area Roadmap for In Space Propulsion Technologies
NASA Technical Reports Server (NTRS)
Johnson, Les; Meyer, Mike; Coote, David; Goebel, Dan; Palaszewski, Bryan; White, Sonny
2010-01-01
This slide presentation reviews the technology area (TA) roadmap to develop propulsion technologies that will be used to enable further exploration of the solar system, and beyond. It is hoped that development of the technologies within this TA will result in technical solutions that will improve thrust levels, specific impulse, power, specific mass, volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability and durability. Some of the propulsion technologies that are reviewed include: chemical and non-chemical propulsion, and advanced propulsion (i.e., those with a Technology Readiness level of less than 3). Examples of these advanced technologies include: Beamed Energy, Electric Sail, Fusion, High Energy Density Materials, Antimatter, Advanced Fission and Breakthrough propulsion technologies. Timeframes for development of some of these propulsion technologies are reviewed, and top technical challenges are reviewed. This roadmap describes a portfolio of in-space propulsion technologies that can meet future space science and exploration needs.
A roadmap for bridging basic and applied research in forensic entomology.
Tomberlin, J K; Mohr, R; Benbow, M E; Tarone, A M; VanLaerhoven, S
2011-01-01
The National Research Council issued a report in 2009 that heavily criticized the forensic sciences. The report made several recommendations that if addressed would allow the forensic sciences to develop a stronger scientific foundation. We suggest a roadmap for decomposition ecology and forensic entomology hinging on a framework built on basic research concepts in ecology, evolution, and genetics. Unifying both basic and applied research fields under a common umbrella of terminology and structure would facilitate communication in the field and the production of scientific results. It would also help to identify novel research areas leading to a better understanding of principal underpinnings governing ecosystem structure, function, and evolution while increasing the accuracy of and ability to interpret entomological evidence collected from crime scenes. By following the proposed roadmap, a bridge can be built between basic and applied decomposition ecology research, culminating in science that could withstand the rigors of emerging legal and cultural expectations.
Mission Assurance Modeling and Simulation: A Cyber Security Roadmap
NASA Technical Reports Server (NTRS)
Gendron, Gerald; Roberts, David; Poole, Donold; Aquino, Anna
2012-01-01
This paper proposes a cyber security modeling and simulation roadmap to enhance mission assurance governance and establish risk reduction processes within constrained budgets. The term mission assurance stems from risk management work by Carnegie Mellon's Software Engineering Institute in the late 19905. By 2010, the Defense Information Systems Agency revised its cyber strategy and established the Program Executive Officer-Mission Assurance. This highlights a shift from simply protecting data to balancing risk and begins a necessary dialogue to establish a cyber security roadmap. The Military Operations Research Society has recommended a cyber community of practice, recognizing there are too few professionals having both cyber and analytic experience. The authors characterize the limited body of knowledge in this symbiotic relationship. This paper identifies operational and research requirements for mission assurance M&S supporting defense and homeland security. M&S techniques are needed for enterprise oversight of cyber investments, test and evaluation, policy, training, and analysis.
Environmental Control and Life Support (ECLS) Integrated Roadmap Development
NASA Technical Reports Server (NTRS)
Metcalf, Jordan L.; Carrasquillo, Robyn; Bagdigian, Bob; Peterson, Laurie
2011-01-01
This white paper documents a roadmap for development of Environmental Control and Life Support (ECLS) Systems (ECLSS) capabilities required to enable beyond-Low Earth Orbit (LEO) Exploration missions. In many cases, the execution of this Exploration-based roadmap will directly benefit International Space Station (ISS) operational capability by resolving known issues and/or improving overall system reliability. In addition, many of the resulting products will be applicable across multiple Exploration elements such as Multi-Purpose Crew Vehicle (MPCV), Multi-Mission Space Exploration Vehicle (MMSEV), Deep Space Habitat (DSH), and Landers. Within the ECLS community, this white paper will be a unifying tool that will improve coordination of resources, common hardware, and technologies. It will help to align efforts to focus on the highest priority needs that will produce life support systems for future human exploration missions that will simply run in the background, requiring minimal crew interaction.
Comprehensive Smart Grid Planning in a Regulated Utility Environment
NASA Astrophysics Data System (ADS)
Turner, Matthew; Liao, Yuan; Du, Yan
2015-06-01
This paper presents the tools and exercises used during the Kentucky Smart Grid Roadmap Initiative in a collaborative electric grid planning process involving state regulators, public utilities, academic institutions, and private interest groups. The mandate of the initiative was to assess the existing condition of smart grid deployments in Kentucky, to enhance understanding of smart grid concepts by stakeholders, and to develop a roadmap for the deployment of smart grid technologies by the jurisdictional utilities of Kentucky. Through involvement of many important stakeholder groups, the resultant Smart Grid Deployment Roadmap proposes an aggressive yet achievable strategy and timetable designed to promote enhanced availability, security, efficiency, reliability, affordability, sustainability and safety of the electricity supply throughout the state while maintaining Kentucky's nationally competitive electricity rates. The models and methods developed for this exercise can be utilized as a systematic process for the planning of coordinated smart grid deployments.
Effective methodology to derive strategic decisions from ESA exploration technology roadmaps
NASA Astrophysics Data System (ADS)
Cresto Aleina, Sara; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio
2016-09-01
Top priorities in future international space exploration missions regard the achievement of the necessary maturation of enabling technologies, thereby allowing Europe to play a role commensurate with its industrial, operational and scientific capabilities. As part of the actions derived from this commitment, ESA Technology Roadmaps for Exploration represent a powerful tool to prioritise R&D activities in technologies for space exploration and support the preparation of a consistent procurement plan for space exploration technologies in Europe. The roadmaps illustrate not only the technology procurement (to TRL-8) paths for specific missions envisaged in the present timeframe, but also the achievement for Europe of technological milestones enabling operational capabilities and building blocks, essential for current and future Exploration missions. Coordination of requirements and funding sources among all European stakeholders (ESA, EU, National, and Industry) is one of the objectives of these roadmaps, that show also possible application of the technologies beyond space exploration, both at ESA and outside. The present paper describes the activity that supports the work on-going at ESA on the elaboration and update of these roadmaps and related tools, in order to criticise the followed approach and to suggest methodologies of assessment of the Roadmaps, and to derive strategic decision for the advancement of Space Exploration in Europe. After a review of Technology Areas, Missions/Programmes and related building blocks (architectures) and operational capabilities, technology applicability analyses are presented. The aim is to identify if a specific technology is required, applicable or potentially a demonstrator in the building blocks of the proposed mission concepts. In this way, for each technology it is possible to outline one or more specific plans to increase TRL up to the required level. In practice, this translates into two possible solutions: on the one hand, approved mission concepts will be complemented with the required technologies if the latter can be considered as applicable or demo; on the other, if they are neither applicable nor demo, new missions, i.e. technology demonstrators based on multidisciplinary grouping of key technologies, shall be evaluated, so as to proceed through incremental steps. Finally, techniques to determine priorities in technology procurement are identified, and methodologies to rank the required technologies are proposed. In addition, a tool that estimates the percentage of technologies required for the final destination that are implementable in each intermediate destination of the incremental approach is presented.
NASA Astrophysics Data System (ADS)
Aleina, Sara Cresto; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio
2017-10-01
Exploration technology roadmaps have been developed by ESA in the past few years and the latest edition has been released in 2015. Scope of these technology roadmaps, elaborated in consultation with the different ESA stakeholders (e.g. European Industries and Research Entities), is to provide a powerful tool for strategic, programmatic and technical decisions in support of the European role within an International Space Exploration context. In the context of preparation for possible future European Moon exploration initiatives, the technology roadmaps have been used to highlight the role of technology within Missions, Building Blocks and Operational Capabilities of relevance. In particular, as part of reference missions to the Moon that would fit in the time frame 2020 to 2030, ESA has addressed the definition of lunar surface exploration missions in line with its space exploration strategy, with the common mission goals of returning samples from the Moon and Mars and expanding human presence to these destinations in a step-wise approach. The roadmaps for the procurement of technologies required for the first mission elements of the above strategy have been elaborated through their main building blocks, i.e. Visual navigation, Hazard detection and avoidance; Sample acquisition, processing and containment system; Surface mobility elements; Tele-robotic and autonomous control systems; and Storable propulsion modules and equipment. Technology prioritization methodologies have been developed in support of the ESA Exploration Technology Roadmaps, in order to provide logical and quantitative instruments to verify choices of prioritization that can be carried out based on important, but non-quantitative factors. These methodologies, which are thoroughly described in the first part of the paper, proceed through subsequent steps. First, technology prioritization's criteria are selected; then decision trees are developed to highlight all feasible paths of combination of technology prioritization's criteria and to assess the final achievement of each path, i.e. the cost-effectiveness. The risk associated to each path is also evaluated. In the second part of the paper, these prioritization methodologies have been applied to some of the building blocks of relevance for the mission concepts under evaluation at ESA (such as Tele-robotic and autonomous control systems; Storable propulsion modules and equipment) and the results are presented to highlight the approach for an effective TRL increase. Eventually main conclusions are drawn.
NASA Astrophysics Data System (ADS)
Azar, Elie
Energy conservation and sustainability are subjects of great interest today, especially in the commercial building sector which is witnessing a very high and growing demand for energy. Traditionally, efforts to reduce energy consumption in this sector consisted of researching and developing energy efficient building technologies and systems. On the other hand, recent studies indicate that human actions are major determinants of building energy performance and can lead to excessive energy use even in advanced low-energy buildings. As a result, it is essential to determine if the approach to future energy reduction initiatives should remain solely technology-focused, or if a human-focused approach is also needed to complement advancements in technology and improve building operation and performance. In practice, while technology-focused solutions have been extensively researched, promoted, and adopted in commercial buildings, research efforts on the role of human actions and energy use behaviors in energy conservation remain very limited. This study fills the missing gap in literature by presenting a comprehensive framework to (1) understand and quantify the influence of human actions on building energy performance, (2) model building occupants' energy use behaviors and account for potential changes in these behaviors over time, and (3) test and optimize different human-focused energy reduction interventions to increase their adoption in commercial buildings. Results are significant and prove that human actions have a major role to play in reducing the energy intensity of the commercial building sector. This sheds the light on the need for a shift in how people currently use and control different buildings systems, as this is crucial to ensure efficient building operation and to maximize the return on investment in energy-efficient technologies. Furthermore, this study proposes methods and tools that can be applied on any individual or groups of commercial buildings to evaluate the human impact on their energy performance. This is expected to boost research on the topic and promote the integration of human-focused interventions in large-scale energy reduction initiatives and policies. Finally, this dissertation presents a roadmap for the future challenges to energy conservation and the steps to take towards a more sustainable building sector and society.
Present Status and Future Prospects of Silicon Thin-Film Solar Cells
NASA Astrophysics Data System (ADS)
Konagai, Makoto
2011-03-01
In this report, an overview of the recent status of photovoltaic (PV) power generation is first presented from the viewpoint of reducing CO2 emission. Next, the Japanese roadmap for the research and development (R&D) of PV power generation and the progress in the development of various solar cells are explained. In addition, the present status and future prospects of amorphous silicon (a-Si) thin-film solar cells, which are expected to enter the stage of full-scale practical application in the near future, are described. For a-Si single-junction solar cells, the conversion efficiency of their large-area modules has now reached 6-8%, and their practical application to megawatt solar systems has started. Meanwhile, the focus of R&D has been shifting to a-Si and microcrystalline silicon (µc-Si) tandem solar cells. Thus far, a-Si/µc-Si tandem solar cell modules with conversion efficiency exceeding 13% have been reported. In addition, triple-junction solar cells, whose target year for practical application is 2025 or later, are introduced, as well as innovative thin-film full-spectrum solar cells, whose target year of realization is 2050.
Roadmap to Secure Control Systems in the Water Sector
2008-03-01
solutions for ICS security. The purposes of this roadmap are as follows: • Define a consensus-based framework that articulates strategies of owners and...each failure is manageable in itself • Be used as ransomware 400,000 persons, and was estimated by the Center for Disease Control (CDC) to cost a total...and focused efforts. The water sector has developed and will pursue a set of strategic goals articulating these ambitions. These goals will help
Technology Interdependency Roadmaps for Space Operations
NASA Technical Reports Server (NTRS)
Krishen, Kumar
1995-01-01
The requirements for Space Technology are outlined in terms of NASA Strategic Plan. The national emphasis on economic revitalization is described along with the environmental changes needed for the new direction. Space Technology Interdependency (STI) is elaborated in terms of its impact on national priority on science, education, and economy. Some suggested approaches to strengthening STI are outlined. Finally, examples of Technology Roadmaps for Space Operations area are included to illustrate the value of STI for national cohesiveness and economic revitalization.
Design Through Analysis (DTA) roadmap vision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blacker, Teddy Dean; Adams, Charles R.; Hoffman, Edward L.
2004-10-01
The Design through Analysis Realization Team (DART) will provide analysts with a complete toolset that reduces the time to create, generate, analyze, and manage the data generated in a computational analysis. The toolset will be both easy to learn and easy to use. The DART Roadmap Vision provides for progressive improvements that will reduce the Design through Analysis (DTA) cycle time by 90-percent over a three-year period while improving both the quality and accountability of the analyses.
Pittenger, Amy L; Copeland, Debra A; Lacroix, Matthew M; Masuda, Quamrun N; Mbi, Peter; Medina, Melissa S; Miller, Susan M; Stolte, Scott K; Plaza, Cecilia M
2017-06-01
The purpose of this report is to: 1) Identify linkages across the EPA statements, Center for the Advancement of Pharmacy Education 2013 Educational Outcomes (CAPE 2013) and the Joint Commission of Pharmacy Practitioners' Pharmacist Patient Care Process (PPCP); 2) Provide ways EPA statements can be used to communicate core skills that are part of the entry-level pharmacist identity; 3) Suggest a potential roadmap for AACP members on how to implement EPA statements.
NASA Astrophysics Data System (ADS)
Schlutz, Juergen; Hufenbach, Bernhard; Laurini, Kathy; Spiero, Francois
2016-07-01
Future space exploration goals call for sending humans and robots beyond low Earth orbit and establishing sustained access to destinations such as the Moon, asteroids and Mars. Space agencies participating in the International Space Exploration Coordination Group (ISECG) are discussing an international approach for achieving these goals, documented in ISECG's Global Exploration Roadmap (GER). The GER reference scenario reflects a step-wise evolution of critical capabilities from ISS to missions in the lunar vicinity in preparation for the journey of humans to Mars. As ISECG agencies advance their individual planning, they also advance the mission themes and reference architecture of the GER to consolidate common goals, near-term mission scenarios and initial opportunities for collaboration. In this context, particular focus has been given to the Better understanding and further refinement of cislunar infrastructure and potential lunar transportation architecture Interaction with international science communities to identify and articulate the scientific opportunities of the near-term exploration mission themes Coordination and consolidation of interest in lunar polar volatiles prospecting and potential for in-situ resource utilisation Identification and articulation of the benefits from exploration and the technology transfer activities The paper discusses the ongoing roadmapping activity of the ISECG agencies. It provides an insight into the status of the above activities and an outlook towards the evolution of the GER that is currently foreseen in the 2017 timeframe.
A molecular fragment cheminformatics roadmap for mesoscopic simulation.
Truszkowski, Andreas; Daniel, Mirco; Kuhn, Hubert; Neumann, Stefan; Steinbeck, Christoph; Zielesny, Achim; Epple, Matthias
2014-12-01
Mesoscopic simulation studies the structure, dynamics and properties of large molecular ensembles with millions of atoms: Its basic interacting units (beads) are no longer the nuclei and electrons of quantum chemical ab-initio calculations or the atom types of molecular mechanics but molecular fragments, molecules or even larger molecular entities. For its simulation setup and output a mesoscopic simulation kernel software uses abstract matrix (array) representations for bead topology and connectivity. Therefore a pure kernel-based mesoscopic simulation task is a tedious, time-consuming and error-prone venture that limits its practical use and application. A consequent cheminformatics approach tackles these problems and provides solutions for a considerably enhanced accessibility. This study aims at outlining a complete cheminformatics roadmap that frames a mesoscopic Molecular Fragment Dynamics (MFD) simulation kernel to allow its efficient use and practical application. The molecular fragment cheminformatics roadmap consists of four consecutive building blocks: An adequate fragment structure representation (1), defined operations on these fragment structures (2), the description of compartments with defined compositions and structural alignments (3), and the graphical setup and analysis of a whole simulation box (4). The basis of the cheminformatics approach (i.e. building block 1) is a SMILES-like line notation (denoted f SMILES) with connected molecular fragments to represent a molecular structure. The f SMILES notation and the following concepts and methods for building blocks 2-4 are outlined with examples and practical usage scenarios. It is shown that the requirements of the roadmap may be partly covered by already existing open-source cheminformatics software. Mesoscopic simulation techniques like MFD may be considerably alleviated and broadened for practical use with a consequent cheminformatics layer that successfully tackles its setup subtleties and conceptual usage hurdles. Molecular Fragment Cheminformatics may be regarded as a crucial accelerator to propagate MFD and similar mesoscopic simulation techniques in the molecular sciences. Graphical abstractA molecular fragment cheminformatics roadmap for mesoscopic simulation.
Zhang, Qiu; Kong, De-yu; Li, Chun-jian; Chen, Bo; Jia, En-zhi; Chen, Lei-Lei; Jia, Qing-zhe; Dai, Zhen-hua; Zhu, Tian-tian; Chen, Jun; Liu, Jie; Zhu, Tie-bing; Yang, Zhi-jian; Cao, Ke-jiang
2013-02-01
To evaluate the feasibility, efficacy and safety of the percutaneous coronary intervention (PCI)guided by computed tomography (CT) coronary angiography derived roadmap and magnetic navigation system (MNS). During June 2011 and May 2012, thirty consecutive patients receiving elective PCI were enrolled, coronary artery disease was primarily diagnosed by dual-source CT coronary angiography (DSCT-CA) at outpatient clinic and successively proved by coronary artery angiography in the hospital. Target vessels from pre-procedure DSCT-CA were transferred to the magnetic navigation system, and consequently edited, reconstructed, and projected onto the live fluoroscopic screen as roadmap. Parameters including characters of the target lesions, time, contrast volume, radiation dosage for guidewire crossing, and complications of the procedure were recorded. Thirty patients with 36 lesions were recruited and intervened by PCI. Among the target lesions, sixteen were classified as type A, 11 as type B1, 8 as type B2, 1 as type C. The average length of the target lesions was (22.0 ± 9.8) mm, and the average stenosis of the target lesions was (81.3 ± 10.3)%. Under the guidance of CT roadmap and MNS, 36 target lesions were crossed by the magnetic guidewires, with a lesion crossing ratio of 100%. The time of placement of the magnetic guidewires was 92.5 (56.6 - 131.3) seconds. The contrast volume and the radiation dosage for guidewire placement were 0.0 (0.0 - 3.0) ml and 235.0 (123.5 - 395.1) µGym(2)/36.5 (21.3 - 67.8) mGy, respectively. Guidewires were successfully placed in 21 (58.3%) lesions without contrast agent. All enrolled vessels were successfully treated, and there were no MNS associated complications. It is feasible, effective and safe to initiate PCI under the guidance of CT derived roadmap and MNS. This method might be helpful for the guidewire placement in the treatment of total occlusions.
Graphical Visualization of Human Exploration Capabilities
NASA Technical Reports Server (NTRS)
Rodgers, Erica M.; Williams-Byrd, Julie; Arney, Dale C.; Simon, Matthew A.; Williams, Phillip A.; Barsoum, Christopher; Cowan, Tyler; Larman, Kevin T.; Hay, Jason; Burg, Alex
2016-01-01
NASA's pioneering space strategy will require advanced capabilities to expand the boundaries of human exploration on the Journey to Mars (J2M). The Evolvable Mars Campaign (EMC) architecture serves as a framework to identify critical capabilities that need to be developed and tested in order to enable a range of human exploration destinations and missions. Agency-wide System Maturation Teams (SMT) are responsible for the maturation of these critical exploration capabilities and help formulate, guide and resolve performance gaps associated with the EMC-identified capabilities. Systems Capability Organization Reporting Engine boards (SCOREboards) were developed to integrate the SMT data sets into cohesive human exploration capability stories that can be used to promote dialog and communicate NASA's exploration investments. Each SCOREboard provides a graphical visualization of SMT capability development needs that enable exploration missions, and presents a comprehensive overview of data that outlines a roadmap of system maturation needs critical for the J2M. SCOREboards are generated by a computer program that extracts data from a main repository, sorts the data based on a tiered data reduction structure, and then plots the data according to specified user inputs. The ability to sort and plot varying data categories provides the flexibility to present specific SCOREboard capability roadmaps based on customer requests. This paper presents the development of the SCOREboard computer program and shows multiple complementary, yet different datasets through a unified format designed to facilitate comparison between datasets. Example SCOREboard capability roadmaps are presented followed by a discussion of how the roadmaps are used to: 1) communicate capability developments and readiness of systems for future missions, and 2) influence the definition of NASA's human exploration investment portfolio through capability-driven processes. The paper concludes with a description of planned future work to modify the computer program to include additional data and of alternate capability roadmap formats currently under consideration.
NASA Technical Reports Server (NTRS)
Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie
2012-01-01
NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap development process, findings, and recommendation
VERAM - Vision and Roadmap for European Raw Materials
NASA Astrophysics Data System (ADS)
Baumgarten, Wibke; Vashev, Boris
2017-04-01
The overall objective of VERAM project is to produce a Vision and Roadmap for European Raw Materials in 2050 based on raw materials research and innovation (R&I) coordination. Two leading European Technology Platforms (ETPs): ETP SMR (Sustainable Minerals Resources) and FTP (Forest Technology Platform) are joining forces to develop a common vison and roadmap with the support of ECTP (European Construction Technology Platform), represented by UNIVPM, SusChem (ETP for Sustainable Chemistry), represented by Cefic, EuMaT (Advanced Materials ETP), represented by VITO, ERAMIN 2, represented by Research Centre JUELICH and WoodWisdom Network Plus represented by the Agency for Renewable Resources (FNR). This partnership provides VERAM with expertise from downstream applications and additional knowledge on non-biotic and biotic raw materials. The project encourages capacity building as well as transfer of knowledge. It expects to provide an innovation reference point for the European Institute of Innovation & Technology (EIT) Raw Materials (formerly the KIC Raw MatTERS), to coordinate the network involved in the European Innovation Partnership (EIP) on Raw Materials Commitments and relevant proposals funded under Horizon 2020. It provides a platform for identifying gaps and complementarities and enables their bridging. VERAM will be able to advise the European Commission and Member States on future research needs and policies to stimulate innovation and assist in overcoming fragmentation in the implementing the EIP Raw Materials Strategic Implementation Plan. VERAM looks for mutually beneficial information exchange, encourages cross-fertilization between actions undertaken by different raw material industries, and expects to accelerate exploitation of breakthrough innovations. One of the main outcomes of the project is the presentation of a common long term 2050 Vision and Roadmap for relevant raw materials including metals, industrial minerals and aggregates and wood. The Vision and Roadmap have the objective of highlighting the path to achieving the European Commission's ambitious target of 80% reduction in CO2 emissions by 2050.
Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turteltaub, K W; Hartman-Siantar, C; Easterly, C
2005-10-03
A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus ofmore » gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology today, promising emerging technologies and references for further reading.« less
2013-04-25
Room 2A534, 1155 Defense Pentagon, Washington, DC 20301-1155 1. DOCUMENTDESCruPTION a . TYPE b. TITLE Acoustical Engineering Controls and Estimated...Return on Investment for DoD Selected Report Hil!h Noise Sources: A Roadmap for Future Noise Control in Acquisition c. PAGE COUNT d. SUBJECT AREA...175 Acoustical Engineering - Noise Control - Acquisition 2. AUTHOR/SPEAKER a . NAME (Last, First, Middlo Initial) b. RANK c. TITLE Erdman, Joy GS-15
Electronic Combat Roadmap for Space.
1988-04-01
studies which are required to obtain the necessary data to create that roadmap. vii MO Chapter One INTRODUCTION This paper begins the effort to create an...zstems Information Study T 4ke the effort on threat sytmthe :,ope of the task call-ed for in Chapter Six In this area is also largs-e. Again, as a...firs-t step, a survey-level project should be done. This onp will Frobably be mcre difficult than. the one oln threat syteT because in a lot of cases
NASA In-Situ Resource Utilization Project-and Seals Challenges
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt; Linne, Diane
2006-01-01
A viewgraph presentation on NASA's In-Situ Resource Utilization Project and Seals Challenges is shown. The topics include: 1) What Are Space Resources?; 2) Space Resource Utilization for Exploration; 3) ISRU Enables Affordable, Sustainable & Flexible Exploration; 4) Propellant from the Moon Could Revolutionize Space Transportation; 5) NASA ISRU Capability Roadmap Study, 2005; 6) Timeline for ISRU Capability Implementation; 7) Lunar ISRU Implementation Approach; 8) ISRU Technical-to-Mission Capability Roadmap; 9) ISRU Resources & Products of Interest; and 10) Challenging Seals Requirements for ISRU.
2003-07-01
Centric Architecture Office ( NCAO ) should develop an RF communications/network management technology roadmap. The roadmap should serve two purposes: a...Centric Architecture Office ( NCAO ) chartered with integrating diverse DoD efforts to provide technical alternatives to the current form of radio...American people as a cornerstone of DoD’s leadership of the public trust in this area. The NCAO should be consolidated from ongoing NII, JTRS JPO and DDR
Bautista-Ortín, Ana Belén; Cano-Lechuga, Mario; Ruiz-García, Yolanda; Gómez-Plaza, Encarna
2014-01-01
Commercial enological tannins were used to investigate the role that cell wall material plays in proanthocyanidin adsorption. Insoluble cell wall material, prepared from the skin of Vitis vinifera L. cv. Monastrell berries, was combined with solutions containing six different commercial enological tannins (proanthocyanidin-type tannins). Analysis of the proanthocyanidins in the solution, after fining with cell wall material, using phloroglucinolysis and size exclusion chromatography, provided quantitative and qualitative information on the non-adsorbed compounds. Cell wall material showed strong affinity for the proanthocyanidins, one of the commercial tannins being bound up to 61% in the experiment. Comparison of the molecular mass distribution of the commercial enological tannins in solution, before and after fining, suggested that cell walls affinity for proanthocyanidins was more related with the proanthocyanidin molecular mass than with their percentage of galloylation. These interactions may have some enological implications, especially as regards the time of commercial tannins addition to the must/wine. Copyright © 2013 Elsevier Ltd. All rights reserved.
Growth and Remodeling in Blood Vessels Studied In Vivo With Fractal Analysis
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia A.
2003-01-01
Every cell in the human body must reside in close proximity to a blood vessel (within approximately 200 mm) because blood vessels provide the oxygen, metabolite, and fluid exchanges required for cellular existence. The growth and remodeling of blood vessels are required to support the normal physiology of embryonic development, reproductive biology, wound healing and adaptive remodeling to exercise, as well as abnormal tissue change in diseases such as cancer, diabetes, and coronary heart disease. Cardiovascular and hemodynamic (blood flow dynamics) alterations experienced by astronauts during long-term spaceflight, including orthostatic intolerance, fluid shifts in the body, and reduced numbers of red (erythrocyte) and white (immune) blood cells, are identified as risk factors of very high priority in the NASA task force report on risk reduction for human spaceflight, the "Critical Path Roadmap."
Noncoding sequence classification based on wavelet transform analysis: part I
NASA Astrophysics Data System (ADS)
Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.
2017-09-01
DNA sequences in human genome can be divided into the coding and noncoding ones. Coding sequences are those that are read during the transcription. The identification of coding sequences has been widely reported in literature due to its much-studied periodicity. Noncoding sequences represent the majority of the human genome. They play an important role in gene regulation and differentiation among the cells. However, noncoding sequences do not exhibit periodicities that correlate to their functions. The ENCODE (Encyclopedia of DNA elements) and Epigenomic Roadmap Project projects have cataloged the human noncoding sequences into specific functions. We study characteristics of noncoding sequences with wavelet analysis of genomic signals.
Solar Sail Roadmap Mission GN and C Challenges
NASA Technical Reports Server (NTRS)
Heaton, Andrew F.
2005-01-01
The NASA In-Space Propulsion program is funding development work for solar sails to enhance future scientific opportunities. Key to this effort are scientific solar sail roadmap missions identified by peer review. The two near-term missions of interest are L1 Diamond and Solar Polar Imager. Additionally, the New Millennium Program is sponsoring the Space Technology 9 (ST9) demonstration mission. Solar sails are one of five technologies competing for the ST9 flight demonstration. Two candidate solar sail missions have been identified for a potential ST9 flight. All the roadmap missions and candidate flight demonstration missions face various GN&C challenges. A variety of efforts are underway to address these challenges. These include control actuator design and testing, low thrust optimization studies, attitude control system design and modeling, control-structure interaction studies, trajectory control design, and solar radiation pressure model development. Here we survey the various efforts underway and identify a few of specific recent interest and focus.
A systems engineering approach to AIS accreditation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, L.M.; Hunteman, W.J.
1994-04-01
The systems engineering model provides the vehicle for communication between the developer and the customer by presenting system facts and demonstrating the system in an organized form. The same model provides implementors with views of the system`s function and capability. The authors contend that the process of obtaining accreditation for a classified Automated Information System (AIS) adheres to the typical systems engineering model. The accreditation process is modeled as a ``roadmap`` with the customer represented by the Designed Accrediting Authority. The ``roadmap`` model reduces the amount of accreditation knowledge required of an AIS developer and maximizes the effectiveness of participationmore » in the accreditation process by making the understanding of accreditation a natural consequence of applying the model. This paper identifies ten ``destinations`` on the ``road`` to accreditation. The significance of each ``destination`` is explained, as are the potential consequences of its exclusion. The ``roadmap,`` which has been applied to a range of information systems throughout the DOE community, establishes a paradigm for the certification and accreditation of classified AISs.« less
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Tung, Ramona H.; Lee, Charles H.
2003-01-01
In this paper, we describe the development roadmap and discuss the various challenges of an evolvable and extensible multi-mission telecom planning and analysis framework. Our long-term goal is to develop a set of powerful flexible telecommunications analysis tools that can be easily adapted to different missions while maintain the common Deep Space Communication requirements. The ability of re-using the DSN ground models and the common software utilities in our adaptations has contributed significantly to our development efforts measured in terms of consistency, accuracy, and minimal effort redundancy, which can translate into shorter development time and major cost savings for the individual missions. In our roadmap, we will address the design principles, technical achievements and the associated challenges for following telecom analysis tools (i) Telecom Forecaster Predictor - TFP (ii) Unified Telecom Predictor - UTP (iii) Generalized Telecom Predictor - GTP (iv) Generic TFP (v) Web-based TFP (vi) Application Program Interface - API (vii) Mars Relay Network Planning Tool - MRNPT.
NASA Astrophysics Data System (ADS)
Hertz, P.
2003-03-01
The Structure and Evolution of the Universe (SEU) theme within NASA's Office of Space Science seeks to explore and understand the dynamic transformations of energy in the Universe - the entire web of biological and physical interactions that determine the evolution of our cosmic habitat. This search for understanding will enrich the human spirit and inspire a new generation of explorers, scientists, and engineers. To that end, NASA's strategic planning process has generated a new Roadmap to enable those goals. Called "Beyond Einstein", this Roadmap identifies three science objectives for the SEU theme: (1) Find out what powered the Big Bang; (2) Observe how black holes manipulate space, time, and matter; and (3) Identify the mysterious dark energy pullingthe Universe apart. These objectives can be realized through a combination of large observatories (Constellation-X, LISA), moderate sized, PI-led missions (the Einstein Probes), and a contuinuing program of technology development, research and analysis, and education/public outreach. In this presentation, NASA's proposed Beyond Einstein Program will be described. The full Roadmap is available at http://universe.nasa.gov/.
NASA Technical Reports Server (NTRS)
Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad
2016-01-01
NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.
Establishment of the roadmap for chlorination process development for zirconium recovery and recycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, E.D.; Del Cul, G.D.; Spencer, B.B.
Process development studies are being conducted to recover, purify, and reuse the zirconium (about 98.5% by mass) in used nuclear fuel (UNF) zirconium alloy cladding. Feasibility studies began in FY 2010 using empty cladding hulls that were left after fuel dissolution or after oxidation to a finely divided oxide powder (voloxidation). In FY 2012, two industrial teams (AREVA and Shaw-Westinghouse) were contracted by the Department of Energy Office of Nuclear Energy (NE) to provide technical assistance to the project. In FY 2013, the NE Fuel Cycle Research and Development Program requested development of a technology development roadmap to guide futuremore » work. The first step in the roadmap development was to assess the starting point, that is, the current state of the technology and the end goal. Based on previous test results, future work is to be focused on first using chlorine as the chlorinating agent and secondly on the use of a process design that utilizes a chlorination reactor and dual ZrCl{sub 4} product salt condensers. The likely need for a secondary purification step was recognized. Completion of feasibility testing required an experiment on the chemical decladding flowsheet option. This was done during April 2013. The roadmap for process development will continue through process chemistry optimization studies, the chlorinated reactor design configuration, product salt condensers, and the off-gas trapping of tritium or other volatile fission products from the off-gas stream. (authors)« less
Fault Management Practice: A Roadmap for Improvement
NASA Technical Reports Server (NTRS)
Fesq, Lorraine M.; Oberhettinger, David
2010-01-01
Autonomous fault management (FM) is critical for deep space and planetary missions where the limited communication opportunities may prevent timely intervention by ground control. Evidence of pervasive architecture, design, and verification/validation problems with NASA FM engineering has been revealed both during technical reviews of spaceflight missions and in flight. These problems include FM design changes required late in the life-cycle, insufficient project insight into the extent of FM testing required, unexpected test results that require resolution, spacecraft operational limitations because certain functions were not tested, and in-flight anomalies and mission failures attributable to fault management. A recent NASA initiative has characterized the FM state-of-practice throughout the spacecraft development community and identified common NASA, DoD, and commercial concerns that can be addressed in the near term through the development of a FM Practitioner's Handbook and the formation of a FM Working Group. Initial efforts will focus on standardizing FM terminology, establishing engineering processes and tools, and training.
Conceptual design of the cryogenic system and estimation of the recirculated power for CFETR
NASA Astrophysics Data System (ADS)
Liu, Xiaogang; Qiu, Lilong; Li, Junjun; Wang, Zhaoliang; Ren, Yong; Wang, Xianwei; Li, Guoqiang; Gao, Xiang; Bi, Yanfang
2017-01-01
The China Fusion Engineering Test Reactor (CFETR) is the next tokamak in China’s roadmap for realizing commercial fusion energy. The CFETR cryogenic system is crucial to creating and maintaining operational conditions for its superconducting magnet system and thermal shields. The preliminary conceptual design of the CFETR cryogenic system has been carried out with reference to that of ITER. It will provide an average capacity of 75 to 80 kW at 4.5 K and a peak capacity of 1300 kW at 80 K. The electric power consumption of the cryogenic system is estimated to be 24 MW, and the gross building area is about 7000 m2. The relationships among the auxiliary power consumed by the cryogenic system, the fusion power gain and the recirculated power of CFETR are discussed, with the suggestion that about 52% of the electric power produced by CFETR in phase II must be recirculated to run the fusion test reactor.
A Review on Internet of Things for Defense and Public Safety
Fraga-Lamas, Paula; Fernández-Caramés, Tiago M.; Suárez-Albela, Manuel; Castedo, Luis; González-López, Miguel
2016-01-01
The Internet of Things (IoT) is undeniably transforming the way that organizations communicate and organize everyday businesses and industrial procedures. Its adoption has proven well suited for sectors that manage a large number of assets and coordinate complex and distributed processes. This survey analyzes the great potential for applying IoT technologies (i.e., data-driven applications or embedded automation and intelligent adaptive systems) to revolutionize modern warfare and provide benefits similar to those in industry. It identifies scenarios where Defense and Public Safety (PS) could leverage better commercial IoT capabilities to deliver greater survivability to the warfighter or first responders, while reducing costs and increasing operation efficiency and effectiveness. This article reviews the main tactical requirements and the architecture, examining gaps and shortcomings in existing IoT systems across the military field and mission-critical scenarios. The review characterizes the open challenges for a broad deployment and presents a research roadmap for enabling an affordable IoT for defense and PS. PMID:27782052
A Review on Internet of Things for Defense and Public Safety.
Fraga-Lamas, Paula; Fernández-Caramés, Tiago M; Suárez-Albela, Manuel; Castedo, Luis; González-López, Miguel
2016-10-05
The Internet of Things (IoT) is undeniably transforming the way that organizations communicate and organize everyday businesses and industrial procedures. Its adoption has proven well suited for sectors that manage a large number of assets and coordinate complex and distributed processes. This survey analyzes the great potential for applying IoT technologies (i.e., data-driven applications or embedded automation and intelligent adaptive systems) to revolutionize modern warfare and provide benefits similar to those in industry. It identifies scenarios where Defense and Public Safety (PS) could leverage better commercial IoT capabilities to deliver greater survivability to the warfighter or first responders, while reducing costs and increasing operation efficiency and effectiveness. This article reviews the main tactical requirements and the architecture, examining gaps and shortcomings in existing IoT systems across the military field and mission-critical scenarios. The review characterizes the open challenges for a broad deployment and presents a research roadmap for enabling an affordable IoT for defense and PS.
NASA Astrophysics Data System (ADS)
Schrijver, K.; Knoelker, M.
1999-05-01
The NASA Sun-Earth Connections Program is currently revising its Roadmap, the long-range plan for science goals, technology development, and missions between 2000 and 2040. From the interior dynamics of the Sun, to the interactions of plasma, fields, and radiation in the photosphere and solar atmosphere, to the heating and structure of the corona, to the acceleration, structure, and evolution of the solar wind, to the interactions of the heliosphere with the interstellar medium, to the processes of solar, stellar, and solar system evolution - progress in each of these domains will help us understand how the Sun impacts our home in space. The Roadmap Committee is seeking to refine and extend the SEC's vision and identify the milestone missions for the future. During this session, an outline of the current draft Roadmap will be presented, and further community involvement will be solicited to ensure the strongest possible concensus on the revised Roadmap. The National Academy of Sciences' Space Science Board has appointed a committee to perform a Decadal Survey of Astronomy and Astrophysics, which is surveying the field of space- and ground-based astronomy and astrophysics, recommending priorities for the most important new initiatives of the decade 2000-2010. The prioritization delivered by the earlier Decadal Surveys has played an important role in guiding the funding agencies in setting their priorities for astronomy and astrophysics. Therefore it will be of crucial importance for solar physics to contribute a strong case for its own set of future projects to be incorpoprated into the survey. The solar physics of the next decade will be characterized by its increasing societal relevance in the context of the National Space Weather Program and related issues, as well as its classical importance as a ``base" for many astrophysical questions. The presentation and subsequent discussion at the Chicago meeting is intended to solicit further community input, to achieve optimal representation for solar physics in the Decadal Survey. The Roadmap Committee and the Decadal Survey's solar panel encourage the whole solar physics community to contact them prior to the meeting. The list of the committee/panel members and their e-mail addresses, as well as related information, can be accessed via their websites at http://www.lmsal.com/sec/ and http://www.nas.edu/bpa/projects/astrosurvey/solar/ , respectively.
NASA Astrophysics Data System (ADS)
Malloy, Matt; Thiel, Brad; Bunday, Benjamin D.; Wurm, Stefan; Mukhtar, Maseeh; Quoi, Kathy; Kemen, Thomas; Zeidler, Dirk; Eberle, Anna Lena; Garbowski, Tomasz; Dellemann, Gregor; Peters, Jan Hendrik
2015-03-01
SEMATECH aims to identify and enable disruptive technologies to meet the ever-increasing demands of semiconductor high volume manufacturing (HVM). As such, a program was initiated in 2012 focused on high-speed e-beam defect inspection as a complement, and eventual successor, to bright field optical patterned defect inspection [1]. The primary goal is to enable a new technology to overcome the key gaps that are limiting modern day inspection in the fab; primarily, throughput and sensitivity to detect ultra-small critical defects. The program specifically targets revolutionary solutions based on massively parallel e-beam technologies, as opposed to incremental improvements to existing e-beam and optical inspection platforms. Wafer inspection is the primary target, but attention is also being paid to next generation mask inspection. During the first phase of the multi-year program multiple technologies were reviewed, a down-selection was made to the top candidates, and evaluations began on proof of concept systems. A champion technology has been selected and as of late 2014 the program has begun to move into the core technology maturation phase in order to enable eventual commercialization of an HVM system. Performance data from early proof of concept systems will be shown along with roadmaps to achieving HVM performance. SEMATECH's vision for moving from early-stage development to commercialization will be shown, including plans for development with industry leading technology providers.
Tolar, Jakub; Adair, Jennifer E; Antoniou, Michael; Bartholomae, Cynthia C; Becker, Pamela S; Blazar, Bruce R; Bueren, Juan; Carroll, Thomas; Cavazzana-Calvo, Marina; Clapp, D Wade; Dalgleish, Robert; Galy, Anne; Gaspar, H Bobby; Hanenberg, Helmut; Von Kalle, Christof; Kiem, Hans-Peter; Lindeman, Dirk; Naldini, Luigi; Navarro, Susana; Renella, Raffaele; Rio, Paula; Sevilla, Julián; Schmidt, Manfred; Verhoeyen, Els; Wagner, John E; Williams, David A; Thrasher, Adrian J
2011-01-01
Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA. PMID:21540837
Automatic identification of informative regions with epigenomic changes associated to hematopoiesis
Carrillo-de-Santa-Pau, Enrique; Pancaldi, Vera; Were, Felipe; Martin-Subero, Ignacio
2017-01-01
Abstract Hematopoiesis is one of the best characterized biological systems but the connection between chromatin changes and lineage differentiation is not yet well understood. We have developed a bioinformatic workflow to generate a chromatin space that allows to classify 42 human healthy blood epigenomes from the BLUEPRINT, NIH ROADMAP and ENCODE consortia by their cell type. This approach let us to distinguish different cells types based on their epigenomic profiles, thus recapitulating important aspects of human hematopoiesis. The analysis of the orthogonal dimension of the chromatin space identify 32,662 chromatin determinant regions (CDRs), genomic regions with different epigenetic characteristics between the cell types. Functional analysis revealed that these regions are linked with cell identities. The inclusion of leukemia epigenomes in the healthy hematological chromatin sample space gives us insights on the healthy cell types that are more epigenetically similar to the disease samples. Further analysis of tumoral epigenetic alterations in hematopoietic CDRs points to sets of genes that are tightly regulated in leukemic transformations and commonly mutated in other tumors. Our method provides an analytical approach to study the relationship between epigenomic changes and cell lineage differentiation. Method availability: https://github.com/david-juan/ChromDet. PMID:28934481
NREL, International Colleagues Propose Strategy for Stable, Commercial
, Commercial Perovskite Solar Cells News Release: NREL, International Colleagues Propose Strategy for Stable , Commercial Perovskite Solar Cells October 17, 2016 Photo of two men in a lab. NREL Scientists Keith Emery and stable commercial PSCs-that includes the following: Developing a reproducible manufacturing method that
Xu, Jianfeng; Zhang, Ningning
2014-12-01
Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world's first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher's disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable.
Global industry status report and roadmap for high performance displays
NASA Astrophysics Data System (ADS)
Bardsley, J. Norman; Pinnel, M. Robert
2003-09-01
A summary is provided of a comprehensive industry status report and roadmap available from www.usdc.org. Continued improvements in LCD technology are being driven by home entertainment applications, leading to better color and video response. Competing technologies, such as PDP and OLED and electronic paper must either exploit inherent advantages for such applications or focus on other market niches that are not being addressed well by mainline LCD technology. Flexible displays provide an opportunity for innovative technologies and manufacturing methods, but appear to bring no killer applications.
Challenges & Roadmap for Beyond CMOS Computing Simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, Arun F.; Frank, Michael P.
Simulating HPC systems is a difficult task and the emergence of “Beyond CMOS” architectures and execution models will increase that difficulty. This document presents a “tutorial” on some of the simulation challenges faced by conventional and non-conventional architectures (Section 1) and goals and requirements for simulating Beyond CMOS systems (Section 2). These provide background for proposed short- and long-term roadmaps for simulation efforts at Sandia (Sections 3 and 4). Additionally, a brief explanation of a proof-of-concept integration of a Beyond CMOS architectural simulator is presented (Section 2.3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Curtis L.; Kreyling, Sean J.
The goal of this report is to provide insight into the information technology needs of law enforcement based on first hand observations as an embedded and active participant over the course of two plus years. This report is intended as a preliminary roadmap for technology and project investment that will benefit the entire law enforcement community nationwide. Some recommendations are immediate and have more of an engineering flavor, while others are longer term and will require research and development to solve.
Feasibility and roadmap analysis for malaria elimination in China.
Zhou, Xiao-Nong; Xia, Zhi-Gui; Wang, Ru-Bo; Qian, Ying-Jun; Zhou, Shui-Sen; Utzinger, Jürg; Tanner, Marcel; Kramer, Randall; Yang, Wei-Zhong
2014-01-01
To understand the current status of the malaria control programme at the county level in accordance with the criteria of the World Health Organisation, the gaps and feasibility of malaria elimination at the county and national levels were analysed based on three kinds of indicators: transmission capacity, capacity of the professional team, and the intensity of intervention. Finally, a roadmap for national malaria elimination in the People's Republic of China is proposed based on the results of a feasibility assessment at the national level. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Scaled Framework for CRISPR Editing of Human Pluripotent Stem Cells to Study Psychiatric Disease.
Hazelbaker, Dane Z; Beccard, Amanda; Bara, Anne M; Dabkowski, Nicole; Messana, Angelica; Mazzucato, Patrizia; Lam, Daisy; Manning, Danielle; Eggan, Kevin; Barrett, Lindy E
2017-10-10
Scaling of CRISPR-Cas9 technology in human pluripotent stem cells (hPSCs) represents an important step for modeling complex disease and developing drug screens in human cells. However, variables affecting the scaling efficiency of gene editing in hPSCs remain poorly understood. Here, we report a standardized CRISPR-Cas9 approach, with robust benchmarking at each step, to successfully target and genotype a set of psychiatric disease-implicated genes in hPSCs and provide a resource of edited hPSC lines for six of these genes. We found that transcriptional state and nucleosome positioning around targeted loci was not correlated with editing efficiency. However, editing frequencies varied between different hPSC lines and correlated with genomic stability, underscoring the need for careful cell line selection and unbiased assessments of genomic integrity. Together, our step-by-step quantification and in-depth analyses provide an experimental roadmap for scaling Cas9-mediated editing in hPSCs to study psychiatric disease, with broader applicability for other polygenic diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Cellular trajectories and molecular mechanisms of iPSC reprogramming.
Apostolou, Effie; Stadtfeld, Matthias
2018-06-16
The discovery of induced pluripotent stem cells (iPSCs) has solidified the concept of transcription factors as major players in controlling cell identity and provided a tractable tool to study how somatic cell identity can be dismantled and pluripotency established. A number of landmark studies have established hallmarks and roadmaps of iPSC formation by describing relative kinetics of transcriptional, protein and epigenetic changes, including alterations in DNA methylation and histone modifications. Recently, technological advancements such as single-cell analyses, high-resolution genome-wide chromatin assays and more efficient reprogramming systems have been used to challenge and refine our understanding of the reprogramming process. Here, we will outline novel insights into the molecular mechanisms underlying iPSC formation, focusing on how the core reprogramming factors OCT4, KLF4, SOX2 and MYC (OKSM) drive changes in gene expression, chromatin state and 3D genome topology. In addition, we will discuss unexpected consequences of reprogramming factor expression in in vitro and in vivo systems that may point towards new applications of iPSC technology. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Legionella pathogenicity: genome structure, regulatory networks and the host cell response.
Steinert, Michael; Heuner, Klaus; Buchrieser, Carmen; Albert-Weissenberger, Christiane; Glöckner, Gernot
2007-11-01
Legionella spp. the causative agent of Legionnaires' disease is naturally found in fresh water where the bacteria parasitize intracellularly within protozoa. Upon aerosol formation via man-made water systems, Legionella can enter the human lung and cause a severe form of pneumonia. Here we review results from systematic comparative genome analysis of Legionella species with different pathogenic potentials. The complete genomes reveal that horizontal gene transfer has played an important role during the evolution of Legionella and indicate the importance of secretion machineries for the intracellular lifestyle of this pathogen. Moreover, we highlight recent findings on the in vivo transcriptional program of L. pneumophila and the regulatory networks involved in the biphasic life cycle. In order to understand how Legionella effectively subvert host cell functions for its own benefit the transcriptional host cell response upon infection of the model amoeba Dictyostelium discoideum was studied. The use of this model organism made it possible to develop a roadmap of host cell factors which significantly contribute to the uptake of L. pneumophila and the establishment of an ER-associated replicative vacuole.
Hepatic differentiation potential of commercially available human mesenchymal stem cells.
Ong, Shin-Yeu; Dai, Hui; Leong, Kam W
2006-12-01
The ready availability and low immunogenicity of commercially available mesenchymal stem cells (MSC) render them a potential cell source for the development of therapeutic products. With cell source a major bottleneck in hepatic tissue engineering, we investigated whether commercially available human MSC (hMSC) can transdifferentiate into the hepatic lineage. Based on previous studies that find rapid gain of hepatic genes in bone marrow-derived stem cells cocultured with liver tissue, we used a similar approach to drive hepatic differentiation by coculturing the hMSC with rat livers treated or untreated with gadolinium chloride (GdCl(3)). After a 24-hour coculture period with liver tissue injured by GdCl(3) in a Transwell configuration, approximately 34% of the cells differentiated into albumin-expressing cells. Cocultured cells were subsequently maintained with growth factors to complete the hepatic differentiation. Cocultured cells expressed more hepatic gene markers, and had higher metabolic functions and P450 activity than cells that were only differentiated with growth factors. In conclusion, commercially available hMSC do show hepatic differentiation potential, and a liver microenvironment in culture can provide potent cues to accelerate and deepen the differentiation. The ability to generate hepatocyte-like cells from a commercially available cell source would find interesting applications in liver tissue engineering.
Novel Polyimide Battery Separator Imbibed with Room-Temperature Ionic Liquids
NASA Technical Reports Server (NTRS)
Viggiano, Rocco; Nguyen, Baochau; Wu, James; Dai, Liming; Meador, Mary Ann
2017-01-01
The journey to Mars will require advancements in many existing technologies, including space power and energy storage systems. According to the 2015 NASA Technology Roadmaps, energy storage is a critical technology area to develop for both terrestrial as well as future long-term space missions. Currently, batteries represent one of the major areas in need of advancement, both in terms of energy density as well as safety. Recently, concerns regarding the fire safety of commercial lithium-ion batteries have prompted efforts to produce nonflammable battery components, namely the electrolyte and separator. Commercial lithium-ion batteries utilize polyolefin separators imbibed with a lithium salt dissolved in cyclic carbonates. This separator/electrolyte combination imparts good ionic conductivities in the range of 10(exp -2) to 10(exp -3) S/cm. However, the cyclic carbonates and polyolefin separator are inherently flammable. Room-temperature ionic liquids (RTILs) appear to be a safer alternative to cyclic carbonates. They offer good ionic conductivities, similar to those observed in cyclic carbonates, but are inherently nonvolatile and nonflammable giving them a safety advantage. Many promising RTILs for battery electrolytes are not compatible with commercial polyolefin separator materials. Polyimide aerogels possess an open-porous, fibrillar network architecture which offers a high degree of porosity (typically greater than 85 porous), required for lithium ion conduction, as well as good mechanical properties. Furthermore, these materials are compatible with all tested RTILs. By creating a polyimide gel and imbibing the gel with a RTIL containing a lithium salt instead of super critically drying them to form aerogels, a nonflammable separator/electrolyte system with conductivities in the range of 1x10(exp -3) S/cm has been demonstrated.
Calorimetric evaluation of commercial Ni-MH cells and charges
NASA Technical Reports Server (NTRS)
Darcy, Eric C.; Hughes, Brent M.
1995-01-01
The test objectives are to evaluate the electrical and thermal performance of commercial Ni-MH cells and to evaluate the effectiveness of commercial charge control circuits. The ultimate design objectives are to determine which cell designs are most suitable for scale-up and to guide the design of future Shuttle and Station based battery chargers.
Xu, Jianfeng; Zhang, Ningning
2014-01-01
Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world’s first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher’s disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable. PMID:25621170
Integrative analysis of 111 reference human epigenomes
Kundaje, Anshul; Meuleman, Wouter; Ernst, Jason; Bilenky, Misha; Yen, Angela; Kheradpour, Pouya; Zhang, Zhizhuo; Heravi-Moussavi, Alireza; Liu, Yaping; Amin, Viren; Ziller, Michael J; Whitaker, John W; Schultz, Matthew D; Sandstrom, Richard S; Eaton, Matthew L; Wu, Yi-Chieh; Wang, Jianrong; Ward, Lucas D; Sarkar, Abhishek; Quon, Gerald; Pfenning, Andreas; Wang, Xinchen; Claussnitzer, Melina; Coarfa, Cristian; Harris, R Alan; Shoresh, Noam; Epstein, Charles B; Gjoneska, Elizabeta; Leung, Danny; Xie, Wei; Hawkins, R David; Lister, Ryan; Hong, Chibo; Gascard, Philippe; Mungall, Andrew J; Moore, Richard; Chuah, Eric; Tam, Angela; Canfield, Theresa K; Hansen, R Scott; Kaul, Rajinder; Sabo, Peter J; Bansal, Mukul S; Carles, Annaick; Dixon, Jesse R; Farh, Kai-How; Feizi, Soheil; Karlic, Rosa; Kim, Ah-Ram; Kulkarni, Ashwinikumar; Li, Daofeng; Lowdon, Rebecca; Mercer, Tim R; Neph, Shane J; Onuchic, Vitor; Polak, Paz; Rajagopal, Nisha; Ray, Pradipta; Sallari, Richard C; Siebenthall, Kyle T; Sinnott-Armstrong, Nicholas; Stevens, Michael; Thurman, Robert E; Wu, Jie; Zhang, Bo; Zhou, Xin; Beaudet, Arthur E; Boyer, Laurie A; De Jager, Philip; Farnham, Peggy J; Fisher, Susan J; Haussler, David; Jones, Steven; Li, Wei; Marra, Marco; McManus, Michael T; Sunyaev, Shamil; Thomson, James A; Tlsty, Thea D; Tsai, Li-Huei; Wang, Wei; Waterland, Robert A; Zhang, Michael; Chadwick, Lisa H; Bernstein, Bradley E; Costello, Joseph F; Ecker, Joseph R; Hirst, Martin; Meissner, Alexander; Milosavljevic, Aleksandar; Ren, Bing; Stamatoyannopoulos, John A; Wang, Ting; Kellis, Manolis
2015-01-01
The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but a similar reference has lacked for epigenomic studies. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection to-date of human epigenomes for primary cells and tissues. Here, we describe the integrative analysis of 111 reference human epigenomes generated as part of the program, profiled for histone modification patterns, DNA accessibility, DNA methylation, and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically-relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation, and human disease. PMID:25693563
Cloning of Buffalo, a Highly Valued Livestock Species of South and Southeast Asia: Any Achievements?
Selokar, Naresh L; Saini, Monika; Palta, Prabhat; Chauhan, Manmohan S; Manik, Radhey S; Singla, Suresh K
2018-04-01
Buffalo (Bubalus bubalis) is a major source of milk, meat, and draught power in many developing countries in Asia. Animal cloning holds a lot of potential for fast multiplication of elite buffaloes and conservation of their valuable germplasm. Although the progress of buffalo cloning has been slow in comparison to cattle or pig, several breakthroughs were reported in buffalo cloning such as the production of cloned calves from somatic cells isolated from over one-decade old frozen-thawed semen or from urine-derived cells. Since the initiation of buffalo cloning, several approaches have been tried to refine nuclear transfer protocols. This has resulted in increasing the blastocyst production rate and improving their quality leading to an increase in live birth rate. In this review, we discuss current developments in buffalo cloning, its challenges, and the future roadmap.
Integrative analysis of 111 reference human epigenomes.
Kundaje, Anshul; Meuleman, Wouter; Ernst, Jason; Bilenky, Misha; Yen, Angela; Heravi-Moussavi, Alireza; Kheradpour, Pouya; Zhang, Zhizhuo; Wang, Jianrong; Ziller, Michael J; Amin, Viren; Whitaker, John W; Schultz, Matthew D; Ward, Lucas D; Sarkar, Abhishek; Quon, Gerald; Sandstrom, Richard S; Eaton, Matthew L; Wu, Yi-Chieh; Pfenning, Andreas R; Wang, Xinchen; Claussnitzer, Melina; Liu, Yaping; Coarfa, Cristian; Harris, R Alan; Shoresh, Noam; Epstein, Charles B; Gjoneska, Elizabeta; Leung, Danny; Xie, Wei; Hawkins, R David; Lister, Ryan; Hong, Chibo; Gascard, Philippe; Mungall, Andrew J; Moore, Richard; Chuah, Eric; Tam, Angela; Canfield, Theresa K; Hansen, R Scott; Kaul, Rajinder; Sabo, Peter J; Bansal, Mukul S; Carles, Annaick; Dixon, Jesse R; Farh, Kai-How; Feizi, Soheil; Karlic, Rosa; Kim, Ah-Ram; Kulkarni, Ashwinikumar; Li, Daofeng; Lowdon, Rebecca; Elliott, GiNell; Mercer, Tim R; Neph, Shane J; Onuchic, Vitor; Polak, Paz; Rajagopal, Nisha; Ray, Pradipta; Sallari, Richard C; Siebenthall, Kyle T; Sinnott-Armstrong, Nicholas A; Stevens, Michael; Thurman, Robert E; Wu, Jie; Zhang, Bo; Zhou, Xin; Beaudet, Arthur E; Boyer, Laurie A; De Jager, Philip L; Farnham, Peggy J; Fisher, Susan J; Haussler, David; Jones, Steven J M; Li, Wei; Marra, Marco A; McManus, Michael T; Sunyaev, Shamil; Thomson, James A; Tlsty, Thea D; Tsai, Li-Huei; Wang, Wei; Waterland, Robert A; Zhang, Michael Q; Chadwick, Lisa H; Bernstein, Bradley E; Costello, Joseph F; Ecker, Joseph R; Hirst, Martin; Meissner, Alexander; Milosavljevic, Aleksandar; Ren, Bing; Stamatoyannopoulos, John A; Wang, Ting; Kellis, Manolis
2015-02-19
The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.
A room-temperature non-volatile CNT-based molecular memory cell
NASA Astrophysics Data System (ADS)
Ye, Senbin; Jing, Qingshen; Han, Ray P. S.
2013-04-01
Recent experiments with a carbon nanotube (CNT) system confirmed that the innertube can oscillate back-and-forth even under a room-temperature excitation. This demonstration of relative motion suggests that it is now feasible to build a CNT-based molecular memory cell (MC), and the key to bring the concept to reality is the precision control of the moving tube for sustained and reliable read/write (RW) operations. Here, we show that by using a 2-section outertube design, we are able to suitably recalibrate the system energetics and obtain the designed performance characteristics of a MC. Further, the resulting energy modification enables the MC to operate as a non-volatile memory element at room temperatures. Our paper explores a fundamental understanding of a MC and its response at the molecular level to roadmap a novel approach in memory technologies that can be harnessed to overcome the miniaturization limit and memory volatility in memory technologies.
NASA Technical Reports Server (NTRS)
Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert
2012-01-01
Although NASA is currently considering a number of future human space exploration mission concepts, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents the process and results of an effort to define a roadmap for Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro-gravity mission; 2) a long duration microgravity mission; and 3) a long duration partial gravity (surface) exploration mission. To organize the effort, a functional decomposition of ECLSS was completed starting with the three primary functions: atmosphere, water, and solid waste management. Each was further decomposed into sub-functions to the point that current state-of-the-art (SOA) technologies could be tied to the sub-function. Each technology was then assessed by NASA subject matter experts as to its ability to meet the functional needs of each of the three mission types. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capability needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs will, in many cases, directly benefit the ISS operational capability, benefit the Multi-Purpose Crew Vehicle (MPCV), and guide long-term technology investments for longer duration missions.
Energy Efficiency Roadmap for Uganda, Making Energy Efficiency Count. Executive Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
de la Rue du Can, Stephane; Pudleiner, David; Jones, David
Like many countries in Sub-Saharan Africa, Uganda has focused its energy sector investments largely on increasing energy access by increasing energy supply. The links between energy efficiency and energy access, the importance of energy efficiency in new energy supply, and the multiple benefits of energy efficiency for the level and quality of energy available, have been largely overlooked. Implementing energy efficiency in parallel with expanding both the electricity grid and new clean energy generation reduces electricity demand and helps optimize the power supply so that it can serve more customers reliably at minimum cost. Ensuring efficient appliances are incorporated intomore » energy access efforts provides improved energy services to customers. Energy efficiency is an important contributor to access to modern energy. This Energy Efficiency Roadmap for Uganda (Roadmap) is a response to the important role that electrical energy efficiency can play in meeting Uganda’s energy goals. Power Africa and the United Nations Sustainable Energy for All (SEforALL) initiatives collaborated with more than 24 stakeholders in Uganda to develop this document. The document estimates that if the most efficient technologies on the market were adopted, 2,224 gigawatt hours could be saved in 2030 across all sectors, representing 31% of the projected load. This translates into 341 megawatts of peak demand reductions, energy access to an additional 6 million rural customers and reduction of carbon dioxide emissions by 10.6 million tonnes in 2030. The Roadmap also finds that 91% of this technical potential is cost-effective, and 47% is achievable under conservative assumptions. The Roadmap prioritizes recommendations for implementing energy efficiency and maximizing benefits to meet the goals and priorities established in Uganda’s 2015 SEforALL Action Agenda. One important step is to create and increase demand for efficiency through long-term enabling policies and financial incentives combined with development of technical expertise in the labor force to allow for the promotion of new business models, such as energy service companies. A combination of enabling policies, financial schemes, regulations, enforcement, and skill development are needed to open the energy efficiency market.« less
Roadmap evolution: from NTRS to ITRS, from ITRS 2.0 to IRDS
NASA Astrophysics Data System (ADS)
Gargini, Paolo A.
2017-10-01
The semiconductor industry benefitted from roadmap guidance since the mid-60s. The roadmap anticipated and outlined the main needs of the semiconductor industry for years to come and identified future challenges and possible solutions. Making transistor smaller by means of advanced lithographic technologies enabled both increased integration levels and improved IC performance. The roadmap methodology allowed the removal of multiple "red brick walls". The NTRS and the ITRS constituted primarily a "bottom up" approach as standard microprocessors and memories where introduced at a blistering pace barely allowing time for system houses to integrate them in their products. The 1998 ITRS provided the vision that triggered research, development and manufacturing communities to develop a completely new transistor structure in addition to replacing aluminum interconnects with a more advanced technology. The advent of Foundries and Fabless companies transformed the electronics industry into a "top down" driven industry in the past 15 years. The ITRS adjusted to this new ecosystem and morphed into the International Roadmap for Devices and Systems (IRDS) sponsored by IEEE. The IRDS is addressing the requirements and needs of the renewed electronics industry. Furthermore, by the middle of the next decade the ability to layout integrated circuits in a 2D geometry grid will reach fundamental physical limits and the aggressive conversion to 3D architecture for integrated circuit must be pursued across the board as an avenue to continuously increasing transistor count and improving performance. EUV technology is finally approaching the manufacturing stage but with the advent of 3D monolithically integrated heterogeneous circuits approaching in the not-toodistant future should the semiconductor industry concentrate its resources on the next lithographic technology generation in order to enhance resolution or on providing a smooth transition to the new revolutionary 3D architecture of integrated circuits? It is essential for the whole semiconductor industry to come together and make fundamental choices leading to a cooperative and synchronized allocation of adequate resources to produce viable solutions that once introduced in a timely manner into manufacturing will enable the continuation of the growth of the electronic industry at a pace comparable or exceeding historical trends.
Karagiannidou, Maria; Wittenberg, Raphael; Landeiro, Filipa Isabel Trigo; Park, A-La; Fry, Andra; Knapp, Martin; Gray, Alastair M; Tockhorn-Heidenreich, Antje; Castro Sanchez, Amparo Yovanna; Ghinai, Isaac; Handels, Ron; Lecomte, Pascal; Wolstenholme, Jane
2018-06-08
Dementia is one of the greatest health challenges the world will face in the coming decades, as it is one of the principal causes of disability and dependency among older people. Economic modelling is used widely across many health conditions to inform decisions on health and social care policy and practice. The aim of this literature review is to systematically identify, review and critically evaluate existing health economics models in dementia. We included the full spectrum of dementia, including Alzheimer's disease (AD), from preclinical stages through to severe dementia and end of life. This review forms part of the Real world Outcomes across the Alzheimer's Disease spectrum for better care: multimodal data Access Platform (ROADMAP) project. Electronic searches were conducted in Medical Literature Analysis and Retrieval System Online, Excerpta Medica dataBASE, Economic Literature Database, NHS Economic Evaluation Database, Cochrane Central Register of Controlled Trials, Cost-Effectiveness Analysis Registry, Research Papers in Economics, Database of Abstracts of Reviews of Effectiveness, Science Citation Index, Turning Research Into Practice and Open Grey for studies published between January 2000 and the end of June 2017. Two reviewers will independently assess each study against predefined eligibility criteria. A third reviewer will resolve any disagreement. Data will be extracted using a predefined data extraction form following best practice. Study quality will be assessed using the Phillips checklist for decision analytic modelling. A narrative synthesis will be used. The results will be made available in a scientific peer-reviewed journal paper, will be presented at relevant conferences and will also be made available through the ROADMAP project. CRD42017073874. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holliday, Emma B.; Jagsi, Reshma; Thomas, Charles R.
Purpose: To analyze survey information regarding mentorship practices and cross-correlate the results with objective metrics of academic productivity among academic radiation oncologists at US Accreditation Council for Graduate Medical Education (ACGME)-accredited residency training programs. Methods and Materials: An institutional review board-approved survey for the Radiation Oncology Academic Development and Mentorship Assessment Project (ROADMAP) was sent to 1031 radiation oncologists employed at an ACGME-accredited residency training program and administered using an international secure web application designed exclusively to support data capture for research studies. Data collected included demographics, presence of mentorship, and the nature of specific mentoring activities. Productivity metrics, includingmore » number of publications, number of citations, h-index, and date of first publication, were collected for each survey respondent from a commercially available online database, and m-index was calculated. Results: A total of 158 academic radiation oncologists completed the survey, 96 of whom reported having an academic/scientific mentor. Faculty with a mentor had higher numbers of publications, citations, and h- and m-indices. Differences in gender and race/ethnicity were not associated with significant differences in mentorship rates, but those with a mentor were more likely to have a PhD degree and were more likely to have more time protected for research. Bivariate fit regression modeling showed a positive correlation between a mentor's h-index and their mentee's h-index (R{sup 2} = 0.16; P<.001). Linear regression also showed significant correlates of higher h-index, in addition to having a mentor (P=.001), included a longer career duration (P<.001) and fewer patients in treatment (P=.02). Conclusions: Mentorship is widely believed to be important to career development and academic productivity. These results emphasize the importance of identifying and striving to overcome potential barriers to effective mentorship.« less
Developing a Roadmap for Improving Neglected and Underutilized Crops: A Case Study of South Africa
Mabhaudhi, Tafadzwanashe; Chimonyo, Vimbayi G. P.; Chibarabada, Tendai P.; Modi, Albert T.
2017-01-01
Reports of neglected and underutilized crops' (NUS) potential remain mostly anecdotal with limited and often incoherent research available to support them. This has been attributed to lack of clear research goals, limited funding directed at NUS and journal apathy toward publishing work on NUS. The latter points also explain the lack of interest from emerging and established researchers. Additionally, the NUS community's inability to articulate a roadmap for NUS' promotion may have unintentionally contributed to this. The current study is a sequel to an initial study that assessed the status of NUS in South Africa. The objective of this follow-up study was then to (i) identify priority NUS, and (ii) articulate a strategy and actionable recommendations for promoting NUS in South Africa. The study identified 13 priority NUS, categorized into cereals, legumes, root, and tuber crops and leafy vegetables based on drought and heat stress tolerance and nutritional value. It is recommended that the available limited resources should be targeted on improving these priority NUS as they offer the best prospects for success. Focus should be on developing value chains for the priority NUS. This should be underpinned by science to provide evidence-based outcomes. This would assist to attract more funding for NUS research, development and innovation in South Africa. It is envisaged that through this roadmap, NUS could be transformed from the peripheries into mainstream agriculture. This study provides a template for developing a roadmap for promoting NUS that could be transposed and replicated among the 14 other southern African states. PMID:29312397
Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M.
2014-01-01
A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, via and Investigational New Drug (IND) application, into early phase clinical trials. The roadmap describes four key areas; basic and preclinical research, resource development, translational research and good manufacturing practice (GMP), and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value using a model of the relevant disease. During resource development the appropriate specialists and the required expertise to bring this product into the clinic are identified (e.g., researchers, regulatory specialists, GMP manufacturing staff, clinicians, and clinical trials staff, etc.). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase the plan to translate the research product into a clinical grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States this is done by filing an IND application with the Food and Drug Administration. The NHLBI-funded Production Assistance for Cellular Therapies (PACT) program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five PACT facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly, and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. PMID:25484311
Goreczny, Sebastian; Dryzek, Pawel; Morgan, Gareth J; Lukaszewski, Maciej; Moll, Jadwiga A; Moszura, Tomasz
2017-08-01
We report initial experience with novel three-dimensional (3D) image fusion software for guidance of transcatheter interventions in congenital heart disease. Developments in fusion imaging have facilitated the integration of 3D roadmaps from computed tomography or magnetic resonance imaging datasets. The latest software allows live fusion of two-dimensional (2D) fluoroscopy with pre-registered 3D roadmaps. We reviewed all cardiac catheterizations guided with this software (Philips VesselNavigator). Pre-catheterization imaging and catheterization data were collected focusing on fusion of 3D roadmap, intervention guidance, contrast and radiation exposure. From 09/2015 until 06/2016, VesselNavigator was applied in 34 patients for guidance (n = 28) or planning (n = 6) of cardiac catheterization. In all 28 patients successful 2D-3D registration was performed. Bony structures combined with the cardiovascular silhouette were used for fusion in 26 patients (93%), calcifications in 9 (32%), previously implanted devices in 8 (29%) and low-volume contrast injection in 7 patients (25%). Accurate initial 3D roadmap alignment was achieved in 25 patients (89%). Six patients (22%) required realignment during the procedure due to distortion of the anatomy after introduction of stiff equipment. Overall, VesselNavigator was applied successfully in 27 patients (96%) without any complications related to 3D image overlay. VesselNavigator was useful in guidance of nearly all of cardiac catheterizations. The combination of anatomical markers and low-volume contrast injections allowed reliable 2D-3D registration in the vast majority of patients.
Chin, Marshall H; Clarke, Amanda R; Nocon, Robert S; Casey, Alicia A; Goddu, Anna P; Keesecker, Nicole M; Cook, Scott C
2012-08-01
Over the past decade, researchers have shifted their focus from documenting health care disparities to identifying solutions to close the gap in care. Finding Answers: Disparities Research for Change, a national program of the Robert Wood Johnson Foundation, is charged with identifying promising interventions to reduce disparities. Based on our work conducting systematic reviews of the literature, evaluating promising practices, and providing technical assistance to health care organizations, we present a roadmap for reducing racial and ethnic disparities in care. The roadmap outlines a dynamic process in which individual interventions are just one part. It highlights that organizations and providers need to take responsibility for reducing disparities, establish a general infrastructure and culture to improve quality, and integrate targeted disparities interventions into quality improvement efforts. Additionally, we summarize the major lessons learned through the Finding Answers program. We share best practices for implementing disparities interventions and synthesize cross-cutting themes from 12 systematic reviews of the literature. Our research shows that promising interventions frequently are culturally tailored to meet patients' needs, employ multidisciplinary teams of care providers, and target multiple leverage points along a patient's pathway of care. Health education that uses interactive techniques to deliver skills training appears to be more effective than traditional didactic approaches. Furthermore, patient navigation and engaging family and community members in the health care process may improve outcomes for minority patients. We anticipate that the roadmap and best practices will be useful for organizations, policymakers, and researchers striving to provide high-quality equitable care.
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Hayden, Jeffrey L.
2005-01-01
For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.
100% Clean, Renewable Wind, Water, and Solar Roadmaps for 139 Countries of the World
NASA Astrophysics Data System (ADS)
Jacobson, M. Z.
2015-12-01
Significant prior research has focused on the health, climate, and other environmental and social impacts of gas and aerosol particle emissions from fossil fuel and biofuel combustion. Given the magnitude and costs of the impacts, large-scale conversions of these fuels to non-emitting sources of energy are warranted. This talk discusses technical and economic roadmaps to convert the energy infrastructures of each of 139 countries of the world to those powered by 100% non-emitting wind, water, and sunlight (WWS) for all purposes, namely electricity, transportation, heating/cooling, industry, and agriculture/forestry/fishing, after energy efficiency measures have been accounted for. These roadmaps are developed with a methodology similar to that recently derived for each of the 50 United States. Reliability of 100% WWS systems is crucial. To that end, results showing the ability of the United States to maintain a 100% reliable grid with a 100% WWS system are discussed as well. Please see http://web.stanford.edu/group/efmh/jacobson/Articles/I/WWS-50-USState-plans.html for more information.
Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space
NASA Technical Reports Server (NTRS)
Strayer, Don (Editor)
2003-01-01
The 2003 Fundamental Physics workshop included presentations ranging from forces acting on RNA to properties of clouds of degenerate Fermi atoms, to techniques to probe for a added space-time dimensions, and to flight hardware for low temperature experiments, amongst others. Mark Lee from NASA Headquarters described the new strategic plan that NASA has developed under Administrator Sean O'Keefe's leadership. Mark explained that the Fundamental Physics community now needs to align its research program and the roadmap describing the long-term goals of the program with the NASA plan. Ulf Israelsson of JPL discussed how the rewrite of the roadmap will be implemented under the leadership of the Fundamental Physics Discipline Working Group (DWG). Nick Bigelow, chair of the DWG, outlined how investigators can contribute to the writing of the roadmap. Results of measurements on very cold clouds of Fermi atoms near a Feshbach resonance were described by three investigators. Also, new measurements relating to tests of Einstein equivalence were discussed. Investigators also described methods to test other aspects of Einstein's relativity theories.
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad
2016-01-01
The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.
Addressing learner disorientation: give them a roadmap.
Crossley, James G M
2014-08-01
This article describes the problem of disorientation in students as they become doctors. Disorientation arises because students have a poor or inaccurate understanding of what they are training to become. If they do not know what they are becoming it is hard for them to prioritise and contextualise their learning, to make sense of information about where they are now (assessment and feedback) or to determine the steps they need to take to develop (formative feedback and "feedforward"). It is also a barrier to the early development of professional identity. Using the analogy of a map, the paper describes the idea of a curriculum that is articulated as a developmental journey--a "roadmap curriculum". This is not incompatible with a competency-based curriculum, and certainly requires the same integration of knowledge, skills and attitudes. However, the semantic essence of a roadmap curriculum is fundamentally different; it must describe the pathway or pathways of development toward being a doctor in ways that are both authentic to qualified doctors and meaningful to learners. Examples from within and outside medicine are cited. Potential advantages and implications of this kind of curricular reform are discussed.
Current legal and institutional issues in the commercialization of phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Nimmons, J. T.; Sheehy, K. D.; Singer, J. R.; Gardner, T. C.
1982-01-01
Legal and institutional factors affecting the development and commercial diffusion of phosphoric acid fuel cells are assessed. Issues for future research and action are suggested. Perceived barriers and potential opportunities for fuel cells in central and dispersed utility operations and on-site applications are reviewed, as well as the general concept of commercialization as applied to emerging energy technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2016-01-08
This FY 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.
NASA Technical Reports Server (NTRS)
Folta, David; Young, Corissa; Ross, Adam
2001-01-01
The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.
L929 cell cytotoxicity associated with experimental and commercial dental flosses
NASA Astrophysics Data System (ADS)
Tua-ngam, P.; Supanitayanon, L.; Dechkunakorn, S.; Anuwongnukroh, N.; Srikhirin, T.; Roongrujimek, P.
2017-11-01
This aim of the study was to investigate the cytotoxicity of two commercial and two experimental dental flosses. Two commercial, Oral B® Essential Floss (nylon-waxed) and Thai Silk Floss (silk-waxed), and two experimental, Floss X (nylon-waxed) and Floss Xu (nylon-unwaxed) dental flosses were used. The cytotoxic assay was performed by using cell cultures (L929) which were subjected to cell viability test with methyl-tetrazolium. Each floss specimen (0.4 g) was placed in 1 ml of Minimum Essential Medium at 37°C with 5% CO2 at 100% humidity in an incubator for 24 hours. After incubation, the cell mitochondrial activity was evaluated for detecting viable cells using optical density as per the guidelines of ISO 10993-5:2009(E). Cytotoxic effects were evaluated by measuring percentage of cell viability at 3 points of time- 5 mins, 30 mins, and 1 hr. The results showed that two commercial dental flosses and Floss X had cell viability about 90% at the three time points; however, the experimental Floss Xu presented 80% cell viability at 5 min and <70% cell viability at 30 min and 1 hr. The results concluded that the commercial dental flosses and the experimental dental floss with wax tested in this study were acceptable for clinical use.
Barbash, I M; Cecchini, S; Faranesh, A Z; Virag, T; Li, L; Yang, Y; Hoyt, R F; Kornegay, J N; Bogan, J R; Garcia, L; Lederman, R J; Kotin, R M
2013-03-01
Duchenne muscular dystrophy (DMD) cardiomyopathy patients currently have no therapeutic options. We evaluated catheter-based transendocardial delivery of a recombinant adeno-associated virus (rAAV) expressing a small nuclear U7 RNA (U7smOPT) complementary to specific cis-acting splicing signals. Eliminating specific exons restores the open reading frame resulting in translation of truncated dystrophin protein. To test this approach in a clinically relevant DMD model, golden retriever muscular dystrophy (GRMD) dogs received serotype 6 rAAV-U7smOPT via the intracoronary or transendocardial route. Transendocardial injections were administered with an injection-tipped catheter and fluoroscopic guidance using X-ray fused with magnetic resonance imaging (XFM) roadmaps. Three months after treatment, tissues were analyzed for DNA, RNA, dystrophin protein, and histology. Whereas intracoronary delivery did not result in effective transduction, transendocardial injections, XFM guidance, enabled 30±10 non-overlapping injections per animal. Vector DNA was detectable in all samples tested and ranged from <1 to >3000 vector genome copies per cell. RNA analysis, western blot analysis, and immunohistology demonstrated extensive expression of skipped RNA and dystrophin protein in the treated myocardium. Left ventricular function remained unchanged over a 3-month follow-up. These results demonstrated that effective transendocardial delivery of rAAV-U7smOPT was achieved using XFM. This approach restores an open reading frame for dystrophin in affected dogs and has potential clinical utility.
Spatial Frequency Domain Imaging: Applications in Preclinical Models of Alzheimer's Disease
NASA Astrophysics Data System (ADS)
Lin, Alexander Justin
A clinical challenge in Alzheimer's disease (AD) is diagnosing and treating patients earlier, before symptoms of cognitive dysfunction occur. A good screening test would be sensitive to the AD brain pathology, safe, and cost-effective. Diffuse optical imaging, which measures how non-ionizing light is absorbed and scattered in tissue, may fulfill these three parameters. We imaged the brains of transgenic AD mouse models in vivo with a quantitative, camera-based, diffuse optical imaging technology called spatial frequency domain imaging (SFDI) to characterize near-infrared (650-970nm) optical biomarkers of AD. Compared to age-matched control mice, we found a decrease in light absorption --- due to lower oxygenated and total hemoglobin concentrations in the brain --- correlating to decreased blood vessel volume and density in histology. Light scattering also increased in AD mice, correlating to brain structural changes caused by neuron loss and activation of inflammatory cells. Furthermore, inhaled gas challenges revealed brain vascular function was diminished. To investigate how AD affects the small changes in blood perfusion caused by increased brain activity, we built a new SFDI system from a commercial light-emitting diode microprojector and off-the-shelf optical components and cameras to measure optical properties in the visible range (460-632nm). Our measurements showed a reduced amplitude and duration of blood vessel dilation to increased brain activity in the AD mice. Altogether, this work increased our understanding of AD pathogenesis, explored optical biomarkers of AD, and improved technology access to other research labs. These results and technologies can further be used to facilitate longitudinal drug therapy trials in mice and provide a roadmap to diffuse optical spectroscopy studies in humans.
NASA Technical Reports Server (NTRS)
Reaves, Will F.; Hoberecht, Mark A.
2003-01-01
The Fuel Cell has been used for manned space flight since the Gemini program. Its power output and water production capability over long durations for the mass and volume are critical for manned space-flight requirements. The alkaline fuel cell used on the Shuttle, while very reliable and capable for it s application, has operational sensitivities, limited life, and an expensive recycle cost. The PEM fuel cell offers many potential improvements in those areas. NASA Glenn Research Center is currently leading a PEM fuel cell development and test program intended to move the technology closer to the point required for manned space-flight consideration. This paper will address the advantages of PEM fuel cell technology and its potential for future space flight as compared to existing alkaline fuel cells. It will also cover the technical hurdles that must be overcome. In addition, a description of the NASA PEM fuel cell development program will be presented, and the current status of this effort discussed. The effort is a combination of stack and ancillary component hardware development, culminating in breadboard and engineering model unit assembly and test. Finally, a detailed roadmap for proceeding fiom engineering model hardware to qualification and flight hardware will be proposed. Innovative test engineering and potential payload manifesting may be required to actually validate/certify a PEM fuel cell for manned space flight.
Extremely Large Telescope Project Selected in ESFRI Roadmap
NASA Astrophysics Data System (ADS)
2006-10-01
In its first Roadmap, the European Strategy Forum on Research Infrastructures (ESFRI) choose the European Extremely Large Telescope (ELT), for which ESO is presently developing a Reference Design, as one of the large scale projects to be conducted in astronomy, and the only one in optical astronomy. The aim of the ELT project is to build before the end of the next decade an optical/near-infrared telescope with a diameter in the 30-60m range. ESO PR Photo 40/06 The ESFRI Roadmap states: "Extremely Large Telescopes are seen world-wide as one of the highest priorities in ground-based astronomy. They will vastly advance astrophysical knowledge allowing detailed studies of inter alia planets around other stars, the first objects in the Universe, super-massive Black Holes, and the nature and distribution of the Dark Matter and Dark Energy which dominate the Universe. The European Extremely Large Telescope project will maintain and reinforce Europe's position at the forefront of astrophysical research." Said Catherine Cesarsky, Director General of ESO: "In 2004, the ESO Council mandated ESO to play a leading role in the development of an ELT for Europe's astronomers. To that end, ESO has undertaken conceptual studies for ELTs and is currently also leading a consortium of European institutes engaged in studying enabling technologies for such a telescope. The inclusion of the ELT in the ESFRI roadmap, together with the comprehensive preparatory work already done, paves the way for the next phase of this exciting project, the design phase." ESO is currently working, in close collaboration with the European astronomical community and the industry, on a baseline design for an Extremely Large Telescope. The plan is a telescope with a primary mirror between 30 and 60 metres in diameter and a financial envelope of about 750 m Euros. It aims at more than a factor ten improvement in overall performance compared to the current leader in ground based astronomy: the ESO Very Large Telescope at the Paranal Observatory. The draft Baseline Reference Design will be presented to the wider scientific community on 29 - 30 November 2006 at a dedicated ELT Workshop Meeting in Marseille (France) and will be further reiterated. The design is then to be presented to the ESO Council at the end of 2006. The goal is to start the detailed E-ELT design work by the first half of 2007. Launched in April 2002, the European Strategy Forum on Research Infrastructures was set-up following a recommendation of the European Union Council, with the role to support a coherent approach to policy-making on research infrastructures in Europe, and to act as an incubator for international negotiations about concrete initiatives. In particular, ESFRI has prepared a European Roadmap identifying new Research Infrastructure of pan-European interest corresponding to the long term needs of the European research communities, covering all scientific areas, regardless of possible location and likely to be realised in the next 10 to 20 years. The Roadmap was presented on 19 October. It is the result of an intensive two-year consultation and peer review process involving over 1000 high level European and international experts. The Roadmap identifies 35 large scale infrastructure projects, at various stages of development, in seven key research areas including Environmental Sciences; Energy; Materials Sciences; Astrophysics, Astronomy, Particle and Nuclear Physics; Biomedical and Life Sciences; Social Sciences and the Humanities; Computation and data Treatment.
Broad targeting of resistance to apoptosis in cancer
Mohammad, Ramzi M.; Muqbil, Irfana; Lowe, Leroy; Yedjou, Clement; Hsu, Hsue-Yin; Lin, Liang-Tzung; Siegelin, Markus David; Fimognari, Carmela; Kumar, Nagi B.; Dou, Q. Ping; Yang, Huanjie; Samadi, Abbas K.; Russo, Gian Luigi; Spagnuolo, Carmela; Ray, Swapan K.; Chakrabarti, Mrinmay; Morre, James D.; Coley, Helen M.; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G.; Amedei, Amedeo; Niccolai, Elena; Amin, Amr; Ashraf, S. Salman; Helferich, William G.; Yang, Xujuan; Boosani, Chandra S.; Guha, Gunjan; Bhakta, Dipita; Ciriolo, Maria Rosa; Aquilano, Katia; Chen, Sophie; Mohammed, Sulma I.; Keith, W. Nicol; Bilsland, Alan; Halicka, Dorota; Nowsheen, Somaira; Azmi, Asfar S.
2015-01-01
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer. PMID:25936818
Zero expansion glass ceramic ZERODUR® roadmap for advanced lithography
NASA Astrophysics Data System (ADS)
Westerhoff, Thomas; Jedamzik, Ralf; Hartmann, Peter
2013-04-01
The zero expansion glass ceramic ZERODUR® is a well-established material in microlithography in critical components as wafer- and reticle-stages, mirrors and frames in the stepper positioning and alignment system. The very low coefficient of thermal expansion (CTE) and its extremely high CTE homogeneity are key properties to achieve the tight overlay requirements of advanced lithography processes. SCHOTT is continuously improving critical material properties of ZERODUR® essential for microlithography applications according to a roadmap driven by the ever tighter material specifications broken down from the customer roadmaps. This paper will present the SCHOTT Roadmap for ZERODUR® material property development. In the recent years SCHOTT established a physical model based on structural relaxation to describe the coefficient of thermal expansion's temperature dependence. The model is successfully applied for the new expansion grade ZERODUR® TAILORED introduced to the market in 2012. ZERODUR® TAILORED delivers the lowest thermal expansion of ZERODUR® products at microlithography tool application temperature allowing for higher thermal stability for tighter overlay control in IC production. Data will be reported demonstrating the unique CTE homogeneity of ZERODUR® and its very high reproducibility, a necessary precondition for serial production for microlithography equipment components. New data on the bending strength of ZERODUR® proves its capability to withstand much higher mechanical loads than previously reported. Utilizing a three parameter Weibull distribution it is possible to derive minimum strength values for a given ZERODUR® surface treatment. Consequently the statistical uncertainties of the earlier approach based on a two parameter Weibull distribution have been eliminated. Mechanical fatigue due to stress corrosion was included in a straightforward way. The derived formulae allows calculating life time of ZERODUR® components for a given stress load or the allowable maximum stress for a minimum required life time.
Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M
2015-04-01
A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, by means of an Investigational New Drug (IND) application, into early-phase clinical trials. The roadmap describes four key areas: basic and preclinical research, resource development, translational research and Good Manufacturing Practice (GMP) and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value with the use of a model of the relevant disease. During resource development, the appropriate specialists and the required expertise to bring this product into the clinic are identified (eg, researchers, regulatory specialists, GMP manufacturing staff, clinicians and clinical trials staff, etc). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase, the plan to translate the research product into a clinical-grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States, this is done by filing an IND application with the Food and Drug Administration. The National Heart, Lung and Blood Institute-funded Production Assistance for Cellular Therapies program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five Production Assistance for Cellular Therapies facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Garnier-Laplace, J; Vandenhove, H; Beresford, N; Muikku, M; Real, A
2018-03-01
The ALLIANCE 6 Strategic Research Agenda (SRA) initiated by the STAR 7 Network of Excellence and integrated in the research strategy implemented by the COMET consortium, defines a long-term vision of the needs for, and implementation of, research in radioecology. This reference document, reflecting views from many stakeholders groups and researchers, serves as an input to those responsible for defining EU research call topics through the ALLIANCE SRA statement delivered each year to the EJP-CONCERT 8 (2015-2020). This statement highlights a focused number of priorities for funding. Research in radioecology and related sciences is justified by various drivers, such as policy changes, scientific advances and knowledge gaps, radiological risk perception by the public, and a growing awareness of interconnections between human and ecosystem health. The SRA is being complemented by topical roadmaps that have been initiated by the COMET 9 EC-funded project, with the help and endorsement of the ALLIANCE. The strategy underlying roadmap development is driven by the need for improved mechanistic understanding across radioecology. By meeting this need, we can provide fit-for-purpose human and environmental impact/risk assessments in support of the protection of man and the environment in interaction with society and for the three exposure situations defined by the ICRP (i.e., planned, existing and emergency). Within the framework of the EJP-CONCERT the development of a joint roadmap is under discussion among all the European research platforms and will highlight the major research needs for the whole radiation protection field and how these are likely to be addressed by 2030.
Action-based Dynamical Modeling for the Milky Way Disk: The Influence of Spiral Arms
NASA Astrophysics Data System (ADS)
Trick, Wilma H.; Bovy, Jo; D'Onghia, Elena; Rix, Hans-Walter
2017-04-01
RoadMapping is a dynamical modeling machinery developed to constrain the Milky Way’s (MW) gravitational potential by simultaneously fitting an axisymmetric parametrized potential and an action-based orbit distribution function (DF) to discrete 6D phase-space measurements of stars in the Galactic disk. In this work, we demonstrate RoadMapping's robustness in the presence of spiral arms by modeling data drawn from an N-body simulation snapshot of a disk-dominated galaxy of MW mass with strong spiral arms (but no bar), exploring survey volumes with radii 500 {pc}≤slant {r}\\max ≤slant 5 {kpc}. The potential constraints are very robust, even though we use a simple action-based DF, the quasi-isothermal DF. The best-fit RoadMapping model always recovers the correct gravitational forces where most of the stars that entered the analysis are located, even for small volumes. For data from large survey volumes, RoadMapping finds axisymmetric models that average well over the spiral arms. Unsurprisingly, the models are slightly biased by the excess of stars in the spiral arms. Gravitational potential models derived from survey volumes with at least {r}\\max =3 {kpc} can be reliably extrapolated to larger volumes. However, a large radial survey extent, {r}\\max ˜ 5 {kpc}, is needed to correctly recover the halo scale length. In general, the recovery and extrapolability of potentials inferred from data sets that were drawn from inter-arm regions appear to be better than those of data sets drawn from spiral arms. Our analysis implies that building axisymmetric models for the Galaxy with upcoming Gaia data will lead to sensible and robust approximations of the MW’s potential.
Dzudie, A; Ojji, D; Anisiuba, B C; Abdou, B A; Cornick, R; Damasceno, A; Kane, A L; Mocumbi, A O; Mohamed, A; Nel, G; Ogola, E; Onwubere, B; Otieno, H; Rainer, B; Schutte, A; Ali, I T; Twagirumukiza, M; Poulter, N; Mayosi, B
2015-01-01
Africa has one of the fastest growing economies in the world. The economic changes are associated with a health transition characterised by a rise in cardiovascular risk factors and complications, which tend to affect the African population at their age of maximum productivity. Recent data from Africa have highlighted the increasing importance of high blood pressure in this region of the world. This condition is largely underdiagnosed and poorly treated, and therefore leads to stroke, renal and heart failure, and death. Henceforth, African countries are taking steps to develop relevant policies and programmes to address the issue of blood pressure and other cardiovascular risk factors in response to a call by the World Health Organisation (WHO) to reduce premature deaths from non-communicable diseases (NCDs) by 25% by the year 2025 (25 × 25). The World Heart Federation (WHF) has developed a roadmap for global implementation of the prevention and management of raised blood pressure using a health system approach to help realise the 25 × 25 goal set by the WHO. As the leading continental organisation of cardiovascular professionals, the Pan-African Society of Cardiology (PASCAR) aims to contextualise the roadmap framework of the WHF to the African continent through the PASCAR Taskforce on Hypertension. The Taskforce held a workshop in Kenya on 27 October 2014 to discuss a process by which effective prevention and control of hypertension in Africa may be achieved. It was agreed that a set of clinical guidelines for the management of hypertension are needed in Africa. The ultimate goal of this work is to develop a roadmap for implementation of the prevention and management of hypertension in Africa under the auspices of the WHF.
Roadmap to a tobacco epidemic: transnational tobacco companies invade Indonesia.
Hurt, Richard D; Ebbert, Jon O; Achadi, Anhari; Croghan, Ivana T
2012-05-01
Indonesia is the world's fifth largest cigarette market in the world but for decades, transnational tobacco companies (TTCs) have had limited success infiltrating this market, due to their inability to compete in the kretek market. Kreteks are clove/tobacco cigarettes that most Indonesians smoke. To determine how Phillip Morris International (PMI) and British American Tobacco (BAT) have now successfully achieved a substantial market presence in Indonesia. We analyzed previously secret, tobacco industry documents, corporate reports on Indonesia operations, the Tobacco Trade press, Indonesia media, and "The Roadmap". Internal, corporate documents from BAT and PMI demonstrate that they had known for decades that kreteks are highly carcinogenic. Despite that knowledge, BAT and PMI now own and heavily market these products, as well as new more westernised versions of kreteks. BAT and PMI used their successful basic strategy of keeping cigarettes affordable by maintaining the social responsibility of smoking and opposing smoke-free workplace laws but in the 21st century, they added the acquisition of and westernisation of domestic kretek manufacturers as an additional strategy. These acquisitions allowed them to assert influences on health policy in Indonesia and to grow their business under current government policy embodied in the 2007-2020 Roadmap of Tobacco Products Industry and Excise Policy which calls for increased cigarette production by 12% over the next 15 years. PMI and Bat have successfully entered and are expanding their share in the Indonesia cigarette market. Despite the obvious and pervasive influence of the tobacco industry on policy decisions, the Indonesian government should ratify the FCTC and implement effective legislation to reduce tobacco consumption and exposure to tobacco smoke and revise the Roadmap to protect future generations of Indonesians.
Roadmap to a Tobacco Epidemic: Transnational Tobacco Companies Invade Indonesia
Hurt, Richard D.; Ebbert, Jon O.; Achadi, Anhari; Croghan, Ivana T.
2014-01-01
Background Indonesia is the world’s fifth largest cigarette market in the world but for decades, transnational tobacco companies (TTCs) have had limited success infiltrating this market, due to their inability to compete in the kretek market. Kreteks are clove/tobacco cigarettes that most Indonesians smoke. Objective To determine how Phillip Morris International (PMI) and British American Tobacco (BAT) have now successfully achieved a substantial market presence in Indonesia. Methods We analyzed previously secret, tobacco industry documents, corporate reports on Indonesia operations, the Tobacco Trade press, Indonesia media, and “The Roadmap.” Results Internal, corporate documents from BAT and PMI demonstrate that they had known for decades that kreteks are highly carcinogenic. Despite that knowledge, BAT and PMI now own and heavily market these products, as well as new more westernized versions of kreteks. BAT and PMI maintained the basic strategy of keeping cigarettes affordable by maintaining the social responsibility of smoking and opposing smoke-free workplace laws but in the 21st century, they added the acquisition of and Westernization of domestic kretek manufacturers as an additional strategy. These acquisitions allowed them to assert influences on health policy in Indonesia and to grow their business under current government policy embodied in the 2007-2020 Roadmap of Tobacco Products Industry and Excise Policy which calls for increased cigarette production by 12% over the next 15 years. Conclusion PMI and Bat have successfully entered and are expanding their share in the Indonesia cigarette market. Despite the obvious and pervasive influence of the tobacco industry on policy decisions, the Indonesian government should ratify the FCTC and implement effective legislation to reduce tobacco consumption and exposure to tobacco smoke and revise the Roadmap to protect future generations of Indonesians. PMID:21852413
Idaho National Engineering Laboratory High-Level Waste Roadmap. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ``where we are now`` to ``where we want and need to be.`` The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment.more » By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues.« less
Overview of NASA's Space Solar Power Technology Advanced Research and Development Program
NASA Technical Reports Server (NTRS)
Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)
2001-01-01
Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).
Early commercial demonstration of space solar power using ultra-lightweight arrays
NASA Astrophysics Data System (ADS)
Reed, Kevin; Willenberg, Harvey J.
2009-11-01
Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report published in October 2017 updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.
Convergent innovation for affordable nutrition, health, and health care: the global pulse roadmap.
Jha, Srivardhini K; McDermott, John; Bacon, Gordon; Lannon, Chris; Joshi, P K; Dubé, Laurette
2014-12-01
The paper outlines how the principles of convergent innovation (CI) can be applied to bring about a transformation in the pulse value chain. The paper presents three pioneering CI initiatives--two in conception and one in operation--by various actors in the pulse ecosystem, which are delivering economic and human development impact in particular segments of the pulse value chain. It goes on to propose the way forward to scale up these efforts and connect them into a roadmap so as to achieve transformation throughout society, calling into action a number of actors in the ecosystem. © 2014 New York Academy of Sciences.
Roadmap to a Sustainable Structured Trusted Employee Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, Cameron W; Eisele, Gerhard R
2013-08-01
Organizations (facility, regulatory agency, or country) have a compelling interest in ensuring that individuals who occupy sensitive positions affording access to chemical biological, radiological and nuclear (CBRN) materials facilities and programs are functioning at their highest level of reliability. Human reliability and human performance relate not only to security but also focus on safety. Reliability has a logical and direct relationship to trustworthiness for the organization is placing trust in their employees to conduct themselves in a secure, safe, and dependable manner. This document focuses on providing an organization with a roadmap to implementing a successful and sustainable Structured Trustedmore » Employee Program (STEP).« less
NASA Astrophysics Data System (ADS)
Jacobson, Mark Z.
2017-10-01
Solving the problems of global warming, air pollution, and energy security requires a massive effort by individuals, communities, businesses, nonprofits, and policy makers around the world. The first step in that process is to have a plan. To that end, roadmaps to transition 139 countries of the world to 100% clean, renewable wind, water, and solar power for all energy purposes (electricity, transportation, heating, cooling, industry, agriculture, forestry, and fishing) by 2050, with 80% by 2030, have been developed. The evolution, characteristics, and impacts to date of these plans are briefly described.
Integrity and security in an Ada runtime environment
NASA Technical Reports Server (NTRS)
Bown, Rodney L.
1991-01-01
A review is provided of the Formal Methods group discussions. It was stated that integrity is not a pure mathematical dual of security. The input data is part of the integrity domain. The group provided a roadmap for research. One item of the roadmap and the final position statement are closely related to the space shuttle and space station. The group's position is to use a safe subset of Ada. Examples of safe sets include the Army Secure Operating System and the Penelope Ada verification tool. It is recommended that a conservative attitude is required when writing Ada code for life and property critical systems.
A Roadmap for Educational Research in Pharmacy
Dean, Meredith J.; Mumper, Russell J.; Blouin, Robert A.; Roth, Mary T.
2013-01-01
Educational research must play a critical role in informing practice and policy within pharmacy education. Understanding the educational environment and its impact on students, faculty members, and other stakeholders is imperative for improving outcomes and preparing pharmacy students to meet the needs of 21st century health care. To aid in the design and implementation of meaningful educational research within colleges and schools of pharmacy, this roadmap addresses philosophy and educational language; guidelines for the conduct of educational research; research design, including 4 approaches to defining, collecting, and analyzing educational data; measurement issues; ethical considerations; resources and tools; and the value of educational research in guiding curricular transformation. PMID:24371342
HTA Implementation Roadmap in Central and Eastern European Countries
Gheorghe, Adrian; Huic, Mirjana; Csanádi, Marcell; Kristensen, Finn Boerlum
2016-01-01
Abstract The opportunity cost of inappropriate health policy decisions is greater in Central and Eastern European (CEE) compared with Western European (WE) countries because of poorer population health and more limited healthcare resources. Application of health technology assessment (HTA) prior to healthcare financing decisions can improve the allocative efficiency of scarce resources. However, few CEE countries have a clear roadmap for HTA implementation. Examples from high‐income countries may not be directly relevant, as CEE countries cannot allocate so much financial and human resources for substantiating policy decisions with evidence. Our objective was to describe the main HTA implementation scenarios in CEE countries and summarize the most important questions related to capacity building, financing HTA research, process and organizational structure for HTA, standardization of HTA methodology, use of local data, scope of mandatory HTA, decision criteria, and international collaboration in HTA. Although HTA implementation strategies from the region can be relevant examples for other CEE countries with similar cultural environment and economic status, HTA roadmaps are not still fully transferable without taking into account country‐specific aspects, such as country size, gross domestic product per capita, major social values, public health priorities, and fragmentation of healthcare financing. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26763688
Astrobiology: A Roadmap for Charting Life in the Universe
NASA Technical Reports Server (NTRS)
DesMarais, David J.; DeVincezi, D. (Technical Monitor)
2002-01-01
Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.
NASA Technical Reports Server (NTRS)
Cole, Stuart K.; Reeves, John D.; Williams-Byrd, Julie A.; Greenberg, Marc; Comstock, Doug; Olds, John R.; Wallace, Jon; DePasquale, Dominic; Schaffer, Mark
2013-01-01
NASA is investing in new technologies that include 14 primary technology roadmap areas, and aeronautics. Understanding the cost for research and development of these technologies and the time it takes to increase the maturity of the technology is important to the support of the ongoing and future NASA missions. Overall, technology estimating may help provide guidance to technology investment strategies to help improve evaluation of technology affordability, and aid in decision support. The research provides a summary of the framework development of a Technology Estimating process where four technology roadmap areas were selected to be studied. The framework includes definition of terms, discussion for narrowing the focus from 14 NASA Technology Roadmap areas to four, and further refinement to include technologies, TRL range of 2 to 6. Included in this paper is a discussion to address the evaluation of 20 unique technology parameters that were initially identified, evaluated and then subsequently reduced for use in characterizing these technologies. A discussion of data acquisition effort and criteria established for data quality are provided. The findings obtained during the research included gaps identified, and a description of a spreadsheet-based estimating tool initiated as a part of the Technology Estimating process.
Adoption of Electronic Health Records: A Roadmap for India
2016-01-01
Objectives The objective of the study was to create a roadmap for the adoption of Electronic Health Record (EHR) in India based an analysis of the strategies of other countries and national scenarios of ICT use in India. Methods The strategies for adoption of EHR in other countries were analyzed to find the crucial steps taken. Apart from reports collected from stakeholders in the country, the study relied on the experience of the author in handling several e-health projects. Results It was found that there are four major areas where the countries considered have made substantial efforts: ICT infrastructure, Policy & regulations, Standards & interoperability, and Research, development & education. A set of crucial activities were identified in each area. Based on the analysis, a roadmap is suggested. It includes the creation of a secure health network; health information exchange; and the use of open-source software, a national health policy, privacy laws, an agency for health IT standards, R&D, human resource development, etc. Conclusions Although some steps have been initiated, several new steps need to be taken up for the successful adoption of EHR. It requires a coordinated effort from all the stakeholders. PMID:27895957
The Global Exploration Roadmap and its significance for NASA
NASA Astrophysics Data System (ADS)
Laurini, K. C.; Gerstenmaier, W. H.
2014-08-01
The Global Exploration Roadmap reflects the collaborative effort of twelve space agencies to define a long-term human space exploration strategy which provides substantial benefits for improving the quality of life on Earth and is implementable and sustainable. Such a strategy is a necessary precondition to the government investments required to enable the challenging and rewarding missions that extend human presence into the solar system. The article introduces the international strategy and elaborates on NASA's leadership role in shaping that strategy. The publication of the roadmap, a reflection of the space landscape and multilateral agency-level dialog over the last four years, allows NASA to demonstrate its commitment to leading a long-term space exploration endeavor that delivers benefits, maintains strategic human spaceflight capabilities and expands human presence in space, with human missions to the surface of Mars as a driving goal. The road mapping process has clearly demonstrated the complementary interests of the participants and the potential benefits that can be gained through cooperation among nations to achieve a common goal. The present US human spaceflight policy is examined and it is shown that the establishment of a sustainable global space exploration strategy is fully consistent with that policy.
MaRIE theory, modeling and computation roadmap executive summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lookman, Turab
The confluence of MaRIE (Matter-Radiation Interactions in Extreme) and extreme (exascale) computing timelines offers a unique opportunity in co-designing the elements of materials discovery, with theory and high performance computing, itself co-designed by constrained optimization of hardware and software, and experiments. MaRIE's theory, modeling, and computation (TMC) roadmap efforts have paralleled 'MaRIE First Experiments' science activities in the areas of materials dynamics, irradiated materials and complex functional materials in extreme conditions. The documents that follow this executive summary describe in detail for each of these areas the current state of the art, the gaps that exist and the road mapmore » to MaRIE and beyond. Here we integrate the various elements to articulate an overarching theme related to the role and consequences of heterogeneities which manifest as competing states in a complex energy landscape. MaRIE experiments will locate, measure and follow the dynamical evolution of these heterogeneities. Our TMC vision spans the various pillar science and highlights the key theoretical and experimental challenges. We also present a theory, modeling and computation roadmap of the path to and beyond MaRIE in each of the science areas.« less
Risk assessment in the 21st century: roadmap and matrix.
Embry, Michelle R; Bachman, Ammie N; Bell, David R; Boobis, Alan R; Cohen, Samuel M; Dellarco, Michael; Dewhurst, Ian C; Doerrer, Nancy G; Hines, Ronald N; Moretto, Angelo; Pastoor, Timothy P; Phillips, Richard D; Rowlands, J Craig; Tanir, Jennifer Y; Wolf, Douglas C; Doe, John E
2014-08-01
Abstract The RISK21 integrated evaluation strategy is a problem formulation-based exposure-driven risk assessment roadmap that takes advantage of existing information to graphically represent the intersection of exposure and toxicity data on a highly visual matrix. This paper describes in detail the process for using the roadmap and matrix. The purpose of this methodology is to optimize the use of prior information and testing resources (animals, time, facilities, and personnel) to efficiently and transparently reach a risk and/or safety determination. Based on the particular problem, exposure and toxicity data should have sufficient precision to make such a decision. Estimates of exposure and toxicity, bounded by variability and/or uncertainty, are plotted on the X- and Y-axes of the RISK21 matrix, respectively. The resulting intersection is a highly visual representation of estimated risk. Decisions can then be made to increase precision in the exposure or toxicity estimates or declare that the available information is sufficient. RISK21 represents a step forward in the goal to introduce new methodologies into 21st century risk assessment. Indeed, because of its transparent and visual process, RISK21 has the potential to widen the scope of risk communication beyond those with technical expertise.
Stem Cell Research and Clinical Translation: A Roadmap about Good Clinical Practice and Patient Care
Scopetti, Matteo; Gatto, Vittorio
2017-01-01
The latest research achievements in the field of stem cells led in 2016 to the publication of “Guidelines for Stem Cell Research and Clinical Translation” by the International Society for Stem Cell Research (ISSCR). Updating the topics covered in previous publications, the new recommendations offer interesting ethical and scientific insights. Under the common principles of research integrity, protection of patient's welfare, respect for the research subjects, transparency and social justice, the centrality of good clinical practice, and informed consent in research and translational medicine is supported. The guidelines implement the abovementioned publications, requiring rigor in all areas of research, promoting the validity of the scientific activity results and emphasizing the need for an accurate and efficient public communication. This paper aims to analyze the aforementioned guidelines in order to provide a valid interpretive tool for experts. In particular, a research activity focused on the bioethical, scientific, and social implications of the new recommendations is carried out in order to provide food for thought. Finally, as an emerging issue of potential impact of current guidelines, an overview on implications of compensation for egg donation is offered. PMID:29090010
Goren, A; Naccarato, T; Situm, M; Kovacevic, M; Lotti, T; McCoy, J
2017-01-01
Topical minoxidil is the only topical drug approved by the US Food and Drug Administration (FDA) for the treatment of androgenetic alopecia. However, the exact mechanism by which minoxidil stimulates anagen phase and promotes hair growth is not fully understood. In the late telegen phase of the hair follicle growth cycle, stem cells located in the bulge region differentiate and re-enter anagen phase, a period of growth lasting 2-6 years. In androgenetic alopecia, the anagen phase is shortened and a progressive miniaturization of hair follicles occurs, eventually leading to hair loss. Several studies have demonstrated that minoxidil increases the amount of intracellular Ca2+, which has been shown to up-regulate the enzyme adenosine triphosphate (ATP) synthase. A recent study demonstrated that ATP synthase, independent of its role in ATP synthesis, promotes stem cell differentiation. As such, we propose that minoxidil induced Ca2+ influx can increase stem cell differentiation and may be a key factor in the mechanism by which minoxidil facilitates hair growth. Based on our theory, we provide a roadmap for the development of a new class of drugs for the treatment of androgenetic alopecia.
Frati, Paola; Scopetti, Matteo; Santurro, Alessandro; Gatto, Vittorio; Fineschi, Vittorio
2017-01-01
The latest research achievements in the field of stem cells led in 2016 to the publication of "Guidelines for Stem Cell Research and Clinical Translation" by the International Society for Stem Cell Research (ISSCR). Updating the topics covered in previous publications, the new recommendations offer interesting ethical and scientific insights. Under the common principles of research integrity, protection of patient's welfare, respect for the research subjects, transparency and social justice, the centrality of good clinical practice, and informed consent in research and translational medicine is supported. The guidelines implement the abovementioned publications, requiring rigor in all areas of research, promoting the validity of the scientific activity results and emphasizing the need for an accurate and efficient public communication. This paper aims to analyze the aforementioned guidelines in order to provide a valid interpretive tool for experts. In particular, a research activity focused on the bioethical, scientific, and social implications of the new recommendations is carried out in order to provide food for thought. Finally, as an emerging issue of potential impact of current guidelines, an overview on implications of compensation for egg donation is offered.
A Vision and Roadmap for Increasing User Autonomy in Flight Operations in the National Airspace
NASA Technical Reports Server (NTRS)
Cotton, William B.; Hilb, Robert; Koczo, Stefan; Wing, David
2016-01-01
The purpose of Air Transportation is to move people and cargo safely, efficiently and swiftly to their destinations. The companies and individuals who use aircraft for this purpose, the airspace users, desire to operate their aircraft according to a dynamically optimized business trajectory for their specific mission and operational business model. In current operations, the dynamic optimization of business trajectories is limited by constraints built into operations in the National Airspace System (NAS) for reasons of safety and operational needs of the air navigation service providers. NASA has been developing and testing means to overcome many of these constraints and permit operations to be conducted closer to the airspace user's changing business trajectory as conditions unfold before and during the flight. A roadmap of logical steps progressing toward increased user autonomy is proposed, beginning with NASA's Traffic Aware Strategic Aircrew Requests (TASAR) concept that enables flight crews to make informed, deconflicted flight-optimization requests to air traffic control. These steps include the use of data communications for route change requests and approvals, integration with time-based arrival flow management processes under development by the Federal Aviation Administration (FAA), increased user authority for defining and modifying downstream, strategic portions of the trajectory, and ultimately application of self-separation. This progression takes advantage of existing FAA NextGen programs and RTCA standards development, and it is designed to minimize the number of hardware upgrades required of airspace users to take advantage of these advanced capabilities to achieve dynamically optimized business trajectories in NAS operations. The roadmap is designed to provide operational benefits to first adopters so that investment decisions do not depend upon a large segment of the user community becoming equipped before benefits can be realized. The issues of equipment certification and operational approval of new procedures are addressed in a way that minimizes their impact on the transition by deferring a change in the assignment of separation responsibility until a large body of operational data is available to support the safety case for this change in the last roadmap step.This paper will relate the roadmap steps to ongoing activities to clarify the economics-based transition to these technologies for operational use.
Europe Unveils 20-Year Plan for Brilliant Future in Astronomy
NASA Astrophysics Data System (ADS)
2008-11-01
Astronomy is enjoying a golden age of fundamental, exciting discoveries. Europe is at the forefront, thanks to 50 years of progress in cooperation. To remain ahead over the next two to three decades, Europe must prioritise and coordinate the investment of its financial and human resources even more closely. The ASTRONET network, backed by the entire European scientific community, supported by the European Commission, and coordinated by the CNRS, today presents its Roadmap for a brilliant future for European astronomy. ESO's European Extremely Large Telescope is ranked as one of two top-priority large ground-based projects. Astronet and the E-ELT ESO PR Photo 43a/08 The E-ELT Europe is a leader in astronomy today, with the world's most successful optical observatory, ESO's Very Large Telescope, and cutting-edge facilities in radio astronomy and in space. In an unprecedented effort demonstrating the potential of European scientific cooperation, all of European astronomy is now joining forces to define the scientific challenges for the future and construct a common plan to address them in a cost-effective manner. In 2007, a top-level Science Vision was prepared to assess the most burning scientific questions over the next quarter century, ranging from dark energy to life on other planets. European astronomy now presents its Infrastructure Roadmap, a comprehensive 20-year plan to coordinate national and community investments to meet these challenges in a cost-effective manner. The Roadmap not only prioritises the necessary new frontline research facilities from radio telescopes to planetary probes, in space and on the ground, but also considers such key issues as existing facilities, human resources, ICT infrastructure, education and outreach, and cost -- of operations as well as construction. This bold new initiative -- ASTRONET -- was created by the major European funding agencies with support from the European Commission and is coordinated by the National Institute for Earth Sciences and Astronomy (INSU) of the CNRS. To build consensus on priorities in a very diverse community, the Science Vision and Roadmap were developed in an open process involving intensive interaction with the community through large open meetings and feedback via e-mail and the web. The result is a plan now backed by astronomers in 28 Member and Associated States of the EU, with over 500 million inhabitants. Over 60 selected experts from across Europe contributed to the construction of the ASTRONET Roadmap, ensuring that European astronomy has the tools to compete successfully in answering the challenges of the Science Vision. They identified and prioritised a set of new facilities to observe the Universe from radio waves to gamma rays, to open up new ways of probing the cosmos, such as gravitational waves, and to advance in the exploration of our Solar System. In the process, they considered all the elements needed by a successful scientific enterprise, from global-scale cooperation on the largest mega-project to the need for training and recruiting skilled young scientists and engineers. One of two top-priority large ground-based projects is ESO's European Extremely Large Telescope. Its 42-metre diameter mirror will make the E-ELT the largest optical/near-infrared telescope in the world -- "the biggest eye on the sky". The science to be done with the E-ELT is extremely exciting and includes studies of exoplanets and discs, galaxy formation and dark energy. ESO Director General Tim de Zeeuw says: "The top ranking of the E-ELT in the Roadmap is a strong endorsement from the European astronomical community. This flagship project will indisputably raise the European scientific, technological and industrial profile". Among other recommendations, the Roadmap considers how to maximise the future scientific impact of existing facilities in a cost-effective manner. It also identifies a need for better access to state-of-the art computing and laboratory facilities, and for a stronger involvement of European high-tech industry in the development of future facilities. Moreover, success depends critically upon an adequate supply of qualified scientists, and of engineers in fields ranging from IT to optics. Finally, the Roadmap proposes a series of measures to enhance the public understanding of astronomy as a means to boost recruitment in science and technology in schools and universities across Europe. Europe currently spends approximately €2 billion a year on astronomy in the broadest sense. Implementing the ASTRONET Roadmap will require a funding increase of around 20% -- less than €1 per year per European citizen. Global cooperation will be needed -- and is being planned -- for several of the largest projects.
Fuel cell commercialization — beyond the 'Notice of Market Opportunity for Fuel Cells' (NOMO)
NASA Astrophysics Data System (ADS)
Serfass, J. A.; Glenn, D. R.
1992-01-01
The Notice of Market Opportunity for Fuel Cells (NOMO) was released in Oct. 1988 by the American Public Power Association. Its goal was to identify a manufacturer for commercializing a multi-megawatt fuel cell power plant with attractive cost and performance characteristics, supported by a realistic, yet aggressive commercialization plan, leading to mid-1990s application. Energy Research Corporation's program to commercialize its 2-MW internal-reforming carbonate fuel cell was selected. The program was refined in the development of the Principles and Framework for Commercializing Direct Fuel Cell Power Plants, which defines buyer responsibilities for promotion and coordination of information development, supplier responsibilities for meeting certain milestones and for sharing the results of success in a royalty agreement, and risk management features. Twenty-three electric and gas utilities in the US and Canada have joined the Fuel Cell Commercialization Group to support the buyers' obligations in this program. The City of Santa Clara, CA; Electric Power Research Institute; Los Angeles Department of Water and Power; Southern California Gas Company; Southern California Edison; National Rural Electric Cooperative Association; and Pacific Gas & Electric, have formed the Santa Clara Demonstration Group to build the first 2-MW power plant. The preliminary design for this demonstration is nearly complete. Integrated testing of a 20-kW stack with the complete balance-of-plant, has been successfully accomplished by Pacific Gas & Electric at its test facility in San Ramon, CA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.
NASA Astrophysics Data System (ADS)
Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Fitzpatrick, Garret; Ellingson, Lance; Mitchell, Sarah; Yang, Anthony; Kosnik, Cristine; Rayl, Nicole; Cannon, Tom; Austin, Edward; Sato, Kevin
With the recent call by the 2011 Decadal Report and the 2010 Space Biosciences Roadmap for the International Space Station (ISS) to be used as a National Laboratory for scientific research, there is now a need for new laboratory instruments on ISS to enable such research to occur. The Bioculture System supports the extended culturing of multiple cell types and microbiological specimens. It consists of a docking station that carries ten independent incubation units or ‘Cassettes’. Each Cassette contains a cooling chamber (5(°) C) for temperature sensitive solutions and samples, or long duration fluids and sample storage, as well as an incubation chamber (ambient up to 42(°) C). Each Cassette houses an independent fluidics system comprised of a biochamber, medical-grade fluid tubing, medium warming module, oxygenation module, fluid pump, and sixteen solenoid valves for automated biochamber injections of sampling. The Bioculture System provides the user with the ability to select the incubation temperature, fluid flow rate and automated biochamber sampling or injection events for each separate Cassette. Furthermore, the ISS crew can access the biochamber, media bag, and accessory bags on-orbit using the Microgravity Science Glovebox. The Bioculture System also permits initiation of cultures, subculturing, injection of compounds, and removal of samples for on-orbit processing using ISS facilities. The Bioculture System therefore provides a unique opportunity for the study of stem cells and other cell types in space. The first validation flight of the Bioculture System will be conducted on SpaceX5, consisting of 8 Cassettes and lasting for 30-37 days. During this flight we plan to culture two different mammalian cell types in bioreactors: a mouse osteocytic-like cell line, and human induced pluripotent stem cell (iPS)-derived cardiomyocytes. Specifically, the osteocytic line will enable the study of a type of cell that has been flown on the Bioculture System’s predecessor, the Cell Culture Module, whilst demonstrating the Bioculture Systems bead-based sub-culturing capabilities, automated sampling and fixation, manual sample removal/storage by ISS crew members, and whole bioreactor fixation. These activities will enable, for the first time, the long-duration culture of a proliferative cell line. Furthermore, these activities will facilitate genetic and proteomic analysis of these cells at several time points to determine cell health throughout the culture period. The long-duration culture of iPS-derived cardiomyocytes will afford us the capability to assess the maturation and formation of a cardiac-like tissue in microgravity conditions. Automated sampling of this culture immediately prior to un-berthing from the ISS will enable genetic analysis of the mature cardiomyocyte tissue, whilst still enabling the return of live cultures for analysis of cardiomyocyte morphology, contractility, and viability in response to spaceflight. This validation flight will demonstrate the new functional capabilities of the Bioculture System and the System will enable, for the first time, the study of the response of stem cells and other cell lineages to long-duration spaceflight exposure, whilst enabling normal cell culturing techniques to be automatically conducted on ISS.
ERIC Educational Resources Information Center
Smith, Michael J.; Vincent, Colin A.
1989-01-01
Uses reversible electrochemical cells near equilibrium to study basic thermodynamic concepts such as maximum work and free energy. Selects sealed, miniature, commercial cells to obtain accurate measurement of enthalpy, entropy, and Gibbs free energy. (MVL)
Development of the VS-50 as an Intermediate Step Towards LM-1
NASA Astrophysics Data System (ADS)
Ettl, J.; Kirchhartz, R.; Hrbud, I.; Basken, R.; Raith, G.; Hecht, M.; de Almeide, F. A.; Roda, E. D.
2015-09-01
The VS-50 launch vehicle is the designated intermediate development step of the VLM-1. The VLM-1 launch system is a joint venture between the research center for space DCTAIIAE in Brazil and the German Aerospace Center (DLR) in Germany. Development highlights are application of carbon fiber technologies for the S50 motor case and interstage adaptor, use of fiberglass for the fairing, newly developed thrust vector assembly (TVA) consisting of commercial components, unique navigation system encompassing two IMUs, a GPS receiver, and adaptive control algorithms guiding the vehicle. The VS-50 is a two-stage vehicle using S50 and S44 motors. The development of the VS-50 serves two major purposes: First, VS-SO represents a technological development stage in the VLM-1 development roadmap, and second, it serves as a carrier for scientific payloads. Potential payloads are aerodynamic probes for yielding scientific aero-dynamic and thermo-dynamic data sets at regimes up to 18 Mach. Further, the VS-50 could be used for re-entry research and investigation of re-usable flight objectives.
Development of Improved Chemicals and Plastics from Oilseeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugent, Patricia A.; Lysenko, Zenon
2006-11-09
The overall objective of this program was to develop technology that can be applied to the production of various chemicals and plastics from seed oils. This research and development program included activities in all four key barrier areas identified in the US DOE Technology Roadmap for Plant/Crop-Based Renewable Resources, namely Plant Science, Production, Processing, and Utilization. Participants in the project included The Dow Chemical Company, Castor Oil, Inc., and the USDA Western Regional Research Center (WRRC). The objective of this production task was to evaluate and develop metathesis catalyst technology as a means of utilizing seed oils as feedstocks formore » the chemical industry. Specifically, ethenolysis of fatty acid methyl esters, FAME’s, leads to functionalized derivatives. These serve as valuable starting points for materials which cascade into a variety of applications, many of which have a current market presence. The relatively recent discovery and commercial availability of a family of metathesis catalysts which are tolerant of polar functional groups and the acquisition and implementation of high throughput synthesis and screening infrastructure led to a prime opportunity to investigate this project area.« less
Engineering AAV receptor footprints for gene therapy.
Madigan, Victoria J; Asokan, Aravind
2016-06-01
Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints. Copyright © 2016 Elsevier B.V. All rights reserved.
Monteiro de Oliveira Novaes, Jose Augusto; William, William N
2016-10-01
Oral squamous cell carcinomas represent a significant cancer burden worldwide. Unfortunately, chemoprevention strategies investigated to date have failed to produce an agent considered standard of care to prevent oral cancers. Nonetheless, recent advances in clinical trial design may streamline drug development in this setting. In this manuscript, we review some of these improvements, including risk prediction tools based on molecular markers that help select patients most suitable for chemoprevention. We also discuss the opportunities that novel preclinical models and modern molecular profiling techniques will bring to the prevention field in the near future, and propose a clinical trials framework that incorporates molecular prognostic factors, predictive markers and cancer biology as a roadmap to improve chemoprevention strategies for oral cancers.
NASA Astrophysics Data System (ADS)
Myers, Niki; Wessling, Francis; Deuser, Mark; Anderson, C. D.; Lewis, Marian
1999-01-01
The primary goals of the BioDyn program are to foster use of the microgravity environment for commercial production of bio-materials from cells, and to develop services and processes for obtaining these materials through space processing. The scope of products includes commercial bio-molecules such as cytokines, other cell growth regulatory proteins, hormones, monoclonal antibodies and enzymes; transplantable cells or tissues which can be improved by low-G processes, or which cannot be obtained through standard processes in earth gravity; agriculture biotechnology products from plant cells; microencapsulation for diabetes treatment; and factors regulating cellular aging. To facilitate BioDyn's commercial science driven goals, hardware designed for ISS incorporates the flexibility for interchange between the different ISS facilities including the glovebox, various thermal units and centrifuges. By providing a permanent research facility, ISS is the critical space-based platform required by scientists for carrying out the long-term experiments necessary for developing bio-molecules and tissues using several cell culture modalities including suspension and anchorage-dependent cell types.
Electrolytes for Hydrocarbon Air Fuel Cells.
1981-01-01
finding an electrolyte with sufficient electrochemical activity and stability to replace phosphoric acid in direct oxidation fuel cells. Commercially...and stability to replace phosphoric acid in direct oxidation fuel cells. Commercially available materials received prime consideration. However, ECO’s...was to obtain an electrolyte with sufficient electrochemical activity and stability to replace phosphoric acid in direct oxidation fuel cells. This
Determination of thermal properties of commercial Ni-MH cells
NASA Astrophysics Data System (ADS)
Darcy, Eric C.
1994-02-01
The test objectives were to evaluate the electrical and thermal performance of commercial Ni-MH cells, evaluate the effectiveness of commercial charge control circuits, assess the abuse tolerance of these cells, and correlate performance and abuse tolerances to cell design via disassembly. Design objectives were to determine which cell designs are most suitable for scale-up and to guide the design of future shuttle and space station based battery chargers. Results, displayed in viewgraph format, include: reflex charging with ICS circuit resulted in premature charge termination; Ni-MH cells appear very tolerant to overcharge at low rates; Enstore's charger is more electrically and thermally efficient at high rates; and Ni-MH cycles much more efficiently than Ni-Cd with the delta-V/delta-t termination.
Determination of thermal properties of commercial Ni-MH cells
NASA Technical Reports Server (NTRS)
Darcy, Eric C.
1994-01-01
The test objectives were to evaluate the electrical and thermal performance of commercial Ni-MH cells, evaluate the effectiveness of commercial charge control circuits, assess the abuse tolerance of these cells, and correlate performance and abuse tolerances to cell design via disassembly. Design objectives were to determine which cell designs are most suitable for scale-up and to guide the design of future shuttle and space station based battery chargers. Results, displayed in viewgraph format, include: reflex charging with ICS circuit resulted in premature charge termination; Ni-MH cells appear very tolerant to overcharge at low rates; Enstore's charger is more electrically and thermally efficient at high rates; and Ni-MH cycles much more efficiently than Ni-Cd with the delta-V/delta-t termination.
NASA Solar Array Demonstrates Commercial Potential
NASA Technical Reports Server (NTRS)
Creech, Gray
2006-01-01
A state-of-the-art solar-panel array demonstration site at NASA's Dryden Flight Research Center provides a unique opportunity for studying the latest in high-efficiency solar photovoltaic cells. This five-kilowatt solar-array site (see Figure 1) is a technology-transfer and commercialization success for NASA. Among the solar cells at this site are cells of a type that was developed in Dryden Flight Research Center s Environmental Research Aircraft and Sensor Technology (ERAST) program for use in NASA s Helios solar-powered airplane. This cell type, now denoted as A-300, has since been transferred to SunPower Corporation of Sunnyvale, California, enabling mass production of the cells for the commercial market. High efficiency separates these advanced cells from typical previously commercially available solar cells: Whereas typical previously commercially available cells are 12 to 15 percent efficient at converting sunlight to electricity, these advanced cells exhibit efficiencies approaching 23 percent. The increase in efficiency is due largely to the routing of electrical connections behind the cells (see Figure 2). This approach to increasing efficiency originated as a solution to the problem of maximizing the degree of utilization of the limited space available atop the wing of the Helios airplane. In retrospect, the solar cells in use at this site could be used on Helios, but the best cells otherwise commercially available could not be so used, because of their lower efficiencies. Historically, solar cells have been fabricated by use of methods that are common in the semiconductor industry. One of these methods includes the use of photolithography to define the rear electrical-contact features - diffusions, contact openings, and fingers. SunPower uses these methods to produce the advanced cells. To reduce fabrication costs, SunPower continues to explore new methods to define the rear electrical-contact features. The equipment at the demonstration site includes two fixed-angle solar arrays and one single-axis Sun-tracking array. One of the fixed arrays contains typical less-efficient commercial solar cells and is being used as a baseline for comparison of the other fixed array, which contains the advanced cells. The Sun-tracking array tilts to follow the Sun, using an advanced, real-time tracking device rather than customary pre-programmed mechanisms. Part of the purpose served by the demonstration is to enable determination of any potential advantage of a tracking array over a fixed array. The arrays are monitored remotely on a computer that displays pertinent information regarding the functioning of the arrays.
Toward An Affordable Commercial Fuel Cell (LBNL Summer Lecture Series)
Visco, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
2018-02-16
Steve Visco, a materials scientist, has come up with a solid oxide fuel cell that promises to generate electricity as cheaply as the most efficient gas turbine engine. But there's a lot more work to do before commercially viable fuel cells and pollution-free power generators become reality.
Passive vs Active Knowledge Transfer: boosting grant proposal impact
NASA Astrophysics Data System (ADS)
Grigorov, Ivo; Bayliss-Brown, Georgia; Murphy, David; Thøgersen, Thomas; Mariani, Patrizio
2017-04-01
Research funders are increasingly concerned with measurable socio-economic impact of investment in research, and on increasingly shorter timescales. Innovation, and "open innovation" are the policy priorities of the moment and optimising the flow of ideas along the lab-2-market spectrum is essential for re-use of results, fuelling open innovation, and boosting socio-economic impact or public funded research. The presentation showcases two complimentary strategies that Project Managers can employ pre- and/or post-award in order to optimise the exploitation and impact of research project: passive and active knowledge transfer. Passive Knowledge Transfer relies on maximum disclosure of research output (other than commercially exploitable research via patents and other IPR) in the interest of optimal reproducibility, independent validation and re-use by both academic and non-academic users, without necessarily targeting specific users. Tools of the trade include standard public & academic dissemination means (research articles, online media publications, newsletters, generic policy briefs). Additional transparency of the research workflow can be achieved by integrating "open science" (open notebooks, open data, open research software and open access to research publications) as well as Virtual Research Environments (VREs) in the methodology of the proposed work. Ensuring that the proposal partners are suitably trained in best practices of open science, makes proposal grant more competitive at evaluation and the resulting maximum access to research outputs does contribute to better return on investment for funders (Beagrie 2016) and economic growth objectives of public s e.g. Blue Growth (Houghton & Swan 2011, Marine Knowledge 2020 Roadmap). Active Knowledge Transfer, or the pro-active translation of research into policy or commercial context, is the more classical and better known approach (also referred to as extension services, or researchers providing advice e.g. to fisheries and aquaculture governance bodies and private sector). Horizon2020 COLUMBUS Consortium proposes and tests a methodology for categorizing the diverse output of research into verifiable "knowledge outputs" , and documenting the execution of an transfer plan to very specific and identified potential users, in order to transfer knowledge along the lab-2-market spectrum. The presentation will demonstrate how Open Science and detailed knowledge transfer plans complement each other, enhance grant proposal evaluation pre- and post-award, and can address Blue Growth policy objectives. Concepts presented are developed by FP7/H2020 FOSTER (www.fosteropenscience.eu), H2020 COLUMBUS (www.columbusproject.eu) References: Beagrie, Neil, and Charles Beagrie. "The Value and Impact of the European Bioinformatics Institute," January 2016. http://www.beagrie.com/static/resource/EBI-impact-report.pdf Houghton, John, Alma Swan, and Sheridan Brown. "Access to Research and Technical Information in Denmark." Monograph, April 2011. http://eprints.soton.ac.uk/272603/ Marine Knowledge 2020: roadmap http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=SWD:2014:149:FIN
NASA Astrophysics Data System (ADS)
Mahpeykar, Seyed Milad; Wang, Xihua
2017-02-01
Colloidal quantum dot (CQD) solar cells have been under the spotlight in recent years mainly due to their potential for low-cost solution-processed fabrication and efficient light harvesting through multiple exciton generation (MEG) and tunable absorption spectrum via the quantum size effect. Despite the impressive advances achieved in charge carrier mobility of quantum dot solids and the cells' light trapping capabilities, the recent progress in CQD solar cell efficiencies has been slow, leaving them behind other competing solar cell technologies. In this work, using comprehensive optoelectronic modeling and simulation, we demonstrate the presence of a strong efficiency loss mechanism, here called the "efficiency black hole", that can significantly hold back the improvements achieved by any efficiency enhancement strategy. We prove that this efficiency black hole is the result of sole focus on enhancement of either light absorption or charge extraction capabilities of CQD solar cells. This means that for a given thickness of CQD layer, improvements accomplished exclusively in optic or electronic aspect of CQD solar cells do not necessarily translate into tangible enhancement in their efficiency. The results suggest that in order for CQD solar cells to come out of the mentioned black hole, incorporation of an effective light trapping strategy and a high quality CQD film at the same time is an essential necessity. Using the developed optoelectronic model, the requirements for this incorporation approach and the expected efficiencies after its implementation are predicted as a roadmap for CQD solar cell research community.
NASA Astrophysics Data System (ADS)
Cho, Yong Ku; Zheng, Guoan; Augustine, George J.; Hochbaum, Daniel; Cohen, Adam; Knöpfel, Thomas; Pisanello, Ferruccio; Pavone, Francesco S.; Vellekoop, Ivo M.; Booth, Martin J.; Hu, Song; Zhu, Jiang; Chen, Zhongping; Hoshi, Yoko
2016-09-01
Mechanistic understanding of how the brain gives rise to complex behavioral and cognitive functions is one of science’s grand challenges. The technical challenges that we face as we attempt to gain a systems-level understanding of the brain are manifold. The brain’s structural complexity requires us to push the limit of imaging resolution and depth, while being able to cover large areas, resulting in enormous data acquisition and processing needs. Furthermore, it is necessary to detect functional activities and ‘map’ them onto the structural features. The functional activity occurs at multiple levels, using electrical and chemical signals. Certain electrical signals are only decipherable with sub-millisecond timescale resolution, while other modes of signals occur in minutes to hours. For these reasons, there is a wide consensus that new tools are necessary to undertake this daunting task. Optical techniques, due to their versatile and scalable nature, have great potentials to answer these challenges. Optical microscopy can now image beyond the diffraction limit, record multiple types of brain activity, and trace structural features across large areas of tissue. Genetically encoded molecular tools opened doors to controlling and detecting neural activity using light in specific cell types within the intact brain. Novel sample preparation methods that reduce light scattering have been developed, allowing whole brain imaging in rodent models. Adaptive optical methods have the potential to resolve images from deep brain regions. In this roadmap article, we showcase a few major advances in this area, survey the current challenges, and identify potential future needs that may be used as a guideline for the next steps to be taken.
Xenomicrobiology: a roadmap for genetic code engineering.
Acevedo-Rocha, Carlos G; Budisa, Nediljko
2016-09-01
Biology is an analytical and informational science that is becoming increasingly dependent on chemical synthesis. One example is the high-throughput and low-cost synthesis of DNA, which is a foundation for the research field of synthetic biology (SB). The aim of SB is to provide biotechnological solutions to health, energy and environmental issues as well as unsustainable manufacturing processes in the frame of naturally existing chemical building blocks. Xenobiology (XB) goes a step further by implementing non-natural building blocks in living cells. In this context, genetic code engineering respectively enables the re-design of genes/genomes and proteins/proteomes with non-canonical nucleic (XNAs) and amino (ncAAs) acids. Besides studying information flow and evolutionary innovation in living systems, XB allows the development of new-to-nature therapeutic proteins/peptides, new biocatalysts for potential applications in synthetic organic chemistry and biocontainment strategies for enhanced biosafety. In this perspective, we provide a brief history and evolution of the genetic code in the context of XB. We then discuss the latest efforts and challenges ahead for engineering the genetic code with focus on substitutions and additions of ncAAs as well as standard amino acid reductions. Finally, we present a roadmap for the directed evolution of artificial microbes for emancipating rare sense codons that could be used to introduce novel building blocks. The development of such xenomicroorganisms endowed with a 'genetic firewall' will also allow to study and understand the relation between code evolution and horizontal gene transfer. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Cho, Yong Ku; Zheng, Guoan; Augustine, George J; Hochbaum, Daniel; Cohen, Adam; Knöpfel, Thomas; Pisanello, Ferruccio; Pavone, Francesco S; Vellekoop, Ivo M; Booth, Martin J; Hu, Song; Zhu, Jiang; Chen, Zhongping; Hoshi, Yoko
2017-01-01
Mechanistic understanding of how the brain gives rise to complex behavioral and cognitive functions is one of science’s grand challenges. The technical challenges that we face as we attempt to gain a systems-level understanding of the brain are manifold. The brain’s structural complexity requires us to push the limit of imaging resolution and depth, while being able to cover large areas, resulting in enormous data acquisition and processing needs. Furthermore, it is necessary to detect functional activities and ‘map’ them onto the structural features. The functional activity occurs at multiple levels, using electrical and chemical signals. Certain electrical signals are only decipherable with sub-millisecond timescale resolution, while other modes of signals occur in minutes to hours. For these reasons, there is a wide consensus that new tools are necessary to undertake this daunting task. Optical techniques, due to their versatile and scalable nature, have great potentials to answer these challenges. Optical microscopy can now image beyond the diffraction limit, record multiple types of brain activity, and trace structural features across large areas of tissue. Genetically encoded molecular tools opened doors to controlling and detecting neural activity using light in specific cell types within the intact brain. Novel sample preparation methods that reduce light scattering have been developed, allowing whole brain imaging in rodent models. Adaptive optical methods have the potential to resolve images from deep brain regions. In this roadmap article, we showcase a few major advances in this area, survey the current challenges, and identify potential future needs that may be used as a guideline for the next steps to be taken. PMID:28386392
Finding a roadmap to achieve large neuromorphic hardware systems
Hasler, Jennifer; Marr, Bo
2013-01-01
Neuromorphic systems are gaining increasing importance in an era where CMOS digital computing techniques are reaching physical limits. These silicon systems mimic extremely energy efficient neural computing structures, potentially both for solving engineering applications as well as understanding neural computation. Toward this end, the authors provide a glimpse at what the technology evolution roadmap looks like for these systems so that Neuromorphic engineers may gain the same benefit of anticipation and foresight that IC designers gained from Moore's law many years ago. Scaling of energy efficiency, performance, and size will be discussed as well as how the implementation and application space of Neuromorphic systems are expected to evolve over time. PMID:24058330
A Roadmap of Innovative Nuclear Energy System
NASA Astrophysics Data System (ADS)
Sekimoto, Hiroshi
2017-01-01
Nuclear is a dense energy without CO2 emission. It can be used for more than 100,000 years using fast breeder reactors with uranium from the sea. However, it raises difficult problems associated with severe accidents, spent fuel waste and nuclear threats, which should be solved with acceptable costs. Some innovative reactors have attracted interest, and many designs have been proposed for small reactors. These reactors are considered much safer than conventional large reactors and have fewer technical obstructions. Breed-and-burn reactors have high potential to solve all inherent problems for peaceful use of nuclear energy. However, they have some technical problems with materials. A roadmap for innovative reactors is presented herein.
Development of nickel-metal hydride cell: An update
NASA Technical Reports Server (NTRS)
Kuwajima, S.; Kusawake, Hiroaki; Nakatani, Kensuke; Yano, Y.
1994-01-01
This paper presents in viewgraph format an overview of NASDA's evaluation of commercial nickel metal-hydride (Ni-MH) cells and the development and testing of Ni-MH cells for use in space. The commercial cells are concluded to be feasible and suitable for use in LEO; for GEO, the durability for overcharge is needed because long-term charge retention is required. For the aerospace Ni-MH cell design, two activation procedures are applied to evaluate the effect of the difference in the amount of overcharge protection and precharge. Specific energy of the Ni-MH cell is nearly accomplished at 50 Wh/kg. Initial characteristics indicate the effect derived from precharge. Thirty-five amp-hour class Ni-MH cells have good performance for LEO cycle of 25 and 40 percent DOD up to 3000 cycles as similar to commercial cells. The effect of the difference in the amount of overcharge protection will appear in life test.
NASA Technical Reports Server (NTRS)
Graves, Claude
2005-01-01
Some engineering topics: Some Initial Thoughts. Capability Description. Capability State-of-the-Art. Capability Requirements. Systems Engineering. Capability Roadmap. Capability Maturity. Candidate Technologies. Metrics.
NASA Technical Reports Server (NTRS)
Sofie, Stephen W.; Cable, Thomas L.; Salamone, Sam M.
2005-01-01
Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization.
Roadmap on quantum optical systems
NASA Astrophysics Data System (ADS)
Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.
2016-09-01
This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.
HTA Implementation Roadmap in Central and Eastern European Countries.
Kaló, Zoltán; Gheorghe, Adrian; Huic, Mirjana; Csanádi, Marcell; Kristensen, Finn Boerlum
2016-02-01
The opportunity cost of inappropriate health policy decisions is greater in Central and Eastern European (CEE) compared with Western European (WE) countries because of poorer population health and more limited healthcare resources. Application of health technology assessment (HTA) prior to healthcare financing decisions can improve the allocative efficiency of scarce resources. However, few CEE countries have a clear roadmap for HTA implementation. Examples from high-income countries may not be directly relevant, as CEE countries cannot allocate so much financial and human resources for substantiating policy decisions with evidence. Our objective was to describe the main HTA implementation scenarios in CEE countries and summarize the most important questions related to capacity building, financing HTA research, process and organizational structure for HTA, standardization of HTA methodology, use of local data, scope of mandatory HTA, decision criteria, and international collaboration in HTA. Although HTA implementation strategies from the region can be relevant examples for other CEE countries with similar cultural environment and economic status, HTA roadmaps are not still fully transferable without taking into account country-specific aspects, such as country size, gross domestic product per capita, major social values, public health priorities, and fragmentation of healthcare financing. © 2016 The Authors. Health Economics published by John Wiley & Sons Ltd.
X-43D Conceptual Design and Feasibility Study
NASA Technical Reports Server (NTRS)
Johnson, Donald B.; Robinson, Jeffrey S.
2005-01-01
NASA s Next Generation Launch Technology (NGLT) Program, in conjunction with the office of the Director of Defense Research and Engineering (DDR&E), developed an integrated hypersonic technology demonstration roadmap. This roadmap is an integral part of the National Aerospace Initiative (NAI), a multi-year, multi-agency cooperative effort to invest in and develop, among other things, hypersonic technologies. This roadmap contains key ground and flight demonstrations required along the path to developing a reusable hypersonic space access system. One of the key flight demonstrations required for systems that will operate in the high Mach number regime is the X-43D. As currently conceived, the X-43D is a Mach 15 flight test vehicle that incorporates a hydrogen-fueled scramjet engine. The purpose of the X-43D is to gather high Mach number flight environment and engine operability information which is difficult, if not impossible, to gather on the ground. During 2003, the NGLT Future Hypersonic Flight Demonstration Office initiated a feasibility study on the X-43D. The objective of the study was to develop a baseline conceptual design, assess its performance, and identify the key technical issues. The study also produced a baseline program plan, schedule, and cost, along with a list of key programmatic risks.
Schmitt, Jochen; Apfelbacher, Christian; Spuls, Phyllis I; Thomas, Kim S; Simpson, Eric L; Furue, Masutaka; Chalmers, Joanne; Williams, Hywel C
2015-01-01
Core outcome sets (COSs) are consensus-derived minimum sets of outcomes to be assessed in a specific situation. COSs are being increasingly developed to limit outcome-reporting bias, allow comparisons across trials, and strengthen clinical decision making. Despite the increasing interest in outcomes research, methods to develop COSs have not yet been standardized. The aim of this paper is to present the Harmonizing Outcomes Measures for Eczema (HOME) roadmap for the development and implementation of COSs, which was developed on the basis of our experience in the standardization of outcome measurements for atopic eczema. Following the establishment of a panel representing all relevant stakeholders and a research team experienced in outcomes research, the scope and setting of the core set should be defined. The next steps are the definition of a core set of outcome domains such as symptoms or quality of life, followed by the identification or development and validation of appropriate outcome measurement instruments to measure these core domains. Finally, the consented COS needs to be disseminated, implemented, and reviewed. We believe that the HOME roadmap is a useful methodological framework to develop COSs in dermatology, with the ultimate goal of better decision making and promoting patient-centered health care.
Integrating MPI and deduplication engines: a software architecture roadmap.
Baksi, Dibyendu
2009-03-01
The objective of this paper is to clarify the major concepts related to architecture and design of patient identity management software systems so that an implementor looking to solve a specific integration problem in the context of a Master Patient Index (MPI) and a deduplication engine can address the relevant issues. The ideas presented are illustrated in the context of a reference use case from Integrating the Health Enterprise Patient Identifier Cross-referencing (IHE PIX) profile. Sound software engineering principles using the latest design paradigm of model driven architecture (MDA) are applied to define different views of the architecture. The main contribution of the paper is a clear software architecture roadmap for implementors of patient identity management systems. Conceptual design in terms of static and dynamic views of the interfaces is provided as an example of platform independent model. This makes the roadmap applicable to any specific solutions of MPI, deduplication library or software platform. Stakeholders in need of integration of MPIs and deduplication engines can evaluate vendor specific solutions and software platform technologies in terms of fundamental concepts and can make informed decisions that preserve investment. This also allows freedom from vendor lock-in and the ability to kick-start integration efforts based on a solid architecture.
NASA Net Zero Energy Buildings Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pless, S.; Scheib, J.; Torcellini, P.
In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategicmore » approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.« less
ERIC Educational Resources Information Center
Cady, Susan G.
2014-01-01
The circuit board found in a commercial musical greeting card is used to supply music for electrochemical cell demonstrations. Similar to a voltmeter, the "modified" musical device is connected to a chemical reaction that produces electricity. The commercial 1 V battery inside the greeting card circuit board can be replaced with an…
Development of nickel-metal hydride cell
NASA Technical Reports Server (NTRS)
Kuwajima, Saburo; Kamimori, Nolimits; Nakatani, Kensuke; Yano, Yoshiaki
1993-01-01
National Space Development Agency of Japan (NASDA) has conducted the research and development (R&D) of battery cells for space use. A new R&D program about a Nickel-Metal Hydride (Ni-MH) cell for space use from this year, based on good results in evaluations of commercial Ni-MH cells in Tsukuba Space Center (TKSC), was started. The results of those commercial Ni-MH cell's evaluations and recent status about the development of Ni-MH cells for space use are described.
Majumdar, Deepanjan; Rao, Padma; Maske, Nilam
2017-03-01
Ground-level concentrations of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) were monitored over three seasons, i.e., post-monsoon (September-October), winter (January-February), and summer (May-June) for 1 year during 2013-2014 in Nagpur City in India. The selected gases had moderate to high variation both spatially (residential, commercial, traffic intersections, residential cum commercial sites) and temporally (at 7:00, 13:00, 18:00, and 23:00 hours in all three seasons). Concentrations of gases were randomly distributed diurnally over city in all seasons, and there was no specific increasing or decreasing trend with time in a day. Average CO 2 and N 2 O concentrations in winter were higher over post-monsoon and summer while CH 4 had highest average concentration in summer. Observed concentrations of CO 2 were predominantly above global average of 400 ppmv while N 2 O and CH 4 concentrations frequently dropped down below global average of 327 ppbv and 1.8 ppmv, respectively. Two-tailed Student's t test indicated that post-monsoon CO 2 concentrations were statistically different from summer but not so from winter, while difference between summer and winter concentrations was statistically significant (P < 0.05). CH 4 concentrations in all seasons were statistically at par to each other. In case of N 2 O, concentrations in post-monsoon were statistically different from summer but not so from winter, while difference between summer and winter concentrations was statistically significant (P < 0.05). Average ground-level concentrations of the gases calculated for three seasons together were higher in commercial areas. Environmental management priorities vis a vis greenhouse gas emissions in the city are also discussed.
Space agencies' scientific roadmaps need harmonisation and reegular re-assessment
NASA Astrophysics Data System (ADS)
Worms, Jean-Claude; Culhane, J. Leonard; Walter, Nicolas; Swings, Jean-Pierre; Detsis, Emmanouil
The need to consider international collaboration in the exploration of space has been recognised since the dawn of the space age in 1957. Since then, international collaboration has been the main operational working mode amongst space scientists the world over, setting aside national pre-eminence and other political arguments. COSPAR itself was created as a tool for scientists to maintain the dialogue at the time of the cold war. Similarly the inherent constraints of the field (cost, complexity, time span) have led space agencies to try and coordinate their efforts. As a result many - if not all - of the key space science missions since the 60’s have been collaborative by nature. Different collaboration models have existed with varying success, and the corresponding lessons learned have been assessed through various fora and reports. For various reasons whose scope has broadened since that time (use of space in other domains such as Earth observation, telecommunication and navigation; emergence of commercial space activities; increased public appeal and capacity to motivate the young generation to engage into related careers), the importance of international collaboration in space has never faltered and coordination among spacefaring nations has become the norm. However programme harmonisation is often found to be lacking, and duplication of efforts sometimes happens due to different planning and decision procedures, programmatic timelines or budgetary constraints. Previous studies, in particular by the European ESSC-ESF, with input from the US NAS-SSB, advocated the need to establish a coordinating body involving major space agencies to address these coordination issues in a systematic and harmonious way. Since then and in line with this recommendation, the International Space Exploration Coordination Group (ISECG) of 14 space agencies was created in 2007 and published a first roadmap to advance a “Global Exploration Strategy”. ISECG is non-binding though and recent examples of lack of coordination in international planning probably indicate that this should be brought to a higher, more systematic level of coordination. Even more recently, discussions i.e. at the ISECG level, have led this forum to envisage setting up a Science Working Group to inform ISECG on ways to better coordinate the “…interaction between the exploration community…” (i.e. agencies) and the “…scientific community”. Following the recommendations by ESSC-ESF, the need for a rational and systematic approach to the harmonisation of agencies’ scientific roadmaps should be undertaken on a regular basis (ideally on an annual basis), through an inter-agency scientific collaboration working group, which would include agency executives but also scientific membership chosen after appropriate consultation. The ISECG Science Working Group could serve as an embryo to this inter-agency body. The presentation will offer prospects for the establishment of such a body and suggestions on its operating mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe Mambretti Richard desJardins
2006-05-01
A new generation of optical networking services and technologies is rapidly changing the world of communications. National and international networks are implementing optical services to supplement traditional packet routed services. On September 12-14, 2005, the Optical Network Testbeds Workshop 2 (ONT2), an invitation-only forum hosted by the NASA Research and Engineering Network (NREN) and co-sponsored by the Department of Energy (DOE), was held at NASA Ames Research Center in Mountain View, California. The aim of ONT2 was to help the Federal Large Scale Networking Coordination Group (LSN) and its Joint Engineering Team (JET) to coordinate testbed and network roadmaps describingmore » agency and partner organization views and activities for moving toward next generation communication services based on leading edge optical networks in the 3-5 year time frame. ONT2 was conceived and organized as a sequel to the first Optical Network Testbeds Workshop (ONT1, August 2004, www.nren.nasa.gov/workshop7). ONT1 resulted in a series of recommendations to LSN. ONT2 was designed to move beyond recommendations to agree on a series of “actionable objectives” that would proactively help federal and partner optical network testbeds and advanced research and education (R&E) networks to begin incorporating technologies and services representing the next generation of advanced optical networks in the next 1-3 years. Participants in ONT2 included representatives from innovative prototype networks (Panel A), basic optical network research testbeds (Panel B), and production R&D networks (Panels C and D), including “JETnets,” selected regional optical networks (RONs), international R&D networks, commercial network technology and service providers (Panel F), and senior engineering and R&D managers from LSN agencies and partner organizations. The overall goal of ONT2 was to identify and coordinate short and medium term activities and milestones for researching, developing, identifying, evaluating, and implementing the services, technologies, and interoperability mechanisms required. The roadmaps were formulated and presented not so much to reconcile the roadmaps with each other but rather to provide a means to compare the major ongoing and planned optical networking activities in the R&E community, organized by categories of activities and communities of interest. In addition, a 5-15 year network research perspective was provided by Panel E, which presented a report on two recent National Science Foundation workshops that examined long term research goals and directions, and industry perspectives on forthcoming optical networking technologies and services were presented in Panel F by representatives from optical technologies and network services industries. The report, “Mapping a Future for Optical Networking and Communications” is available on the NSF website (www.nsf.gov), and the industry perspectives will be available on the ONT2 website.« less
Developing the "Lunar Vicinity" Scenario of the Global Exploration Roadmap
NASA Astrophysics Data System (ADS)
Schmidt, G.; Neal, C. R.; Crawford, I. A.; Ehrenfreund, P.
2014-04-01
The Global Exploration Roadmap (GER, [1]) has been developed by the International Space Exploration Coordination Group (ISECG - comprised of 14 space agencies) to define various pathways to getting humans beyond low Earth orbit and eventually to Mars. Such pathways include visiting asteroids or the Moon before going on to Mars. This document has been written at a very high level and many details are still to be determined. However, a number of important papers regarding international space exploration can form a basis for this document (e.g. [2,3]). In this presentation, we focus on developing the "Lunar Vicinity" scenario by adding detail via mapping a number of recent reports/documents into the GER. Precedence for this scenario is given by Szajnfarber et al. [4] who stated "We find that when international partners are considered endogenously, the argument for a "flexible path" approach is weakened substantially. This is because international contributions can make "Moon first" economically feasible". The documents highlighted here are in no way meant to be all encompassing and other documents can and should be added, (e.g., the JAXA Space Exploration Roadmap). This exercise is intended to demonstrate that existing documents can be mapped into the GER despite the major differences in granularity, and that this mapping is a way to promote broader national and international buy-in to the Lunar Vicinity scenario. The documents used here are: the Committee on Space Research (COSPAR) Panel on Exploration report on developing a global space exploration program [5], the Strategic Knowledge Gaps (SKGs) report from the Lunar Exploration Analysis Group (LEAG) [6], the Lunar Exploration Roadmap developed by LEAG [7], the National Research Council report Scientific Context for the Exploration of the Moon (SCEM) [8], the scientific rationale for resuming lunar surface exploration [9], the astrobiological benefits of human space exploration [9,10].
Medaglini, Donata; De Azero, Magdalena R; Leroy, Odile; Bietrix, Florence; Denoel, Philippe
2018-02-21
A clear vision for vaccines research and development (R&D) is needed if Europe is to continue to lead the discovery of next generation vaccines. Innovation Partnership for a Roadmap on Vaccines in Europe (IPROVE) is a collaboration between leading vaccine experts to develop a roadmap setting out how Europe can best invest in the science and technology essential for vaccines innovation. This FP7 project, started in December 2013, brought together more than 130 key public and private stakeholders from academia, public health institutes, regulators, industry and small and medium-sized enterprises to determine and prioritise the gaps and challenges to be addressed to bolster innovation in vaccines and vaccination in Europe. The IPROVE consultation process was structured around seven themes: vaccine R&D, manufacturing and quality control, infrastructure, therapeutic vaccines, needs of small and medium-sized enterprises, vaccines acceptance and training needs. More than 80 recommendations were made by the consultation groups, mainly focused on the need for a multidisciplinary research approach to stimulate innovation, accelerated translation of scientific knowledge into technological innovation, and fostering of real collaboration within the European vaccine ecosystem. The consultation also reinforced the fact that vaccines are only as good as their vaccine implementation programmes, and that more must be done to understand and address vaccination hesitancy of both the general public and healthcare professionals. Bringing together a wide range of stakeholders to work on the IPROVE roadmap has increased mutual understanding of their different perspectives, needs and priorities. IPROVE is a first attempt to develop such a comprehensive view of the vaccine sector. This prioritisation effort, aims to help policy-makers and funders identify those vaccine-related areas and technologies where key investment is needed for short and medium-long term success. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Schrijver, Carolus; Kauristie, Kirsti
This single 90minute slot will follow on from the morning plenary presentation of the roadmap, providing an opportunity for further discussion of the panel’s findings with an invited panel of key stakeholders. --- As mankind’s technological capabilities grow, society constructs a rapidly deepening insight into the workings of the universe at large, being guided by exploring space near to our home. But at the same time our societal dependence on technology increases and with that comes a growing appreciation of the challenges presented by the phenomena that occur in that space around our home planet: Magnetic explosions on the Sun and their counterparts in the geomagnetic field can in extreme cases endanger our all-pervasive electrical infrastructure. Powerful space storms occasionally lower the reliability of the globe-spanning satellite navigation systems and interrupt radio communications. Energetic particle storms lead to malfunctions and even failures in satellites that are critical to the flow of information in the globally connected economies. These and other Sun-driven effects on Earth’s environment, collectively known as space weather, resemble some other natural hazards in the sense that they pose a risk for the safe and efficient functioning of society that needs to be understood, quantified, and - ultimately - mitigated against. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant a well-planned and well-coordinated approach with cost-efficient solutions. Our team is tasked with the development of a roadmap with the goal of demonstrably improving our observational capabilities, scientific understanding, and the ability to forecast. This paper summarizes the accomplishments of the roadmap team in identifying the highest-priority challenges to achieve these goals.
NASA Astrophysics Data System (ADS)
Schrijver, Carolus; Kauristie, Kirsti
This single 90minute slot will follow on from the morning plenary presentation of the roadmap, providing an opportunity for further discussion of the panel’s findings with an invited panel of key stakeholders. --- As mankind’s technological capabilities grow, society constructs a rapidly deepening insight into the workings of the universe at large, being guided by exploring space near to our home. But at the same time our societal dependence on technology increases and with that comes a growing appreciation of the challenges presented by the phenomena that occur in that space around our home planet: Magnetic explosions on the Sun and their counterparts in the geomagnetic field can in extreme cases endanger our all-pervasive electrical infrastructure. Powerful space storms occasionally lower the reliability of the globe-spanning satellite navigation systems and interrupt radio communications. Energetic particle storms lead to malfunctions and even failures in satellites that are critical to the flow of information in the globally connected economies. These and other Sun-driven effects on Earth’s environment, collectively known as space weather, resemble some other natural hazards in the sense that they pose a risk for the safe and efficient functioning of society that needs to be understood, quantified, and - ultimately - mitigated against. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant a well-planned and well-coordinated approach with cost-efficient solutions. Our team is tasked with the development of a roadmap with the goal of demonstrably improving our observational capabilities, scientific understanding, and the ability to forecast. This paper summarizes the accomplishments of the roadmap team in identifying the highest-priority challenges to achieve these goals.
NASA Astrophysics Data System (ADS)
Schrijver, Carolus; Kauristie, Kirsti
This single 90minute slot will follow on from the morning plenary presentation of the roadmap, providing an opportunity for further discussion of the panel’s findings with an invited panel of key stakeholders. --- As mankind’s technological capabilities grow, society constructs a rapidly deepening insight into the workings of the universe at large, being guided by exploring space near to our home. But at the same time our societal dependence on technology increases and with that comes a growing appreciation of the challenges presented by the phenomena that occur in that space around our home planet: Magnetic explosions on the Sun and their counterparts in the geomagnetic field can in extreme cases endanger our all-pervasive electrical infrastructure. Powerful space storms occasionally lower the reliability of the globe-spanning satellite navigation systems and interrupt radio communications. Energetic particle storms lead to malfunctions and even failures in satellites that are critical to the flow of information in the globally connected economies. These and other Sun-driven effects on Earth’s environment, collectively known as space weather, resemble some other natural hazards in the sense that they pose a risk for the safe and efficient functioning of society that needs to be understood, quantified, and - ultimately - mitigated against. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant a well-planned and well-coordinated approach with cost-efficient solutions. Our team is tasked with the development of a roadmap with the goal of demonstrably improving our observational capabilities, scientific understanding, and the ability to forecast. This paper summarizes the accomplishments of the roadmap team in identifying the highest-priority challenges to achieve these goals.
Multijunction Solar Cell Technology for Mars Surface Applications
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris
2006-01-01
Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.
The assessment of data sources for influenza virologic surveillance in New York State.
Escuyer, Kay L; Waters, Christine L; Gowie, Donna L; Maxted, Angie M; Farrell, Gregory M; Fuschino, Meghan E; St George, Kirsten
2017-03-01
Following the 2013 USA release of the Influenza Virologic Surveillance Right Size Roadmap, the New York State Department of Health (NYSDOH) embarked on an evaluation of data sources for influenza virologic surveillance. To assess NYS data sources, additional to data generated by the state public health laboratory (PHL), which could enhance influenza surveillance at the state and national level. Potential sources of laboratory test data for influenza were analyzed for quantity and quality. Computer models, designed to assess sample sizes and the confidence of data for statistical representation of influenza activity, were used to compare PHL test data to results from clinical and commercial laboratories, reported between June 8, 2013 and May 31, 2014. Sample sizes tested for influenza at the state PHL were sufficient for situational awareness surveillance with optimal confidence levels, only during peak weeks of the influenza season. Influenza data pooled from NYS PHLs and clinical laboratories generated optimal confidence levels for situational awareness throughout the influenza season. For novel influenza virus detection in NYS, combined real-time (rt) RT-PCR data from state and regional PHLs achieved ≥85% confidence during peak influenza activity, and ≥95% confidence for most of low season and all of off-season. In NYS, combined data from clinical, commercial, and public health laboratories generated optimal influenza surveillance for situational awareness throughout the season. Statistical confidence for novel virus detection, which is reliant on only PHL data, was achieved for most of the year. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.
McCollough, Cynthia H; Chen, Guang Hong; Kalender, Willi; Leng, Shuai; Samei, Ehsan; Taguchi, Katsuyuki; Wang, Ge; Yu, Lifeng; Pettigrew, Roderic I
2012-08-01
This Special Report presents the consensus of the Summit on Management of Radiation Dose in Computed Tomography (CT) (held in February 2011), which brought together participants from academia, clinical practice, industry, and regulatory and funding agencies to identify the steps required to reduce the effective dose from routine CT examinations to less than 1 mSv. The most promising technologies and methods discussed at the summit include innovations and developments in x-ray sources; detectors; and image reconstruction, noise reduction, and postprocessing algorithms. Access to raw projection data and standard data sets for algorithm validation and optimization is a clear need, as is the need for new, clinically relevant metrics of image quality and diagnostic performance. Current commercially available techniques such as automatic exposure control, optimization of tube potential, beam-shaping filters, and dynamic z-axis collimators are important, and education to successfully implement these methods routinely is critically needed. Other methods that are just becoming widely available, such as iterative reconstruction, noise reduction, and postprocessing algorithms, will also have an important role. Together, these existing techniques can reduce dose by a factor of two to four. Technical advances that show considerable promise for additional dose reduction but are several years or more from commercial availability include compressed sensing, volume of interest and interior tomography techniques, and photon-counting detectors. This report offers a strategic roadmap for the CT user and research and manufacturer communities toward routinely achieving effective doses of less than 1 mSv, which is well below the average annual dose from naturally occurring sources of radiation.