Science.gov

Sample records for cell communication

  1. Cell communication and tissue engineering.

    PubMed

    Rossello, Ricardo A; H, David

    2010-01-01

    Gap junction intercellular communication (GJIC) is ubiquitous in the majority of cells and is indispensable for proper development and function of most tissues. The loss of gap junction mediated cell to cell communication leads to compromised development in many tissues and organs, and also facilitates tumorigenesis and autonomous cell behavior in cancerous cells. Because cells embedded in an extracellular matrix constantly interact through gap junctions to coordinate normal tissue functions and homeostasis, our group hypothesized that increasing cell to cell communication, via genetically engineering cells to overexpress gap junction proteins, could improve cell signaling and increase differentiation in interior regions of engineered tissue equivalents. In a recent paper,1 we presented a platform to regenerate full 3D equivalents of engineered tissue, providing a strategy to overcome a barrier in regenerative medicine. These findings suggest that both targeted delivery and cell-based strategies can be used as treatments to enhance communication in 3D living tissue.2 In this addendum, we address the effects of extracellular calcium (Ca(2+) (e)) on intracellular calcium (Ca(2+) (i)), GJIC and osteogenic differentiation under conditions in which bone marrow stromal cells (BMSCs) also exhibit higher cell-to-cell communication. As a key secondary messenger in many biological processes, the levels of Ca(2+) (e) and Ca(2+) (i) play a role in cell differentiation and may be a tunable signal in tissue regeneration. Higher cell-to-cell communication was achieved by both genetically engineering cells to overexpress connexin 43 (Cx43) and by a high density cell seeding technique, denoted micromass seeding (MM). The results presented in this addendum show that the intensity and duration of a second messenger, like calcium, can be augmented in a platform that enables higher cell-to-cell communication. The ability to modulate calcium signaling, combined with our previous

  2. Diagram of Cell to Cell Communication

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Diagram depicts the importance of cell-cell communication as central to the understanding of cancer growth and progression, the focus of the NASA bioreactor demonstration system (BDS-05) investigation. Microgravity studies will allow us to unravel the signaling and communication between these cells with the host and potential development of therapies for the treatment of cancer metastasis. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  3. Diagram of Cell to Cell Communication

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Diagram depicts the importance of cell-cell communication as central to the understanding of cancer growth and progression, the focus of the NASA bioreactor demonstration system (BDS-05) investigation. Microgravity studies will allow us to unravel the signaling and communication between these cells with the host and potential development of therapies for the treatment of cancer metastasis. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  4. The Molecular Basis of Communication between Cells.

    ERIC Educational Resources Information Center

    Snyder, Solomon H.

    1985-01-01

    Chemical messengers mediate long-range hormonal communication and short-range neural communication between cells. Background information on peptides, steroids, neuropeptides, and specialized enzymes is given. Investigations reveal that the two systems have many common intercellular messenger molecules. (DH)

  5. The Molecular Basis of Communication between Cells.

    ERIC Educational Resources Information Center

    Snyder, Solomon H.

    1985-01-01

    Chemical messengers mediate long-range hormonal communication and short-range neural communication between cells. Background information on peptides, steroids, neuropeptides, and specialized enzymes is given. Investigations reveal that the two systems have many common intercellular messenger molecules. (DH)

  6. Hardwiring Stem Cell Communication through Tissue Structure.

    PubMed

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-03-10

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function, but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Hardwiring stem cell communication through tissue structure

    PubMed Central

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-01-01

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287

  8. Mechanical communication in cardiac cell synchronized beating

    NASA Astrophysics Data System (ADS)

    Nitsan, Ido; Drori, Stavit; Lewis, Yair E.; Cohen, Shlomi; Tzlil, Shelly

    2016-05-01

    Cell-cell communication, which enables cells to coordinate their activity and is essential for growth, development and function, is usually ascribed a chemical or electrical origin. However, cells can exert forces and respond to environment elasticity and to mechanical deformations created by their neighbours. The extent to which this mechanosensing ability facilitates intercellular communication remains unclear. Here we demonstrate mechanical communication between cells directly for the first time, providing evidence for a long-range interaction that induces long-lasting alterations in interacting cells. We show that an isolated cardiac cell can be trained to beat at a given frequency by mechanically stimulating the underlying substrate. Deformations are induced using an oscillatory mechanical probe that mimics the deformations generated by a beating neighbouring cardiac cell. Unlike electrical field stimulation, the probe-induced beating rate is maintained by the cell for an hour after the stimulation stops, implying that long-term modifications occur within the cell. These long-term alterations provide a mechanism for cells that communicate mechanically to be less variable in their electromechanical delay. Mechanical coupling between cells therefore ensures that the final outcome of action potential pacing is synchronized beating. We further show that the contractile machinery is essential for mechanical communication.

  9. Programming microbial population dynamics by engineered cell-cell communication.

    PubMed

    Song, Hao; Payne, Stephen; Tan, Cheemeng; You, Lingchong

    2011-07-01

    A major aim of synthetic biology is to program novel cellular behavior using engineered gene circuits. Early endeavors focused on building simple circuits that fulfill simple functions, such as logic gates, bistable toggle switches, and oscillators. These gene circuits have primarily focused on single-cell behaviors since they operate intracellularly. Thus, they are often susceptible to cell-cell variations due to stochastic gene expression. Cell-cell communication offers an efficient strategy to coordinate cellular behavior at the population level. To this end, we review recent advances in engineering cell-cell communication to achieve reliable population dynamics, spanning from communication within single species to multispecies, from one-way sender-receiver communication to two-way communication in synthetic microbial ecosystems. These engineered systems serve as well-defined model systems to better understand design principles of their naturally occurring counterparts and to facilitate novel biotechnology applications.

  10. Programming microbial population dynamics by engineered cell-cell communication

    PubMed Central

    Song, Hao; Payne, Stephen; Tan, Cheemeng; You, Lingchong

    2013-01-01

    A major aim of synthetic biology is to program novel cellular behaviors using engineered gene circuits. Early endeavors focused on building simple circuits that fulfill simple functions, such as logic gates, bistable toggle switches, and oscillators. These gene circuits have primarily focused on single-cell behaviors since they operate intracellularly. Thus, they are often susceptible to cell-cell variations due to stochastic gene expression. Cell-cell communication offers an efficient strategy to coordinate cellular behaviors at the population level. To this end, we review recent advances in engineering cell-cell communication to achieve reliable population dynamics, spanning from communication within single species to multispecies, from one-way sender-receiver communication to two-way communication in synthetic microbial ecosystems. These engineered systems serve as well-defined model systems to better understand design principles of their naturally occurring counterparts and to facilitate novel biotechnology applications. PMID:21681967

  11. Senescent cells communicate via intercellular protein transfer

    PubMed Central

    Biran, Anat; Perelmutter, Meirav; Gal, Hilah; Burton, Dominick G.A.; Ovadya, Yossi; Vadai, Ezra; Geiger, Tamar

    2015-01-01

    Mammalian cells mostly rely on extracellular molecules to transfer signals to other cells. However, in stress conditions, more robust mechanisms might be necessary to facilitate cell–cell communications. Cellular senescence, a stress response associated with permanent exit from the cell cycle and the development of an immunogenic phenotype, limits both tumorigenesis and tissue damage. Paradoxically, the long-term presence of senescent cells can promote tissue damage and aging within their microenvironment. Soluble factors secreted from senescent cells mediate some of these cell-nonautonomous effects. However, it is unknown whether senescent cells impact neighboring cells by other mechanisms. Here we show that senescent cells directly transfer proteins to neighboring cells and that this process facilitates immune surveillance of senescent cells by natural killer (NK) cells. We found that transfer of proteins to NK and T cells is increased in the murine preneoplastic pancreas, a site where senescent cells are present in vivo. Proteomic analysis and functional studies of the transferred proteins revealed that the transfer is strictly dependent on cell–cell contact and CDC42-regulated actin polymerization and is mediated at least partially by cytoplasmic bridges. These findings reveal a novel mode of intercellular communication by which senescent cells regulate their immune surveillance and might impact tumorigenesis and tissue aging. PMID:25854920

  12. Engineering multicellular systems by cell-cell communication

    PubMed Central

    Pai, Anand; Tanouchi, Yu; Collins, Cynthia; You, Lingchong

    2009-01-01

    Synthetic biology encompasses the design of new biological parts and systems as well as the modulation of existing biological networks to generate novel functions. In recent years, increasing emphasis has been placed on the engineering of population-level behaviors using cell-cell communication. From the engineering perspective, cell-cell communication serves as a versatile regulatory module that enables coordination among cells in and between populations and facilitates the generation of reliable dynamics. In addition to exploring biological “design principles” via the construction of increasingly complex dynamics, communication-based synthetic systems can be used as well-defined model systems to study ecological and social interactions such as competition, cooperation and predation. Here we discuss the dynamic properties of cell-cell communication modules, how they can be engineered for synthetic circuit design, and applications of these systems. PMID:19733047

  13. Precision of multicellular gradient sensing with cell-cell communication

    NASA Astrophysics Data System (ADS)

    Mugler, Andrew; Levchenko, Andre; Nemenman, Ilya

    Gradient sensing underlies diverse biological processes. In principle, bigger ``detectors'' (cells or groups of cells) make better sensors, since then concentrations measured at the front and back of a detector are more different, and the gradient can be determined with higher precision. Indeed, experiments have shown that populations of cells detect gradients more precisely than single cells. However, this argument neglects the fact that information must be communicated between different parts of the detector, and the communication process introduces its own noise. Here we derive the fundamental limits to the precision of gradient sensing with cell-cell communication and temporal integration. We find that communication imposes its own sensory length scale, beyond which the precision cannot increase no matter how large the cell population grows. We also find that temporal integration couples the internal communication with the external signal diffusion, imposing an additional limit on the precision. We discuss how these limits can be improved by a strategy with two communicated molecular species, which we term ``regional excitation--global inhibition''. We compare our findings to experiments with communicating epithelial cells, and infer a sensor length scale of about 4 cells.

  14. Importance of symplasmic communication in cell differentiation.

    PubMed

    Marzec, Marek; Kurczynska, Ewa

    2014-01-01

    Symplasmic communication via plasmodesmata (PD) is part of the system of information exchange between plant cells. Molecules that pass through the PD include ions, some hormones, minerals, amino acids, and sugars but also proteins, transcription factors, and different classes of RNA, and as such PD can participate in the coordination of plant growth and development. This review summarizes the current literature on this subject and the role of PD in signal exchange, the importance of symplasmic communication and symplasmic domains in plant cell differentiation, and highlights the future prospective in the exploration of PD functions in plants. Moreover, this review also describes the potential use of barley root epidermis and non-zygotic embryogenesis in study of symplasmic communication during cell differentiation.

  15. Importance of symplasmic communication in cell differentiation

    PubMed Central

    Marzec, Marek; Kurczynska, Ewa

    2014-01-01

    Symplasmic communication via plasmodesmata (PD) is part of the system of information exchange between plant cells. Molecules that pass through the PD include ions, some hormones, minerals, amino acids, and sugars but also proteins, transcription factors, and different classes of RNA, and as such PD can participate in the coordination of plant growth and development. This review summarizes the current literature on this subject and the role of PD in signal exchange, the importance of symplasmic communication and symplasmic domains in plant cell differentiation, and highlights the future prospective in the exploration of PD functions in plants. Moreover, this review also describes the potential use of barley root epidermis and non-zygotic embryogenesis in study of symplasmic communication during cell differentiation. PMID:24476959

  16. Single-cell Microinjection for Cell Communication Analysis.

    PubMed

    Alberto, Anael Viana Pinto; Bonavita, André G; Fidalgo-Neto, Antonio A; Berçot, Filipe; Alves, Luiz A

    2017-02-26

    Gap junctions are intercellular channels that allow the communication of neighboring cells. This communication depends on the contribution of a hemichannel by each neighboring cell to form the gap junction. In mammalian cells, the hemichannel is formed by six connexins, monomers with four transmembrane domains and a C and N terminal within the cytoplasm. Gap junctions permit the exchange of ions, second messengers, and small metabolites. In addition, they have important roles in many forms of cellular communication within physiological processes such as synaptic transmission, heart contraction, cell growth and differentiation. We detail how to perform a single-cell microinjection of Lucifer Yellow to visualize cellular communication via gap-junctions in living cells. It is expected that in functional gap junctions, the dye will diffuse from the loaded cell to the connected cells. It is a very useful technique to study gap junctions since you can evaluate the diffusion of the fluorescence in real time. We discuss how to prepare the cells and the micropipette, how to use a micromanipulator and inject a low molecular weight fluorescent dye in an epithelial cell line.

  17. New perspectives in cell communication: Bioelectromagnetic interactions.

    PubMed

    Rossi, C; Foletti, A; Magnani, A; Lamponi, S

    2011-06-01

    This paper explores physical signalling in biological communications, the so-called biophysical pathways, and especially the role of electromagnetic signalling in cell-cell interactions. The experiments were designed to evaluate whether different cell populations physically interfere when incubated in separate Petri dishes placed in close proximity. Two different cell populations, immortalized mouse fibroblasts (NIH3T3) and adult human microvascular endothelial cells (HMVECad) were selected and seeded in separate polystyrene Petri dishes. Dishes seeded with NIH3T3 were then placed on top of those seeded with HMVECad at distances of 4mm and 11mm. A black filter was placed between dishes containing the two cell populations in another experiment, to prevent transmission of electromagnetic radiation between the two. Cell number and morphology of NIH3T3 and endothelial cells were found to be modified in dishes without the black filter, suggesting that specific signals emitted by the cells were transmitted through the polystyrene wall, affecting cell proliferation rate and morphology, even though the cells were growing in separate dishes.

  18. Charcoal disrupts cell-cell communication through multiple mechanisms

    NASA Astrophysics Data System (ADS)

    Gao, X.; Cheng, H. Y.; Liu, S.; Masiello, C. A.; Silberg, J. J.; Del Valle, I.

    2016-12-01

    Microbial cell-cell communication through the release and detection of small signaling molecules is employed by soil microbes to manage many biogeochemically relevant processes including production of biofilms, priming effects on native SOM, and management of methanogenesis and denitrification. Charcoal is a ubiquitous component of soil, entering soil either from natural fire or intentionally amended as biochar. Charcoal's presence in soil introduces spatial and temporal heterogeneity in nutrients and habitats for soil microbes and may trigger a range of biological effects not yet predictable, in part because it interferes with microbial cell-cell communication. We hypothesized that charcoal's alkalinity and large active surface area could affect the lifetime of some chemical compounds that microbes use for cell-cell signaling on times scales relevant to growth and communication. To test this idea, we examined the extent and rate of charcoal quenching of cell-cell communication caused by ten charcoals with a wide range of physicochemical properties. Our measurements focused on signaling mediated by an acyl-homoserine lactone (AHL), N-3-oxo-dodecanoyl-L-homoserine lactone, which is used by many gram-negative bacteria for quorum sensing. Our results from a bioassay and chemical sorption experiments revealed that charcoal can decrease the bioavailable level of AHL through a combination of sorption and pH-dependent hydrolysis of the lactone ring. We found that the kinetics of hydrolysis can exceed those of sorption. These findings implicate charcoal surface area and alkalinity as properties that could be tuned to regulate the degradation rates of cell-cell signaling molecules in soils. We then built a quantitative model that predicts the half-lives of different microbial signaling compounds in the presence of charcoals varying in pH and surface area. Our model results suggest that the effects of charcoal on pH-sensitive bacterial AHL signals will be fundamentally

  19. Small Talk: Cell-to-Cell Communication in Bacteria

    SciTech Connect

    Bassler, Bonnie

    2008-05-14

    Cell-cell communication in bacteria involves the production, release, and subsequent detection of chemical signaling molecules called autoinducers. This process, called quorum sensing, allows bacteria to regulate gene expression on a population-wide scale. Processes controlled by quorum sensing are usually ones that are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. For example, quorum sensing controls bioluminescence, secretion of virulence factors, biofilm formation, sporulation, and the exchange of DNA. Thus, quorum sensing is a mechanism that allows bacteria to function as multi-cellular organisms. Bacteria make, detect, and integrate information from multiple autoinducers, some of which are used exclusively for intra-species communication while others enable communication between species. Research is now focused on the development of therapies that interfere with quorum sensing to control bacterial virulence.

  20. Small Talk: Cell-to-Cell Communication in Bacteria

    SciTech Connect

    Bassler, Bonnie

    2008-12-03

    Cell-cell communication in bacteria involves the production, release, and subsequent detection of chemical signaling molecules called autoinducers. This process, called quorum sensing, allows bacteria to regulate gene expression on a population-wide scale. Processes controlled by quorum sensing are usually ones that are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. For example, quorum sensing controls bioluminescence, secretion of virulence factors, biofilm formation, sporulation, and the exchange of DNA. Thus, quorum sensing is a mechanism that allows bacteria to function as multi-cellular organisms. Bacteria make, detect, and integrate information from multiple autoinducers, some of which are used exclusively for intra-species communication while others enable communication between species. Research is now focused on the development of therapies that interfere with quorum sensing to control bacterial virulence.

  1. Small Talk: Cell-to-Cell Communication in Bacteria

    ScienceCinema

    Bassler, Bonnie [Princeton University, Princeton, New Jersey, United States

    2016-07-12

    Cell-cell communication in bacteria involves the production, release, and subsequent detection of chemical signaling molecules called autoinducers. This process, called quorum sensing, allows bacteria to regulate gene expression on a population-wide scale. Processes controlled by quorum sensing are usually ones that are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. For example, quorum sensing controls bioluminescence, secretion of virulence factors, biofilm formation, sporulation, and the exchange of DNA. Thus, quorum sensing is a mechanism that allows bacteria to function as multi-cellular organisms. Bacteria make, detect, and integrate information from multiple autoinducers, some of which are used exclusively for intra-species communication while others enable communication between species. Research is now focused on the development of therapies that interfere with quorum sensing to control bacterial virulence.

  2. Synthetic two-way communication between mammalian cells.

    PubMed

    Bacchus, William; Lang, Moritz; El-Baba, Marie Daoud; Weber, Wilfried; Stelling, Jörg; Fussenegger, Martin

    2012-10-01

    The design of synthetic biology-inspired control devices enabling entire mammalian cells to receive, process and transfer metabolic information and so communicate with each other via synthetic multichannel networks may provide new insight into the organization of multicellular organisms and future clinical interventions. Here we describe communication networks that orchestrate behavior in individual mammalian cells in response to cell-to-cell metabolic signals. We engineered sender, processor and receiver cells that interact with each other in ways that resemble natural intercellular communication networks such as multistep information processing cascades, feed-forward-based signaling loops, and two-way communication. The engineered two-way communication devices mimicking natural control systems in the development of vertebrate extremities and vasculature was used to program temporal permeability in vascular endothelial cell layers. These synthetic multicellular communication systems may inspire future therapies or tissue engineering strategies.

  3. Cell-to-cell communication via plasmodesmata in vascular plants

    PubMed Central

    Sevilem, Iris; Miyashima, Shunsuke; Helariutta, Ykä

    2013-01-01

    In plant development, cell-to-cell signaling is mediated by mobile signals, including transcription factors and small RNA molecules. This communication is essential for growth and patterning. Short-range movement of signals occurs in the extracellular space via the apoplastic pathway or directly from cell-to-cell via the symplastic pathway. Symplastic transport is mediated by plant specific structures called plasmodesmata, which are plasma membrane-lined pores that traverse the cell walls of adjacent cells thus connecting their cytoplasms. However, a thorough understanding of molecules moving via plasmodesmata and regulatory networks relying on symplastic signaling is lacking. Traffic via plasmodesmata is highly regulated, and callose turnover is known to be one mechanism. In Arabidopsis, plasmodesmata apertures can be regulated in a spatially and temporally specific manner with the icals3m, an inducible vector system expressing the mutated CalS3 gene encoding a plasmodesmata localized callose synthase that increases callose deposition at plasmodesmata. We discuss strategies to use the icals3m system for global analyses on symplastic signaling in plants. PMID:23076211

  4. Cell-to-cell communication via plasmodesmata in vascular plants.

    PubMed

    Sevilem, Iris; Miyashima, Shunsuke; Helariutta, Ykä

    2013-01-01

    In plant development, cell-to-cell signaling is mediated by mobile signals, including transcription factors and small RNA molecules. This communication is essential for growth and patterning. Short-range movement of signals occurs in the extracellular space via the apoplastic pathway or directly from cell-to-cell via the symplastic pathway. Symplastic transport is mediated by plant specific structures called plasmodesmata, which are plasma membrane-lined pores that traverse the cell walls of adjacent cells thus connecting their cytoplasms. However, a thorough understanding of molecules moving via plasmodesmata and regulatory networks relying on symplastic signaling is lacking. Traffic via plasmodesmata is highly regulated, and callose turnover is known to be one mechanism. In Arabidopsis, plasmodesmata apertures can be regulated in a spatially and temporally specific manner with the icals3m, an inducible vector system expressing the mutated CalS3 gene encoding a plasmodesmata localized callose synthase that increases callose deposition at plasmodesmata. We discuss strategies to use the icals3m system for global analyses on symplastic signaling in plants.

  5. Exosomes and nanotubes: Control of immune cell communication.

    PubMed

    McCoy-Simandle, Kessler; Hanna, Samer J; Cox, Dianne

    2016-02-01

    Cell-cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate. Exosomes and tunneling nanotubes (TNTs) are two means of communication used by immune cells that contribute to immune functions. Exosomes are small membrane vesicles secreted by most cell types that can mediate intercellular communication and in the immune system they are proposed to play a role in antigen presentation and modulation of gene expression. TNTs are membranous structures that mediate direct cell-cell contact over several cell diameters in length (and possibly longer) and facilitate the interaction and/or the transfer of signals, material and other cellular organelles between connected cells. Recent studies have revealed additional, but sometimes conflicting, structural and functional features of both exosomes and TNTs. Despite the new and exciting information in exosome and TNT composition, origin and in vitro function, biologically significant functions are still being investigated and determined. In this review, we discuss the current field regarding exosomes and TNTs in immune cells providing evaluation and perspectives of the current literature.

  6. Cx25 contributes to leukemia cell communication and chemosensitivity.

    PubMed

    Sinyuk, Maksim; Alvarado, Alvaro G; Nesmiyanov, Pavel; Shaw, Jeremy; Mulkearns-Hubert, Erin E; Eurich, Jennifer T; Hale, James S; Bogdanova, Anna; Hitomi, Masahiro; Maciejewski, Jaroslaw; Huang, Alex Y; Saunthararajah, Yogen; Lathia, Justin D

    2015-10-13

    Leukemia encompasses several hematological malignancies with shared phenotypes that include rapid proliferation, abnormal leukocyte self-renewal, and subsequent disruption of normal hematopoiesis. While communication between leukemia cells and the surrounding stroma supports tumor survival and expansion, the mechanisms underlying direct leukemia cell-cell communication and its contribution to tumor growth are undefined. Gap junctions are specialized intercellular connections composed of connexin proteins that allow free diffusion of small molecules and ions directly between the cytoplasm of adjacent cells. To characterize homotypic leukemia cell communication, we employed in vitro models for both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and measured gap junction function through dye transfer assays. Additionally, clinically relevant gap junction inhibitors, carbenoxolone (CBX) and 1-octanol, were utilized to uncouple the communicative capability of leukemia cells. Furthermore, a qRT-PCR screen revealed several connexins with higher expression in leukemia cells compared with normal hematopoietic stem cells. Cx25 was identified as a promising adjuvant therapeutic target, and Cx25 but not Cx43 reduction via RNA interference reduced intercellular communication and sensitized cells to chemotherapy. Taken together, our data demonstrate the presence of homotypic communication in leukemia through a Cx25-dependent gap junction mechanism that can be exploited for the development of anti-leukemia therapies.

  7. Cell-Cell Communication Via Extracellular Membrane Vesicles and Its Role in the Immune Response

    PubMed Central

    Hwang, Inkyu

    2013-01-01

    The host immune response involves a variety of cell types, including specialized immune and non-immune cells. The delicate coordination among these cells via close communication is central for the proper operation of immune system. Cell-cell communication is mediated by a complex network that includes soluble factors such as cytokines, chemokines, and metabolites exported from cells, as well as membrane-bound receptors and their ligands. Cell-cell communication is also mediated by membrane vesicles (e.g., exosomes, ectosomes), which are either shed by distant cells or exchanged by cells that are making direct contact. Intercellular communication via extracellular membrane vesicles has drawn much attention recently, as they have been shown to carry various biomolecules that modulate the activities of recipient cells. In this review, I will discuss current views on cell-cell communication via extra-cellular membrane vesicles, especially shedded membrane vesicles, and their effects on the control of the immune system. PMID:23807045

  8. [The cell theory. Progress in studies on cell-cell communications].

    PubMed

    Brodskiĭ, V Ia

    2009-01-01

    Current data confirm the fundamental statement of the cell theory concerning the cell reproduction in a series of generations (omnis cellula e cellula). Cell communities or ensembles integrated by the signaling systems established in prokaryotes and protists and functioning in multicellular organisms including mammals are considered as the structural and functional unit of a multicellular organism. The cell is an elementary unit of life and basis of organism development and functioning. At the same time, the adult organism is not just a totality of cells. Multinucleated cells in some tissues, syncytial structure, and structural-functional units of organs are adaptations for optimal functioning of the multicellular organism and manifestations of cell-cell communications in development and definitive functioning. The cell theory was supplemented and developed by studies on cell-cell communications; however, these studies do not question the main generalizations of the theory.

  9. Collective Calcium Dynamics in Networks of Communicating Cells

    NASA Astrophysics Data System (ADS)

    Byrd, Tommy; Potter, Garrett; Sun, Bo; Mugler, Andrew

    Cells can sense and encode information about their environment with remarkable precision. These properties have been studied extensively for single cells, but intercellular communication is known to be important for both single- and multicellular organisms. Here, we examine calcium dynamics of fibroblast cells exposed to external ATP stimuli, and the effects of communication and stimulus strength on cells' response. Experimental results show that increasing communication strength induces a greater fraction of cells to exhibit oscillatory calcium dynamics, but the frequencies of oscillation do not systematically shift with ATP strength. We developed a model of calcium signaling by adding noise, communication, and cell-to-cell variability to the model of Tang and Othmer. This model reproduces cells' increased tendency to oscillate as a function of communication strength, and frequency encoding is nearly removed at the global level. Our model therefore suggests that the propensity of cells to oscillate, rather than frequency encoding, determines the response to external ATP. These results suggest that the system lies near a critical boundary separating non-oscillatory and oscillatory calcium dynamics.

  10. Modulation based cells distribution for visible light communication.

    PubMed

    Wu, Yongsheng; Yang, Aiying; Feng, Lihui; Zuo, Lin; Sun, Yu-Nan

    2012-10-22

    Cells distribution for visible light communication can enhance the capacity of the data transmission by the reuse of optical spectrum. In this paper, we adopt three modulation formats as OOK, PPM and PWM for neighboring cells A, B and C respectively. The prototype experiment results demonstrate the error free transmission of 1.0 Mbit/s and 6.25 Mbit/s visible light communication system with our scheme. With the available LED, we can expect that the data rate of a visible light communication system with seamless connectivity can be up to 71.4 Mbit/s.

  11. Intercellular communication during yeast cell growth

    NASA Astrophysics Data System (ADS)

    Musumeci, F.; Scordino, A.; Triglia, A.; Blandino, G.; Milazzo, I.

    1999-09-01

    An experiment has been performed that has shown the existence of cellular communication between optically coupled cultures which are chemically separate. The experiment used for the cellular culture the temperature-sensitive mutant yeast strain Saccharomyces cerevisiae. The novelty of this experiment lies in the simplicity of the experimental protocol and in the reasonably high statistic significance of the obtained results.

  12. Modulating cell-cell communication with a high-throughput label-free cell assay.

    PubMed

    Li, Guangshan; Lai, Fang; Fang, Ye

    2012-02-01

    A high-throughput label-free cell assay for modulating cell-cell communication is demonstrated with the Epic® system, a resonant waveguide grating sensor platform. Natural killer (NK) cells are known to be able to recognize abnormal cells (e.g., cancer cells and cells presenting intercellular adhesion molecule 1 [ICAM1] through cell surface receptors) and kill them. In this study, the effect of effecter cells NK92MI on two kinds of target cells, cervical cancer cells (HeLa) and Chinese hamster ovarian cells overexpressing ICAM1 (CHO-ICAM1), was examined. Living target cells' response to NK92MI cells was monitored in real time and measured as wavelength shift in picometers. The authors showed that the detectability of target cell response is affected by multiple factors: the ratio of effecter cells to target cells (E/T), the interaction time of the two types of cells, and the target cell type. For example, with the effecter cells NK92MI and the same incubation time of 16 h, a minimal E/T ratio of 1 is required to detect HeLa cell response, whereas an E/T of 0.5 is sufficient to detect CHO-ICAM1 cell response. The authors confirmed that NK92MI cell-mediated target cell cytotoxicity results in negative optical signals and is associated with apoptosis mainly through caspase pathways. Distinct optical signals could be generated with the pretreatment of the target cells with various known pharmaceutical reagents, making the assay useful for discovering new chemicals that may affect cell-cell communications.

  13. DNA and cell resonance: magnetic waves enable cell communication.

    PubMed

    Meyl, Konstantin

    2012-04-01

    DNA generates a longitudinal wave that propagates in the direction of the magnetic field vector. Computed frequencies from the structure of DNA agree with those of the predicted biophoton radiation. The optimization of efficiency by minimizing the conduction losses leads to the double-helix structure of DNA. The vortex model of the magnetic scalar wave not only covers many observed structures within the nucleus perfectly, but also explains the hyperboloid channels in the matrix when two cells communicate with each other. Potential vortexes are an essential component of a scalar waves, as discovered in 1990. The basic approach for an extended field theory was confirmed in 2009 with the discovery of magnetic monopoles. For the first time, this provides the opportunity to explain the physical basis of life not only from the biological discipline. Nature covers the whole spectrum of known scientific fields of research, and interdisciplinary understanding is required to explain its complex relationships. The characteristics of the potential vortex are significant. With its concentration effect, it provides for miniaturization down to a few nanometers, which allows enormously high information density in the nucleus. With this first introduction of the magnetic scalar wave, it becomes clear that such a wave is suitable to use genetic code chemically stored in the base pairs of the genes and electrically modulate them, so as to "piggyback" information from the cell nucleus to another cell. At the receiving end, the reverse process takes place and the transported information is converted back into a chemical structure. The necessary energy required to power the chemical process is provided by the magnetic scalar wave itself.

  14. Myogenic skeletal muscle satellite cells communicate by tunnelling nanotubes.

    PubMed

    Tavi, Pasi; Korhonen, Topi; Hänninen, Sandra L; Bruton, Joseph D; Lööf, Sara; Simon, Andras; Westerblad, Håkan

    2010-05-01

    Quiescent satellite cells sit on the surface of the muscle fibres under the basal lamina and are activated by a variety of stimuli to disengage, divide and differentiate into myoblasts that can regenerate or repair muscle fibres. Satellite cells adopt their parent's fibre type and must have some means of communication with the parent fibre. The mechanisms behind this communication are not known. We show here that satellite cells form dynamic connections with muscle fibres and other satellite cells by F-actin based tunnelling nanotubes (TNTs). Our results show that TNTs readily develop between satellite cells and muscle fibres. Once developed, TNTs permit transport of intracellular material, and even cellular organelles such as mitochondria between the muscle fibre and satellite cells. The onset of satellite cell differentiation markers Pax-7 and MyoD expression was slower in satellite cells cultured in the absence than in the presence of muscle cells. Furthermore physical contact between myofibre and satellite cell progeny is required to maintain subtype identity. Our data establish that TNTs constitute an integral part of myogenic cell communication and that physical cellular interaction control myogenic cell fate determination.

  15. Intracellular Renin Disrupts Chemical Communication between Heart Cells. Pathophysiological Implications

    PubMed Central

    De Mello, Walmor C.

    2015-01-01

    Highlights Intracellular renin disrupts chemical communication in the heartAngiotensinogen enhances the effect of reninIntracellular enalaprilat reduces significantly the effect of reninIntracellular renin increases the inward calcium currentHarmful versus beneficial effect during myocardial infarction The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; (1) under normal conditions, Lucifer Yellow flows from cell to cell through gap junctions; (2) the intracellular dialysis of renin (100 nM) disrupts chemical communication – an effect enhanced by simultaneous administration of angiotensinogen (100 nM); (3) enalaprilat (10−9 M) administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; (4) aliskiren (10−8 M) inhibited the effect of renin on chemical communication; (5) the possible role of intracellular renin independently of angiotensin II (Ang II) was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; (6) the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed; (7) the present results indicate that intracellular renin due to internalization or in situ synthesis causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function. PMID:25657639

  16. Intracellular Renin Disrupts Chemical Communication between Heart Cells. Pathophysiological Implications.

    PubMed

    De Mello, Walmor C

    2014-01-01

    HighlightsIntracellular renin disrupts chemical communication in the heartAngiotensinogen enhances the effect of reninIntracellular enalaprilat reduces significantly the effect of reninIntracellular renin increases the inward calcium currentHarmful versus beneficial effect during myocardial infarction The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; (1) under normal conditions, Lucifer Yellow flows from cell to cell through gap junctions; (2) the intracellular dialysis of renin (100 nM) disrupts chemical communication - an effect enhanced by simultaneous administration of angiotensinogen (100 nM); (3) enalaprilat (10(-9) M) administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; (4) aliskiren (10(-8) M) inhibited the effect of renin on chemical communication; (5) the possible role of intracellular renin independently of angiotensin II (Ang II) was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; (6) the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed; (7) the present results indicate that intracellular renin due to internalization or in situ synthesis causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function.

  17. Communication.

    ERIC Educational Resources Information Center

    Strauss, Andre

    The following essays on communication are presented: communication as a condition of survival, communication for special purposes, the means of transmission of communication, communication within social and economic structures, the teaching of communication through the press, the teaching of modern languages, communication as a point of departure,…

  18. Cell-to-cell communication in plants, animals, and fungi: a comparative review

    NASA Astrophysics Data System (ADS)

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  19. Cell-to-cell communication in plants, animals, and fungi: a comparative review.

    PubMed

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  20. Communication of bone cells with hematopoiesis, immunity and energy metabolism

    PubMed Central

    Asada, Noboru; Sato, Mari; Katayama, Yoshio

    2015-01-01

    The bone contains the bone marrow. The functional communication between bone cells and hematopoiesis has been extensively studied in the past decade or so. Osteolineage cells and their modulators, such as the sympathetic nervous system, macrophages and osteoclasts, form a complex unit to maintain the homeostasis of hematopoiesis, called the ‘microenvironment'. Recently, bone-embedded osteocytes, the sensors of gravity and mechanical stress, have joined the microenvironment, and they are demonstrated to contribute to whole body homeostasis through the control of immunity and energy metabolism. The inter-organ communication orchestrated by the bone is summarized in this article. PMID:26512322

  1. Working Together for the Common Good: Cell-Cell Communication in Bacteria

    PubMed Central

    Schuster, Martin; Rumbaugh, Kendra P.

    2012-01-01

    The 4th ASM Conference on Cell-Cell Communication in Bacteria was held in Miami, FL, from 6 to 9 November 2011. This review highlights three key themes that emerged from the many exciting talks and poster presentations in the area of quorum sensing: sociomicrobiology, signal transduction mechanisms, and interspecies communication. PMID:22389476

  2. Innate cell communication kick-starts pathogen-specific immunity

    PubMed Central

    Rivera, Amariliz; Siracusa, Mark C.; Yap, George S.; Gause, William C.

    2016-01-01

    Innate cells are responsible for the rapid recognition of infection and mediate essential mechanisms of pathogen elimination, and also facilitate adaptive immune responses. We review here the numerous intricate interactions among innate cells that initiate protective immunity. The efficient eradication of pathogens depends on the coordinated actions of multiple cells, including innate cells and epithelial cells. Rather than acting as isolated effector cells, innate cells are in constant communication with other responding cells of the immune system, locally and distally. These interactions are critically important for the efficient control of primary infections as well for the development of ‘trained’ innate cells that facilitate the rapid elimination of homologous or heterologous infections. PMID:27002843

  3. Real-time monitoring of suspension cell-cell communication using an integrated microfluidics.

    PubMed

    Xu, Tao; Yue, Wanqing; Li, Cheuk-Wing; Yao, Xinsheng; Cai, Guoping; Yang, Mengsu

    2010-09-07

    For the first time, we have developed a microfluidic device for on-chip monitoring of suspension cell-cell communication from stimulated to recipient HL-60 cells. A deformable PDMS membrane was developed as a compressive component to perform cell entrapment and exert different modes of mechanical stimulation. The number of cells trapped by this component could be modulated by flushing excessive cells towards the device outlet. The trapped cells could be triggered to release mediators by mechanical stimulation. Sandbag microstructures were used to immobilize recipient cells at well-defined positions. These recipient cells were evoked by mediators released from mechanically stimulated cells trapped in the compressive component. Normally closed microvalves were integrated to provide continuous-flow and static environment. We studied cell-cell communication between stimulated (in compressive component) and recipient (in sandbag structures) cells. Calcium oscillations were observed in some recipient cells only when a low number of cells were stimulated. Different mechanical stimulation and flow environment were also employed to study their impact on the behavior of cell-cell communication. We observed that both the duration and intensity of intracellular calcium responses increased in persistent stimulation and decreased in flowing environment. This microdevice may open up new avenues for real-time monitoring of suspension cell-cell communication, which propagates via gap-junction independent mechanism, with multiple variables under control.

  4. Teaching the Fundamentals of Cell Phones and Wireless Communications

    ERIC Educational Resources Information Center

    Davids, Mark; Forrest, Rick; Pata, Don

    2010-01-01

    Wireless communications are ubiquitous. Students and teachers use iPhones[R], BlackBerrys[R], and other smart phones at home and at work. More than 275 million Americans had cell phones in June of 2009 and expanded access to broadband is predicted this year. Despite the plethora of users, most students and teachers do not understand "how they…

  5. Teaching the Fundamentals of Cell Phones and Wireless Communications

    ERIC Educational Resources Information Center

    Davids, Mark; Forrest, Rick; Pata, Don

    2010-01-01

    Wireless communications are ubiquitous. Students and teachers use iPhones[R], BlackBerrys[R], and other smart phones at home and at work. More than 275 million Americans had cell phones in June of 2009 and expanded access to broadband is predicted this year. Despite the plethora of users, most students and teachers do not understand "how they…

  6. The evolution of cell-to-cell communication in a sporulating bacterium.

    PubMed

    van Gestel, Jordi; Nowak, Martin A; Tarnita, Corina E

    2012-01-01

    Traditionally microorganisms were considered to be autonomous organisms that could be studied in isolation. However, over the last decades cell-to-cell communication has been found to be ubiquitous. By secreting molecular signals in the extracellular environment microorganisms can indirectly assess the cell density and respond in accordance. In one of the best-studied microorganisms, Bacillus subtilis, the differentiation processes into a number of distinct cell types have been shown to depend on cell-to-cell communication. One of these cell types is the spore. Spores are metabolically inactive cells that are highly resistant against environmental stress. The onset of sporulation is dependent on cell-to-cell communication, as well as on a number of other environmental cues. By using individual-based simulations we examine when cell-to-cell communication that is involved in the onset of sporulation can evolve. We show that it evolves when three basic premises are satisfied. First, the population of cells has to affect the nutrient conditions. Second, there should be a time-lag between the moment that a cell decides to sporulate and the moment that it turns into a mature spore. Third, there has to be environmental variation. Cell-to-cell communication is a strategy to cope with environmental variation, by allowing cells to predict future environmental conditions. As a consequence, cells can anticipate environmental stress by initiating sporulation. Furthermore, signal production could be considered a cooperative trait and therefore evolves when it is not too costly to produce signal and when there are recurrent colony bottlenecks, which facilitate assortment. Finally, we also show that cell-to-cell communication can drive ecological diversification. Different ecotypes can evolve and be maintained due to frequency-dependent selection.

  7. Radiation effects on the cell-cell communication of mammalian cells

    NASA Astrophysics Data System (ADS)

    Depriest, Kendall Russell

    Recent observations of bystander effects in unirradiated cell populations have focused attention on cell-cell communication, particularly gap junction intercellular communication (GJIC), as a means through which the bystander effect may be transmitted. The bystander expression of CDKN1A in unirradiated AG1522 human fibroblast cells observed in another laboratory was verified. The dose response of the bystander effect in the AG1522 cells showed that the effect had reached its maximum at the lowest alpha-particle fluence tested, 0.013 alpha/nuclei. To test potential mechanisms for communication to bystander cells, the fluorescence recovery after photobleaching technique was used. Only the rat liver epithelial cell line (Clone 9) exhibited GJIC based upon a fluorescence recovery after photobleaching assay, and there was no change in the rate constant for GJIC following exposure to low LET or high LET radiation. The fibroblast cell lines (AG1521, AG1522, and GM5758) showed no evidence of GJIC in three separate assays including immunohistochemistry. Lindane, an inhibitor of GJIC, eliminated the bystander expression of CDKN1A in AG1522 cells while octanol, another inhibitor of GJIC, did not change the bystander expression of the protein. The two chemicals act in different ways to disrupt GJIC and each one may alter other functions as well, so the elimination of the bystander effect by lindane apparently indicates that lindane is interfering with a bystander signaling mechanism that is not mediated by gap junctions. The lack of connexin localization in the cell membrane of the fibroblast cell lines and the elimination of the bystander expression by lindane, but not octanol, indicates that the bystander effect must be mediated by a non-GJIC mechanism. The experimental evidence suggests that the mediator of the bystander expression of CDKN1A in human diploid fibroblasts is most likely an extracellular signal, such as a cytokine, that acts in a calcium-dependent signal

  8. Two-Way Chemical Communication between Artificial and Natural Cells

    PubMed Central

    2017-01-01

    Artificial cells capable of both sensing and sending chemical messages to bacteria have yet to be built. Here we show that artificial cells that are able to sense and synthesize quorum signaling molecules can chemically communicate with V. fischeri, V. harveyi, E. coli, and P. aeruginosa. Activity was assessed by fluorescence, luminescence, RT-qPCR, and RNA-seq. Two potential applications for this technology were demonstrated. First, the extent to which artificial cells could imitate natural cells was quantified by a type of cellular Turing test. Artificial cells capable of sensing and in response synthesizing and releasing N-3-(oxohexanoyl)homoserine lactone showed a high degree of likeness to natural V. fischeri under specific test conditions. Second, artificial cells that sensed V. fischeri and in response degraded a quorum signaling molecule of P. aeruginosa (N-(3-oxododecanoyl)homoserine lactone) were constructed, laying the foundation for future technologies that control complex networks of natural cells. PMID:28280778

  9. Mitotic cells form actin-based bridges with adjacent cells to provide intercellular communication during rounding

    PubMed Central

    Fykerud, Tone A.; Knudsen, Lars M.; Totland, Max Z.; Dahal-Koirala, Shiva; Lothe, Ragnhild A.; Brech, Andreas; Leithe, Edward

    2016-01-01

    ABSTRACT In order to achieve accurate chromosome segregation, eukaryotic cells undergo a dramatic change in morphology to obtain a spherical shape during mitosis. Interphase cells communicate directly with each other by exchanging ions and small molecules via gap junctions, which have important roles in controlling cell growth and differentiation. As cells round up during mitosis, the gap junctional communication between mitotic cells and adjacent interphase cells ceases. Whether mitotic cells use alternative mechanisms for mediating direct cell-cell communication during rounding is currently unknown. Here, we have studied the mechanisms involved in the remodeling of gap junctions during mitosis. We further demonstrate that mitotic cells are able to form actin-based plasma membrane bridges with adjacent cells during rounding. These structures, termed “mitotic nanotubes,” were found to be involved in mediating the transport of cytoplasm, including Rab11-positive vesicles, between mitotic cells and adjacent cells. Moreover, a subpool of the gap-junction channel protein connexin43 localized in these intercellular bridges during mitosis. Collectively, the data provide new insights into the mechanisms involved in the remodeling of gap junctions during mitosis and identify actin-based plasma membrane bridges as a novel means of communication between mitotic cells and adjacent cells during rounding. PMID:27625181

  10. Homotypic NK cell-to-cell communication controls cytokine responsiveness of innate immune NK cells.

    PubMed

    Kim, Tae-Jin; Kim, Miju; Kim, Hye Mi; Lim, Seon Ah; Kim, Eun-Ok; Kim, Kwanghee; Song, Kwang Hoon; Kim, Jiyoung; Kumar, Vinay; Yee, Cassian; Doh, Junsang; Lee, Kyung-Mi

    2014-12-05

    While stationary organ cells are in continuous contact with neighboring cells, immune cells circulate throughout the body without an apparent requirement for cell-cell contact to persist in vivo. This study challenges current convention by demonstrating, both in vitro and in vivo, that innate immune NK cells can engage in homotypic NK-to-NK cell interactions for optimal survival, activation, and proliferation. Using a specialized cell-laden microwell approach, we discover that NK cells experiencing constant NK-to-NK contact exhibit a synergistic increase in activation status, cell proliferation, and anti-tumor function in response to IL-2 or IL-15. This effect is dependent on 2B4/CD48 ligation and an active cytoskeleton, resulting in amplification of IL-2 receptor signaling, enhanced CD122/CD132 colocalization, CD25 upregulation, and Stat3 activation. Conversely, 'orphan' NK cells demonstrate no such synergy and fail to persist. Therefore, our data uncover the existence of homotypic cell-to-cell communication among mobile innate lymphocytes, which promotes functional synergy within the cytokine-rich microenvironment.

  11. Plasmodesmata-Mediated Cell-to-Cell Communication in the Shoot Apical Meristem: How Stem Cells Talk

    PubMed Central

    Kitagawa, Munenori; Jackson, David

    2017-01-01

    Positional information is crucial for the determination of plant cell fates, and it is established based on coordinated cell-to-cell communication, which in turn is essential for plant growth and development. Plants have evolved a unique communication pathway, with tiny channels called plasmodesmata (PD) spanning the cell wall. PD interconnect most cells in the plant and generate a cytoplasmic continuum, to mediate short- and long-distance trafficking of various molecules. Cell-to-cell communication through PD plays a role in transmitting positional signals, however, the regulatory mechanisms of PD-mediated trafficking are still largely unknown. The induction and maintenance of stem cells in the shoot apical meristem (SAM) depends on PD-mediated cell-to-cell communication, hence, it is an optimal model for dissecting the regulatory mechanisms of PD-mediated cell-to-cell communication and its function in specifying cell fates. In this review, we summarize recent knowledge of PD-mediated cell-to-cell communication in the SAM, and discuss mechanisms underlying molecular trafficking through PD and its role in plant development. PMID:28257070

  12. Plasmodesmata-Mediated Cell-to-Cell Communication in the Shoot Apical Meristem: How Stem Cells Talk.

    PubMed

    Kitagawa, Munenori; Jackson, David

    2017-03-01

    Positional information is crucial for the determination of plant cell fates, and it is established based on coordinated cell-to-cell communication, which in turn is essential for plant growth and development. Plants have evolved a unique communication pathway, with tiny channels called plasmodesmata (PD) spanning the cell wall. PD interconnect most cells in the plant and generate a cytoplasmic continuum, to mediate short- and long-distance trafficking of various molecules. Cell-to-cell communication through PD plays a role in transmitting positional signals, however, the regulatory mechanisms of PD-mediated trafficking are still largely unknown. The induction and maintenance of stem cells in the shoot apical meristem (SAM) depends on PDmediated cell-to-cell communication, hence, it is an optimal model for dissecting the regulatory mechanisms of PD-mediated cell-to-cell communication and its function in specifying cell fates. In this review, we summarize recent knowledge of PD-mediated cell-to-cell communication in the SAM, and discuss mechanisms underlying molecular trafficking through PD and its role in plant development.

  13. Mechanical Cell-Cell Communication in Fibrous Networks: The Importance of Network Geometry.

    PubMed

    Humphries, D L; Grogan, J A; Gaffney, E A

    2017-03-01

    Cells contracting in extracellular matrix (ECM) can transmit stress over long distances, communicating their position and orientation to cells many tens of micrometres away. Such phenomena are not observed when cells are seeded on substrates with linear elastic properties, such as polyacrylamide (PA) gel. The ability for fibrous substrates to support far reaching stress and strain fields has implications for many physiological processes, while the mechanical properties of ECM are central to several pathological processes, including tumour invasion and fibrosis. Theoretical models have investigated the properties of ECM in a variety of network geometries. However, the effects of network architecture on mechanical cell-cell communication have received little attention. This work investigates the effects of geometry on network mechanics, and thus the ability for cells to communicate mechanically through different networks. Cell-derived displacement fields are quantified for various network geometries while controlling for network topology, cross-link density and micromechanical properties. We find that the heterogeneity of response, fibre alignment, and substrate displacement fields are sensitive to network choice. Further, we show that certain geometries support mechanical communication over longer distances than others. As such, we predict that the choice of network geometry is important in fundamental modelling of cell-cell interactions in fibrous substrates, as well as in experimental settings, where mechanical signalling at the cellular scale plays an important role. This work thus informs the construction of theoretical models for substrate mechanics and experimental explorations of mechanical cell-cell communication.

  14. Long-Distance Communication between Laryngeal Carcinoma Cells

    PubMed Central

    Antanavičiūtė, Ieva; Rysevaitė, Kristina; Liutkevičius, Vykintas; Marandykina, Alina; Rimkutė, Lina; Sveikatienė, Renata; Uloza, Virgilijus; Skeberdis, Vytenis Arvydas

    2014-01-01

    Tunneling nanotubes and epithelial bridges are recently discovered new forms of intercellular communication between remote cells allowing their electrical synchronization, transfer of second messengers and even membrane vesicles and organelles. In the present study, we demonstrate for the first time in primary cell cultures prepared from human laryngeal squamous cell carcinoma (LSCC) samples that these cells communicate with each other over long distances (up to 1 mm) through membranous tunneling tubes (TTs), which can be open-ended or contain functional gap junctions formed of connexin 43. We found two types of TTs, containing F-actin alone or F-actin and α-tubulin. In the LSCC cell culture, we identified 5 modes of TT formation and performed quantitative assessment of their electrical properties and permeability to fluorescent dyes of different molecular weight and charge. We show that TTs, containing F-actin and α-tubulin, transport mitochondria and accommodate small DAPI-positive vesicles suggesting possible transfer of genetic material through TTs. We confirmed this possibility by demonstrating that even TTs, containing gap junctions, were capable of transmitting double-stranded small interfering RNA. To support the idea that the phenomenon of TTs is not only typical of cell cultures, we have examined microsections of samples obtained from human LSCC tissues and identified intercellular structures similar to those found in the primary LSCC cell culture. PMID:24945745

  15. Exploring family communication about sickle cell disease in adolescence.

    PubMed

    Graff, J Carolyn; Hankins, Jane; Graves, Rebecca J; Robitaille, Kimberly Y; Roberts, Ruth; Cejda, Katherine; Hardy, Belinda T; Johnson, Margery; Porter, Jerlym S

    2012-01-01

    Sickle cell disease (SCD) is a lifelong disorder that involves progressive organ damage and requires ongoing medical attention to prevent and treat episodic acute complications. Children with SCD need ongoing monitoring and extra attention that may be stressful to family members. Communication within families can help resolve family stress and may be associated with medical follow-up and management of SCD. Focus groups were conducted with 12 African American families to explore the communication that occurred within and outside of the family from the perspectives of adolescents with SCD, siblings, and parents. Factors that influence family communication were explored. The extended family was an important social network and resource to adolescents, siblings, and parents. Family member knowledge of SCD was an important factor that influenced communication about SCD; adolescents and parents communicated more easily than siblings and also reported having more knowledge of SCD than siblings. Future research focusing on the knowledge of immediate and extended family members and their recognition of their contribution to the child with SCD is recommended.

  16. Artificial cell-cell communication as an emerging tool in synthetic biology applications.

    PubMed

    Hennig, Stefan; Rödel, Gerhard; Ostermann, Kai

    2015-01-01

    Cell-cell communication is a widespread phenomenon in nature, ranging from bacterial quorum sensing and fungal pheromone communication to cellular crosstalk in multicellular eukaryotes. These communication modes offer the possibility to control the behavior of an entire community by modifying the performance of individual cells in specific ways. Synthetic biology, i.e., the implementation of artificial functions within biological systems, is a promising approach towards the engineering of sophisticated, autonomous devices based on specifically functionalized cells. With the growing complexity of the functions performed by such systems, both the risk of circuit crosstalk and the metabolic burden resulting from the expression of numerous foreign genes are increasing. Therefore, systems based on a single type of cells are no longer feasible. Synthetic biology approaches with multiple subpopulations of specifically functionalized cells, wired by artificial cell-cell communication systems, provide an attractive and powerful alternative. Here we review recent applications of synthetic cell-cell communication systems with a specific focus on recent advances with fungal hosts.

  17. Contraceptive gossypol blocks cell-to-cell communication in human and rat cells.

    PubMed

    Hervé, J C; Pluciennik, F; Bastide, B; Cronier, L; Verrecchia, F; Malassiné, A; Joffre, M; Délèze, J

    1996-10-17

    Gossypol (a polycyclic lipophilic agent naturally present in cottonseed, known as a potent non-steroid antifertility agent and a non-specific enzyme inhibitor) irreversibly impaired the intercellular communication between homologous pairs of various cultured cells, from man or rat, involved (Sertoli or trophoblastic cells) or not involved (ventricular myocytes) in steroidogenesis, in a dose-dependent manner. In serum-free assays, a rapid junctional uncoupling occurred in non-cytotoxic conditions. At 5 microM (approximately twice the peak plasma concentration measured in human patients during chronic administration), gap junctional communication was interrupted within 4 to 10 min, without concomitant rise in the intracellular Ca2+ concentration. The latter importantly increased when gossypol treatment was prolonged (cytotoxic effect). The short term uncoupling effect of gossypol was prevented by serum proteins, but long-lasting treatments (48 h) with moderate concentrations (3 microM) elicited junctional uncoupling and impeded the in vitro differentiation of human trophoblasts.

  18. TLR2 Regulates Gap Junction Intercellular Communication in Airway Cells

    PubMed Central

    Martin, Francis J.; Prince, Alice S.

    2009-01-01

    The innate immune response to inhaled bacteria, such as the opportunist Pseudomonas aeruginosa, is initiated by TLR2 displayed on the apical surface of airway epithelial cells. Activation of TLR2 is accompanied by an immediate Ca2+ flux that is both necessary and sufficient to stimulate NF-κB and MAPK proinflammatory signaling to recruit and activate polymorphonuclear leukocytes in the airway. In human airway cells gap junction channels were found to provide a regulated conduit for the movement of Ca2+ from cell to cell. In response to TLR2 stimulation, by either lipid agonists or P. aeruginosa, gap junctions functioned to transiently amplify proinflammatory signaling by communicating Ca2+ fluxes from stimulated to adjacent, non-stimulated cells thus increasing epithelial CXCL8 production. P. aeruginosa stimulation also induced tyrosine phosphorylation of Connexin 43 and association with c-Src, events linked to the closure of these channels. By 4 hours post bacterial stimulation, gap junction communication was decreased indicating an autoregulatory control of the connexins. Thus, gap junction channels comprised of Connexin 43 and other connexins in airway cells provide a mechanism to coordinate and regulate the epithelial immune response even in the absence of signals from the immune system. PMID:18354224

  19. Stomatal development: a plant's perspective on cell polarity, cell fate transitions and intercellular communication

    PubMed Central

    Lau, On Sun; Bergmann, Dominique C.

    2012-01-01

    The plant stomatal lineage manifests features common to many developmental contexts: precursor cells are chosen from an initially equivalent field of cells, undergo asymmetric and self-renewing divisions, communicate among themselves and respond to information from a distance. As we review here, the experimental accessibility of these epidermal lineages, particularly in Arabidopsis, has made stomata a conceptual and technical framework for the study of cell fate, stem cells, and cell polarity in plants. PMID:22991435

  20. Stomatal development: a plant's perspective on cell polarity, cell fate transitions and intercellular communication.

    PubMed

    Lau, On Sun; Bergmann, Dominique C

    2012-10-01

    The plant stomatal lineage manifests features common to many developmental contexts: precursor cells are chosen from an initially equivalent field of cells, undergo asymmetric and self-renewing divisions, communicate among themselves and respond to information from a distance. As we review here, the experimental accessibility of these epidermal lineages, particularly in Arabidopsis, has made stomata a conceptual and technical framework for the study of cell fate, stem cells, and cell polarity in plants.

  1. Use of Advanced Solar Cells for Commercial Communication Satellites

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  2. Use of advanced solar cells for commercial communication satellites

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-03-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  3. Use of advanced solar cells for commerical communication satellites

    NASA Astrophysics Data System (ADS)

    Landis, Geoffrey A.; Bailey, Sheila G.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar- and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because of the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from Low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  4. [Cellular communication and regulation of insulin in the cell].

    PubMed

    Meda, P

    2010-01-01

    The appearance of multicellular organisms implicated the development of several mechanisms of communication, which permit the cells to function in coordination. One of the mechanisms found in all tissues of vertebrates is ensured by the proteins of the connexin family. These integral membrane proteins form channels, which allow for the passage ofcytosolic molecules either between adjacent cells or between the cytosol of these cells and the extracellular environment. We have identified connexin 36 (Cx36) as the sole connexin that functionally links ("couples") the beta-cells which produce insulin within pancreatic islets. In vitro and in vivo experiments have shown that Cx36 and/or the intercellular communications to allow play a role in the control of insulin secretion as well as in the resistance of beta-cells against various aggressions, including those induced by the cytokines that are implicated in diabetes. A polymorphism of Cx36 gene is associated to certain forms of human diabetes, opening the possibility that a therapy targeting this protein may be useful in the treatment of diabetic diseases.

  5. A Social Medium: ASM's 5th Cell-Cell Communication in Bacteria Meeting in Review

    PubMed Central

    Federle, Michael J.

    2015-01-01

    The 5th American Society for Microbiology Conference on Cell-Cell Communication in Bacteria (CCCB-5), which convened from 18 to 21 October 2014 in San Antonio, TX, highlighted recent advances in our understanding of microbial intercellular signaling. While the CCCB meetings arose from interests in pheromone signaling and quorum sensing, it was evident at CCCB-5 that the cell-cell communication field is continuing to mature, expanding into new areas and integrating cutting-edge technologies. In this minireview, we recap some of the research discussed at CCCB-5 and the questions that have arisen from it. PMID:25917904

  6. Luminal signalling links cell communication to tissue architecture during organogenesis.

    PubMed

    Durdu, Sevi; Iskar, Murat; Revenu, Celine; Schieber, Nicole; Kunze, Andreas; Bork, Peer; Schwab, Yannick; Gilmour, Darren

    2014-11-06

    Morphogenesis is the process whereby cell collectives are shaped into differentiated tissues and organs. The self-organizing nature of morphogenesis has been recently demonstrated by studies showing that stem cells in three-dimensional culture can generate complex organoids, such as mini-guts, optic-cups and even mini-brains. To achieve this, cell collectives must regulate the activity of secreted signalling molecules that control cell differentiation, presumably through the self-assembly of microenvironments or niches. However, mechanisms that allow changes in tissue architecture to feedback directly on the activity of extracellular signals have not been described. Here we investigate how the process of tissue assembly controls signalling activity during organogenesis in vivo, using the migrating zebrafish lateral line primordium. We show that fibroblast growth factor (FGF) activity within the tissue controls the frequency at which it deposits rosette-like mechanosensory organs. Live imaging reveals that FGF becomes specifically concentrated in microluminal structures that assemble at the centre of these organs and spatially constrain its signalling activity. Genetic inhibition of microlumen assembly and laser micropuncture experiments demonstrate that microlumina increase signalling responses in participating cells, thus allowing FGF to coordinate the migratory behaviour of cell groups at the tissue rear. As the formation of a central lumen is a self-organizing property of many cell types, such as epithelia and embryonic stem cells, luminal signalling provides a potentially general mechanism to locally restrict, coordinate and enhance cell communication within tissues.

  7. Using microelectronics technology to communicate with living cells.

    PubMed

    Heer, F; Hafizovic, S; Ugniwenko, T; Frey, U; Roscic, B; Blau, A; Hierlemann, A

    2007-01-01

    A monolithic microsystem in CMOS (complementary metal oxide semiconductor) technology is presented that provides bidirectional communication (stimulation and recording) between standard microelectronics and cultured electrogenic cells. The 128-electrode chip can be directly used as a substrate for cell culturing. It features circuitry units for stimulation and immediate cell signal treatment near each electrode. In addition, it provides on-chip A/D conversion as well as a digital interface so that a fast interaction is possible at good signal quality. Spontaneous and stimulated electrical activity recordings with neuronal and cardiac cell cultures will be presented. The system can be used to, e.g., study the behavior and development of neural networks in vitro, to reveal the effects of neuronal plasticity and to study network activity in response to pharmacological treatments.

  8. Cell-to-cell communication in vascular morphogenesis.

    PubMed

    Lehesranta, Satu J; Lichtenberger, Raffael; Helariutta, Ykä

    2010-02-01

    The plant vascular system consists of two conductive cell types, xylem and phloem, which are both produced by procambial cells. Recently, several novel regulatory mechanisms that control the specification of vascular patterning and differentiation have been uncovered. The non-cell-autonomous TDIF/CLE signalling mediates phloem-xylem cross-talk and cambial maintenance; a flowering-related long-distance signal governs secondary development; and novel genetic players such as LHW regulate vascular morphogenesis. A future challenge is to conflate data on the various genetic, hormonal and other factors to understand the networks underlying vascular tissue formation. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Non-autonomous role of Cdc42 in cell-cell communication during collective migration.

    PubMed

    Colombié, Nathalie; Choesmel-Cadamuro, Valérie; Series, Jennifer; Emery, Gregory; Wang, Xiaobo; Ramel, Damien

    2017-03-01

    Collective cell migration is involved in numerous processes both physiological, such as embryonic development, and pathological such as metastasis. Compared to single cell migration, collective motion requires cell behaviour coordination through an as-yet poorly understood but critical cell-cell communication mechanism. Using Drosophila border cell migration, we show here that the small Rho GTPase Cdc42 regulates cell-cell communication. Indeed, we demonstrate that Cdc42 controls protrusion formation in a cell non-autonomous manner. Moreover, we found that the endocytic small GTPase Rab11, controls Cdc42 localisation to the periphery of migrating border cell clusters. Accordingly, over-expression of Cdc42 in border cells rescues the loss of Rab11 function. In addition, we showed that Cdc42 acts upstream of Moesin, a cytoskeletal regulator known to function downstream of rab11. Thus, our study positions Cdc42 as a new key player in cell-cell communication, acting downstream of Rab11. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    SciTech Connect

    Kelly, Catriona; Flatt, Peter R.; McClenaghan, Neville H.

    2010-08-20

    Research highlights: {yields} TGP52 cells display enhanced functionality in pseudoislet form. {yields} Somatostatin content was reduced, but secretion increased in high glucose conditions. {yields} Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  11. Communication between natural killer T cells and adipocytes in obesity

    PubMed Central

    Satoh, Masashi; Iwabuchi, Kazuya

    2016-01-01

    ABSTRACT Adipose tissue contains various types of immunocompetent cells, and these cells of innate and adaptive immunity control adipose tissue inflammation that blunts insulin sensitivity. Recent studies have shown that adipocytes express CD1d and present lipid antigen(s) to activate natural killer T (NKT) cells. The function of adipocytes is in turn modulated by cytokines that NKT cells produce to alter the expression of anti-inflammatory adipokine(s) and the production of inflammatory and chemoattractant cytokines. These in vitro studies imply that the interaction between adipocytes and NKT cells might affect the development of not only obesity but also obesity-related diseases. To test the importance of the interaction between NKT cells and adipocytes, we examined whether an adipocyte-specific CD1d deletion affected the development of obesity, which had been demonstrated with B6.CD1d−/− (CD1d KO). We found that the interaction is indeed important to induce adipose tissue inflammation and insulin resistance in response to lipid excess. In this commentary, the advances and controversies on NKT cells and obesity are discussed based on our recent report that NKT cells play a pivotal role in the regulation of adipose tissue by communicating with adipocytes via CD1d. PMID:27994954

  12. From the Cover: Design of artificial cell-cell communication using gene and metabolic networks

    NASA Astrophysics Data System (ADS)

    Bulter, Thomas; Lee, Sun-Gu; Waichun Wong, Wilson; Fung, Eileen; Connor, Michael R.; Liao, James C.

    2004-02-01

    Artificial transcriptional networks have been used to achieve novel, nonnative behavior in bacteria. Typically, these artificial circuits are isolated from cellular metabolism and are designed to function without intercellular communication. To attain concerted biological behavior in a population, synchronization through intercellular communication is highly desirable. Here we demonstrate the design and construction of a gene-metabolic circuit that uses a common metabolite to achieve tunable artificial cell-cell communication. This circuit uses a threshold concentration of acetate to induce gene expression by acetate kinase and part of the nitrogen-regulation two-component system. As one application of the cell-cell communication circuit we created an artificial quorum sensor. Engineering of carbon metabolism in Escherichia coli made acetate secretion proportional to cell density and independent of oxygen availability. In these cells the circuit induced gene expression in response to a threshold cell density. This threshold can be tuned effectively by controlling pH over the cell membrane, which determines the partition of acetate between medium and cells. Mutagenesis of the enhancer sequence of the glnAp2 promoter produced variants of the circuit with changed sensitivity demonstrating tunability of the circuit by engineering of its components. The behavior of the circuit shows remarkable predictability based on a mathematical design model.

  13. Communications

    NASA Technical Reports Server (NTRS)

    Stouffer, Donald D.

    1990-01-01

    Communication in its many forms is a critical component for an effective Space Grant Program. Good communication is needed within individual Space Grant College/Consortia, for example between consortium affiliates and the consortium program office. Effective communication between the several programs, NASA Headquarters, and NASA field centers also is required. Further, communication among the above program elements, industry, local and state government, and the public also are necessary for meeting program objectives.

  14. Communication.

    ERIC Educational Resources Information Center

    Hancock, Alan

    An informal introduction to the study of communication deals with the major topics in the field. It presents basic theories of communication and language, reviews how language takes on meaning, explains the stimulus-response and Piaget theories of learning, and presents major theories dealing with communications and society. These theories include…

  15. Communication.

    ERIC Educational Resources Information Center

    Hancock, Alan

    An informal introduction to the study of communication deals with the major topics in the field. It presents basic theories of communication and language, reviews how language takes on meaning, explains the stimulus-response and Piaget theories of learning, and presents major theories dealing with communications and society. These theories include…

  16. Validating a Conceptual Framework for the Core Concept of "Cell-Cell Communication"

    ERIC Educational Resources Information Center

    Michael, Joel; Martinkova, Patricia; McFarland, Jenny; Wright, Ann; Cliff, William; Modell, Harold; Wenderoth, Mary Pat

    2017-01-01

    We have created and validated a conceptual framework for the core physiology concept of "cell-cell communication." The conceptual framework is composed of 51 items arranged in a hierarchy that is, in some instances, four levels deep. We have validated it with input from faculty who teach at a wide variety of institutional types. All…

  17. Cell-Cell Communication in Yeast Using Auxin Biosynthesis and Auxin Responsive CRISPR Transcription Factors.

    PubMed

    Khakhar, Arjun; Bolten, Nicholas J; Nemhauser, Jennifer; Klavins, Eric

    2016-04-15

    An engineering framework for synthetic multicellular systems requires a programmable means of cell-cell communication. Such a communication system would enable complex behaviors, such as pattern formation, division of labor in synthetic microbial communities, and improved modularity in synthetic circuits. However, it remains challenging to build synthetic cellular communication systems in eukaryotes due to a lack of molecular modules that are orthogonal to the host machinery, easy to reconfigure, and scalable. Here, we present a novel cell-to-cell communication system in Saccharomyces cerevisiae (yeast) based on CRISPR transcription factors and the plant hormone auxin that exhibits several of these features. Specifically, we engineered a sender strain of yeast that converts indole-3-acetamide (IAM) into auxin via the enzyme iaaH from Agrobacterium tumefaciens. To sense auxin and regulate transcription in a receiver strain, we engineered a reconfigurable library of auxin-degradable CRISPR transcription factors (ADCTFs). Auxin-induced degradation is achieved through fusion of an auxin-sensitive degron (from IAA corepressors) to the CRISPR TF and coexpression with an auxin F-box protein. Mirroring the tunability of auxin perception in plants, our family of ADCTFs exhibits a broad range of auxin sensitivities. We characterized the kinetics and steady-state behavior of the sender and receiver independently as well as in cocultures where both cell types were exposed to IAM. In the presence of IAM, auxin is produced by the sender cell and triggers deactivation of reporter expression in the receiver cell. The result is an orthogonal, rewireable, tunable, and, arguably, scalable cell-cell communication system for yeast and other eukaryotic cells.

  18. From adult stem cells to cancer stem cells: Oct-4 Gene, cell-cell communication, and hormones during tumor promotion.

    PubMed

    Trosko, James E

    2006-11-01

    Carcinogenesis is characterized by "initiation," "promotion," and "progression" phases. The "stem cell theory" and "de-differentiation" theories are used to explain the origin of cancer. Growth control for stem cells, which lack functional gap junctional intercellular communication (GJIC), involves negative soluble or niche factors, while for progenitor cells, it involves GJIC. Tumor promoters, hormones, and growth factors inhibit GJIC reversibly. Oncogenes stably inhibit GJIC. Cancer cells, which lack growth control and the ability to terminally differentiate and to apoptose, lack GJIC. The Oct3/4 gene, a POU (Pit-Oct-Unc) family of transcription factors was thought to be expressed only in embryonic stem cells and in tumor cells. With the availability of normal adult human stem cells, tests for the expression of Oct3/4 gene and the stem cell theory in human carcinogenesis became possible. Human breast, liver, pancreas, kidney, mesenchyme, and gastric stem cells, HeLa and MCF-7 cells, and canine tumors were tested with antibodies and polymerase chain reaction (PCR) primers for Oct3/4. Adult human breast stem cells, immortalized nontumorigenic and tumor cell lines, but not the normal differentiated cells, expressed Oct3/4. Adult human differentiated cells lose their Oct-4 expression. Oct3/4 is expressed in a few cells found in the basal layer of human skin epidermis. The data demonstrate that normal adult stem cells and cancer stem cells maintain expression of Oct3/4, consistent with the stem cell hypothesis of carcinogenesis. These Oct-4 positive cells might represent the "cancer stem cells." A strategy to target "cancer stem cells" is to suppress the Oct-4 gene in order to cause the cells to differentiate.

  19. Cell-to-cell communication and ovulation. A study of the cumulus-oocyte complex

    PubMed Central

    1978-01-01

    Cell-to-cell communication was characterized in cumulus-oocyte complexes from rat ovarian follicles before and after ovulation. Numerous, small gap junctional contacts were present between cumulus cells and oocytes before ovulation. The gap junction are formed on the oocyte surface by cumulus cell processes that transverse the zona pellucida and contact the oolemma. The entire cumulus mass was also connected by gap junctions via cumulus-cumulus interactions. In the hours preceding ovulation, the frequency of gap junctional contacts between cumulus cells and the oocyte was reduced, and the cumulus was disorganized. Electrophysiological measurements indicated that bidirectional ionic coupling was present between the cumulus and oocyte before ovulation. In addition, iontophoretically injected fluorescein dye was tranferred between the oocyte and cumulus cells. Examination of the extent of ionic coupling in cumulus-oocyte specimens before and after ovulation revealed that ionic coupling between the cumulus and oocyte progressively decreased as the time of ovulation approached. In postovulatory specimens, no coupling was detected. Although some proteolytic mechanism may be involved in the disintegration of the cumulus-oocyte complex, neither the cumulus cells nor the oocyte produced detectable levels of plasminogen activator, a protease which is synthesized by membrana granulosa cells. In summary, cell communication is a characterisitc feature of the cumulus-oocyte complex, and this communication is terminated near the time of ovulation. This temporal pattern of the termination of communication between the cumulus and the oocyte may indicate that communication provides a mechanism for regulating the maturation of the oocyte during follicular development before ovulation. PMID:670298

  20. Microbial linguistics: perspectives and applications of microbial cell-to-cell communication.

    PubMed

    Mitchell, Robert J; Lee, Sung Kuk; Kim, Taesung; Ghim, Cheol-Min

    2011-01-01

    Inter-cellular communication via diffusible small molecules is a defining character not only of multicellular forms of life but also of single-celled organisms. A large number of bacterial genes are regulated by the change of chemical milieu mediated by the local population density of its own species or others. The cell density-dependent "autoinducer" molecules regulate the expression of those genes involved in genetic competence, biofilm formation and persistence, virulence, sporulation, bioluminescence, antibiotic production, and many others. Recent innovations in recombinant DNA technology and micro-/nano-fluidics systems render the genetic circuitry responsible for cell-to-cell communication feasible to and malleable via synthetic biological approaches. Here we review the current understanding of the molecular biology of bacterial intercellular communication and the novel experimental protocols and platforms used to investigate this phenomenon. A particular emphasis is given to the genetic regulatory circuits that provide the standard building blocks which constitute the syntax of the biochemical communication network. Thus, this review gives focus to the engineering principles necessary for rewiring bacterial chemo-communication for various applications, ranging from population-level gene expression control to the study of host-pathogen interactions.

  1. Cell-to-cell communication in guided bone regeneration: molecular and cellular mechanisms.

    PubMed

    Gruber, Reinhard; Stadlinger, Bernd; Terheyden, Hendrik

    2016-08-23

    This overview provides insights into the molecular and cellular mechanisms involved in guided bone regeneration, in particular focusing on aspects presented in the 3D movie, Cell-To-Cell Communication in Guided Bone Regeneration. The information presented here is based almost exclusively on genetic mouse models in which single genes can be deleted or overexpressed, even in a specific cell type. This information needs to be extrapolated to humans and related to aspects relevant to graft consolidation under the clinical parameters of guided bone regeneration. The overview follows the ground tenor of the Cell-To-Cell Communication series and focuses on aspects of cell-to-cell communication in bone regeneration and guided bone regeneration. Here, we discuss (1) the role of inflammation during bone regeneration, including (2) the importance of the fibrin matrix, and (3) the pleiotropic functions of macrophages. We highlight (4) the origin of bone-forming osteoblasts and bone-resorbing osteoclasts as well as (5) what causes a progenitor cell to mature into an effector cell. (6) We touch on the complex bone adaptation and maintenance after graft consolidation and (7) how osteocytes control this process. Finally, we speculate on (8) how barrier membranes and the augmentation material can modulate graft consolidation.

  2. Blood-neural barrier: its diversity and coordinated cell-to-cell communication.

    PubMed

    Choi, Yoon Kyung; Kim, Kyu-Won

    2008-05-31

    The cerebral microvessels possess barrier characteristics which are tightly sealed excluding many toxic substances and protecting neural tissues. The specialized blood-neural barriers as well as the cerebral microvascular barrier are recognized in the retina, inner ear, spinal cord, and cerebrospinal fluid. Microvascular endothelial cells in the brain closely interact with other components such as astrocytes, pericytes, perivascular microglia and neurons to form functional 'neurovascular unit'. Communication between endothelial cells and other surrounding cells enhances the barrier functions, consequently resulting in maintenance and elaboration of proper brain homeostasis. Furthermore, the disruption of the neurovascular unit is closely involved in cerebrovascular disorders. In this review, we focus on the location and function of these various blood-neural barriers, and the importance of the cell-to-cell communication for development and maintenance of the barrier integrity at the neurovascular unit. We also demonstrate the close relation between the alteration of the blood-neural barriers and cerebrovascular disorders.

  3. Cell–cell communication enhances the capacity of cell ensembles to sense shallow gradients during morphogenesis

    PubMed Central

    Ellison, David; Mugler, Andrew; Brennan, Matthew D.; Lee, Sung Hoon; Huebner, Robert J.; Shamir, Eliah R.; Woo, Laura A.; Kim, Joseph; Amar, Patrick; Nemenman, Ilya; Ewald, Andrew J.; Levchenko, Andre

    2016-01-01

    Collective cell responses to exogenous cues depend on cell–cell interactions. In principle, these can result in enhanced sensitivity to weak and noisy stimuli. However, this has not yet been shown experimentally, and little is known about how multicellular signal processing modulates single-cell sensitivity to extracellular signaling inputs, including those guiding complex changes in the tissue form and function. Here we explored whether cell–cell communication can enhance the ability of cell ensembles to sense and respond to weak gradients of chemotactic cues. Using a combination of experiments with mammary epithelial cells and mathematical modeling, we find that multicellular sensing enables detection of and response to shallow epidermal growth factor (EGF) gradients that are undetectable by single cells. However, the advantage of this type of gradient sensing is limited by the noisiness of the signaling relay, necessary to integrate spatially distributed ligand concentration information. We calculate the fundamental sensory limits imposed by this communication noise and combine them with the experimental data to estimate the effective size of multicellular sensory groups involved in gradient sensing. Functional experiments strongly implicated intercellular communication through gap junctions and calcium release from intracellular stores as mediators of collective gradient sensing. The resulting integrative analysis provides a framework for understanding the advantages and limitations of sensory information processing by relays of chemically coupled cells. PMID:26792522

  4. A Snapshot of Direct Cell-Cell Communications in Wound Healing and Scarring.

    PubMed

    Ehrlich, H Paul

    2013-05-01

    The repair of wounds usually terminates with a scar. The healing from a severe tissue loss can create a new clinical problem, excessive scarring. Approaches to prevent excessive scarring will optimize the repair process. Controlling gap-junction communications between cells and/or the transport of the proteins that form gap junctions offers new approaches for controlling this problem. Gap-junctional intercellular communication (GJIC) requires hemichannels, connexon structures, embedded in the plasma membrane of coupled cells. The connexon is composed of six proteins from the connexin (Cx) family. The docking of connexons between the neighboring cells forms a gated channel, where small molecules can pass directly between the cytoplasm of cells. In wound repair, GJIC between fibroblasts in granulation tissue advances wound repair. Also, the GJIC between mast cells and fibroblasts during the remodeling phase of repair may explain how mast cells promote excessive scarring. In addition, Cx can affect transforming growth factor beta (TGF-β) intracellular signaling through its shared binding site on microtubules within fibroblasts. Can excessive scarring be controlled through limiting the local amassing of mast cells or preventing their interactions with wound fibroblasts through GJIC? The prevention of the accumulation of mast cells in granulation tissue or interfering with their communications via GJIC with fibroblasts offers new approaches for preventing excess scarring. The association of Cx with microtubules altering TGF-β signaling presents a new target for improving the quality of repair as well as the deposition of unnecessary fibrosis.

  5. Communicate!

    ERIC Educational Resources Information Center

    Chase, Stuart

    This ten chapter book is designed to provide high school students with an understanding of basic communication processes. The first five chapters include discussions of language development, function, and acquisition in relation to both human and non-human communication. The sixth chapter contains specimen linguistic analyses of speech and…

  6. Communication

    NASA Technical Reports Server (NTRS)

    Griner, James

    2010-01-01

    NASA s communication work for the UAS Command and Control area will build upon work currently being conducted under NASA Recovery Act funds. Communication portions of UAS NextGen ConOps, Stateof- the-Art assessment, and Gap Analysis. Preliminary simulations for UAS CNPC link scalability assessment. Surrogate UAS aircraft upgrades. This work will also leverage FY10 in-guide funding for communication link model development. UAS are currently managed through exceptions and are operating using DoD frequencies for line-of-sight (LOS) and satellite-based communications links, low-power LOS links in amateur bands, or unlicensed Instrument/Scientific/Medical (ISM) frequencies. None of these frequency bands are designated for Safety and Regularity of Flight. No radio-frequency (RF) spectrum has been allocated by the International Telecommunications Union (ITU) specifically for UAS command and control links, for either LOS or Beyond LOS (BLOS) communication.

  7. Effects of dinitrotoluenes on morphological cell transformation and intercellular communication in Syrian hamster embryo cells.

    PubMed

    Holen, I; Mikalsen, S O; Sanner, T

    1990-01-01

    The effects of four isomers of dinitrotoluene (DNT) and technical DNT (a mixture of DNT isomers and other compounds, with 2,4-DNT as the major constituent) were studied in two short-term in vitro assays. None of the isomers or technical DNT induced an increase in morphological transformation of Syrian hamster embryo (SHE) cells. Four DNT metabolites (2,4-diaminotoluene, 2-amino-4-nitrotoluene, 2-amino-6-nitrotoluene, and 2,4-dinitobenzoic acid), representing different stages in reduction or oxidation of DNT isomers, were also negative for induction of morphological transformation. The DNT isomers were tested in an intercellular communication assay based on dye transfer. 2,4-DNT, 2,6-DNT, and technical DNT inhibited intercellular communication in the SHE cell line BPNi at toxic concentrations. This may be reminiscent of in vivo data showing promoting activity of these compound. 2,3-DNT and 3,4-DNT did not inhibit communication.

  8. Teaching the Fundamentals of Cell Phones and Wireless Communications

    NASA Astrophysics Data System (ADS)

    Davids, Mark; Forrest, Rick; Pata, Don

    2010-04-01

    Wireless communications are ubiquitous. Students and teachers use iPhones®, BlackBerrys®, and other smart phones at home and at work. More than 275 million Americans had cell phones in June of 2009 and expanded access to broadband is predicted this year.2 Despite the plethora of users, most students and teachers do not understand "how they work." Over the past several years, three high school teachers have collaborated with engineers at Cingular, Motorola, and the University of Michigan to explore the underlying science and design a three-week, student-centered unit with a constructivist pedagogy consistent with the "Modeling in Physics" philosophy.3 This unique pilot program reinforces traditional physics topics including vibrations and waves, sound, light, electricity and magnetism, and also introduces key concepts in communications and information theory. This article will describe the motivation for our work, outline a few key concepts with the corresponding student activities, and provide a summary of the program that has been developed to engage and inspire the next generation of scientists, engineers, and citizens.

  9. Long distance cell communication using spherical tether balloons

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.; Rajagopalan, Vasudevan; Vasudevan, Rajagopalan; Mehrotra, R. K.; Sreenivasan, S.; Pawaskar, M.; Subba Rao Jonnalagadda, Venkata; Buduru, Suneelkumar; Kulkarni, P. M.

    A proof-of-concept experiment was conducted for long-range cell communication for rural tele-phony and internet. We designed and fabricated a spherical tether balloon to carry the con-ventional micro base transceiver station (BTS) along with three slotted antenna to cover 2-pi radius. AC power and optical fiber were anchored along with the tether line. A special fre-quency license was obtained from Wireless Planning Commission (WPC) wing of Department of Telecommunication (DoT), India for the period of experiment so as not to affect the opera-tional networks. The experiments were carried out for different BTS heights up to 500 meter. Signal measurement both in data mode and voice quality were done in different quadrant using mobile vans. This paper describes the methodology (under patenting) and utility of technique for operational application.

  10. Cell-to-cell communication: Time and length scales of ligand internalization in cultures of suspended cells

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Coppey, Mathieu; Sealfon, Stuart C.; Shvartsman, Stanislav

    2008-06-01

    A problem of cell-to-cell communication by diffusible ligands is analyzed for the case when cells are distributed in three dimensions and diffusible ligands are secreted by cells and reversibly bind to cell surface receptors. Following its binding to a receptor, the ligand can either dissociate and be released back in the medium or be absorbed by the cell in a process that is called internalization. Using an effective medium approximation, we derive analytical expressions that characterize the time and length scales associated with the ligand trajectories leading to internalization. We discuss the applicability of our approximation and illustrate the application of our results to a specific cellular system.

  11. Synthetic Quorum Sensing and Cell-Cell Communication in Gram-Positive Bacillus megaterium.

    PubMed

    Marchand, Nicholas; Collins, Cynthia H

    2016-07-15

    The components of natural quorum-sensing (QS) systems can be used to engineer synthetic communication systems that regulate gene expression in response to chemical signals. We have used the machinery from the peptide-based agr QS system from Staphylococcus aureus to engineer a synthetic QS system in Bacillus megaterium to enable autoinduction of a target gene at high cell densities. Growth and gene expression from these synthetic QS cells were characterized in both complex and minimal media. We also split the signal production and sensing components between two strains of B. megaterium to produce sender and receiver cells and characterized the resulting communication in liquid media and on semisolid agar. The system described in this work represents the first synthetic QS and cell-cell communication system that has been engineered to function in a Gram-positive host, and it has the potential to enable the generation of dynamic gene regulatory networks in B. megaterium and other Gram-positive organisms.

  12. ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS

    EPA Science Inventory

    ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
    OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

  13. CHLORAL HYDRATE DECREASES GAP JUNCTION COMMUNICATION IN RAT LIVER EPITHELIAL CELLS

    EPA Science Inventory

    Chloral hydrate decreases gap junction communication in rat liver epithelial cells

    Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Connexins (Cx) that make up these junctions are composed of a closely related group of m...

  14. ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS

    EPA Science Inventory

    ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
    OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

  15. CHLORAL HYDRATE DECREASES GAP JUNCTION COMMUNICATION IN RAT LIVER EPITHELIAL CELLS

    EPA Science Inventory

    Chloral hydrate decreases gap junction communication in rat liver epithelial cells

    Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Connexins (Cx) that make up these junctions are composed of a closely related group of m...

  16. Operating principles of Notch-Delta-Jagged module of cell-cell communication

    NASA Astrophysics Data System (ADS)

    Jolly, Mohit Kumar; Boareto, Marcelo; Lu, Mingyang; Onuchic, Jose' N.; Clementi, Cecilia; Ben-Jacob, Eshel

    2015-05-01

    Notch pathway is an evolutionarily conserved cell-cell communication mechanism governing cell-fate during development and tumor progression. It is activated when Notch receptor of one cell binds to either of its ligand—Delta or Jagged—of another cell. Notch-Delta (ND) signaling forms a two-way switch, and two cells interacting via ND signaling adopt different fates—Sender (high ligand, low receptor) and Receiver (low ligand, high receptor). Notch-Delta-Jagged signaling (NDJ) behaves as a three-way switch and enables an additional fate—hybrid Sender/Receiver (S/R) (medium ligand, medium receptor). Here, by extending our framework of NDJ signaling for a two-cell system, we show that higher production rate of Jagged, but not that of Delta, expands the range of parameters for which both cells attain the hybrid S/R state. Conversely, glycosyltransferase Fringe and cis-inhibition reduces this range of conditions, and reduces the relative stability of the hybrid S/R state, thereby promoting cell-fate divergence and consequently lateral inhibition-based patterns. Lastly, soluble Jagged drives the cells to attain the hybrid S/R state, and soluble Delta drives them to be Receivers. We also discuss the critical role of hybrid S/R state in promoting cancer metastasis by enabling collective cell migration and expanding cancer stem cell (CSC) population.

  17. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain

    PubMed Central

    Pegtel, D. M.; Peferoen, L.; Amor, S.

    2014-01-01

    Homeostasis relies heavily on effective cell-to-cell communication. In the central nervous system (CNS), probably more so than in other organs, such communication is crucial to support and protect neurons especially during ageing, as well as to control inflammation, remove debris and infectious agents. Emerging evidence indicates that extracellular vesicles (EVs) including endosome-derived exosomes and fragments of the cellular plasma membrane play a key role in intercellular communication by transporting messenger RNA, microRNA (miRNA) and proteins. In neurodegenerative diseases, secreted vesicles not only remove misfolded proteins, but also transfer aggregated proteins and prions and are thus thought to perpetuate diseases by ‘infecting’ neighbouring cells with these pathogenic proteins. Conversely, in other CNS disorders signals from stressed cells may help control inflammation and inhibit degeneration. EVs may also reflect the status of the CNS and are present in the cerebrospinal fluid indicating that exosomes may act as biomarkers of disease. That extracellular RNA and in particular miRNA, can be transferred by EV also indicates that these vesicles could be used as carriers to specifically target the CNS to deliver immune modulatory drugs, neuroprotective agents and anti-cancer drugs. Here, we discuss the recent evidence indicating the potential role of exosomes in neurological disorders and how knowledge of their biology may enable a Trojan-horse approach to deliver drugs into the CNS and treat neurodegenerative and other disorders of the CNS. PMID:25135977

  18. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain.

    PubMed

    Pegtel, D M; Peferoen, L; Amor, S

    2014-09-26

    Homeostasis relies heavily on effective cell-to-cell communication. In the central nervous system (CNS), probably more so than in other organs, such communication is crucial to support and protect neurons especially during ageing, as well as to control inflammation, remove debris and infectious agents. Emerging evidence indicates that extracellular vesicles (EVs) including endosome-derived exosomes and fragments of the cellular plasma membrane play a key role in intercellular communication by transporting messenger RNA, microRNA (miRNA) and proteins. In neurodegenerative diseases, secreted vesicles not only remove misfolded proteins, but also transfer aggregated proteins and prions and are thus thought to perpetuate diseases by 'infecting' neighbouring cells with these pathogenic proteins. Conversely, in other CNS disorders signals from stressed cells may help control inflammation and inhibit degeneration. EVs may also reflect the status of the CNS and are present in the cerebrospinal fluid indicating that exosomes may act as biomarkers of disease. That extracellular RNA and in particular miRNA, can be transferred by EV also indicates that these vesicles could be used as carriers to specifically target the CNS to deliver immune modulatory drugs, neuroprotective agents and anti-cancer drugs. Here, we discuss the recent evidence indicating the potential role of exosomes in neurological disorders and how knowledge of their biology may enable a Trojan-horse approach to deliver drugs into the CNS and treat neurodegenerative and other disorders of the CNS. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Bacterial Cell-Cell Communication in the Host via RRNPP Peptide-Binding Regulators.

    PubMed

    Perez-Pascual, David; Monnet, Véronique; Gardan, Rozenn

    2016-01-01

    Human microbiomes are composed of complex and dense bacterial consortia. In these environments, bacteria are able to react quickly to change by coordinating their gene expression at the population level via small signaling molecules. In Gram-positive bacteria, cell-cell communication is mostly mediated by peptides that are released into the extracellular environment. Cell-cell communication based on these peptides is especially widespread in the group Firmicutes, in which they regulate a wide array of biological processes, including functions related to host-microbe interactions. Among the different agents of communication, the RRNPP family of cytoplasmic transcriptional regulators, together with their cognate re-internalized signaling peptides, represents a group of emerging importance. RRNPP members that have been studied so far are found mainly in species of bacilli, streptococci, and enterococci. These bacteria are characterized as both human commensal and pathogenic, and share different niches in the human body with other microorganisms. The goal of this mini-review is to present the current state of research on the biological relevance of RRNPP mechanisms in the context of the host, highlighting their specific roles in commensalism or virulence.

  20. Communications

    ERIC Educational Resources Information Center

    Bailenson, Jeremy; Buzzanell, Patrice; Deetz, Stanley; Tewksbury, David; Thompson, Robert J.; Turow, Joseph; Bichelmeyer, Barbara; Bishop, M. J.; Gayeski, Diane

    2013-01-01

    Scholars representing the field of communications were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Jeremy Bailenson, Patrice Buzzanell, Stanley Deetz, David Tewksbury, Robert J. Thompson, and…

  1. Communications

    ERIC Educational Resources Information Center

    Bailenson, Jeremy; Buzzanell, Patrice; Deetz, Stanley; Tewksbury, David; Thompson, Robert J.; Turow, Joseph; Bichelmeyer, Barbara; Bishop, M. J.; Gayeski, Diane

    2013-01-01

    Scholars representing the field of communications were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Jeremy Bailenson, Patrice Buzzanell, Stanley Deetz, David Tewksbury, Robert J. Thompson, and…

  2. Microfluidic platform for the study of intercellular communication via soluble factor-cell and cell-cell paracrine signaling

    PubMed Central

    Byrne, Matthew B.; Trump, Lisa; Desai, Amit V.; Schook, Lawrence B.; Gaskins, H. Rex; Kenis, Paul J. A.

    2014-01-01

    Diffusion of autocrine and paracrine signaling molecules allows cells to communicate in the absence of physical contact. This chemical-based, long-range communication serves crucial roles in tissue function, activation of the immune system, and other physiological functions. Despite its importance, few in vitro methods to study cell-cell signaling through paracrine factors are available today. Here, we report the design and validation of a microfluidic platform that enables (i) soluble molecule-cell and/or (ii) cell-cell paracrine signaling. In the microfluidic platform, multiple cell populations can be introduced into parallel channels. The channels are separated by arrays of posts allowing diffusion of paracrine molecules between cell populations. A computational analysis was performed to aid design of the microfluidic platform. Specifically, it revealed that channel spacing affects both spatial and temporal distribution of signaling molecules, while the initial concentration of the signaling molecule mainly affects the concentration of the signaling molecules excreted by the cells. To validate the microfluidic platform, a model system composed of the signaling molecule lipopolysaccharide, mouse macrophages, and engineered human embryonic kidney cells was introduced into the platform. Upon diffusion from the first channel to the second channel, lipopolysaccharide activates the macrophages which begin to produce TNF-α. The TNF-α diffuses from the second channel to the third channel to stimulate the kidney cells, which express green fluorescent protein (GFP) in response. By increasing the initial lipopolysaccharide concentration an increase in fluorescent response was recorded, demonstrating the ability to quantify intercellular communication between 3D cellular constructs using the microfluidic platform reported here. Overall, these studies provide a detailed analysis on how concentration of the initial signaling molecules, spatiotemporal dynamics, and inter

  3. Cell communication in a coculture system consisting of outgrowth endothelial cells and primary osteoblasts.

    PubMed

    Herzog, David Paul Eric; Dohle, Eva; Bischoff, Iris; Kirkpatrick, Charles James

    2014-01-01

    Bone tissue is a highly vascularized and dynamic system with a complex construction. In order to develop a construct for implant purposes in bone tissue engineering, a proper understanding of the complex dependencies between different cells and cell types would provide further insight into the highly regulated processes during bone repair, namely, angiogenesis and osteogenesis, and might result in sufficiently equipped constructs to be beneficial to patients and thereby accomplish their task. This study is based on an in vitro coculture model consisting of outgrowth endothelial cells and primary osteoblasts and is currently being used in different studies of bone repair processes with special regard to angiogenesis and osteogenesis. Coculture systems of OECs and pOBs positively influence the angiogenic potential of endothelial cells by inducing the formation of angiogenic structures in long-term cultures. Although many studies have focused on cell communication, there are still numerous aspects which remain poorly understood. Therefore, the aim of this study is to investigate certain growth factors and cell communication molecules that are important during bone repair processes. Selected growth factors like VEGF, angiopoietins, BMPs, and IGFs were investigated during angiogenesis and osteogenesis and their expression in the cultures was observed and compared after one and four weeks of cultivation. In addition, to gain a better understanding on the origin of different growth factors, both direct and indirect coculture strategies were employed. Another important focus of this study was to investigate the role of "gap junctions," small protein pores which connect adjacent cells. With these bridges cells are able to exchange signal molecules, growth factors, and other important mediators. It could be shown that connexins, the gap junction proteins, were located around cell nuclei, where they await their transport to the cell membrane. In addition, areas in which two

  4. Communication between neuronal somata and satellite glial cells in sensory ganglia.

    PubMed

    Huang, Li-Yen M; Gu, Yanping; Chen, Yong

    2013-10-01

    Studies of the structural organization and functions of the cell body of a neuron (soma) and its surrounding satellite glial cells (SGCs) in sensory ganglia have led to the realization that SGCs actively participate in the information processing of sensory signals from afferent terminals to the spinal cord. SGCs use a variety ways to communicate with each other and with their enwrapped soma. Changes in this communication under injurious conditions often lead to abnormal pain conditions. "What are the mechanisms underlying the neuronal soma and SGC communication in sensory ganglia?" and "how do tissue or nerve injuries affect the communication?" are the main questions addressed in this review.

  5. microRNAs as mediators and communicators between cancer cells and the tumor micro-environment

    PubMed Central

    Kohlhapp, Frederick J.; Mitra, Anirban K.; Lengyel, Ernst; Peter, Marcus E.

    2015-01-01

    Cancer cells grow in an environment comprised of multiple components that support tumor growth and contribute to therapy resistance. Major cell types in the tumor micro-environment are fibroblasts, endothelial cells and infiltrating immune cells all of which communicate with cancer cells. One way that these cell types promote cancer progression is by altering expression of miRNAs, small noncoding RNAs that negatively regulate protein expression, either in the cancer cells or in associated normal cells. Changes in miRNA expression can be brought about by direct interaction between the stromal cells and cancer cells, by paracrine factors secreted by any of the cell types, or even through direct communication between cells through secreted miRNAs. Understanding the role of miRNAs in the complex interactions between the tumor and cells in its micro-environment is necessary if we are to understand tumor progression and devise new treatments. PMID:25867073

  6. Cell swelling impairs dye coupling in adult rat ventricular myocytes. Cell volume as a regulator of cell communication

    PubMed Central

    De Mello, WC

    2013-01-01

    The influence of cell swelling on cell communication was investigated in cardiomyocytes isolated from the ventricle of adult rats. Measurements of dye coupling were performed in cell pairs using intracellular dialysis of Lucifer Yellow CH. The pipette was attached to one cell of the pair and after a gig ohm seal was achieved, the membrane was ruptured by a brief suction allowing the dye to diffuse from the pipette into the cell. Fluorescence of the dye in the injected as well as in non-dialyzed cell of the pair was continuously monitored. The results indicate that in cell pairs exposed to hypotonic solution the cell volume was increased by about 60% within 35 min and the dye coupling was significantly reduced by cell swelling. Calculation of gap junction permeability (P(j)) assuming an the intracellular volume accessible to intracellular diffusion of the dye as 12% of total cell volume, showed an average P(j) value of 0.16 ± 0.04 × 10−4 cm/s (n = 35) in the control and 0.89 ± 1.1 × 10−5 cm (n = 40) for cells exposed to hypotonic solution (P < 0.05). Similar results were found assuming intracellular volumes accessible to the dye of 20 and 30% of total cell volume, respectively. Cell swelling did not change the rate of intracellular diffusion of the dye. The results, which indicate that cell volume is an important regulator of gap junction permeability, have important implications to myocardial ischemia and heart failure as well as to heart pharmacology because changes in cell volume caused by drugs and transmitters can impair cell communication with consequent generation of slow conduction and cardiac arrhythmias. PMID:20512611

  7. Low-intensity pulsed ultrasound (LIPUS) and cell-to-cell communication in bone marrow stromal cells.

    PubMed

    Sena, Kotaro; Angle, Siddhesh R; Kanaji, Arihiko; Aher, Chetan; Karwo, David G; Sumner, Dale R; Virdi, Amarjit S

    2011-07-01

    Low-intensity pulsed ultrasound (LIPUS) is an established therapy for fracture repair and has been used widely in the clinics, but its underlying mechanism of action remains unclear. The aim of the current research was to determine the effect of LIPUS on gap junctional cell-to-cell intercellular communication in rat bone marrow stromal cells (BMSC) in vitro and to determine whether the ability of BMSCs to communicate by gap junctions would affect their response to LIPUS. Single or daily-multiple LIPUS treatment at 1.5MHz, 30mW/cm(2), for 20min was applied to BMSC. We demonstrated that BMSC form functional gap junctions and single LIPUS treatment significantly increased the intracellular dye transfer between BMSC. In addition, activated phosphorylation of ERK1/2 and p38 by LIPUS stimulation was diminished when cells were treated with a gap junction inhibitor 18β-glycyrrhetinic acid (18β). We further demonstrated that 18β diminished the significant increase in alkaline phosphatase activity following LIPUS stimulation. These results suggest a potential role of gap junctional cell-to-cell intercellular communication on the effects of LIPUS in BMSC.

  8. Cell to cell communication by autoinducing peptides in gram-positive bacteria.

    PubMed

    Sturme, Mark H J; Kleerebezem, Michiel; Nakayama, Jiro; Akkermans, Antoon D L; Vaugha, Elaine E; de Vos, Willem M

    2002-08-01

    While intercellular communication systems in Gram-negative bacteria are often based on homoserine lactones as signalling molecules, it has been shown that autoinducing peptides are involved in intercellular communication in Gram-positive bacteria. Many of these peptides are exported by dedicated systems, posttranslationally modified in various ways, and finally sensed by other cells via membrane-located receptors that are part of two-component regulatory systems. In this way the expression of a variety of functions including virulence, genetic competence and the production of antimicrobial compounds can be modulated in a co-ordinated and cell density- and growth phase-dependent manner. Occasionally the autoinducing peptide has a dual function, such as in the case of nisin that is both a signalling pheromone involved in quorum sensing and an antimicrobial peptide. Moreover, biochemical, genetic and genomic studies have shown that bacteria may contain multiple quorum sensing systems, underlining the importance of intercellular communication. Finally, in some cases different peptides may be recognised by the same receptor, while also hybrid receptors have been constructed that respond to new peptides or show novel responses. This paper provides an overview of the characteristics of autoinducing peptide-based quorum sensing systems, their application in various gram-positive bacteria, and the discovery of new systems in natural and engineered ecosystems.

  9. Inter-cell interference mitigation in multi-cellular visible light communications.

    PubMed

    Jung, Sun-Young; Kwon, Do-Hoon; Yang, Se-Hoon; Han, Sang-Kook

    2016-04-18

    Inter-cell interference hinders multi-cellular optical wireless communication to support various applications. We proposed and experimentally demonstrated a multicarrier-based cell partitioning scheme, combined with frequency reuse, which could be effective in optical communications although it is inefficient in RF wireless communications. For multicarrier-based cell partitioning, Orthogonal frequency division multiplexing-based multiple access (OFDMA) was employed to accommodate multi-cellular optical wireless communications without a large guard band between adjacent cells and without additional RF components. Moreover, we employed filter bank-based multicarrier (FBMC) to mitigate inter-cell interference generated in OFDMA-based cell partitioning due to asynchronous signals originated from RF path difference. By using FBMC-based cell partitioning, inter-cell interference could be effectively mitigated as well as capacity and spectral efficiency were improved about 1.5 times compared to those of OFDMA. Because no cyclic prefix (CP) is required in FBMC, the improvement factor could be increased if there is a large RF path difference between lighting cells. Moreover, it could be a stronger solution when many neighboring cells exist causing large interference. The proposed multicarrier-based cell partitioning combined with FBMC will effectively support visible light communication (VLC)-based localization-based services (LBS) and indoor positioning system by transparently providing trilateration-based positioning method.

  10. [Cell phone communication: hygienic characteristics, biological action, standardization (a review)].

    PubMed

    Gudina, M V; Volkotrub, L P

    2010-01-01

    The paper considers the topical issues concerning the functioning of the cellular communication system. It provides the hygienic characteristics of its individual elements. The factors influencing the size of an electromagnetic field generated by mobile phones are stated. Research data on the impact of electromagnetic radiation from a mobile phone on users' health are reviewed. The pivots of present-day Russian hygienic rating regarding the permissible exposures to nonionizing electromagnetic energy generated by the elements of the cellular communication system are identified.

  11. Small RNA Control of Cell-to-Cell Communication in Vibrio Harveyi and Vibrio Cholerae

    NASA Astrophysics Data System (ADS)

    Svenningsen, Sine Lo

    Quorum sensing is a process of cell-to-cell communication, by which bacteria coordinate gene expression and behavior on a population-wide scale. Quorum sensing is accomplished through production, secretion, and subsequent detection of chemical signaling molecules termed autoinducers. The human pathogen Vibrio cholerae and the marine bioluminescent bacterium Vibrio harveyi incorporate information from multiple autoinducers, and also environmental signals and metabolic cues into their quorum-sensing pathways. At the core of these pathways lie several homologous small regulatory RNA molecules, the Quorum Regulatory RNAs. Small noncoding RNAs have emerged throughout the bacterial and eukaryotic kingdoms as key regulators of behavioral and developmental processes. Here, I review our present understanding of the role of the Qrr small RNAs in integrating quorum-sensing signals and in regulating the individual cells response to this information.

  12. Exploring the human mesenchymal stem cell tubule communication network through electron microscopy.

    PubMed

    Valente, Sabrina; Rossi, Roberta; Resta, Leonardo; Pasquinelli, Gianandrea

    2015-04-01

    Cells use several mechanisms to transfer information to other cells. In this study, we describe micro/nanotubular connections and exosome-like tubule fragments in multipotent mesenchymal stem cells (MSCs) from human arteries. Scanning and transmission electron microscopy allowed characterization of sinusoidal microtubular projections (700 nm average size, 200 µm average length, with bulging mitochondria and actin microfilaments); short, uniform, variously shaped nanotubular projections (100 nm, bidirectional communication); and tubule fragments (50 nm). This is the first study demonstrating that MSCs from human arteries constitutively interact through an articulate and dynamic tubule network allowing long-range cell to cell communication.

  13. EuroStemCell: A European infrastructure for communication and engagement with stem cell research.

    PubMed

    Barfoot, Jan; Doherty, Kate; Blackburn, C Clare

    2017-08-16

    EuroStemCell is a large and growing network of organizations and individuals focused on public engagement with stem cells and regenerative medicine - a fluid and contested domain, where scientific, political, ethical, legal and societal perspectives intersect. Rooted in the European stem cell research community, this project has developed collaborative and innovative approaches to information provision and direct and online engagement, that reflect and respond to the dynamic growth of the field itself. EuroStemCell started as the communication and outreach component of a research consortium and subsequently continued as a stand-alone engagement initiative. The involvement of established European stem cell scientists has grown year-on-year, facilitating their participation in public engagement by allowing them to make high-value contributions with broad reach. The project has now had sustained support by partners and funders for over twelve years, and thus provides a model for longevity in public engagement efforts. This paper considers the evolution of the EuroStemCell project in response to - and in dialogue with - its evolving environment. In it, we aim to reveal the mechanisms and approaches taken by EuroStemCell, such that others within the scientific community can explore these ideas and be further enabled in their own public engagement endeavours. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies.

    PubMed

    Record, Michel; Carayon, Kevin; Poirot, Marc; Silvente-Poirot, Sandrine

    2014-01-01

    Exosomes are nanovesicles that have emerged as a new intercellular communication system between an intracellular compartment of a donor cell towards the periphery or an internal compartment of a recipient cell. The bioactivity of exosomes resides not only in their protein and RNA contents but also in their lipidic molecules. Exosomes display original lipids organized in a bilayer membrane and along with the lipid carriers such as fatty acid binding proteins that they contain, exosomes transport bioactive lipids. Exosomes can vectorize lipids such as eicosanoids, fatty acids, and cholesterol, and their lipid composition can be modified by in-vitro manipulation. They also contain lipid related enzymes so that they can constitute an autonomous unit of production of various bioactive lipids. Exosomes can circulate between proximal or distal cells and their fate can be regulated in part by lipidic molecules. Compared to their parental cells, exosomes are enriched in cholesterol and sphingomyelin and their accumulation in cells might modulate recipient cell homeostasis. Exosome release from cells appears to be a general biological process. They have been reported in all biological fluids from which they can be recovered and can be monitors of specific pathophysiological situations. Thus, the lipid content of circulating exosomes could be useful biomarkers of lipid related diseases. Since the first lipid analysis of exosomes ten years ago detailed knowledge of exosomal lipids has accumulated. The role of lipids in exosome fate and bioactivity and how they constitute an additional lipid transport system are considered in this review.

  15. Communication is key: Reducing DEK1 activity reveals a link between cell-cell contacts and epidermal cell differentiation status.

    PubMed

    Galletti, Roberta; Ingram, Gwyneth C

    2015-01-01

    Plant epidermis development requires not only the initial acquisition of tissue identity, but also the ability to differentiate specific cell types over time and to maintain these differentiated states throughout the plant life. To set-up and maintain differentiation, plants activate specific transcriptional programs. Interfering with these programs can prevent differentiation and/or force differentiated cells to lose their identity and re-enter a proliferative state. We have recently shown that the Arabidopsis Defective Kernel 1 (DEK1) protein is required both for the differentiation of epidermal cells and for the maintenance of their fully differentiated state. Defects in DEK1 activity lead to a deregulation of the expression of epidermis-specific differentiation-promoting HD-ZIP IV transcription factors. Here we propose a working model in which DEK1, by maintaining cell-cell contacts, and thus communication between neighboring cells, influences HD-ZIP IV gene expression and epidermis differentiation.

  16. Chloral hydrate decreases gap junction communications in rat liver epithelial cells

    EPA Science Inventory

    Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Alterations in GJC are associated with carcinogenesis, but the mechanisms involvedareunknown.Chloralhydrate(CH), a by-productofchlorinedisinfection ofwater,is carcinogenic in mice,...

  17. Chloral hydrate decreases gap junction communications in rat liver epithelial cells

    EPA Science Inventory

    Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Alterations in GJC are associated with carcinogenesis, but the mechanisms involvedareunknown.Chloralhydrate(CH), a by-productofchlorinedisinfection ofwater,is carcinogenic in mice,...

  18. AFM study shows prominent physical changes in elasticity and pericellular layer in human acute leukemic cells due to inadequate cell-cell communication

    NASA Astrophysics Data System (ADS)

    Guz, Nataliia V.; Patel, Sapan J.; Dokukin, Maxim E.; Clarkson, Bayard; Sokolov, Igor

    2016-12-01

    Biomechanical properties of single cells in vitro or ex vivo and their pericellular interfaces have recently attracted a lot of attention as a potential biophysical (and possibly prognostic) marker of various diseases and cell abnormalities. At the same time, the influence of the cell environment on the biomechanical properties of cells is not well studied. Here we use atomic force microscopy to demonstrate that cell-cell communication can have a profound effect on both cell elasticity and its pericellular coat. A human pre-B p190BCR/ABL acute lymphoblastic leukemia cell line (ALL3) was used in this study. Assuming that cell-cell communication is inversely proportional to the distance between cells, we study ALL3 cells in vitro growing at different cell densities. ALL3 cells demonstrate a clear density dependent behavior. These cells grow very well if started at a relatively high cell density (HD, >2 × 105 cells ml-1) and are poised to grow at low cell density (LD, <1 × 104 cells ml-1). Here we observe ˜6× increase in the elastic (Young’s) modulus of the cell body and ˜3.6× decrease in the pericellular brush length of LD cells compared to HD ALL3 cells. The difference observed in the elastic modulus is much larger than typically reported for pathologically transformed cells. Thus, cell-cell communication must be taken into account when studying biomechanics of cells, in particular, correlating cell phenotype and its biophysical properties.

  19. Communications

    NASA Technical Reports Server (NTRS)

    Bonelle, G. J.

    1984-01-01

    Communications in any system is one of the last technologies to be considered, and sometimes it is considered too late to impact the system. This was somewhat the impression on reviewing the NASA budget for two mission scenarios for the space station. However, that budget fortunately was well spent, and the money was spent to get the most benefit per dollar. Another thing that is very often forgotten is that technology is not produced in a vacuum. In fact, in conducting independent research and development (IR&D), the first phase is to define the requirements which must be time phased, becuase very often the conditions will change during the life of the system. From the requirements, a set of architectures that are at least representative of that era are produced. If the exact requirements were not established, at least boundaries are set on the requirements for that architecture. When this is completed, then the technology that is really needed is defined. The major criticism of the work that was presented to the panel is the lack of a firm set of requirements.

  20. Communications

    NASA Technical Reports Server (NTRS)

    Bonelle, G. J.

    1984-01-01

    Communications in any system is one of the last technologies to be considered, and sometimes it is considered too late to impact the system. This was somewhat the impression on reviewing the NASA budget for two mission scenarios for the space station. However, that budget fortunately was well spent, and the money was spent to get the most benefit per dollar. Another thing that is very often forgotten is that technology is not produced in a vacuum. In fact, in conducting independent research and development (IR&D), the first phase is to define the requirements which must be time phased, becuase very often the conditions will change during the life of the system. From the requirements, a set of architectures that are at least representative of that era are produced. If the exact requirements were not established, at least boundaries are set on the requirements for that architecture. When this is completed, then the technology that is really needed is defined. The major criticism of the work that was presented to the panel is the lack of a firm set of requirements.

  1. Between the sheets: inter-cell-layer communication in plant development.

    PubMed Central

    Ingram, Gwyneth C

    2004-01-01

    The cells of plant meristems and embryos are arranged in an organized, and sometimes extremely beautiful, layered pattern. This pattern is maintained by the controlled orientation of cell divisions within layers. However, despite this layered structure, cell behaviour during plant development is not lineage dependent, and does not occur in a mosaic fashion. Many studies, both classical and recent, have shown that plant cell identity can be re-specified according to position, allowing plants to show remarkable developmental plasticity. However, the layered structure of meristems and the implications of this during plant development, remain subjects of some speculation. Of particular interest is the question of how cell layers communicate, and how communication between cell layers could allow coordinated developmental processes to take place. Recent research has uncovered several examples both of the molecular mechanisms by which cell layers can communicate, and of how this communication can infringe on developmental processes. A range of examples is used to illustrate the diversity of mechanisms potentially implicated in cell-layer communication during plant development. PMID:15306405

  2. Simulated microgravity allows to demonstrate cell-to-cell communication in bacteria

    NASA Astrophysics Data System (ADS)

    Mastroleo, Felice; van Houdt, Rob; Mergeay, Max; Hendrickx, Larissa; Wattiez, Ruddy; Leys, Natalie

    Through the MELiSSA project, the European Space Agency aims to develop a closed life support system for oxygen, water and food production to support human life in space in forth-coming long term space exploration missions. This production is based on the recycling of the missions organic waste, including CO2 and minerals. The photosynthetic bacterium Rhodospir-illum rubrum S1H is used in MELiSSA to degrade organics with light energy and is the first MELiSSA organism that has been studied in space related environmental conditions (Mastroleo et al., 2009). It was tested in actual space flight to the International Space Station (ISS) as well as in ground simulations of ISS-like ionizing radiation and microgravity. In the present study, R. rubrum S1H was cultured in liquid medium in 2 devices simulating microgravity conditions, i.e. the Rotating Wall Vessel (RWV) and the Random Positioning Machine (RPM). The re-sponse of the bacterium was evaluated at both the transcriptomic and proteomic levels using respectively a dedicated whole-genome microarray and high-throughput gel-free quantitative proteomics. Both at transcriptomic and proteomic level, the bacterium showed a significant response to cultivation in simulated microgravity. The response to low fluid shear modeled microgravity in RWV was different than to randomized microgravity in RPM. Nevertheless, both tests pointed out a change in and a likely interrelation between cell-to-cell communica-tion (i.e. quorum sensing) and cell pigmentation (i.e. photosynthesis) for R. rubrum S1H in microgravity conditions. A new type of cell-to-cell communication molecule in R. rubrum S1H was discovered and characterized. It is hypothised that the lack of convection currents and the fluid quiescence in (simulated) microgravity limits communications molecules to be spread throughout the medium. Cultivation in this new artificial environment of simulated micro-gravity has showed new properties of this well know bacterium

  3. The Evolution of Aggregative Multicellularity and Cell-Cell Communication in the Dictyostelia.

    PubMed

    Du, Qingyou; Kawabe, Yoshinori; Schilde, Christina; Chen, Zhi-Hui; Schaap, Pauline

    2015-11-20

    Aggregative multicellularity, resulting in formation of a spore-bearing fruiting body, evolved at least six times independently amongst both eukaryotes and prokaryotes. Amongst eukaryotes, this form of multicellularity is mainly studied in the social amoeba Dictyostelium discoideum. In this review, we summarise trends in the evolution of cell-type specialisation and behavioural complexity in the four major groups of Dictyostelia. We describe the cell-cell communication systems that control the developmental programme of D. discoideum, highlighting the central role of cAMP in the regulation of cell movement and cell differentiation. Comparative genomic studies showed that the proteins involved in cAMP signalling are deeply conserved across Dictyostelia and their unicellular amoebozoan ancestors. Comparative functional analysis revealed that cAMP signalling in D. discoideum originated from a second messenger role in amoebozoan encystation. We highlight some molecular changes in cAMP signalling genes that were responsible for the novel roles of cAMP in multicellular development. Copyright © 2015. Published by Elsevier Ltd.

  4. Modeling of Cell-to-Cell Communication Processes with Petri Nets Using the Example of Quorum Sensing.

    PubMed

    Janowski, Sebastian; Kormeier, Benjamin; Töpel, Thoralf; Hippe, Klaus; Hofestädt, Ralf; Willassen, Nils; Friesen, Rafael; Rubert, Sebastian; Borck, Daniela; Haugen, Peik; Chen, Ming

    2011-01-01

    The understanding of the molecular mechanism of cell-to-cell communication is fundamental for system biology. Up to now, the main objectives of bioinformatics have been reconstruction, modeling and analysis of metabolic, regulatory and signaling processes, based on data generated from high-throughput technologies. Cell-to-cell communication or quorum sensing (QS), the use of small molecule signals to coordinate complex patterns of behavior in bacteria, has been the focus of many reports over the past decade. Based on the quorum sensing process of the organism Aliivibrio salmonicida, we aim at developing a functional Petri net, which will allow modeling and simulating cell-to-cell communication processes. Using a new editor-controlled information system called VANESA (http://vanesa.sf.net), we present how to combine different fields of studies such as life-science, database consulting, modeling, visualization and simulation for a semi-automatic reconstruction of the complex signaling quorum sensing network. We show how cell-to-cell communication processes and information-flow within a cell and across cell colonies can be modeled using VANESA and how those models can be simulated with Petri net network structures in a sophisticated way.

  5. Modeling of cell-to-cell communication processes with Petri nets using the example of quorum sensing.

    PubMed

    Janowski, Sebastian; Kormeier, Benjamin; Töpel, Thoralf; Hippe, Klaus; Hofestädt, Ralf; Willassen, Nils; Friesen, Rafael; Rubert, Sebastian; Borck, Daniela; Haugen, Peik; Chen, Ming

    2010-01-01

    The understanding of the molecular mechanism of cell-to-cell communication is fundamental for system biology. Up to now, the main objectives of bioinformatics have been reconstruction, modeling and analysis of metabolic, regulatory and signaling processes, based on data generated from high-throughput technologies. Cell-to-cell communication or quorum sensing (QS), the use of small molecule signals to coordinate complex patterns of behavior in bacteria, has been the focus of many reports over the past decade. Based on the quorum sensing process of the organism Aliivibrio salmonicida, we aim at developing a functional Petri net, which will allow modeling and simulating cell-to-cell communication processes. Using a new editor-controlled information system called VANESA (http://vanesa.sf.net), we present how to combine different fields of studies such as life-science, database consulting, modeling, visualization and simulation for a semi-automatic reconstruction of the complex signaling quorum sensing network. We show how cell-to-cell communication processes and information-flow within a cell and across cell colonies can be modeled using VANESA and how those models can be simulated with Petri net network structures in a sophisticated way.

  6. Synergistic Communication between CD4+ T Cells and Monocytes Impacts the Cytokine Environment.

    PubMed

    Schrier, Sarah B; Hill, Abby S; Plana, Deborah; Lauffenburger, Douglas A

    2016-10-10

    Physiological cytokine environments arise from factors produced by diverse cell types in coordinated concert. Understanding the contributions of each cell type in the context of cell-cell communication is important for effectively designing disease modifying interventions. Here, we present multi-plexed measurement of 48 cytokines from a coculture system of primary human CD4+ T cells and monocytes across a spectrum of stimuli and for a range of relative T cell/monocyte compositions, coupled with corresponding measurements from PBMCs and plasma from the same donors. Computational analysis of the resulting data-sets elucidated communication-independent and communication-dependent contributions, including both positive and negative synergies. We find that cytokines in cell supernatants were uncorrelated to those found in plasma. Additionally, as an example of positive synergy, production levels of CXCR3 cytokines IP-10 and MIG, depend non-linearly on both IFNγ and TNFα levels in cross-talk between T cells and monocytes. Overall, this work demonstrates that communication between cell types can significantly impact the consequent cytokine environment, emphasizing the value of mixed cell population studies.

  7. [Connexin 43 expression and interacellular communicating function in acute leukemia bone marrow stroma cells].

    PubMed

    Liu, Yao; Zhang, Xi; Si, Ying-Jian; Gao, Lei; Gao, Li; Chen, Xing-Hua

    2007-08-01

    This study was purposed to investigate the connexin 43 (Cx43) expression level in acute leukemia bone marrow stromal cells (ABMSCs) and normal bone marrow stromal cells (NBMSCs), and to explore the difference in communicating functions between these cells. The Cx43 expression levels of ABMSCs and NBMSCs were detected by using immunohistochemistry and computer gray scale assay, and the difference of gap junction intercellular communication (GJIC) was examined through dry transfer technique. The results showed that expression level of Cx43 in ABMSCs was lower than that in NBMSCs and its function of GJIC in ABMSCs was also weaker than that in NBMSCs. It is concluded that cell-cell communication function is lowered in ABMSCs.

  8. Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia.

    PubMed

    Zhang, X; Chen, Y; Wang, C; Huang, L-Y M

    2007-06-05

    It has been generally assumed that the cell body (soma) of a neuron, which contains the nucleus, is mainly responsible for synthesis of macromolecules and has a limited role in cell-to-cell communication. Using sniffer patch recordings, we show here that electrical stimulation of dorsal root ganglion (DRG) neurons elicits robust vesicular ATP release from their somata. The rate of release events increases with the frequency of nerve stimulation; external Ca(2+) entry is required for the release. FM1-43 photoconversion analysis further reveals that small clear vesicles participate in exocytosis. In addition, the released ATP activates P2X7 receptors in satellite cells that enwrap each DRG neuron and triggers the communication between neuronal somata and glial cells. Blocking L-type Ca(2+) channels completely eliminates the neuron-glia communication. We further show that activation of P2X7 receptors can lead to the release of tumor necrosis factor-alpha (TNFalpha) from satellite cells. TNFalpha in turn potentiates the P2X3 receptor-mediated responses and increases the excitability of DRG neurons. This study provides strong evidence that somata of DRG neurons actively release transmitters and play a crucial role in bidirectional communication between neurons and surrounding satellite glial cells. These results also suggest that, contrary to the conventional view, neuronal somata have a significant role in cell-cell signaling.

  9. Nerve communication model by bio-cells and optical dipole coupling effects.

    PubMed

    Zainol, Farrah Dilla; Thammawongsa, Nopparat; Mitatha, Somsak; Ali, Jalil; Yupapin, Preecha

    2013-12-01

    A novel design of nerve communications and networks using the coupling effects between bio-cells and optical dipoles is proposed. The electrical signals are coupled to the dipoles and cells which propagate within the optical networks for long distance without any electromagnetic interference. Results have shown that the use of optical spins in the spin networks, referred as Spinnet, can be formed. This technique can be used to improve the nerve communication performance. It is fabricated as a nano-biotic circuit system, and has great potential for future disability applications and diagnosis of the links of nerves across the dead cells.

  10. Relationship between intercellular communication and adriamycin resistance in non-small cell lung cancer.

    PubMed

    Bradley, C; Freshney, R I; Pitts, J

    1994-01-01

    The adriamycin chemosensitivity and extent of gap junctional intercellular communication were assessed in a panel of seven human non-small cell lung cancer (NSCLC) cell lines. Communication was assessed by autoradiographic detection of transfer of 3H uridine nucleotides between coupled cells. The strength of coupling varied widely between the cell lines and they could be separated into 3 groups: those which exhibited strong coupling, L-DAN and A549; those which exhibited weak coupling, SK-MES-1, Calu-3 and NCI-H125; and an intermediate group, WIL and NCI-H23. Adriamycin chemosensitivity was assessed by both clonogenic and MTT assays. The range of IC50 values as measured by either assay was extremely narrow, with no important differences between the lines. Thus, despite the wide spectrum of intercellular communication observed in these lines, this did not correlate with their adriamycin resistance.

  11. Tumor Twitter: Cellular Communication in the Breast Cancer Stem Cell Niche

    PubMed Central

    Brooks, Michael D.; Wicha, Max S.

    2015-01-01

    Summary Communication between the diverse assortment of cells that constitute the tumor microenvironment plays an important role in tumor development. Using a p53 null mouse model, Zhang and colleagues describe a novel feedback loop involving breast cancer stem cells and their progeny mediated by Wnt2, CXCL12, and IL6. PMID:25941337

  12. Inferring alterations in cell-to-cell communication in HER2+ breast cancer using secretome profiling of three cell models

    PubMed Central

    Klinke, David J.; Kulkarni, Yogesh M.; Wu, Yueting; Byrne-Hoffman, Christina

    2015-01-01

    Challenges in demonstrating durable clinical responses to molecular-targeted therapies has sparked a re-emergence in viewing cancer as an evolutionary process. In somatic evolution, cellular variants are introduced through a random process of somatic mutation and are selected for improved fitness through a competition for survival. In contrast to Darwinian evolution, cellular variants that are retained may directly alter the fitness competition. If cell-to-cell communication is important for selection, the biochemical cues secreted by malignant cells that emerge should be altered to bias this fitness competition. To test this hypothesis, we compared the proteins secreted in vitro by two human HER2+ breast cancer cell lines (BT474 and SKBR3) relative to a normal human mammary epithelial cell line (184A1) using a proteomics workflow that leveraged two-dimensional gel electrophoresis (2DE) and MALDI-TOF mass spectrometry. Supported by the 2DE secretome maps and identified proteins, the two breast cancer cell lines exhibited secretome profiles that were similar to each other and, yet, were distinct from the 184A1 secretome. Using protein-protein interaction and pathway inference tools for functional annotation, the results suggest that all three cell lines secrete exosomes, as confirmed by scanning electron microscopy. Interestingly, the HER2+ breast cancer cell line exosomes are enriched in proteins involved in antigen processing and presentation and glycolytic metabolism. These pathways are associated with two of the emerging hallmarks of cancer: evasion of tumor immunosurveillance and deregulating cellular energetics. PMID:24752654

  13. How Do Mesenchymal Stem Cells Influence or Are Influenced by Microenvironment through Extracellular Vesicles Communication?

    PubMed Central

    Dostert, Gabriel; Mesure, Benjamin; Menu, Patrick; Velot, Émilie

    2017-01-01

    Mesenchymal stem cells (MSCs) are widely used in cell therapy and tissue engineering thanks to their self-renewal, their multipotency, and their immunomodulatory properties that make them an attractive tool for regenerative medicine. A large part of MSCs positive effects is due to their secretion products which participate in creating a favorable microenvironment and closely relate these cells to other cell types. Extracellular vesicles (EVs) belong to cellular secretions. They are produced by cells continuously or after stimulation (e.g., calcium flux, cellular stress) and act in tissue homeostasis and intercellular communication. The understanding of the role of EVs is growing, more particularly their impact on cell migration, differentiation, or immunomodulation. EVs derived from MSCs show these interesting properties that may be considered in therapeutics, although they can have adverse effects by facilitating cancer propagation. Moreover, MSC behavior may also be influenced (proliferation, differentiation) by EVs derived from other donor cells. The aim of this mini review is to summarize the two-way communication between MSCs and other cell types, and how they can affect each other with their microenvironment through EVs. On the one hand, the manuscript presents the influence of MSC-derived EVs on diverse recipient cells and on the other hand, the effects of EVs derived from various donor cells on MSCs. The discrepancies between cancer cells and MSCs communication according to the sources of MSCs but also the tumor origins are also mentioned. PMID:28224125

  14. Nano-guided cell networks as conveyors of molecular communication

    PubMed Central

    Terrell, Jessica L.; Wu, Hsuan-Chen; Tsao, Chen-Yu; Barber, Nathan B.; Servinsky, Matthew D.; Payne, Gregory F.; Bentley, William E.

    2015-01-01

    Advances in nanotechnology have provided unprecedented physical means to sample molecular space. Living cells provide additional capability in that they identify molecules within complex environments and actuate function. We have merged cells with nanotechnology for an integrated molecular processing network. Here we show that an engineered cell consortium autonomously generates feedback to chemical cues. Moreover, abiotic components are readily assembled onto cells, enabling amplified and ‘binned' responses. Specifically, engineered cell populations are triggered by a quorum sensing (QS) signal molecule, autoinducer-2, to express surface-displayed fusions consisting of a fluorescent marker and an affinity peptide. The latter provides means for attaching magnetic nanoparticles to fluorescently activated subpopulations for coalescence into colour-indexed output. The resultant nano-guided cell network assesses QS activity and conveys molecular information as a ‘bio-litmus' in a manner read by simple optical means. PMID:26455828

  15. Increased dimensionality of cell-cell communication can decrease the precision of gradient sensing

    NASA Astrophysics Data System (ADS)

    Smith, Tyler; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew

    Gradient sensing is a biological computation that involves comparison of concentrations measured in at least two different locations. As such, the pre- cision of gradient sensing is limited by the intrinsic stochasticity in the com- munication that brings such distributed information to the same location. We have recently analyzed such limitations experimentally and theoretically in multicellular gradient sensing in mammary epithelial cell organoids. For 1d chains of collectively sensing cells, the communication noise puts a se- vere constraint on how the accuracy of gradient sensing increases with the number of cells in the sensor. A question remains as to whether the effect of the noise can be mitigated by the extra spatial averaging allowed in sensing by 2d and 3d cellular organoids. Here we show using computer simulations that, counterintuitively, such spatial averaging decreases gradient sensitiv- ity (while it increases concentration sensitivity). We explain the findings analytically and propose that a recently introduced Regional Excitation - Global Inhibition model of gradient sensing can overcome this limitation and use 2d or 3d spatial averaging to improve the sensing accuracy. Supported by NSF Grant PHY/1410978 and James S. McDonnell Foundation Grant # 220020321.

  16. Connexin 32-mediated cell-cell communication is essential for hepatic differentiation from human embryonic stem cells

    PubMed Central

    Qin, Jinhua; Chang, Mingyang; Wang, Shuyong; Liu, Zhenbo; Zhu, Wei; Wang, Yi; Yan, Fang; Li, Jian; Zhang, Bowen; Dou, Guifang; Liu, Jiang; Pei, Xuetao; Wang, Yunfang

    2016-01-01

    Gap junction-mediated cell-cell interactions are highly conserved and play essential roles in cell survival, proliferation, differentiation and patterning. We report that Connexin 32 (Cx32)-mediated gap junctional intercellular communication (GJIC) is necessary for human embryonic stem cell-derived hepatocytes (hESC-Heps) during step-wise hepatic lineage restriction and maturation. Vitamin K2, previously shown to promote Cx32 expression in mature hepatocytes, up-regulated Cx32 expression and GJIC activation during hepatic differentiation and maturation, resulting in significant increases of hepatic markers expression and hepatocyte functions. In contrast, negative Cx32 regulator 2-aminoethoxydiphenyl borate blocked hESC-to-hepatocyte maturation and muted hepatocyte functions through disruption of GJIC activities. Dynamic gap junction organization and internalization are phosphorylation-dependent and the p38 mitogen-activated protein kinases pathway (MAPK) can negatively regulate Cxs through phosphorylation-dependent degradation of Cxs. We found that p38 MAPK inhibitor SB203580 improved maturation of hESC-Heps correlating with up-regulation of Cx32; by contrast, the p38 MAPK activator, anisomycin, blocked hESC-Heps maturation correlating with down-regulation of Cx32. These results suggested that Cx32 is essential for cell-cell interactions that facilitate driving hESCs through hepatic-lineage maturation. Regulators of both Cx32 and other members of its pathways maybe used as a promising approach on regulating hepatic lineage restriction of pluripotent stem cells and optimizing their functional maturation. PMID:27874032

  17. Specificity of gap junction communication among human mammary cells and connexin transfectants in culture

    PubMed Central

    1993-01-01

    In a previous paper (Lee et al., 1992), it was shown that normal human mammary epithelial cells (NMEC) express two connexin genes, Cx26 and Cx43, whereas neither gene is transcribed in a series of mammary tumor cell lines (TMEC). In this paper it is shown that normal human mammary fibroblasts (NMF) communicate and express Cx43 mRNA and protein. Transfection of either Cx26 or Cx43 genes into a tumor line, 21MT-2, induced the expression of the corresponding mRNAs and proteins as well as communication via gap junctions (GJs), although immunofluorescence demonstrated that the majority of Cx26 and Cx43 proteins present in transfected TMEC was largely cytoplasmic. Immunoblotting demonstrated that NMEC, NMF, and transfected TMEC each displayed a unique pattern of posttranslationally modified forms of Cx43 protein. The role of different connexins in regulating gap junction intercellular communication (GJIC) was examined using a novel two-dye method to assess homologous and heterologous communication quantitatively. The recipient cell population was prestained with a permanent non-toxic lipophilic dye that binds to membranes irreversibly (PKH26, Zynaxis); and the donor population is treated with a GJ-permeable dye Calcein, a derivative of fluorescein diacetate (Molecular Probes). After mixing the two cell populations under conditions promoting GJ formation, cells were analyzed by flow cytometry to determine the percentage of cells containing both dyes. It is shown here that Cx26 and Cx43 transfectants display strong homologous communication, as do NMEC and NMF. Furthermore, NMEC mixed with NMF communicate efficiently, Cx26 transfectants communicate with NMEC but not with NMF, and Cx43 transfectants communicate with NMF. Communication between Cx26 TMEC transfectants and NMEC was asymetrical with preferential movement of calcein from TMEC to NMEC. Despite the presence of Cx43 as well as Cx26 encoded proteins in the GJs of NMEC, few Cx43 transfectants communicated with NMEC

  18. The Molecular Basis of Communication within the Cell.

    ERIC Educational Resources Information Center

    Berridge, Michael J.

    1985-01-01

    Only a few substances serve as signals within cells; this indicates that internal signal pathways are remarkably universal. The variety of physiological and biochemical processes regulated by known messengers is discussed along with chemical structures, pathways, inositol-lipid cycles, and cell growth regulation. (DH)

  19. The Molecular Basis of Communication within the Cell.

    ERIC Educational Resources Information Center

    Berridge, Michael J.

    1985-01-01

    Only a few substances serve as signals within cells; this indicates that internal signal pathways are remarkably universal. The variety of physiological and biochemical processes regulated by known messengers is discussed along with chemical structures, pathways, inositol-lipid cycles, and cell growth regulation. (DH)

  20. Construction of an inducible cell-communication system that amplifies Salmonella gene expression in tumor tissue.

    PubMed

    Dai, Yumei; Toley, Bhushan J; Swofford, Charles A; Forbes, Neil S

    2013-06-01

    Bacterial therapies have the potential to overcome resistances that cause chemotherapies to fail. When using bacteria to produce anticancer agents in tumors, triggering gene expression is necessary to prevent systemic toxicity. The use of chemical triggers, however, is hampered by poor delivery of inducing molecules, which reduces the number of activated bacteria. To solve this problem, we created a cell-communication system that enables activated bacteria to induce inactive neighbors. We hypothesized that introducing cell communication into Salmonella would improve direct triggering strategies by increasing protein production, increasing sensitivity to inducer molecules, and enabling expression in tumor tissue. To test these hypotheses we integrated the PBAD promoter into the quorum-sensing machinery from Vibrio fischeri. The expression of a fluorescent reporter gene was compared to expression from non-communicating controls. Function in three-dimensional tissue was tested in a tumor-on-a-chip device. Bacterial communication increased fluorescence 40-fold and increased sensitivity to inducer molecules more than 10,000-fold. The system enabled bacteria to activate neighbors and increased the time-scale of protein production. Gene expression was controllable and tightly regulated. At the optimal inducing signal, communicating bacteria produced 350 times more protein than non-communicating bacteria. The cell-communication system created in this study has uses beyond cancer therapy, including protein manufacturing, bioremediation and biosensing. It would enable amplified induction of gene expression in any environment that limits availability of inducer molecules. Ultimately, because inducible cellular communication enables gene expression in tissue, it will be a critical component of bacterial anticancer therapies.

  1. Cell-to-cell communication in the heart: structure-function correlations.

    PubMed

    Délèze, J

    1987-10-15

    The communicating cell junctions that ensure the electrical and diffusional continuity of the intracellular space in the heart fibres can be switched from their normal conducting, or opened state, to an exceptional non-conducting, or closed state. This electrical uncoupling is observed after cell injury in the presence of Ca2+ ions in the extracellular fluid, after metabolic inhibition and in the presence of aliphatic alcohols (C6 to C9). The correlations between electrical uncoupling and gap junction morphology in the heart are briefly reviewed. A decrease of the distance between P-face particles and between the E-face pits has been found in all investigations, but the functional significance of this observation is not understood at present. A quantitatively very similar decrease of the average particle diameter (about -0.7 nm) has been measured in glutaraldehyde-fixed sheep Purkinje fibres and in unfixed, quickly frozen rat auricles that had been electrically uncoupled by three different procedures. About half of this decrease was reversible on short-term electrical recoupling (within 20 min). It is concluded that a measurable decrease of the connexon diameter correlates with electrical uncoupling.

  2. Comprehensive proteomic data sets for studying adipocyte-macrophage cell-cell communication.

    PubMed

    Freiwald, Anja; Weidner, Christopher; Witzke, Annabell; Huang, Sheng-Yu; Meierhofer, David; Sauer, Sascha

    2013-12-01

    Cellular communication is a fundamental process in biology. The interaction of adipocytes with macrophages is a key event in the development of common diseases such as type 2 diabetes. We applied an established bilayer cell co-culture system and comprehensive mass spectrometry analysis to detect proteome-wide the paracrine interaction of murine adipocytes and macrophages. Altogether, we identified 4486 proteins with at least two unique peptides of which 2392 proteins were informative for 3T3-L1 adipocytes and 2957 proteins for RAW 264.7 macrophages. Further, we observed over 12,000 phosphorylation sites of which we could assign 3,200 informative phosphopeptides with a single phosphosite for adipocytes and 4,514 for macrophages. Using protein set enrichment and phosphosite analyses, we deciphered regulatory protein pathways involved in cellular stress and inflammation, which can contribute to metabolic impairment of cells including insulin resistance and other disorders. The generated data sets provide a holistic, molecular pathway-centric view on the interplay of adipocytes and macrophages in disease processes and a resource for further studies.

  3. Intercellular communication in Arabidopsis thaliana pollen discovered via AHG3 transcript movement from the vegetative cell to sperm

    USDA-ARS?s Scientific Manuscript database

    An Arabidopsis pollen grain (male gametophyte) consists of three cells: the vegetative cell, which forms the pollen tube, and two sperm cells enclosed within the vegetative cell. It is still unclear if there is intercellular communication between the vegetative cell and the sperm cells. Here we show...

  4. An unequal burden: poor patient-provider communication and sickle cell disease.

    PubMed

    Haywood, Carlton; Bediako, Shawn; Lanzkron, Sophie; Diener-West, Marie; Strouse, John; Haythornthwaite, Jennifer; Onojobi, Gladys; Beach, Mary Catherine

    2014-08-01

    To assess disparities in the quality of healthcare provider communication experienced by African-American adults with and without sickle cell disease (SCD) in the U.S. Poor provider communication was assessed by the Provider Communication subscale of the Consumer Assessment of Healthcare Plans and Systems survey. The SCD sample was obtained from participants in a multicenter observational study of healthcare experiences. The national African-American sample data was obtained from published national estimates. The SCD sample was more likely than the national sample to report poor communication in 3 out of 4 communication domains: listening (22.3% vs. 11.5%, p<0.0001); showing respect (26.1% vs. 9.5%, p<0.0001); and spending enough time (38.3% vs. 16.2%, p<0.0001). Differences were consistent in young, but not old, patients and showed some variation by self-reported health status and education. The communication difficulties experienced by persons with SCD do not appear reducible to their predominantly African-American race, but may result from more disease-specific factors. Healthcare providers should take particular care in recognizing and demonstrating recommended communication skills with SCD patients as these patients may be particularly vulnerable to, and cognizant of, poor quality interactions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Nongenomic steroid action: Inhibiting effects on cell-to-cell communication between rat ventricular myocytes.

    PubMed

    Verrecchia, F; Sarrouilhe, D; Hervé, J C

    2001-01-01

    Numerous steroids are now believed to possess rapid membrane effects independent of the classical gene activation pathways and are potent modulators of membrane proteins, including voltage-and ligand-operated channels. The effects of steroids on the functional state of the intercellular channels clustered in gap junctions were compared by estimation of either the permeability for a fluorescent dye or the electrical conductance in cardiac myocytes of newborn rat. At 25 muM, the esters of 17beta-estradiol, testosterone and two other androgen hormones rapidly abolished cell-to-cell communication, whereas none of the longer chain steroids, belonging to pregnane (17alpha-hydroxypregnenolone, hydrocortisone), sterol (cholesterol, 25-hydroxycholesterol), bile acid (cholic and lithocholic acids) and vitamin (D3) families, lowered the junctional permeability. Altogether, no correlation with the presence or position of double bonds nor with the trans- or cis-fusion of the A and B rings was recognized. Esterification was a prerequisite for the activity of extracellularly applied steroids but the number, nature and position of ester chain(s) had no influence. 17beta-estradiol or testosterone effects were not prevented when cells were prein-cubated with blockers of the estrogen or androgen nuclear receptors (tamoxifen and cyproterone acetate, respectively). This, together with the rapid time course of the steroid effect (complete within a few minutes), in a rather high active concentration range, suggests a nongenomic mechanism of action. The reversible uncoupling effect of steroids appears to be independent of the shape of the molecules and more probably related to their size and lipo-solubility, which condition their insertion into the lipid bilayer and their subsequent disturbing effects.

  6. Modeling Intercellular Communication as a Survival Strategy of Cancer Cells: An In Silico Approach on a Flexible Bioinformatics Framework.

    PubMed

    Cárdenas-García, Maura; González-Pérez, Pedro P; Montagna, Sara; Cortés, Oscar Sánchez; Caballero, Elena Hernández

    2016-01-01

    Intercellular communication is very important for cell development and allows a group of cells to survive as a population. Cancer cells have a similar behavior, presenting the same mechanisms and characteristics of tissue formation. In this article, we model and simulate the formation of different communication channels that allow an interaction between two cells. This is a first step in order to simulate in the future processes that occur in healthy tissue when normal cells surround a cancer cell and to interrupt the communication, thus preventing the spread of malignancy into these cells. The purpose of this study is to propose key molecules, which can be targeted to allow us to break the communication between cancer cells and surrounding normal cells. The simulation is carried out using a flexible bioinformatics platform that we developed, which is itself based on the metaphor chemistry-based model.

  7. Modeling Intercellular Communication as a Survival Strategy of Cancer Cells: An In Silico Approach on a Flexible Bioinformatics Framework

    PubMed Central

    Cárdenas-García, Maura; González-Pérez, Pedro P.; Montagna, Sara; Cortés, Oscar Sánchez; Caballero, Elena Hernández

    2016-01-01

    Intercellular communication is very important for cell development and allows a group of cells to survive as a population. Cancer cells have a similar behavior, presenting the same mechanisms and characteristics of tissue formation. In this article, we model and simulate the formation of different communication channels that allow an interaction between two cells. This is a first step in order to simulate in the future processes that occur in healthy tissue when normal cells surround a cancer cell and to interrupt the communication, thus preventing the spread of malignancy into these cells. The purpose of this study is to propose key molecules, which can be targeted to allow us to break the communication between cancer cells and surrounding normal cells. The simulation is carried out using a flexible bioinformatics platform that we developed, which is itself based on the metaphor chemistry-based model. PMID:26997867

  8. Combined chemical and structural signals of biomaterials synergistically activate cell-cell communications for improving tissue regeneration.

    PubMed

    Xu, Yachen; Peng, Jinliang; Dong, Xin; Xu, Yuhong; Li, Haiyan; Chang, Jiang

    2017-04-02

    Biomaterials are only used as carriers of cells in the conventional tissue engineering. Considering the multi-cell environment and active cell-biomaterial interactions in tissue regeneration process, in this study, structural signals of aligned electrospun nanofibers and chemical signals of bioglass (BG) ionic products in cell culture medium are simultaneously applied to activate fibroblast-endothelial co-cultured cells in order to obtain an improved skin tissue engineering construct. Results demonstrate that the combined biomaterial signals synergistically activate fibroblast-endothelial co-culture skin tissue engineering constructs through promotion of paracrine effects and stimulation of gap junctional communication between cells, which results in enhanced vascularization and extracellular matrix protein synthesis in the constructs. Structural signals of aligned electrospun nanofibers play an important role in stimulating both of paracrine and gap junctional communication while chemical signals of BG ionic products mainly enhance paracrine effects. In vivo experiments reveal that the activated skin tissue engineering constructs significantly enhance wound healing as compared to control. This study indicates the advantages of synergistic effects between different bioactive signals of biomaterials can be taken to activate communication between different types of cells for obtaining tissue engineering constructs with improved functions.

  9. Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development.

    PubMed

    Marshall, Eleanor; Costa, Liliana M; Gutierrez-Marcos, Jose

    2011-03-01

    Cell-cell communication in plants is essential for the correct co-ordination of reproduction, growth, and development. Studies to dissect this mode of communication have previously focussed primarily on the action of plant hormones as mediators of intercellular signalling. In animals, peptide signalling is a well-documented intercellular communication system, however, relatively little is known about this system in plants. In recent years, numerous reports have emerged about small, secreted peptides controlling different aspects of plant reproduction. Interestingly, most of these peptides are cysteine-rich, and there is convincing evidence suggesting multiple roles for related cysteine-rich peptides (CRPs) as signalling factors in developmental patterning as well as during plant pathogen responses and symbiosis. In this review, we discuss how CRPs are emerging as key signalling factors in regulating multiple aspects of vegetative growth and reproductive development in plants.

  10. Multi-Level Communication of Human Retinal Pigment Epithelial Cells via Tunneling Nanotubes

    PubMed Central

    Wittig, Dierk; Wang, Xiang; Walter, Cindy; Gerdes, Hans-Hermann; Funk, Richard H. W.; Roehlecke, Cora

    2012-01-01

    Background Tunneling nanotubes (TNTs) may offer a very specific and effective way of intercellular communication. Here we investigated TNTs in the human retinal pigment epithelial (RPE) cell line ARPE-19. Morphology of TNTs was examined by immunostaining and scanning electron microscopy. To determine the function of TNTs between cells, we studied the TNT-dependent intercellular communication at different levels including electrical and calcium signalling, small molecular diffusion as well as mitochondrial re-localization. Further, intercellular organelles transfer was assayed by FACS analysis. Methodology and Principal Findings Microscopy showed that cultured ARPE-19 cells are frequently connected by TNTs, which are not attached to the substratum. The TNTs were straight connections between cells, had a typical diameter of 50 to 300 nm and a length of up to 120 µm. We observed de novo formation of TNTs by diverging from migrating cells after a short time of interaction. Scanning electron microscopy confirmed characteristic features of TNTs. Fluorescence microscopy revealed that TNTs between ARPE-19 cells contain F-actin but no microtubules. Depolymerisation of F-actin, induced by addition of latrunculin-B, led to disappearance of TNTs. Importantly, these TNTs could function as channels for the diffusion of small molecules such as Lucifer Yellow, but not for large molecules like Dextran Red. Further, organelle exchange between cells via TNTs was observed by microscopy. Using Ca2+ imaging we show the intercellular transmission of calcium signals through TNTs. Mechanical stimulation led to membrane depolarisation, which expand through TNT connections between ARPE-19 cells. We further demonstrate that TNTs can mediate electrical coupling between distant cells. Immunolabelling for Cx43 showed that this gap junction protein is interposed at one end of 44% of TNTs between ARPE-19 cells. Conclusions and Significance Our observations indicate that human RPE cell line ARPE

  11. Physical nanoscale conduit-mediated communication between tumour cells and the endothelium modulates endothelial phenotype

    PubMed Central

    Connor, Yamicia; Tekleab, Sarah; Nandakumar, Shyama; Walls, Cherelle; Tekleab, Yonatan; Husain, Amjad; Gadish, Or; Sabbisetti, Venkata; Kaushik, Shelly; Sehrawat, Seema; Kulkarni, Ashish; Dvorak, Harold; Zetter, Bruce; R. Edelman, Elazer; Sengupta, Shiladitya

    2015-01-01

    Metastasis is a major cause of mortality and remains a hurdle in the search for a cure for cancer. Not much is known about metastatic cancer cells and endothelial cross-talk, which occurs at multiple stages during metastasis. Here we report a dynamic regulation of the endothelium by cancer cells through the formation of nanoscale intercellular membrane bridges, which act as physical conduits for transfer of microRNAs. The communication between the tumour cell and the endothelium upregulates markers associated with pathological endothelium, which is reversed by pharmacological inhibition of these nanoscale conduits. These results lead us to define the notion of ‘metastatic hijack': cancer cell-induced transformation of healthy endothelium into pathological endothelium via horizontal communication through the nanoscale conduits. Pharmacological perturbation of these nanoscale membrane bridges decreases metastatic foci in vivo. Targeting these nanoscale membrane bridges may potentially emerge as a new therapeutic opportunity in the management of metastatic cancer. PMID:26669454

  12. INTEGRIN-MEDIATED CELL ATTACHMENT SHOWS TIME-DEPENDENT UPREGULATION OF GAP JUNCTION COMMUNICATION.

    EPA Science Inventory


    Integrin-mediated Cell Attachment Shows Time-Dependent Upregulation of Gap Junction
    Communication

    Rachel Grindstaff and Carl Blackman, National Health & Environmental Effects Research
    Laboratory, Office of Research and Development, US EPA, Research Triang...

  13. INTEGRIN-MEDIATED CELL ATTACHMENT SHOWS TIME-DEPENDENT UPREGULATION OF GAP JUNCTION COMMUNICATION.

    EPA Science Inventory


    Integrin-mediated Cell Attachment Shows Time-Dependent Upregulation of Gap Junction
    Communication

    Rachel Grindstaff and Carl Blackman, National Health & Environmental Effects Research
    Laboratory, Office of Research and Development, US EPA, Research Triang...

  14. INFLUENCE OF SODIUM ARSENITE ON GAP JUNCTION COMMUNICATION IN RAT LIVER EPITHELIAL CELLS

    EPA Science Inventory

    Influence of sodium arsenite on gap junction communication in rat-Iiver epitheiial cells.

    Arsenic is known to cause certain types of cancers, hepatitis, cirrhosis and neurological disorders as well as cardiovascular and reproductive effects and skin lesions. The mechanism...

  15. INFLUENCE OF SODIUM ARSENITE ON GAP JUNCTION COMMUNICATION IN RAT LIVER EPITHELIAL CELLS

    EPA Science Inventory

    Influence of sodium arsenite on gap junction communication in rat-Iiver epitheiial cells.

    Arsenic is known to cause certain types of cancers, hepatitis, cirrhosis and neurological disorders as well as cardiovascular and reproductive effects and skin lesions. The mechanism...

  16. Cell-cell communication mediated by the CAR subgroup of immunoglobulin cell adhesion molecules in health and disease.

    PubMed

    Matthäus, Claudia; Langhorst, Hanna; Schütz, Laura; Jüttner, René; Rathjen, Fritz G

    2016-11-18

    The immunoglobulin superfamily represents a diverse set of cell-cell contact proteins and includes well-studied members such as NCAM1, DSCAM, L1 or the contactins which are strongly expressed in the nervous system. In this review we put our focus on the biological function of a less understood subgroup of Ig-like proteins composed of CAR (coxsackievirus and adenovirus receptor), CLMP (CAR-like membrane protein) and BT-IgSF (brain and testis specific immunoglobulin superfamily). The CAR-related proteins are type I transmembrane proteins containing an N-terminal variable (V-type) and a membrane proximal constant (C2-type) Ig domain in their extracellular region which are implicated in homotypic adhesion. They are highly expressed during embryonic development in a variety of tissues including the nervous system whereby in adult stages the protein level of CAR and CLMP decreases, only BT-IgSF expression increases within age. CAR-related proteins are concentrated at specialized cell-cell communication sites such as gap or tight junctions and are present at the plasma membrane in larger protein complexes. Considerable progress has been made on the molecular structure and interactions of CAR while research on CLMP and BT-IgSF is at an early stage. Studies on mouse mutants revealed biological functions of CAR in the heart and for CLMP in the gastrointestinal and urogenital systems. Furthermore, CAR and BT-IgSF appear to regulate synaptic function in the hippocampus.

  17. Gap junctional communication between vascular cells. Induction of connexin43 messenger RNA in macrophage foam cells of atherosclerotic lesions.

    PubMed Central

    Polacek, D.; Lal, R.; Volin, M. V.; Davies, P. F.

    1993-01-01

    The structure and function of blood vessels depend on the ability of vascular cells to receive and transduce signals and to communicate with each other. One means by which vascular cells have been shown to communicate is via gap junctions, specifically connexin43. In atherosclerosis, the normal physical patterns of communication are disrupted by the subendothelial infiltration and accumulation of blood monocytes, which in turn can differentiate into resident foam cells. In this paper we report that neither freshly isolated human peripheral blood monocytes nor differentiated monocytes/macrophages exhibit functional gap junctional dye transfer in homo-cellular culture or in co-culture with endothelial cells or smooth muscle cells. By Northern analysis, neither freshly isolated blood monocytes nor pure cultures of differentiated monocyte/macrophages expressed gap junction messenger RNA. However, immunohistochemical staining followed by in situ hybridization on sections of human atherosclerotic carotid arteries revealed strong expression of gap junction connexin43 messenger RNA by macrophage foam cells. These results suggest that tissue-specific conditions present in atherosclerotic arteries induce expression of connexin43 messenger RNA in monocyte/macrophages. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8382009

  18. Rab8a/Rab11a regulate intercellular communications between neural cells via tunneling nanotubes

    PubMed Central

    Zhu, Hui; Xue, Chengbin; Xu, Xi; Guo, Yibing; Li, Xiaohong; Lu, Jingjing; Ju, Shaoqing; Wang, Yongjun; Cao, Zheng; Gu, Xiaosong

    2016-01-01

    Tunneling nanotubes (TNTs) are F-actin-based membrane tubes, and can form between cultured cells and within vital tissues. TNTs mediate intercellular communications that range from electrical signaling to the transfer of organelles. Following peripheral nerve injury, the orchestrated intercellular communications among neural and non-neural cells are required for effective nerve regeneration. It remains unknown whether TNTs exist between neural cells in the peripheral nerve system and how TNTs affect neural regeneration. To address these interesting questions, we investigated the transfer of neurotropic factors, membrane protein, cytoplasmic protein, mitochondria and RNA in functional TNTs formed between cultured Schwann cells (SCs). TNT-like structures were increased not only in cultured SCs after exposure to serum depletion but also in longitudinal sections of proximal sciatic nerve stump harvested after rat peripheral nerve transection. Meanwhile, downregulation of Rab8a or Rab11a in cultured SCs inhibited the formation of functional TNTs and vesicle transfer and led to decrease in cell migration, increase in SCs apoptosis. Likewise, knockdown of Rab8a or Rab11a in primary SCs also suppressed axonal outgrowth from co-cultured dorsal root ganglion (DRG) neurons. Overall, our results suggested that the gene of Rab8a or Rab11a might be involved in the formation of TNTs structures in the peripheral nerve system, while TNTs structures were likely to affect peripheral nerve regeneration through the regulation of neural cell communications. PMID:28005071

  19. Contact-mediated and humoral communication between vascular endothelial and smooth muscle cells in vitro

    SciTech Connect

    Davies, P.F.

    1986-03-01

    Vascular endothelial cells (EC) and smooth muscle cells (SMC) co-exist in close apposition to each other in all blood vessels except capillaries. Investigations of the metabolic interactions that may occur between these cells are essential to an understanding of vascular homeostasis and the pathogenesis of atherosclerosis. The authors have developed two in vitro models of co-temporal vascular cell communication. The first facilitates reversible microcarrier-mediated gap junctional communication between EC and SMC monolayers. When either EC or SMC were prelabelled with /sup 3/H-uridine, intracellular nucleotide rapidly transferred across the region of heterocellular attachment to the complementary cell population. Cytoplasmic continuity between EC and SMC allowed metabolic cooperation via ions and small molecules (<1.5 KD). Thus, vascular reactivity, particularly in the microcirculation where myoendothelial gap junctions have been observed, may involve cytoplasmic second messengers transported from EC to SMC. In the second model, humoral communication was established between separated cultures of EC and SMC which shared the same culture medium. Endothelial-specific stimulation of SMC growth and lipoprotein metabolism via soluble factors was demonstrated. Two mechanisms of stimulation of SMC lipoprotein metabolism were identified; one endothelial derived mitogen-dependent, the other mitogen-independent which was mediated via low molecular weight endothelial cell products.

  20. Rab8a/Rab11a regulate intercellular communications between neural cells via tunneling nanotubes.

    PubMed

    Zhu, Hui; Xue, Chengbin; Xu, Xi; Guo, Yibing; Li, Xiaohong; Lu, Jingjing; Ju, Shaoqing; Wang, Yongjun; Cao, Zheng; Gu, Xiaosong

    2016-12-22

    Tunneling nanotubes (TNTs) are F-actin-based membrane tubes, and can form between cultured cells and within vital tissues. TNTs mediate intercellular communications that range from electrical signaling to the transfer of organelles. Following peripheral nerve injury, the orchestrated intercellular communications among neural and non-neural cells are required for effective nerve regeneration. It remains unknown whether TNTs exist between neural cells in the peripheral nerve system and how TNTs affect neural regeneration. To address these interesting questions, we investigated the transfer of neurotropic factors, membrane protein, cytoplasmic protein, mitochondria and RNA in functional TNTs formed between cultured Schwann cells (SCs). TNT-like structures were increased not only in cultured SCs after exposure to serum depletion but also in longitudinal sections of proximal sciatic nerve stump harvested after rat peripheral nerve transection. Meanwhile, downregulation of Rab8a or Rab11a in cultured SCs inhibited the formation of functional TNTs and vesicle transfer and led to decrease in cell migration, increase in SCs apoptosis. Likewise, knockdown of Rab8a or Rab11a in primary SCs also suppressed axonal outgrowth from co-cultured dorsal root ganglion (DRG) neurons. Overall, our results suggested that the gene of Rab8a or Rab11a might be involved in the formation of TNTs structures in the peripheral nerve system, while TNTs structures were likely to affect peripheral nerve regeneration through the regulation of neural cell communications.

  1. Neural crest cell communication involves an exchange of cytoplasmic material through cellular bridges revealed by photoconversion of KikGR

    PubMed Central

    McKinney, Mary Cathleen; Stark, Danny A.; Teddy, Jessica; Kulesa, Paul M.

    2011-01-01

    Neural crest (NC) cells invade the vertebrate embryo in ordered migratory streams, yet it is unclear whether cells communicate to maintain spacing and direction. Here, we examined NC cell communication in detail, using optical highlighting and photobleaching to monitor cell contact dynamics. We observed cytoplasmic transfer between NC cell neighbors through thin cellular bridges. The transfer of molecules between NC cells was bi-directional, not at equal rates, and independent of bridge dynamics. The cytoplasmic transfer was prevalent in recently divided NC cells. Molecular simulations, based on Brownian motion and measured cell volumes, predicted that simple diffusion could not account for observed cytoplasmic transfer rates. Cell tracking revealed that exchange of cytoplasmic material preceded the re-orientation of cells to the direction of migration. Our data suggest a mechanism by which NC cells communicate position information through the formation of cellular bridges that allow exchange of cytoplasmic material through active transport. PMID:21472890

  2. Neural crest cell communication involves an exchange of cytoplasmic material through cellular bridges revealed by photoconversion of KikGR.

    PubMed

    McKinney, Mary Cathleen; Stark, Danny A; Teddy, Jessica; Kulesa, Paul M

    2011-06-01

    Neural crest (NC) cells invade the vertebrate embryo in ordered migratory streams, yet it is unclear whether cells communicate to maintain spacing and direction. Here, we examined NC cell communication in detail, using optical highlighting and photobleaching to monitor cell contact dynamics. We observed cytoplasmic transfer between NC cell neighbors through thin cellular bridges. The transfer of molecules between NC cells was bi-directional, not at equal rates, and independent of bridge dynamics. The cytoplasmic transfer was prevalent in recently divided NC cells. Molecular simulations, based on Brownian motion and measured cell volumes, predicted that simple diffusion could not account for observed cytoplasmic transfer rates. Cell tracking revealed that exchange of cytoplasmic material preceded the re-orientation of cells to the direction of migration. Our data suggest a mechanism by which NC cells communicate position information through the formation of cellular bridges that allow exchange of cytoplasmic material through active transport. Copyright © 2011 Wiley-Liss, Inc.

  3. RAPID COMMUNICATION: Application of DLTS to silicon solar cell processing

    NASA Astrophysics Data System (ADS)

    Reehal, H. S.; Lesniak, M. P.; Hughes, A. E.

    1996-03-01

    Deep level transient spectroscopy (DLTS) has ben employed to study the cause of minority carrier lifetime degradation observed during the development phase of a single crystal silicon solar cell production process. Results on float-zone (FZ) samples showed that this was due to Fe unintentionally introduced at low levels (close to or below the detection limit of conventional analytical techniques) during cell processing and that DLTS of FZ wafers can be used as a highly sensitive monitor of process impurities. The DLTS spectra of processed FZ wafers showed a single trap, 0.53 eV away from the band edge and with a concentration of 0022-3727/29/3/063/img5, attributable to an Fe - B complex. The feature was not present before processing. In Czochralski (CZ) wafers the situation was more complex. Two major Fe related majority carriers traps were observed in both seed-end and crucible-end wafers taken through the complete process cycle. One was consistent with the Fe - B complex whilst the other (at 0.33 eV from the band edge) was identified as an Fe - O complex. The concentrations of these traps lay in the range 0022-3727/29/3/063/img6 and showed a less marked increase after processing. The observations are again consistent with an increase in the Fe level and also the different oxygen contents of the starting wafers.

  4. Reversible interruption of gap junctional communication by testosterone propionate in cultured Sertoli cells and cardiac myocytes.

    PubMed

    Pluciennik, F; Verrecchia, F; Bastide, B; Hervé, J C; Joffre, M; Délèze, J

    1996-02-01

    A direct cell-to-cell exchange of ions and molecules occurs through specialized membrane channels built by the interaction of two half channels, termed connexons, contributed by each of the two adjacent cells. The electrical and diffusional couplings have been investigated by monitoring respectively the cell-to-cell conductance and the fluorescence recovery after photobleaching, in Sertoli and cardiac cells of young rat. In both cell types, a rapid impairment of the intercellular coupling has been observed in the presence of testosterone propionate. This interruption of the cell-to-cell communication through gap junction channels was dose-dependent, observed in the concentration range 1 to 25 microM and was progressively reversed after withdrawing the testosterone ester. Pretreatment with cyproterone acetate, an antiandrogen which blocks the nuclear testosterone receptor by binding, did not prevent the uncoupling action of the androgen ester. This observation, together with the rapid time course of the uncoupling and recoupling, and the rather high effective concentration (micromolar) of the steroid compound, suggests a nongenomic mechanism of action. The uncoupling concentrations were very similar to those of other steroid compounds known to interrupt gap junctional communication. The uncoupling could result from a direct interaction of the steroid with the proteolipidic structure of the membrane, that might alter the conformation of the gap junction channels and their functional state.

  5. Apoptosis in Cellular Society: Communication between Apoptotic Cells and Their Neighbors

    PubMed Central

    Kawamoto, Yuhei; Nakajima, Yu-ichiro; Kuranaga, Erina

    2016-01-01

    Apoptosis is one of the cell-intrinsic suicide programs and is an essential cellular behavior for animal development and homeostasis. Traditionally, apoptosis has been regarded as a cell-autonomous phenomenon. However, recent in vivo genetic studies have revealed that apoptotic cells actively influence the behaviors of surrounding cells, including engulfment, proliferation, and production of mechanical forces. Such interactions can be bidirectional, and apoptosis is non-autonomously induced in a cellular community. Of note, it is becoming evident that active communication between apoptotic cells and living cells contributes to physiological processes during tissue remodeling, regeneration, and morphogenesis. In this review, we focus on the mutual interactions between apoptotic cells and their neighbors in cellular society and discuss issues relevant to future studies of apoptosis. PMID:27999411

  6. Apoptosis in Cellular Society: Communication between Apoptotic Cells and Their Neighbors.

    PubMed

    Kawamoto, Yuhei; Nakajima, Yu-Ichiro; Kuranaga, Erina

    2016-12-20

    Apoptosis is one of the cell-intrinsic suicide programs and is an essential cellular behavior for animal development and homeostasis. Traditionally, apoptosis has been regarded as a cell-autonomous phenomenon. However, recent in vivo genetic studies have revealed that apoptotic cells actively influence the behaviors of surrounding cells, including engulfment, proliferation, and production of mechanical forces. Such interactions can be bidirectional, and apoptosis is non-autonomously induced in a cellular community. Of note, it is becoming evident that active communication between apoptotic cells and living cells contributes to physiological processes during tissue remodeling, regeneration, and morphogenesis. In this review, we focus on the mutual interactions between apoptotic cells and their neighbors in cellular society and discuss issues relevant to future studies of apoptosis.

  7. Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet.

    PubMed

    Benninger, R K P; Head, W Steven; Zhang, Min; Satin, Leslie S; Piston, David W

    2011-11-15

    Cell-cell communication in the islet of Langerhans is important for the regulation of insulin secretion. Gap-junctions coordinate oscillations in intracellular free-calcium ([Ca(2+)](i)) and insulin secretion in the islet following elevated glucose. Gap-junctions can also ensure that oscillatory [Ca(2+)](i) ceases when glucose is at a basal levels. We determine the roles of gap-junctions and other cell-cell communication pathways in the suppression of insulin secretion under basal conditions. Metabolic, electrical and insulin secretion levels were measured from islets lacking gap-junction coupling following deletion of connexion36 (Cx36(-/-)), and these results were compared to those obtained using fully isolated β-cells. K(ATP) loss-of-function islets provide a further experimental model to specifically study gap-junction mediated suppression of electrical activity. In isolated β-cells or Cx36(-/-) islets, elevations in [Ca(2+)](i) persisted in a subset of cells even at basal glucose. Isolated β-cells showed elevated insulin secretion at basal glucose; however, insulin secretion from Cx36(-/-) islets was minimally altered. [Ca(2+)](i) was further elevated under basal conditions, but insulin release still suppressed in K(ATP) loss-of-function islets. Forced elevation of cAMP led to PKA-mediated increases in insulin secretion from islets lacking gap-junctions, but not from islets expressing Cx36 gap junctions. We conclude there is a redundancy in how cell-cell communication in the islet suppresses insulin release. Gap junctions suppress cellular heterogeneity and spontaneous [Ca(2+)](i) signals, while other juxtacrine mechanisms, regulated by PKA and glucose, suppress more distal steps in exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still suppress basal insulin secretion.

  8. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro.

    PubMed

    Schlie-Wolter, Sabrina; Ngezahayo, Anaclet; Chichkov, Boris N

    2013-06-10

    Cell binding to the extracellular matrix (ECM) is essential for cell and tissue functions. In this context, each tissue consists of a unique ECM composition, which may be responsible for tissue-specific cell responses. Due to the complexity of ECM-cell interactions-which depend on the interplay of inside-out and outside-in signaling cascades, cell and tissue specificity of ECM-guidance is poorly understood. In this paper, we investigate the role of different ECM components like laminin, fibronectin, and collagen type I with respect to the essential cell behaviour patterns: attachment dynamics such as adhesion kinetic and force, formation of focal adhesion complexes, morphology, proliferation, and intercellular communication. A detailed in vitro comparison of fibroblasts, endothelial cells, osteoblasts, smooth muscle cells, and chondrocytes reveals significant differences in their cell responses to the ECM: cell behaviour follows a cell specific ligand priority ranking, which was independent of the cell type origin. Fibroblasts responded best to fibronectin, chondrocytes best to collagen I, the other cell types best to laminin. This knowledge is essential for optimization of tissue-biomaterial interfaces in all tissue engineering applications and gives insight into tissue-specific cell guidance.

  9. Design and implementation of a CMOS light pulse receiver cell array for spatial optical communications.

    PubMed

    Sarker, Md Shakowat Zaman; Itoh, Shinya; Hamai, Moeta; Takai, Isamu; Andoh, Michinori; Yasutomi, Keita; Kawahito, Shoji

    2011-01-01

    A CMOS light pulse receiver (LPR) cell for spatial optical communications is designed and evaluated by device simulations and a prototype chip implementation. The LPR cell consists of a pinned photodiode and four transistors. It works under sub-threshold region of a MOS transistor and the source terminal voltage which responds to the logarithm of the photo current are read out with a source follower circuit. For finding the position of the light spot on the focal plane, an image pixel array is embedded on the same plane of the LPR cell array. A prototype chip with 640 × 240 image pixels and 640 × 240 LPR cells is implemented with 0.18 μm CMOS technology. A proposed model of the transient response of the LPR cell agrees with the result of the device simulations and measurements. Both imaging at 60 fps and optical communication at the carrier frequency of 1 MHz are successfully performed. The measured signal amplitude and the calculation results of photocurrents show that the spatial optical communication up to 100 m is feasible using a 10 × 10 LED array.

  10. EXPLORING PARENT-SIBLING COMMUNICATION IN FAMILIES OF CHILDREN WITH SICKLE CELL DISEASE

    PubMed Central

    Graff, J. Carolyn; Hankins, Jane S.; Hardy, Belinda T.; Hall, Heather R.; Roberts, Ruth J.; Neely-Barnes, Susan L.

    2011-01-01

    Focus group interviews were conducted with parents of children with sickle cell disease to explore parent-sibling communication about sickle cell disease. Communication was influenced by attributes and behaviors of the parent, the child with sickle cell disease, and the sibling; extended family, neighbors, friends, and church members or social networks; and available, accessible resources related to the child’s health, child’s school, and parent employment. Outcomes that influenced and were influenced by factors within and outside the parent-sibling dyad and nuclear family included parent satisfaction, parent roles, family intactness, and status attainment. These findings support previous research with African American families and expand our views of the importance of educating parents, family members, and others about sickle cell disease. The findings suggest a need to explore sibling perception of this communication, parent and sibling perception of the impact of frequent hospitalizations and clinic visits on the sibling and family, and variations within families of children with sickle cell disease. PMID:20384476

  11. Design and Implementation of A CMOS Light Pulse Receiver Cell Array for Spatial Optical Communications

    PubMed Central

    Sarker, Md. Shakowat Zaman; Itoh, Shinya; Hamai, Moeta; Takai, Isamu; Andoh, Michinori; Yasutomi, Keita; Kawahito, Shoji

    2011-01-01

    A CMOS light pulse receiver (LPR) cell for spatial optical communications is designed and evaluated by device simulations and a prototype chip implementation. The LPR cell consists of a pinned photodiode and four transistors. It works under sub-threshold region of a MOS transistor and the source terminal voltage which responds to the logarithm of the photo current are read out with a source follower circuit. For finding the position of the light spot on the focal plane, an image pixel array is embedded on the same plane of the LPR cell array. A prototype chip with 640 × 240 image pixels and 640 × 240 LPR cells is implemented with 0.18 μm CMOS technology. A proposed model of the transient response of the LPR cell agrees with the result of the device simulations and measurements. Both imaging at 60 fps and optical communication at the carrier frequency of 1 MHz are successfully performed. The measured signal amplitude and the calculation results of photocurrents show that the spatial optical communication up to 100 m is feasible using a 10 × 10 LED array. PMID:22319398

  12. Chlorpromazine reduces the intercellular communication via gap junctions in mammalian cells

    SciTech Connect

    Orellana, Juan A.; Palacios-Prado, Nicolas; Saez, Juan C. . E-mail: jsaez@bio.puc.cl

    2006-06-15

    In the work presented herein, we evaluated the effect of chlorpromazine (CPZ) on gap junctions expressed by two mammalian cell types; Gn-11 cells (cell line derived from mouse LHRH neurons) and rat cortical astrocytes maintained in culture. We also attempted to elucidate possible mechanisms of action of CPZ effects on gap junctions. CPZ, in concentrations comparable with doses used to treat human diseases, was found to reduce the intercellular communication via gap junctions as evaluated with measurements of dye coupling (Lucifer yellow). In both cell types, maximal inhibition of functional gap junctions was reached within about 1 h of treatment with CPZ, an recovery was almost complete at about 5 h after CPZ wash out. In both cell types, CPZ treatment increased the phosphorylation state of connexin43 (Cx43), a gap junction protein subunit. Moreover, CPZ reduced the reactivity of Cx43 (immunofluorescence) at cell interfaces and concomitantly increased its reactivity in intracellular vesicles, suggesting an increased retrieval from and/or reduced insertion into the plasma membrane. CPZ also caused cellular retraction reducing cell-cell contacts in a reversible manner. The reduction in contact area might destabilize existing gap junctions and abrogate formation of new ones. Moreover, the CPZ-induced reduction in gap junctional communication may depend on the connexins (Cxs) forming the junctions. If Cx43 were the only connexin expressed, MAPK-dependent phosphorylation of this connexin would induce closure of gap junction channels.

  13. A ghost cell expansion method for reducing communications in solving PDE problems

    SciTech Connect

    Ding, Chris H.Q.; He, Yun

    2001-05-01

    In solving Partial Differential Equations, such as the Barotropic equations in ocean models, on Distributed Memory Computers, finite difference methods are commonly used. Most often, processor subdomain boundaries must be updated at each time step. This boundary update process involves many messages of small sizes, therefore large communication overhead. Here we propose a new approach which expands the ghost cell layers and thus updates boundaries much less frequently ---reducing total message volume and grouping small messages into bigger ones. Together with a technique for eliminating diagonal communications, the method speedup communication substantially, up to 170%. We explain the method and implementation in details, provide systematic timing results and performance analysis on Cray T3E and IBM SP.

  14. A ghost cell expansion method for reducing communications in solving PDE problems

    SciTech Connect

    Ding, Chris H.Q.; He, Yun

    2001-05-01

    In solving Partial Differential Equations, such as the Barotropic equations in ocean models, on Distributed Memory Computers, finite difference methods are commonly used. Most often, processor subdomain boundaries must be updated at each time step. This boundary update process involves many messages of small sizes, therefore large communication overhead. Here we propose a new approach which expands the ghost cell layers and thus updates boundaries much less frequently ---reducing total message volume and grouping small messages into bigger ones. Together with a technique for eliminating diagonal communications, the method speedup communication substantially, up to 170%. We explain the method and implementation in details, provide systematic timing results and performance analysis on Cray T3E and IBM SP.

  15. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro

    SciTech Connect

    Schlie-Wolter, Sabrina; Ngezahayo, Anaclet; Chichkov, Boris N.

    2013-06-10

    Cell binding to the extracellular matrix (ECM) is essential for cell and tissue functions. In this context, each tissue consists of a unique ECM composition, which may be responsible for tissue-specific cell responses. Due to the complexity of ECM-cell interactions—which depend on the interplay of inside-out and outside-in signaling cascades, cell and tissue specificity of ECM-guidance is poorly understood. In this paper, we investigate the role of different ECM components like laminin, fibronectin, and collagen type I with respect to the essential cell behaviour patterns: attachment dynamics such as adhesion kinetic and force, formation of focal adhesion complexes, morphology, proliferation, and intercellular communication. A detailed in vitro comparison of fibroblasts, endothelial cells, osteoblasts, smooth muscle cells, and chondrocytes reveals significant differences in their cell responses to the ECM: cell behaviour follows a cell specific ligand priority ranking, which was independent of the cell type origin. Fibroblasts responded best to fibronectin, chondrocytes best to collagen I, the other cell types best to laminin. This knowledge is essential for optimization of tissue-biomaterial interfaces in all tissue engineering applications and gives insight into tissue-specific cell guidance. -- Highlights: • We analyse the impact of ECM components on cell behaviour in vitro. • We compare five different cell types, using the same culture conditions. • The ECM significantly guides all cell responses. • Cell behaviour follows a cell specific ligand-priority ranking. • This gives insight in tissue formation and is essential for biomedical applications.

  16. Performance enhancement technique of visible light communications using passive photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Wu, Jhao-Ting; Chow, Chi-Wai; Liu, Yang; Hsu, Chin-Wei; Yeh, Chien-Hung

    2017-06-01

    The light emitting diode (LED) based visible light communication (VLC) system can provide lighting and communication simultaneously. It has attracted much attenuation recently. As the photovoltaic cell (also known as solar cell) is physically flexible, low cost, and easily available, it could be a good choice for the VLC receiver (Rx). Furthermore, besides acting as the VLC Rx, the solar cell can convert VLC signal into electricity for charging up the Rx devices. Hence, it could be a promising candidate for the future internet-of-thing (IoT) networks. However, using solar cell as VLC Rx is challenging, since the response of the solar cell is highly limited and it will limit the VLC data rate. In this work, we propose and demonstrate for the first time using pre-distortion Manchester coding (MC) signal to enhance the signal performance of solar cell Rx based VLC. The proposed scheme can significantly mitigate the slow response, as well as the direct-current (DC) wandering effect of the solar cell; hence 50 times increase in data rate can be experimentally achieved.

  17. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    NASA Technical Reports Server (NTRS)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies

  18. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    NASA Technical Reports Server (NTRS)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies

  19. Myosin-dependent cell-cell communication controls synchronicity of division in acute and chronic stages of Toxoplasma gondii

    PubMed Central

    Frénal, Karine; Jacot, Damien; Hammoudi, Pierre-Mehdi; Graindorge, Arnault; Maco, Bohumil; Soldati-Favre, Dominique

    2017-01-01

    The obligate intracellular parasite Toxoplasma gondii possesses a repertoire of 11 myosins. Three class XIV motors participate in motility, invasion and egress, whereas the class XXII myosin F is implicated in organelle positioning and inheritance of the apicoplast. Here we provide evidence that TgUNC acts as a chaperone dedicated to the folding, assembly and function of all Toxoplasma myosins. The conditional ablation of TgUNC recapitulates the phenome of the known myosins and uncovers two functions in parasite basal complex constriction and synchronized division within the parasitophorous vacuole. We identify myosin J and centrin 2 as essential for the constriction. We demonstrate the existence of an intravacuolar cell–cell communication ensuring synchronized division, a process dependent on myosin I. This connectivity contributes to the delayed death phenotype resulting from loss of the apicoplast. Cell–cell communication is lost in activated macrophages and during bradyzoite differentiation resulting in asynchronized, slow division in the cysts. PMID:28593938

  20. Changes in Communication between Muscle Stem Cells and their Environment with Aging

    PubMed Central

    Thorley, Matthew; Malatras, Apostolos; Duddy, William; Le Gall, Laura; Mouly, Vincent; Butler Browne, Gillian; Duguez, Stéphanie

    2015-01-01

    Abstract Aging is associated with both muscle weakness and a loss of muscle mass, contributing towards overall frailty in the elderly. Aging skeletal muscle is also characterised by a decreasing efficiency in repair and regeneration, together with a decline in the number of adult stem cells. Commensurate with this are general changes in whole body endocrine signalling, in local muscle secretory environment, as well as in intrinsic properties of the stem cells themselves. The present review discusses the various mechanisms that may be implicated in these age-associated changes, focusing on aspects of cell-cell communication and long-distance signalling factors, such as levels of circulating growth hormone, IL-6, IGF1, sex hormones, and inflammatory cytokines. Changes in the local environment are also discussed, implicating IL-6, IL-4, FGF-2, as well as other myokines, and processes that lead to thickening of the extra-cellular matrix. These factors, involved primarily in communication, can also modulate the intrinsic properties of muscle stem cells, including reduced DNA accessibility and repression of specific genes by methylation. Finally we discuss the decrease in the stem cell pool, particularly the failure of elderly myoblasts to re-quiesce after activation, and the consequences of all these changes on general muscle homeostasis. PMID:27858742

  1. Identifying connexin expression and determining gap junction intercellular communication in rainbow trout cells.

    PubMed

    Hooper, Joshua; Poynter, Sarah J; DeWitte-Orr, Stephanie J

    2017-05-01

    Gap junctions are groups of membrane-bound channels that allow the passage of small molecules and ions between cells, permitting cell-cell communication. Because of their importance in cell homeostasis, gap junction presence and function were characterized in three commonly studied rainbow trout cell lines, namely RTgill-W1, RTgutGC, and RTG-2. Firstly, gap junction presence was determined by screening for gap junction protein alpha 7 and alpha 1 (GJA7 and GJA1) presence at the transcript level and GJA7 at the protein level. GJA7 was successfully identified at both the transcript and protein levels, and GJA1 was detected at the transcript level in all three cell lines. This is the first report of a GJA7 full-length transcript sequence in rainbow trout cells. Gap junction function, as determined by gap junction intercellular communication (GJIC), was examined using Lucifer yellow dye migration with the scrape and load technique; visualized by fluorescence microscopy. Phorbol 12-myristate 13-acetate (PMA), a gap junction inhibitor, was used to confirm the presence of functional gap junctions. Effects of serum deprivation on GJIC were also monitored; 24-h serum deprivation resulted in greater dye migration compared with 30-min serum deprivation. Both RTG-2 and RTgill-W1 showed significant dye migration that was inhibited by PMA while RTgutGC did not. Human foreskin fibroblast (HFF-1) cells were used as a positive control for gap junction presence and function. Taken together, our study shows that rainbow trout cells express connexin transcripts and proteins, and RTG-2 and, to a lesser extent, RTgill-W1 cells are able to perform GJIC.

  2. The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud.

    PubMed

    Herness, Scott; Zhao, Fang-Li

    2009-07-14

    The evolving view of the taste bud increasingly suggests that it operates as a complex signal processing unit. A number of neurotransmitters and neuropeptides and their corresponding receptors are now known to be expressed in subsets of taste receptor cells in the mammalian bud. These expression patterns set up hard-wired cell-to-cell communication pathways whose exact physiological roles still remain obscure. As occurs in other cellular systems, it is likely that neuropeptides are co-expressed with neurotransmitters and function as neuromodulators. Several neuropeptides have been identified in taste receptor cells including cholecystokinin (CCK), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), and glucagon-like peptide 1 (GLP-1). Of these, CCK and NPY are the best studied. These two peptides are co-expressed in the same presynaptic cells; however, their postsynaptic actions are both divergent and antagonistic. CCK and its receptor, the CCK-1 subtype, are expressed in the same subset of taste receptor cells and the autocrine activation of these cells produces a number of excitatory physiological actions. Further, most of these cells are responsive to bitter stimuli. On the other hand, NPY and its receptor, the NPY-1 subtype, are expressed in different cells. NPY, acting in a paracrine fashion on NPY-1 receptors, results in inhibitory actions on the cell. Preliminary evidence suggests the NPY-1 receptor expressing cell co-expresses T1R3, a member of the T1R family of G-protein coupled receptors thought to be important in detection of sweet and umami stimuli. Thus the neuropeptide expressing cells co-express CCK, NPY, and CCK-1 receptor. Neuropeptides released from these cells during bitter stimulation may work in concert to both modulate the excitation of bitter-sensitive taste receptor cells while concurrently inhibiting sweet-sensitive cells. This modulatory process is similar to the phenomenon of lateral inhibition that occurs in other sensory systems.

  3. Electrochemical communication with the inside of cells using micro-patterned vertical carbon nanofibre electrodes

    NASA Astrophysics Data System (ADS)

    Rawson, F. J.; Cole, M. T.; Hicks, J. M.; Aylott, J. W.; Milne, W. I.; Collins, C. M.; Jackson, S. K.; Silman, N. J.; Mendes, P. M.

    2016-12-01

    With the rapidly increasing demands for ultrasensitive biodetection, the design and applications of new nano-scale materials for development of sensors based on optical and electrochemical transducers have attracted substantial interest. In particular, given the comparable sizes of nanomaterials and biomolecules, there exist plenty of opportunities to develop functional nanoprobes with biomolecules for highly sensitive and selective biosensing, shedding new light on cellular behaviour. Towards this aim, herein we interface cells with patterned nano-arrays of carbon nanofibers forming a nanosensor-cell construct. We show that such a construct is capable of electrochemically communicating with the intracellular environment.

  4. Electrochemical communication with the inside of cells using micro-patterned vertical carbon nanofibre electrodes

    PubMed Central

    Rawson, F. J.; Cole, M. T.; Hicks, J. M.; Aylott, J. W.; Milne, W. I.; Collins, C. M.; Jackson, S. K.; Silman, N. J.; Mendes, P. M.

    2016-01-01

    With the rapidly increasing demands for ultrasensitive biodetection, the design and applications of new nano-scale materials for development of sensors based on optical and electrochemical transducers have attracted substantial interest. In particular, given the comparable sizes of nanomaterials and biomolecules, there exist plenty of opportunities to develop functional nanoprobes with biomolecules for highly sensitive and selective biosensing, shedding new light on cellular behaviour. Towards this aim, herein we interface cells with patterned nano-arrays of carbon nanofibers forming a nanosensor-cell construct. We show that such a construct is capable of electrochemically communicating with the intracellular environment. PMID:27905472

  5. Quorum sensing and the cell-cell communication dependent regulation of gene expression in pathogenic and non-pathogenic bacteria.

    PubMed

    Hardman, A M; Stewart, G S; Williams, P

    1998-11-01

    Although it has been clear for some time that individual bacterial cells employ intra-cellular signalling systems to sense, integrate and process information from their surroundings, their widespread capacity to perceive information from other bacterial cells is only just beginning to be recognised. Recent work has established that diverse bacteria exploit a cell-cell communication device to regulate the transcription of multiple target genes. This communication device termed 'quorum sensing', depends on the production of one or more diffusible signal molecules termed 'autoinducers' or 'pheromones' which enable a bacterium to monitor its own cell population density. Quorum sensing is thus an example of multicellular behaviour in prokaryotes and regulates diverse physiological processes including bioluminescence, swarming, antibiotic biosynthesis, plasmid conjugal transfer and the production of virulence determinants in animal, fish and plant pathogens. In Gram-negative bacteria, the best understood family of signal molecules are the N-acylhomoserine lactones (AHLs) which vary predominantly in the presence or absence of an acyl chain C3 substituent (oxo- or hydroxy-) and length of the N-acyl side chain. However not all quorum sensing signal molecules are AHLs; in Gram-positive bacteria, they are often post-translationally modified peptides. Irrespective of the chemical 'language' employed, interference with either the synthesis or transmission of a quorum sensing signal molecule in pathogenic bacteria offers an exciting new strategy for controlling infection.

  6. Dielectric properties of biological tissues in which cells are connected by communicating junctions

    NASA Astrophysics Data System (ADS)

    Asami, Koji

    2007-06-01

    The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities Pj, the low-frequency (LF) relaxation curve became broader, especially at Pj of 0.2-0.5, and its intensity was proportional to Pj up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues.

  7. Interspecies communication in the gut, from bacterial delivery to host-cell response

    PubMed Central

    Hodges, Kim; Hecht, Gail

    2012-01-01

    Abstract Intestinal pathogens have a wide variety of strategies for communicating with host epithelial cells. This review highlights a few key examples of those strategies. Enteropathogenic Escherichia coli (EPEC) use a type III secretion system (T3SS) to alter host ion transport through both transcriptional and post-translational mechanisms. Salmonella use a similar T3SS to invade host cells and modify an intracellular vacuole, which also impacts host vesicle trafficking. Helicobacter pylori use host cell integrins to provide a conformational change which drives the type IV secretion system into the host cell for delivery of CagA. The novel type VI section systems are phage-like apparati that deliver VgrG-1, which causes actin cross-linking and fluid accumulation in a suckling mouse model. An entirely different delivery mechanism is the outer membrane vesicle (OMV) which is composed of bacterial outer membrane wrapped around contents of the periplamsic space. Enterotoxigenic E. coli use OMVs to deliver bundles of heat labile enterotoxin to host cells. Finally we discuss the host responses to these varied methods of communication. PMID:22106176

  8. Angiotensin (1-7) re-establishes heart cell communication previously impaired by cell swelling: implications for myocardial ischemia.

    PubMed

    De Mello, Walmor C

    2014-05-01

    The influence of hypertonic solution on dye coupling was investigated in cell pairs isolated from the left ventricle of adult Sprague Dawley rats.The hypertonic solution together with Lucifer Yellow CH, were dialyzed into one cell of the pair using the whole cell clamp tecnique, and the diffusion of dye in the dialyzed as well as in non-dialyzed cell, was followed by measuring the intensity of fluorescence in both cells as a function of time.The results indicated that: (1) Lucifer Yellow CH dialyzed into one cell of the pair diffuses easily into the nondialyzed cell through gap junctions; (2) the intracellular dialysis of an hypertonic solution into one cell of the pair, increases the area of the dialyzed cell and reduced the area of the non-dialyzed cell suggesting intercellular movement of water; (3) the hypertonic solution dialyzed into one cell of the pair abolished the dye coupling; (4) the gap junction permeability (Pj) estimated before and after administration of hypertonic solution showed an appreciably decrease of Pj; (5) angiotensin (1-7) (Ang (1-7) (10-9M) administered to the bath re-established the dye coupling abolished by hypertonic solution and reduced the cell area; (6) the effect of Ang (1-7) was related to the activation of Mas receptor and was dependent on the activation of PKA. the reestablishment of dye coupling elicited by Ang (1-7) seen in cell pairs dialyzed with hypertonic solution, might indicate that under similar conditions like that seen during myocardial ischemia, the peptide might be of benefit preventing the impairment of cell communication and impulse propagation associated with cardiac reentrant arrhytmias. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Cell adhesion and communication: a lesson from echinoderm embryos for the exploitation of new therapeutic tools.

    PubMed

    Zito, F; Costa, C; Sciarrino, S; Cavalcante, C; Poma, V; Matranga, V

    2005-01-01

    In this chapter, we summarise fundamental findings concerning echinoderms as well as research interests on this phylum for biomedical and evolutionary studies. We discuss how current knowledge of echinoderm biology, in particular of the sea urchin system, can shed light on the understanding of important biological phenomena and in dissecting them at the molecular level. The general principles of sea urchin embryo development are summarised, mainly focusing on cell communication and interactions, with particular attention to the cell-extracellular matrix and cell-cell adhesion molecules and related proteins. Our purpose is not to review all the work done over the years in the field of cellular interaction in echinoderms. On the contrary, we will rather focus on a few arguments in an effort to re-examine some ideas and concepts, with the aim of promoting discussion in this rapidly growing field and opening new routes for research on innovative therapeutic tools.

  10. No crossed wires: cell phone communication in parent-adolescent relationships.

    PubMed

    Weisskirch, Robert S

    2011-01-01

    Parents' ability to parent their adolescents may be extended by using a cell phone. At the same time, using the cell phone, adolescents can seek out parental interaction. The outcomes of parent-adolescent interactions via cell phone are not well understood. In this study, 196 parent-adolescent dyads (13 percent father-son, 11 percent father-daughter, 30 percent mother-son, and 46 percent mother-daughter) completed questionnaires about their cell phone calls to one another, parenting processes, self-esteem, and self-efficacy. Parents reported greater communication and closeness when adolescents initiated calls seeking social support. Adolescents reported greater conflict when parents called for monitoring activity, for tracking schoolwork, and when upset. Calls to ask and confer by adolescents and to track school work positively related, but parental calls when upset negatively related to parental self-esteem. Adolescent self-esteem is predicted by calls seeking support and negatively associated with parents calling when upset.

  11. Epigenetic regulation of cell adhesion and communication by enhancer of zeste homolog 2 in human endothelial cells.

    PubMed

    Dreger, Henryk; Ludwig, Antje; Weller, Andrea; Stangl, Verena; Baumann, Gert; Meiners, Silke; Stangl, Karl

    2012-11-01

    The histone methyltransferase enhancer of zeste homolog 2 (Ezh2) mediates trimethylation of lysine 27 in histone 3, which acts as a repressive epigenetic mark. Ezh2 is essential for maintaining pluripotency of stem cells, but information on its role in differentiated cells is sparse. Whole-genome mRNA expression arrays identified 964 genes that were regulated by >2-fold 72 hours after small interfering RNA-mediated silencing of Ezh2 in human umbilical vein endothelial cells. Among them, genes associated with the gene ontology terms cell communication and cell adhesion were significantly overrepresented, suggesting a functional role for Ezh2 in the regulation of angiogenesis. Indeed, adhesion, migration, and tube formation assays revealed significantly altered angiogenic properties of human umbilical vein endothelial cells after silencing of Ezh2. To identify direct target genes of Ezh2, we performed chromatin immunoprecipitation experiments followed by whole-genome promoter arrays (chromatin immunoprecipitation-on-chip) and identified 5585 genes associated with trimethylation of lysine 27 in histone 3. Comparative analysis with our mRNA expression data identified 276 genes that met our criteria for putative Ezh2 target genes, upregulation by >2-fold after Ezh2 silencing and association with trimethylation of lysine 27 in histone 3. Notably, we observed a striking overrepresentation of genes involved in wingless-type mouse mammary tumor virus integration site (WNT) signaling pathways. Epigenetic regulation of several of these genes by Ezh2 was specifically confirmed by polymerase chain reaction analysis of DNA enrichment after chromatin immunoprecipitation using an antibody specific for trimethylation of lysine 27 in histone 3. Combining mRNA expression arrays and chromatin immunoprecipitation-on-chip analysis, we identified 276 Ezh2 target genes in endothelial cells. Ezh2-dependent repression of genes involved in cell adhesion and communication contributes to the

  12. Local Oxidative Stress Expansion through Endothelial Cells – A Key Role for Gap Junction Intercellular Communication

    PubMed Central

    Feine, Ilan; Pinkas, Iddo; Salomon, Yoram; Scherz, Avigdor

    2012-01-01

    Background Major circulation pathologies are initiated by oxidative insult expansion from a few injured endothelial cells to distal sites; this possibly involves mechanisms that are important to understanding circulation physiology and designing therapeutic management of myocardial pathologies. We tested the hypothesis that a localized oxidative insult of endothelial cells (ECs) propagates through gap junction inter-cellular communication (GJIC). Methodology/Principal Findings Cultures comprising the bEnd.3 cell line, that have been established and recognized as suitable for examining communication among ECs, were used to study the propagation of a localized oxidative insult to remote cells. Spatially confined near infrared illumination of parental or genetically modified bEnd.3 cultures, pretreated with the photosensitizer WST11, generated O2•− and •OH radicals in the illuminated cells. Time-lapse fluorescence microscopy, utilizing various markers, and other methods, were used to monitor the response of non-illuminated bystander and remote cells. Functional GJIC among ECs was shown to be mandatory for oxidative insult propagation, comprising de-novo generation of reactive oxygen and nitrogen species (ROS and RNS, respectively), activation and nuclear translocation of c-Jun N-terminal kinase, followed by massive apoptosis in all bystander cells adjacent to the primarily injured ECs. The oxidative insult propagated through GJIC for many hours, over hundreds of microns from the primary photogeneration site. This wave is shown to be limited by intracellular ROS scavenging, chemical GJIC inhibition or genetic manipulation of connexin 43 (a key component of GJIC). Conclusion/Significance Localized oxidative insults propagate through GJIC between ECs, while stimulating de-novo generation of ROS and RNS in bystander cells, thereby driving the insult's expansion. PMID:22911831

  13. Bench-to-bedside review: Quorum sensing and the role of cell-to-cell communication during invasive bacterial infection

    PubMed Central

    Asad, Shadaba; Opal, Steven M

    2008-01-01

    Bacteria communicate extensively with each other and employ a communal approach to facilitate survival in hostile environments. A hierarchy of cell-to-cell signaling pathways regulates bacterial growth, metabolism, biofilm formation, virulence expression, and a myriad of other essential functions in bacterial populations. The notion that bacteria can signal each other and coordinate their assault patterns against susceptible hosts is now well established. These signaling networks represent a previously unrecognized survival strategy by which bacterial pathogens evade antimicrobial defenses and overwhelm the host. These quorum sensing communication signals can transgress species barriers and even kingdom barriers. Quorum sensing molecules can regulate human transcriptional programs to the advantage of the pathogen. Human stress hormones and cytokines can be detected by bacterial quorum sensing systems. By this mechanism, the pathogen can detect the physiologically stressed host, providing an opportunity to invade when the patient is most vulnerable. These rather sophisticated, microbial communication systems may prove to be a liability to pathogens as they make convenient targets for therapeutic intervention in our continuing struggle to control microbial pathogens. PMID:19040778

  14. Bacterial Cell–Cell Communication in the Host via RRNPP Peptide-Binding Regulators

    PubMed Central

    Perez-Pascual, David; Monnet, Véronique; Gardan, Rozenn

    2016-01-01

    Human microbiomes are composed of complex and dense bacterial consortia. In these environments, bacteria are able to react quickly to change by coordinating their gene expression at the population level via small signaling molecules. In Gram-positive bacteria, cell–cell communication is mostly mediated by peptides that are released into the extracellular environment. Cell–cell communication based on these peptides is especially widespread in the group Firmicutes, in which they regulate a wide array of biological processes, including functions related to host–microbe interactions. Among the different agents of communication, the RRNPP family of cytoplasmic transcriptional regulators, together with their cognate re-internalized signaling peptides, represents a group of emerging importance. RRNPP members that have been studied so far are found mainly in species of bacilli, streptococci, and enterococci. These bacteria are characterized as both human commensal and pathogenic, and share different niches in the human body with other microorganisms. The goal of this mini-review is to present the current state of research on the biological relevance of RRNPP mechanisms in the context of the host, highlighting their specific roles in commensalism or virulence. PMID:27242728

  15. Modulation of human cell responses to space radiation by gap-junction communication

    NASA Astrophysics Data System (ADS)

    Autsavapromporn, Narongchai; de Toledo, Sonia M.; Buonanno, Manuela; Yang, Zhi; Harris, Andrew; Jay-Gerin, Jean-Paul; Azzam, Edouard

    Understanding the biological effects of space radiation and their underlying mechanism is critical to estimating the health risk associated with human exploration of space. A coordinated interaction of multiple cellular processes is likely involved in the sensing and processing of stressful effects induced by different types of space radiation. Here, we focused on the role of gap-junction intercellular communication (GJIC) in responses of human cells exposed to 1 GeV/n protons or 56 Fe-ions. We compared the results with data obtained in human cells exposed, in parallel, to γ-rays or α-particles. As expected, a higher level of cell killing and DNA damage, per unit dose, was induced in confluent, density-inhibited cells (98% in G0 /G1 ) exposed to α-particles or energetic 56 Fe-ions than γ-rays or protons. Strikingly, greatly attenuated effects occurred when sub-confluent cultures, synchronized in G0 /G1 ,were exposed to 56 Fe-ions. These data suggest that direct intercellular communication is involved in the effects of high linear energy transfer (LET) 56 Fe-ions. To examine the role of gap-junctions in propagating stressful effect, confluent cultures were exposed to 56 Fe-ions or α-particles and incubated for various time periods at 37° C in the presence or absence of the gap-junction inhibitor α-glycyrrhetinic acid (AGA). No repair of potentially lethal radiation damage occurred in cells incubated in the absence of AGA. In contrast, inhibition of functional GJIC significantly enhanced clonogenic survival of irradiated cells. To test the role of junctional channel permeability in the observed effects, we used human adenocarcinoma (HeLa) cells in which specific connexins (Cx) can be expressed in the absence of endogenous connexins. Whereas HeLa cells with selective inducible expression of Cx26 gap-junctions promoted radiation toxic effects, expression of Cx32 junctional channels in HeLa cells promoted pro-survival effects. Experiments are in progress to

  16. Interspecies Communication between Pathogens and Immune Cells via Bacterial Membrane Vesicles

    PubMed Central

    Jurkoshek, Katerina S.; Wang, Ying; Athman, Jaffre J.; Barton, Marian R.; Wearsch, Pamela A.

    2016-01-01

    The production of extracellular vesicles is a universal mechanism for intercellular communication that is conserved across kingdoms. Prokaryotes secrete 50–250 nm membrane vesicles (MVs) in a manner that is regulated by environmental stress and is thought to promote survival. Since many types of host-derived stress are encountered during infection, this implies an important role for MV secretion in bacterial pathogenesis. Accordingly, MVs produced by gram-positive and gram-negative pathogens contain toxins, virulence factors, and other molecules that promote survival in the host. However, recent studies have also shown that bacterial MVs are enriched for molecules that stimulate innate and adaptive immune responses. As an example, MVs may serve multiple, important roles in regulating the host response to Mycobacterium tuberculosis (Mtb), an intracellular pathogen that infects lung macrophages and resides within modified phagosomes. Previously, we demonstrated that Mtb secretes MVs during infection that may modulate infected and uninfected immune cells. Our present data demonstrates that Mtb MVs inhibit the functions of macrophages and T cells, but promote Major Histocompatibility Complex (MHC) class II antigen presentation by dendritic cells. We conclude that bacterial MVs serve dual and opposing roles in the activation of and defense against host immune responses to Mtb and other bacterial pathogens. We also propose that MV secretion is a central mechanism for interspecies communication between bacteria and host cells during infection. PMID:27891500

  17. Ammonia impairs glutamatergic communication in astroglial cells: protective role of resveratrol.

    PubMed

    Bobermin, Larissa Daniele; Hansel, Gisele; Scherer, Emilene B S; Wyse, Angela T S; Souza, Diogo Onofre; Quincozes-Santos, André; Gonçalves, Carlos-Alberto

    2015-12-01

    Ammonia is a key toxin in the precipitation of hepatic encephalopathy (HE), a neuropsychiatric disorder associated with liver failure. In response to ammonia, various toxic events are triggered in astroglial cells, and alterations in brain glutamate communication are common. Resveratrol is a polyphenolic compound that has been extensively studied in pathological events because it presents several beneficial effects, including some in the central nervous system (CNS). We previously described that resveratrol is able to significantly modulate glial functioning and has a protective effect during ammonia challenge in vitro. In this study, we addressed the mechanisms by which resveratrol can protect C6 astroglial cells from glutamatergic alterations induced by ammonia. Resveratrol was able to prevent all the effects triggered by ammonia: (i) decrease in glutamate uptake activity and expression of the EAAC1 glutamate transporter, the main glutamate transporter present in C6 cells; (ii) increase of glutamate release, which was also dependent on the activation of the Na(+)-K(+)-Cl(-) co-transporter NKCC1; (iii) reduction in GS activity and intracellular GSH content; and (iv) impairment of Na(+)K(+)-ATPase activity. Interestingly, resveratrol, per se, also positively modulated the astroglial functions evaluated. Moreover, we demonstrated that heme oxygenase 1 (HO1), an enzyme that is part of the cellular defense system, mediated some of the effects of resveratrol. In conclusion, the mechanisms of the putative protective role of resveratrol against ammonia toxicity involve the modulation of pathways and molecules related to glutamate communication in astroglial cells.

  18. Intricate Macrophage-Colorectal Cancer Cell Communication in Response to Radiation

    PubMed Central

    Pinto, Ana T.; Pinto, Marta L.; Velho, Sérgia; Pinto, Marta T.; Cardoso, Ana P.; Figueira, Rita; Monteiro, Armanda; Marques, Margarida; Seruca, Raquel; Barbosa, Mário A.; Mareel, Marc; Oliveira, Maria J.; Rocha, Sónia

    2016-01-01

    Both cancer and tumour-associated host cells are exposed to ionizing radiation when a tumour is subjected to radiotherapy. Macrophages frequently constitute the most abundant tumour-associated immune population, playing a role in tumour progression and response to therapy. The present work aimed to evaluate the importance of macrophage-cancer cell communication in the cellular response to radiation. To address this question, we established monocultures and indirect co-cultures of human monocyte-derived macrophages with RKO or SW1463 colorectal cancer cells, which exhibit higher and lower radiation sensitivity, respectively. Mono- and co-cultures were then irradiated with 5 cumulative doses, in a similar fractionated scheme to that used during cancer patients’ treatment (2 Gy/fraction/day). Our results demonstrated that macrophages sensitize RKO to radiation-induced apoptosis, while protecting SW1463 cells. Additionally, the co-culture with macrophages increased the mRNA expression of metabolism- and survival-related genes more in SW1463 than in RKO. The presence of macrophages also upregulated glucose transporter 1 expression in irradiated SW1463, but not in RKO cells. In addition, the influence of cancer cells on the expression of pro- and anti-inflammatory macrophage markers, upon radiation exposure, was also evaluated. In the presence of RKO or SW1463, irradiated macrophages exhibit higher levels of pro-inflammatory TNF, IL6, CCL2 and CCR7, and of anti-inflammatory CCL18. However, RKO cells induce an increase of macrophage pro-inflammatory IL1B, while SW1463 cells promote higher pro-inflammatory CXCL8 and CD80, and also anti-inflammatory VCAN and IL10 levels. Thus, our data demonstrated that macrophages and cancer cells mutually influence their response to radiation. Notably, conditioned medium from irradiated co-cultures increased non-irradiated RKO cell migration and invasion and did not impact on angiogenesis in a chicken embryo chorioallantoic membrane

  19. Cortical microtubule-associated ER sites: organization centers of cell polarity and communication.

    PubMed

    Peña, Eduardo José; Heinlein, Manfred

    2013-12-01

    Anisotropic cell growth and the ability of plant cells to communicate within and across the borders of cellular and supracellular domains depends on the ability of the cells to dynamically establish polarized networks able to deliver structural and informational macromolecules to distinct cellular sites. Studies of organelle movements and transport of endogenous and viral proteins suggest that organelle and macromolecular trafficking pathways involve transient or stable interactions with cortical microtubule-associated endoplasmic reticulum sites (C-MERs). The observations suggest that C-MERs may function as cortical hubs that organize cargo exchange between organelles and allow the recruitment, assembly, and subsequently site-specific delivery of macromolecular complexes. We propose that viruses interact with such hubs for replication and intercellular spread. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Electrochemical communication between microbial cells and electrodes via osmium redox systems.

    PubMed

    Hasan, Kamrul; Patil, Sunil A; Leech, Dónal; Hägerhäll, Cecilia; Gorton, Lo

    2012-12-01

    Electrochemical communication between micro-organisms and electrodes is the integral and fundamental part of BESs (bioelectrochemical systems). The immobilization of bacterial cells on the electrode and ensuring efficient electron transfer to the electrode via a mediator are decisive features of mediated electrochemical biosensors. Notably, mediator-based systems are essential to extract electrons from the non-exoelectrogens, a major group of microbes in Nature. The advantage of using polymeric mediators over diffusible mediators led to the design of osmium redox polymers. Their successful use in enzyme-based biosensors and BFCs (biofuel cells) paved the way for exploring their use in microbial BESs. The present mini-review focuses on osmium-bound redox systems used to date in microbial BESs and their role in shuttling electrons from viable microbial cells to electrodes.

  1. Communication Between the Cell Membrane and the Nucleus: Role of Protein Compartmentalization

    SciTech Connect

    Lelievre, Sophie A; Bissell, Mina J

    1998-10-21

    Understanding how the information is conveyed from outside to inside the cell is a critical challenge for all biologists involved in signal transduction. The flow of information initiated by cell-cell and cell-extracellular matrix contacts is mediated by the formation of adhesion complexes involving multiple proteins. Inside adhesion complexes, connective membrane skeleton (CMS) proteins are signal transducers that bind to adhesion molecules, organize the cytoskeleton, and initiate biochemical cascades. Adhesion complex-mediated signal transduction ultimately directs the formation of supramolecular structures in the cell nucleus, as illustrated by the establishment of multi complexes of DNA-bound transcription factors, and the redistribution of nuclear structural proteins to form nuclear subdomains. Recently, several CMS proteins have been observed to travel to the cell nucleus, suggesting a distinctive role for these proteins in signal transduction. This review focuses on the nuclear translocation of structural signal transducers of the membrane skeleton and also extends our analysis to possible translocation of resident nuclear proteins to the membrane skeleton. This leads us to envision the communication between spatially distant cellular compartments (i.e., membrane skeleton and cell nucleus) as a bidirectional flow of information (a dynamic reciprocity) based on subtle multilevel structural and biochemical equilibria. At one level, it is mediated by the interaction between structural signal transducers and their binding partners, at another level it may be mediated by the balance and integration of signal transducers in different cellular compartments.

  2. Heterochronic Pellet Assay to Test Cell-cell Communication in the Mouse Retina

    PubMed Central

    Tachibana, Nobuhiko; Zinyk, Dawn; Ringuette, Randy; Wallace, Valerie; Schuurmans, Carol

    2017-01-01

    All seven retinal cell types that make up the mature retina are generated from a common, multipotent pool of retinal progenitor cells (RPCs) (Wallace, 2011). One way that RPCs know when sufficient numbers of particular cell-types have been generated is through negative feedback signals, which are emitted by differentiated cells and must reach threshold levels to block additional differentiation of that cell type. A key assay to assess whether negative feedback signals are emitted by differentiated cells is a heterochronic pellet assay in which early stage RPCs are dissociated and labeled with BrdU, then mixed with a 20-fold excess of dissociated differentiated cells. The combined cells are then re-aggregated and cultured as a pellet on a membrane for 7–10 days in vitro. During this time frame, RPCs will differentiate, and the fate of the BrdU+ RPCs can be assessed using cell type-specific markers. Investigators who developed this pellet assay initially demonstrated that neonatal RPCs give rise to rods on an accelerated schedule compared to embryonic RPCs when the two cell types are mixed together (Watanabe and Raff, 1990; Watanabe et al., 1997). We have used this assay to demonstrate that sonic hedgehog (Shh), which we found acts as a negative regulator of retinal ganglion cell (RGC) differentiation, promotes RPC proliferation (Jensen and Wallace, 1997; Ringuette et al., 2014). More recently we modified the heterochronic pellet assay to assess the role of feedback signals for retinal amacrine cells, identifying transforming growth factor β2 (Tgfβ2) as a negative feedback signal, and Pten as a modulator of the Tgfβ2 response (Ma et al., 2007; Tachibana et al., 2016). This assay can be adapted to other lineages and tissues to assess cell-cell interactions between two different cell-types (heterotypic) in either an isochronic or heterochronic manner.

  3. Jamming prokaryotic cell-to-cell communications in a model biofilm.

    PubMed

    Timp, Winston; Mirsaidov, Utkur; Matsudaira, Paul; Timp, Gregory

    2009-04-07

    We report on the physical parameters governing prokaryotic cell-to-cell signaling in a model biofilm. The model biofilm is comprised of bacteria that are genetically engineered to transmit and receive quorum-sensing (QS) signals. The model is formed using arrays of time-shared, holographic optical traps in conjunction with microfluidics to precisely position bacteria, and then encapsulated within a hydrogel that mimics the extracellular matrix. Using fluorescent protein reporters functionally linked to QS genes, we assay the intercellular signaling. We find that there isn't a single cell density for which QS-regulated genes are induced or repressed. On the contrary, cell-to-cell signaling is largely governed by diffusion, and is acutely sensitive to mass-transfer to the surroundings and the cell location. These observations are consistent with the view that QS-signals act simply as a probe measuring mixing, flow, or diffusion in the microenvironment of the cell.

  4. B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3

    PubMed Central

    Fei, Fei; Joo, Eun Ji; Tarighat, Somayeh S.; Schiffer, Isabelle; Paz, Helicia; Fabbri, Muller; Abdel-Azim, Hisham; Groffen, John; Heisterkamp, Nora

    2015-01-01

    The molecular interactions between B-cell precursor acute lymphoblastic leukemia (pre-B ALL) cells and stromal cells in the bone marrow that provide microenvironmentally-mediated protection against therapeutic drugs are not well-defined. Galectin-3 (Lgals3) is a multifunctional galactose-binding lectin with reported location in the nucleus, cytoplasm and extracellular space in different cell types. We previously reported that ALL cells co-cultured with stroma contain high levels of Galectin-3. We here establish that, in contrast to more mature B-lineage cancers, Galectin-3 detected in and on the ALL cells originates from stromal cells, which express it on their surface, secrete it as soluble protein and also in exosomes. Soluble and stromal-bound Galectin-3 is internalized by ALL cells, transported to the nucleus and stimulates transcription of endogenous LGALS3 mRNA. When human and mouse ALL cells develop tolerance to different drugs while in contact with protective stromal cells, Galectin-3 protein levels are consistently increased. This correlates with induction of Galectin-3 transcription in the ALL cells. Thus Galectin-3 sourced from stroma becomes supplemented by endogenous Galectin-3 production in the pre-B ALL cells that are under continuous stress from drug treatment. Our data suggest that stromal Galectin-3 may protect ALL cells through auto-induction of Galectin-3 mRNA and tonic NFκB pathway activation. Since endogenously synthesized Galectin-3 protects pre-B ALL cells against drug treatment, we identify Galectin-3 as one possible target to counteract the protective effects of stroma. PMID:25869099

  5. Enteroendocrine Cells: A Review of Their Role In Brain-Gut Communication

    PubMed Central

    Latorre, R.; Sternini, C.; De Giorgio, R.; Greenwood-Van Meerveld, B.

    2015-01-01

    Background Specialized endoderm derived epithelial cells, i.e. enteroendocrine cells (EECs), are widely distributed throughout the gastrointestinal (GI) tract. EECs form the largest endocrine organ in the body and play a key role in the control of GI secretion and motility, the regulation of food intake, postprandial glucose levels and metabolism. EECs sense luminal content and release signaling molecules that can enter the circulation to act as classic hormones on distant targets, act locally on neighboring cells and on distinct neuronal pathways including enteric and extrinsic neurons. Recent studies have shed light on EEC sensory transmission by showing direct connections between EECs and the nervous system via axon-like processes that form a well-defined neuroepithelial circuits through which EECs can directly communicate with the neurons innervating the GI tract to initiate appropriate functional responses. Purpose This review will highlight the role played by the EECs in the complex and integrated sensory information responses, and discuss the new findings regarding EECs in the brain-gut axis bidirectional communication. PMID:26691223

  6. Bidirectional communication between cumulus cells and the oocyte: Old hands and new players?

    PubMed

    Russell, Darryl L; Gilchrist, Robert B; Brown, Hannah M; Thompson, Jeremy G

    2016-07-01

    Cumulus cell-oocyte communication is an essential feature of mammalian reproduction. Established mechanisms involve the bidirectional transfer of ions and small molecules through gap junctions that fundamentally regulate the process of oocyte maturation. Also, well established is the paracrine signaling from the oocyte to the cumulus, which regulates much of the flow of ions and molecules to the oocyte and orchestrates many of the associated local signaling events around ovulation, which is the key to establishing oocyte competence to sustain early embryo development. Less well-characterized and new potential players include exosomal transfer of noncoding RNAs from cumulus to oocytes and the recent observations of the presence of hemoglobin in oocytes and cumulus cells. The impact of these new communication pathways is either poorly defined or even unknown. Finally, signaling between the two cell types most likely continues after ovulation and even fertilization; however, this too is largely undefined but may play roles in substrate transport, sperm chemotaxis and "trapping", and potential signaling to the rest of the reproductive tract.

  7. Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation

    PubMed Central

    Adams, Dany S.; Levin, Michael

    2013-01-01

    Alongside the well-known chemical modes of cell-cell communication, we find an important and powerful system of bioelectrical signaling: changes in the resting voltage potential (Vmem) of the plasma membrane driven by ion channels, pumps and gap junctions. Slow Vmem changes in all cells serve as a highly conserved, information-bearing pathway that regulates cell proliferation, migration and differentiation. In embryonic and regenerative pattern formation and in the disorganization of neoplasia, bioelectrical cues serve as mediators of large-scale anatomical polarity, organ identity and positional information. Recent developments have resulted in tools that enable a high-resolution analysis of these biophysical signals and their linkage with upstream and downstream canonical genetic pathways. Here, we provide an overview for the study of bioelectric signaling, focusing on state-of-the-art approaches that use molecular physiology and developmental genetics to probe the roles of bioelectric events functionally. We highlight the logic, strategies and well-developed technologies that any group of researchers can employ to identify and dissect ionic signaling components in their own work and thus to help crack the bioelectric code. The dissection of bioelectric events as instructive signals enabling the orchestration of cell behaviors into large-scale coherent patterning programs will enrich on-going work in diverse areas of biology, as biophysical factors become incorporated into our systems-level understanding of cell interactions. PMID:22350846

  8. microRNAs, Gap Junctional Intercellular Communication and Mesenchymal Stem Cells in Breast Cancer Metastasis

    PubMed Central

    Gregory, Larissa A.; Ricart, Rachel A.; Patel, Shyam A.; Lim, Philip K.; Rameshwar, Pranela

    2010-01-01

    The failed outcome of autologous bone marrow transplantation for breast cancer opens the field for investigations. This is particularly important because the bone marrow could be a major source of cancer cells during tertiary metastasis. This review discusses subsets of breast cancer cells, including those that enter the bone marrow at an early period of disease development, perhaps prior to clinical detection. This population of cells evades chemotherapeutic damage even at high doses. An understanding of this population might be crucial for the success of bone marrow transplants for metastatic breast cancer and for the eradication of cancer cells in bone marrow. In vivo and in vitro studies have demonstrated gap junctional intercellular communication (GJIC) between bone marrow stroma and breast cancer cells. This review discusses GJIC in cancer metastasis, facilitating roles of mesenchymal stem cells (MSCs). In addition, the review addresses potential roles for miRNAs, including those already linked to cancer biology. The literature on MSCs is growing and their links to metastasis are beginning to be significant leads for the development of new drug targets for breast cancer. In summary, this review discusses interactions among GJIC, miRNAs and MSCs as future consideration for the development of cancer therapies. PMID:21886602

  9. RNA-Seq unveils new attributes of the heterogeneous Salmonella-host cell communication.

    PubMed

    García-Del Portillo, Francisco; Pucciarelli, M Graciela

    2017-01-03

    High-throughput RNA sequencing (RNA-Seq) has uncovered hundreds of small RNAs and complex modes of RNA regulation in every bacterium analyzed to date. This complexity agrees with the adaptability of most bacteria to varied environments including, in the case of pathogens, the new niches encountered in the host. Recent RNA-Seq studies have analyzed simultaneously gene expression in the intracellular pathogen Salmonella enterica and infected host cells at population and single-cell level. Distinct polarization states or interferon responses in the infected macrophage were linked to variable growth rates or activities of defined virulence regulators in intra-phagosomal bacteria. Intracellular Salmonella, however, exhibit disparate intracellular lifestyles depending the host cell, ranging from a hyper-replicative cytosolic state in epithelial cells to a non-replicative intra-phagosomal condition in varied host cell types. The basis of such diverse pathogen-host communications could be examined by RNA-Seq studies in single intracellular Salmonella cells, certainly a challenge for future investigations.

  10. Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance

    PubMed Central

    Hirakawa, Hidetada; Tomita, Haruyoshi

    2013-01-01

    Bacteria use a cell-to-cell communication activity termed “quorum sensing” to coordinate group behaviors in a cell density dependent manner. Quorum sensing influences the expression profile of diverse genes, including antibiotic tolerance and virulence determinants, via specific chemical compounds called “autoinducers”. During quorum sensing, Gram-negative bacteria typically use an acylated homoserine lactone (AHL) called autoinducer 1. Since the first discovery of quorum sensing in a marine bacterium, it has been recognized that more than 100 species possess this mechanism of cell-to-cell communication. In addition to being of interest from a biological standpoint, quorum sensing is a potential target for antimicrobial chemotherapy. This unique concept of antimicrobial control relies on reducing the burden of virulence rather than killing the bacteria. It is believed that this approach will not only suppress the development of antibiotic resistance, but will also improve the treatment of refractory infections triggered by multi-drug resistant pathogens. In this paper, we review and track recent progress in studies on AHL inhibitors/modulators from a biological standpoint. It has been discovered that both natural and synthetic compounds can disrupt quorum sensing by a variety of means, such as jamming signal transduction, inhibition of signal production and break-down and trapping of signal compounds. We also focus on the regulatory elements that attenuate quorum sensing activities and discuss their unique properties. Understanding the biological roles of regulatory elements might be useful in developing inhibitor applications and understanding how quorum sensing is controlled. PMID:23720655

  11. Cell communication across gap junctions: a historical perspective and current developments.

    PubMed

    Evans, W Howard

    2015-06-01

    Collaborative communication lies at the centre of multicellular life. Gap junctions (GJs) are surface membrane structures that allow direct communication between cells. They were discovered in the 1960s following the convergence of the detection of low-resistance electrical interactions between cells and anatomical studies of intercellular contact points. GJs purified from liver plasma membranes contained a 27 kDa protein constituent; it was later named Cx32 (connexin 32) after its full sequence was determined by recombinant technology. Identification of Cx43 in heart and later by a further GJ protein, Cx26 followed. Cxs have a tetraspan organization in the membrane and oligomerize during intracellular transit to the plasma membrane; these were shown to be hexameric hemichannels (connexons) that could interact end-to-end to generate GJs at areas of cell-to-cell contact. The structure of the GJ was confirmed and refined by a combination of biochemical and structural approaches. Progress continues towards obtaining higher atomic 3D resolution of the GJ channel. Today, there are 20 and 21 highly conserved members of the Cx family in the human and mouse genomes respectively. Model organisms such as Xenopus oocytes and zebra fish are increasingly used to relate structure to function. Proteins that form similar large pore membrane channels in cells called pannexins have also been identified in chordates. Innexins form GJs in prechordates; these two other proteins, although functionally similar, are very different in amino acid sequence to the Cxs. A time line tracing the historical progression of wide ranging research in GJ biology over 60 years is mapped out. The molecular basis of channel dysfunctions in disease is becoming evident and progress towards addressing Cx channel-dependent pathologies, especially in ischaemia and tissue repair, continues.

  12. Communication between Human Dendritic Cell Subsets in Tuberculosis: Requirements for Naive CD4+ T Cell Stimulation

    PubMed Central

    Lozza, Laura; Farinacci, Maura; Bechtle, Marina; Stäber, Manuela; Zedler, Ulrike; Baiocchini, Andrea; del Nonno, Franca; Kaufmann, Stefan H. E.

    2014-01-01

    Human primary dendritic cells (DCs) are heterogeneous by phenotype, function, and tissue localization and distinct from inflammatory monocyte-derived DCs. Current information regarding the susceptibility and functional role of primary human DC subsets to Mycobacterium tuberculosis (Mtb) infection is limited. Here, we dissect the response of different primary DC subsets to Mtb infection. Myeloid CD11c+ cells and pDCs (C-type lectin 4C+ cells) were located in human lymph nodes (LNs) of tuberculosis (TB) patients by histochemistry. Rare CD141hi DCs (C-type lectin 9A+ cells) were also identified. Infection with live Mtb revealed a higher responsiveness of myeloid CD1c+ DCs compared to CD141hi DCs and pDCs. CD1c+ DCs produced interleukin (IL)-6, tumor necrosis factor α, and IL-1β but not IL-12p70, a cytokine important for Th1 activation and host defenses against Mtb. Yet, CD1c+ DCs were able to activate autologous naïve CD4+ T cells. By combining cell purification with fluorescence-activated cell sorting and gene expression profiling on rare cell populations, we detected in responding CD4+ T cells, genes related to effector-cytolytic functions and transcription factors associated with Th1, Th17, and Treg polarization, suggesting multifunctional properties in our experimental conditions. Finally, immunohistologic analyses revealed contact between CD11c+ cells and pDCs in LNs of TB patients and in vitro data suggest that cooperation between Mtb-infected CD1c+ DCs and pDCs favors stimulation of CD4+ T cells. PMID:25071784

  13. Regulation of gap junctional intercellular communication by TCDD in HMEC and MCF-7 breast cancer cells

    SciTech Connect

    Gakhar, Gunjan Schrempp, Diane Nguyen, Thu Annelise

    2009-03-01

    Previous studies suggest that many neoplastic tissues exhibit a decrease in gap junctional intercellular communication (GJIC). Many hydrocarbons and organochlorine compounds are environmental pollutants known to be carcinogenic. The effect of an organochlorine compound, TCDD, on GJIC in human breast cell lines has not been established. In the present study, we showed that TCDD causes an inhibition in the gap junctional activity in MCF-7 (breast cancer cells). In MCF-7 cells, an increase in the phosphorylated form of gap junctional protein, connexin 43 (Cx43), and PKC {alpha} was seen in the presence of TCDD. Gap junctional plaque formation was significantly decreased in MCF-7 cells in the presence of TCDD. Immunoprecipitation studies of PKC {alpha} showed that TCDD caused a significant 40% increase in the phosphorylated Cx43 in MCF-7 cells. TCDD also modulated the translocation of PKC {alpha} from the cytosol to the membrane and caused a 2-fold increase in the PKC {alpha} activity at 50 nM TCDD in MCF-7 cells. Calphostin C, an inhibitor of PKC {alpha}, showed a significant inhibition of PKC {alpha} activity in the presence of TCDD. Furthermore, TCDD also caused a decrease in the gap junctional activity and Cx43 protein in human mammary epithelial cells (HMEC). However, we observed a shift in the Cx43 plaques towards the perinuclear membrane in the presence of TCDD by confocal microscopy and Western blot. Overall, these results conclude that TCDD decreases GJIC by phosphorylating Cx43 via PKC {alpha} signaling pathway in MCF-7 cells; however, TCDD decreases the GJIC by affecting the localization of Cx43 in HMEC. These new findings elucidate the differential mode of effect of TCDD in the downregulation of GJIC in HMEC and MCF-7 cells.

  14. Disruption of bacterial cell-to-cell communication by marine organisms and its relevance to aquaculture.

    PubMed

    Natrah, F M I; Defoirdt, Tom; Sorgeloos, Patrick; Bossier, Peter

    2011-04-01

    Bacterial disease is one of the most critical problems in commercial aquaculture. Although various methods and treatments have been developed to curb the problem, yet they still have significant drawbacks. A novel and environmental-friendly approach in solving this problem is through the disruption of bacterial communication or quorum sensing (QS). In this communication scheme, bacteria regulate their own gene expression by producing, releasing, and sensing chemical signals from the environment. There seems to be a link between QS and diseases through the regulation of certain phenotypes and the induction of virulence factors responsible for pathogen-host association. Several findings have reported that numerous aquatic organisms such as micro-algae, macro-algae, invertebrates, or even other bacteria have the potential to disrupt QS. The mechanism of action varies from degradation of signals through enzymatic or chemical inactivation to antagonistic as well as agonistic activities. This review focuses on the existing marine organisms that are able to interfere with QS with potential application for aquaculture as bacterial control.

  15. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed Central

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature. PMID:27239276

  16. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature.

  17. Development of intercellular communication during the epithelial reorganization of a renal cell line (LLC-PK1).

    PubMed

    Rabito, C A; Jarrell, J A; Abraham, E H

    1987-01-25

    Junctional permeability determinations after microinjection of the fluorescent tracer, Lucifer Yellow CH, show that the cells in confluent monolayers of the renal epithelial cell lines LLC-PK1 and A6 are interconnected by intercellular junctions. This cell-to-cell communication network permits the fluorescent dye to diffuse from the microinjected cell into multiple adjacent neighboring cells. Cell-to-cell diffusion of the fluorescent dye was not observed at pH 6.0. Full recovery occurred, however, when the pH of the extracellular medium was adjusted to 7.4. To provide a sensitive index of the averaged efficacy of junctional communication, we measured the number of cells that survived ouabain treatment in a 50% mixture of wild and ouabain-resistant mutant LLC-PK1 cells. Electron probe microanalysis in uncoupled cells showed that ouabain treatment produced two populations of cells, with totally different intracellular Na+ and K+ content. Under this condition, only 50% of the population survived after 48 h of treatment. When ouabain treatment was initiated 24 h after plating, however, 100% survival was observed, and the cells contained uniform intracellular Na+ and K+ concentration. This finding is consistent with the theory that this protective effect is mediated through the presence of the functional communicating intercellular junctions. When ouabain was applied at different times after plating, full protection is reached by 2 h. The early development of cell-to-cell communication, which precedes the development of the occluding junctions and several transport systems by several hours, is consistent with the involvement of the intercellular junctions in the synchronization of the polarization process.

  18. Cell-To-Cell Communication in Bilateral Macronodular Adrenal Hyperplasia Causing Hypercortisolism

    PubMed Central

    Lefebvre, Hervé; Duparc, Céline; Prévost, Gaëtan; Bertherat, Jérôme; Louiset, Estelle

    2015-01-01

    It has been well established that, in the human adrenal gland, cortisol secretion is not only controlled by circulating corticotropin but is also influenced by a wide variety of bioactive signals, including conventional neurotransmitters and neuropeptides, released within the cortex by various cell types such as chromaffin cells, neurons, cells of the immune system, adipocytes, and endothelial cells. These different types of cells are present in bilateral macronodular adrenal hyperplasia (BMAH), a rare etiology of primary adrenal Cushing’s syndrome, where they appear intermingled with adrenocortical cells in the hyperplastic cortex. In addition, the genetic events, which cause the disease, favor abnormal adrenal differentiation that results in illicit expression of paracrine regulatory factors and their receptors in adrenocortical cells. All these defects constitute the molecular basis for aberrant autocrine/paracrine regulatory mechanisms, which are likely to play a role in the pathophysiology of BMAH-associated hypercortisolism. The present review summarizes the current knowledge on this topic as well as the therapeutic perspectives offered by this new pathophysiological concept. PMID:25941513

  19. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa

    PubMed Central

    Pesci, Everett C.; Milbank, Jared B. J.; Pearson, James P.; McKnight, Susan; Kende, Andrew S.; Greenberg, E. Peter; Iglewski, Barbara H.

    1999-01-01

    Numerous species of bacteria use an elegant regulatory mechanism known as quorum sensing to control the expression of specific genes in a cell-density dependent manner. In Gram-negative bacteria, quorum sensing systems function through a cell-to-cell signal molecule (autoinducer) that consists of a homoserine lactone with a fatty acid side chain. Such is the case in the opportunistic human pathogen Pseudomonas aeruginosa, which contains two quorum sensing systems (las and rhl) that operate via the autoinducers, N-(3-oxododecanoyl)-l-homoserine lactone and N-butyryl-l-homoserine lactone. The study of these signal molecules has shown that they bind to and activate transcriptional activator proteins that specifically induce numerous P. aeruginosa virulence genes. We report here that P. aeruginosa produces another signal molecule, 2-heptyl-3-hydroxy-4-quinolone, which has been designated as the Pseudomonas quinolone signal. It was found that this unique cell-to-cell signal controlled the expression of lasB, which encodes for the major virulence factor, LasB elastase. We also show that the synthesis and bioactivity of Pseudomonas quinolone signal were mediated by the P. aeruginosa las and rhl quorum sensing systems, respectively. The demonstration that 2-heptyl-3-hydroxy-4-quinolone can function as an intercellular signal sheds light on the role of secondary metabolites and shows that P. aeruginosa cell-to-cell signaling is not restricted to acyl-homoserine lactones. PMID:10500159

  20. The uncoupling effect of diacylglycerol on gap junctional communication of mammalian heart cells is independent of protein kinase C.

    PubMed

    Bastide, B; Hervé, J C; Délèze, J

    1994-10-01

    Possible regulatory effects on cell-to-cell communication of a synthetic diacylglycerol, an activator of protein kinase C (PKC), were examined in pairs of synchronously beating ventricular myocytes of neonatal rats in primary culture. Junctional communication was estimated by measuring either the rate constant of dye diffusion, with the fluorescence recovery after photobleaching technique, or the cell-to-cell electrical conductance with a double whole-cell voltage clamp. The addition of a freshly prepared emulsion of 1-oleoyl-2-acetyl-sn-glycerol (OAG, 100 micrograms/ml), either in the bath or in the solution filling the patch pipet, was seen to interrupt intercellular communication within approximately 8 to 10 min. This effect is neither mimicked by stimulation of PKC by a phorbol ester, nor prevented by PKC inhibitors, making it unlikely that, in these cells, PKC activation could induce intercellular uncoupling. During OAG exposures, the intracellular calcium concentration was very modestly increased (by a factor 1.5 to 2), which does not suffice to account for uncoupling. OAG might trigger interruption of cell-to-cell communication by a mechanism analogous to that of other lipophilic molecules (such as aliphatic alcohols or long chain unsaturated fatty acids) which interfere with gap junctions.

  1. Bidirectional relationship of mast cells-neurovascular unit communication in neuroinflammation and its involvement in POCD.

    PubMed

    Li, Nana; Zhang, Xiang; Dong, Hongquan; Hu, Youli; Qian, Yanning

    2017-03-30

    Postoperative cognitive dysfunction (POCD) has been hypothesized to be mediated by surgery-induced neuroinflammation, which is also a key element in the pathobiology of neurodegenerative diseases, stroke, and neuropsychiatric disorders. There is extensive communication between the immune system and the central nervous system (CNS). Inflammation resulting from activation of the innate immune system cells in the periphery can impact central nervous system behaviors, such as cognitive performance. Mast cells (MCs), as the"first responders" in the CNS, can initiate, amplify, and prolong other immune and nervous responses upon activation. In addition, MCs and their secreted mediators modulate inflammatory processes in multiple CNS pathologies and can thereby either contribute to neurological damage or confer neuroprotection. Neuroinflammation has been considered to be linked to neurovascular dysfunction in several neurological disorders. This review will provide a brief overview of the bidirectional relationship of MCs-neurovascular unit communication in neuroinflammation and its involvement in POCD, providing a new and unique therapeutic target for the adjuvant treatment of POCD.

  2. Steroid hormone effects on intercellular communication between term pregnant human myometrial cells before labor.

    PubMed

    Ciray, H N; Bäckström, T; Ulmsten, U; Roomans, G M

    1996-08-01

    The appearance of gap junctions (GJs) between myometrial smooth muscle cells is one of the major events associated with the onset of labor. We have employed dye-coupling and electrical-current injection techniques to study the mechanisms by which steroid hormones regulate GJs in term pregnant myometrium of women before labor. Progesterone (P4) did not alter the input resistance (Ro) of the tissues when added to Tyrode's solution, which was used as control treatment. Octanol, the putative gap junctional uncoupling agent, increased the Ro of the cells compared to the control and P4-treated groups. The membrane potential (Em) did not differ between these groups. However, when P4 was applied after the tissue was perfused with estradiol (E2), the results changed dramatically: the Em hyperpolarized, and the Ro increased. Octanol increased the Ro in E2-treated tissues, but did not affect the Em. Consecutive application of E2, octanol, E2, and P4 resulted in rapid changes in the Ro of the cells. Dye-coupling was mostly detected between cells from controls and E2-treated tissues. These results indicate that P4 exerts its effects in the presence of E2 and that P4 has rapid effects on the intercellular communication between human myometrial cells.

  3. Examining changes in cellular communication in neuroendocrine cells after noble metal nanoparticle exposure.

    PubMed

    Love, Sara A; Liu, Zhen; Haynes, Christy L

    2012-07-07

    As nanoparticles enjoy increasingly widespread use in commercial applications, the potential for unintentional exposure has become much more likely during any given day. Researchers in the field of nanotoxicity are working to determine the physicochemical nanoparticle properties that lead to toxicity in an effort to establish safe design rules. This work explores the effects of noble metal nanoparticle exposure in murine chromaffin cells, focusing on examining the effects of size and surface functionality (coating) in silver and gold, respectively. Carbon-fibre microelectrode amperometry was utilized to examine the effect of exposure on exocytosis function, at the single cell level, and provided new insights into the compromised functions of cells. Silver nanoparticles of varied size, between 15 and 60 nm diameter, were exposed to cells and found to alter the release kinetics of exocytosis for those cells exposed to the smallest examined size. Effects of gold were examined after modification with two commonly used 'bio-friendly' polymers, either heparin or poly (ethylene glycol), and gold nanoparticles were found to induce altered cellular adhesion or the number of chemical messenger molecules released, respectively. These results support the body of work suggesting that noble metal nanoparticles perturb exocytosis, typically altering the number of molecules and kinetics of release, and supports a direct disruption of the vesicle matrix by the nanoparticle. Overall, it is clear that various nanoparticle physicochemical properties, including size and surface coating, do modulate changes in cellular communication via exocytosis.

  4. A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability.

    PubMed

    Lovchik, Robert D; Tonna, Noemi; Bianco, Fabio; Matteoli, Michela; Delamarche, Emmanuel

    2010-04-01

    We present a method for depositing cells in the microchambers of a sealed microfluidic device and establishing flow across the chambers independently and serially. The device comprises a transparent poly(dimethylsiloxane) (PDMS) microfluidic network (MFN) having 2 cell chambers with a volume of 0.49 microL, 6 microchannels for servicing the chambers, and 1 microchannel linking both chambers. The MFN is sealed with a Si chip having 6 vias and ports that can be left open or connected to high-precision pumps. Liquids are drawn through each chamber in parallel or sequentially at flow rates from 0.1 to 10 microL min(-1). Plugs of liquid as small as 0.5 microL can be passed in one chamber within 5 s to 5 min. Plugs of liquid can also be introduced into a chamber for residence times of up to 30 min. By injecting different liquids into 3 ports, 3 adjacent laminar streams of liquid can be drawn inside one chamber with lateral concentration gradients between the streams ranging from 20 to 500 microm. The flexibility of this device for depositing cells and exposing them to liquids in parallel or serially is illustrated by depositing two types of cells, murine N9 microglia and human SH-S5Y5 neuroblastoma. Microfluidic communication between the chambers is illustrated by stimulating N9 microglia using ATP to induce these cells to release plasma membrane vesicles. The vesicles are drawn through the second chamber containing neuroblastoma and collected in a port of the device for off-chip analysis using confocal fluorescence microscopy. Cells in the MFN can also be fixed using a solution of formaldehyde for further analysis after disassembly of the MFN and Si lid. This microfluidic device offers a simple, flexible, and powerful method for depositing two cell populations in separate chambers and may help investigating pathways between the cells populations.

  5. Feasibility and Perceptions of Cell Phone-Based, Health-Related Communication With Adolescents in an Economically Depressed Area.

    PubMed

    Sawni, Anju; Cederna-Meko, Crystal; LaChance, Jenny L; Buttigieg, Angie; Le, Quoc; Nunuk, Irene; Ang, Joyce; Burrell, Katherine M

    2017-02-01

    We examined the feasibility and perception of cell-based (texting, voicemail [VM], and email/social media), health-related communication with adolescents in Genesee County, MI, where 22% reside below the poverty level. Results of an anonymous survey found that 86% of respondents owned a cell phone, 87% had data, 96% texted, 90.5% emailed/used social media, and 68% had VM. Most adolescents were interested in cell-based communication via texting (52%), VM (37%), and email/social media (31%). Interest in types of health communication included appointment reminders (99% texting; 94% VM; 95% email/social media), shot reminders (84.5% texting; 74.5% VM; 81% email/social media), call for test results (71.5% texting; 75% VM; 65% email/social media), medication reminders (63% texting; 54% VM; 58% e-mail/social media), and health tips (36% texting; 18.5% VM; 73% email/social media). Cell-based health-related communication with adolescents is feasible even within low socioeconomic status populations, primarily via texting. Health providers should embrace cell-based patient communication.

  6. TGF-beta1 mediates glucose-evoked up-regulation of connexin-43 cell-to-cell communication in HCD-cells.

    PubMed

    Hills, Claire E; Bland, Rosemary; Bennett, Jeanette; Ronco, Pierre M; Squires, Paul E

    2009-01-01

    In the current study we examined if the multifunctional cytokine TGF-beta1 mediated glucose-evoked increases in connexin-43(Cx43)-mediated intercellular communication in cells of the human collecting duct (HCD). RT-PCR and western blot analysis were used to confirm mRNA and protein expression of TGF-beta1 and Cx43 in HCD-cells. The effect of TGF-beta1 and high glucose (25 mM) on Cx43 protein expression, cytoskeletal organisation and cell-cell communication was determined in the presence/absence of TGF-beta1 specific immuno-neutralising antibodies. Functional cell-cell communication was determined using Ca2+-microfluorimetry. At 24 hrs, high glucose (25 mM) significantly increased Cx43 mRNA and protein expression. Changes were mimicked by TGF-beta1 (2 ng/ml) at low glucose (5 mM). Both high glucose and TGF-beta1 mediated changes were completely reversed by a pan-specific immuno-neutralising antibody to TGF-beta. Furthermore, high glucose-evoked changes were inhibited by a TGF-beta1-specific monoclonal antibody. Mannitol (25 mM), an osmotic control for high glucose, failed to alter Cx43 expression. TGF-beta1 evoked changes in Cx43 expression were biphasic. An early (4-8 hr) transient decrease in expression was followed by an increase in protein expression (12-24 hr). The decrease in Cx43 expression was paralleled by a transient reorganisation of the actin cytoskeleton, whilst increased Cx43 expression at 24 hrs coincided with a TGF-beta1 specific increase in touch-evoked transmission of Ca2+-signals between coupled cells. High glucose evoked a TGF-beta1 mediated increase in Cx43 expression and gap-junction mediated cell-cell communication in HCD-cells. These changes may maintain epithelial integrity of the collecting duct following hyperglycaemic assault as observed in diabetes. Copyright (c) 2009 S. Karger AG, Basel.

  7. Exosome-Mediated Intercellular Communication between Hepatitis C Virus-Infected Hepatocytes and Hepatic Stellate Cells.

    PubMed

    Devhare, Pradip B; Sasaki, Reina; Shrivastava, Shubham; Di Bisceglie, Adrian M; Ray, Ranjit; Ray, Ratna B

    2017-03-15

    Fibrogenic pathways in the liver are principally regulated by activation of hepatic stellate cells (HSC). Fibrosis is associated with chronic hepatitis C virus (HCV) infection, although the mechanism is poorly understood. HSC comprise the major population of nonparenchymal cells in the liver. Since HCV does not replicate in HSC, we hypothesized that exosomes secreted from HCV-infected hepatocytes activate HSC. Primary or immortalized human hepatic stellate (LX2) cells were exposed to exosomes derived from HCV-infected hepatocytes (HCV-exo), and the expression of fibrosis-related genes was examined. Our results demonstrated that HCV-exo internalized to HSC and increased the expression of profibrotic markers. Further analysis suggested that HCV-exo carry miR-19a and target SOCS3 in HSC, which in turn activates the STAT3-mediated transforming growth factor β (TGF-β) signaling pathway and enhances fibrosis marker genes. The higher expression of miR-19a in exosomes was also observed from HCV-infected hepatocytes and in sera of chronic HCV patients with fibrosis compared to healthy volunteers and non-HCV-related liver disease patients with fibrosis. Together, our results demonstrated that miR-19a carried through the exosomes from HCV-infected hepatocytes activates HSC by modulating the SOCS-STAT3 axis. Our results implicated a novel mechanism of exosome-mediated intercellular communication in the activation of HSC for liver fibrosis in HCV infection.IMPORTANCE HCV-associated liver fibrosis is a critical step for end-stage liver disease progression. However, the molecular mechanisms for hepatic stellate-cell activation by HCV-infected hepatocytes are underexplored. Here, we provide a role for miR-19a carried through the exosomes in intercellular communication between HCV-infected hepatocytes and HSC in fibrogenic activation. Furthermore, we demonstrate the role of exosomal miR-19a in activation of the STAT3-TGF-β pathway in HSC. This study contributes to the

  8. Intercellular communication in Arabidopsis thaliana pollen discovered via AHG3 transcript movement from the vegetative cell to sperm

    PubMed Central

    Jiang, Hua; Yi, Jun; Boavida, Leonor C.; Chen, Yuan; Becker, Jörg D.; Köhler, Claudia; McCormick, Sheila

    2015-01-01

    An Arabidopsis pollen grain (male gametophyte) consists of three cells: the vegetative cell, which forms the pollen tube, and two sperm cells enclosed within the vegetative cell. It is still unclear if there is intercellular communication between the vegetative cell and the sperm cells. Here we show that ABA-hypersensitive germination3 (AHG3), encoding a protein phosphatase, is specifically transcribed in the vegetative cell but predominantly translated in sperm cells. We used a series of deletion constructs and promoter exchanges to document transport of AHG3 transcripts from the vegetative cell to sperm and showed that their transport requires sequences in both the 5′ UTR and the coding region. Thus, in addition its known role in transporting sperm during pollen tube growth, the vegetative cell also contributes transcripts to the sperm cells. PMID:26466609

  9. Age-related changes in gap junctional intercellular communication in osteoblastic cells

    PubMed Central

    Genetos, Damian C.; Zhou, Zhiyi; Li, Zhongyong; Donahue, Henry J.

    2013-01-01

    Aging demonstrates deleterious effects upon the skeleton which can predispose an individual to osteoporosis and related fractures. Despite the well-documented evidence that aging decreases bone formation, there remains little understanding whereby cellular aging alters skeletal homeostasis. We, and others, have previously demonstrated that gap junctions—membrane-spanning channels that allow direct cell-to-cell conductance of small signaling molecules—are critically involved in osteoblast differentiation and skeletal homeostasis. We examined whether the capacity of rat osteoblastic cells to form gap junctions and respond to known modulators of gap junction intercellular communication (GJIC) was dependent on the age of the animal from which they were isolated. We observed no effect of age upon osteoblastic Cx43 mRNA, protein or GJIC. We also examined age-related changes in PTH-stimulated GJIC. PTH demonstrated age-dependent effects upon GJIC: osteoblastic cells from young rats increased GJIC in response to PTH, whereas there was no change in GJIC in response to PTH in osteoblastic cells from mature or old rats. PTH-stimulated GJIC occurred independently of changes in Cx43 mRNA or protein expression. Cholera toxin significantly increased GJIC in osteoblastic cells from young rats compared to those from mature and old rats. These data demonstrate an age-related impairment in the capacity of osteoblastic cells to generate functional gap junctions in response to PTH, and suggest that an age-related defect in G protein-coupled adenylate cyclase activity at least partially contributes to decreased PTH-stimulated GJIC. PMID:22696456

  10. Complexity in bacterial cell-cell communication: quorum signal integration and subpopulation signaling in the Bacillus subtilis phosphorelay.

    PubMed

    Bischofs, Ilka B; Hug, Joshua A; Liu, Aiwen W; Wolf, Denise M; Arkin, Adam P

    2009-04-21

    A common form of quorum sensing in gram-positive bacteria is mediated by peptides that act as phosphatase regulators (Phr) of receptor aspartyl phosphatases (Raps). In Bacillus subtilis, several Phr signals are integrated in sporulation phosphorelay signal transduction. We theoretically demonstrate that the phosphorelay can act as a computational machine performing a sensitive division operation of kinase-encoded signals by quorum-modulated Rap signals, indicative of cells computing a "food per cell" estimate to decide whether to enter sporulation. We predict expression from the rapA-phrA operon to bifurcate as relative environmental signals change in a developing population. We experimentally observe that the rapA-phrA operon is heterogeneously induced in sporulating microcolonies. Uninduced cells sporulate rather synchronously early on, whereas the RapA/PhrA subpopulation sporulates less synchronously throughout later stationary phase. Moreover, we show that cells sustain PhrA expression during periods of active growth. Together with the model, these findings suggest that the phosphorelay may normalize environmental signals by the size of the (sub)population actively competing for nutrients (as signaled by PhrA). Generalizing this concept, the various Phrs could facilitate subpopulation communication in dense isogenic communities to control the physiological strategies followed by differentiated subpopulations by interpreting (environmental) signals based on the spatiotemporal community structure.

  11. Extract from the zooxanthellate jellyfish Cotylorhiza tuberculata modulates gap junction intercellular communication in human cell cultures.

    PubMed

    Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Piraino, Stefano

    2013-05-22

    On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean "fried egg jellyfish" Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7 and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed.

  12. Effect of perchloroethylene and its metabolites on intercellular communication in clone 9 rat liver cells

    SciTech Connect

    Benane, S.G.; Blackman, C.F.; House, D.E.

    1996-08-09

    Gap junction intercellular communication (IC) is thought to be important in chemical carcinogenesis as abnormalities in IC have been found in cancer cells. Perchloroethylene (PERC) is metabolized in rodent liver to dichloroacetic acid (DCA) and trichloroacetic acid (TCA), which are rodent liver carcinogens. Chloral hydrate (CH) and trichloroethanol (TCEth) are kidney metabolites. We used Lucifer yellow scrape-load dye transfer as a measure of IC to look at the effect of PERC, DCA, TCA, CH, and TCEth on Clone 9 cell cultures (normal rat liver cells). Four independent experiments were performed for each chemical using exposure times of 1, 4, 6, 24, 48, and 168 h. Concentrations for each chemical varied and were based on preliminary data on effect and cytotoxicity. To compare the relative effectiveness of each chemical to cause biological change, we identified the lowest concentration needed to produce 50% reduction in IC, were PERC (0.3 mM) >> TCA (3.8 mM) > TCEth (6.6 mM) = CH (7.0 mM) >> DCA (41 mM). Time-course data indicated that PERC, DCA, and TCA produced reduction in IC in a similar fashion, but 5 mM CH or TCEth exhibited variances from these results and may indicate specific cell responses to these chemicals. The mechanism(s) responsible for inhibition of IC by these structurally related chemicals needs to be established. 44 refs., 5 figs.

  13. Introducing a model for communicable diseases surveillance: cell phone surveillance (CPS).

    PubMed

    Safaie, Afshin; Mousavi, Seyed Mohsen; LaPorte, Ronald E; Goya, Mohammad Mehdi; Zahraie, Mohsen

    2006-01-01

    Surveillance systems for communicable diseases are primarily passive in most countries, including Iran. Laboratory-based surveillance and use of cell phone surveillance may be a useful method. We established a new model for gathering data directly from district laboratories to regional laboratories and from them to national manager of public health laboratories by using cell phone. We assessed the coverage of Mobile and Cell phone in the laboratory Technicians, and Directors of Public Health in 27 universities in Iran by a simple data collection form to evaluate the feasibility of this method. And then this method was piloted for the last Cholera outbreak in Iran in 2005. From data of 27 universities with 184 cities, we gathered 769 data health directors' mobile, total mobile penetrating rate, SMS users, and SMS penetrating rate was 57.9%, 77.1%, and 44.6% between Directors in Medical Universities of Iran and 54.5%, 54.9% and 29.9% in Directors of Laboratory. In the Cholera epidemic in Iran in summer 2005, CDC of MOH registered near 900 cases of cholera from 70000 rectal soap's exam in whole of country. The median reporting interval was under one day. Although the advent of the cell phone will probably change the way in which surveillance is delivered by health system, further studies are warranted to evaluate this method for laboratory based surveillance of lethal infections.

  14. A Model of a Synthetic Biological Communication Interface between Mammalian Cells and Mechatronic Systems.

    PubMed

    Heyde, Keith C; Ruder, Warren C

    2016-12-01

    The creation of communication interfaces between abiotic and biotic systems represents a significant research challenge. In this work, we design and model a system linking the biochemical signaling pathways of mammalian cells to the actions of a mobile robotic prosthesis. We envision this system as a robotic platform carrying an optically monitored bioreactor that harbors mammalian cells. The cellular, optical signal is captured by an onboard fluorescent microscope and converted into an electronic signal. We first present a design for the overall cell-robot system, with a specific focus on the design of the synthetic gene networks needed for the system. We use these synthetic networks to encode motion commands within the cell's endogenous, oscillatory calcium signaling pathways. We then describe a potential system whereby this oscillatory signal could be outputted and monitored as a change in cellular fluorescence. Next, we use the changes resulting from the synthetic biological modifications as new parameters in a simulation of a well-established mathematical model for intracellular calcium signaling. The resulting signal is processed in the frequency domain, with specific frequencies activating cognate robot motion subroutines.

  15. Extract from the Zooxanthellate Jellyfish Cotylorhiza tuberculata Modulates Gap Junction Intercellular Communication in Human Cell Cultures

    PubMed Central

    Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Piraino, Stefano

    2013-01-01

    On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean “fried egg jellyfish” Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed. PMID:23697954

  16. Platelet endothelial cell adhesion molecule-1 mediates endothelial-cardiomyocyte communication and regulates cardiac function.

    PubMed

    McCormick, Margaret E; Collins, Caitlin; Makarewich, Catherine A; Chen, Zhongming; Rojas, Mauricio; Willis, Monte S; Houser, Steven R; Tzima, Ellie

    2015-01-19

    Dilated cardiomyopathy is characterized by impaired contractility of cardiomyocytes, ventricular chamber dilatation, and systolic dysfunction. Although mutations in genes expressed in the cardiomyocyte are the best described causes of reduced contractility, the importance of endothelial-cardiomyocyte communication for proper cardiac function is increasingly appreciated. In the present study, we investigate the role of the endothelial adhesion molecule platelet endothelial cell adhesion molecule (PECAM-1) in the regulation of cardiac function. Using cell culture and animal models, we show that PECAM-1 expressed in endothelial cells (ECs) regulates cardiomyocyte contractility and cardiac function via the neuregulin-ErbB signaling pathway. Conscious echocardiography revealed left ventricular (LV) chamber dilation and systolic dysfunction in PECAM-1(-/-) mice in the absence of histological abnormalities or defects in cardiac capillary density. Despite deficits in global cardiac function, cardiomyocytes isolated from PECAM-1(-/-) hearts displayed normal baseline and isoproterenol-stimulated contractility. Mechanistically, absence of PECAM-1 resulted in elevated NO/ROS signaling and NRG-1 release from ECs, which resulted in augmented phosphorylation of its receptor ErbB2. Treatment of cardiomyocytes with conditioned media from PECAM-1(-/-) ECs resulted in enhanced ErbB2 activation, which was normalized by pre-treatment with an NRG-1 blocking antibody. To determine whether normalization of increased NRG-1 levels could correct cardiac function, PECAM-1(-/-) mice were treated with the NRG-1 blocking antibody. Echocardiography showed that treatment significantly improved cardiac function of PECAM-1(-/-) mice, as revealed by increased ejection fraction and fractional shortening. We identify a novel role for PECAM-1 in regulating cardiac function via a paracrine NRG1-ErbB pathway. These data highlight the importance of tightly regulated cellular communication for proper

  17. Model for biological communication in a nanofabricated cell-mimic driven by stochastic resonance

    SciTech Connect

    Karig, David K; Siuti, Piro; Dar, Roy D.; Retterer, Scott T; Doktycz, Mitchel John; Simpson, Michael L

    2011-01-01

    Cells offer natural examples of highly efficient networks of nanomachines. Accordingly, both intracellular and intercellular communication mechanisms in nature are looked to as a source of inspiration and instruction for engineered nanocommunication. Harnessing biological functionality in this manner requires an interdisciplinary approach that integrates systems biology, synthetic biology, and nanofabrication. Recent years have seen the amassing of a tremendous wealth of data from the sequencing of new organisms and from high throughput expression experiments. At the same time, a deeper fundamental understanding of individual cell function has been developed, as exemplified by the growth of fields such as noise biology, which seeks to characterize the role of noise in gene expression. The availability of well characterized biological components coupled with a deeper understanding of cell function has led to efforts to engineer both living cells and to create bio-like functionality in non-living substrates in the field of synthetic biology. Here, we present a model system that exemplifies the synergism between these realms of research. We propose a synthetic gene network for operation in a nanofabricated cell mimic array that propagates a biomolecular signal over long distances using the phenomenon of stochastic resonance. Our system consists of a bacterial quorum sensing signal molecule, a bistable genetic switch triggered by this signal, and an array of nanofabricated cell mimic wells that contain the genetic system. An optimal level of noise in the system helps to propagate a time-varying AHL signal over long distances through the array of mimics. This noise level is determined both by the system volume and by the parameters of the genetic network. Our proposed genetically driven stochastic resonance system serves as a testbed for exploring the potential harnessing of gene expression noise to aid in the transmission of a time-varying molecular signal.

  18. [TGF-beta1 reduces connexin43-mediated gap junctional intercellular communication in rat Leydig cells].

    PubMed

    Liu, Man-Li; Zhang, Zhi-Hong; Wang, Zong-Ren; Ma, Jing

    2012-02-01

    To observe the effects of TGF-beta on the expression of connexin43 (Cx43) and Cx43-mediated gap junctional intercellular communication (GJIC) in rat Leydig cells, and investigate the association of its effects on Leydig cells with its ability of changing GJIC. Primarily cultured purified Leydig cells were divided into a blank control group, a positive control group (treated with the GJIC inhibitor Carbenoxolone), and four TGF-beta1 groups (treated with TGF-beta1 at the concentration of 1, 2, 5 and 10 ng/ml, respectively, for 20 hours). The localization and expression of Cx43 were detected by immunofluorescence and Western blot, and the changes in GJIC analyzed by FRAP assay. Cx43 was expressed as scattered bright spots in the cytoplasm and membrane of Leydig cells. TGF-beta1 significantly elevated the expression of Cx43 in the cytoplasm, but caused no evident change in the membrane. Western blot showed an evident increase in the phosphorylation of Cx43 with the increased concentration of TGF-beta1 as compared with that of the blank control group (P < 0.05). After 20 hours of treatment with TGF-beta1 at 5 ng/ml, the fluorescence intensity of Leydig cells was markedly reduced (P < 0.01), with a mean fluorescence recovery rate of merely (43.58 +/- 1.87)%. TGF-beta1 could significantly down-regulate GJIC between adjacent Leydig cells, and this inhibitory effect may be achieved by promoting the expression of Cx43 in the cytoplasm and elevating the phosphorylation of Cx43.

  19. The role of radiation hard solar cells in minimizing the costs of global satellite communications systems

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.

    1995-01-01

    An analysis embodied in a PC computer program is presented which quantitatively demonstrates how the availability of radiation hard solar cells can minimize the cost of a global satellite communication system. The chief distinction between the currently proposed systems, such as Iridium Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation within the earth's radiation belts can reduce the total system cost by as much as a factor of two, so long as radiation hard components including solar cells, can be used. A detailed evaluation of several types of planar solar cells is given, including commercially available Si and GaAs/Ge cells, and InP/Si cells which are under development. The computer program calculates the end of life (EOL) power density of solar arrays taking into account the cell geometry, coverglass thickness, support frame, electrical interconnects, etc. The EOL power density can be determined for any altitude from low earth orbit (LEO) to geosynchronous (GEO) and for equatorial to polar planes of inclination. The mission duration can be varied over the entire range planned for the proposed satellite systems. An algorithm is included in the program for determining the degradation of cell efficiency for different cell technologies due to proton and electron irradiation. The program can be used to determine the optimum configuration for any cell technology for a particular orbit and for a specified mission life. Several examples of applying the program are presented, in which it is shown that the EOL power density of different technologies can vary by an order of magnitude for certain missions. Therefore, although a relatively radiation soft technology can be made to provide the required EOL power by simply increasing the size of the array, the impact on the total system budget could be unacceptable, due to increased launch and

  20. The role of radiation hard solar cells in minimizing the costs of global satellite communications systems

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.

    1995-01-01

    An analysis embodied in a PC computer program is presented which quantitatively demonstrates how the availability of radiation hard solar cells can minimize the cost of a global satellite communication system. The chief distinction between the currently proposed systems, such as Iridium Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation within the earth's radiation belts can reduce the total system cost by as much as a factor of two, so long as radiation hard components including solar cells, can be used. A detailed evaluation of several types of planar solar cells is given, including commercially available Si and GaAs/Ge cells, and InP/Si cells which are under development. The computer program calculates the end of life (EOL) power density of solar arrays taking into account the cell geometry, coverglass thickness, support frame, electrical interconnects, etc. The EOL power density can be determined for any altitude from low earth orbit (LEO) to geosynchronous (GEO) and for equatorial to polar planes of inclination. The mission duration can be varied over the entire range planned for the proposed satellite systems. An algorithm is included in the program for determining the degradation of cell efficiency for different cell technologies due to proton and electron irradiation. The program can be used to determine the optimum configuration for any cell technology for a particular orbit and for a specified mission life. Several examples of applying the program are presented, in which it is shown that the EOL power density of different technologies can vary by an order of magnitude for certain missions. Therefore, although a relatively radiation soft technology can be made to provide the required EOL power by simply increasing the size of the array, the impact on the total system budget could be unacceptable, due to increased launch and

  1. Enabling cell-cell communication via nanopore formation: structure, function and localization of the unique cell wall amidase AmiC2 of Nostoc punctiforme.

    PubMed

    Büttner, Felix M; Faulhaber, Katharina; Forchhammer, Karl; Maldener, Iris; Stehle, Thilo

    2016-04-01

    To orchestrate a complex life style in changing environments, the filamentous cyanobacterium Nostoc punctiforme facilitates communication between neighboring cells through septal junction complexes. This is achieved by nanopores that perforate the peptidoglycan (PGN) layer and traverse the cell septa. The N-acetylmuramoyl-l-alanine amidase AmiC2 (Npun_F1846; EC 3.5.1.28) in N. punctiforme generates arrays of such nanopores in the septal PGN, in contrast to homologous amidases that mediate daughter cell separation after cell division in unicellular bacteria. Nanopore formation is therefore a novel property of AmiC homologs. Immunofluorescence shows that native AmiC2 localizes to the maturing septum. The high-resolution crystal structure (1.12 Å) of its catalytic domain (AmiC2-cat) differs significantly from known structures of cell splitting and PGN recycling amidases. A wide and shallow binding cavity allows easy access of the substrate to the active site, which harbors an essential zinc ion. AmiC2-cat exhibits strong hydrolytic activity in vitro. A single point mutation of a conserved glutamate near the zinc ion results in total loss of activity, whereas zinc removal leads to instability of AmiC2-cat. An inhibitory α-helix, as found in the Escherichia coli AmiC(E. coli) structure, is absent. Taken together, our data provide insight into the cell-biological, biochemical and structural properties of an unusual cell wall lytic enzyme that generates nanopores for cell-cell communication in multicellular cyanobacteria. The novel structural features of the catalytic domain and the unique biological function of AmiC2 hint at mechanisms of action and regulation that are distinct from other amidases. The AmiC2-cat structure has been deposited in the Protein Data Bank under accession number 5EMI. © 2016 Federation of European Biochemical Societies.

  2. Smooth muscle–endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation

    PubMed Central

    Lutter, Sophie; Xie, Sherry; Tatin, Florence

    2012-01-01

    Active lymph transport relies on smooth muscle cell (SMC) contractions around collecting lymphatic vessels, yet regulation of lymphatic vessel wall assembly and lymphatic pumping are poorly understood. Here, we identify Reelin, an extracellular matrix glycoprotein previously implicated in central nervous system development, as an important regulator of lymphatic vascular development. Reelin-deficient mice showed abnormal collecting lymphatic vessels, characterized by a reduced number of SMCs, abnormal expression of lymphatic capillary marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and impaired function. Furthermore, we show that SMC recruitment to lymphatic vessels stimulated release and proteolytic processing of endothelium-derived Reelin. Lymphatic endothelial cells in turn responded to Reelin by up-regulating monocyte chemotactic protein 1 (MCP1) expression, which suggests an autocrine mechanism for Reelin-mediated control of endothelial factor expression upstream of SMC recruitment. These results uncover a mechanism by which Reelin signaling is activated by communication between the two cell types of the collecting lymphatic vessels—smooth muscle and endothelial cells—and highlight a hitherto unrecognized and important function for SMCs in lymphatic vessel morphogenesis and function. PMID:22665518

  3. Model for biological communication in a nanofabricated cell-mimic driven by stochastic resonance

    PubMed Central

    Karig, David K.; Siuti, Piro; Dar, Roy D.; Retterer, Scott. T.; Doktycz, Mitchel J.; Simpson, Michael L.

    2011-01-01

    Cells offer natural examples of highly efficient networks of nanomachines. Accordingly, both intracellular and intercellular communication mechanisms in nature are looked to as a source of inspiration and instruction for engineered nanocommunication. Harnessing biological functionality in this manner requires an interdisciplinary approach that integrates systems biology, synthetic biology, and nanofabrication. Here, we present a model system that exemplifies the synergism between these realms of research. We propose a synthetic gene network for operation in a nanofabricated cell mimic array that propagates a biomolecular signal over long distances using the phenomenon of stochastic resonance. Our system consists of a bacterial quorum sensing signal molecule, a bistable genetic switch triggered by this signal, and an array of nanofabricated cell mimic wells that contain the genetic system. An optimal level of noise in the system helps to propagate a time-varying AHL signal over long distances through the array of mimics. This noise level is determined both by the system volume and by the parameters of the genetic network. Our proposed genetically driven stochastic resonance system serves as a testbed for exploring the potential harnessing of gene expression noise to aid in the transmission of a time-varying molecular signal. PMID:21731597

  4. A Model of a Synthetic Biological Communication Interface between Mammalian Cells and Mechatronic Systems.

    PubMed

    Heyde, Keith Cameron; Ruder, Warren Christopher

    2016-10-25

    The creation of communication interfaces between abiotic and biotic systems represents a significant research challenge. In this work, we design and model a system linking the biochemical signaling pathways of mammalian cells to the actions of a mobile robotic prosthesis. We envision this system as a robotic platform carrying an optically monitored bioreactor that harbors mammalian cells. The cellular, optical signal is captured by an onboard fluorescent microscope and converted into an electronic signal. We first present a design for the overall cellrobot system, with a specific focus on the design of the synthetic gene networks needed for the system. We use these synthetic networks to encode motion commands within the cell's endogenous, oscillatory calcium signaling pathways. We then describe a potential system whereby this oscillatory signal could be outputted and monitored as a change in cellular fluorescence. Next, we use the changes resulting from the synthetic biological modifications as new parameters in a simulation of a wellestablished mathematical model for intracellular calcium signaling. The resulting signal is processed in the frequency domain, with specific frequencies activating cognate robot motion subroutines.

  5. Cell-to-Cell Communication Circuits: Quantitative Analysis of Synthetic Logic Gates.

    PubMed

    Hoffman-Sommer, Marta; Supady, Adriana; Klipp, Edda

    2012-01-01

    One of the goals in the field of synthetic biology is the construction of cellular computation devices that could function in a manner similar to electronic circuits. To this end, attempts are made to create biological systems that function as logic gates. In this work we present a theoretical quantitative analysis of a synthetic cellular logic-gates system, which has been implemented in cells of the yeast Saccharomyces cerevisiae (Regot et al., 2011). It exploits endogenous MAP kinase signaling pathways. The novelty of the system lies in the compartmentalization of the circuit where all basic logic gates are implemented in independent single cells that can then be cultured together to perform complex logic functions. We have constructed kinetic models of the multicellular IDENTITY, NOT, OR, and IMPLIES logic gates, using both deterministic and stochastic frameworks. All necessary model parameters are taken from literature or estimated based on published kinetic data, in such a way that the resulting models correctly capture important dynamic features of the included mitogen-activated protein kinase pathways. We analyze the models in terms of parameter sensitivity and we discuss possible ways of optimizing the system, e.g., by tuning the culture density. We apply a stochastic modeling approach, which simulates the behavior of whole populations of cells and allows us to investigate the noise generated in the system; we find that the gene expression units are the major sources of noise. Finally, the model is used for the design of system modifications: we show how the current system could be transformed to operate on three discrete values.

  6. Cell-specific labeling enzymes for analysis of cell-cell communication in continuous co-culture.

    PubMed

    Tape, Christopher J; Norrie, Ida C; Worboys, Jonathan D; Lim, Lindsay; Lauffenburger, Douglas A; Jørgensen, Claus

    2014-07-01

    We report the orthologous screening, engineering, and optimization of amino acid conversion enzymes for cell-specific proteomic labeling. Intracellular endoplasmic-reticulum-anchored Mycobacterium tuberculosis diaminopimelate decarboxylase (DDC(M.tub-KDEL)) confers cell-specific meso-2,6-diaminopimelate-dependent proliferation to multiple eukaryotic cell types. Optimized lysine racemase (Lyr(M37-KDEL)) supports D-lysine specific proliferation and efficient cell-specific isotopic labeling. When ectopically expressed in discrete cell types, these enzymes confer 90% cell-specific isotopic labeling efficiency after 10 days of co-culture. Moreover, DDC(M.tub-KDEL) and Lyr(M37-KDEL) facilitate equally high cell-specific labeling fidelity without daily media exchange. Consequently, the reported novel enzyme pairing can be used to study cell-specific signaling in uninterrupted, continuous co-cultures. Demonstrating the importance of increased labeling stability for addressing novel biological questions, we compare the cell-specific phosphoproteome of fibroblasts in direct co-culture with epithelial tumor cells in both interrupted (daily media exchange) and continuous (no media exchange) co-cultures. This analysis identified multiple cell-specific phosphorylation sites specifically regulated in the continuous co-culture. Given their applicability to multiple cell types, continuous co-culture labeling fidelity, and suitability for long-term cell-cell phospho-signaling experiments, we propose DDC(M.tub-KDEL) and Lyr(M37-KDEL) as excellent enzymes for cell-specific labeling with amino acid precursors. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. The role of radiation hard solar cells in minimizing the costs of global satellite communication systems

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.

    1996-01-01

    An analysis embodied in a PC computer program is presented, which quantitatively demonstrates how the availability of radiation hard solar cells can help minimize the cost of a global satellite communications system. An important distinction between the currently proposed systems, such as Iridium, Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation at orbital altitudes within the earth's radiation belts (10(exp 3) to 10(exp 4)km) can reduce the total cost of a system by several hundred percent, so long as radiation hard components including solar cells can be used. A detailed evaluation of the predicted performance of photovoltaic arrays using several different planar solar cell technologies is given, including commercially available Si and GaAs/Ge, and InP/Si which is currently under development. Several examples of applying the program are given, which show that the end of life (EOL) power density of different technologies can vary by a factor of ten for certain missions. Therefore, although a relatively radiation-soft technology can usually provide the required EOL power by simply increasing the size of the array, the impact upon the total system budget could be unacceptable, due to increased launch and hardware costs. In aggregate, these factors can account for more than a 10% increase in the total system cost. Since the estimated total costs of proposed global-coverage systems range from $1B to $9B, the availability of radiation-hard solar cells could make a decisive difference in the selection of a particular constellation architecture.

  8. The role of radiation hard solar cells in minimizing the costs of global satellite communication systems

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.

    1996-01-01

    An analysis embodied in a PC computer program is presented, which quantitatively demonstrates how the availability of radiation hard solar cells can help minimize the cost of a global satellite communications system. An important distinction between the currently proposed systems, such as Iridium, Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation at orbital altitudes within the earth's radiation belts (10(exp 3) to 10(exp 4)km) can reduce the total cost of a system by several hundred percent, so long as radiation hard components including solar cells can be used. A detailed evaluation of the predicted performance of photovoltaic arrays using several different planar solar cell technologies is given, including commercially available Si and GaAs/Ge, and InP/Si which is currently under development. Several examples of applying the program are given, which show that the end of life (EOL) power density of different technologies can vary by a factor of ten for certain missions. Therefore, although a relatively radiation-soft technology can usually provide the required EOL power by simply increasing the size of the array, the impact upon the total system budget could be unacceptable, due to increased launch and hardware costs. In aggregate, these factors can account for more than a 10% increase in the total system cost. Since the estimated total costs of proposed global-coverage systems range from $1B to $9B, the availability of radiation-hard solar cells could make a decisive difference in the selection of a particular constellation architecture.

  9. Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes

    PubMed Central

    Sáenz-de-Santa-María, Inés; Bernardo-Castiñeira, Cristóbal; Enciso, Eduardo; García-Moreno, Inmaculada; Chiara, Jose Luis; Suarez, Carlos; Chiara, María-Dolores

    2017-01-01

    Tunneling nanotubes (TnTs) are thin channels that temporally connect nearby cells allowing the cell-to-cell trafficking of biomolecules and organelles. The presence or absence of TnTs in human neoplasms and the mechanisms of TnT assembly remains largely unexplored. In this study, we have identified TnTs in tumor cells derived from squamous cell carcinomas (SCC) cultured under bi-dimensional and tri-dimensional conditions and also in human SCC tissues. Our study demonstrates that TnTs are not specific of epithelial or mesenchymal phenotypes and allow the trafficking of endosomal/lysosomal vesicles, mitochondria, and autophagosomes between both types of cells. We have identified focal adhesion kinase (FAK) as a key molecule required for TnT assembly via a mechanism involving the MMP-2 metalloprotease. We have also found that the FAK inhibitor PF-562271, which is currently in clinical development for cancer treatment, impairs TnT formation. Finally, FAK-deficient cells transfer lysosomes/autophagosomes to FAK-proficient cells via TnTs which may represent a novel mechanism to adapt to the stress elicited by impaired FAK signaling. Collectively, our results strongly suggest a link between FAK, MMP-2, and TnT, and unveil new vulnerabilities that can be exploited to efficiently eradicate cancer cells. PMID:28423494

  10. Communication skills and cultural awareness courses for healthcare professionals who care for patients with sickle cell disease.

    PubMed

    Thomas, Veronica J; Cohn, Tom

    2006-02-01

    This paper reports a project evaluating the efficacy and impact of a pilot communication skills and cultural awareness course for healthcare professionals who care for patients with sickle cell disease. Poor communication between patients with sickle cell disease and healthcare professionals causes suspicion and mistrust. Many patients feel that they are negatively labelled by the healthcare system and are sceptical of opening themselves to an unsympathetic system. They may therefore appear hostile and aggressive when interacting with healthcare professionals, which in turn leads to distortions and misunderstandings between both groups. The use of good communication skills by healthcare professionals is therefore vital for good healthcare practice. Forty-seven healthcare professionals took part in a series of three pilot courses each lasting 3 days. Healthcare professionals were taught a repertoire of communication skills and cultural awareness strategies to use in challenging situations that arise in their care of sickle cell patients. Expert facilitators used a variety of teaching techniques, such as professionally-made videos, role-play, and group exercises. Participants' confidence in dealing with challenging situations was assessed at baseline, immediately after the intervention, and at 3- and 6-month postintervention. A repeated measures anova revealed a statistically significant increase in confidence from pre- to postcourse scores. Confidence scores further increased from immediately postcourse and 3 months postcourse follow-up. These were then maintained at 6 months postcourse. The overall findings of this local study demonstrated that this type of communication skills and cultural awareness training had a positive and enduring impact on professionals' perceived ability and confidence in communicating with patients with sickle cell disease. Participants attributed this to the learner-centred approach of the course that provided them with the opportunity to

  11. Investigations To Characterize Multi-Junction Solar Cells In The Stratosphere Using Low-Cost Balloon And Communication Technologies

    NASA Technical Reports Server (NTRS)

    Bowe, Glenroy A.; Wang, Qianghua; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2005-01-01

    The use of current balloon, control and communication technologies to test multi-junction solar sell in the stratosphere to achieve near AMO conditions have been investigated. The design criteria for the technologies are that they be reliable, low cost and readily available. Progress is reported on a program to design, launch, fly and retrieve payloads dedicated to testing multi-junction solar cells.

  12. [Metabolic changes in cells under electromagnetic radiation of mobile communication systems].

    PubMed

    Iakimenko, I L; Sidorik, E P; Tsybulin, A S

    2011-01-01

    Review is devoted to the analysis of biological effects of microwaves. The results of last years' researches indicated the potential risks of long-term low-level microwaves exposure for human health. The analysis of metabolic changes in living cells under the exposure of microwaves from mobile communication systems indicates that this factor is stressful for cells. Among the reproducible effects of low-level microwave radiation are overexpression of heat shock proteins, an increase of reactive oxygen species level, an increase of intracellular Ca2+, damage of DNA, inhibition of DNA reparation, and induction of apoptosis. Extracellular-signal-regulated kinases ERK and stress-related kinases p38MAPK are involved in metabolic changes. Analysis of current data suggests that the concept of exceptionally thermal mechanism of biological effects of microwaves is not correct. In turn, this raises the question of the need to revaluation of modern electromagnetic standards based on thermal effects of non-ionizing radiation on biological systems.

  13. Expression of a connexin 43/beta-galactosidase fusion protein inhibits gap junctional communication in NIH3T3 cells

    PubMed Central

    1995-01-01

    Gap junctions contain membrane channels that mediate the cell-to-cell movement of ions, metabolites and cell signaling molecules. As gap junctions are comprised of a hexameric array of connexin polypeptides, the expression of a mutant connexin polypeptide may exert a dominant negative effect on gap junctional communication. To examine this possibility, we constructed a connexin 43 (Cx43)/beta-galactosidase (beta-gal) expression vector in which the bacterial beta-gal protein is fused in frame to the carboxy terminus of Cx43. This vector was transfected into NIH3T3 cells, a cell line which is well coupled via gap junctions and expresses high levels of Cx43. Transfectant clones were shown to express the fusion protein by northern and western analysis. X-Gal staining further revealed that all of the fusion protein containing cells also expressed beta-gal enzymatic activity. Double immunostaining with a beta-gal and Cx43 antibody demonstrated that the fusion protein is immunolocalized to the perinuclear region of the cytoplasm and also as punctate spots at regions of cell-cell contact. This pattern is similar to that of Cx43 in the parental 3T3 cells, except that in the fusion protein expressing cells, Cx43 expression was reduced at regions of cell-cell contact. Examination of gap junctional communication (GJC) with dye injection studies further showed that dye coupling was inhibited in the fusion protein expressing cells, with the largest reduction in coupling found in a clone exhibiting little Cx43 localization at regions of cell-cell contact. When the fusion protein expression vector was transfected into the communication poor C6 cell line, abundant fusion protein expression was observed, but unlike the transfected NIH3T3 cells, no fusion protein was detected at the cell surface. Nevertheless, dye coupling was inhibited in these C6 cells. Based on these observations, we propose that the fusion protein may inhibit GJC by sequestering the Cx43 protein intracellularly

  14. A model for Ca2+ waves in networks of glial cells incorporating both intercellular and extracellular communication pathways.

    PubMed

    Edwards, James R; Gibson, William G

    2010-03-07

    Networks of glial cells, and in particular astrocytes, are capable of sustaining calcium (Ca(2+)) waves both in vivo and in vitro. Experimentally, it has been shown that there are two separate modes of communication: the first by the passage of an agent (inositol 1,4,5-triphosphate, IP(3)) through gap junctions (GJs) joining cells; the second by the diffusion of an extracellular agent (adenosine triphosphate, ATP) that binds to receptors on the cells. In both cases, the outcome is the release of Ca(2+) from internal stores in the glial cells. These two modes of communication are not mutually exclusive, but probably work in conjunction in many cases. We present a model of a two-dimensional network of glial cells that incorporates regenerative intercellular (GJ) and extracellular (ATP) pathways. In the extreme cases of only one type of pathway, the results are in agreement with previous models. Adding an extracellular pathway to the GJ model increased the extent and duration of the Ca(2+) wave, but did not significantly change the speed of propagation. Conversely, adding GJs to the extracellular model did increase the wave speed. The model was modified to apply to the retina by extending it to include both astrocytes and Müller cells, with GJs the dominant coupling between astrocytes and ATP responsible for most of the remaining communication. It was found that both pathways are necessary to account for experimental results. 2009 Elsevier Ltd. All rights reserved.

  15. Electrolytic/fuel cell bundles and systems including a current collector in communication with an electrode thereof

    DOEpatents

    Hawkes, Grant L.; Herring, James S.; Stoots, Carl M.; O& #x27; Brien, James E.

    2013-03-05

    Electrolytic/fuel cell bundles and systems including such bundles include an electrically conductive current collector in communication with an anode or a cathode of each of a plurality of cells. A cross-sectional area of the current collector may vary in a direction generally parallel to a general direction of current flow through the current collector. The current collector may include a porous monolithic structure. At least one cell of the plurality of cells may include a current collector that surrounds an outer electrode of the cell and has at least six substantially planar exterior surfaces. The planar surfaces may extend along a length of the cell, and may abut against a substantially planar surface of a current collector of an adjacent cell. Methods for generating electricity and for performing electrolysis include flowing current through a conductive current collector having a varying cross-sectional area.

  16. A Functional Assay to Assess Connexin43 Mediated Cell-to-Cell Communication of Second Messengers in Cultured Bone Cells

    PubMed Central

    Stains, Joseph P.; Civitelli, Roberto

    2016-01-01

    Summary Cell-to-cell transfer of small molecules is a fundamental way by which multicellular organisms coordinate function. Recent work has highlighted the complexity of biologic responses downstream of gap junctions. As the connexin-regulated effectors are coming into focus, there is a need to develop functional assays that allow the specific testing of biologically relevant second messengers. Here, we describe a modification of the classic gap junction parachute assay to assess biologically relevant molecules passed though gap junctions. PMID:27207296

  17. The Self-Identity Protein IdsD Is Communicated between Cells in Swarming Proteus mirabilis Colonies.

    PubMed

    Saak, Christina C; Gibbs, Karine A

    2016-12-15

    Proteus mirabilis is a social bacterium that is capable of self (kin) versus nonself recognition. Swarming colonies of this bacterium expand outward on surfaces to centimeter-scale distances due to the collective motility of individual cells. Colonies of genetically distinct populations remain separate, while those of identical populations merge. Ids proteins are essential for this recognition behavior. Two of these proteins, IdsD and IdsE, encode identity information for each strain. These two proteins bind in vitro in an allele-restrictive manner. IdsD-IdsE binding is correlated with the merging of populations, whereas a lack of binding is correlated with the separation of populations. Key questions remained about the in vivo interactions of IdsD and IdsE, specifically, whether IdsD and IdsE bind within single cells or whether IdsD-IdsE interactions occur across neighboring cells and, if so, which of the two proteins is exchanged. Here we demonstrate that IdsD must originate from another cell to communicate identity and that this nonresident IdsD interacts with IdsE resident in the recipient cell. Furthermore, we show that unbound IdsD in recipient cells does not cause cell death and instead appears to contribute to a restriction in the expansion radius of the swarming colony. We conclude that P. mirabilis communicates IdsD between neighboring cells for nonlethal kin recognition, which suggests that the Ids proteins constitute a type of cell-cell communication.

  18. RovS and Its Associated Signaling Peptide Form a Cell-To-Cell Communication System Required for Streptococcus agalactiae Pathogenesis

    PubMed Central

    Gaudu, Philippe; Fleuchot, Betty; Besset, Colette; Rosinski-Chupin, Isabelle; Guillot, Alain; Monnet, Véronique; Gardan, Rozenn

    2015-01-01

    ABSTRACT  Bacteria can communicate with each other to coordinate their biological functions at the population level. In a previous study, we described a cell-to-cell communication system in streptococci that involves a transcriptional regulator belonging to the Rgg family and short hydrophobic peptides (SHPs) that act as signaling molecules. Streptococcus agalactiae, an opportunistic pathogenic bacterium responsible for fatal infections in neonates and immunocompromised adults, has one copy of the shp/rgg locus. The SHP-associated Rgg is called RovS in S. agalactiae. In this study, we found that the SHP/RovS cell-to-cell communication system is active in the strain NEM316 of S. agalactiae, and we identified different partners that are involved in this system, such as the Eep peptidase, the PptAB, and the OppA1-F oligopeptide transporters. We also identified a new target gene controlled by this system and reexamined the regulation of a previously proposed target gene, fbsA, in the context of the SHP-associated RovS system. Furthermore, our results are the first to indicate the SHP/RovS system specificity to host liver and spleen using a murine model, which demonstrates its implication in streptococci virulence. Finally, we observed that SHP/RovS regulation influences S. agalactiae’s ability to adhere to and invade HepG2 hepatic cells. Hence, the SHP/RovS cell-to-cell communication system appears to be an essential mechanism that regulates pathogenicity in S. agalactiae and represents an attractive target for the development of new therapeutic strategies. Importance  Rgg regulators and their cognate pheromones, called small hydrophobic peptides (SHPs), are present in nearly all streptococcal species. The general pathways of the cell-to-cell communication system in which Rgg and SHP take part are well understood. However, many other players remain unidentified, and the direct targets of the system, as well as its link to virulence, remain unclear. Here, we

  19. Bone morphogenetic protein 2 regulates cell-cell communication by down-regulating connexin43 expression in luteinized human granulosa cells.

    PubMed

    Wu, Yan-Ting; Chang, Hsun-Ming; Huang, He-Feng; Sheng, Jian-Zhong; Leung, Peter C K

    2017-03-01

    Does bone morphogenetic protein 2 (BMP2) regulate connexin43 (Cx43) and modulate cell-cell communication in luteinized human granulosa cells? BMP2 decreases gap junction intercellular communication (GJIC) of luteinized human granulosa cells by down-regulating Cx43 expression through an activin receptor-like kinase (ALK)2/ALK3-mediated Sma- and Mad-related protein (SMAD)-dependent signaling pathway. BMP2 and its putative receptors are highly expressed in the human corpus luteum and are involved in the process of luteolysis. Cx43-coupled gap junctions play a critical role in the development and maintenance of corpus luteum. This is a laboratory study conducted over a 1-year period. At least three independent experiments with three replicates were conducted and the experimental samples were compared with the appropriate vehicle controls for all of the inhibition-approach, concentration-dependent or time-course studies. SVOG cell line (immortalized human granulosa-lutein cells derived from in vitro fertilization patients in an academic research center) was used as the study model. The changes of Cx43 expression and levels of phosphorylated SMAD1/5/8 protein were evaluated after exposure to recombinant human BMP2. Real-time quantitative PCR and Western blot analysis were used to examine the specific mRNA and protein levels, respectively. The BMP/TGF-β type I receptor inhibitors (Dorsomorphin, DMH-1 and SB431542) and target depletion small interfering RNAs (ALK2, ALK3, ALK6 and SMAD4) were used to investigate the underlying molecular mechanisms. A scrape loading and dye transfer assay was used to evaluate the GJIC between the SVOG cells. Treatment with BMP2 down-regulated the expression of Cx43 and decreased the GJIC activity, whereas it increased the phosphorylated SMAD1/5/8 protein in SVOG cells (P < 0.05). These biological effects were abolished by pre-treatment with the BMP type I receptor inhibitors, Dorsomorphin and DMH-1 (P < 0.05), but not SB431542. Additionally

  20. Stat3 is a positive regulator of gap junctional intercellular communication in cultured, human lung carcinoma cells

    PubMed Central

    2012-01-01

    Background Neoplastic transformation of cultured cells by a number of oncogenes such as src suppresses gap junctional, intercellular communication (GJIC); however, the role of Src and its effector Signal transducer and activator of transcription-3 (Stat3) upon GJIC in non small cell lung cancer (NSCLC) has not been defined. Immunohistochemical analysis revealed high Src activity in NSCLC biopsy samples compared to normal tissues. Here we explored the potential effect of Src and Stat3 upon GJIC, by assessing the levels of tyr418-phosphorylated Src and tyr705-phosphorylated Stat3, respectively, in a panel of NSCLC cell lines. Methods Gap junctional communication was examined by electroporating the fluorescent dye Lucifer yellow into cells grown on a transparent electrode, followed by observation of the migration of the dye to the adjacent, non-electroporated cells under fluorescence illumination. Results An inverse relationship between Src activity levels and GJIC was noted; in five lines with high Src activity GJIC was absent, while two lines with extensive GJIC (QU-DB and SK-LuCi6) had low Src levels, similar to a non-transformed, immortalised lung epithelial cell line. Interestingly, examination of the mechanism indicated that Stat3 inhibition in any of the NSCLC lines expressing high endogenous Src activity levels, or in cells where Src was exogenously transduced, did not restore GJIC. On the contrary, Stat3 downregulation in immortalised lung epithelial cells or in the NSCLC lines displaying extensive GJIC actually suppressed junctional permeability. Conclusions Our findings demonstrate that although Stat3 is generally growth promoting and in an activated form it can act as an oncogene, it is actually required for gap junctional communication both in nontransformed lung epithelial cells and in certain lung cancer lines that retain extensive GJIC. PMID:23244248

  1. Estrogenic compounds inhibit gap junctional intercellular communication in mouse Leydig TM3 cells

    SciTech Connect

    Iwase, Yumiko . E-mail: Iwase.Yumiko@mg.m-pharma.co.jp; Fukata, Hideki . E-mail: fukata@faculty.chiba-u.jp; Mori, Chisato . E-mail: cmori@faculty.chiba-u.jp

    2006-05-01

    Some estrogenic compounds are reported to cause testicular disorders in humans and/or experimental animals by direct action on Leydig cells. In carcinogenesis and normal development, gap junctional intercellular communication (GJIC) plays an essential role in maintaining homeostasis. In this study, we examine the effects of diethylstilbestrol (DES, a synthetic estrogen), 17{beta}-estradiol (E{sub 2}, a natural estrogen), and genistein (GEN, a phytoestrogen) on GJIC between mouse Leydig TM3 cells using Lucifer yellow microinjection. The three compounds tested produced GJIC inhibition in the TM3 cells after 24 h. Gradually, 10 {mu}M DES began to inhibit GJIC for 24 h and this effect was observed until 72 h. On the other hand, both 20 {mu}M E{sub 2} and 25 {mu}M GEN rapidly inhibited GJIC in 6 h and 2 h, respectively. The effects continued until 24 h, but weakened by 72 h. Furthermore, a combined effect at {mu}M level between DES and E{sub 2} on GJIC inhibition was observed, but not between GEN and E{sub 2}. DES and E{sub 2} showed GJIC inhibition at low dose levels (nearly physiological estrogen levels) after 72 h, but GEN did not. DES-induced GJIC inhibition at 10 pM and 10 {mu}M was completely counteracted by ICI 182,780 (ICl), an estrogen receptor antagonist. On the other hand, the inhibitory effects on GJIC with E{sub 2} (10 pM and 20 {mu}M) and GEN (25 {mu}M) were partially blocked by ICI or calphostin C, a protein kinase C (PKC) inhibitor, and were completely blocked by the combination of ICI and calphostin C. These results demonstrate that DES inhibits GJIC between Leydig cells via the estrogen receptor (ER), and that E{sub 2} and GEN inhibit GJIC via ER and PKC. These estrogenic compounds may have different individual nongenotoxic mechanism including PKC pathway on testicular carcinogenesis or development.

  2. Circadian communication between unicells? Effects on period by cell-conditioning of medium.

    PubMed

    Broda, H; Brugge, D; Homma, K; Hastings, J W

    1986-02-01

    Populations of Gonyaulax polyedra, in two different phases, about 11 h apart, were mixed, and the intensity of their spontaneous bioluminescence glow recorded for about 2 wk under conditions of constant dim (35 +/- 3 microE/m2/s) white light and constant temperature (19.0 +/- 0.3 degrees C). The phases and amplitudes of glow signals recorded from mixed cultures were compared with those obtained from the arithmetic sum of the intensity data from two control vials. Peaks in control cultures generally remained separate, but there was a spontaneous increase in the period beginning 6-11 d after the onset of constant conditions. This did not occur in cultures in which the medium was exchanged with fresh medium every 2 d. In the actual mixes of two cultures there was a merging of the two subpeaks in the signal, which did not occur when the medium was exchanged. The results indicate that conditioning of the medium by cells may affect the period of the circadian rhythm and that this might result in a type of communication.

  3. Structural Insights into Streptococcal Competence Regulation by the Cell-to-Cell Communication System ComRS.

    PubMed

    Talagas, Antoine; Fontaine, Laetitia; Ledesma-García, Laura; Mignolet, Johann; Li de la Sierra-Gallay, Inès; Lazar, Noureddine; Aumont-Nicaise, Magali; Federle, Michael J; Prehna, Gerd; Hols, Pascal; Nessler, Sylvie

    2016-12-01

    In Gram-positive bacteria, cell-to-cell communication mainly relies on extracellular signaling peptides, which elicit a response either indirectly, by triggering a two-component phosphorelay, or directly, by binding to cytoplasmic effectors. The latter comprise the RNPP family (Rgg and original regulators Rap, NprR, PrgX and PlcR), whose members regulate important bacterial processes such as sporulation, conjugation, and virulence. RNPP proteins are increasingly considered as interesting targets for the development of new antibacterial agents. These proteins are characterized by a TPR-type peptide-binding domain, and except for Rap proteins, also contain an N-terminal HTH-type DNA-binding domain and display a transcriptional activity. Here, we elucidate the structure-function relationship of the transcription factor ComR, a new member of the RNPP family, which positively controls competence for natural DNA transformation in streptococci. ComR is directly activated by the binding of its associated pheromone XIP, the mature form of the comX/sigX-inducing-peptide ComS. The crystal structure analysis of ComR from Streptococcus thermophilus combined with a mutational analysis and in vivo assays allows us to propose an original molecular mechanism of the ComR regulation mode. XIP-binding induces release of the sequestered HTH domain and ComR dimerization to allow DNA binding. Importantly, we bring evidence that this activation mechanism is conserved and specific to ComR orthologues, demonstrating that ComR is not an Rgg protein as initially proposed, but instead constitutes a new member of the RNPP family. In addition, identification of XIP and ComR residues important for competence activation constitutes a crucial step towards the design of antagonistic strategies to control gene exchanges among streptococci.

  4. Structural Insights into Streptococcal Competence Regulation by the Cell-to-Cell Communication System ComRS

    PubMed Central

    Talagas, Antoine; Fontaine, Laetitia; Ledesma-Garca, Laura; Lazar, Noureddine; Aumont-Nicaise, Magali; Federle, Michael J.; Prehna, Gerd; Hols, Pascal

    2016-01-01

    In Gram-positive bacteria, cell-to-cell communication mainly relies on extracellular signaling peptides, which elicit a response either indirectly, by triggering a two-component phosphorelay, or directly, by binding to cytoplasmic effectors. The latter comprise the RNPP family (Rgg and original regulators Rap, NprR, PrgX and PlcR), whose members regulate important bacterial processes such as sporulation, conjugation, and virulence. RNPP proteins are increasingly considered as interesting targets for the development of new antibacterial agents. These proteins are characterized by a TPR-type peptide-binding domain, and except for Rap proteins, also contain an N-terminal HTH-type DNA-binding domain and display a transcriptional activity. Here, we elucidate the structure-function relationship of the transcription factor ComR, a new member of the RNPP family, which positively controls competence for natural DNA transformation in streptococci. ComR is directly activated by the binding of its associated pheromone XIP, the mature form of the comX/sigX-inducing-peptide ComS. The crystal structure analysis of ComR from Streptococcus thermophilus combined with a mutational analysis and in vivo assays allows us to propose an original molecular mechanism of the ComR regulation mode. XIP-binding induces release of the sequestered HTH domain and ComR dimerization to allow DNA binding. Importantly, we bring evidence that this activation mechanism is conserved and specific to ComR orthologues, demonstrating that ComR is not an Rgg protein as initially proposed, but instead constitutes a new member of the RNPP family. In addition, identification of XIP and ComR residues important for competence activation constitutes a crucial step towards the design of antagonistic strategies to control gene exchanges among streptococci. PMID:27907189

  5. Irsogladine maleate regulates gap junctional intercellular communication-dependent epithelial barrier in human nasal epithelial cells.

    PubMed

    Miyata, Ryo; Nomura, Kazuaki; Kakuki, Takuya; Takano, Ken-Ichi; Kohno, Takayuki; Konno, Takumi; Sawada, Norimasa; Himi, Tetsuo; Kojima, Takashi

    2015-04-01

    The airway epithelium of the human nasal mucosa acts as the first physical barrier that protects against inhaled substances and pathogens. Irsogladine maleate (IM) is an enhancer of gastric mucosal protective factors via upregulation of gap junctional intercellular communication (GJIC). GJIC is thought to participate in the formation of functional tight junctions. However, the effects of IM on GJIC and the epithelial barrier in human nasal epithelial cells (HNECs) remain unknown. To investigate the effects of IM on GJIC and the tight junctional barrier in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were treated with IM and the GJIC inhibitors oleamide and 18β-GA. Some cells were pretreated with IM before treatment with TLR3 ligand poly(I:C) to examine whether IM prevented the changes via TLR3-mediated signal pathways. In hTERT-HNECs, GJIC blockers reduced the expression of tight junction molecules claudin-1, -4, -7, occludin, tricellulin, and JAM-A. IM induced GJIC activity and enhanced the expression of claudin-1, -4, and JAM-A at the protein and mRNA levels with an increase of barrier function. GJIC blockers prevented the increase of the tight junction proteins induced by IM. Furthermore, IM prevented the reduction of JAM-A but not induction of IL-8 and TNF-α induced by poly(I:C). In conclusion, IM can maintain the GJIC-dependent tight junctional barrier via regulation of GJIC in upper airway nasal epithelium. Therefore, it is possible that IM may be useful as a nasal spray to prevent the disruption of the epithelial barrier by viral infections and exposure to allergens in human nasal mucosa.

  6. CD146 coordinates brain endothelial cell-pericyte communication for blood-brain barrier development.

    PubMed

    Chen, Jianan; Luo, Yongting; Hui, Hui; Cai, Tanxi; Huang, Hongxin; Yang, Fuquan; Feng, Jing; Zhang, Jingjing; Yan, Xiyun

    2017-09-05

    The blood-brain barrier (BBB) establishes a protective interface between the central neuronal system and peripheral blood circulation and is crucial for homeostasis of the CNS. BBB formation starts when the endothelial cells (ECs) invade the CNS and pericytes are recruited to the nascent vessels during embryogenesis. Despite the essential function of pericyte-EC interaction during BBB development, the molecular mechanisms coordinating the pericyte-EC behavior and communication remain incompletely understood. Here, we report a single cell receptor, CD146, that presents dynamic expression patterns in the cerebrovasculature at the stages of BBB induction and maturation, coordinates the interplay of ECs and pericytes, and orchestrates BBB development spatiotemporally. In mouse brain, CD146 is first expressed in the cerebrovascular ECs of immature capillaries without pericyte coverage; with increased coverage of pericytes, CD146 could only be detected in pericytes, but not in cerebrovascular ECs. Specific deletion of Cd146 in mice ECs resulted in reduced brain endothelial claudin-5 expression and BBB breakdown. By analyzing mice with specific deletion of Cd146 in pericytes, which have defects in pericyte coverage and BBB integrity, we demonstrate that CD146 functions as a coreceptor of PDGF receptor-β to mediate pericyte recruitment to cerebrovascular ECs. Moreover, we found that the attached pericytes in turn down-regulate endothelial CD146 by secreting TGF-β1 to promote further BBB maturation. These results reveal that the dynamic expression of CD146 controls the behavior of ECs and pericytes, thereby coordinating the formation of a mature and stable BBB.

  7. Intercellular Communication by Exchange of Cytoplasmic Material via Tunneling Nano-Tube Like Structures in Primary Human Renal Epithelial Cells

    PubMed Central

    Domhan, Sophie; Ma, Lili; Tai, Albert; Anaya, Zachary; Beheshti, Afshin; Zeier, Martin; Hlatky, Lynn; Abdollahi, Amir

    2011-01-01

    Transfer of cellular material via tunneling nanotubes (TNT) was recently discovered as a novel mechanism for intercellular communication. The role of intercellular exchange in communication of renal epithelium is not known. Here we report extensive spontaneous intercellular exchange of cargo vesicles and organelles between primary human proximal tubular epithelial cells (RPTEC). Cells were labeled with two different quantum dot nanocrystals (Qtracker 605 or 525) and intercellular exchange was quantified by high-throughput fluorescence imaging and FACS analysis. In co-culture, a substantial fraction of cells (67.5%) contained both dyes indicating high levels of spontaneous intercellular exchange in RPTEC. The double positive cells could be divided into three categories based on the preponderance of 605 Qtracker (46.30%), 525 Qtracker (48.3%) and approximately equal content of both Qtrackers (4.57%). The transfer of mitochondria between RPTECs was also detected using an organelle specific dye. Inhibition of TNT genesis by actin polymerization inhibitor (Latrunculin B) markedly reduced intercellular exchange (>60%) suggesting that intercellular exchange in RPTEC was in part mediated via TNT-like structures. In contrast, induction of cellular stress by Zeocin treatment increased tube-genesis in RPTEC. Our data indicates an unexpected dynamic of intercellular communication between RPTEC by exchange of cytosolic material, which may play an important role in renal physiology. PMID:21738629

  8. Intercellular communication by exchange of cytoplasmic material via tunneling nano-tube like structures in primary human renal epithelial cells.

    PubMed

    Domhan, Sophie; Ma, Lili; Tai, Albert; Anaya, Zachary; Beheshti, Afshin; Zeier, Martin; Hlatky, Lynn; Abdollahi, Amir

    2011-01-01

    Transfer of cellular material via tunneling nanotubes (TNT) was recently discovered as a novel mechanism for intercellular communication. The role of intercellular exchange in communication of renal epithelium is not known. Here we report extensive spontaneous intercellular exchange of cargo vesicles and organelles between primary human proximal tubular epithelial cells (RPTEC). Cells were labeled with two different quantum dot nanocrystals (Qtracker 605 or 525) and intercellular exchange was quantified by high-throughput fluorescence imaging and FACS analysis. In co-culture, a substantial fraction of cells (67.5%) contained both dyes indicating high levels of spontaneous intercellular exchange in RPTEC. The double positive cells could be divided into three categories based on the preponderance of 605 Qtracker (46.30%), 525 Qtracker (48.3%) and approximately equal content of both Qtrackers (4.57%). The transfer of mitochondria between RPTECs was also detected using an organelle specific dye. Inhibition of TNT genesis by actin polymerization inhibitor (Latrunculin B) markedly reduced intercellular exchange (>60%) suggesting that intercellular exchange in RPTEC was in part mediated via TNT-like structures. In contrast, induction of cellular stress by Zeocin treatment increased tube-genesis in RPTEC. Our data indicates an unexpected dynamic of intercellular communication between RPTEC by exchange of cytosolic material, which may play an important role in renal physiology.

  9. Organelle Communication at Membrane Contact Sites (MCS): From Curiosity to Center Stage in Cell Biology and Biomedical Research.

    PubMed

    Simmen, Thomas; Tagaya, Mitsuo

    2017-01-01

    Cell biology has long recognized that organelles can communicate with each other. Initially, such communication was thought to occur primarily via vesicular trafficking between biochemically distinct organelles. However, studies starting in the 1970s on lipid metabolism have unearthed another way how organelles can communicate and have spawned the field of membrane contact sites (MCS). While, initially, MCS had been recognized as fluid entities that mediate lipid and ion transport in an ad hoc manner, more recently MCS have been found to depend on protein-protein interactions that control themselves a variety of MCS functions. As a result, the cell biological definition of an intracellular organelle as an isolated membrane compartment is now being revised. Accordingly, the organelle definition now describes organelles as dynamic membrane compartments that function in a milieu of coordinated contacts with other organelles. Through these mercurial functions, MCS dictate the function of organelles to a large extent but also play important roles in a number of diseases, including type 2 diabetes, neurodegenerative diseases, infections, and cancer. This book assembles reviews that describe our quickly evolving knowledge about organellar communication on MCS and the significance of MCS for disease.

  10. [Effects of lovastatin on proliferation and gap junctional intercellular communication of human breast cancer cell MCF-7].

    PubMed

    Zhou, Yong; Mi, Man-Tian; Zhu, Jun-Dong; Zhang, Qian-Yong

    2003-03-01

    Lovastatin,an inhibitor of endogenous cholesterol biosynthesis,has been widely used in the clinical treatment of hypercholesterolemia.Recently,lovastatin has been paid more attention for its wide-range effects on human cancer cells; however,the detail mechanisms of its anti-cancer effects are not yet understood. This study was designed to investigate the effects of lovastatin on proliferation and gap junctional intercellular communication (GJIC) of MCF-7 human breast cancer cells. After treated with lovastatin at dosages of 4,8,16 micromol/L for 1-3 days,the cell differentiation was examined with nitroblue tetrazolium (NBT) reduction test;the proliferation and distribution of cell cycles were examined with flow cytometry (FCM). Meanwhile,GJIC of MCF-7 cells was observed using the scrape-loading and dye transfer(SLDT) technique. Lovastatin could inhibit the proliferation of MCF-7 cells significantly and 75.80 percent of cells were inhibited after treated with 16 micromol/L lovastatin for 72 hours (P< 0.05). Meanwhile, lovastatin could arrest MCF-7 cells in the G(0)/G(1) phase of cell cycle and 80 percent of cells were arrested in G(0)/G(1) phase after treated with lovastatin for 72 hours. Furthermore, lovastatin could induce the differentiation of MCF-7 cells (P< 0.01) and up-regulate GJIC in MCF-7 cells. After treated with 16 micromol/L lovastatin for 72 hours, transfer of LY fluorescence could reach 4-5 rows of cells from the scraped line. However, apoptosis in MCF-7 cells was not obvious. All these effects of lovastatin were in a dose-and time-dependent manner. It suggests that lovastatin has the capabilities of inhibiting proliferation, arresting MCF-7 cells at G(0)/G(1) phase of cell cycle and inducing differentiation. These effects of lovastatin maybe correlate with lovastatin promoting GJIC function in MCF-7 cells.

  11. Gap junctions and other mechanisms of cell–cell communication regulate basal insulin secretion in the pancreatic islet

    PubMed Central

    Benninger, R K P; Head, W Steven; Zhang, Min; Satin, Leslie S; Piston, David W

    2011-01-01

    Abstract Cell–cell communication in the islet of Langerhans is important for the regulation of insulin secretion. Gap-junctions coordinate oscillations in intracellular free-calcium ([Ca2+]i) and insulin secretion in the islet following elevated glucose. Gap-junctions can also ensure that oscillatory [Ca2+]i ceases when glucose is at a basal levels. We determine the roles of gap-junctions and other cell–cell communication pathways in the suppression of insulin secretion under basal conditions. Metabolic, electrical and insulin secretion levels were measured from islets lacking gap-junction coupling following deletion of connexion36 (Cx36−/−), and these results were compared to those obtained using fully isolated β-cells. KATP loss-of-function islets provide a further experimental model to specifically study gap-junction mediated suppression of electrical activity. In isolated β-cells or Cx36−/− islets, elevations in [Ca2+]i persisted in a subset of cells even at basal glucose. Isolated β-cells showed elevated insulin secretion at basal glucose; however, insulin secretion from Cx36−/− islets was minimally altered. [Ca2+]i was further elevated under basal conditions, but insulin release still suppressed in KATP loss-of-function islets. Forced elevation of cAMP led to PKA-mediated increases in insulin secretion from islets lacking gap-junctions, but not from islets expressing Cx36 gap junctions. We conclude there is a redundancy in how cell–cell communication in the islet suppresses insulin release. Gap junctions suppress cellular heterogeneity and spontaneous [Ca2+]i signals, while other juxtacrine mechanisms, regulated by PKA and glucose, suppress more distal steps in exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still suppress basal insulin secretion. PMID:21930600

  12. Nickel-induced increases in gap junctional communication in the uterine cell line SK-UT-1.

    PubMed

    Marty, M S; Loch-Caruso, R

    1993-03-01

    Previous studies have suggested that gap junctions may have a role in various uterine functions, including parturition. Because nickel has been demonstrated to increase uterine contractility in vitro, the effect of nickel (II) chloride on gap junctional communication was assessed in a tumorigenic uterine cell line, SK-UT-1 (ATCC HTB 114). Cells were exposed in vitro to 25 and 50 microM NiCl2 for 24 h or 100 microM NiCl2 for 3, 12, and 24 h, then functional gap junctional communication was measured as the transfer of Lucifer yellow dye from microinjected donor cells to their primary neighbor cells. Dye transfer was significantly increased only in cell cultures exposed to 100 microM NiCl2 for 24 h, compared to untreated controls, lower doses, and shorter exposure periods. This response was inhibited by the simultaneous co-treatment of SK-UT-1 cells with magnesium by adding 100 microM MgSO4 to the dosing medium. Possible mechanisms and implications for these findings are discussed.

  13. Dephosphorylation agents depress gap junctional communication between rat cardiac cells without modifying the Connexin43 phosphorylation degree.

    PubMed

    Duthe, F; Dupont, E; Verrecchia, F; Plaisance, I; Severs, N J; Sarrouilhe, D; Hervé, J C

    2000-12-01

    The functional state of gap junctional channels and the phosphorylation status of Connexine43 (Cx43), the major gap junctional protein in rat heart, were evaluated in primary cultures of neonatal rat cardiomyocytes. H7, able to inhibit a range of serine/threonine protein kinases, progressively reduced gap junctional conductance to approximately 13% of its initial value within 10 min except when protein phosphatase inhibitors were also present. The dephosphorylating agent 2,3-Butanedione monoxime (BDM) produced both a quick and reversible interruption of cell-to-cell communication as well as a parallel slow inhibition of junctional currents. The introduction of a non-hydrolysable ATP analogue (ATPgammaS) in the cytosol delayed the second component, suggesting that it was the consequence of protein dephosphorylation. Western blot analysis reveals 2 forms of Cx43 with different electrophoretic mobilities which correspond to its known phosphorylated and dephosphorylated forms. After exposure of the cells to H7 (1 mmol/l, 1h) or BDM (15 mmol/l, 15 min), no modification in the level of Cx43 phosphorylation was observed. The lack of direct correlation between the inhibition of cell-to-cell communication and changes in the phosphorylation status of Cx43 suggest that the functional state of junctional channels might rather be determined by regulatory proteins associated to Cx43.

  14. Contribution of FcɛRI-associated vesicles to mast cell-macrophage communication following Francisella tularensis infection.

    PubMed

    Rodriguez, Annette R; Yu, Jieh-Juen; Navara, Christopher; Chambers, James P; Guentzel, M Neal; Arulanandam, Bernard P

    2016-10-01

    Understanding innate immune intercellular communication following microbial infection remains a key biological issue. Using live cell imaging, we demonstrate that mast cells actively extend cellular projections to sample the macrophage periphery during Francisella tularensis LVS infection. Mast cell MHCII(hi) expression was elevated from less than 1% to 13% during LVS infection. Direct contact during co-culture with macrophages further increased mast cell MHCII(hi) expression to approximately 87%. Confocal analyses of the cellular perimeter revealed mast cell caspase-1 was localized in close proximity with FcɛRI in uninfected mast cells, and repositioned to clustered regions upon LVS infection. Importantly, mast cell FcɛRI-encompassed vesicles are transferred to macrophages by trogocytosis, and macrophage caspase-1 expression is further up-regulated upon direct contact with mast cells. Our study reveals direct cellular interactions between innate cells that may impact the function of caspase-1, a known sensor of microbial danger and requirement for innate defense against many pathogenic microbes including F. tularensis.

  15. Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Omairi-Nasser, Amin; Mariscal, Vicente; Austin, Jotham R; Haselkorn, Robert

    2015-08-11

    The filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 differentiates specialized cells, heterocysts, that fix atmospheric nitrogen and transfer the fixed nitrogen to adjacent vegetative cells. Reciprocally, vegetative cells transfer fixed carbon to heterocysts. Several routes have been described for metabolite exchange within the filament, one of which involves communicating channels that penetrate the septum between adjacent cells. Several fra gene mutants were isolated 25 y ago on the basis of their phenotypes: inability to fix nitrogen and fragmentation of filaments upon transfer from N+ to N- media. Cryopreservation combined with electron tomography were used to investigate the role of three fra gene products in channel formation. FraC and FraG are clearly involved in channel formation, whereas FraD has a minor part. Additionally, FraG was located close to the cytoplasmic membrane and in the heterocyst neck, using immunogold labeling with antibody raised to the N-terminal domain of the FraG protein.

  16. Communication between Corneal Epithelial Cells and Trigeminal Neurons Is Facilitated by Purinergic (P2) and Glutamatergic Receptors

    PubMed Central

    Trinidad, Monique; Chi, Cheryl; Ren, Ruiyi; Rich, Celeste B.; Trinkaus-Randall, Vickery

    2012-01-01

    Previously, we demonstrated that nucleotides released upon mechanical injury to corneal epithelium activate purinergic (P2) receptors resulting in mobilization of a Ca2+ wave. However, the tissue is extensively innervated and communication between epithelium and neurons is critical and not well understood. Therefore, we developed a co-culture of primary trigeminal neurons and human corneal limbal epithelial cells. We demonstrated that trigeminal neurons expressed a repertoire of P2Yand P2X receptor transcripts and responded to P2 agonists in a concentration-dependent manner. Mechanical injuries to epithelia in the co-cultures elicited a Ca2+ wave that mobilized to neurons and was attenuated by Apyrase, an ectonucleotidase. To elucidate the role of factors released from each cell type, epithelial and neuronal cells were cultured, injured, and the wound media from one cell type was collected and added to the other cell type. Epithelial wound media generated a rapid Ca2+ mobilization in neuronal cells that was abrogated in the presence of Apyrase, while neuronal wound media elicited a complex response in epithelial cells. The rapid Ca2+ mobilization was detected, which was abrogated with Apyrase, but it was followed by Ca2+ waves that occurred in cell clusters. When neuronal wound media was preincubated with a cocktail of N-methyl-D-aspartate (NMDA) receptor inhibitors, the secondary response in epithelia was diminished. Glutamate was detected in the neuronal wound media and epithelial expression of NMDA receptor subunit transcripts was demonstrated. Our results indicate that corneal epithelia and neurons communicate via purinergic and NMDA receptors that mediate the wound response in a highly orchestrated manner. PMID:22970252

  17. INHIBITION OF GAP JUNCTIONAL INTERCELLULAR COMMUNICATION BY PERFLUORINATED COMPOUNDS IN RAT LIVER AND DOLPHIN KIDNEY EPITHELIAL CELL LINES IN VITRO AND SPRAGUE-DAWLEY RATS IN VIVO

    EPA Science Inventory

    Abstract

    Gap Junctional Intercellular Communication (GJIC) is the major pathway of intercellular signal transduction, and is, thus, important for normal cell growth and function. Recent studies have revealed a global distribution of some perfluorinated organic compounds e...

  18. INHIBITION OF GAP JUNCTIONAL INTERCELLULAR COMMUNICATION BY PERFLUORINATED COMPOUNDS IN RAT LIVER AND DOLPHIN KIDNEY EPITHELIAL CELL LINES IN VITRO AND SPRAGUE-DAWLEY RATS IN VIVO

    EPA Science Inventory

    Abstract

    Gap Junctional Intercellular Communication (GJIC) is the major pathway of intercellular signal transduction, and is, thus, important for normal cell growth and function. Recent studies have revealed a global distribution of some perfluorinated organic compounds e...

  19. Subsets of ATP-sensitive potassium channel (KATP) inhibitors increase gap junctional intercellular communication in metastatic cancer cell lines independent of SUR expression

    USDA-ARS?s Scientific Manuscript database

    Gap junctional intercellular communication (GJIC) is a process whereby cells share molecules and nutrients with each other by physical contact through cell membrane pores. In tumor cells, GJIC is often altered, suggesting that this process may be important in the context of cancer. Certain ion chan...

  20. HDAC inhibition amplifies gap junction communication in neural progenitors: Potential for cell-mediated enzyme prodrug therapy

    SciTech Connect

    Khan, Zahidul . E-mail: Zahidul.Khan@ki.se; Akhtar, Monira; Asklund, Thomas; Juliusson, Bengt . E-mail: Tomas.Ekstrom@ki.se

    2007-08-01

    Enzyme prodrug therapy using neural progenitor cells (NPCs) as delivery vehicles has been applied in animal models of gliomas and relies on gap junction communication (GJC) between delivery and target cells. This study investigated the effects of histone deacetylase (HDAC) inhibitors on GJC for the purpose of facilitating transfer of therapeutic molecules from recombinant NPCs. We studied a novel immortalized midbrain cell line, NGC-407 of embryonic human origin having neural precursor characteristics, as a potential delivery vehicle. The expression of gap junction protein connexin 43 (C x 43) was analyzed by western blot and immunocytochemistry. While C x 43 levels were decreased in untreated differentiating NGC-407 cells, the HDAC inhibitor 4-phenylbutyrate (4-PB) increased C x 43 expression along with increased membranous deposition in both proliferating and differentiating cells. Simultaneously, Ser 279/282-phosphorylated form of C x 43 was declined in both culture conditions by 4-PB. The 4-PB effect in NGC-407 cells was verified by using HNSC.100 human neural progenitors and Trichostatin A. Improved functional GJC is of imperative importance for therapeutic strategies involving intercellular transport of low molecular-weight compounds. We show here an enhancement by 4-PB, of the functional GJC among NGC-407 cells, as well as between NGC-407 and human glioma cells, as indicated by increased fluorescent dye transfer.

  1. Pfaffia paniculata (Brazilian ginseng) roots decrease proliferation and increase apoptosis but do not affect cell communication in murine hepatocarcinogenesis.

    PubMed

    da Silva, Tereza Cristina; Cogliati, Bruno; da Silva, Ana Paula; Fukumasu, Heidge; Akisue, Gokithi; Nagamine, Márcia Kazumi; Matsuzaki, Patrícia; Haraguchi, Mitsue; Górniak, Silvana Lima; Dagli, Maria Lúcia Zaidan

    2010-03-01

    Pfaffia paniculata (Brazilian ginseng) roots and/or its extracts have shown anti-neoplastic, chemopreventive, and anti-angiogenic properties. The aim of this work was to investigate the chemopreventive mechanisms of this root in mice submitted to the infant model of hepatocarcinogenesis, evaluating the effects on cellular proliferation, apoptosis, and intercellular communication. Fifteen-day-old BALB/c male mice were given, i.p., 10mug/g of the carcinogen N-nitrosodiethylamine (DEN). Animals were separated into three groups at weaning and were given different concentrations of powdered P. paniculata root (0%, 2%, or 10%) added to commercial food for 27 weeks. Control group (CT) was not exposed to the carcinogen and was given ration without the root. After euthanasia, the animals' liver and body weight were measured. Liver fragments were sampled to study intercellular communication, molecular biology, and histopathological analysis. Cellular proliferation was evaluated by immunohistochemistry for PCNA, apoptosis was evaluated by apoptotic bodies count and alkaline comet technique, and intercellular communication by diffusion of lucifer yellow dye, immunofluorescence, western blot and real-time PCR for connexins 26 and 32. Chronic treatment with powdered P. paniculata root reduced cellular proliferation and increased apoptosis in the 2% group. Animals in the 10% group had an increase in apoptosis with chronic inflammatory process. Intercellular communication showed no alterations in any of the groups analyzed. These results indicate that chemopreventive effects of P. paniculata are related to the control of cellular proliferation and apoptosis, but not to cell communication and/or connexin expression, and are directly influenced by the root concentration. Copyright 2009 Elsevier GmbH. All rights reserved.

  2. Physically disconnected non-diffusible cell-to-cell communication between neuroblastoma SH-SY5Y and DRG primary sensory neurons

    PubMed Central

    Chaban, Victor V; Cho, Taehoon; Reid, Christopher B; Norris, Keith C

    2013-01-01

    Background: Cell-cell communication occurs via a variety of mechanisms, including long distances (hormonal), short distances (paracrine and synaptic) or direct coupling via gap junctions, antigen presentation, or ligand-receptor interactions. We evaluated the possibility of neuro-hormonal independent, non-diffusible, physically disconnected pathways for cell-cell communication using dorsal root ganglion (DRG) neurons. Methods: We assessed intracellular calcium ([Ca2+]) in primary culture DRG neurons that express ATP-sensitive P2X3, capsaicinsensitive TRPV1 receptors modulated by estradiol. Physically disconnected (dish-in-dish system; inner chamber enclosed) mouse DRG were cultured for 12 hours near: a) media alone (control 1), b) mouse DRG (control 2), c) human neuroblastoma SHSY-5Y cells (cancer intervention), or d) mouse DRG treated with KCl (apoptosis intervention). Results: Chemosensitive receptors [Ca2+]i signaling did not differ between control 1 and 2. ATP (10 μM) and capsaicin (100nM) increased [Ca2+]i transients to 425.86 + 49.5 nM, and 399.21 ± 44.5 nM, respectively. 17β-estradiol (100 nM) exposure reduced ATP (171.17 ± 48.9 nM) and capsaicin (175.01±34.8 nM) [Ca2+]i transients. The presence of cancer cells reduced ATP- and capsaicin-induced [Ca2+]i by >50% (p<0.05) and abolished the 17β-estradiol effect. By contrast, apoptotic DRG cells increased initial ATP-induced [Ca2+]i, flux four fold and abolished subsequent [Ca2+]i, responses to ATP stimulation (p<0.001). Capsaicin (100nM) induced [Ca2+]i responses were totally abolished. Conclusion: The local presence of apoptotic DRG or human neuroblastoma cells induced differing abnormal ATP and capsaicin-mediated [Ca2+]i fluxes in normal DRG. These findings support physically disconnected, non-diffusible cell-to-cell signaling. Further studies are needed to delineate the mechanism(s) of and model(s) of communication. PMID:23390567

  3. The Membrane Junctions in Communicating and Noncommunicating Cells, Their Hybrids, and Segregants

    PubMed Central

    Azarnia, R.; Larsen, W. J.; Loewenstein, W. R.

    1974-01-01

    Human Lesch-Nyhan cells, which are coupling and have gap junctions, were fused with mouse cl-lD cells, which are noncoupling and lack gap junctions. The resulting hybrid cells were coupling and had gap junctions while they contained the nearly complete complement of parent chromosomes. As the hybrid cells lost human chromosomes, clones appeared among the segregants, which had reverted to the noncoupling and junction-deficient trait of the mouse parent cell. The human cell appears to contribute a genetic factor to the hybrids that corrects the junctional deficiency of the mouse cell. Images PMID:4522798

  4. Communicating risks and benefits about ethically controversial topics: the case of induced pluripotent stem (iPS) cells.

    PubMed

    Longstaff, Holly; McDonald, Michael; Bailey, Jennifer

    2013-08-01

    Many are supportive of approaches that incorporate lay citizens into policy making and risk management decisions. However, a great deal of learning must first take place about how citizen engagement for controversial topics is best accomplished. Online risk communication efforts are increasing in popularity but there is little empirical evidence accrued to demonstrate the effectiveness of such methods. The intention of our overall study is to create a powerful method for in-depth two-way communication with the public and expert communities about complex and sensitive issues at the heart of stem cell (SC) research. The fundamental objective is to raise awareness of SC science with lay citizens by fostering more holistic or "all things considered" ethical judgments. Our risk communication study demonstrates that lay citizens are both interested in, and capable of learning about, complex scientific issues provided the right tools are used to convey information and assess understanding. Our results show that it is worth the time and effort for SC researchers to continue posting podcasts and FAQ's about their work for non-expert communities to view. In addition, despite having increased our participants' risk perceptions about induced pluripotent stem (iPS) cell research, almost all were very supportive of this type of research in Canada by the end of the survey. In other words, participants understood that this research did in fact pose some risks and learned a great deal about both the risks and benefits of iPS cell research, and still thought this research was worthwhile to pursue.

  5. Influence of gap junction intercellular communication composed of connexin 43 on the antineoplastic effect of adriamycin in breast cancer cells

    PubMed Central

    Jiang, Guojun; Dong, Shuying; Yu, Meiling; Han, Xi; Zheng, Chao; Zhu, Xiaoguang; Tong, Xuhui

    2017-01-01

    Gap junctions (GJs) serve the principal role in the antineoplastic (cytotoxicity and induced apoptosis) effect of chemical drugs. The aim of the present study was to determine the effect of GJ intercellular communication (GJIC) composed of connexin 43 (Cx43) on adriamycin cytotoxicity in breast cancer cells. Four cell lines (Hs578T, MCF-7, MDA-MB-231 and SK-BR-3) with different degree of malignancy were used in the study. The results of western blotting and immunofluorescence revealed that, in Hs578T and MCF-7 cells, which have a low degree of malignancy, the expression levels of Cx43 and GJIC were higher than those in MDA-MB-231 and SK-BR-3 cells (which have a high degree of malignancy). In Hs578T and MCF-7 cells, where GJ could be formed, the function of GJ was modulated by a pharmacological potentiators [retinoid acid (RA)]/inhibitors [oleamide and 18-α-glycyrrhetinic acid (18-α-GA)] and small interfering RNA (siRNA). In high-density cells (where GJ was formed), enhancement of GJ function by RA increased the cytotoxicity of adriamycin, while inhibition of GJ function by oleamide/18-α-GA and siRNA decreased the cytotoxicity caused by adriamycin. Notably, the modulation of GJ did not affect the survival of cells treated with adriamycin when cells were in low density (no GJ was formed). The present study illustrated the association between GJIC and the antitumor effect of adriamycin in breast cancer cells. The cytotoxicity of adriamycin on breast cancer cells was increased when the function of gap junctions was enhanced. PMID:28356970

  6. Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells

    PubMed Central

    Bayoumi, Mariam; Bayley, Hagan; Maglia, Giovanni; Sapra, K. Tanuj

    2017-01-01

    Constructing a cell mimic is a major challenge posed by synthetic biologists. Efforts to this end have been primarily focused on lipid- and polymer-encapsulated containers, liposomes and polymersomes, respectively. Here, we introduce a multi-compartment, nested system comprising aqueous droplets stabilized in an oil/lipid mixture, all encapsulated in hydrogel. Functional capabilities (electrical and chemical communication) were imparted by protein nanopores spanning the lipid bilayer formed at the interface of the encapsulated aqueous droplets and the encasing hydrogel. Crucially, the compartmentalization enabled the formation of two adjoining lipid bilayers in a controlled manner, a requirement for the realization of a functional protocell or prototissue. PMID:28367984

  7. Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells.

    PubMed

    Bayoumi, Mariam; Bayley, Hagan; Maglia, Giovanni; Sapra, K Tanuj

    2017-04-03

    Constructing a cell mimic is a major challenge posed by synthetic biologists. Efforts to this end have been primarily focused on lipid- and polymer-encapsulated containers, liposomes and polymersomes, respectively. Here, we introduce a multi-compartment, nested system comprising aqueous droplets stabilized in an oil/lipid mixture, all encapsulated in hydrogel. Functional capabilities (electrical and chemical communication) were imparted by protein nanopores spanning the lipid bilayer formed at the interface of the encapsulated aqueous droplets and the encasing hydrogel. Crucially, the compartmentalization enabled the formation of two adjoining lipid bilayers in a controlled manner, a requirement for the realization of a functional protocell or prototissue.

  8. Imaging of Cell-Cell Communication in a Vertical Orientation Reveals High-Resolution Structure of Immunological Synapse and Novel PD-1 Dynamics

    PubMed Central

    Jang, Joon Hee; Huang, Yu; Zheng, Peilin; Jo, Myeong Chan; Bertolet, Grant; Qin, Lidong; Liu, Dongfang

    2015-01-01

    The immunological synapse (IS) is one of the most pivotal communication strategies in immune cells. Understanding the molecular basis of the IS provides critical information regarding how immune cells mount an effective immune response. Fluorescence microscopy provides a fundamental tool to study the IS. However, current imaging techniques for studying the IS cannot sufficiently achieve high resolution in real cell-cell conjugates. Here we present a new device that allows for high-resolution imaging of the IS with conventional confocal microscopy in a high-throughput manner. Combining micropits and single cell trap arrays, we have developed a new microfluidic platform that allows visualization of the IS in vertically “stacked” cells. Using this vertical cell pairing (VCP) system, we investigated the dynamics of the inhibitory synapse mediated by an inhibitory receptor, programed death protein-1 (PD-1) and the cytotoxic synapse at the single cell level. In addition to the technique innovation, we demonstrated novel biological findings by this VCP device, including novel distribution of F-actin and cytolytic granules at the IS, PD-1 microclusters in the NK IS, and kinetics of cytotoxicity. We propose that this high-throughput, cost-effective, easy-to-use VCP system, along with conventional imaging techniques, can be used to address a number of significant biological questions in a variety of disciplines. PMID:26123352

  9. Cell-specific Labeling Enzymes for Analysis of Cell–Cell Communication in Continuous Co-culture*

    PubMed Central

    Tape, Christopher J.; Norrie, Ida C.; Worboys, Jonathan D.; Lim, Lindsay; Lauffenburger, Douglas A.; Jørgensen, Claus

    2014-01-01

    We report the orthologous screening, engineering, and optimization of amino acid conversion enzymes for cell-specific proteomic labeling. Intracellular endoplasmic-reticulum-anchored Mycobacterium tuberculosis diaminopimelate decarboxylase (DDCM.tub-KDEL) confers cell-specific meso-2,6-diaminopimelate-dependent proliferation to multiple eukaryotic cell types. Optimized lysine racemase (LyrM37-KDEL) supports D-lysine specific proliferation and efficient cell-specific isotopic labeling. When ectopically expressed in discrete cell types, these enzymes confer 90% cell-specific isotopic labeling efficiency after 10 days of co-culture. Moreover, DDCM.tub-KDEL and LyrM37-KDEL facilitate equally high cell-specific labeling fidelity without daily media exchange. Consequently, the reported novel enzyme pairing can be used to study cell-specific signaling in uninterrupted, continuous co-cultures. Demonstrating the importance of increased labeling stability for addressing novel biological questions, we compare the cell-specific phosphoproteome of fibroblasts in direct co-culture with epithelial tumor cells in both interrupted (daily media exchange) and continuous (no media exchange) co-cultures. This analysis identified multiple cell-specific phosphorylation sites specifically regulated in the continuous co-culture. Given their applicability to multiple cell types, continuous co-culture labeling fidelity, and suitability for long-term cell–cell phospho-signaling experiments, we propose DDCM.tub-KDEL and LyrM37-KDEL as excellent enzymes for cell-specific labeling with amino acid precursors. PMID:24820872

  10. Cytokine Effects on Gap Junction Communication and Connexin Expression in Human Bladder Smooth Muscle Cells and Suburothelial Myofibroblasts

    PubMed Central

    Heinrich, Marco; Oberbach, Andreas; Schlichting, Nadine; Stolzenburg, Jens-Uwe; Neuhaus, Jochen

    2011-01-01

    Background The last decade identified cytokines as one group of major local cell signaling molecules related to bladder dysfunction like interstitial cystitis (IC) and overactive bladder syndrome (OAB). Gap junctional intercellular communication (GJIC) is essential for the coordination of normal bladder function and has been found to be altered in bladder dysfunction. Connexin (Cx) 43 and Cx45 are the most important gap junction proteins in bladder smooth muscle cells (hBSMC) and suburothelial myofibroblasts (hsMF). Modulation of connexin expression by cytokines has been demonstrated in various tissues. Therefore, we investigate the effect of interleukin (IL) 4, IL6, IL10, tumor necrosis factor-alpha (TNFα) and transforming growth factor-beta1 (TGFβ1) on GJIC, and Cx43 and Cx45 expression in cultured human bladder smooth muscle cells (hBSMC) and human suburothelial myofibroblasts (hsMF). Methodology/Principal Findings HBSMC and hsMF cultures were set up from bladder tissue of patients undergoing cystectomy. In cytokine stimulated cultured hBSMC and hsMF GJIC was analyzed via Fluorescence Recovery after Photo-bleaching (FRAP). Cx43 and Cx45 expression was assessed by quantitative PCR and confocal immunofluorescence. Membrane protein fraction of Cx43 and Cx45 was quantified by Dot Blot. Upregulation of cell-cell-communication was found after IL6 stimulation in both cell types. In hBSMC IL4 and TGFβ1 decreased both, GJIC and Cx43 protein expression, while TNFα did not alter communication in FRAP-experiments but increased Cx43 expression. GJ plaques size correlated with coupling efficacy measured, while Cx45 expression did not correlate with modulation of GJIC. Conclusions/Significance Our finding of specific cytokine effects on GJIC support the notion that cytokines play a pivotal role for pathophysiology of OAB and IC. Interestingly, the effects were independent from the classical definition of pro- and antiinflammatory cytokines. We conclude, that connexin

  11. The role of neural connexins in HeLa cell mobility and intercellular communication through tunneling tubes.

    PubMed

    Rimkutė, Lina; Jotautis, Vaidas; Marandykina, Alina; Sveikatienė, Renata; Antanavičiūtė, Ieva; Skeberdis, Vytenis Arvydas

    2016-01-13

    Membranous tunneling tubes (TTs) are a recently discovered new form of communication between remote cells allowing their electrical synchronization, migration, and transfer of cellular materials. TTs have been identified in the brain and share similarities with neuronal processes. TTs can be open-ended, close-ended or contain functional gap junctions at the membrane interface. Gap junctions are formed of two unapposed hemichannels composed of six connexin (Cx) subunits. There are evidences that Cxs also play channel-independent role in cell adhesion, migration, division, differentiation, formation of neuronal networks and tumorigenicity. These properties of Cxs and TTs may synergetically determine the cellular and intercellular processes. Therefore, we examined the impact of Cxs expressed in the nervous system (Cx36, Cx40, Cx43, Cx45, and Cx47) on: 1) cell mobility; 2) formation and properties of TTs; and 3) transfer of siRNA between remote cells through TTs. We have identified two types of TTs between HeLa cells: F-actin rich only and containing F-actin and α-tubulin. The morphology of TTs was not influenced by expression of examined connexins; however, Cx36-EGFP-expressing cells formed more TTs while cells expressing Cx43-EGFP, Cx45, and Cx47 formed fewer TTs between each other compared with wt and Cx40-CFP-expressing cells. Also, Cx36-EGFP and Cx40-CFP-expressing HeLa cells were more mobile compared with wt and other Cxs-expressing cells. TTs containing Cx40-CFP, Cx43-EGFP, or Cx47 gap junctions were capable of transmitting double-stranded small interfering RNA; however, Cx36-EGFP and Cx45 were not permeable to it. In addition, we show that Cx43-EGFP-expressing HeLa cells and laryngeal squamous cell carcinoma cells can couple to the mesenchymal stem cells through TTs. Different Cxs may modulate the mobility of cells and formation of TTs in an opposite manner; siRNA transfer through the GJ-containing TTs is Cx isoform-dependent.

  12. Trophoblast debris extruded from preeclamptic placentae activates endothelial cells: a mechanism by which the placenta communicates with the maternal endothelium.

    PubMed

    Shen, F; Wei, J; Snowise, S; DeSousa, J; Stone, P; Viall, C; Chen, Q; Chamley, L

    2014-10-01

    Preeclampsia is characterized by maternal endothelial dysfunction. While the mechanisms leading to preeclampsia are unclear, a factor(s) from the placenta is responsible for triggering the disease. One placental factor implicated in triggering preeclampsia is trophoblast debris which may transmit pathogenic signals from the placenta to endothelial cells. In this study, we investigated whether trophoblast debris from preeclamptic placentae triggered endothelial cell activation. Trophoblast debris from preeclamptic or normotensive placentae, or trophoblast debris from normal placental explants that had been cultured with preeclamptic (n = 14) or normotensive sera (n = 14) was exposed to endothelial cells. Activation of the endothelial cells was quantified by cell surface ICAM-1 and U937 adhesion to endothelial cells. The levels of IL-1β, pro-caspase-1 and active caspase-1 in the trophoblast debris were measured. Compared to controls, the levels of ICAM-1 and U937 adhesion to endothelial cells were significantly increased following exposure of the endothelial cells to trophoblast debris from preeclamptic placentae or placentae treated with preeclamptic sera. The levels IL-1β, pro-caspase-1 and active caspase-1 were significantly increased in both trophoblast debris from preeclamptic placentae and placentae treated with preeclamptic sera. These results provide the first direct evidence that trophoblast debris produced from preeclamptic placentae or placentae treated with preeclamptic sera can activate the endothelium. Trophoblast debris from preeclamptic but not normotensive placentae can induce endothelial cell activation. This may be one mechanism by which the preeclamptic placenta communicates with the maternal endothelium to induce activation of the endothelium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Short communication: pitfalls of culturing C8166 cells in serum-free media.

    PubMed

    Teo, Ian; Choi, Ji-Won; Buttigieg, Karen; Shaunak, Sunil

    2005-03-01

    Long-term culture of C8166 cells in serum-free media can result in changes in their level of expression of immunologically important cell surface makers and a loss of infectivity by HIV-1. We have now demonstrated that these phenotypic changes are due to an outgrowth of a very small number of contaminating cells of mouse origin. Our observations emphasize the importance of carefully recharacterizing any cells that have been adapted to grow in a serum-free culture media.

  14. Gap junctional communication between the satellite cells of rat dorsal root ganglia.

    PubMed

    Sakuma, E; Wang, H J; Asai, Y; Tamaki, D; Amano, K; Mabuchi, Y; Herbert, D C; Soji, T

    2001-06-01

    Many studies have described the ultrastructure of the dorsal root ganglia in various embryonic and adult animals, but in spite of the efforts of many investigators the functional role of the satellite cells in this tissue is not clearly understood. In this study, we discuss the function of this cell type based on the concept of cell-to-cell interaction through gap junctions. Five male 60 day-old Wistar strain rats were used. All animals were anesthetized with pentobarbital and perfused with glutaraldehyde fixative, then the dorsal root ganglia in levels L4, L5 and L6 were taken from each rat. After postosmication, the specimens were prepared for observation by transmission electron microscopy. All nerve cells were completely surrounded by satellite cell cytoplasmic expansions. The boundaries between adjacent nerve cells and satellite cells were complicated due to the presence of perikaryal projections of nerve cells. Gap junctions which showed the typical trilamellar structure of plasma membranes were found mainly between satellite cell processes belonging to the same nerve cell. On the other hand, some gap junctions were found between the satellite cell projections belonging to different nerve cells. The size of the gap junctions ranged from 300 to 400 nm. No gap junctions were associated with the plasma membrane of any nerve cell. In conclusion, only satellite cells can share free transcellular exchange of cytoplasmic molecules such as ions, amino acids, sugars and several second messengers including cAMP and inositol 1,4,5-triphosphate by way of gap junctions in dorsal root ganglia.

  15. Transfer of Vesicles From Schwann Cells to Axons: a Novel Mechanism of Communication in the Peripheral Nervous System

    PubMed Central

    Lopez-Verrilli, M. Alejandra; Court, Felipe A.

    2012-01-01

    Schwann cells (SCs) are the glial component of the peripheral nervous system, with essential roles during development and maintenance of axons, as well as during regenerative processes after nerve injury. SCs increase conduction velocities by myelinating axons, regulate synaptic activity at presynaptic nerve terminals and are a source of trophic factors to neurons. Thus, development and maintenance of peripheral nerves are crucially dependent on local signaling between SCs and axons. In addition to the classic mechanisms of intercellular signaling, the possibility of communication through secreted vesicles has been poorly explored to date. Interesting recent findings suggest the occurrence of lateral transfer mediated by vesicles from glial cells to axons that could have important roles in axonal growth and axonal regeneration. Here, we review the role of vesicular transfer from SCs to axons and propose the advantages of this means in supporting neuronal and axonal maintenance and regeneration after nerve damage. PMID:22707941

  16. Short Communication: HIV Controller T Cells Effectively Inhibit Viral Replication in Alveolar Macrophages.

    PubMed

    Walker-Sperling, Victoria E; Merlo, Christian A; Buckheit, Robert W; Lambert, Allison; Tarwater, Patrick; Kirk, Greg D; Drummond, M Bradley; Blankson, Joel N

    Macrophages are targets of HIV-1 infection, and control of viral replication within these cells may be an important component of a T-cell-based vaccine. Although several studies have analyzed the ability of CD8(+) T cells to inhibit viral replication in monocyte-derived macrophages, the effect of T cells on HIV-1-infected tissue macrophages is less clear. We demonstrate here that both CD4(+) and CD8(+) T-cell effectors from HIV controllers are capable of suppressing viral replication in bronchoalveolar lavage-derived alveolar macrophages. These findings have implications for HIV-1 vaccine and eradication strategies.

  17. Short Communication: Preferential Killing of HIV Latently Infected CD4(+) T Cells by MALT1 Inhibitor.

    PubMed

    Li, Hongmei; He, Hui; Gong, Leyi; Fu, Mingui; Wang, Tony T

    2016-02-01

    We report that the addition of an host paracaspase MALT1 inhibitor, MI-2, to HIV latently infected ACH-2, Jurkat E4, and J-LAT cells accelerated cell death in the presence of cell stimuli or the protein kinase C agonist, bryostatin 1. MI-2-mediated cell death correlated with the induction of the cellular RNase MCPIP1 and requires the presence of viral component(s). Altogether, the combination of MI-2 and bryostatin 1 displays selective killing of HIV latently infected CD4(+) T cells.

  18. Short Communication: Preferential Killing of HIV Latently Infected CD4+ T Cells by MALT1 Inhibitor

    PubMed Central

    Li, Hongmei; He, Hui; Gong, Leyi; Fu, Mingui

    2016-01-01

    Abstract We report that the addition of an host paracaspase MALT1 inhibitor, MI-2, to HIV latently infected ACH-2, Jurkat E4, and J-LAT cells accelerated cell death in the presence of cell stimuli or the protein kinase C agonist, bryostatin 1. MI-2-mediated cell death correlated with the induction of the cellular RNase MCPIP1 and requires the presence of viral component(s). Altogether, the combination of MI-2 and bryostatin 1 displays selective killing of HIV latently infected CD4+ T cells. PMID:26728103

  19. Exposure Setup and Dosimetry for a Study on Effects of Mobile Communication Signals on Human Hematopoietic Stem Cells in vitro

    NASA Astrophysics Data System (ADS)

    Rohland, Martina; Baaske, Kai; Gläser, Katharina; Hintzsche, Henning; Stopper, Helga; Kleine-Ostmann, Thomas; Schrader, Thorsten

    2017-09-01

    In this paper we describe the design of an exposure setup used to study possible non-thermal effects due to the exposure of human hematopoietic stem cells to GSM, UMTS and LTE mobile communication signals. The experiments are performed under fully blinded conditions in a TEM waveguide located inside an incubator to achieve defined environmental conditions as required for the living cells. Chamber slides containing the cells in culture medium are placed on the septum of the waveguide. The environmental and exposure parameters such as signal power, temperatures, relative humidity and CO2 content of the surrounding atmosphere are monitored permanently during the exposure experiment. The power of the exposure signals required to achieve specific absorption rates of 0.5, 1, 2 and 4 W kg-1 are determined by numerical calculation of the field distribution inside the cell culture medium at 900 MHz (GSM), 1950 MHz (UMTS) and 2535 MHz (LTE). The dosimetry is verified both with scattering parameter measurements on the waveguide with and without containers filled with cell culture medium and with temperature measurements with non-metallic probes in separate heating experiments.

  20. Novel concepts for improved communication between nerve cells and silicon electronic devices

    NASA Astrophysics Data System (ADS)

    Huys, Roeland; Braeken, Dries; Van Meerbergen, Bart; Winters, Kurt; Eberle, Wolfgang; Loo, Josine; Tsvetanova, Diana; Chen, Chang; Severi, Simone; Yitzchaik, S.; Spira, M.; Shappir, J.; Callewaert, Geert; Borghs, Gustaaf; Bartic, Carmen

    2008-04-01

    Hybrid integration of living cells and electronic circuits on a chip requires a high-density matrix of sensors and actuators. This matrix must be processable on top of CMOS devices and must be bio-compatible in order to support living cells. Recent studies have shown that the use of nail structures combined with a phagocytosis-like event of the cell can be exploited to improve the electrical coupling between a cell and a sensor. In this paper, two CMOS-compatible fabrication methods for sub-micron nails will be presented. The biocompatibility and proof-of-concept is demonstrated by the culturing of PC12 neuroblastoma cells. Electrical functionality is shown by simultaneous stimulation and recording of pig cardiomyocyte cells. Biocompatibility aspects for more demanding cortical cell cultures have been addressed in a preliminary assessment.

  1. US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges

    SciTech Connect

    Seitz, Roger R.; Suttora, Linda C.; Phifer, Mark

    2014-03-01

    On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.

  2. Short communication: Antiproliferative effect of 8 different Lactobacillus strains on K562 cells.

    PubMed

    Tuo, Yanfeng; Jiang, Shujuan; Qian, Fang; Mu, Guangqing; Liu, Peng; Guo, Yuanji; Ma, Changlu

    2015-01-01

    Some strains of Lactobacillus genus have antiproliferative activities against cancer cells. However, until now, the exact effector molecules of Lactobacillus strains with anticancer activity have not been identified. The aim of the present study was to explore which fraction of the Lactobacillus cells exerts the highest antiproliferative effect. For this purpose, the heat-killed bacterial cells, bacterial cell wall extract, and genomic DNA of 8 Lactobacillus strains were prepared to assess their antiproliferative activities against human myeloid leukemia cell lines K562. The heat-killed bacterial cells of the 8 lactobacilli strains exerted antiproliferative effect on K562 cells, and the inhibition rates exerted by the heat-killed bacterial cells of the strains G15AL, M5AL, SB31AL, SB5AL, and T3AL were significantly higher than those exerted by the cell walls and genomic DNA of the strains. The bacterial DNA of G15AL exerted higher antiproliferative effect on K562 cells. The exact effector molecules and the effect mechanism of the strains should be further explored for the application of these strains as probiotic strains or bioactive probiotic molecules.

  3. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary

    PubMed Central

    Xu, Na; Zhu, Rui-Lou; Wang, Xiu-Xing; Chen, Zhong; Tao, Wei-Wei; Yao, Bing; Sun, Hai-Xiang; Huang, Xing-Xu; Xue, Bin; Li, Chao-Jun

    2017-01-01

    Folliculogenesis is a progressive and highly regulated process, which is essential to provide ova for later reproductive life, requires the bidirectional communication between the oocyte and granulosa cells. This physical connection-mediated communication conveys not only the signals from the oocyte to granulosa cells that regulate their proliferation but also metabolites from the granulosa cells to the oocyte for biosynthesis. However, the underlying mechanism of establishing this communication is largely unknown. Here, we report that oocyte geranylgeranyl diphosphate (GGPP), a metabolic intermediate involved in protein geranylgeranylation, is required to establish the oocyte-granulosa cell communication. GGPP and geranylgeranyl diphosphate synthase (Ggpps) levels in oocytes increased during early follicular development. The selective depletion of GGPP in mouse oocytes impaired the proliferation of granulosa cells, primary-secondary follicle transition and female fertility. Mechanistically, GGPP depletion inhibited Rho GTPase geranylgeranylation and its GTPase activity, which was responsible for the accumulation of cell junction proteins in the oocyte cytoplasm and the failure to maintain physical connection between oocyte and granulosa cells. GGPP ablation also blocked Rab27a geranylgeranylation, which might account for the impaired secretion of oocyte materials such as Gdf9. Moreover, GGPP administration restored the defects in oocyte-granulosa cell contact, granulosa cell proliferation and primary-secondary follicle transition in Ggpps depletion mice. Our study provides the evidence that GGPP-mediated protein geranylgeranylation contributes to the establishment of oocyte-granulosa cell communication and then regulates the primary-secondary follicle transition, a key phase of folliculogenesis essential for female reproductive function. PMID:28072828

  4. Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host

    PubMed Central

    Jäderstad, Johan; Jäderstad, Linda M.; Li, Jianxue; Chintawar, Satyan; Salto, Carmen; Pandolfo, Massimo; Ourednik, Vaclav; Teng, Yang D.; Sidman, Richard L.; Arenas, Ernest; Snyder, Evan Y.; Herlenius, Eric

    2010-01-01

    How grafted neural stem cells (NSCs) and their progeny integrate into recipient brain tissue and functionally interact with host cells is as yet unanswered. We report that, in organotypic slice cultures analyzed by ratiometric time-lapse calcium imaging, current-clamp recordings, and dye-coupling methods, an early and essential way in which grafted murine or human NSCs integrate functionally into host neural circuitry and affect host cells is via gap-junctional coupling, even before electrophysiologically mature neuronal differentiation. The gap junctions, which are established rapidly, permit exogenous NSCs to influence directly host network activity, including synchronized calcium transients with host cells in fluctuating networks. The exogenous NSCs also protect host neurons from death and reduce such signs of secondary injury as reactive astrogliosis. To determine whether gap junctions between NSCs and host cells may also mediate neuroprotection in vivo, we examined NSC transplantation in two murine models characterized by degeneration of the same cell type (Purkinje neurons) from different etiologies, namely, the nervous and SCA1 mutants. In both, gap junctions (containing connexin 43) formed between NSCs and host cells at risk, and were associated with rescue of neurons and behavior (when implantation was performed before overt neuron loss). Both in vitro and in vivo beneficial NSC effects were abrogated when gap junction formation or function was suppressed by pharmacologic and/or RNA-inhibition strategies, supporting the pivotal mediation by gap-junctional coupling of some modulatory, homeostatic, and protective actions on host systems as well as establishing a template for the subsequent development of electrochemical synaptic intercellular communication. PMID:20147621

  5. Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host.

    PubMed

    Jäderstad, Johan; Jäderstad, Linda M; Li, Jianxue; Chintawar, Satyan; Salto, Carmen; Pandolfo, Massimo; Ourednik, Vaclav; Teng, Yang D; Sidman, Richard L; Arenas, Ernest; Snyder, Evan Y; Herlenius, Eric

    2010-03-16

    How grafted neural stem cells (NSCs) and their progeny integrate into recipient brain tissue and functionally interact with host cells is as yet unanswered. We report that, in organotypic slice cultures analyzed by ratiometric time-lapse calcium imaging, current-clamp recordings, and dye-coupling methods, an early and essential way in which grafted murine or human NSCs integrate functionally into host neural circuitry and affect host cells is via gap-junctional coupling, even before electrophysiologically mature neuronal differentiation. The gap junctions, which are established rapidly, permit exogenous NSCs to influence directly host network activity, including synchronized calcium transients with host cells in fluctuating networks. The exogenous NSCs also protect host neurons from death and reduce such signs of secondary injury as reactive astrogliosis. To determine whether gap junctions between NSCs and host cells may also mediate neuroprotection in vivo, we examined NSC transplantation in two murine models characterized by degeneration of the same cell type (Purkinje neurons) from different etiologies, namely, the nervous and SCA1 mutants. In both, gap junctions (containing connexin 43) formed between NSCs and host cells at risk, and were associated with rescue of neurons and behavior (when implantation was performed before overt neuron loss). Both in vitro and in vivo beneficial NSC effects were abrogated when gap junction formation or function was suppressed by pharmacologic and/or RNA-inhibition strategies, supporting the pivotal mediation by gap-junctional coupling of some modulatory, homeostatic, and protective actions on host systems as well as establishing a template for the subsequent development of electrochemical synaptic intercellular communication.

  6. The tight junction protein ZO-2 and Janus kinase 1 mediate intercellular communications in vascular smooth muscle cells

    SciTech Connect

    Tkachuk, Natalia; Tkachuk, Sergey; Patecki, Margret; Kusch, Angelika; Korenbaum, Elena; Haller, Hermann; Dumler, Inna

    2011-07-08

    Highlights: {yields} The tight junction protein ZO-2 associates with Jak1 in vascular smooth muscle cells via ZO-2 N-terminal fragment. {yields} Jak1 mediates ZO-2 tyrosine phosphorylation and ZO-2 localization to the sites of homotypic intercellular contacts. {yields} The urokinase receptor uPAR regulates ZO-2/Jak1 functional association. {yields} The ZO-2/Jak1/uPAR signaling complex is required for vascular smooth muscle cells functional network formation. -- Abstract: Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC), little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in arteriogenesis.

  7. Live Imaging and Laser Disruption Reveal the Dynamics and Cell-Cell Communication During Torenia fournieri Female Gametophyte Development.

    PubMed

    Susaki, Daichi; Takeuchi, Hidenori; Tsutsui, Hiroki; Kurihara, Daisuke; Higashiyama, Tetsuya

    2015-05-01

    The female gametophytes of many flowering plants contain one egg cell, one central cell, two synergid cells and three antipodal cells with respective morphological characteristics and functions. These cells are formed by cellularization of a multinuclear female gametophyte. However, the dynamics and mechanisms of female gametophyte development remain largely unknown due to the lack of a system to visualize directly and manipulate female gametophytes in living material. Here, we established an in vitro ovule culture system to examine female gametophyte development in Torenia fournieri, a unique plant species with a protruding female gametophyte. The four-nucleate female gametophyte became eight nucleate by the final (third) mitosis and successively cellularized and matured to attract a pollen tube. The duration of final mitosis was 28 ± 6.5 min, and cellularization was completed in 54 ± 20 min after the end of the third mitosis. Fusion of polar nuclei in the central cell occurred in 13.1 ± 1.1 h, and onset of expression of LURE2, a pollen tube attractant gene, was visualized by a green fluorescent protein reporter 10.7 ± 2.3 h after cellularization. Laser disruption analysis demonstrated that the egg and central cells were required for synergid cells to acquire the pollen tube attraction function. Moreover, aberrant nuclear positioning and down-regulation of LURE2 were observed in one of the two synergid cells after disrupting an immature egg cell, suggesting that cell specification was affected. Our system provides insights into the precise dynamics and mechanisms of female gametophyte development in T. fournieri. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Green love talks; cell–cell communication during double fertilization in flowering plants

    PubMed Central

    Kawashima, Tomokazu; Berger, Frederic

    2011-01-01

    Background Flowering plant seeds originate from a unique double-fertilization event, which involves two sperm cells and two female gametes, the egg cell and the central cell. For many years our knowledge of mechanisms involved in angiosperm fertilization remained minimal. It was obvious that several signals were required to explain how the male gametes are delivered inside the maternal reproductive tissues to the two female gametes but their molecular nature remained unknown. The difficulties in imaging the double-fertilization process prevented the identification of the mode of sperm cell delivery. It was believed that the two sperm cells were not functionally equivalent. Scope We review recent studies that have significantly improved our understanding of the early steps of double fertilization. The attractants of the pollen tube have been identified as small proteins produced by the synergid cells that surround the egg cell. Genetic studies have identified the signalling pathways required for the release of male gametes from the pollen tube. High-resolution imaging of the trajectory of the two male gametes showed that their transport does not involve the synergid cells directly and that isomorphic male gametes are functionally equivalent. We also outline major outstanding issues in the field concerned with the barrier against polyspermy, gamete recognition and mechanisms that prevent interspecies crosses. PMID:22476485

  9. Targeting the extracellular matrix: matricellular proteins regulate cell-extracellular matrix communication within distinct niches of the intervertebral disc.

    PubMed

    Bedore, Jake; Leask, Andrew; Séguin, Cheryle A

    2014-07-01

    The so-called "matricellular" proteins have recently emerged as important regulators of cell-extracellular matrix (ECM) interactions. These proteins modulate a variety of cell functions through a range of interactions with cell-surface receptors, hormones, proteases and structural components of the ECM. As such, matricellular proteins are crucial regulators of cell phenotype, and consequently tissue function. The distinct cell types and microenvironments that together form the IVD provide an excellent paradigm to study how matricellular proteins mediate communication within and between adjacent tissue types. In recent years, the role of several matricellular proteins in the intervertebral disc has been explored in vivo using mutant mouse models in which the expression of target matricellular proteins was deleted from either one or all compartments of the intervertebral disc. The current review outlines what is presently known about the roles of the matricellular proteins belonging to the CCN family, SPARC (Secreted Protein, Acidic, and Rich in Cysteine), and thrombospondin (TSP) 2 in regulating intervertebral disc cell-ECM interactions, ECM synthesis and disc tissue homeostasis using genetically modified mouse models. Furthermore, we provide a brief overview of recent preliminary studies of other matricellular proteins including, periostin (POSTN) and tenascin (TN). Each specific tissue type of the IVD contains a different matricellular protein signature, which varies based on the specific stage of development, maturity or disease. A growing body of direct genetic evidence links IVD development, maintenance and repair to the coordinate interaction of matricellular proteins within their respective niches and suggests that several of these signaling modulators hold promise in the development of diagnostics and/or therapeutics targeting intervertebral disc aging and/or degeneration.

  10. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    SciTech Connect

    Zou, Hui; Zhuo, Liling; Han, Tao; Hu, Di; Yang, Xiaokang; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Xuezhong; Liu, Zongping

    2015-04-17

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival.

  11. High acceptability for cell phone text messages to improve communication of laboratory results with HIV-infected patients in rural Uganda: a cross-sectional survey study.

    PubMed

    Siedner, Mark J; Haberer, Jessica E; Bwana, Mwebesa Bosco; Ware, Norma C; Bangsberg, David R

    2012-06-21

    Patient-provider communication is a major challenge in resource-limited settings with large catchment areas. Though mobile phone usership increased 20-fold in Africa over the past decade, little is known about acceptability of, perceptions about disclosure and confidentiality, and preferences for cell phone communication of health information in the region. We performed structured interviews of fifty patients at the Immune Suppression Syndrome clinic in Mbarara, Uganda to assess four domains of health-related communication: a) cell phone use practices and literacy, b) preferences for laboratory results communication, c) privacy and confidentiality, and d) acceptability of and preferences for text messaging to notify patients of abnormal test results. Participants had a median of 38 years, were 56% female, and were residents of a large catchment area throughout southwestern Uganda. All participants expressed interest in a service to receive information about laboratory results by cell phone text message, stating benefits of increased awareness of their health and decreased transportation costs. Ninety percent reported that they would not be concerned for unintended disclosure. A minority additionally expressed concerns about difficulty interpreting messages, discouragement upon learning bad news, and technical issues. Though all respondents expressed interest in password protection of messages, there was also a strong desire for direct messages to limit misinterpretation of information. Cell phone text messaging for communication of abnormal laboratory results is highly acceptable in this cohort of HIV-infected patients in rural Uganda. The feasibility of text messaging, including an optimal balance between privacy and comprehension, should be further studied.

  12. The use of cell phones and radio communication systems to reduce delays in getting help for pregnant women in low- and middle-income countries: a scoping review.

    PubMed

    Oyeyemi, Sunday O; Wynn, Rolf

    2015-01-01

    Background Delays in getting medical help are important factors in the deaths of many pregnant women and unborn children in the low- and middle-income countries (LMIC). Studies have suggested that the use of cell phones and radio communication systems might reduce such delays. Objectives We review the literature regarding the impact of cell phones and radio communication systems on delays in getting medical help by pregnant women in the LMIC. Design Cochrane Library, PubMed, Maternity and Infant care (Ovid), Web of Science (ISI), and Google Scholar were searched for studies relating to the use of cell phones for maternal and child health services, supplemented with hand searches. We included studies in LMIC and in English involving the simple use of cell phones (or radio communication) to either make calls or send text messages. Results Fifteen studies met the inclusion criteria. All the studies, while of various designs, demonstrated positive contributory effects of cell phones or radio communication systems in reducing delays experienced by pregnant women in getting medical help. Conclusions While the results suggested that cell phones could contribute in reducing delays, more studies of a longer duration are needed to strengthen the finding.

  13. The use of cell phones and radio communication systems to reduce delays in getting help for pregnant women in low- and middle-income countries: a scoping review.

    PubMed

    Oyeyemi, Sunday O; Wynn, Rolf

    2015-01-01

    Delays in getting medical help are important factors in the deaths of many pregnant women and unborn children in the low- and middle-income countries (LMIC). Studies have suggested that the use of cell phones and radio communication systems might reduce such delays. We review the literature regarding the impact of cell phones and radio communication systems on delays in getting medical help by pregnant women in the LMIC. Cochrane Library, PubMed, Maternity and Infant care (Ovid), Web of Science (ISI), and Google Scholar were searched for studies relating to the use of cell phones for maternal and child health services, supplemented with hand searches. We included studies in LMIC and in English involving the simple use of cell phones (or radio communication) to either make calls or send text messages. Fifteen studies met the inclusion criteria. All the studies, while of various designs, demonstrated positive contributory effects of cell phones or radio communication systems in reducing delays experienced by pregnant women in getting medical help. While the results suggested that cell phones could contribute in reducing delays, more studies of a longer duration are needed to strengthen the finding.

  14. The use of cell phones and radio communication systems to reduce delays in getting help for pregnant women in low- and middle-income countries: a scoping review

    PubMed Central

    Oyeyemi, Sunday O.; Wynn, Rolf

    2015-01-01

    Background Delays in getting medical help are important factors in the deaths of many pregnant women and unborn children in the low- and middle-income countries (LMIC). Studies have suggested that the use of cell phones and radio communication systems might reduce such delays. Objectives We review the literature regarding the impact of cell phones and radio communication systems on delays in getting medical help by pregnant women in the LMIC. Design Cochrane Library, PubMed, Maternity and Infant care (Ovid), Web of Science (ISI), and Google Scholar were searched for studies relating to the use of cell phones for maternal and child health services, supplemented with hand searches. We included studies in LMIC and in English involving the simple use of cell phones (or radio communication) to either make calls or send text messages. Results Fifteen studies met the inclusion criteria. All the studies, while of various designs, demonstrated positive contributory effects of cell phones or radio communication systems in reducing delays experienced by pregnant women in getting medical help. Conclusions While the results suggested that cell phones could contribute in reducing delays, more studies of a longer duration are needed to strengthen the finding. PMID:26362421

  15. The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication.

    PubMed

    Aendekerk, Séverine; Diggle, Stephen P; Song, Zhijun; Høiby, Niels; Cornelis, Pierre; Williams, Paul; Cámara, Miguel

    2005-04-01

    In Pseudomonas aeruginosa the production of multiple virulence factors depends on cell-to-cell communication through the integration of N-acylhomoserine lactone (AHL)- and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS)- dependent signalling. Mutation of genes encoding the efflux protein MexI and the porin OpmD from the MexGHI-OpmD pump resulted in the inability to produce N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-c12-hsl) and pqs and a marked reduction in n-butanoyl-L-homoserine lactone levels. Both pump mutants were impaired in growth and exhibited enhanced rather than reduced antibiotic resistance. Provision of exogenous PQS improved growth and restored AHL and virulence factor production as well as antibiotic susceptibility, indicating that the pump mutants retained their capacity to respond to PQS. RT-PCR analysis indicated that expression of the PQS biosynthetic genes, phnA and pqsA, was inhibited when the mutants reached stationary phase, suggesting that the pleiotropic phenotype observed may be due to intracellular accumulation of a toxic PQS precursor. To explore this hypothesis, double mexI phnA (unable to produce anthranilate, the precursor of PQS) and mexI pqsA mutants were constructed; the improved growth of the former suggested that the toxic compound is likely to be anthranilate or a metabolite of it. Mutations in mexI and opmD also resulted in the attenuation of virulence in rat and plant infection models. In plants, addition of PQS restored the virulence of mexI and opmD mutants. Collectively, these results demonstrate an essential function for the MexGHI-OpmD pump in facilitating cell-to-cell communication, antibiotic susceptibility and promoting virulence and growth in P. aeruginosa.

  16. Transracial Communication.

    ERIC Educational Resources Information Center

    Smith, Arthur L.

    This book explores and explains communication among different racial groups within the scope of existing communication theory. Following a brief introduction, chapters cover "Directions in Transracial Communication" (definitions, process, structurization, and purpose); "Culture and Transracial Communication" (a viewpoint on…

  17. Transracial Communication.

    ERIC Educational Resources Information Center

    Smith, Arthur L.

    This book explores and explains communication among different racial groups within the scope of existing communication theory. Following a brief introduction, chapters cover "Directions in Transracial Communication" (definitions, process, structurization, and purpose); "Culture and Transracial Communication" (a viewpoint on…

  18. Neglect in Human Communication: Quantifying the Cost of Cell-Phone Interruptions in Face to Face Dialogs

    PubMed Central

    Lopez-Rosenfeld, Matías; Calero, Cecilia I.; Fernandez Slezak, Diego; Garbulsky, Gerry; Bergman, Mariano; Trevisan, Marcos; Sigman, Mariano

    2015-01-01

    There is a prevailing belief that interruptions using cellular phones during face to face interactions may affect severely how people relate and perceive each other. We set out to determine this cost quantitatively through an experiment performed in dyads, in a large audience in a TEDx event. One of the two participants (the speaker) narrates a story vividly. The listener is asked to deliberately ignore the speaker during part of the story (for instance, attending to their cell-phone). The speaker is not aware of this treatment. We show that total amount of attention is the major factor driving subjective beliefs about the story and the conversational partner. The effects are mostly independent on how attention is distributed in time. All social parameters of human communication are affected by attention time with a sole exception: the perceived emotion of the story. Interruptions during day-to-day communication between peers are extremely frequent. Our data should provide a note of caution, by indicating that they have a major effect on the perception people have about what they say (whether it is interesting or not . . .) and about the virtues of the people around them. PMID:26039326

  19. Neglect in human communication: quantifying the cost of cell-phone interruptions in face to face dialogs.

    PubMed

    Lopez-Rosenfeld, Matías; Calero, Cecilia I; Fernandez Slezak, Diego; Garbulsky, Gerry; Bergman, Mariano; Trevisan, Marcos; Sigman, Mariano

    2015-01-01

    There is a prevailing belief that interruptions using cellular phones during face to face interactions may affect severely how people relate and perceive each other. We set out to determine this cost quantitatively through an experiment performed in dyads, in a large audience in a TEDx event. One of the two participants (the speaker) narrates a story vividly. The listener is asked to deliberately ignore the speaker during part of the story (for instance, attending to their cell-phone). The speaker is not aware of this treatment. We show that total amount of attention is the major factor driving subjective beliefs about the story and the conversational partner. The effects are mostly independent on how attention is distributed in time. All social parameters of human communication are affected by attention time with a sole exception: the perceived emotion of the story. Interruptions during day-to-day communication between peers are extremely frequent. Our data should provide a note of caution, by indicating that they have a major effect on the perception people have about what they say (whether it is interesting or not . . .) and about the virtues of the people around them.

  20. Communication: Direct determination of triple-point coexistence through cell model simulation.

    PubMed

    Heng, Vincent R; Nayhouse, Michael; Crose, Marquis; Tran, Anh; Orkoulas, G

    2012-10-14

    In simulations of fluid-solid coexistence, the solid phase is modeled as a constrained system of Wigner-Seitz cells with one particle per cell. This model, commonly referred to as the constrained cell model, is a limiting case of a more general cell model, which is formed by considering a homogeneous external field that controls the number of particles per cell and, hence, the relative stability of the solid against the fluid phase. The generalized cell model provides a link that connects the disordered, fluid phase with the ordered, solid phase. In the present work, the phase diagram of this model is investigated through multicanonical simulations at constant pressure and histogram reweighting techniques for a system of 256 Lennard-Jones particles. The simulation data are used to obtain an estimate of the triple point of the Lennard-Jones system. The triple-point pressure is found to be higher compared to previous work. The likely explanation for this discrepancy is the highly compressible nature of the gas phase.

  1. Short communication: Initial evidence supporting existence of potential rumen epidermal stem and progenitor cells.

    PubMed

    Yohe, T T; Tucker, H L M; Parsons, C L M; Geiger, A J; Akers, R M; Daniels, K M

    2016-09-01

    The bovine rumen epidermis is a keratinized multilayered tissue that experiences persistent cell turnover. Because of this constant cell turnover, epidermal stem cells and their slightly more differentiated daughter cells, epidermal progenitor cells, must exist in the stratum basale of rumen epidermis. To date, these 2 epidermal cell populations and any unique cellular markers they may possess remain completely uncharacterized in the bovine rumen. An important first step in this new research area is the demonstration of the relative abundance and existence of markers for these cells in rumen tissue. A related second step is to document rumen epidermal proliferative responses to an extrinsic signal such as nutrient concentration within the rumen. The objectives of this experiment were to evaluate the extrinsic effect of diet on (1) gene expression of 6 potential rumen epidermal stem or progenitor cell markers and (2) rumen epidermal cell proliferation within the stratum basale. Twelve preweaned Holstein heifers were fed either a restricted diet (R) or an enhanced diet (EH). Animals on R received a milk replacer (MR) diet fed at 0.44kg of powder dry matter (DM)/d (20.9% crude protein, 29.8% fat, DM basis) and EH received MR at 1.08kg of powder dry matter/d (28.9% crude protein, 26.2% fat, DM basis). All calves had access to a 20% crude protein starter and were weaned during wk 7 of the experiment. Lifetime DM intake was 0.73kg of DM/calf per day for R (5.88 Mcal of net energy/calf per day) and 1.26kg of DM/calf per day for EH (10.68 Mcal of net energy/calf per day). Twenty-four hours before slaughter heifers received an intravenous dose of 5-bromo-2'-deoxyuridine to label proliferating cells. Heifers were slaughtered at 8 wk of age, and rumen samples from the ventral sac region were obtained and stored in RNA preservative and processed for routine histology. Quantitative real-time reverse transcriptase PCR was used to analyze relative abundance of genes. Candidate

  2. Spectral and spatial characterization of perfluorinated graded-index polymer optical fibers for the distribution of optical wireless communication cells.

    PubMed

    Hajjar, Hani Al; Montero, David S; Lallana, Pedro C; Vázquez, Carmen; Fracasso, Bruno

    2015-02-10

    In this paper, the characterization of a perfluorinated graded-index polymer optical fiber (PF-GIPOF) for a high-bitrate indoor optical wireless system is reported. PF-GIPOF is used here to interconnect different optical wireless access points that distribute optical free-space high-bitrate wireless communication cells. The PF-GIPOF channel is first studied in terms of transmission attenuation and frequency response and, in a second step, the spatial power profile distribution at the fiber output is analyzed. Both characterizations are performed under varying restricted mode launch conditions, enabling us to assess the transmission channel performance subject to potential connectorization errors within an environment where the end users may intervene by themselves on the home network infrastructure.

  3. Cell size and communication: role in structural and electrical development and remodeling of the heart.

    PubMed

    Spach, Madison S; Heidlage, J Francis; Barr, Roger C; Dolber, Paul C

    2004-10-01

    With the advent of new information about alterations of cardiac gap junctions in disease conditions associated with arrhythmias, there have been major advances in the genetic and metabolic manipulation of gap junctions. In contrast, in naturally occurring cardiac preparations, little is known about cell-to-cell transmission and the subcellular events of propagation or about structural mechanisms that may affect conduction events at this small size scale. Therefore, the aim of this article is to review results that produce the following unifying picture: changes in cardiac conduction due to remodeling cardiac morphology ultimately are limited to changes in three morphologic parameters: (1) cell geometry (size and shape), (2) gap junctions (distribution and conductivity), and (3) interstitial space (size and distribution). In this article, we consider changes in conduction that result from the remodeling of cell size and gap junction distribution that occurs with developmental ventricular hypertrophy from birth to maturity. We then go on to changes in longitudinal and transverse propagation in aging human atrial bundles that are produced by remodeling interstitial space due to deposition of collagenous septa. At present, experimental limitations in naturally occurring preparations prevent measurement of the conductance of individual gap junctional plaques, as well as the delays in conduction associated with cell-to-cell transmission. Therefore, we consider the development of mathematical electrical models based on documented cardiac microstructure to gain insight into the role of specific morphologic parameters in generating the changes in anisotropic propagation that we measured in the tissue preparations. A major antiarrhythmic implication of the results is that an "indirect" therapeutic target is interstitial collagen, because regulation of its deposition and turnover to prevent or alter microfibrosis can enhance side-to-side electrical coupling between small

  4. Beta-Cell Age Calculator, a Translational Yardstick to Communicate Diabetes Risk with Patients: Tehran Lipid and Glucose Study

    PubMed Central

    Bozorgmanesh, Mohammadreza; Hadaegh, Farzad; Azizi, Fereidoun

    2013-01-01

    Aims. To provide a yardstick for physicians/patients to efficiently communicate/measure incident diabetes risk. Methods. We included data on 5,960 (3,438 women) diabetes-free adults, aged ≥20 years at baseline who either developed diabetes during two consecutive examinations or completed the followup. Age, systolic blood pressure, family history of diabetes, waist-to-height ratio (WHtR), triglyceride-to-high-density lipoprotein cholesterol ratio (TG/HDLD-C), and fasting plasma glucose (FPG) were introduced into an accelerated failure time regression model. Results. Annual diabetes incidence rate was 0.85/1000-person (95% CIs 0.77–0.94). Point-score-system incorporated age (1 point for >65 years), family history of diabetes (4 points), systolic blood pressure (−1 to 3 points), WHtR (−4 to 6 points), TG/HDL-C (1 point for ≥1.5), and FPG (0 to 27 points). Harrell's C statistic = 0.830 (95% CIs 0.808–0.852) and Hosmer-Lemeshow χ 2 = 9.7 (P for lack of fitness = 0.462) indicated good discrimination and calibration. We defined beta-cell age as chronological age of a person with the same predicted risk but all risk factors at the normal levels (i.e., WHtR 0.50, no family history of diabetes, Ln (TG/HDL-C) = 0.531, and FPG = 4.9 (mmol·L−1)). Conclusion. Hereby, we have made it also possible to estimate wide ranges of “beta-cell age” for most chronological ages to assist clinician with risk communication. PMID:24967319

  5. Inflammatory conditions induce gap junctional communication between rat Kupffer cells both in vivo and in vitro

    PubMed Central

    Eugenín, Eliseo A.; González, Hernán E.; Sánchez, Helmuth A.; Brañes, María C.; Sáez, Juan C.

    2007-01-01

    Connexin43 (Cx43), a gap junction protein subunit, has been previously detected in Kupffer cells (KCs) during liver inflammation, however, KCs phagocytose cell debris that may include Cx43 protein, which could explain the detection of Cx43 in KCs. We determined that KCs express Cx43 and form gap junctions both in vivo and in vitro. In liver sections of animals treated with LPS, Cx43 was detected at ED2+ cells interfaces, indicating formation of GJ between KCs in vivo. In vitro, unstimulated KCs cultures did not form functional GJs, and expressed low levels of Cx43 that showed a diffuse intracellular distribution. In contrast, KCs treated with LPS plus IFN-γ, expressed a greater amount of Cx43 at both the, protein and mRNA levels, and showed Cx43 at cell-cell contacts associated with higher dye coupling. In conclusion, activation of KCs in vivo or in vitro resulted in enhanced Cx43 expression levels and formation of GJ that might play relevant roles during liver inflammation. PMID:17900549

  6. Epidermal identity is maintained by cell-cell communication via a universally active feedback loop in Arabidopsis thaliana.

    PubMed

    San-Bento, Rita; Farcot, Etienne; Galletti, Roberta; Creff, Audrey; Ingram, Gwyneth

    2014-01-01

    The transcription factors ARABIDOPSIS THALIANA MERISTEM L1 (ATML1) and PROTODERMAL FACTOR2 (PDF2) are indispensable for epidermal cell-fate specification in Arabidopsis embryos. However, the mechanisms of regulation of these genes, particularly their relationship with cell-cell signalling pathways, although the subject of considerable speculation, remain unclear. Here we demonstrate that the receptor kinase ARABIDOPSIS CRINKLY4 (ACR4) positively affects the expression of ATML1 and PDF2 in seedlings. In contrast, ATML1- and PDF2-containing complexes directly and negatively affect both their own expression and that of ACR4. By modelling the resulting feedback loop, we demonstrate a network structure that is capable of maintaining robust epidermal cell identity post-germination. We show that a second seed-specific signalling pathway involving the subtilase ABNORMAL LEAFSHAPE1 (ALE1) and the receptor kinases GASSHO1 (GSO1) and GASSHO2 (GSO2) acts in parallel to the epidermal loop to control embryonic surface formation via an ATML1/PDF2-independent pathway. Genetic interactions between components of this linear pathway and the epidermal loop suggest that an intact embryo surface is necessary for initiation and/or stabilization of the epidermal loop, specifically during early embryogenesis.

  7. IFATS collection: Adipose stromal cell differentiation is reduced by endothelial cell contact and paracrine communication: role of canonical Wnt signaling.

    PubMed

    Rajashekhar, Gangaraju; Traktuev, Dmitry O; Roell, William C; Johnstone, Brian H; Merfeld-Clauss, Stephanie; Van Natta, Bruce; Rosen, Elliot D; March, Keith L; Clauss, Matthias

    2008-10-01

    Adipose stromal cells (ASC) are multipotential mesenchymal progenitor cells that are readily induced to undergo adipogenic differentiation, and we have recently demonstrated them to have functional and phenotypic overlap with pericytes lining microvessels in adipose tissues. In this study we addressed the hypothesis that modulation of ASC fate within this perivascular niche can occur via interaction with endothelial cells (EC), which serve to modulate the adipogenic potential of ASC. To this end, we investigated contact as well as paracrine effects of EC on ASC adipogenesis, in two-dimensional coculture and via conditioned medium and analyzed mutual gene expression changes by real-time reverse transcription polymerase chain reaction (PCR). A significant decrease in adipogenic differentiation was observed in ASC when they were cocultured with EC but not control fibroblasts. This endothelial cell-specific effect was accompanied by increased expression of factors involved in Wnt signaling, most prominently Wnt1, Wnt4, and Wnt10a, which are well-known inhibitors of adipogenesis. Suppression of Wnt1 but not Wnt 10a or scrambled control short interfering RNA in cocultures partially reversed the endothelial cell effect, thus increasing adipogenic differentiation, suggesting a plausible role of Wnt1 ligand in modulation of adipogenesis by the vasculature. Furthermore, addition of recombinant Wnt ligand or the Wnt signaling agonist inhibited adipogenic differentiation of ASC in the absence of EC. In conclusion, these data define the relationship in adipose tissue between ASC and EC in the perivascular niche, in which the latter act to repress adipogenesis, thereby stabilizing vasculature. It is tempting to speculate that abnormal endothelial function may be associated with pathologic derepression of adipogenesis. Disclosure of potential conflicts of interest is found at the end of this article.

  8. Communication: Phase transitions, criticality, and three-phase coexistence in constrained cell models

    NASA Astrophysics Data System (ADS)

    Nayhouse, Michael; Kwon, Joseph Sang-Il; Orkoulas, G.

    2012-05-01

    In simulation studies of fluid-solid transitions, the solid phase is usually modeled as a constrained system in which each particle is confined to move in a single Wigner-Seitz cell. The constrained cell model has been used in the determination of fluid-solid coexistence via thermodynamic integration and other techniques. In the present work, the phase diagram of such a constrained system of Lennard-Jones particles is determined from constant-pressure simulations. The pressure-density isotherms exhibit inflection points which are interpreted as the mechanical stability limit of the solid phase. The phase diagram of the constrained system contains a critical and a triple point. The temperature and pressure at the critical and the triple point are both higher than those of the unconstrained system due to the reduction in the entropy caused by the single occupancy constraint.

  9. UV-induced extracellular factor from human fibroblasts communicates the UV response to nonirradiated cells

    SciTech Connect

    Schorpp, M.; Mallick, U.; Rahmsdorf, H.J.; Herrlich, P.

    1984-07-01

    Ultraviolet light enhances the synthesis of at least eight abundant proteins in human fibroblasts within 2 hr. These proteins are identical with those induced by the tumor promoter TPA. The inducing signal is generated by DNA damage, as these proteins are induced by lower doses of UV in fibroblasts from patients with Cockayne's syndrome or Xeroderma pigmentosum. In the supernatant of UV-treated cells, a heat-labile ammonium sulfate precipitable factor of more than 10 kd (EPIF) was detected which, upon transfer to nonirradiated cells, mimicked UV in the UV-induced synthesis of gene products. The response to UV, TPA, or EPIF was inhibited by fluocinolone acetonide, but not by retinoic acid, protease inhibitors, or superoxide dismutase.

  10. Rapid communications: antiperspirant induced DNA damage in canine cells by comet assay.

    PubMed

    Yiu, Gloria

    2004-01-01

    Abstract Millions of people around the world use antiperspirants to decrease or eliminate body odors. Most antiperspirants contain aluminum zirconium or another form of aluminum as its active ingredient. The present investigation applied Comet assay to detect if Secret Platinum for women, Old Spice for men, or Crystal Natural produced DNA damage in Madin-Darby canine kidney cells (MDCKII). This study has shown that antiperspirants cause DNA damage on a single-cell level. Additionally, our data showed us that in general, Secret Platinum for women and Old Spice for men, produced equivalent damage. Crystal Natural, marketed as being safer or less damaging, induced the most extensive damage of all three antiperspirants tested.

  11. Integrated Phase Array Antenna/Solar Cell System for Flexible Access Communication (IA/SAC)

    NASA Technical Reports Server (NTRS)

    Clark, E. B.; Lee, R. Q.; Pal, A. T.; Wilt, D. M.; McElroy, B. D.; Mueller, C. H.

    2005-01-01

    This paper describes recent efforts to integrate advanced solar cells with printed planar antennas. Several previous attempts have been reported in the literature, but this effort is unique in several ways. It uses Gallium Arsenide (GaAs) multi-junction solar cell technology. The solar cells and antennas will be integrated onto a common GaAs substrate. When fully implemented, IA/SAC will be capable of dynamic beam steering. In addition, this program targets the X-band (8 - 12 GHz) and higher frequencies, as compared to the 2.2 - 2.9 GHz arrays targeted by other organizations. These higher operating frequencies enable a greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of 2 x 2 cm GaAs Monolithically Integrated Modules (MIM) with integrated patch antennas on the opposite side of the substrate. Subsequent work will involve the design and development of devices having the GaAs MIMs and the antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  12. A cell-phone-based brain-computer interface for communication in daily life.

    PubMed

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  13. Phaeobacter sp. strain Y4I utilizes two separate cell-to-cell communication systems to regulate production of the antimicrobial indigoidine.

    PubMed

    Cude, W Nathan; Prevatte, Carson W; Hadden, Mary K; May, Amanda L; Smith, Russell T; Swain, Caleb L; Campagna, Shawn R; Buchan, Alison

    2015-02-01

    The marine roseobacter Phaeobacter sp. strain Y4I synthesizes the blue antimicrobial secondary metabolite indigoidine when grown in a biofilm or on agar plates. Prior studies suggested that indigoidine production may be, in part, regulated by cell-to-cell communication systems. Phaeobacter sp. strain Y4I possesses two luxR and luxI homologous N-acyl-L-homoserine lactone (AHL)-mediated cell-to-cell communication systems, designated pgaRI and phaRI. We show here that Y4I produces two dominantAHLs, the novel monounsaturated N-(3-hydroxydodecenoyl)-L-homoserine lactone (3OHC(12:1)-HSL) and the relatively common N-octanoyl-L-homoserine lactone (C8-HSL), and provide evidence that they are synthesized by PhaI and PgaI, respectively.A Tn5 insertional mutation in either genetic locus results in the abolishment (pgaR::Tn5) or reduction (phaR::Tn5) of pigment production. Motility defects and denser biofilms were also observed in these mutant backgrounds, suggesting an overlap in the functional roles of these systems. Production of the AHLs occurs at distinct points during growth on an agar surface and was determined by isotope dilution high-performance liquid chromatography–tandem mass spectrometry (ID-HPLC-MS/MS) analysis.Within 2 h of surface inoculation, only 3OHC(12:1)-HSL was detected in agar extracts. As surface-attached cells became established (at approximately 10 h), the concentration of 3OHC(12:1)-HSL decreased, and the concentration of C8-HSL increased rapidly over 14 h.After longer (>24-h) establishment periods, the concentrations of the two AHLs increased to and stabilized at approximately 15 nM and approximately 600 nM for 3OHC12:1-HSL and C8-HSL, respectively. In contrast, the total amount of indigoidine increased steadily from undetectable to 642 Mby 48 h. Gene expression profiles of the AHL and indigoidine synthases (pgaI, phaI, and igiD) were consistent with their metabolite profiles. These data provide evidence that pgaRI and phaRI play overlapping roles

  14. "Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca(2+) fluoroimaging".

    PubMed

    Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun

    2016-02-16

    To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca(2+) indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca(2+) dynamics of neural cells were visualized simultaneously by fluorescence imaging.

  15. Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health☆☆☆

    PubMed Central

    Kotiadis, Vassilios N.; Duchen, Michael R.; Osellame, Laura D.

    2014-01-01

    Background The maintenance of cell metabolism and homeostasis is a fundamental characteristic of living organisms. In eukaryotes, mitochondria are the cornerstone of these life supporting processes, playing leading roles in a host of core cellular functions, including energy transduction, metabolic and calcium signalling, and supporting roles in a number of biosynthetic pathways. The possession of a discrete mitochondrial genome dictates that the maintenance of mitochondrial ‘fitness’ requires quality control mechanisms which involve close communication with the nucleus. Scope of review This review explores the synergistic mechanisms that control mitochondrial quality and function and ensure cellular bioenergetic homeostasis. These include antioxidant defence mechanisms that protect against oxidative damage caused by reactive oxygen species, while regulating signals transduced through such free radicals. Protein homeostasis controls import, folding, and degradation of proteins underpinned by mechanisms that regulate bioenergetic capacity through the mitochondrial unfolded protein response. Autophagic machinery is recruited for mitochondrial turnover through the process of mitophagy. Mitochondria also communicate with the nucleus to exact specific transcriptional responses through retrograde signalling pathways. Major conclusions The outcome of mitochondrial quality control is not only reliant on the efficient operation of the core homeostatic mechanisms but also in the effective interaction of mitochondria with other cellular components, namely the nucleus. General significance Understanding mitochondrial quality control and the interactions between the organelle and the nucleus will be crucial in developing therapies for the plethora of diseases in which the pathophysiology is determined by mitochondrial dysfunction. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. PMID:24211250

  16. Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication-dependent genes and functions.

    PubMed

    He, Ya-Wen; Xu, Min; Lin, Kui; Ng, Yu-Jin Alvin; Wen, Chao-Ming; Wang, Lian-Hui; Liu, Zi-Duo; Zhang, Hai-Bao; Dong, Yi-Hu; Dow, J Maxwell; Zhang, Lian-Hui

    2006-01-01

    The bacterial pathogen Xanthomonas campestris pv. campestris (Xcc) recruits a diffusible signal factor (DSF), which has recently been structurally characterized as cis-11-methyl-2-dodecenoic acid, as a cell-cell communication signal to synchronize virulence gene expression and biofilm dispersal. In this study, we showed that despite the existance of phenotype variations in different Xcc isolates, the DSF-mediated functions were in general conserved. To investigate the genomic profiles of DSF regulation, we designed and conducted oligomicroarray analysis by comparison of the gene expression patterns of wild-type strain XC1 and its DSF-deficient mutant XC1dF, as well as those of XC1dF in the presence or absence of DSF signals. The analyses led to identification of 165 genes, whose expression was significantly influenced by DSF signals. These genes encode proteins and enzymes belonging to at least 12 functional groups. In addition to those previously known DSF-dependent activities such as production of extracellular enzymes and extracellular polysaccharides, microarray analyses also revealed new functions mediated by DSF, such as flagellum synthesis, resistance to toxins and oxidative stress, and aerobic respiration. Phenotype analyses confirmed that DSF signalling contributed to resistance to toxin acriflavin and hydrogen peroxide, and to the survival of bacterial cells at different temperatures. We conclude that DSF cell-cell signalling is not only essential for co-ordinating the expression of virulence genes but also plays a vital role in keeping up the general competence of the pathogen in ecosystems.

  17. Communication — Modeling polymer-electrolyte fuel-cell agglomerates with double-trap kinetics

    DOE PAGES

    Pant, Lalit M.; Weber, Adam Z.

    2017-04-14

    A new semi-analytical agglomerate model is presented for polymer-electrolyte fuel-cell cathodes. The model uses double-trap kinetics for the oxygen-reduction reaction, which can capture the observed potential-dependent coverage and Tafel-slope changes. An iterative semi-analytical approach is used to obtain reaction rate constants from the double-trap kinetics, oxygen concentration at the agglomerate surface, and overall agglomerate reaction rate. The analytical method can predict reaction rates within 2% of the numerically simulated values for a wide range of oxygen concentrations, overpotentials, and agglomerate sizes, while saving simulation time compared to a fully numerical approach.

  18. Bone scintigraphy in the initial staging of patients with renal-cell carcinoma: concise communication

    SciTech Connect

    Rosen, P.R.; Murphy, K.G.

    1984-03-01

    The records of 40 consecutive patients who received bone scintigraphy in conjunction with the initial evaluation and staging of renal-cell carcinoma were reviewed to determine the role of bone imaging in this clinical context. Bone scintigrams were positive in three out of 40 patients at the time of diagnosis. In view of the low yield of bone imaging, it appears that routine scintigraphy is unwarranted in the absence of skeletal symptoms before the diagnosis of renal lesions. The presence of a positive bone image did not alter the indication for nephrectomy.

  19. Satellite Communication.

    ERIC Educational Resources Information Center

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  20. Satellite Communication.

    ERIC Educational Resources Information Center

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  1. Observation of "wired" cell communication over 10-μm and 20-μm poly(dimethylsiloxane) barriers in tetracycline inducible expression systems

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Te; Chi, Cheng-Yu; Wu, Pei-Yi; Chuang, Fang-Tzu; Lin, Yueh-Chien; Liu, Hao-Kai; Huang, Guan-Syuan; Tsai, Tzu-Ching; Wo, Andrew M.; Lee, Hsinyu; Lee, Si-Chen

    2016-01-01

    Communication between cells and extracellular environments is of interest because of its critical roles in cell development and differentiation. Particularly, this signal transduction is commonly believed to rely on the contact and binding of the participating molecules/proteins, suggesting that the binding distance needed is less than a few nanometers. However, it is difficult to precisely match the rapidly binding interaction which depends on the probability of molecular collision in living systems, raising a hypothesis that another mechanism exists, could promote this signal communication, and remains unknown. Here we report that a long-range signal delivery over 10-μm and 20-μm polydimethylsiloxane (PDMS) barriers can be observed in microfluidically tetracycline (Tet) inducible expression systems. Results show that a significant increment of the long-range induced green fluorescent protein in human embryonic kidney 293T (HEK 293T) cells by the stimulation of Tet is demonstrated, and that such a signal induction is not dominated by Tet diffusion and displays a specific bindingless property. In addition, our experimental results, combined with theoretical modeling, suggest that this communication exhibits a bump-shaped characteristic depending on barrier thickness, materially structural property, surface roughness, and agonist concentration. It strongly relies on the PDMS barrier to delivery signal; therefore, we call such a mechanism as "wired" cell communication instead of wireless. These results could ignite interests in the novel and "wired" cell communication, which we call it X-signal, and in the use of such systems for the study of cellular biology and development of new drug.

  2. Short communication: contribution of vibration and noise during milking to the somatic cell count of milk.

    PubMed

    Gygax, L; Nosal, D

    2006-07-01

    We investigated the hypothesis that somatic cell counts (SCC) in milk are influenced by the vibration and noise experienced by dairy cows during milking. We therefore measured vibration and noise on 50 Swiss dairy farms (with herringbone, autotandem, side-by-side, or carousel parlors), where we also collected bulk tank SCC. Somatic cell counts increased with an increasing intensity of vibration but not with acoustic noise. Cows milked in autotandem and side-by-side parlors had lower SCC than those in the other 2 types of milking parlors. On 12 farms where the milking system was modified to reduce vibration and noise, SCC also dropped. In addition, the relative improvement in SCC seemed to be correlated with the relative improvement in the reduction of vibration but not with the improvement in acoustic noise. A reduction in vibration (structure-borne sonic waves) seemed to improve udder health, which may have been mediated by the increased well-being and reduced stress of cows during milking.

  3. Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans

    PubMed Central

    Leighton, Daniel H. W.; Choe, Andrea; Wu, Shannon Y; Sternberg, Paul W.

    2014-01-01

    Males of the androdioecious species Caenorhabditis elegans are more likely to attempt to mate with and successfully inseminate C. elegans hermaphrodites that do not concurrently harbor sperm. Although a small number of genes have been implicated in this effect, the mechanism by which it arises remains unknown. In the context of the battle of the sexes, it is also unknown whether this effect is to the benefit of the male, the hermaphrodite, or both. We report that successful contact between mature sperm and oocyte in the C. elegans gonad at the start of fertilization causes the oocyte to release a signal that is transmitted to somatic cells in its mother, with the ultimate effect of reducing her attractiveness to males. Changes in hermaphrodite attractiveness are tied to the production of a volatile pheromone, the first such pheromone described in C. elegans. PMID:25453110

  4. A voice that wraps around the body--communication problems in the advanced stages of non-small cell lung cancer.

    PubMed Central

    Moore, R. J.; Chamberlain, R. M.; Khuri, F. R.

    2001-01-01

    INTRODUCTION: Significant problems in clinician-patient communication have been described in the oncology literatures. Advanced stage non-small lung cancer a devastating disease, can cause the communication between survivors, significant others, and clinicians to falter. To date, however, no studies have used qualitative methods to examine experiential aspects of living with non-small cell lung cancer. Nor have any studies evaluated the tools survivors might use to repair some of the damage caused by living with this disease. METHODS: Exploratory, two-part qualitative design. RESULTS: Survivors of non-small cell lung cancer live with multiple fears and losses. These include a diminished sense of self, the loss of health, fears of pain in a future tainted by the threat of death, and increased feelings of alienation due to the loss of previous sources of meaning in life. These experiences significantly affect cancer survivors abilities to communicate with clinicians and significant others. CONCLUSIONS: Survivors of non-small cell lung cancer often have difficulty sharing their experiences with others not suffering a similar affliction. Through their narratives with other survivors, however, patients are better able to initiate a biopsychosocial mechanism which enables them to create a cognitive map. This cognitive map helps survivors share their experiences with others, thereby repairing some of the damage caused by this disease, including the harm done to their communication with other people. PMID:11922184

  5. Tc-99m-labeled red blood cells for the measurement of red cell mass in newborn infants: concise communication

    SciTech Connect

    Linderkamp, O.; Betke, K.; Fendel, H.; Klemm, J.; Lorenzen, K.; Riegel, K.P.

    1980-07-01

    In vitro and in vivo investigations were performed to examine the binding of Tc-99m to neonatal red blood cells (RBC). Labeling efficiency was about 90%, and unbound Tc-99m less than 3% after one washing, in premature and full-term newborns and in children. Thus presence of high percentages of fetal hemoglobin (Hb F) did not influence the labeling of RBCs with Tc-99m. RBCs of 11 newborns were hemolysed and the distribution of Tc-99m on RBC components was analyzed. Although Hb F percentage averaged (60.0 +- 8.10)% (s.d.), only (11.9 +- 3.7)% of Tc-99m was bound by Hb F, whereas (45.0 +- 6.1)% was associated with Hb A. RBC membranes bound (13.7 +- 4.3)% and (29.3 +- 4.0)% were found unbound in hemolysates. These results indicate that Tc-99m preferentially binds to beta chains. In vivo equilibration of Tc-99m RBCs and of albumin labeled with Evans blue was investigated in five newborn infants. Tc-99m RBCs were stable in each case during the first hour after injection. Elution of Tc-99m from RBCs was (3.4 +- 1.5)% per h. Body-to-venous hematocrit ratio averaged 0.86 +- 0.03.

  6. Studies of Intercellular Communication and Intracellular Metabolic Responses by Bone Cells to Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Doty, Stephen B.

    1997-01-01

    Spaceflight affects the weight bearing skeletal tissues by reducing the rate of new bone formation. This effect on the long bones of flown rats has been quantitated but the effect at the cellular level and the mechanism(s) involved are not understood. We are applying electron microscopy, coupled with histochemistry and immunocytochemistry to determine the cellular functions most affected by spaceflight. The emphasis for study of these samples from SLS-1, a 9-day mission, is on the histochemical and structural changes of the endosteal and perivascular osteoblasts found in diaphyseal bone of femur and tibia. Work is still in progress but some findings are described: (1) An expected decrease in alkaline phosphatase activity in osteoblasts from flight animals, but an increase in enzyme activity in the stromal stem cells adjacent to the osteoblast. (2) An increase in osteoclastic TRAP activity in the trabecular bone region in response to spaceflight. (3) A large increase in procollagen containing secretory granules in osteoblasts in the recovery group, and a significant decrease in granule numbers in the flight group.

  7. Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation.

    PubMed

    Yamaguchi, Dean T; Huang, Jason; Ma, Defang; Wang, Paul K C

    2002-02-01

    Electromagnetic fields have been used to augment the healing of fractures because of its ability to increase new bone formation. The mechanism of how electromagnetic fields can promote new bone formation is unknown, although the interaction of electromagnetic fields with components of the plasma membrane of cells has been hypothesized to occur in bone cells. Gap junctions occur among bone forming cells, the osteoblasts, and have been hypothesized to play a role in new bone formation. Thus it was investigated whether extremely low-frequency (ELF) magnetic fields alter gap junction intercellular communication in the pre-osteoblastic model, MC3T3-E1, and the well-differentiated osteoblastic model, ROS 17/2.8. ELF magnetic field exposure systems were designed to be used for an inverted microscope stage and for a tissue culture incubator. Using these systems, it was found that magnetic fields over a frequency range from 30 to 120 Hz and field intensities up to 12.5 G dose dependently decreased gap junction intercellular communication in MC3T3-E1 cells during their proliferative phase of development. The total amount of connexin 43 protein and the distribution of connexin 43 gap junction protein between cytoplasmic and plasma membrane pools were unaltered by treatment with ELF magnetic fields. Cytosolic calcium ([Ca(2+)](i)) which can inhibit gap junction communication, was not altered by magnetic field exposure. Identical exposure conditions did not affect gap junction communication in the ROS 17/2.8 cell line and when MC3T3-E1 cells were more differentiated. Thus ELF magnetic fields may affect only less differentiated or pre-osteoblasts and not fully differentiated osteoblasts. Consequently, electromagnetic fields may aid in the repair of bone by effects exerted only on osteoprogenitor or pre-osteoblasts.

  8. Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation.

    PubMed

    Yin, Hao; Yan, Bo; Sun, Jing; Jia, Pengfei; Zhang, Zijuan; Yan, Xiaosa; Chai, Juan; Ren, Zhizhong; Zheng, Guochang; Liu, Heng

    2012-06-01

    Grafting is an ancient cloning method that has been used widely for thousands of years in agricultural practices. Graft-union development is also an intricate process that involves substantial changes such as organ regeneration and genetic material exchange. However, the molecular mechanisms for graft-union development are still largely unknown. Here, a micrografting method that has been used widely in Arabidopsis was improved to adapt it a smooth procedure to facilitate sample analysis and to allow it to easily be applied to various dicotyledonous plants. The developmental stage of the graft union was characterized based on this method. Histological analysis suggested that the transport activities of vasculature were recovered at 3 days after grafting (dag) and that auxin modulated the vascular reconnection at 2 dag. Microarray data revealed a signal-exchange process between cells of the scion and stock at 1 dag, which re-established the communication network in the graft union. This process was concomitant with the clearing of cell debris, and both processes were initiated by a wound-induced programme. The results demonstrate the feasibility and potential power of investigating various plant developmental processes by this method, and represent a primary and significant step in interpretation of the molecular mechanisms underlying graft-union development.

  9. Cell-Cell Communication Between Fibroblast and 3T3-L1 Cells Under Co-culturing in Oxidative Stress Condition Induced by H2O2.

    PubMed

    Subramaniyan, Sivakumar Allur; Kim, Sidong; Hwang, Inho

    2016-10-01

    The present study was carried out to understand the interaction between fibroblast and 3T3-L1 preadipocyte cells under H2O2-induced oxidative stress condition. H2O2 (40 μM) was added in co-culture and monoculture of fibroblast and 3T3-L1 cell. The cells in the lower well were harvested for analysis and the process was carried out for both cells. The cell growth, oxidative stress markers, and antioxidant enzymes were analyzed. Additionally, the mRNA expressions of caspase-3 and caspase-7 were selected for analysis of apoptotic pathways and TNF-α and NF-κB were analyzed for inflammatory pathways. The adipogenic marker such as adiponectin and PPAR-γ and collagen synthesis markers such as LOX and BMP-1 were analyzed in the co-culture of fibroblast and 3T3-L1 cells. Cell viability and antioxidant enzymes were significantly increased in the co-culture compared to the monoculture under stress condition. The apoptotic, inflammatory, adipogenic, and collagen-synthesized markers were significantly altered in H2O2-induced co-culture of fibroblast and 3T3-L1 cells when compared with the monoculture of H2O2-induced fibroblast and 3T3-L1 cells. In addition, the confocal microscopical investigation indicated that the co-culture of H2O2-induced 3T3-L1 and fibroblast cells increases collagen type I and type III expression. From our results, we suggested that co-culture of fat cell (3T3-L1) and fibroblast cells may influence/regulate each other and made the cells able to withstand against oxidative stress and aging. It is conceivable that the same mechanism might have been occurring from cell to cell while animals are stressed by various environmental conditions.

  10. Intercellular communication within the rat anterior pituitary gland: X. Immunohistocytochemistry of S-100 and connexin 43 of folliculo-stellate cells in the rat anterior pituitary gland.

    PubMed

    Shirasawa, Nobuyuki; Mabuchi, Yoshio; Sakuma, Eisuke; Horiuchi, Osamu; Yashiro, Takashi; Kikuchi, Motoshi; Hashimoto, Yasuo; Tsuruo, Yoshihiro; Herbert, Damon C; Soji, Tsuyoshi

    2004-05-01

    Since Rinehart and Farquhar reported the presence of agranulated cells in the anterior pituitary gland in 1953, the functions of the folliculo-stellate cell remain to be clarified. Intercellular junctions have been described in the monkey, rat, and teleost anterior pituitary glands, indicating the existence of cell-to-cell communication within the organ. We pointed to their possible role in the rapid dissemination of information through a complex interconnecting system of follicles involving gap junctions. The gap junctional/folliculo-stellate cellular network was essential in the maturation and regulation of the pituitary gland system such as the hypothalamic-pituitary-gonadal axis. It has been was shown that a network participated in the conduction of electrophysiological information over a long distance using the ion Ca(++), which propagates to other folliculo-stellate cells by signaling through gap junctions. Sixty-day-old male rats were used in this study for light microscopic immunohistochemistry of S-100 protein, type I collagen, and connexin 43, and for electron microscopy to observe the morphological relationships between the cellular networks of folliculo-stellate cells and granulated pituitary cells. Clusters of anti-S-100 protein-positive cells were clearly observed in a region of the hypophysis tentatively named the transition zone. Anti-S-100 protein-positive cells and their cytoplasmic processes were also present in the anterior lobe and assembled together to form follicular lumina. Type I collagen was clearly shown outlining the incomplete lobular or ductule-like structure making cell cords in the anterior pituitary gland. Numerous microvilli were present within the follicular lumen while around the lumina, junctional specializations including gap junctions were positive for the connexin 43 protein. A nonuniform distribution of the connexin 43-positive sites were observed. Small or dot-shaped positive sites were noted where two clusters of cells

  11. Speech Communication.

    ERIC Educational Resources Information Center

    Brooks, William D.

    Presented in this book is a view of speech communication which enables an individual to become fully aware of his or her role as both initiator and recipient of messages. Communication is treated broadly with emphasis on the understanding and skills relating to various types of speech communication across the broad spectrum of human communication.…

  12. Enhanced expression of Cx43 and gap junction communication in vascular smooth muscle cells of spontaneously hypertensive rats

    PubMed Central

    Wang, Li-Jie; Liu, Wei-Dong; Zhang, Liang; Ma, Ke-Tao; Zhao, Lei; Shi, Wen-Yan; Zhang, Wen-Wen; Wang, Ying-Zi; Li, Li; Si, Jun-Qiang

    2016-01-01

    Niflumic acid (NFA) is a novel gap junction (GJ) inhibitor. The aim of the present study was to investigate the effect of NFA on GJ communication and the expression of connexin (Cx) in vascular smooth muscle cells (VSMCs) of mesenteric arterioles of spontaneously hypertensive rats (SHR). Whole-cell patch clamp recording demonstrated that NFA at 1×10–4 M significantly inhibited the inward current and its effect was reversible. The time for charging and discharging of cell membrane capacitance (Cinput) reduced from 9.73 to 0.48 ms (P<0.05; n=6). Pressure myograph measurement showed that NFA at 3×10-4 M fully neutralized the contraction caused by phenylephrine. The relaxation responses of normotensive control Wistar Kyoto (WKY) rats were significantly higher, compared with those of the SHRs (P<0.05; n=6). Western blot and reverse transcription-quantitative polymerase chain reaction analyses showed that the mRNA and protein expression levels of Cx43 of the third-level branch of mesenteric arterioles of the SHRs and WKY rats were higher, compared with those of the first-level branch. The mRNA and protein expression levels of Cx43 of the primary and third-level branches of the mesenteric arterioles in the SHRs were higher, compared with those in the WKY rats (P<0.05; n=6). The mRNA levels of Cx43 in the mesenteric arterioles were significantly downregulated by NFA in a concentration-dependent manner (P<0.01; n=6). The protein levels of Cx43 in primary cultured VSMCs isolated from the mesenteric arterioles were also significantly downregulated by NFA in a concentration-dependent manner (P<0.01; n=6). These results showed that the vasorelaxatory effects of GJ inhibitors were reduced in the SHRs, which was associated with a higher protein expression level of Cx43 in the mesenteric arterioles of the SHRs. NFA also relaxed the mesenteric arterioles by reducing the expression of Cx43, which decreased blood pressure. Therefore, regulation of the expression of GJs may be a

  13. [Effects of cell-to-cell communication and histone acetyltransferase on the change of osteogenic differentiation ability among single-cell clones from healthy periodontium with heterogeneity of osteogenic differentiation abilities].

    PubMed

    Fei, D D; Li, B; Gao, F; Liu, A Q; Jin, Y; Wang, Q T

    2017-05-09

    Objective: To investigate the effect of cell-to-cell communication amongst single-cell clones from healthy periodontium with different osteogenic differentiation potentials on change of osteogenic differentiation capabilities and the role histone acetyltransferase partaken in this process. Methods: In order to research the change of osteogenic differentiation ability via cell-to-cell communication, indirect co-culture method was used by placing two single-cell clones with different osteogenesis potentials in each of the 6-well plates. Blank control, weak and strong osteogenic groups were set up, corresponding to Transwell chambers with blank, cells of weak osteogenesis ability and cells of strong osteogenesis ability, respectively. Each group was made in triplicate. After co-culture for four days, Transwell chamber was removed. Quantitative real-time PCR (qPCR) and alizarin red staining were employed to detect the change of osteogenic differentiation ability. The acetylation level of H3 was measured by using Western blotting. Histone acetyltransferases were detected by qPCR. Results: Single-cell clones were ensured from mesenchymal stem cells by flow cytometer, the positive expression of CD29, CD90, CD105, CD146 was (99.80±0.02)%, (99.36±0.18)%, (99.41±0.05)% and (95.10±2.11)%, respectively. And CD31 and CD34 expression were (0.29±0.11)% and (0.22±0.13)%, respectively. Alizarin red and oil red O staining confirmed that single-cell clones had the abilities of adipogenesis and osteogenesis. Alkaline phosphatase (ALP) and alizarin red staining indicated that different single-cell clones were heterogeneity in osteogenesis differentiation. Indirect co-culture indicated that the mRNA expression of osteocalcin (OCN) were 14.24±5.60 and 4.78±2.90, respectively and Runt-related transcription factor 2 (RUNX2) were 2.75±1.44 and 1.61±0.44, respectively, in strong and weak osteogenic groups. They were significantly higher compared to the blank group (the m

  14. Theme Issue on Health Communication.

    ERIC Educational Resources Information Center

    Anapol, Malthon M., Ed.

    1979-01-01

    The five articles in this publication address the following topics: the need for effective communication in the dental office, communication skills among preschool children with sickle cell disease, the use of qualifiers in medical headlines, population communication in India, and the effectiveness of a home care program in facilitating therapy…

  15. Theme Issue on Health Communication.

    ERIC Educational Resources Information Center

    Anapol, Malthon M., Ed.

    1979-01-01

    The five articles in this publication address the following topics: the need for effective communication in the dental office, communication skills among preschool children with sickle cell disease, the use of qualifiers in medical headlines, population communication in India, and the effectiveness of a home care program in facilitating therapy…

  16. Intrapersonal Communication in Interpersonal Communication.

    ERIC Educational Resources Information Center

    DeVito, Joseph A.

    Textbook authors have the responsibility to present a complete and accurate account of a specific discipline. In the field of interpersonal communication, intrapersonal communication is of great importance. Textbooks tend to take two approaches to intrapersonal communication. One approach treats intrapersonal communication as essentially the same…

  17. Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis

    PubMed Central

    Ponnusamy, Suriyan; Selvam, Shanmugam Panneer; Mehrotra, Shikhar; Kawamori, Toshihiko; Snider, Ashley J; Obeid, Lina M; Shao, Yuan; Sabbadini, Roger; Ogretmen, Besim

    2012-01-01

    Mechanisms by which cancer cells communicate with the host organism to regulate lung colonization/metastasis are unclear. We show that this communication occurs via sphingosine 1-phosphate (S1P) generated systemically by sphingosine kinase 1 (SK1), rather than via tumour-derived S1P. Modulation of systemic, but not tumour SK1, prevented S1P elevation, and inhibited TRAMP-induced prostate cancer growth in TRAMP+/+SK1−/− mice, or lung metastasis of multiple cancer cells in SK1−/− animals. Genetic loss of SK1 activated a master metastasis suppressor, Brms1 (breast carcinoma metastasis suppressor 1), via modulation of S1P receptor 2 (S1PR2) in cancer cells. Alterations of S1PR2 using pharmacologic and genetic tools enhanced Brms1. Moreover, Brms1 in S1PR2−/− MEFs was modulated by serum S1P alterations. Accordingly, ectopic Brms1 in MB49 bladder cancer cells suppressed lung metastasis, and stable knockdown of Brms1 prevented this process. Importantly, inhibition of systemic S1P signalling using a novel anti-S1P monoclonal antibody (mAb), Sphingomab, attenuated lung metastasis, which was prevented by Brms1 knockdown in MB49 cells. Thus, these data suggest that systemic SK1/S1P regulates metastatic potential via regulation of tumour S1PR2/Brms1 axis. PMID:22707406

  18. Interaction between activated chemokine receptor 1 and FcεRI at membrane rafts promotes communication and F-actin-rich cytoneme extensions between mast cells

    PubMed Central

    Beer, Freddy; Ono, Shoichiro; Ono, Santa J.

    2010-01-01

    Chemokines play important regulatory roles in immunity, but their contributions to mast cell function remain poorly understood. We examined the effects of FcεRI–chemokine receptor (CCR) 1 co-stimulation on receptor localization and cellular morphology of bone marrow-derived mast cells. Whereas FcεRI and CCR1 co-localized at the plasma membrane in unsensitized cells, sensitization with IgE promoted internalization of CCR1 molecules. Co-stimulation of FcεRI and CCR1 with antigen and macrophage inflammatory protein-1α was more effective than FcεRI stimulation alone in causing leading edge formation, flattened morphology, membrane ruffles and ganglioside (GM1+) lipid mediator release. Co-stimulation resulted in phalloidin-positive cytoneme-like cellular extensions, also known as tunneling nanotubes, which originated at points of calcium accumulation. This is the first report of cytoneme formation by mast cells. To determine the importance of lipid rafts for mast cell function, the cells were cholesterol depleted. Cholesterol depletion enhanced degranulation in resting, sensitized and co-stimulated cells, but not in FcεRI-cross-linked cells, and inhibited formation of filamentous actin+ cytonemes but not GM1+ cytonemes. Treatment with latrunculin A to sequester globular-actin abolished cytoneme formation. The cytonemes may participate in intercellular communication during allergic and inflammatory responses, and their presence in the co-stimulated mast cells suggests new roles for CCRs in immunopathology. PMID:20173038

  19. Lightwave Communications.

    ERIC Educational Resources Information Center

    Rheam, Harry

    1993-01-01

    Describes simple and inexpensive labs for introducing students to fiber optic communications. Students investigate light as a carrier wave; look into the difficulties associated with "light" communication; and learn about modulation, optical fibers, and critical angles. (PR)

  20. Data communications

    SciTech Connect

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining computer communication systems used in nuclear power plants. The recommendations cover three areas important to these communications systems: system design, communication protocols, and communication media. The first area, system design, considers three aspects of system design--questions about architecture, specific risky design elements or omissions to look for in designs being reviewed, and recommendations for multiplexed data communication systems used in safety systems. The second area reviews pertinent aspects of communication protocol design and makes recommendations for newly designed protocols or the selection of existing protocols for safety system, information display, and non-safety control system use. The third area covers communication media selection, which differs significantly from traditional wire and cable. The recommendations for communication media extend or enhance the concerns of published IEEE standards about three subjects: data rate, imported hazards and maintainability.

  1. Communicating science

    USGS Publications Warehouse

    Farris, Gaye S.

    2005-01-01

    For science to have an impact, it must be communicated and easily accessible. The USGS National Wetlands Research Center communicates its research findings through several ways: publishing, the Web, the library, and education and outreach.

  2. Lightwave Communications.

    ERIC Educational Resources Information Center

    Rheam, Harry

    1993-01-01

    Describes simple and inexpensive labs for introducing students to fiber optic communications. Students investigate light as a carrier wave; look into the difficulties associated with "light" communication; and learn about modulation, optical fibers, and critical angles. (PR)

  3. Communication (action with communicative content).

    PubMed

    Russo, M T

    2010-01-01

    The term Communication generally designate the transmission of a message of concepts, feelings or needs from a speaker to a receiver by means of verbal or no verbal language. The pragmatic approach to human communication has put in evidence a further implication of this concept: every behaviour therefore has a value even when it is not intentional. Recently, a more dynamic concept of communication has been elaborated where communication means communicative action. This interpretation is the starting point for the theory of the "communicative acting" and subsequently of the so called discourse ethic elaborated by J. Habermas.

  4. Communication, Communication, Communication! Growth through Laboratory Instructing

    ERIC Educational Resources Information Center

    Peterson, Jamie J.; DeAngelo, Samantha; Mack, Nancy; Thompson, Claudia; Cooper, Jennifer; Sesma, Arturo, Jr.

    2014-01-01

    This study examined gains undergraduate students made in their communication and collaboration skills when they served as peer teachers, i.e., laboratory instructors (LIs), for a General Psychology laboratory. Self-ratings of communication and collaboration skills were completed before and after teaching the laboratory. When compared to before the…

  5. Communication, Communication, Communication! Growth through Laboratory Instructing

    ERIC Educational Resources Information Center

    Peterson, Jamie J.; DeAngelo, Samantha; Mack, Nancy; Thompson, Claudia; Cooper, Jennifer; Sesma, Arturo, Jr.

    2014-01-01

    This study examined gains undergraduate students made in their communication and collaboration skills when they served as peer teachers, i.e., laboratory instructors (LIs), for a General Psychology laboratory. Self-ratings of communication and collaboration skills were completed before and after teaching the laboratory. When compared to before the…

  6. Communicating Risk.

    ERIC Educational Resources Information Center

    Feldman, Joyce

    1993-01-01

    Communicating the environmental risk involved in projects like public incinerators is part of the education of the community. Presents an outline for communicating with the community that includes communication within the project office; solicitation of public input; development of small group informational activities; shared responsibilities;…

  7. Existential Communication.

    ERIC Educational Resources Information Center

    Self, Charles C.

    Focusing on the seminal work "Being and Nothingness," this paper explores the implications of the ideas of Jean-Paul Sartre for the study of communication in society. The paper redefines communication from an existential point of view, explores some implications of this redefinition for the study of communication within the social…

  8. Cultural Communications.

    ERIC Educational Resources Information Center

    Armas, Jose

    It is too often taken for granted that the communication process with culturally different children takes place as readily as it might with children from Anglo cultures. Most teachers receive training in verbal and formal communication skills; children come to school with nonverbal and informal communication skills. This initially can create…

  9. Ripple Communication.

    ERIC Educational Resources Information Center

    Wilcox, R. Stimson

    1980-01-01

    Discusses how surface-dwelling animals use the water surface as a mode of communication by making ripple signals while they swim about. Provides information about surfaces and surface waves, ripple communication in water striders, ripple signal characteristics, sensing and orienting, other modes of communication, and evolution of ripple…

  10. Communicating Effectively

    Cancer.gov

    The seventh module of the EPEC-O (Education in Palliative and End-of-Life Care for Oncology) Self-Study: Cultural Considerations When Caring for African Americans explores communication issues pertinent to African Americans with cancer and their health care providers, discusses strategies for culturally sensitive communication, and presents the SPIKES protocol, a practical framework for effective communication.

  11. Communication Speaks

    ERIC Educational Resources Information Center

    Kinman, Robin Lynn

    2010-01-01

    When the author recently turned her attention to the National Council of Teachers of Mathematics (NCTM) "Principles and Standards," she was startled to see communication as key. She adjusted her teaching to meet the NCTM Communication Standard and promote communication in her classroom by providing a safe environment, developing discourse and…

  12. Ripple Communication.

    ERIC Educational Resources Information Center

    Wilcox, R. Stimson

    1980-01-01

    Discusses how surface-dwelling animals use the water surface as a mode of communication by making ripple signals while they swim about. Provides information about surfaces and surface waves, ripple communication in water striders, ripple signal characteristics, sensing and orienting, other modes of communication, and evolution of ripple…

  13. Existential Communication.

    ERIC Educational Resources Information Center

    Self, Charles C.

    Focusing on the seminal work "Being and Nothingness," this paper explores the implications of the ideas of Jean-Paul Sartre for the study of communication in society. The paper redefines communication from an existential point of view, explores some implications of this redefinition for the study of communication within the social…

  14. All-trans retinoic acid restores gap junctional intercellular communication between oral cancer cells with upregulation of Cx32 and Cx43 expressions in vitro.

    PubMed

    Wang, Juan; Dai, Yaohui; Huang, Yulei; Chen, Xiaohua; Wang, Hong; Hong, Yun; Xia, Juan; Cheng, Bin

    2013-07-01

    All-trans retinoic acid (ATRA) has been demonstrated to inhibit tumor growth by restoration of gap junctional intercellular communication (GJIC) via upregulation of connexin (Cx) expression in some solid tumors. However, the relationship between ATRA and GJIC remains unclear in oral squamous cell carcinoma (OSCC). The aim of this study was to investigate the effect of ATRA on the GJIC function of OSCC. We measured the effects of ATRA on the viability and cell cycle distribution of SCC9 and Tca8113 OSCC cells. The GJIC function was observed using the scrape-loading dye transfer technique, and the mRNA and protein levels of Cx32 and Cx43 were detected by qRT-PCR, Western blot, and immunofluorescence assays. ATRA inhibited the growth of OSCC cells in a dose- and time-dependent manner (P <0.05) and caused cell cycle arrest. ATRA-treated cells showed a 2.69-fold and 2.06-fold enhancement of GJIC in SCC9 and Tca8113 cells, respectively (P <0.05). Moreover, ATRA induced upregulation of Cx32 and Cx43 at both the mRNA and protein levels in OSCC cells. Our results indicated that restoration of GJIC via enhanced Cx32 and Cx43 expression might serve as a novel mechanism for the anti-tumor effect of ATRA in OSCC.

  15. Regulation of connexin 43-mediated gap junctional intercellular communication by Ca2+ in mouse epidermal cells is controlled by E- cadherin

    PubMed Central

    1991-01-01

    Gap junctional intercellular communication (GJIC) of cultured mouse epidermal cells is mediated by a gap junction protein, connexin 43, and is dependent on the calcium concentration in the medium, with higher GJIC in a high-calcium (1.2 mM) medium. In several mouse epidermal cell lines, we found a good correlation between the level of GJIC and that of immunohistochemical staining of E-cadherin, a calcium-dependent cell adhesion molecule, at cell-cell contact areas. The variant cell line P3/22 showed both low GJIC and E-cadherin protein expression in low- and high-Ca2+ media. P3/22 cells showed very low E-cadherin mRNA expression. To test directly whether E-cadherin is involved in the Ca(2+)-dependent regulation of GJIC, we transfected the E-cadherin expression vector into P3/22 cells and obtained several stable clones which expressed high levels of E-cadherin mRNA. All transfectants expressed E-cadherin molecules at cell-cell contact areas in a calcium- dependent manner. GJIC was also observed in these transfectants and was calcium dependent. These results suggest that Ca(2+)-dependent regulation of GJIC in mouse epidermal cells is directly controlled by a calcium-dependent cell adhesion molecule, E-cadherin. Furthermore, several lines of evidence suggest that GJIC control by E-cadherin involves posttranslational regulation (assembly and/or function) of the gap junction protein connexin 43. PMID:1650371

  16. Wilderness communications.

    PubMed

    Worley, Gordon H

    2011-09-01

    When an emergency situation arises in a remote location, the ability to communicate with outside sources of assistance can prove very valuable. This article reviews the different types of communications technologies available to individuals in remote locations, including satellite telephones, personal locator beacons, satellite messengers, cellular telephones, and the different licensed and non-licensed 2-way radio services available for personal use. It also discusses basic radio communications techniques, emergency communication, requesting ground or air casualty evacuation, and selecting communications devices for different applications.

  17. Small role with big impact: miRNAs as communicators in the cross-talk between cancer-associated fibroblasts and cancer cells

    PubMed Central

    Wang, Zhanhuai; Tan, Yinuo; Yu, Wei; Zheng, Shu; Zhang, Suzhan; Sun, Lifeng; Ding, Kefeng

    2017-01-01

    Cancer microenvironment is composed of numerous components that can support cancer cell proliferation, promote cancer progression and contribute to cancer treatment resistance. The major components of caner microenvironment are fibroblasts, endothelial cells, immune cells as well as cytokines, chemokines, and extracellular matrix (ECM) all of which surround tumor cells as the core and cross talk with each other. Among them, cancer-associated fibroblasts (CAFs) play an important role in promoting cancer progression by secreting various pro-inflammatory factors. MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate protein expression both in cancer cell and normal stromal cells. Changes of miRNAs expression in cancer-associated fibroblasts can be induced both by cancer cells and other stromal cells. This change can arise through direct interaction or by secreted paracrine factors or even by secreted miRNAs. The desregulated miRNAs in cancer-associated fibroblasts then enhance the CAFs phenotype and assist their cancer promotion ability. Explore the regulatory function of miRNAs in the complex communication between cancer cells and cancer microenvironment is important to understand the process of tumor progression and may help to develop new therapeutic strategies. This review provides an updated content of latest research advances about the relevance of miRNAs in the interaction between cancer cells and the CAFs. We will describe miRNAs which are differential expressed by NFs and CAFs, their function in regulating fibroblasts activation as well as miRNAs expressed in CAFs as prognostic factors in cancer stroma in recent studies. We will also discuss miRNA as an important player in CAFs mediated regulation of cancer progression and metastasis, cancer metabolism, cancer stem cell property and chemoresistance. PMID:28367098

  18. Antiproliferative Action of Conjugated Linoleic Acid on Human MCF-7 Breast Cancer Cells Mediated by Enhancement of Gap Junctional Intercellular Communication through Inactivation of NF-κB

    PubMed Central

    Rakib, Md. Abdur; Lee, Won Sup; Kim, Gon Sup; Han, Jae Hee; Kim, Jeong Ok

    2013-01-01

    The major conjugated linoleic acid (CLA) isomers, c9,t11-CLA and t10,c12-CLA, have anticancer effects; however, the exact mechanisms underlying these effects are unknown. Evidence suggests that reversal of reduced gap junctional intercellular communication (GJIC) in cancer cells inhibits cell growth and induces cell death. Hence, we determined that CLA isomers enhance GJIC in human MCF-7 breast cancer cells and investigated the underlying molecular mechanisms. The CLA isomers significantly enhanced GJIC of MCF-7 cells at 40 μM concentration, whereas CLA inhibited cell growth and induced caspase-dependent apoptosis. CLA increased connexin43 (Cx43) expression both at the transcriptional and translational levels. CLA inhibited nuclear factor-κB (NF-κB) activity and enhanced reactive oxygen species (ROS) generation. No significant difference was observed in the efficacy of c9,t11-CLA and t10,c12-CLA. These results suggest that the anticancer effect of CLA is associated with upregulation of GJIC mediated by enhanced Cx43 expression through inactivation of NF-κB and generation of ROS in MCF-7 cells. PMID:24371460

  19. Pseudomonas aeruginosa-induced apoptosis in airway epithelial cells is mediated by gap junctional communication in a JNK-dependent manner.

    PubMed

    Losa, Davide; Köhler, Thilo; Bellec, Jessica; Dudez, Tecla; Crespin, Sophie; Bacchetta, Marc; Boulanger, Pierre; Hong, Saw See; Morel, Sandrine; Nguyen, Tuan H; van Delden, Christian; Chanson, Marc

    2014-05-15

    Chronic infection and inflammation of the airways is a hallmark of cystic fibrosis (CF), a disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The response of the CF airway epithelium to the opportunistic pathogen Pseudomonas aeruginosa is characterized by altered inflammation and apoptosis. In this study, we examined innate immune recognition and epithelial responses at the level of the gap junction protein connexin43 (Cx43) in polarized human airway epithelial cells upon infection by PAO1. We report that PAO1 activates cell surface receptors to elicit an intracellular signaling cascade leading to enhancement of gap junctional communication. Expression of Cx43 involved an opposite regulation exerted by JNK and p38 MAPKs. PAO1-induced apoptosis was increased in the presence of a JNK inhibitor, but latter effect was prevented by lentiviral expression of a Cx43-specific short hairpin RNA. Moreover, we found that JNK activity was upregulated by pharmacological inhibition of CFTR in Calu-3 cells, whereas correction of a CF airway cell line (CF15 cells) by adenoviral expression of CFTR reduced the activation of this MAPK. Interestingly, CFTR inhibition in Calu-3 cells was associated with decreased Cx43 expression and reduced apoptosis. These results indicate that Cx43 expression is a component of the response of airway epithelial cells to innate immune activation by regulating the survival/apoptosis balance. Defective CFTR could alter this equilibrium with deleterious consequences on the CF epithelial response to P. aeruginosa.

  20. Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus.

    PubMed

    Jones, Bertina F; Wall, Michelle E; Carroll, R Lloyd; Washburn, Sean; Banes, Albert J

    2005-08-01

    An in vitro model was used to investigate the effect of mechanical stimuli on adaptation to load and calcium signaling in aligned medial collateral ligament cells (MCL). This model used a patterned silicone membrane to align the cells parallel with the direction of the microgrooves. Alignment created an architecture that simulated a degree of cell orientation in native ligament tissue. It was hypothesized that aligned ligament cells would be more efficient at calcium wave propagation than cells that were randomly oriented. It was further hypothesized that calcium wave propagation would be greater among cells that were both aligned and subjected to mechanical stretch compared to cells that were aligned but not stretched. Rat MCL cells were loaded with Fura-2AM, a calcium-binding dye, and mechanically indented using a micropipette tip. A ratio-imaging fluorescence technique was used to quantitate the calcium (Ca2+) response. It was concluded that stretching ligament cells prior to stimulation increased their sensitivity to load and their ability to propagate a calcium wave. However, the ability of aligned cells to propagate this wave was not significantly different when compared to nonaligned cells. Treatment of cultures with inhibitors such as apyrase and suramin significantly reduced the number of cells recruited in the calcium response. Hence, it was concluded that ATP released from mechanically stimulated cells was a principal mediator responsible for the rise in intracellular calcium in ligament cells. Further, purinoceptor activation may amplify the signal to alert and recruit more cells in a response to mechanical stimulation.

  1. Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells

    PubMed Central

    Ammerpohl, O; Trauzold, A; Schniewind, B; Griep, U; Pilarsky, C; Grutzmann, R; Saeger, H-D; Janssen, O; Sipos, B; Kloppel, G; Kalthoff, H

    2006-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease and one of the cancer entities with the lowest life expectancy. Beside surgical therapy, no effective therapeutic options are available yet. Here, we show that 4-phenylbutyrate (4-PB), a known and well-tolerable inhibitor of histone deacetylases (HDAC), induces up to 70% apoptosis in all cell lines tested (Panc 1, T4M-4, COLO 357, BxPc3). In contrast, it leads to cell cycle arrest in only half of the cell lines tested. This drug increases gap junction communication between adjacent T3M-4 cells in a concentration-dependent manner and efficiently inhibits cellular export mechanisms in Panc 1, T4M-4, COLO 357 and BxPc3 cells. Consequently, in combination with gemcitabine 4-PB shows an overadditive effect on induction of apoptosis in BxPc3 and T3M-4 cells (up to 4.5-fold compared to single drug treatment) with accompanied activation of Caspase 8, BH3 interacting domain death agonist (Bid) and poly (ADP-ribose) polymerase family, member 1 (PARP) cleavage. Although the inhibition of the mitogen-activated protein kinase-pathway has no influence on fulminant induction of apoptosis, the inhibition of the JNK-pathway by SP600125 completely abolishes the overadditive effect induced by the combined application of both drugs, firstly reported by this study. PMID:17164759

  2. [Verbal communication].

    PubMed

    Fiorini, Fulvio; Panini, Roberta; Ameri, Cinzia

    2014-01-01

    The communication is an action that occupies a lot of part of the life of every individual and understands a whole activity that the purpose has to reach a preset goal: the communication obligatorily foresees the presence of a recipient/receiving.During communication we used both the word, but also the gesture and the way of do/say. The oral communication represents the most complete system however, evolved, end and thin to communicate, able to also express concepts and thoughts and not only behaviors: with it he can also lie and to supply misinformation. The oral communication also possesses an important temporal value, in how much you/he/she can define him now, the before and the then, but also the ability to determine the human relationships, because it participates in to define the different roles in which broadcasting station and receiver are found at that time. The truest power of the words is that to create, to maintain, to modify other people's behaviors; a natural correlation exists that is between communication and behavior. The final objective of the communication results therefore that to create or to modify the relationships and the human behaviors; in other terms we can be affirmed that the words can determine the reality. The true ragion to be to communicate is the purpose however, that who speaks he/she wants to reach: it is a voluntary, both mental and physical effort, that originates from a need both explicit and implicit of whom sends forth the message.

  3. Internal Communication

    ERIC Educational Resources Information Center

    Carr, Patricia

    1975-01-01

    A school system must be concerned with both the formal and informal communication systems. (Available from Buckeye Association of School Administrators, 750 Brooksedge Blvd., Westerville, Ohio 43081) (Author)

  4. The lung communication network.

    PubMed

    Losa, Davide; Chanson, Marc

    2015-08-01

    The different types of cells in the lung, from the conducting airway epithelium to the alveolar epithelium and the pulmonary vasculature, are interconnected by gap junctions. The specific profile of gap junction proteins, the connexins, expressed in these different cell types forms compartments of intercellular communication that can be further shaped by the release of extracellular nucleotides via pannexin1 channels. In this review, we focus on the physiology of connexins and pannexins and describe how this lung communication network modulates lung function and host defenses in conductive and respiratory airways.

  5. Extracellular vesicles in the biology of brain tumour stem cells--Implications for inter-cellular communication, therapy and biomarker development.

    PubMed

    Nakano, Ichiro; Garnier, Delphine; Minata, Mutsuko; Rak, Janusz

    2015-04-01

    Extracellular vesicles (EVs) act as carriers of molecular and oncogenic signatures present in subsets of tumour cells and tumour-associated stroma, and as mediators of intercellular communication. These processes likely involve cancer stem cells (CSCs). EVs represent a unique pathway of cellular export and cell-to-cell transfer of insoluble molecular regulators such as membrane receptors, signalling proteins and metabolites, thereby influencing the functional integration of cancer cell populations. While mechanisms that control biogenesis, cargo and uptake of different classes of EVs (exosomes, microvesicles, ectosomes, large oncosomes) are poorly understood, they likely remain under the influence of stress-responses, microenvironment and oncogenic processes that define the biology and heterogeneity of human cancers. In glioblastoma (GBM), recent molecular profiling approaches distinguished several disease subtypes driven by distinct molecular, epigenetic and mutational mechanisms, leading to formation of proneural, neural, classical and mesenchymal tumours. Moreover, molecularly distinct clonal cellular lineages co-exist within individual GBM lesions, where they differentiate according to distinct stem cell hierarchies resulting in several facets of tumour heterogeneity and the related potential for intercellular interactions. Glioma stem cells (GSCs) may carry signatures of either proneural or mesenchymal GBM subtypes and differ in several biological characteristics that are, at least in part, represented by the output and repertoire of EV production (vesiculome). We report that vesiculomes differ between known GBM subtypes. EVs may also reflect and influence the equilibrium of the stem cell hierarchy, contain oncogenic drivers and modulate the microenvironment (vascular niche). The GBM/GSC subtype-specific differentials in EV cargo of proteins, transcripts, microRNA and DNA may enable detection of the dynamics of the stem cell compartment and result in

  6. A model to explain specific cellular communications and cellular harmony:- a hypothesis of coupled cells and interactive coupling molecules

    PubMed Central

    2014-01-01

    Background The various cell types and their relative numbers in multicellular organisms are controlled by growth factors and related extracellular molecules which affect genetic expression pathways. However, these substances may have both/either inhibitory and/or stimulatory effects on cell division and cell differentiation depending on the cellular environment. It is not known how cells respond to these substances in such an ambiguous way. Many cellular effects have been investigated and reported using cell culture from cancer cell lines in an effort to define normal cellular behaviour using these abnormal cells. A model is offered to explain the harmony of cellular life in multicellular organisms involving interacting extracellular substances. Methods A basic model was proposed based on asymmetric cell division and evidence to support the hypothetical model was accumulated from the literature. In particular, relevant evidence was selected for the Insulin-Like Growth Factor system from the published data, especially from certain cell lines, to support the model. The evidence has been selective in an attempt to provide a picture of normal cellular responses, derived from the cell lines. Results The formation of a pair of coupled cells by asymmetric cell division is an integral part of the model as is the interaction of couplet molecules derived from these cells. Each couplet cell will have a receptor to measure the amount of the couplet molecule produced by the other cell; each cell will be receptor-positive or receptor-negative for the respective receptors. The couplet molecules will form a binary complex whose level is also measured by the cell. The hypothesis is heavily supported by selective collection of circumstantial evidence and by some direct evidence. The basic model can be expanded to other cellular interactions. Conclusions These couplet cells and interacting couplet molecules can be viewed as a mechanism that provides a controlled and balanced division

  7. A model to explain specific cellular communications and cellular harmony:- a hypothesis of coupled cells and interactive coupling molecules.

    PubMed

    Craven, Cyril J

    2014-09-14

    The various cell types and their relative numbers in multicellular organisms are controlled by growth factors and related extracellular molecules which affect genetic expression pathways. However, these substances may have both/either inhibitory and/or stimulatory effects on cell division and cell differentiation depending on the cellular environment. It is not known how cells respond to these substances in such an ambiguous way. Many cellular effects have been investigated and reported using cell culture from cancer cell lines in an effort to define normal cellular behaviour using these abnormal cells.A model is offered to explain the harmony of cellular life in multicellular organisms involving interacting extracellular substances. A basic model was proposed based on asymmetric cell division and evidence to support the hypothetical model was accumulated from the literature. In particular, relevant evidence was selected for the Insulin-Like Growth Factor system from the published data, especially from certain cell lines, to support the model. The evidence has been selective in an attempt to provide a picture of normal cellular responses, derived from the cell lines. The formation of a pair of coupled cells by asymmetric cell division is an integral part of the model as is the interaction of couplet molecules derived from these cells. Each couplet cell will have a receptor to measure the amount of the couplet molecule produced by the other cell; each cell will be receptor-positive or receptor-negative for the respective receptors. The couplet molecules will form a binary complex whose level is also measured by the cell. The hypothesis is heavily supported by selective collection of circumstantial evidence and by some direct evidence. The basic model can be expanded to other cellular interactions. These couplet cells and interacting couplet molecules can be viewed as a mechanism that provides a controlled and balanced division-of-labour between the two progeny cells

  8. Emerging therapeutic targets for the treatment of human acute myeloid leukemia (part 1) - gene transcription, cell cycle regulation, metabolism and intercellular communication.

    PubMed

    Reikvam, Håkon; Hauge, Michelle; Brenner, Annette K; Hatfield, Kimberley Joanne; Bruserud, Øystein

    2015-06-01

    Human acute myeloid leukemia is a heterogeneous disease and the effect of therapeutic targeting of specific molecular mechanisms will probably vary between patient subsets. Cell cycle regulators are among the emerging targets (e.g., aurora and polo-like kinases, cyclin-dependent kinases). Inhibition of communication between acute myeloid leukemia and stromal cells is also considered; among the most promising of these strategies are inhibition of hedgehog-initiated, CXCR4-CXCL12 and Axl-Gas6 signaling. Finally, targeting of energy and protein metabolism is considered, the most promising strategy being inhibition of isocitrate dehydrogenase in patients with IDH mutations. Thus, several strategies are now considered, and a major common challenge for all of them is to clarify how they should be combined with each other or with conventional chemotherapy, and whether their use should be limited to certain subsets of patients.

  9. Communicator, 1998.

    ERIC Educational Resources Information Center

    Bortolussi, Vicki, Ed.

    1998-01-01

    The CAG "Communicator" focuses on serving gifted students in California. This document consists of the four issues of "Communicator" issued during 1998. Featured articles include: (1) "Underachievement for Some--Dropping Out with Dignity for Others" (Sally Reis); (2) "When Gifted High School Students Fail"…

  10. Communicator, 1997.

    ERIC Educational Resources Information Center

    Bortolussi, Vicki, Ed.

    1997-01-01

    The CAG "Communicator" focus is on serving gifted students in California. This document consists of the four issues of "communicator" issued during 1997. Featured articles include: (1) "The Gifted Student At Risk. It Can't Be True" (Judy Roseberry); (2) "Tech Net-Technology and At-Risk Students" (Judy Lieb); (3) "Reviving Ophelia: Saving the…

  11. Industrial Communications.

    ERIC Educational Resources Information Center

    Lindsay, Dan

    Intended for seniors planning a career in industry as skilled laborers, this specialized course in Industrial Communications offers the student basic communications skills which he will need in his work and in his daily life. Since class activities center around short, factual oral reports, class size will be limited to 20, providing a maximum of…

  12. Communicating up

    ERIC Educational Resources Information Center

    Lum, Lydia

    2013-01-01

    Chief communicators at many U.S. institutions are interested in forging closer ties with governing boards. Proponents say such relationships can increase board trust and confidence in communicators before a crisis occurs, making it easier to manage the institution's reputation and limit negative publicity when one does. At some institutions, such…

  13. Interracial Communication

    ERIC Educational Resources Information Center

    Harris, Tina M.

    2004-01-01

    This course explores the inextricable and multidimensional relationships among race, culture, and communication by providing students with an extensive theoretical framework to enhance their understanding of interracial communication. Specific attention is geared toward the construction of one's own racial and ethnic identity as well as those of…

  14. Communicating up

    ERIC Educational Resources Information Center

    Lum, Lydia

    2013-01-01

    Chief communicators at many U.S. institutions are interested in forging closer ties with governing boards. Proponents say such relationships can increase board trust and confidence in communicators before a crisis occurs, making it easier to manage the institution's reputation and limit negative publicity when one does. At some institutions, such…

  15. An NF-κB – EphrinA5 – Dependent Communication between NG2+ Interstitial Cells and Myoblasts Promotes Muscle Growth in Neonates

    PubMed Central

    Gu, Jin-Mo; Wang, David J.; Peterson, Jennifer M.; Shintaku, Jonathan; Liyanarachchi, Sandya; Coppola, Vincenzo; Frakes, Ashley E.; Kaspar, Brian K.; Cornelison, Dawn D.; Guttridge, Denis C.

    2015-01-01

    SUMMARY Skeletal muscle growth immediately following birth is a critical for proper body posture and locomotion. However, compared to embryogenesis and adulthood, the processes regulating the maturation of neonatal muscles is considerably less clear. Studies in the 1960s predicted that neonatal muscle growth results from nuclear accretion of myoblasts preferentially at the tips of myofibers. Remarkably, little information has been added since then to resolve how myoblasts migrate to the ends of fibers. Here, we provide insight to this process by revealing a unique NF-κB-dependent communication between NG2+ interstitial cells and myoblasts. NF-κB in NG2+ cells promotes myoblast migration to the tips of myofibers through cell-cell contact. This occurs through expression of ephrinA5 from NG2+ cells, which we further deduce is an NF-κB target gene. Together, results suggest that NF-κB plays an important role in the development of newborn muscles to ensure proper myoblast migration for fiber growth. PMID:26777211

  16. Inhibition of gap junctional Intercellular communication in WB-F344 rat liver epithelial cells by triphenyltin chloride through MAPK and PI3-kinase pathways

    PubMed Central

    2010-01-01

    Background Organotin compounds (OTCs) have been widely used as stabilizers in the production of plastic, agricultural pesticides, antifoulant plaints and wood preservation. The toxicity of triphenyltin (TPT) compounds was known for their embryotoxic, neurotoxic, genotoxic and immunotoxic effects in mammals. The carcinogenicity of TPT was not well understood and few studies had discussed the effects of OTCs on gap junctional intercellular communication (GJIC) of cells. Method In the present study, the effects of triphenyltin chloride (TPTC) on GJIC in WB-F344 rat liver epithelial cells were evaluated, using the scrape-loading dye transfer technique. Results TPTC inhibited GJIC after a 30-min exposure in a concentration- and time-dependent manner. Pre-incubation of cells with the protein kinase C (PKC) inhibitor did not modify the response, but the specific MEK 1 inhibitor PD98059 and PI3K inhibitor LY294002 decreased substantially the inhibition of GJIC by TPTC. After WB-F344 cells were exposed to TPTC, phosphorylation of Cx43 increased as seen in Western blot analysis. Conclusions These results show that TPTC inhibits GJIC in WB-F344 rat liver epithelial cells by altering the Cx43 protein expression through both MAPK and PI3-kinase pathways. PMID:20591183

  17. A Cell-Based High-Throughput Assay for Gap Junction Communication Suitable for Assessing Connexin 43-Ezrin Interaction Disruptors Using IncuCyte ZOOM.

    PubMed

    Dukic, Aleksandra R; McClymont, David W; Taskén, Kjetil

    2016-09-14

    Connexin 43 (Cx43), the predominant gap junction (GJ) protein, directly interacts with the A-kinase-anchoring protein (AKAP) Ezrin in human cytotrophoblasts and a rat liver epithelial cells (IAR20). The Cx43-Ezrin-protein kinase (PKA) complex facilitates Cx43 phosphorylation by PKA, which triggers GJ opening in cytotrophoblasts and IAR20 cells and may be a general mechanism regulating GJ intercellular communication (GJIC). Considering the importance of Cx43 GJs in health and disease, they are considered potential pharmaceutical targets. The Cx43-Ezrin interaction is a protein-protein interaction that opens possibilities for targeting with peptides and small molecules. For this reason, we developed a high-throughput cell-based assay in which GJIC can be assessed and new compounds characterized. We used two pools of IAR20 cells, calcein loaded and unloaded, that were mixed and allowed to attach. Next, GJIC was monitored over time using automated imaging via the IncuCyte imager. The assay was validated using known GJ inhibitors and anchoring peptide disruptors, and we further tested new peptides that interfered with the Cx43-Ezrin binding region and reduced GJIC. Although an AlphaScreen assay can be used to screen for Cx43-Ezrin interaction inhibitors, the cell-based assay described is an ideal secondary screen for promising small-molecule hits to help identify the most potent compounds.

  18. Traumatic brain injury in vivo and in vitro contributes to cerebral vascular dysfunction through impaired gap junction communication between vascular smooth muscle cells.

    PubMed

    Yu, Guang-Xiang; Mueller, Martin; Hawkins, Bridget E; Mathew, Babu P; Parsley, Margaret A; Vergara, Leoncio A; Hellmich, Helen L; Prough, Donald S; Dewitt, Douglas S

    2014-04-15

    Gap junctions (GJs) contribute to cerebral vasodilation, vasoconstriction, and, perhaps, to vascular compensatory mechanisms, such as autoregulation. To explore the effects of traumatic brain injury (TBI) on vascular GJ communication, we assessed GJ coupling in A7r5 vascular smooth muscle (VSM) cells subjected to rapid stretch injury (RSI) in vitro and VSM in middle cerebral arteries (MCAs) harvested from rats subjected to fluid percussion TBI in vivo. Intercellular communication was evaluated by measuring fluorescence recovery after photobleaching (FRAP). In VSM cells in vitro, FRAP increased significantly (p<0.05 vs. sham RSI) after mild RSI, but decreased significantly (p<0.05 vs. sham RSI) after moderate or severe RSI. FRAP decreased significantly (p<0.05 vs. sham RSI) 30 min and 2 h, but increased significantly (p<0.05 vs. sham RSI) 24 h after RSI. In MCAs harvested from rats 30 min after moderate TBI in vivo, FRAP was reduced significantly (p<0.05), compared to MCAs from rats after sham TBI. In VSM cells in vitro, pretreatment with the peroxynitrite (ONOO(-)) scavenger, 5,10,15,20-tetrakis(4-sulfonatophenyl)prophyrinato iron[III], prevented RSI-induced reductions in FRAP. In isolated MCAs from rats treated with the ONOO(-) scavenger, penicillamine, GJ coupling was not impaired by fluid percussion TBI. In addition, penicillamine treatment improved vasodilatory responses to reduced intravascular pressure in MCAs harvested from rats subjected to moderate fluid percussion TBI. These results indicate that TBI reduced GJ coupling in VSM cells in vitro and in vivo through mechanisms related to generation of the potent oxidant, ONOO(-).

  19. Communicating health.

    PubMed

    Chatterjee, A

    1995-01-01

    Routine production of communication materials without paying attention to utilization, field test, and impact analysis is ineffective. The concept of information, education, and communication (IEC) should encompass voluntary activity of health education in a tradition of innovation. One seminal factor may be the communication technologies developed by the National Technology Missions. The missions were participatory by seeking solutions among communities and analyzing health issues from the perspective of those directly involved, rather than from the top down. The prime focus of the national drinking water mission was convenience, hence messages concentrating on health advantages were ignored. At this juncture, influencing health behavior required decentralization reflecting local cultures. Thus community-based partners became the foundation of a strategy of communicating safe water. As national strategies emerged in each of the technology missions, communication addressed advocacy of the need for political will, dissemination of technical information, and influencing patterns of behavior. Despite learning a new understanding, the danger exists that IEC remains just another label of mass communication with posters, advertisements, brochures, radio, and television. Decisions on contraceptive choice and use requires more than just accurate information; it requires the power to make such a decision. A new approach demands a priority for communication skills taking into account people's aspirations. The HIV-AIDS crisis underlines the urgency with which communication has to respond to health challenges. A series of experiments facilitated by the World Conservation Union helped build communication capabilities among environmental groups working in Latin America, Africa, and India. The International Reference Center on Water and Sanitation initiated pilot communication projects in West Africa for community health.

  20. Communication: Are Australians Different?

    ERIC Educational Resources Information Center

    Hansford, B. C.

    1992-01-01

    Examines the question of the distinctive nature of communication in Australia. Discusses nonverbal messages, gender concerns, historical influences on communication, the Australian accent, communication with indigenous persons, communication apprehension, and classroom communication. Argues that Australians' communication is relatively similar to…

  1. Science communication as political communication

    PubMed Central

    Scheufele, Dietram A.

    2014-01-01

    Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science. PMID:25225389

  2. Science communication as political communication.

    PubMed

    Scheufele, Dietram A

    2014-09-16

    Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science.

  3. Glioblastoma-mesenchymal stem cell communication modulates expression patterns of kinin receptors: Possible involvement of bradykinin in information flow.

    PubMed

    Pillat, Micheli M; Oliveira, Mona N; Motaln, Helena; Breznik, Barbara; Glaser, Talita; Lah, Tamara T; Ulrich, Henning

    2016-04-01

    The most aggressive subtype of brain tumors is glioma WHO grade IV, the glioblastoma (GBM). The present work aims to elucidate the role of kinin receptors in interactions between GBM cells and mesenchymal stem cells (MSC). The GBM cell line U87-MG was stably transfected to express dsRed protein, single cell cloned, expanded, and cultured with MSC, both in the direct co-cultures (DC) and indirect co-cultures (IC) at equal cell number ratio for 72 h. Up- and down-regulation of matrix metalloproteases (MMP)-9 expression in U87-MG and MSC cells, respectively, in direct co-culture points to possible MSC participation in tumor invasion. MMP9 expression is in line with significantly increased expression of kinin B1 (B1R) and B2 receptor (B2R) in U87-MG cells and their decreased levels in MSC, as confirmed by quantitative assessment using flow cytometric analysis. Similarly, in indirect cultures (IC), lacking the contact between GBM and MSC cells, an increase of B1 and B2 receptor expression was again noted in U87-MG cells, and no significant changes in kinin receptors in MSC was observed. Functionality of kinin-B1 and B2 receptors was evidenced by stimulation of intracellular calcium fluxes by their respective agonists, des-Arg9-bradykinin (DBK) and bradykinin (BK). Moreover, BK showed a feedback control on kinin receptor expression in mono-cultures, direct and indirect co-cultures. The treatment with BK resulted in down-regulation of B1 and B2 receptors in MSC, with simultaneous up-regulation of these receptors in U87-MG cells, suggesting that functions of BK in information flow between these cells is important for tumor progression and invasion. © 2015 International Society for Advancement of Cytometry.

  4. Wireless Communications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A technology utilization project led to the commercial adaptation of a Space Shuttle Orbiter wireless infrared voice communications system. The technology was adapted to a LAN system by Wilton Industries, one of the participants. Because the system is cable-free, installation charges are saved, and it can be used where cable is impractical. Resultant products include the IRplex 6000. Transceivers can be located anywhere and can include mobile receivers. The system provides wireless LAN coverage up to 44,000 square feet. applications include stock exchange communications, trade shows, emergency communications, etc.

  5. Towards dissecting molecular routes of intercellular communication in the tumour microenvironment: phenotypic plasticity of stem cell-associated markers in co-culture (carcinoma cell/fibroblast) systems.

    PubMed

    Fík, Z; Dvořánková, B; Kodet, O; Bouček, J; Betka, J A; Betka, J; André, S; Gabius, H-J; Šnajdr, P; Smetana, K; Chovanec, M

    2014-01-01

    Increasing evidence attributes tumour fates to a small population of cells (cancer stem cells) capable of surviving therapeutic interventions. Investigation of their characteristics, especially in cross-talk with other cell types of the tumour microenvironment, can pave the way to innovative therapeutic concepts. The central issue of this study was to evaluate the impact of stroma on tumour cells with stem cell-like features in a squamous cell carcinoma model (FaDu). Six different types of experimental conditions were tested using distinct compositions of the culture system, and both morphologic and molecular features of the tumour cells were analysed. In detail, FaDu cells alone were used as a control, compared to tumour cells from co-culture, with squamous cell cancer-derived stromal fibroblasts or normal skin human fibroblasts, both in the direct and indirect (insert) systems, adding analysis of side population cells of FaDu culture. Measurements were taken on days 2, 7 and 9 of culture and immediately after preparation in the case of the side population. A panel of antibodies against keratins 8, 10, 19, stem cell markers CD29, CD44, CD133, as well as biotinylated adhesion/growth-regulatory galectin 1 served as a toolbox for phenotypic characterization. Co-culture with fibroblasts prepared from tumour stroma and with dermal fibroblasts affected marker presentation, maintaining an undifferentiated stage phenotypically related to stem cells. Side-population cells showed close relationship to cancer stem cells in these characteristics. In conclusion, normal and tumour stromal fibroblasts are capable of shifting the marker expression profile of FaDu cells to a stem cell-like phenotypic pattern in co-culture.

  6. Gap junctional intercellular communication as a biological "Rosetta stone" in understanding, in a systems biological manner, stem cell behavior, mechanisms of epigenetic toxicology, chemoprevention and chemotherapy.

    PubMed

    Trosko, James E

    2007-08-01

    In spite of the early speculation by Loewenstein that one of the critical distinguishing phenotypes of cancers from normal cells was the dysfunction of gap junctional intercellular communication (GJIC), this hypothesis has not captured the attention of most birth defects and cancer researchers. Moreover, even with later demonstrations that factors that influence normal development and carcinogenesis by modulating GJIC, such as chemical teratogens and tumor-promoting chemicals, inflammatory factors, hormones and growth factors, antisense connexin genes, knockout mouse models, human inherited mutated connexin genes, si-connexin RNA, chemopreventive and chemotherapeutic chemicals, it is rare that one sees any reference to these studies by the mainstream investigators in these fields. Based on the assumption that the evolutionarily conserved connexin genes found in metazoans are needed for normal development and the maintenance of health and T. Dobzhansky's statement "Nothing in biology makes sense except in the light of evolution," a short review of the roles of endogenous and exogenous modulators of GJIC will be made in the context of the multistage, multimechanism process of carcinogenesis, the stem cell theory of carcinogenesis, the discovery and characterization of normal adult stem "cancer stem" cells and the observation that two distinct classes of GJIC-deficient cancer cells are known. The implications of these observations to a "systems biological" view of the role of gap junctions and the nutritional prevention and treatment of several chronic diseases and cancer will be discussed.

  7. Sunlight and Solar Cells: Teaching Digital Design and Communication through the Development of a Simple Monitoring Station

    ERIC Educational Resources Information Center

    Downs, Nathan; Parisi, Alfio

    2010-01-01

    A method is described for building a cost effective digital circuit capable of monitoring the solar radiation incident upon a remote solar cell. The circuit is built in two sections, the first, digitises the analogue voltage produced by the solar cell at a remote location and transmits the received signal to the second receiver circuit which…

  8. Morphology and intercellular communication in glial cells of intramural ganglia from the guinea-pig urinary bladder.

    PubMed

    Hanani, M; Maudlej, N; Härtig, W

    1999-04-16

    Neurons in most peripheral ganglia are surrounded by satellite glial cells (SCs), but these cells have so far received little attention. We used immunohistochemistry and intracellular injections of tracers to characterize SCs in the intramural ganglia of the guinea-pig urinary bladder, which are part of the parasympathetic system. Intracellular injections of horseradish peroxidase (HRP) revealed two morphological types: cells that surrounded neurons and are SCs proper, and bipolar cells with processes that projected into the nerve fiber bundles connecting the ganglia. SCs were immunopositive for glutamine synthetase (GS) and S100beta and immunonegative for glial fibrillary acidic protein (GFAP). Injections of Lucifer yellow (LY) or biocytin (molecules known to cross gap junctions) into single SCs showed that these cells have a very low degree of intercellular coupling. A mean of 0.31 and 0.71 cells were coupled to the injected cells, using LY and biocytin, respectively. It appears that SCs in the bladder ganglia are distinct from central and enteric glial cells in the small degree of their coupling and in the absence of GFAP immunostaining.

  9. Sunlight and Solar Cells: Teaching Digital Design and Communication through the Development of a Simple Monitoring Station

    ERIC Educational Resources Information Center

    Downs, Nathan; Parisi, Alfio

    2010-01-01

    A method is described for building a cost effective digital circuit capable of monitoring the solar radiation incident upon a remote solar cell. The circuit is built in two sections, the first, digitises the analogue voltage produced by the solar cell at a remote location and transmits the received signal to the second receiver circuit which…

  10. The Role of Alveolar Epithelial Cells in Initiating and Shaping Pulmonary Immune Responses: Communication between Innate and Adaptive Immune Systems

    PubMed Central

    Chuquimia, Olga D.; Petursdottir, Dagbjort H.; Rahman, Muhammad J.; Hartl, Katharina; Singh, Mahavir; Fernández, Carmen

    2012-01-01

    Macrophages and dendritic cells have been recognized as key players in the defense against mycobacterial infection. However, more recently, other cells in the lungs such as alveolar epithelial cells (AEC) have been found to play important roles in the defense and pathogenesis of infection. In the present study we first compared AEC with pulmonary macrophages (PuM) isolated from mice in their ability to internalize and control Bacillus Calmette-Guérin (BCG) growth and their capacity as APCs. AEC were able to internalize and control bacterial growth as well as present antigen to primed T cells. Secondly, we compared both cell types in their capacity to secrete cytokines and chemokines upon stimulation with various molecules including mycobacterial products. Activated PuM and AEC displayed different patterns of secretion. Finally, we analyzed the profile of response of AEC to diverse stimuli. AEC responded to both microbial and internal stimuli exemplified by TLR ligands and IFNs, respectively. The response included synthesis by AEC of several factors, known to have various effects in other cells. Interestingly, TNF could stimulate the production of CCL2/MCP-1. Since MCP-1 plays a role in the recruitment of monocytes and macrophages to sites of infection and macrophages are the main producers of TNF, we speculate that both cell types can stimulate each other. Also, another cell-cell interaction was suggested when IFNs (produced mainly by lymphocytes) were able to induce expression of chemokines (IP-10 and RANTES) by AEC involved in the recruitment of circulating lymphocytes to areas of injury, inflammation, or viral infection. In the current paper we confirm previous data on the capacity of AEC regarding internalization of mycobacteria and their role as APC, and extend the knowledge of AEC as a multifunctional cell type by assessing the secretion of a broad array of factors in response to several different types of stimuli. PMID:22393384

  11. The role of alveolar epithelial cells in initiating and shaping pulmonary immune responses: communication between innate and adaptive immune systems.

    PubMed

    Chuquimia, Olga D; Petursdottir, Dagbjort H; Rahman, Muhammad J; Hartl, Katharina; Singh, Mahavir; Fernández, Carmen

    2012-01-01

    Macrophages and dendritic cells have been recognized as key players in the defense against mycobacterial infection. However, more recently, other cells in the lungs such as alveolar epithelial cells (AEC) have been found to play important roles in the defense and pathogenesis of infection. In the present study we first compared AEC with pulmonary macrophages (PuM) isolated from mice in their ability to internalize and control Bacillus Calmette-Guérin (BCG) growth and their capacity as APCs. AEC were able to internalize and control bacterial growth as well as present antigen to primed T cells. Secondly, we compared both cell types in their capacity to secrete cytokines and chemokines upon stimulation with various molecules including mycobacterial products. Activated PuM and AEC displayed different patterns of secretion. Finally, we analyzed the profile of response of AEC to diverse stimuli. AEC responded to both microbial and internal stimuli exemplified by TLR ligands and IFNs, respectively. The response included synthesis by AEC of several factors, known to have various effects in other cells. Interestingly, TNF could stimulate the production of CCL2/MCP-1. Since MCP-1 plays a role in the recruitment of monocytes and macrophages to sites of infection and macrophages are the main producers of TNF, we speculate that both cell types can stimulate each other. Also, another cell-cell interaction was suggested when IFNs (produced mainly by lymphocytes) were able to induce expression of chemokines (IP-10 and RANTES) by AEC involved in the recruitment of circulating lymphocytes to areas of injury, inflammation, or viral infection. In the current paper we confirm previous data on the capacity of AEC regarding internalization of mycobacteria and their role as APC, and extend the knowledge of AEC as a multifunctional cell type by assessing the secretion of a broad array of factors in response to several different types of stimuli.

  12. Mesenchymal Stem/Stromal Cells under Stress Increase Osteosarcoma Migration and Apoptosis Resistance via Extracellular Vesicle Mediated Communication

    PubMed Central

    Vallabhaneni, Krishna C.; Hassler, Meeves-Yoni; Abraham, Anu; Whitt, Jason; Mo, Yin-Yuan; Atfi, Azeddine; Pochampally, Radhika

    2016-01-01

    Studies have shown that mesenchymal stem/stromal cells (MSCs) from bone marrow are involved in the growth and metastasis of solid tumors but the mechanism remains unclear in osteosarcoma (OS). Previous studies have raised the possibility that OS cells may receive support from associated MSCs in the nutrient deprived core of the tumors through the release of supportive macromolecules and growth factors either in vesicular or non-vesicular forms. In the present study, we used stressed mesenchymal stem cells (SD-MSCs), control MSCs and OS cells to examine the hypothesis that tumor-associated MSCs in nutrient deprived core provide pro-proliferative, anti-apoptotic, and metastatic support to nearby tumor cells. Assays to study of the effects of SD-MSC conditioned media revealed that OS cells maintained proliferation when compared to OS cells grown under serum-starved conditions alone. Furthermore, OS cells in MSCs and SD-MSC conditioned media were significantly resistant to apoptosis and an increased wound healing rate was observed in cells exposed to either conditioned media or EVs from MSCs and SD-MSCs. RT-PCR assays of OS cells incubated with extracellular vesicles (EVs) from SD-MSCs revealed microRNAs that could potentially target metabolism and metastasis associated genes as predicted by in silico algorithms, including monocarboxylate transporters, bone morphogenic receptor type 2, fibroblast growth factor 7, matrix metalloproteinase-1, and focal adhesion kinase-1. Changes in the expression levels of focal adhesion kinase, STK11 were confirmed by quantitative PCR assays. Together, these data indicate a tumor supportive role of MSCs in osteosarcoma growth that is strongly associated with the miRNA content of the EVs released from MSCs under conditions that mimic the nutrient deprived core of solid tumors. PMID:27812189

  13. Communication breakdown?

    NASA Astrophysics Data System (ADS)

    Kron, Tomas

    2017-04-01

    In response to Brian Clegg's feature article “Speaking a different language” (February pp34-37), in which he suggests that a good science communicator anticipates the kind of questions the audience will want to have answered.

  14. Quantum Communication

    NASA Astrophysics Data System (ADS)

    Jackson, Judy; Calder, Neil

    2007-11-01

    Few would dispute that the science of particle physics in the United States has reached a crossroads. Policies, decisions, and events of the coming decade will be critical in determining whether the United States continues to carry out a competitive program of leadership in this field of fundamental science. The field of particle physics has responded to this reality by fundamentally changing its model of communication from “business as usual” to a strategic and collaborative method that is clearly focused on achieving a healthy future for the science. Over the past half-dozen years, the particle physics community has gone from being an oft-cited example of how not to communicate effectively, to a frequently cited—and emulated—model for science communication. This review outlines the new approach toward communication in particle physics and then goes into detail about three case studies.

  15. Optical Communications

    ERIC Educational Resources Information Center

    Young, Matt

    1973-01-01

    Describes the characteristics and operational problems of optical waveguides, and concludes that the wide use of optical communications can be expected if difficulties in commercial production of components can be eliminated. (CC)

  16. Communication fail?

    NASA Astrophysics Data System (ADS)

    Jones, Matthew

    2016-06-01

    In response to Matin Durrani's editorial “Conference thoughts” (April p15), which bemoaned poor communication and limited social media use by physicists at the March meeting of the American Physical Society (APS).

  17. Optical Communications

    ERIC Educational Resources Information Center

    Young, Matt

    1973-01-01

    Describes the characteristics and operational problems of optical waveguides, and concludes that the wide use of optical communications can be expected if difficulties in commercial production of components can be eliminated. (CC)

  18. Police Communications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Oklahoma City Police Department developed a computerized communications system, based on Johnson Space Center's (JSC's) 1960-mission control knowledge. JSC furnished information on lighting and other fatigue reducing measures, and provided specifications for equipment and design layouts. JSC also advised OCPD how to avoid communications bottlenecks associated with simultaneous handling of telephone, radio and inner-office transmissions. Oklahoma City saved money in reduced design and engineering costs by utilizing the already developed NASA technology.

  19. Animal communication.

    PubMed

    Kaplan, Gisela

    2014-11-01

    Animal communication is first and foremost about signal transmission and aims to understand how communication occurs. It is a field that has contributed to and been inspired by other fields, from information technology to neuroscience, in finding ever better methods to eavesdrop on the actual 'message' that forms the basis of communication. Much of this review deals with vocal communication as an example of the questions that research on communication has tried to answer and it provides an historical overview of the theoretical arguments proposed. Topics covered include signal transmission in different environments and different species, referential signaling, and intentionality. The contention is that animal communication may reveal significant thought processes that enable some individuals in a small number of species so far investigated to anticipate what conspecifics might do, although some researchers think of such behavior as adaptive or worth dismissing as anthropomorphizing. The review further points out that some species are more likely than others to develop more complex communication patterns. It is a matter of asking how animals categorize their world and which concepts require cognitive processes and which are adaptive. The review concludes with questions of life history, social learning, and decision making, all criteria that have remained relatively unexplored in communication research. Long-lived, cooperative social animals have so far offered especially exciting prospects for investigation. There are ample opportunities and now very advanced technologies as well to tap further into expressions of memory of signals, be they vocal or expressed in other modalities. WIREs Cogn Sci 2014, 5:661-677. doi: 10.1002/wcs.1321 For further resources related to this article, please visit the WIREs website. The author has declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.

  20. Cooperation of bcl-2 and myc in the neoplastic transformation of normal rat liver epithelial cells is related to the down-regulation of gap junction-mediated intercellular communication.

    PubMed

    DeoCampo, N D; Wilson, M R; Trosko, J E

    2000-08-01

    The objectives of this study were to isolate several rat liver epithelial cell clones containing the human bcl-2 and myc/bcl-2 genes in order to study their potential cooperative effect on neoplastic transformation and gap junction-mediated intercellular communication (GJIC) and to test the hypothesis that the loss of GJIC leads to tumorigenesis. Using anchorage-independent growth as a surrogate marker for neoplastic transformation, we transfected both normal rat liver epithelial cells, WB-F344, and a WB-F344 cell line overexpressing v-myc with human bcl-2 cDNA. Those cell lines that only expressed v-myc or human bcl-2 were unable to form colonies in soft agar. However, those cell lines that overexpressed both v-myc and human bcl-2 showed varying ability to form colonies in soft agar, which did not correlate with their human bcl-2 expression level. In order to test if there was a correlation between cell line growth in soft agar and the ability to communicate through gap junctions, we performed scrape load dye transfer and fluorescence recovery after photobleaching assays. Our results show that v-myc and human bcl-2 can cooperate in the transformation of normal cells, but the degree to which the cells are transformed is dependent on the cells' ability to communicate through gap junctions.

  1. Briefcase Communicator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo at bottom right, a U.S. Park Police officer is demonstrating a battery-powered communications system, sufficiently compact to be packed in a briefcase-size container, which can send and receive signals over great distances by means of satellite relay. Key to the system's efficacy is the high-powered transmitting and receiving equipment aboard such NASA satellites as the Applications Technology Satellite6 (ATS-6) and the joint U.S.-Canadian Communications Technology Satellite (CTS); this enables the briefcase communicator to pick up satellite-relayed signals by means of the small hook-on antenna shown instead of the more elaborate-ground equipment customarily needed. Developed by NASA's Goddard Space Flight Center, the communicator is intended for use in emergency situations. It has utility, for example, in disasters, such as floods and hurricanes, where power failure disrupts conventional communications; for on-the-spot transmissions from major accident sites; or in remote areas where no other means of communication exists

  2. Use of communications. [satellite communication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Progress in the field of satellite communications is reviewed, and useful services which may be provided by future satellite communications systems are considered. Recommendations are made with regard to mobile communications for use on land and at sea, position determination, mineral and energy exploration, the possibility of using electronic means to assist in main delivery, education and health-care experiments, and the use of satellite telecommunications to enhance the quality of life in rural areas by making available a full range of educational and entertainment programs. The needs of the amateur radio community are also considered.

  3. In the Know and in the News: How Science and the Media Communicate About Stem Cells, Autism and Cerebral Palsy.

    PubMed

    Sharpe, Kimberly; Di Pietro, Nina; Illes, Judy

    2016-02-01

    Stem cell research has generated considerable attention for its potential to remediate many disorders of the central nervous system including neurodevelopmental disorders such as autism spectrum disorder (ASD) and cerebral palsy (CP) that place a high burden on individual children, families and society. Here we characterized messaging about the use of stem cells for ASD and CP in news media articles and concurrent dissemination of discoveries through conventional science discourse. We searched LexisNexis and Canadian Newsstand for news articles from the US, UK, Canada and Australia in the period between 2000 and 2014, and PubMed for peer reviewed articles for the same 10 years. Using in-depth content analysis methods, we found less cautionary messaging about stem cells for ASD and CP in the resulting sample of 73 media articles than in the sample of 87 science papers, and a privileging of benefits over risk. News media also present stem cells as ready for clinical application to treat these neurodevelopmental disorders, even while the science literature calls for further research. Investigative news reports that explicitly quote researchers, however, provide the most accurate information to actual science news. The hope, hype, and promise of stem cell interventions for neurodevelopmental disorders, combined with the extreme vulnerability of these children and their families, creates a perfect storm in which journalists and stem cell scientists must commit to a continued, if not even more robust, partnership to promote balanced and accurate messaging.

  4. Cellular Communication through Light

    PubMed Central

    Fels, Daniel

    2009-01-01

    Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source) as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials) allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more) frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry. PMID:19340303

  5. Adrenocorticotropic Hormone Enhances the Masculinity of an Electric Communication Signal by Modulating the Waveform and Timing of Action Potentials within Individual Cells

    PubMed Central

    Markham, Michael R.; Stoddard, Philip K.

    2008-01-01

    We report here that melanocortin peptides appear to serve as the mechanism by which weakly electric fish couple socially regulated and stress-regulated brain pathways to unique changes in the intrinsic excitability and action potential waveform of excitable membranes in peripheral cells involved in communication. Gymnotiform electric fish modulate their electric organ discharges (EODs) by reshaping the electric discharges of excitable cells in the periphery. These fish show circadian enhancement of the EOD waveform. They also enhance their EOD waveforms within minutes in response to stressors and changes in the social environment, thus altering the communication value of the signal. Changes in the EOD waveform that occur within minutes result from changes in the discharges of individual electrocytes (μEODs) mediated by the cAMP/protein kinase A (PKA) pathway acting on ion channel kinetics. What activates the cAMP/PKA pathway in electrocytes has not been identified. In vivo injections of the melanocortin peptide adrenocorticotropic hormone (ACTH) increase the amplitude and duration of the electric signal waveform of the gymnotiform Brachyhypopomus pinnicaudatus over the course of 1 h. Applied to single electrocytes in vitro, ACTH increases μEOD amplitude and duration within minutes by differentially modulating the action potentials of the two excitable membranes of the electrocyte and changing the timing of these two spikes. Serotonin modulates the EOD in vivo but has no effect on the μEOD in vitro. The cAMP analog 8-bromo-cAMP mimicked the effects of ACTH, whereas inhibition of PKA by protein kinase A inhibitor 14–22 amide blocked the modulatory effects of ACTH, confirming the role of the cAMP/PKA pathway in μEOD modulation by ACTH. PMID:16177044

  6. Intravital Computer Morphometry on Protozoa: A Method for Monitoring of the Morphofunctional Disorders in Cells Exposed in the Cell Phone Communication Electromagnetic Field.

    PubMed

    Uskalova, D V; Igolkina, Yu V; Sarapultseva, E I

    2016-08-01

    Morphofunctional disorders in unicellular aquatic protozoa - Spirostomum ambiguum infusorians after 30-, 60-, and 360-min exposure in electromagnetic field at a radiation frequency of 1 GHz and energy flow density of 50 μW/cm(2) were analyzed by intravital computer morphometry. Significant disorders in morphometric values correlated with low mobility of the protozoa. The results suggested the use of intravital computer morphometry on the protozoa for early diagnosis of radiation-induced effects of the mobile communication electromagnetic field, for example, low mobility of spermatozoa.

  7. Short communication: effect of vitamins E and C on cortisol production by bovine adrenocortical cells in vitro.

    PubMed

    Montalvo, C P; Díaz, N H; Galdames, L A; Andrés, M E; Larraín, R E

    2011-07-01

    The aim was to determine if vitamins E and C inhibit the release of cortisol from bovine adrenocortical cells when stimulated with ACTH in vitro. A factorial arrangement of treatments was used to culture bovine adrenocortical cells with different concentrations of vitamins E and C [(+)-α-tocopherol at 0, 2.3, and 16 μM and l-ascorbic acid at 0, 15, and 50 μM]. After 3 and 7 d of vitamin treatments, cell cultures were stimulated with ACTH (1 nM) for 24h and the culture medium extracted to measure cortisol released by the cells using HPLC with UV detection. Vitamin E, vitamin C, or their combination did not affect the amount of cortisol released by the adrenal cultures to the media. Cortisol released by the adrenal cultures ranged from 33.6±6.85 to 49.7±8.01 nmol per 10(7) cells. The modulation effect of vitamins E and C on the stress response does not take place at the cortex of the adrenal gland. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Communicating Science

    NASA Astrophysics Data System (ADS)

    Holland, G. J.; McCaffrey, M. S.; Kiehl, J. T.; Schmidt, C.

    2010-12-01

    We are in an era of rapidly changing communication media, which is driving a major evolution in the modes of communicating science. In the past, a mainstay of scientific communication in popular media was through science “translators”; science journalists and presenters. These have now nearly disappeared and are being replaced by widespread dissemination through, e.g., the internet, blogs, YouTube and journalists who often have little scientific background and sharp deadlines. Thus, scientists are required to assume increasing responsibility for translating their scientific findings and calibrating their communications to non-technical audiences, a task for which they are often ill prepared, especially when it comes to controversial societal issues such as tobacco, evolution, and most recently climate change (Oreskes and Conway 2010). Such issues have been politicized and hi-jacked by ideological belief systems to such an extent that constructive dialogue is often impossible. Many scientists are excellent communicators, to their peers. But this requires careful attention to detail and logical explanation, open acknowledgement of uncertainties, and dispassionate delivery. These qualities become liabilities when communicating to a non-scientific audience where entertainment, attention grabbing, 15 second sound bites, and self assuredness reign (e.g. Olson 2009). Here we report on a program initiated by NCAR and UCAR to develop new approaches to science communication and to equip present and future scientists with the requisite skills. If we start from a sound scientific finding with general scientific consensus, such as the warming of the planet by greenhouse gases, then the primary emphasis moves from the “science” to the “art” of communication. The art cannot have free reign, however, as there remains a strong requirement for objectivity, honesty, consistency, and above all a resistance to advocating particular policy positions. Targeting audience

  9. Why Communicate

    NASA Astrophysics Data System (ADS)

    Illingworth, Samuel

    2015-04-01

    "Half the world is composed of people who have something to say and can't, and the other half who have nothing to say and keep on saying it." - Robert Frost In this age of digital soap boxes and half-truths, the importance of geoscientists as communicators cannot be underestimated, nor has there been a more important time for researchers to stand up and demand to be heard. So why is there still such an overwhelming public perception that scientists are poor communicators, and what can we do to change this? In this work I will present an overview of a number of successful initiatives that have been developed at Manchester Metropolitan University, and beyond, to ensure that science is communicated to a large variety of people, from policy makers to members of the local community. I will also present an overview of the emerging field of Science Communication, how it has changed in the past few decades from a one-way diatribe to a two-way discussion, and how this represents a possible new direction and career path for geoscientists. Anne Roe, the noted American psychologist, told us, "nothing in science has any value to society if it is not communicated." As geoscientists, we have a professional and moral obligation to ensure that we not only research the facts, but that we also present them in an informative and engaging manner, so that the rest of humanity can benefit from the fruits of our labour.

  10. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    SciTech Connect

    Aravindan, Natarajan; Aravindan, Sheeja; Pandian, Vijayabaskar; Khan, Faizan H.; Ramraj, Satish Kumar; Natt, Praveen; Natarajan, Mohan

    2014-03-01

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells.

  11. Intramyocardial Fibroblast - Myocyte Communication

    PubMed Central

    Kakkar, Rahul; Lee, Richard T.

    2009-01-01

    Cardiac fibroblasts are emerging as key components of normal cardiac function as well as the response to stressors and injury. These most numerous cells of the heart interact with myocytes via paracrine mechanisms, alterations in extracellular matrix homeostasis, and direct cell-cell interactions. It is possible that they are a contributor to the inability of adult myocytes to proliferate, and may influence cardiac progenitor biology. Furthering our understanding of how cardiac fibroblast and myocytes interact may provide an avenue to novel treatments for heart failure prevention. This review discusses the most recent concepts in cardiac fibroblast-myocyte communication and areas of potential future research. PMID:20056945

  12. "Sickle Cell Anemia: Tracking down a Mutation": An Interactive Learning Laboratory That Communicates Basic Principles of Genetics and Cellular Biology

    ERIC Educational Resources Information Center

    Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David; Wyss, J. Michael

    2016-01-01

    "Sickle cell anemia: tracking down a mutation" is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients…

  13. "Sickle Cell Anemia: Tracking down a Mutation": An Interactive Learning Laboratory That Communicates Basic Principles of Genetics and Cellular Biology

    ERIC Educational Resources Information Center

    Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David; Wyss, J. Michael

    2016-01-01

    "Sickle cell anemia: tracking down a mutation" is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients…

  14. Communications Network

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Multi-Compatible Network Interface Unit (MCNIU) is intended to connect the space station's communications and tracking, guidance and navigation, life support, electric power, payload data, hand controls, display consoles and other systems, and also communicate with diverse processors. Honeywell is now marketing MCNIU commercially. It has applicability in certain military operations or civil control centers. It has nongovernment utility among large companies, universities and research organizations that transfer large amounts of data among workstations and computers. *This product is no longer commercially available.

  15. Crisis Communication: The Business Communicator's Strategies for Communicating under Stress.

    ERIC Educational Resources Information Center

    Vielhaber, Mary E.

    1990-01-01

    Uses the 1979 Three Mile Island nuclear plant accident to illustrate the communication problems embedded in a crisis. Describes the reactions created by the stress related to crisis. Suggests business communication strategies for improving communication to the public. (SR)

  16. Crisis Communication: The Business Communicator's Strategies for Communicating under Stress.

    ERIC Educational Resources Information Center

    Vielhaber, Mary E.

    1990-01-01

    Uses the 1979 Three Mile Island nuclear plant accident to illustrate the communication problems embedded in a crisis. Describes the reactions created by the stress related to crisis. Suggests business communication strategies for improving communication to the public. (SR)

  17. Maternal cell phone use in early pregnancy and child's language, communication and motor skills at 3 and 5 years: the Norwegian mother and child cohort study (MoBa).

    PubMed

    Papadopoulou, Eleni; Haugen, Margaretha; Schjølberg, Synnve; Magnus, Per; Brunborg, Gunnar; Vrijheid, Martine; Alexander, Jan

    2017-09-05

    Cell phone use during pregnancy is a public health concern. We investigated the association between maternal cell phone use in pregnancy and child's language, communication and motor skills at 3 and 5 years. This prospective study includes 45,389 mother-child pairs, participants of the MoBa, recruited at mid-pregnancy from 1999 to 2008. Maternal frequency of cell phone use in early pregnancy and child language, communication and motor skills at 3 and 5 years, were assessed by questionnaires. Logistic regression was used to estimate the associations. No cell phone use in early pregnancy was reported by 9.8% of women, while 39%, 46.9% and 4.3% of the women were categorized as low, medium and high cell phone users. Children of cell phone user mothers had 17% (OR = 0.83, 95% CI: 0.77, 0.89) lower adjusted risk of having low sentence complexity at 3 years, compared to children of non-users. The risk was 13%, 22% and 29% lower by low, medium and high maternal cell phone use. Additionally, children of cell phone users had lower risk of low motor skills score at 3 years, compared to children of non-users, but this association was not found at 5 years. We found no association between maternal cell phone use and low communication skills. We reported a decreased risk of low language and motor skills at three years in relation to prenatal cell phone use, which might be explained by enhanced maternal-child interaction among cell phone users. No evidence of adverse neurodevelopmental effects of prenatal cell phone use was reported.

  18. Inhibition of PHD3 by salidroside promotes neovascularization through cell–cell communications mediated by muscle-secreted angiogenic factors

    PubMed Central

    Zhang, Jing; Kasim, Vivi; Xie, Yu-Dan; Huang, Can; Sisjayawan, Julita; Dwi Ariyanti, Agnes; Yan, Xue-Song; Wu, Xiao-Yan; Liu, Cai-Ping; Yang, Li; Miyagishi, Makoto; Wu, Shou-Rong

    2017-01-01

    Therapeutic angiogenesis has been considered as a potential strategy for treating peripheral artery diseases including hind-limb ischemia (HLI); however, no effective drug-based treatment is currently available. Here we showed that intramuscular administration of salidroside, an active compound of Chinese herb Rhodiola, could robustly enhance blood perfusion recovery by promoting neovascularization in HLI mice. We revealed that salidroside promoted skeletal muscle cell migration and paracrine function through inhibiting the transcriptional level of prolyl-hydroxylase domain 3 (PHD3) without affecting PHD1 and PHD2. Paracrine signals from salidroside-treated skeletal muscle cells enhanced endothelial and smooth muscle cells migration, while inhibition of FGF2/FGF2R and PDGF-BB/PDGFR-β pathways abolished this effect, as well as neovascularization in HLI mice. Furthermore, we elucidated that salidroside inhibition on PHD3 might occur through estrogen receptor alpha (ERα). Together, our findings highlights the potential application of salidroside as a novel pharmalogical inhibitor of ERα/PHD3 axis for therapeutic angiogenesis in HLI diseases. PMID:28266625

  19. "Sickle cell anemia: tracking down a mutation": an interactive learning laboratory that communicates basic principles of genetics and cellular biology.

    PubMed

    Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David; Wyss, J Michael

    2016-03-01

    "Sickle cell anemia: tracking down a mutation" is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients have the sickle cell genotype/phenotype using DNA and blood samples from wild-type and transgenic mice that carry a sickle cell mutation. The inquiry-based, problem-solving approach facilitates the students' understanding of the basic concepts of genetics and cellular and molecular biology and provides experience with contemporary tools of biotechnology. It also leads to students' appreciation of the causes and consequences of this genetic disease, which is relatively common in individuals of African descent, and increases their understanding of the first principles of genetics. This protocol provides optimal learning when led by well-trained facilitators (including the classroom teacher) and carried out in small groups (6:1 student-to-teacher ratio). This high-quality experience can be offered to a large number of students at a relatively low cost, and it is especially effective in collaboration with a local science museum and/or university. Over the past 15 yr, >12,000 students have completed this inquiry-based learning experience and demonstrated a consistent, substantial increase in their understanding of the disease and genetics in general. Copyright © 2016 The American Physiological Society.

  20. Communicator, 2002.

    ERIC Educational Resources Information Center

    Drake, Marta Perez, Ed.

    2002-01-01

    "Communicator" is the newsletter of the Council of Graduate Schools (CGS). Each issue contains an article on a featured topic and information about the activities and programs of the CGS. Each issue also contains profiles and notes about CGS personnel and academic appointments at member institutions. Meetings and conferences are…

  1. Magnetostatic communication

    DOEpatents

    Daily, William D.

    2008-02-26

    A system for providing communication of information by modulating a magnetostatic field with a magnetostatic transmitter that modulates said magnetostatic field to contain the information and detecting the information in the modulated field at a distance with a magnetostatic detector that detects the modulated magnetic field containing the information.

  2. Trustee Communicator.

    ERIC Educational Resources Information Center

    Association of Community Coll. Trustees, Annandale, VA.

    Four articles designed to assist the individual community college trustee in meeting his or her institutional commitment and to encourage trustee communication are presented. "Women in Higher Education: A Trustee's Viewpoint," by Alberta Perry, describes the specific steps a college should consider to strengthen the effectiveness of its commitment…

  3. Communicator, 2002.

    ERIC Educational Resources Information Center

    Drake, Marta Perez, Ed.

    2002-01-01

    "Communicator" is the newsletter of the Council of Graduate Schools (CGS). Each issue contains an article on a featured topic and information about the activities and programs of the CGS. Each issue also contains profiles and notes about CGS personnel and academic appointments at member institutions. Meetings and conferences are…

  4. Communication Way

    ERIC Educational Resources Information Center

    Atwood, Margaret

    1976-01-01

    Basic to Library-College thought is the Communication Way. Such a construct is theoretical in the sense it combines the structure of a discipline and the structure of a literature into a system which enables the learner to see that finding and thinking about given subject matter is a unified process. (Author)

  5. Core Communications

    ERIC Educational Resources Information Center

    Block, Greg; Ross, J. D.; Mulder, David

    2011-01-01

    The website--it is where people go to find out anything and everything about a school, college, or university. In the relatively short life of the Internet, institutional websites have moved from the periphery to center stage and become strategically integral communications and marketing tools. As the flow of information accelerates and new…

  6. Communication Competencies.

    ERIC Educational Resources Information Center

    Boileau, Don M.

    Aware of the societal problems stemming from a lack of communication skills, the American public is pressing for instruction in speaking and listening in the schools. This response is reflected in the speaking and listening competency recommendations in many national reform reports. Such reports include "A Nation at Risk" by the National…

  7. Communications Electronics.

    ERIC Educational Resources Information Center

    Vorderstrasse, Ron; Siebert, Leo

    This module is the third in a series of electronics publications and serves as a supplement to "General Electronics Technician." It is designed to provide students with an overview of the broad field of communications. Included are those tasks above the basic skills level that allow students to progress to a higher level of competency in the…

  8. Communications technology

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M.

    1988-01-01

    The objective of the Communications Technology Program is to enable data transmission to and from low Earth orbit, geostationary orbit, and solar and deep space missions. This can be achieved by maintaining an effective, balances effort in basic, applied, and demonstration prototype communications technology through work in theory, experimentation, and components. The program consists of three major research and development discipline areas which are: microwave and millimeter wave tube components; solid state monolithic integrated circuit; and free space laser communications components and devices. The research ranges from basic research in surface physics (to study the mechanisms of surface degradation from under high temperature and voltage operating conditions which impacts cathode tube reliability and lifetime) to generic research on the dynamics of electron beams and circuits (for exploitation in various micro- and millimeter wave tube devices). Work is also performed on advanced III-V semiconductor materials and devices for use in monolithic integrated analog circuits (used in adaptive, programmable phased arrays for microwave antenna feeds and receivers) - on the use of electromagnetic theory in antennas and on technology necessary for eventual employment of lasers for free space communications for future low earth, geostationary, and deep space missions requiring high data rates with corresponding directivity and reliability.

  9. Communications technology

    NASA Astrophysics Data System (ADS)

    Sokoloski, Martin M.

    1988-09-01

    The objective of the Communications Technology Program is to enable data transmission to and from low Earth orbit, geostationary orbit, and solar and deep space missions. This can be achieved by maintaining an effective, balances effort in basic, applied, and demonstration prototype communications technology through work in theory, experimentation, and components. The program consists of three major research and development discipline areas which are: microwave and millimeter wave tube components; solid state monolithic integrated circuit; and free space laser communications components and devices. The research ranges from basic research in surface physics (to study the mechanisms of surface degradation from under high temperature and voltage operating conditions which impacts cathode tube reliability and lifetime) to generic research on the dynamics of electron beams and circuits (for exploitation in various micro- and millimeter wave tube devices). Work is also performed on advanced III-V semiconductor materials and devices for use in monolithic integrated analog circuits (used in adaptive, programmable phased arrays for microwave antenna feeds and receivers) - on the use of electromagnetic theory in antennas and on technology necessary for eventual employment of lasers for free space communications for future low earth, geostationary, and deep space missions requiring high data rates with corresponding directivity and reliability.

  10. Communication Skills.

    ERIC Educational Resources Information Center

    Carlisle, Lynn

    This document presents one module in a set of training resources for trainers to use with parents and/or professionals serving children with disabilities; focus is on communication skills. The modules stress content and activities that build skills and offer resources to promote parent-professional collaboration. Each training module takes about 2…

  11. Communicator, 1999.

    ERIC Educational Resources Information Center

    Gosfield, Margaret, Ed.

    1999-01-01

    These four 1999 issues of the "Communicator" address reading needs of gifted children, middle schools, parenting the gifted, and the needs of young gifted children. Featured articles include: (1) "Academic Advocacy for the Forgotten Readers--Gifted and Advanced Learners" (Reading Task Force of the California Association for the…

  12. Communication & Aging.

    ERIC Educational Resources Information Center

    Arnold, William E.

    This extensive bibliography contains more than 1,800 entries about communication and aging. The citations include journal articles, unpublished papers, speeches, dissertations, research studies, and books that relate aging and the aged to a variety of topics, including the following: physiological deterioration, socialization, political…

  13. Communications Electronics.

    ERIC Educational Resources Information Center

    Vorderstrasse, Ron; Siebert, Leo

    This module is the third in a series of electronics publications and serves as a supplement to "General Electronics Technician." It is designed to provide students with an overview of the broad field of communications. Included are those tasks above the basic skills level that allow students to progress to a higher level of competency in the…

  14. Communication Way

    ERIC Educational Resources Information Center

    Atwood, Margaret

    1976-01-01

    Basic to Library-College thought is the Communication Way. Such a construct is theoretical in the sense it combines the structure of a discipline and the structure of a literature into a system which enables the learner to see that finding and thinking about given subject matter is a unified process. (Author)

  15. Core Communications

    ERIC Educational Resources Information Center

    Block, Greg; Ross, J. D.; Mulder, David

    2011-01-01

    The website--it is where people go to find out anything and everything about a school, college, or university. In the relatively short life of the Internet, institutional websites have moved from the periphery to center stage and become strategically integral communications and marketing tools. As the flow of information accelerates and new…

  16. Vendor Communication

    ERIC Educational Resources Information Center

    Tenopir, Carol

    2005-01-01

    Do vendor reps provide librarians with the information they need in the way they need it? Do vendors feel they are communicating effectively with their librarian clients? A recent survey of North American and European academic librarians commissioned by Jim McGinty, vice chair of Cambridge Information Group, and carried out by consultants David…

  17. Communications protocol

    NASA Technical Reports Server (NTRS)

    Zhou, Xiaoming (Inventor); Baras, John S. (Inventor)

    2010-01-01

    The present invention relates to an improved communications protocol which increases the efficiency of transmission in return channels on a multi-channel slotted Alohas system by incorporating advanced error correction algorithms, selective retransmission protocols and the use of reserved channels to satisfy the retransmission requests.

  18. “Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging”

    PubMed Central

    Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun

    2016-01-01

    To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca2+ indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging. PMID:26878910

  19. Graft-union development: a delicate process that involves cell–cell communication between scion and stock for local auxin accumulation

    PubMed Central

    Yin, Hao; Yan, Bo; Sun, Jing; Jia, Pengfei; Zhang, Zijuan; Yan, Xiaosa; Chai, Juan; Ren, Zhizhong; Zheng, Guochang; Liu, Heng

    2012-01-01

    Grafting is an ancient cloning method that has been used widely for thousands of years in agricultural practices. Graft-union development is also an intricate process that involves substantial changes such as organ regeneration and genetic material exchange. However, the molecular mechanisms for graft-union development are still largely unknown. Here, a micrografting method that has been used widely in Arabidopsis was improved to adapt it a smooth procedure to facilitate sample analysis and to allow it to easily be applied to various dicotyledonous plants. The developmental stage of the graft union was characterized based on this method. Histological analysis suggested that the transport activities of vasculature were recovered at 3 days after grafting (dag) and that auxin modulated the vascular reconnection at 2 dag. Microarray data revealed a signal-exchange process between cells of the scion and stock at 1 dag, which re-established the communication network in the graft union. This process was concomitant with the clearing of cell debris, and both processes were initiated by a wound-induced programme. The results demonstrate the feasibility and potential power of investigating various plant developmental processes by this method, and represent a primary and significant step in interpretation of the molecular mechanisms underlying graft-union development. PMID:22511803

  20. “Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging”

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun

    2016-02-01

    To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca2+ indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging.

  1. Astronomy Communication

    NASA Astrophysics Data System (ADS)

    Heck, A.; Madsen, C.

    2003-07-01

    Astronomers communicate all the time, with colleagues of course, but also with managers and administrators, with decision makers and takers, with social representatives, with the news media, and with the society at large. Education is naturally part of the process. Astronomy communication must take into account several specificities: the astronomy community is rather compact and well organized world-wide; astronomy has penetrated the general public remarkably well with an extensive network of associations and organizations of aficionados all over the world. Also, as a result of the huge amount of data accumulated and by necessity for their extensive international collaborations, astronomers have pioneered the development of distributed resources, electronic communications and networks coupled to advanced methodologies and technologies, often much before they become of common world-wide usage. This book is filling up a gap in the astronomy-related literature by providing a set of chapters not only of direct interest to astronomy communication, but also well beyond it. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy nor in communication techniques while providing specific detailed information, as well as plenty of pointers and bibliographic elements. This book will be very useful for researchers, teachers, editors, publishers, librarians, computer scientists, sociologists of science, research planners and strategists, project managers, public-relations officers, plus those in charge of astronomy-related organizations, as well as for students aiming at a career in astronomy or related space science. Link: http://www.wkap.nl/prod/b/1-4020-1345-0

  2. Communicating Science

    NASA Astrophysics Data System (ADS)

    Russell, Nicholas

    2009-10-01

    Introduction: what this book is about and why you might want to read it; Prologue: three orphans share a common paternity: professional science communication, popular journalism, and literary fiction are not as separate as they seem; Part I. Professional Science Communication: 1. Spreading the word: the endless struggle to publish professional science; 2. Walk like an Egyptian: the alien feeling of professional science writing; 3. The future's bright? Professional science communication in the age of the internet; 4. Counting the horse's teeth: professional standards in science's barter economy; 5. Separating the wheat from the chaff: peer review on trial; Part II. Science for the Public: What Science Do People Need and How Might They Get It?: 6. The Public Understanding of Science (PUS) movement and its problems; 7. Public engagement with science and technology (PEST): fine principle, difficult practice; 8. Citizen scientists? Democratic input into science policy; 9. Teaching and learning science in schools: implications for popular science communication; Part III. Popular Science Communication: The Press and Broadcasting: 10. What every scientist should know about mass media; 11. What every scientist should know about journalists; 12. The influence of new media; 13. How the media represents science; 14. How should science journalists behave?; Part IV. The Origins of Science in Cultural Context: Five Historic Dramas: 15. A terrible storm in Wittenberg: natural knowledge through sorcery and evil; 16. A terrible storm in the Mediterranean: controlling nature with white magic and religion; 17. Thieving magpies: the subtle art of false projecting; 18. Foolish virtuosi: natural philosophy emerges as a distinct discipline but many cannot take it seriously; 19. Is scientific knowledge 'true' or should it just be 'truthfully' deployed?; Part V. Science in Literature: 20. Science and the Gothic: the three big nineteenth-century monster stories; 21. Science fiction: serious

  3. Short communication: Weak associations between mastitis control measures and bulk milk somatic cell counts in Swedish dairy herds.

    PubMed

    Emanuelson, U; Nielsen, C

    2017-08-01

    Despite the fact that control programs have been available for several decades, mastitis remains an important problem in dairy herds around the world. Possible reasons for this include poor uptake and application of recommended mastitis control measures; poor or variable compliance; or variability in the effects of these measures. The objective of this study was to evaluate the associations between implemented mastitis control measures and bulk milk somatic cell count (BMSCC) in Swedish dairy herds. Data for this study were collected primarily from an extensive self-administered postal questionnaire about the herds, the people responsible for udder health, and details of udder health and mastitis management. A total of 898 questionnaires were distributed, and 428 questionnaires were returned (overall response rate of 48%), but we used the information from only 395 herds in this study. For all herds, we collected data on herd size and geometric average calculated BMSCC from the Swedish Official Milk Recording Scheme. We used logistic regression to assess the association between mastitis control measures and BMSCC, dichotomized as low (<200,000 cells/mL) or high (>200,000 cells/mL). We investigated 21 measures that have been suggested for mastitis control, but found only 2 to be associated with udder health as measured by BMSCC. Not providing dry cows with a specialized mineral feed was significantly associated with increased risk of high BMSCC, and not using post-milking teat disinfectant tended to be associated with increased risk. The lack of association for all other measures was not likely due to low power (because most of these measures had variable implementation rates) but could be due to the relatively narrow range of BMSCC in our study (range 61,000-524,000 cells/mL). However, our results agreed well with those of other recent studies, supporting the call for a thorough review of the current knowledge of mastitis control and for wider application of

  4. Imatinib sensitizes T-cell lymphocytes from chronic myeloid leukemia patients to FasL-induced cell death: a brief communication.

    PubMed

    Legros, Laurence; Ebran, Nathalie; Stebe, Emmanuelle; Rousselot, Philippe; Rea, Delphine; Cassuto, Jill Patrice; Mahon, Francois-Xavier; Hueber, Anne-Odile

    2012-01-01

    There is now substantial evidence that imatinib may affect immune responses, especially those mediated by T lymphocytes. Fas (CD95/Apo-1), a cell death receptor, is a key regulator of the immune system. We have explored the consequences of treatment on the Fas system in chronic myeloid leukemia patients treated with imatinib. In comparison with healthy controls, we found not only a mild blood lymphopenia but also impairment of phytohemagglutinin activation in CD4Fas and CD8Fas lymphocytes of imatinib-treated patients. Moreover, these lymphocyte populations were more sensitive to FasL-induced cell death in relation to an increase in Fas expression at the cell surface. Taken together, these results reveal the role of Fas receptor in the lymphopenia observed in patients treated with imatinib, with potential deleterious consequences on antileukemic responses against this immunogenic hematological malignancy.

  5. Short communication: effect of dry therapy using an intramammary infusion on bulk tank somatic cell count in sheep.

    PubMed

    Gonzalo, C; Linage, B; Carriedo, J A; Juárez, M T; Beneitez, E; Martínez, A; De La Fuente, L F

    2009-01-01

    A total of 3,141 records of bulk tank milk somatic cell counts (BTSCC) and bulk tank milk total bacterial counts (BTTBC) were obtained over 24 mo from 25 dairy flocks of Assaf ewes belonging to the Consortium for Ovine Promotion in Castilla-León, Spain, in which a complete dry therapy program was carried out in 10,313 ewes using an antibiotic infusion containing 100 mg of penethamate hydriodide, 280 mg of benethamine penicillin, and 100 mg of framycetin sulfate. The selection criteria for all flocks were BTSCC mean values > or =1,000 x 10(3) cells/mL and absence of dry therapy before the start of this experiment. Significant effects on log BTSCC were detected for treatment, milking system, flock within milking system, month within flock by treatment, the interactions treatment by milking system and flock by treatment within milking system, and log BTTBC. After dry therapy was implemented, log BTSCC decreased significantly in machine-milked flocks (5.95 +/- 0.007) compared with values before antibiotic treatment (6.13 +/- 0.008). The effect was observed at the beginning of the second lactation posttreatment (5.98 +/- 0.013). However, dry therapy was not effective in hand-milked flocks, suggesting poor hygiene conditions. A significant relationship was found between BTSCC and BTTBC; therefore, programs for improving milk hygiene should be implemented for both BTSCC and BTTBC variables at the same time.

  6. Two Cell Circuits of Oriented Adult Hippocampal Neurons on Self-Assembled Monolayers for Use in the Study of Neuronal Communication in a Defined System

    PubMed Central

    2013-01-01

    In this study, we demonstrate the directed formation of small circuits of electrically active, synaptically connected neurons derived from the hippocampus of adult rats through the use of engineered chemically modified culture surfaces that orient the polarity of the neuronal processes. Although synaptogenesis, synaptic communication, synaptic plasticity, and brain disease pathophysiology can be studied using brain slice or dissociated embryonic neuronal culture systems, the complex elements found in neuronal synapses makes specific studies difficult in these random cultures. The study of synaptic transmission in mature adult neurons and factors affecting synaptic transmission are generally studied in organotypic cultures, in brain slices, or in vivo. However, engineered neuronal networks would allow these studies to be performed instead on simple functional neuronal circuits derived from adult brain tissue. Photolithographic patterned self-assembled monolayers (SAMs) were used to create the two-cell “bidirectional polarity” circuit patterns. This pattern consisted of a cell permissive SAM, N-1[3-(trimethoxysilyl)propyl] diethylenetriamine (DETA), and was composed of two 25 μm somal adhesion sites connected with 5 μm lines acting as surface cues for guided axonal and dendritic regeneration. Surrounding the DETA pattern was a background of a non-cell-permissive poly(ethylene glycol) (PEG) SAM. Adult hippocampal neurons were first cultured on coverslips coated with DETA monolayers and were later passaged onto the PEG-DETA bidirectional polarity patterns in serum-free medium. These neurons followed surface cues, attaching and regenerating only along the DETA substrate to form small engineered neuronal circuits. These circuits were stable for more than 21 days in vitro (DIV), during which synaptic connectivity was evaluated using basic electrophysiological methods. PMID:23611164

  7. Two cell circuits of oriented adult hippocampal neurons on self-assembled monolayers for use in the study of neuronal communication in a defined system.

    PubMed

    Edwards, Darin; Stancescu, Maria; Molnar, Peter; Hickman, James J

    2013-08-21

    In this study, we demonstrate the directed formation of small circuits of electrically active, synaptically connected neurons derived from the hippocampus of adult rats through the use of engineered chemically modified culture surfaces that orient the polarity of the neuronal processes. Although synaptogenesis, synaptic communication, synaptic plasticity, and brain disease pathophysiology can be studied using brain slice or dissociated embryonic neuronal culture systems, the complex elements found in neuronal synapses makes specific studies difficult in these random cultures. The study of synaptic transmission in mature adult neurons and factors affecting synaptic transmission are generally studied in organotypic cultures, in brain slices, or in vivo. However, engineered neuronal networks would allow these studies to be performed instead on simple functional neuronal circuits derived from adult brain tissue. Photolithographic patterned self-assembled monolayers (SAMs) were used to create the two-cell "bidirectional polarity" circuit patterns. This pattern consisted of a cell permissive SAM, N-1[3-(trimethoxysilyl)propyl] diethylenetriamine (DETA), and was composed of two 25 μm somal adhesion sites connected with 5 μm lines acting as surface cues for guided axonal and dendritic regeneration. Surrounding the DETA pattern was a background of a non-cell-permissive poly(ethylene glycol) (PEG) SAM. Adult hippocampal neurons were first cultured on coverslips coated with DETA monolayers and were later passaged onto the PEG-DETA bidirectional polarity patterns in serum-free medium. These neurons followed surface cues, attaching and regenerating only along the DETA substrate to form small engineered neuronal circuits. These circuits were stable for more than 21 days in vitro (DIV), during which synaptic connectivity was evaluated using basic electrophysiological methods.

  8. Short communication: Cytokine profiles from blood mononuclear cells of dairy cows classified with divergent immune response phenotypes.

    PubMed

    Martin, C E; Paibomesai, M A; Emam, S M; Gallienne, J; Hine, B C; Thompson-Crispi, K A; Mallard, B A

    2016-03-01

    Genetic selection for enhanced immune response has been shown to decrease disease occurrence in dairy cattle. Cows can be classified as high (H), average, or low responders based on antibody-mediated immune response (AMIR), predominated by type-2 cytokine production, and cell-mediated immune response (CMIR) through estimated breeding values for these traits. The purpose of this study was to identify in vitro tests that correlate with in vivo immune response phenotyping in dairy cattle. Blood mononuclear cells (BMC) isolated from cows classified as H-AMIR and H-CMIR through estimated breeding values for immune response traits were stimulated with concanavalin A (ConA; Sigma Aldrich, St. Louis, MO) and gene expression, cytokine production, and cell proliferation was determined at multiple time points. A repeated measures model, which included the effects of immune response group, parity, and stage of lactation, was used to compare differences between immune response phenotype groups. The H-AMIR cows produced more IL-4 protein than H-CMIR cows at 48 h; however, no difference in gene expression of type-2 transcription factor GATA3 or IL4 was noted. The BMC from H-CMIR cows had increased production of IFN-γ protein at 48, 72, and 96 h compared with H-AMIR animals. Further, H-CMIR cows had increased expression of the IFNG gene at 16, 24, and 48 h post-treatment with ConA, although expression of the type-1 transcription factor gene TBX21 did not differ between immune response groups. Although proliferation of BMC increased from 24 to 72 h after ConA stimulation, no differences were found between the immune response groups. Overall, stimulation of H-AMIR and H-CMIR bovine BMC with ConA resulted in distinct cytokine production profiles according to genetically defined groups. These distinct cytokine profiles could be used to define disease resistance phenotypes in dairy cows according to stimulation in vitro; however, other immune response phenotypes should be assessed.

  9. Inhibition of intrinsic gap-junction intercellular communication and enhancement of tumorigenicity of the rat bladder carcinoma cell line BC31 by a dominant-negative connexin 43 mutant.

    PubMed

    Krutovskikh, V A; Yamasaki, H; Tsuda, H; Asamoto, M

    1998-12-01

    The tumor-suppressive property of the connexin gap-junction proteins was postulated from the fact that their function of cell coupling is impaired in most cancer cells. However, in conflict with this notion, certain cancer cells are able to communicate through gap junctions despite their malignancy. To explain this phenomenon, we studied by using a dominant-negative strategy the effect on tumorigenicity of loss of intrinsic gap-junction intercellular communication (GJIC) in the rat bladder carcinoma cell line BC31, which shows both expression of connexin 43 (Cx43) and intercellular communication. In cells transfected with a mutant Cx43 with seven residues deleted from the internal loop at positions 130-136 (Cx43delta), transport of the resulting connexin protein to the plasma membrane occurred normally, but the GJIC of the cells was effectively abolished at the level of permeability of established gap junctions. Dominant-negative inhibition of GJIC by Cx43delta accelerated growth of BC31 cells in nude mice. In contrast, when GJIC in BC31 cells was artificially enforced by transfection of wild-type Cx43, the cells lost the capacity to grow in vivo. Decreased phosphorylation of Cx43delta suggested close interaction of the internal loop of connexin with its commonly phosphorylated domains in the C-terminal tail and involvement of this interaction in gap-junction permeability. Therefore, we conclude that the intrinsic GJIC observed in cancer cells should be considered a tumor-suppressor factor and that its level may influence malignant growth capacity.

  10. Modeling synchronous theta activity in the medial septum: key role of local communications between different cell populations.

    PubMed

    Mysin, Ivan E; Kitchigina, Valentina F; Kazanovich, Yakov

    2015-08-01

    It is widely believed that the theta rhythm in the hippocampus is caused by the rhythmic input from the medial septum-diagonal band of Broca (MSDB). The main MSDB output is formed by GABAergic projection neurons which are divided into two subpopulations and fire at different phases of the hippocampal theta rhythm. The MSDB also contains projection cholinergic, glutamatergic, and non-projection GABAergic neurons. These cell populations innervate each other and also GABAergic projection neurons and participate in the formation of the synchronous rhythmic output to the hippocampus. The purpose of this study is to work out a model of interactions between all neural populations of the MSDB that underlie the formation of the synchronous septal theta signal. The model is built from biologically plausible neurons of the Hodgkin-Huxley type and its architecture reflects modern data on the morphology of neural connections in the MSDB. The model satisfies the following requirements: (1) a large portion of neurons is fast-spiking; (2) the subpopulations of GABAergic projection neurons contain endogenous pacemaker neurons; (3) the phase shift of activity between subpopulations of GABAergic projection neurons is equal to about 150°; and (4) the strengths of bidirectional connections between the subpopulations of GABAergic projection cells are different. It is shown that the theta rhythm generation can be performed by a system of glutamatergic and GABAergic non-projection neurons. We also show that bursting pacemaker neurons in the subpopulation of projection GABAergic neurons play a significant role in the formation of stable antiphase outputs from the MSDB to the hippocampus.

  11. Plant Communication from Biosemiotic Perspective

    PubMed Central

    2006-01-01

    As in all organisms, the evolution, development and growth of plants depends on the success of complex communication processes. These communication processes are primarily sign mediated interactions and not simply an exchange of information. They involve active coordination and active organization—conveyed by signs. A wide range of chemical substances and physical influences serve as signs. Different abiotic or biotic influences require different behaviors. Depending on the behavior, the core set of signs common to species, families, genera and organismic kingdoms is variously produced, combined and transported. This allows entirely different communication processes to be carried out with the same types of chemical molecules. Almost without exception, plant communication are parallel processes on multiple levels, (A) between plants and microorganisms, fungi, insects and other animals, (B) between different plant species as well as between members of the same plant species; (C), between cells and in cells of the plant organism. PMID:19521482

  12. The Nature of Communication

    ERIC Educational Resources Information Center

    Spillman, Russell J.

    1975-01-01

    Examines types of communication processes, means of communication, barriers to effective communication, skills to improve the accuracy of communication, and implications for the administrator. (Available from Buckeye Association of School Administrators, 750 Brooksedge Blvd., Westerville, Ohio 43081) (Author)

  13. The Nature of Communication

    ERIC Educational Resources Information Center

    Spillman, Russell J.

    1975-01-01

    Examines types of communication processes, means of communication, barriers to effective communication, skills to improve the accuracy of communication, and implications for the administrator. (Available from Buckeye Association of School Administrators, 750 Brooksedge Blvd., Westerville, Ohio 43081) (Author)

  14. Report on Project to Characterize Multi-Junction Solar Cells in the Stratosphere using Low-Cost Balloon and Communication Technologies

    NASA Technical Reports Server (NTRS)

    Mirza, Ali; Sant, David; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2002-01-01

    Balloon, control and communication technologies are under development in our laboratory for testing multi-junction solar cells in the stratosphere to achieve near AM0 conditions. One flight, Suntracker I, has been carried out reported earlier. We report on our efforts in preparation for a second flight, Suntracker II, that was aborted due to hardware problems. The package for Suntracker I system has been modified to include separate electronics and battery packs for the 70 centimeter and 2 meter systems. The collimator control system and motor gearboxes have been redesigned to address problems with the virtual stops and backlash. Surface mount technology on a printed circuit board was used in place of the through-hole prototype circuit in efforts to reduce weight and size, and improve reliability. A mobile base station has been constructed that includes a 35' tower with a two axis rotator and multi-element yagi antennas. Modifications in Suntracker I and the factors that lead to aborting Suntracker II are discussed.

  15. Report on Project to Characterize Multi-Junction Solar Cells in the Stratosphere using Low-Cost Balloon and Communication Technologies

    NASA Astrophysics Data System (ADS)

    Mirza, Ali; Sant, David; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2002-10-01

    Balloon, control and communication technologies are under development in our laboratory for testing multi-junction solar cells in the stratosphere to achieve near AM0 conditions. One flight, Suntracker I, has been carried out reported earlier. We report on our efforts in preparation for a second flight, Suntracker II, that was aborted due to hardware problems. The package for Suntracker I system has been modified to include separate electronics and battery packs for the 70 centimeter and 2 meter systems. The collimator control system and motor gearboxes have been redesigned to address problems with the virtual stops and backlash. Surface mount technology on a printed circuit board was used in place of the through-hole prototype circuit in efforts to reduce weight and size, and improve reliability. A mobile base station has been constructed that includes a 35' tower with a two axis rotator and multi-element yagi antennas. Modifications in Suntracker I and the factors that lead to aborting Suntracker II are discussed.

  16. Cross-communication between histone H3 and H4 acetylation and Akt-mTOR signalling in prostate cancer cells.

    PubMed

    Makarević, Jasmina; Tawanaie, Nassim; Juengel, Eva; Reiter, Michael; Mani, Jens; Tsaur, Igor; Bartsch, Georg; Haferkamp, Axel; Blaheta, Roman A

    2014-07-01

    Molecular tumour targeting has significantly improved anti-cancer protocols. Still, the addition of molecular targeting to the treatment regime has not led to a curative breakthrough. Combined mammalian target of Rapamycin (mTOR) and histone deacetylase (HDAC) inhibition has been shown not only to enhance anti-tumour potential, but also to prevent resistance development seen under mono-drug therapy. This investigation was designed to evaluate whether cross-communication exists between mTOR signalling and epigenetic events regulated by HDAC. DU-145 prostate cancer cells were treated with insulin-like growth factor (IGF) to activate the Akt-mTOR cascade or with the HDAC-inhibitor valproic acid (VPA) to induce histone H3 and H4 acetylation (aH3, aH4). Subsequently, mTOR, Rictor, Raptor, p70s6k, Akt (all: total and phosphorylated), H3 and H4 (total and acetylated) were analysed by western blotting. Both techniques revealed a link between mTOR and the epigenetic machinery. IGF activated mTOR, Rictor, Raptor, p70s6k and Akt, but also enhanced aH3 and aH4. Inversely, IGFr blockade and knock-down blocked the Akt-mTOR axis, but simultaneously diminished aH3 and aH4. VPA treatment up-regulated histone acetylation, but also activated mTOR-Akt signalling. HDAC1 and 2 knock-down revealed that the interaction with the mTOR system is initiated by histone H3 acetylation. HDAC-mTOR communication, therefore, is apparent whereby tumour-promoting (Akt/mTOR(high), aH3/aH4(low)) and tumour-suppressing signals (Akt/mTOR(low) , aH3/aH4(high)) are activated in parallel. Combined use of an HDAC- and mTOR inhibitor might then diminish pro-tumour effects triggered by the HDAC- (Akt/mTOR(high)) or mTOR inhibitor (aH3/aH4(low)) alone.

  17. Cross-communication between histone H3 and H4 acetylation and Akt-mTOR signalling in prostate cancer cells

    PubMed Central

    Makarević, Jasmina; Tawanaie, Nassim; Juengel, Eva; Reiter, Michael; Mani, Jens; Tsaur, Igor; Bartsch, Georg; Haferkamp, Axel; Blaheta, Roman A

    2014-01-01

    Molecular tumour targeting has significantly improved anti-cancer protocols. Still, the addition of molecular targeting to the treatment regime has not led to a curative breakthrough. Combined mammalian target of Rapamycin (mTOR) and histone deacetylase (HDAC) inhibition has been shown not only to enhance anti-tumour potential, but also to prevent resistance development seen under mono-drug therapy. This investigation was designed to evaluate whether cross-communication exists between mTOR signalling and epigenetic events regulated by HDAC. DU-145 prostate cancer cells were treated with insulin-like growth factor (IGF) to activate the Akt-mTOR cascade or with the HDAC-inhibitor valproic acid (VPA) to induce histone H3 and H4 acetylation (aH3, aH4). Subsequently, mTOR, Rictor, Raptor, p70s6k, Akt (all: total and phosphorylated), H3 and H4 (total and acetylated) were analysed by western blotting. Both techniques revealed a link between mTOR and the epigenetic machinery. IGF activated mTOR, Rictor, Raptor, p70s6k and Akt, but also enhanced aH3 and aH4. Inversely, IGFr blockade and knock-down blocked the Akt-mTOR axis, but simultaneously diminished aH3 and aH4. VPA treatment up-regulated histone acetylation, but also activated mTOR-Akt signalling. HDAC1 and 2 knock-down revealed that the interaction with the mTOR system is initiated by histone H3 acetylation. HDAC-mTOR communication, therefore, is apparent whereby tumour-promoting (Akt/mTORhigh, aH3/aH4low) and tumour-suppressing signals (Akt/mTORlow, aH3/aH4high) are activated in parallel. Combined use of an HDAC- and mTOR inhibitor might then diminish pro-tumour effects triggered by the HDAC- (Akt/mTORhigh) or mTOR inhibitor (aH3/aH4low) alone. PMID:24779401

  18. CHOLINE TRANSPORTER-LIKE1 is required for sieve plate development to mediate long-distance cell-to-cell communication.

    PubMed

    Dettmer, Jan; Ursache, Robertas; Campilho, Ana; Miyashima, Shunsuke; Belevich, Ilya; O'Regan, Seana; Mullendore, Daniel Leroy; Yadav, Shri Ram; Lanz, Christa; Beverina, Luca; Papagni, Antonio; Schneeberger, Korbinian; Weigel, Detlef; Stierhof, York-Dieter; Moritz, Thomas; Knoblauch, Michael; Jokitalo, Eija; Helariutta, Ykä

    2014-07-10

    Phloem, a plant tissue responsible for long-distance molecular transport, harbours specific junctions, sieve areas, between the conducting cells. To date, little is known about the molecular framework related to the biogenesis of these sieve areas. Here we identify mutations at the CHER1/AtCTL1 locus of Arabidopsis thaliana. The mutations cause several phenotypic abnormalities, including reduced pore density and altered pore structure in the sieve areas associated with impaired phloem function. CHER1 encodes a member of a poorly characterized choline transporter-like protein family in plants and animals. We show that CHER1 facilitates choline transport, localizes to the trans-Golgi network, and during cytokinesis is associated with the phragmoplast. Consistent with its function in the elaboration of the sieve areas, CHER1 has a sustained, polar localization in the forming sieve plates. Our results indicate that the regulation of choline levels is crucial for phloem development and conductivity in plants.

  19. Terabit Wireless Communication Challenges

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.

    2012-01-01

    This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz

  20. RND type efflux pump system MexAB-OprM of pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication

    PubMed Central

    2012-01-01

    Background Bacteria release a wide variety of small molecules including cell-to-cell signaling compounds. Gram-negative bacteria use a variety of self-produced autoinducers such as acylated homoserine lactones (acyl-HSLs) as signal compounds for quorum sensing (QS) within and between bacterial species. QS plays a significant role in the pathogenesis of