Science.gov

Sample records for cell cycle block

  1. Heterochronic misexpression of Ascl1 in the Atoh7 retinal cell lineage blocks cell cycle exit.

    PubMed

    Hufnagel, Robert B; Riesenberg, Amy N; Quinn, Malgorzata; Brzezinski, Joseph A; Glaser, Tom; Brown, Nadean L

    2013-05-01

    Retinal neurons and glia arise from a common progenitor pool in a temporal order, with retinal ganglion cells (RGCs) appearing first, and Müller glia last. The transcription factors Atoh7/Math5 and Ascl1/Mash1 represent divergent bHLH clades, and exhibit distinct spatial and temporal retinal expression patterns, with little overlap during early development. Here, we tested the ability of Ascl1 to change the fate of cells in the Atoh7 lineage when misexpressed from the Atoh7 locus, using an Ascl1-IRES-DsRed2 knock-in allele. In Atoh7(Ascl1KI/+) and Atoh7(Ascl1KI/Ascl1KI) embryos, ectopic Ascl1 delayed cell cycle exit and differentiation, even in cells coexpressing Atoh7. The heterozygous retinas recovered, and eventually produced a normal complement of RGCs, while homozygous substitution of Ascl1 for Atoh7 did not promote postnatal retinal fates precociously, nor rescue Atoh7 mutant phenotypes. However, our analyses revealed two unexpected findings. First, ectopic Ascl1 disrupted cell cycle progression within the marked Atoh7 lineage, but also nonautonomously in other retinal cells. Second, the size of the Atoh7 retinal lineage was unaffected, supporting the idea of a compensatory shift of the non-proliferative cohort to maintain lineage size. Overall, we conclude that Ascl1 acts dominantly to block cell cycle exit, but is incapable of redirecting the fates of early RPCs.

  2. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells.

    PubMed

    Jeong, Jin Boo; Hong, Se Chul; Jeong, Hyung Jin; Koo, Jin Suk

    2011-10-01

    Gastric cancer is a leading cause of cancer-related deaths, worldwide being second only to lung cancer as a cause of death. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms of arctigenin for anti-tumor effect on gastric cancer have not been examined. This study examined the biological effects of arctigenin on the human gastric cancer cell line SNU-1 and AGS. Cell proliferation was determined by MTT assay. In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by arctigenin in a time and dose dependent manner, as compared with SNU-1 and AGS cells cultured in the absence of arctigenin. Inhibition of cell proliferation by arctigenin was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bcl-2 to Bax by arctigenin. Also, arctigenin blocked cell cycle arrest from G(1) to S phase by regulating the expression of cell cycle regulatory proteins such as Rb, cyclin D1, cyclin E, CDK4, CDK2, p21Waf1/Cip1 and p15 INK4b. The antiproliferative effect of arctigenin on SNU-1 and AGS gastric cancer cells revealed in this study suggests that arctigenin has intriguing potential as a chemopreventive or chemotherapeutic agent.

  3. Enteric pathogens deploy cell cycle inhibiting factors to block the bactericidal activity of Perforin-2

    PubMed Central

    McCormack, Ryan M; Lyapichev, Kirill; Olsson, Melissa L; Podack, Eckhard R; Munson, George P

    2015-01-01

    Perforin-2 (MPEG1) is an effector of the innate immune system that limits the proliferation and spread of medically relevant Gram-negative, -positive, and acid fast bacteria. We show here that a cullin-RING E3 ubiquitin ligase (CRL) complex containing cullin-1 and βTrCP monoubiquitylates Perforin-2 in response to pathogen associated molecular patterns such as LPS. Ubiquitylation triggers a rapid redistribution of Perforin-2 and is essential for its bactericidal activity. Enteric pathogens such as Yersinia pseudotuberculosis and enteropathogenic Escherichia coli disarm host cells by injecting cell cycle inhibiting factors (Cifs) into mammalian cells to deamidate the ubiquitin-like protein NEDD8. Because CRL activity is dependent upon NEDD8, Cif blocks ubiquitin dependent trafficking of Perforin-2 and thus, its bactericidal activity. Collectively, these studies further underscore the biological significance of Perforin-2 and elucidate critical molecular events that culminate in Perforin-2-dependent killing of both intracellular and extracellular, cell-adherent bacteria. DOI: http://dx.doi.org/10.7554/eLife.06505.001 PMID:26418746

  4. Enteric pathogens deploy cell cycle inhibiting factors to block the bactericidal activity of Perforin-2.

    PubMed

    McCormack, Ryan M; Lyapichev, Kirill; Olsson, Melissa L; Podack, Eckhard R; Munson, George P

    2015-09-29

    Perforin-2 (MPEG1) is an effector of the innate immune system that limits the proliferation and spread of medically relevant Gram-negative, -positive, and acid fast bacteria. We show here that a cullin-RING E3 ubiquitin ligase (CRL) complex containing cullin-1 and βTrCP monoubiquitylates Perforin-2 in response to pathogen associated molecular patterns such as LPS. Ubiquitylation triggers a rapid redistribution of Perforin-2 and is essential for its bactericidal activity. Enteric pathogens such as Yersinia pseudotuberculosis and enteropathogenic Escherichia coli disarm host cells by injecting cell cycle inhibiting factors (Cifs) into mammalian cells to deamidate the ubiquitin-like protein NEDD8. Because CRL activity is dependent upon NEDD8, Cif blocks ubiquitin dependent trafficking of Perforin-2 and thus, its bactericidal activity. Collectively, these studies further underscore the biological significance of Perforin-2 and elucidate critical molecular events that culminate in Perforin-2-dependent killing of both intracellular and extracellular, cell-adherent bacteria.

  5. Blocking anaplerotic entry of glutamine into the TCA cycle sensitizes K-Ras mutant cancer cells to cytotoxic drugs.

    PubMed

    Saqcena, M; Mukhopadhyay, S; Hosny, C; Alhamed, A; Chatterjee, A; Foster, D A

    2015-05-14

    Cancer cells undergo a metabolic transformation that allows for increased anabolic demands, wherein glycolytic and tricarboxylic acid (TCA) cycle intermediates are shunted away for the synthesis of biological molecules required for cell growth and division. One of the key shunts is the exit of citrate from the mitochondria and the TCA cycle for the generation of cytosolic acetyl-coenzyme A that can be used for fatty acid and cholesterol biosynthesis. With the loss of mitochondrial citrate, cancer cells rely on the 'conditionally essential' amino acid glutamine (Q) as an anaplerotic carbon source for TCA cycle intermediates. Although Q deprivation causes G1 cell cycle arrest in non-transformed cells, its impact on the cancer cell cycle is not well characterized. We report here a correlation between bypass of the Q-dependent G1 checkpoint and cancer cells harboring K-Ras mutations. Instead of arresting in G1 in response to Q-deprivation, K-Ras-driven cancer cells arrest in either S- or G2/M-phase. Inhibition of K-Ras effector pathways was able to revert cells to G1 arrest upon Q deprivation. Blocking anaplerotic utilization of Q mimicked Q deprivation--causing S- and G2/M-phase arrest in K-Ras mutant cancer cells. Significantly, Q deprivation or suppression of anaplerotic Q utilization created synthetic lethality to the cell cycle phase-specific cytotoxic drugs, capecitabine and paclitaxel. These data suggest that disabling of the G1 Q checkpoint could represent a novel vulnerability of cancer cells harboring K-Ras and possibly other mutations that disable the Q-dependent checkpoint.

  6. Combination of oncolytic adenovirus and dacarbazine attenuates antitumor ability against uveal melanoma cells via cell cycle block.

    PubMed

    Cun, Biyun; Song, Xin; Jia, Renbing; Zhao, Xiaoping; Wang, Haibo; Ge, Shengfang; Fan, Xianqun

    2012-01-15

    Uveal melanoma is the most common primary intraocular malignancy in adults; however, current therapeutic modalities, including chemotherapy, have not been successful. Oncolytic viruses serve as an emerging gene therapy tool for cancer treatment because they specifically kill tumor cells while sparing normal cells. The oncolytic virus H101 has been approved by the Chinese State Food and Drug Administration for the treatment of certain malignancies. Unfortunately, the monotherapy of adenovirus has demonstrated limited efficacy in a clinical setting. Thus, novel treatment strategies in which an oncolytic virus is combined with existing chemicals are advancing toward potential clinical use. In this study, we chose the combination of oncolytic virus H101 and the alkylating agent dacarbazine (DTIC) to treat uveal melanoma cells in vitro. Our results demonstrated that the combination exerted a synergistic antitumor effect without enhanced toxicity to normal cells via a type of cell cycle block other than the induction of apoptosis. Further investigation is warranted to elucidate the specific underlying mechanisms of this co-treatment therapy. Our study suggests the viro-chemo combination therapy is feasible and is a potentially promising approach for the treatment of uveal melanoma.

  7. Serum starvation and thymidine double blocking achieved efficient cell cycle synchronization and altered the expression of p27, p53, bcl-2 in canine breast cancer cells.

    PubMed

    Tong, Jinjin; Sun, Dongdong; Yang, Chao; Wang, Yingxue; Sun, Sichao; Li, Qing; Bao, Jun; Liu, Yun

    2016-04-01

    Cell synchronization is an approach to obtain cell populations of the same stage, which is a prerequisite to studying the regulation of cell cycle progression in vivo. Serum starvation and thymidine double blocking (TdR) are two important practices in studying cell cycle synchronization. However, their effects on canine cancer cells as well as the regulatory mechanisms by these two methods are poorly understood. In this study, we determined the optimum conditions of serum starvation and TdR and their effects on cell cycle synchronization. We further explored the involvement of PI3K/Akt signaling pathway in the cell cycle synchronization by investigating the expression of three key genes (p27, p53 and bcl-2). Serum starvation resulted in a reversible cell cycle arrest and synchronously progress through G0/G1. The highest percentage of CHMm cells (87.47%) in G0/G1 stage was obtained after 42 h incubation with 0.5% fetal bovine serum (FBS). TdR double blocking could arrest 98.9% of CHMm cells in G1/S phase (0 h of release), and could arrest 93.74% of CHMm cells in S phase after 4h of release. We also found that the p27, p53, bcl-2 genes were most highly expressed in G0/G1 phase. Our current work revealed that serum starvation and TdR methods could achieve sufficient synchronization of CHMm cells. Moreover, the expression of p27, p53 and bcl-2 genes was related to cyclical movements and apoptosis. Our results will provide a new insight into cell cycle regulation and reprogramming of canine cancer cells induced by serum starvation and TdR blocking.

  8. Loss of PI3K blocks cell-cycle progression in a Drosophila tumor model.

    PubMed

    Willecke, M; Toggweiler, J; Basler, K

    2011-09-29

    Tumorigenesis is a complex process, which requires alterations in several tumor suppressor or oncogenes. Here, we use a Drosophila tumor model to identify genes, which are specifically required for tumor growth. We found that reduction of phosphoinositide 3-kinase (PI3K) activity resulted in very small tumors while only slightly affecting growth of wild-type tissue. The observed inhibition on tumor growth occurred at the level of cell-cycle progression. We conclude that tumor cells become dependent on PI3K function and that reduction of PI3K activity synthetically interferes with tumor growth. The results presented here broaden our insights into the intricate mechanisms underling tumorigenesis and illustrate the power of Drosophila genetics in revealing weak points of tumor progression.

  9. Olive Oil Polyphenols Differentially Inhibit Smooth Muscle Cell Proliferation through a G1/S Cell Cycle Block Regulated by ERK1/2

    PubMed Central

    Abe, Rei; Beckett, Joel; Abe, Ryuzo; Nixon, Alexander; Rochier, Adrienne; Yamashita, Norio; Sumpio, Bauer

    2012-01-01

    We hypothesized that polyphenols contained in olive oil play a role in reducing the risk of atherosclerosis. The aim of this study was to determine if the polyphenols in olive oil, oleuropein (Ole), hydroxytyrosol (HT), and tyrosol (Tyr) could inhibit smooth muscle cell (SMC) proliferation through its influence on cell cycle regulation. Bovine vascular SMC were cultured in the presence of Ole, HT, or Tyr at concentration of 1, 10, or 100 μmol/L. On days 1, 3, and 5, numbers of cells were counted. Cell cycle analysis was performed by flow cytometry on day 1 after SMC were stained with propidium iodide. Cell populations grown in the presence of Ole or HT at 100 μmol/L concentration were significantly inhibited after 5 days of exposure. Tyr had a similar tendency but it did not attain significance. Cell cycle analysis revealed that 66% of cells were in G1 phase in Ole group, compared with 48% in control group. To examine the cell cycle block between G1 and S phases, we performed Western blotting and found that ERK1/2 activation was inhibited by Ole or HT. We conclude that olive oil polyphenols could inhibit SMC proliferation through a cell cycle block between G1 and S phases which may be regulated by ERK1/2. These results demonstrate a mechanism by which olive oil consumption may be atheroprotective by inhibiting SMC proliferation. PMID:23730132

  10. Reduction of radiation-induced cell cycle blocks by caffeine does not necessarily lead to increased cell killing

    SciTech Connect

    Musk, S.R. )

    1991-03-01

    The effect of caffeine upon the radiosensitivities of three human tumor lines was examined and correlated with its action upon the radiation-induced S-phase and G2-phase blocks. Caffeine was found to reduce at least partially the S-phase and G2-phase blocks in all the cell lines examined but potentiated cytotoxicity in only one of the three tumor lines. That reductions have been demonstrated to occur in the absence of increased cell killing provides supporting evidence for the hypothesis that reductions may not be causal in those cases when potentiation of radiation-induced cytotoxicity is observed in the presence of caffeine.

  11. Specific cell cycle synchronization with butyrate and cell cycle analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synchronized cells have been invaluable for many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. To explore the possibility of using butyrate-blocked cells to obtain synchronized cells, we investigated the property of the cell cyc...

  12. Tetramethoxychalcone, a Chalcone Derivative, Suppresses Proliferation, Blocks Cell Cycle Progression, and Induces Apoptosis of Human Ovarian Cancer Cells

    PubMed Central

    Liu, Yang; Zhang, Meiqin; Yang, Gong

    2014-01-01

    In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3′,4′,5′- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer. PMID:25180593

  13. Extra-virgin olive oil phenols block cell cycle progression and modulate chemotherapeutic toxicity in bladder cancer cells

    PubMed Central

    Coccia, Andrea; Mosca, Luciana; Puca, Rosa; Mangino, Giorgio; Rossi, Alessandro; Lendaro, Eugenio

    2016-01-01

    Epidemiological data indicate that the daily consumption of extra-virgin olive oil (EVOO), a common dietary habit of the Mediterranean area, lowers the incidence of certain types of cancer, in particular bladder neoplasm. The aim of the present study was to evaluate the antiproliferative activity of polyphenols extracted from EVOO on bladder cancer (BCa), and to clarify the biological mechanisms that trigger cell death. Furthermore, we also evaluated the ability of low doses of extra-virgin olive oil extract (EVOOE) to modulate the in vitro activity of paclitaxel or mitomycin, two antineoplastic drugs used in the management of different types of cancer. Our results showed that EVOOE significantly inhibited the proliferation and clonogenic ability of T24 and 5637 BCa cells in a dose-dependent manner. Furthermore, cell cycle analysis after EVOOE treatment showed a marked growth arrest prior to mitosis in the G2/M phase for both cell lines, with the subsequent induction of apoptosis only in the T24 cells. Notably, simultaneous treatment of mitomycin C and EVOOE reduced the drug cytotoxicity due to inhibition of ROS production. Conversely, the co-treatment of T24 cells with paclitaxel and the polyphenol extract strongly increased the apoptotic cell death at each tested concentration compared to paclitaxel alone. Our results support the epidemiological evidence indicating that olive oil consumption exerts health benefits and may represent a starting point for the development of new anticancer strategies. PMID:27748855

  14. Extra-virgin olive oil phenols block cell cycle progression and modulate chemotherapeutic toxicity in bladder cancer cells.

    PubMed

    Coccia, Andrea; Mosca, Luciana; Puca, Rosa; Mangino, Giorgio; Rossi, Alessandro; Lendaro, Eugenio

    2016-12-01

    Epidemiological data indicate that the daily consumption of extra‑virgin olive oil (EVOO), a common dietary habit of the Mediterranean area, lowers the incidence of certain types of cancer, in particular bladder neoplasm. The aim of the present study was to evaluate the antiproliferative activity of polyphenols extracted from EVOO on bladder cancer (BCa), and to clarify the biological mechanisms that trigger cell death. Furthermore, we also evaluated the ability of low doses of extra‑virgin olive oil extract (EVOOE) to modulate the in vitro activity of paclitaxel or mitomycin, two antineoplastic drugs used in the management of different types of cancer. Our results showed that EVOOE significantly inhibited the proliferation and clonogenic ability of T24 and 5637 BCa cells in a dose‑dependent manner. Furthermore, cell cycle analysis after EVOOE treatment showed a marked growth arrest prior to mitosis in the G2/M phase for both cell lines, with the subsequent induction of apoptosis only in the T24 cells. Notably, simultaneous treatment of mitomycin C and EVOOE reduced the drug cytotoxicity due to inhibition of ROS production. Conversely, the co‑treatment of T24 cells with paclitaxel and the polyphenol extract strongly increased the apoptotic cell death at each tested concentration compared to paclitaxel alone. Our results support the epidemiological evidence indicating that olive oil consumption exerts health benefits and may represent a starting point for the development of new anticancer strategies.

  15. Fucoidan inhibits the proliferation of human urinary bladder cancer T24 cells by blocking cell cycle progression and inducing apoptosis.

    PubMed

    Park, Hye Young; Kim, Gi-Young; Moon, Sung-Kwon; Kim, Wun Jae; Yoo, Young Hyun; Choi, Yung Hyun

    2014-05-09

    Although fucoidan has been shown to exert anticancer activity against several types of cancer cell lines, no reports have explored fucoidan-affected cell growth in human urinary bladder cancer cells. In this study, we investigated the anti-proliferative effects of fucoidan in human bladder cancer T24 cells. Our results indicated that fucoidan decreased the viability of T24 cells through the induction of G1 arrest and apoptosis. Fucoidan-induced G1 arrest is associated with the enhanced expression of the Cdk inhibitor p21WAF1/CIP1 and dephosphorylation of the pRB along with enhanced binding of p21 to Cdk4/6 as well as pRB to the transcription factor E2Fs. Further investigations showed the loss of mitochondrial membrane potential and the release of cytochrome c from mitochondria to cytosol, proving mitochondrial dysfunction upon fucoidan treatment with a corresponding increase in the Bax/Bcl-2 expression ratio. Fucoidan-triggered apoptosis was also accompanied by the up-regulation of Fas and truncated Bid as well as the sequential activation of caspase-8. Furthermore, a significant increased activation of caspase-9/-3 was detected in response to fucoidan treatment with the decreased expression of IAPs and degradation of PARP, whereas a pan-caspase inhibitor significantly suppressed apoptosis and rescued the cell viability reduction. In conclusion, these observations suggest that fucoidan attenuates G1-S phase cell cycle progression and serves as an important mediator of crosstalk between caspase-dependent intrinsic and extrinsic apoptotic pathways in T24 cells.

  16. View of cell block eight (left), cell block seven, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of cell block eight (left), cell block seven, and southwest guard tower, looking from cell block eight roof - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  17. Cell block eleven (left) and cell block fifteen, looking from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cell block eleven (left) and cell block fifteen, looking from cell block two into the "Death Row" exercise yard - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  18. HDAC8 Inhibition Blocks SMC3 Deacetylation and Delays Cell Cycle Progression without Affecting Cohesin-dependent Transcription in MCF7 Cancer Cells.

    PubMed

    Dasgupta, Tanushree; Antony, Jisha; Braithwaite, Antony W; Horsfield, Julia A

    2016-06-10

    Cohesin, a multi-subunit protein complex involved in chromosome organization, is frequently mutated or aberrantly expressed in cancer. Multiple functions of cohesin, including cell division and gene expression, highlight its potential as a novel therapeutic target. The SMC3 subunit of cohesin is acetylated (ac) during S phase to establish cohesion between replicated chromosomes. Following anaphase, ac-SMC3 is deacetylated by HDAC8. Reversal of SMC3 acetylation is imperative for recycling cohesin so that it can be reloaded in interphase for both non-mitotic and mitotic functions. We blocked deacetylation of ac-SMC3 using an HDAC8-specific inhibitor PCI-34051 in MCF7 breast cancer cells, and examined the effects on transcription of cohesin-dependent genes that respond to estrogen. HDAC8 inhibition led to accumulation of ac-SMC3 as expected, but surprisingly, had no influence on the transcription of estrogen-responsive genes that are altered by siRNA targeting of RAD21 or SMC3. Knockdown of RAD21 altered estrogen receptor α (ER) recruitment at SOX4 and IL20, and affected transcription of these genes, while HDAC8 inhibition did not. Rather, inhibition of HDAC8 delayed cell cycle progression, suppressed proliferation and induced apoptosis in a concentration-dependent manner. We conclude that HDAC8 inhibition does not change the estrogen-specific transcriptional role of cohesin in MCF7 cells, but instead, compromises cell cycle progression and cell survival. Our results argue that candidate inhibitors of cohesin function may differ in their effects depending on the cellular genotype and should be thoroughly tested for predicted effects on cohesin's mechanistic roles.

  19. Depletion of poly(A)-specific ribonuclease (PARN) inhibits proliferation of human gastric cancer cells by blocking cell cycle progression.

    PubMed

    Zhang, Li-Na; Yan, Yong-Bin

    2015-02-01

    Regulation of mRNA decay plays a crucial role in the post-transcriptional control of cell growth, survival, differentiation, death and senescence. Deadenylation is a rate-limiting step in the silence and degradation of the bulk of highly regulated mRNAs. However, the physiological functions of various deadenylases have not been fully deciphered. In this research, we found that poly(A)-specific ribonuclease (PARN) was upregulated in gastric tumor tissues and gastric cancer cell lines MKN28 and AGS. The cellular function of PARN was investigated by stably knocking down the endogenous PARN in the MKN28 and AGS cells. Our results showed that PARN-depletion significantly inhibited the proliferation of the two types of gastric cancer cells and promoted cell death, but did not significantly affect cell motility and invasion. The depletion of PARN arrested the gastric cancer cells at the G0/G1 phase by upregulating the expression levels of p53 and p21 but not p27. The mRNA stability of p53 was unaffected by PARN-knockdown in both types of cells. A significant stabilizing effect of PARN-depletion on p21 mRNA was observed in the AGS cells but not in the MKN28 cells. We further showed that the p21 3'-UTR triggered the action of PARN in the AGS cells. The dissimilar observations between the MKN28 and AGS cells as well as various stress conditions suggested that the action of PARN strongly relied on protein expression profiles of the cells, which led to heterogeneity in the stability of PARN-targeted mRNAs.

  20. Kaposi sarcoma herpes virus latency associated nuclear antigen protein release the G2/M cell cycle blocks by modulating ATM/ATR mediated checkpoint pathway.

    PubMed

    Kumar, Amit; Sahu, Sushil Kumar; Mohanty, Suchitra; Chakrabarti, Sudipta; Maji, Santanu; Reddy, R Rajendra; Jha, Asutosh K; Goswami, Chandan; Kundu, Chanakya N; Rajasubramaniam, Shanmugam; Verma, Subhash C; Choudhuri, Tathagata

    2014-01-01

    The Kaposi's sarcoma-associated herpesvirus infects the human population and maintains latency stage of viral life cycle in a variety of cell types including cells of epithelial, mesenchymal and endothelial origin. The establishment of latent infection by KSHV requires the expression of an unique repertoire of genes among which latency associated nuclear antigen (LANA) plays a critical role in the replication of the viral genome. LANA regulates the transcription of a number of viral and cellular genes essential for the survival of the virus in the host cell. The present study demonstrates the disruption of the host G2/M cell cycle checkpoint regulation as an associated function of LANA. DNA profile of LANA expressing human B-cells demonstrated the ability of this nuclear antigen in relieving the drug (Nocodazole) induced G2/M checkpoint arrest. Caffeine suppressed nocodazole induced G2/M arrest indicating involvement of the ATM/ATR. Notably, we have also shown the direct interaction of LANA with Chk2, the ATM/ATR signalling effector and is responsible for the release of the G2/M cell cycle block.

  1. Dihydroxyacetone, the active browning ingredient in sunless tanning lotions, induces DNA damage, cell-cycle block and apoptosis in cultured HaCaT keratinocytes.

    PubMed

    Petersen, Anita B; Wulf, Hans Christian; Gniadecki, Robert; Gajkowska, Barbara

    2004-06-13

    Dihydroxyacetone (DHA), the active substance in sunless tanning lotions reacts with the amino groups of proteins to form a brown-colored complex. This non-enzymatic glycation, known as the Maillard reaction, can also occur with free amino groups in DNA, raising the possibility that DHA may be genotoxic. To address this issue we investigated the effects of DHA on cell survival and proliferation of a human keratinocyte cell line, HaCaT. Dose- and time-dependent morphological changes, chromatin condensation, cytoplasmic budding and cell detachment were seen in cells treated with DHA. Several dead cells were observed after long-time (24 h) incubation with 25 mM DHA or more. Furthermore, an extensive decline in proliferation was observed 1 day after DHA exposure for 24 h. When applied in different concentrations (5-50 mM) and for different time periods (1, 3 or 24 h) DHA caused a G(2)/M block after the cyclin B(1) restriction point. Exit from this cell-cycle block was associated with massive apoptosis, as revealed by a clonogenic assay, TUNEL staining and electron microscopy. Furthermore, DHA caused DNA damage as revealed by the alkaline comet assay. Preincubation with antioxidants prevented the formation of DNA strand breaks. The DHA toxicity may be caused by direct redox reactions, with formation of ROS as the crucial intermediates. The genotoxic capacity of DHA raises a question about the long-term clinical consequences of treatment of the skin with this commonly used compound.

  2. 2-Methoxy-4-vinylphenol can induce cell cycle arrest by blocking the hyper-phosphorylation of retinoblastoma protein in benzo[a]pyrene-treated NIH3T3 cells

    SciTech Connect

    Jeong, Jin Boo; Jeong, Hyung Jin

    2010-10-01

    Research highlights: {yields} 2M4VP activated the expression of p21 and p15 protein, and down-regulated the expression of cyclin D1 and cyclin E. {yields} 2M4VP inhibited hyper-phosphorylation of Rb protein. {yields} 2M4VP induced cell cycle arrest from G1 to S. {yields} 2M4VP inhibited hyper-proliferation of the cells in BaP-treated cells. {yields} 2M4VP induces growth arrest of BaP-treated cells by blocking hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins. -- Abstract: Benzo[a]pyrene (BaP) is an environment carcinogen that can enhance cell proliferation by disturbing the signal transduction pathways in cell cycle regulation. In this study, the effects of 2M4VP on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in BaP-treated NIH 3T3 cells to establish the molecular mechanisms of 2M4VP as anti-proliferative agents. 2M4VP exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed 2M4VP increased expression of CDK inhibitor, p21Waf1/Cip1 and p15 INK4b, decreased expression of cyclin D1 and cyclin E, and inhibited kinase activities of CDK4 and CDK2. However, 2M4VP did not affect the expression of CDK4 and CDK2. Also, 2M4VP inhibited the hyper-phosphorylation of Rb induced by BaP. Our results suggest that 2M4VP induce growth arrest of BaP-treated NIH 3T3 cells by blocking the hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins.

  3. MicroRNA 543 suppresses breast cancer cell proliferation, blocks cell cycle and induces cell apoptosis via direct targeting of ERK/MAPK

    PubMed Central

    Chen, Po; Xu, Wentao; Luo, Yi; Zhang, Yi; He, Yi; Yang, Shuo; Yuan, Zhijun

    2017-01-01

    Background Breast cancer affects millions of people with a high mortality rate throughout the world; microRNA 543 (miR-543) has been reported to suppress progression in some kinds of cancers, but has not been reported in breast cancer. Thus, the purpose of this study is to investigate the function of miR-543 in breast cancer cells. Methods Two cell lines, MCF-7 and MDA-MB-231, were selected to be the research objects; the miR-543 overexpression and knockdown models were established in the study by transforming miR-543 mimics and miR-543 inhibitor. Real-time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Western blot, clone formation and cell flow cytometer assay were used to test the miR-543’s function. Dual-luciferase assay was used for the detection of miR-543 and ERK2 targeting relationship. Results The results showed that the cell proliferation and cell cycle were inhibited, and the capability of cell apoptosis was upregulated when miR-543 was overexpressed; we found that there was a target relationship between ERK2 and miR-543. Furthermore, downstream factors of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase-2 (ERK2) pathway, including RSK2 and MSK1, were decreased in miR-543 overexpression model. Conclusion This study provides series evidences to support that breast cancer progression was inhibited by miR-543 via direct targeting of ERK2 in MAPK/ERK signal pathway, which may provide a molecular basis for better treatment for patients. PMID:28331335

  4. Knockdown of Bmi1 inhibits bladder cancer cell growth both in vitro and in vivo by blocking cell cycle at G1 phase and inducing apoptosis.

    PubMed

    Luo, Hong-bo; Li, Bin; Yuan, Wei-gang; Xu, Chuan-rui

    2015-10-01

    Bmi1 is a member of the polycomb group family of proteins, and it drives the carcinogenesis of various cancers and governs the self-renewal of multiple types of stem cells. However, its role in the initiation and progression of bladder cancer is not clearly known. The present study aimed to investigate the function of Bmi1 in the development of bladder cancer. Bmi1 expression was detected in human bladder cancer tissues and their adjacent normal tissues (n=10) by immunohistochemistry, qRT-PCR and Western blotting, respectively. Bmi1 small interference RNA (siRNA) was synthesized and transfected into human bladder carcinoma cells (EJ) by lipofectamine 2000. The Bmil expression at mRNA and protein levels was measured in EJ cells transfected with Bmil siRNA (0, 80, 160 nmol/L) by qRT-PCR and Western blotting, respectively. Cell viability and Ki67 expression (a marker of cell proliferation) were determined in Bmi1 siRNA-transfected cells by CCK-8 assay and qRT-PCR, respectively. Cell cycle of transfected cells was flow-cytometrically determined. Immunofluorescence and Western blotting were used to detect the expression levels of cell cycle-associated proteins cyclin D1 and cyclin E in the cells. Pro-apoptotic proteins Bax and caspase 3 and anti-apoptotic protein Bcl-2 were detected by Western blotting as well. Additionally, xenograft tumor models were established by inoculation of EJ cells (infected with Bmil shRNA/pLKO.1 lentivirus or not) into nude mice. The tumor volumes were measured every other day for 14 days. The results showed that the Bmil expression was significantly increased in bladder tumor tissues when compared with that in normal tissues (P<0.05). Perturbation of Bmi1 expression by using siRNA could significantly inhibit the proliferation of EJ cells (P<0.05). Bmi1 siRNA-transfected EJ cells were accumulated in G1 phase and the expression levels of cyclin D1 and cyclin E were down-regulated. Bax and caspase-3 expression levels were significantly

  5. The microbial cell cycle

    SciTech Connect

    Nurse, P.; Streiblova, E.

    1984-01-01

    This book concentrates on the major problems of cell cycle control in microorganisms. A wide variety of microorganisms, ranging from bacteria and yeasts to hyphal fungi, algae, and ciliates are analyzed, with emphasis on the basic similarities among the organisms. Different ways of looking at cell cycle control which emphasize aspects of the problem such as circadian rhythms, limit cycle oscillators, and cell size models, are considered. New approaches such as the study of cell cycle mutants, and cloning of cell cycle control genes are also presented.

  6. Thermotolerant Guard Cell Protoplasts of Tree Tobacco Do Not Require Exogenous Hormones to Survive in Culture and Are Blocked from Reentering the Cell Cycle at the G1-to-S Transition1

    PubMed Central

    Gushwa, Nathan N.; Hayashi, Derek; Kemper, Andrea; Abram, Beverly; Taylor, Jane E.; Upton, Jason; Tay, Chloe F.; Fiedler, Sarah; Pullen, Sam; Miller, Linnsey P.; Tallman, Gary

    2003-01-01

    When guard cell protoplasts (GCPs) of tree tobacco [Nicotiana glauca (Graham)] are cultured at 32°C with an auxin (1-napthaleneacetic acid) and a cytokinin (6-benzylaminopurine), they reenter the cell cycle, dedifferentiate, and divide. GCPs cultured similarly but at 38°C and with 0.1 μm ± -cis,trans-abscisic acid (ABA) remain differentiated. GCPs cultured at 38°C without ABA dedifferentiate partially but do not divide. Cell survival after 1 week is 70% to 80% under all of these conditions. In this study, we show that GCPs cultured for 12 to 24 h at 38°C accumulate heat shock protein 70 and develop a thermotolerance that, upon transfer of cells to 32°C, enhances cell survival but inhibits cell cycle reentry, dedifferentiation, and division. GCPs dedifferentiating at 32°C require both 1-napthaleneacetic acid and 6-benzylaminopurine to survive, but thermotolerant GCPs cultured at 38°C ± ABA do not require either hormone for survival. Pulse-labeling experiments using 5-bromo-2-deoxyuridine indicate that culture at 38°C ± ABA prevents dedifferentiation of GCPs by blocking cell cycle reentry at G1/S. Cell cycle reentry at 32°C is accompanied by loss of a 41-kD polypeptide that cross-reacts with antibodies to rat (Rattus norvegicus) extracellular signal-regulated kinase 1; thermotolerant GCPs retain this polypeptide. A number of polypeptides unique to thermotolerant cells have been uncovered by Boolean analysis of two-dimensional gels and are targets for further analysis. GCPs of tree tobacco can be isolated in sufficient numbers and with the purity required to study plant cell thermotolerance and its relationship to plant cell survival, growth, dedifferentiation, and division in vitro. PMID:12913149

  7. Thermotolerant guard cell protoplasts of tree tobacco do not require exogenous hormones to survive in culture and are blocked from reentering the cell cycle at the G1-to-S transition.

    PubMed

    Gushwa, Nathan N; Hayashi, Derek; Kemper, Andrea; Abram, Beverly; Taylor, Jane E; Upton, Jason; Tay, Chloe F; Fiedler, Sarah; Pullen, Sam; Miller, Linnsey P; Tallman, Gary

    2003-08-01

    When guard cell protoplasts (GCPs) of tree tobacco [Nicotiana glauca (Graham)] are cultured at 32 degrees C with an auxin (1-napthaleneacetic acid) and a cytokinin (6-benzylaminopurine), they reenter the cell cycle, dedifferentiate, and divide. GCPs cultured similarly but at 38 degrees C and with 0.1 micro M +/- -cis,trans-abscisic acid (ABA) remain differentiated. GCPs cultured at 38 degrees C without ABA dedifferentiate partially but do not divide. Cell survival after 1 week is 70% to 80% under all of these conditions. In this study, we show that GCPs cultured for 12 to 24 h at 38 degrees C accumulate heat shock protein 70 and develop a thermotolerance that, upon transfer of cells to 32 degrees C, enhances cell survival but inhibits cell cycle reentry, dedifferentiation, and division. GCPs dedifferentiating at 32 degrees C require both 1-napthaleneacetic acid and 6-benzylaminopurine to survive, but thermotolerant GCPs cultured at 38 degrees C +/- ABA do not require either hormone for survival. Pulse-labeling experiments using 5-bromo-2-deoxyuridine indicate that culture at 38 degrees C +/- ABA prevents dedifferentiation of GCPs by blocking cell cycle reentry at G1/S. Cell cycle reentry at 32 degrees C is accompanied by loss of a 41-kD polypeptide that cross-reacts with antibodies to rat (Rattus norvegicus) extracellular signal-regulated kinase 1; thermotolerant GCPs retain this polypeptide. A number of polypeptides unique to thermotolerant cells have been uncovered by Boolean analysis of two-dimensional gels and are targets for further analysis. GCPs of tree tobacco can be isolated in sufficient numbers and with the purity required to study plant cell thermotolerance and its relationship to plant cell survival, growth, dedifferentiation, and division in vitro.

  8. Synthesis, Biological Evaluation, and Structure–Activity Relationships of Novel Substituted N-Phenyl Ureidobenzenesulfonate Derivatives Blocking Cell Cycle Progression in S-Phase and Inducing DNA Double-Strand Breaks

    PubMed Central

    2012-01-01

    Twenty-eight new substituted N-phenyl ureidobenzenesulfonate (PUB-SO) and 18 N-phenylureidobenzenesulfonamide (PUB-SA) derivatives were prepared. Several PUB-SOs exhibited antiproliferative activity at the micromolar level against the HT-29, M21, and MCF-7 cell lines and blocked cell cycle progression in S-phase similarly to cisplatin. In addition, PUB-SOs induced histone H2AX (γH2AX) phosphorylation, indicating that these molecules induce DNA double-strand breaks. In contrast, PUB-SAs were less active than PUB-SOs and did not block cell cycle progression in S-phase. Finally, PUB-SOs 4 and 46 exhibited potent antitumor activity in HT-1080 fibrosarcoma cells grafted onto chick chorioallantoic membranes, which was similar to cisplatin and combretastatin A-4 and without significant toxicity toward chick embryos. These new compounds are members of a promising new class of anticancer agents. PMID:22694057

  9. What cycles the cell? -Robust autonomous cell cycle models.

    PubMed

    Lavi, Orit; Louzoun, Yoram

    2009-12-01

    The cell cycle is one of the best studied cellular mechanisms at the experimental and theoretical levels. Although most of the important biochemical components and reactions of the cell cycle are probably known, the precise way the cell cycle dynamics are driven is still under debate. This phenomenon is not atypical to many other biological systems where the knowledge of the molecular building blocks and the interactions between them does not lead to a coherent picture of the appropriate dynamics. We here propose a methodology to develop plausible models for the driving mechanisms of embryonic and cancerous cell cycles. We first define a key property of the system (a cyclic behaviour in the case of the embryonic cell cycle) and set mathematical constraints on the types of two variable simplified systems robustly reproducing such a cyclic behaviour. We then expand these robust systems to three variables and reiterate the procedure. At each step, we further limit the type of expanded systems to fit the known microbiology until a detailed description of the system is obtained. This methodology produces mathematical descriptions of the required biological systems that are more robust to changes in the precise function and rate constants. This methodology can be extended to practically any type of subcellular mechanism.

  10. DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos.

    PubMed

    Jacob, Vinitha; Chernyavskaya, Yelena; Chen, Xintong; Tan, Poh Seng; Kent, Brandon; Hoshida, Yujin; Sadler, Kirsten C

    2015-02-01

    UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis.

  11. The peri-cell-cycle in Arabidopsis.

    PubMed

    Beeckman, T; Burssens, S; Inzé, D

    2001-03-01

    The root systems of plants proliferate via de novo formed meristems originating from differentiated pericycle cells. The identity of putative signals responsible for triggering some of the pericycle cells to re-enter the cell cycle remains unknown. Here, the cell cycle regulation in the pericycle of seedling roots of Arabidopsis thaliana (L.) HEYNH: is studied shortly after germination using various strategies. Based on the detailed analysis of the promoter-beta-glucuronidase activity of four key cell cycle regulatory genes, combined with cell length measurements, microdensitometry of DNA content, and experiments with a cell cycle-blocking agent, a model is proposed for cell cycle regulation in the pericycle at the onset of lateral root initiation. The results clearly show that before the first lateral root is initiated, the pericycle consists of dissimilar cell files in respect of their cell division history. Depending on the distance behind the root tip and on position in relation to the vascular tissue, particular pericycle cells remain in the G(2) phase of the cell cycle and are apparently more susceptible to lateral root initiation than others.

  12. Flow cytometry analysis of cell cycle and specific cell synchronization with butyrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. The possibility of using butyrate-blocked cells to obtain synchronized cells was explored and the properties of butyrate-induced cell ...

  13. Cell cycle effects of drugs

    SciTech Connect

    Dethlefsen, L.A.

    1986-01-01

    This book contains 11 chapters. Some of the chapter titles are: Cell Growth and Division Cycle; Cell Cycle Effects of Alkylating Agents; Biological Effects of Folic Acid Antagonists with Antineoplastic Activity; and Bleomycin-Mode of Action with Particular Reference to the Cell Cycle.

  14. How do prokaryotic cells cycle?

    PubMed

    Margolin, William; Bernander, Rolf

    2004-09-21

    This issue of Current Biology features five reviews covering various key aspects of the eukaryotic cell cycle. The topics include initiation of chromosome replication, assembly of the mitotic spindle, cytokinesis, the regulation of cell-cycle progression, and cell-cycle modeling, focusing mainly on budding yeast, fission yeast and animal cell model systems. The reviews underscore common themes as well as key differences in the way these processes are carried out and regulated among the different model organisms. Consequently, an important question is how cell-cycle mechanisms and controls have evolved, particularly in the broader perspective of the three domains of life.

  15. Cell block eleven, looking from the "Death Row" exercise yard, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cell block eleven, looking from the "Death Row" exercise yard, facing north (note cell block fifteen to the right and cell block fourteen in the distance_ - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  16. Cell block one and southeast guard tower, looking from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cell block one and southeast guard tower, looking from the central guard tower, facing southeast (note view also includes cell block ten (left) and cell block nine (right)) - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  17. The Abbreviated Pluripotent Cell Cycle

    PubMed Central

    Kapinas, Kristina; Grandy, Rodrigo; Ghule, Prachi; Medina, Ricardo; Becker, Klaus; Pardee, Arthur; Zaidi, Sayyed K.; Lian, Jane; Stein, Janet; van Wijnen, Andre; Stein, Gary

    2013-01-01

    Human embryonic stem cells and induced pluripotent stem cells proliferate rapidly and divide symmetrically producing equivalent progeny cells. In contrast, lineage committed cells acquire an extended symmetrical cell cycle. Self-renewal of tissue-specific stem cells is sustained by asymmetric cell division where one progeny cell remains a progenitor while the partner progeny cell exits the cell cycle and differentiates. There are three principal contexts for considering the operation and regulation of the pluripotent cell cycle: temporal, regulatory andstructural. The primary temporal context that the pluripotent self-renewal cell cycle of human embryonic stem cells (hESCs) is a short G1 period without reducing periods of time allocated to S phase, G2, and mitosis. The rules that govern proliferation in hESCs remain to be comprehensively established. However, several lines of evidence suggest a key role for the naïve transcriptome of hESCs, which is competent to stringently regulate the ESC cell cycle. This supports the requirements of pluripotent cells to self propagate while suppressing expression of genes that confer lineage commitment and/or tissue specificity. However, for the first time, we consider unique dimensions to the architectural organization and assembly of regulatory machinery for gene expression in nuclear microenviornments that define parameters of pluripotency. From both fundamental biological and clinical perspectives, understanding control of the abbreviated embryonic stem cell cycle can provide options to coordinate control of proliferation versus differentiation. Wound healing, tissue engineering, and cell-based therapy to mitigate developmental aberrations illustrate applications that benefit from knowledge of the biology of the pluripotent cell cycle. PMID:22552993

  18. The abbreviated pluripotent cell cycle.

    PubMed

    Kapinas, Kristina; Grandy, Rodrigo; Ghule, Prachi; Medina, Ricardo; Becker, Klaus; Pardee, Arthur; Zaidi, Sayyed K; Lian, Jane; Stein, Janet; van Wijnen, Andre; Stein, Gary

    2013-01-01

    Human embryonic stem cells (hESCs) and induced pluripotent stem cells proliferate rapidly and divide symmetrically producing equivalent progeny cells. In contrast, lineage committed cells acquire an extended symmetrical cell cycle. Self-renewal of tissue-specific stem cells is sustained by asymmetric cell division where one progeny cell remains a progenitor while the partner progeny cell exits the cell cycle and differentiates. There are three principal contexts for considering the operation and regulation of the pluripotent cell cycle: temporal, regulatory, and structural. The primary temporal context that the pluripotent self-renewal cell cycle of hESCs is a short G1 period without reducing periods of time allocated to S phase, G2, and mitosis. The rules that govern proliferation in hESCs remain to be comprehensively established. However, several lines of evidence suggest a key role for the naïve transcriptome of hESCs, which is competent to stringently regulate the embryonic stem cell (ESC) cell cycle. This supports the requirements of pluripotent cells to self-propagate while suppressing expression of genes that confer lineage commitment and/or tissue specificity. However, for the first time, we consider unique dimensions to the architectural organization and assembly of regulatory machinery for gene expression in nuclear microenviornments that define parameters of pluripotency. From both fundamental biological and clinical perspectives, understanding control of the abbreviated ESC cycle can provide options to coordinate control of proliferation versus differentiation. Wound healing, tissue engineering, and cell-based therapy to mitigate developmental aberrations illustrate applications that benefit from knowledge of the biology of the pluripotent cell cycle.

  19. The cell cycle and pluripotency.

    PubMed

    Hindley, Christopher; Philpott, Anna

    2013-04-15

    PSCs (pluripotent stem cells) possess two key properties that have made them the focus of global research efforts in regenerative medicine: they have unlimited expansion potential under conditions which favour their preservation as PSCs and they have the ability to generate all somatic cell types upon differentiation (pluripotency). Conditions have been defined in vitro in which pluripotency is maintained, or else differentiation is favoured and is directed towards specific somatic cell types. However, an unanswered question is whether or not the core cell cycle machinery directly regulates the pluripotency and differentiation properties of PSCs. If so, then manipulation of the cell cycle may represent an additional tool by which in vitro maintenance or differentiation of PSCs may be controlled in regenerative medicine. The present review aims to summarize our current understanding of links between the core cell cycle machinery and the maintenance of pluripotency in ESCs (embryonic stem cells) and iPSCs (induced PSCs).

  20. Cell Cycle Regulation by Checkpoints

    PubMed Central

    Barnum, Kevin J.; O’Connell, Matthew J.

    2016-01-01

    Cell cycle checkpoints are surveillance mechanisms that monitor the order, integrity, and fidelity of the major events of the cell cycle. These include growth to the appropriate cell size, the replication and integrity of the chromosomes, and their accurate segregation at mitosis. Many of these mechanisms are ancient in origin and highly conserved, and hence have been heavily informed by studies in simple organisms such as the yeasts. Others have evolved in higher organisms, and control alternative cell fates with significant impact on tumor suppression. Here, we consider these different checkpoint pathways and the consequences of their dysfunction on cell fate. PMID:24906307

  1. Cell cycle regulation by checkpoints.

    PubMed

    Barnum, Kevin J; O'Connell, Matthew J

    2014-01-01

    Cell cycle checkpoints are surveillance mechanisms that monitor the order, integrity, and fidelity of the major events of the cell cycle. These include growth to the appropriate cell size, the replication and integrity of the chromosomes, and their accurate segregation at mitosis. Many of these mechanisms are ancient in origin and highly conserved, and hence have been heavily informed by studies in simple organisms such as the yeasts. Others have evolved in higher organisms, and control alternative cell fates with significant impact on tumor suppression. Here, we consider these different checkpoint pathways and the consequences of their dysfunction on cell fate.

  2. Cell block four exercise yard with original passage to cell ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cell block four exercise yard with original passage to cell re-exposed, looking from the baseball field, facing west, with scale - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  3. Autoradiography and the Cell Cycle.

    ERIC Educational Resources Information Center

    Jones, C. Weldon

    1992-01-01

    Outlines the stages of a cell biology "pulse-chase" experiment in which the students apply autoradiography techniques to learn about the concept of the cell cycle. Includes (1) seed germination and plant growth; (2) radioactive labeling and fixation of root tips; (3) feulgen staining of root tips; (4) preparation of autoradiograms; and…

  4. Regulation of the Chlamydomonas cell cycle by light and dark

    PubMed Central

    1980-01-01

    By growing cells in alternating periods of light and darkness, we have found that the synchronization of phototrophically grown Chlamydomonas populations is regulated at two specific points in the cell cycle: the primary arrest (A) point, located in early G1, and the transition (T) point, located in mid-G1. At the A point, cell cycle progression becomes light dependent. At the T point, completion of the cycle becomes independent of light. Cells transferred from light to dark at cell cycle position between the two regulatory points enter a reversible resting state in which they remain viable and metabolically active, but do not progress through their cycles. The photosystem II inhibitor dichlorophenyldimethylurea (DCMU) mimics the A point block induced by darkness. This finding indicates that the A point block is mediated by a signal that operates through photosynthetic electron transport. Cells short of the T point will arrest in darkness although they contain considerable carbohydrate reserves. After the T point, a sharp increase occurs in starch degradation and in the endogenous respiration rate, indicating that some internal block to the availability of stored energy reserves has now been released, permitting cell cycle progression. PMID:6767730

  5. Mitochondrial dynamics during cell cycling.

    PubMed

    Horbay, Rostyslav; Bilyy, Rostyslav

    2016-12-01

    Mitochondria are the cell's power plant that must be in a proper functional state in order to produce the energy necessary for basic cellular functions, such as proliferation. Mitochondria are 'dynamic' in that they are constantly undergoing fission and fusion to remain in a functional state throughout the cell cycle, as well as during other vital processes such as energy supply, cellular respiration and programmed cell death. The mitochondrial fission/fusion machinery is involved in generating young mitochondria, while eliminating old, damaged and non-repairable ones. As a result, the organelles change in shape, size and number throughout the cell cycle. Such precise and accurate balance is maintained by the cytoskeletal transporting system via microtubules, which deliver the mitochondrion from one location to another. During the gap phases G1 and G2, mitochondria form an interconnected network, whereas in mitosis and S-phase fragmentation of the mitochondrial network will take place. However, such balance is lost during neoplastic transformation and autoimmune disorders. Several proteins, such as Drp1, Fis1, Kif-family proteins, Opa1, Bax and mitofusins change in activity and might link the mitochondrial fission/fusion events with processes such as alteration of mitochondrial membrane potential, apoptosis, necrosis, cell cycle arrest, and malignant growth. All this indicates how vital proper functioning of mitochondria is in maintaining cell integrity and preventing carcinogenesis.

  6. Cell cycle regulation and regeneration.

    PubMed

    Heber-Katz, Ellen; Zhang, Yong; Bedelbaeva, Khamila; Song, Fengyu; Chen, Xiaoping; Stocum, David L

    2013-01-01

    Regeneration of ear punch holes in the MRL mouse and amputated limbs of the axolotl show a number of similarities. A large proportion of the fibroblasts of the uninjured MRL mouse ear are arrested in G2 of the cell cycle, and enter nerve-dependent mitosis after injury to form a ring-shaped blastema that regenerates the ear tissue. Multiple cell types contribute to the establishment of the regeneration blastema of the urodele limb by dedifferentiation, and there is substantial reason to believe that the cells of this early blastema are also arrested in G2, and enter mitosis under the influence of nerve-dependent factors supplied by the apical epidermal cap. Molecular analysis reveals other parallels, such as; (1) the upregulation of Evi5, a centrosomal protein that prevents mitosis by stabilizing Emi1, a protein that inhibits the degradation of cyclins by the anaphase promoting complex and (2) the expression of sodium channels by the epidermis. A central feature in the entry into the cell cycle by MRL ear fibroblasts is a natural downregulation of p21, and knockout of p21 in wild-type mice confers regenerative capacity on non-regenerating ear tissue. Whether the same is true for entry into the cell cycle in regenerating urodele limbs is presently unknown.

  7. Quercetin Blocks Airway Epithelial Cell Chemokine Expression

    PubMed Central

    Nanua, Suparna; Zick, Suzanna M.; Andrade, Juan E.; Sajjan, Umadevi S.; Burgess, John R.; Lukacs, Nicholas W.; Hershenson, Marc B.

    2006-01-01

    Quercetin (3,3′,4′,5,7-pentahydroxyflavone), a dietary flavonoid, is an inhibitor of phosphatidylinositol (PI) 3-kinase and potent antioxidant. We hypothesized that quercetin blocks airway epithelial cell chemokine expression via PI 3-kinase–dependent mechanisms. Pretreatment with quercetin and the PI 3–kinase inhibitor LY294002 each reduced TNF-α–induced IL-8 and monocyte chemoattractant protein (MCP)-1 (also called CCL2) expression in cultured human airway epithelial cells. Quercetin also inhibited TNF-α–induced PI 3-kinase activity, Akt phosphorylation, intracellular H2O2 production, NF-κB transactivation, IL-8 promoter activity, and steady-state mRNA levels, consistent with the notion that quercetin inhibits chemokine expression by attenuating NF-κB transactivation via a PI 3-kinase/Akt-dependent pathway. Quercetin also reduced TNF-α–induced chemokine secretion in the presence of the transcriptional inhibitor actinomycin D, while inducing phosphorylation of eukaryotic translation initiation factor (eIF)-2α, suggesting that quercetin attenuates chemokine expression by post-transcriptional as well as transcriptional mechanisms. Finally, we tested the effects of quercetin in cockroach antigen–sensitized and –challenged mice. These mice show MCP-1–dependent airways hyperresponsiveness and inflammation. Quercetin significantly reduced lung MCP-1 and methacholine responsiveness. We conclude that quercetin blocks airway cell chemokine expression via transcriptional and post-transcriptional pathways. PMID:16794257

  8. Virus manipulation of cell cycle.

    PubMed

    Nascimento, R; Costa, H; Parkhouse, R M E

    2012-07-01

    Viruses depend on host cell resources for replication and access to those resources may be limited to a particular phase of the cell cycle. Thus manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment. For example, viruses capable of infecting nondividing cells induce S phase in order to activate the host DNA replication machinery and provide the nucleotide triphosphates necessary for viral DNA replication (Flemington in J Virol 75:4475-4481, 2001; Sullivan and Pipas in Microbiol Mol Biol Rev 66:179-202, 2002). Viruses have developed several strategies to subvert the cell cycle by association with cyclin and cyclin-dependent kinase complexes and molecules that regulate their activity. Viruses tend to act on cellular proteins involved in a network of interactions in a way that minimal protein-protein interactions lead to a major effect. The complex and interactive nature of intracellular signaling pathways controlling cell division affords many opportunities for virus manipulation strategies. Taking the maxim "Set a thief to catch a thief" as a counter strategy, however, provides us with the very same virus evasion strategies as "ready-made tools" for the development of novel antivirus therapeutics. The most obvious are attenuated virus vaccines with critical evasion genes deleted. Similarly, vaccines against viruses causing cancer are now being successfully developed. Finally, as viruses have been playing chess with our cell biology and immune responses for millions of years, the study of their evasion strategies will also undoubtedly reveal new control mechanisms and their corresponding cellular intracellular signaling pathways.

  9. Brucella abortus Cell Cycle and Infection Are Coordinated.

    PubMed

    De Bolle, Xavier; Crosson, Sean; Matroule, Jean-Yves; Letesson, Jean-Jacques

    2015-12-01

    Brucellae are facultative intracellular pathogens. The recent development of methods and genetically engineered strains allowed the description of cell-cycle progression of Brucella abortus, including unipolar growth and the ordered initiation of chromosomal replication. B. abortus cell-cycle progression is coordinated with intracellular trafficking in the endosomal compartments. Bacteria are first blocked at the G1 stage, growth and chromosome replication being resumed shortly before reaching the intracellular proliferation compartment. The control mechanisms of cell cycle are similar to those reported for the bacterium Caulobacter crescentus, and they are crucial for survival in the host cell. The development of single-cell analyses could also be applied to other bacterial pathogens to investigate their cell-cycle progression during infection.

  10. Blocks in cycles and k-commuting permutations.

    PubMed

    Moreno, Rutilo; Rivera, Luis Manuel

    2016-01-01

    We introduce and study k-commuting permutations. One of our main results is a characterization of permutations that k-commute with a given permutation. Using this characterization, we obtain formulas for the number of permutations that k-commute with a permutation [Formula: see text], for some cycle types of [Formula: see text]. Our enumerative results are related with integer sequences in "The On-line Encyclopedia of Integer Sequences", and in some cases provide new interpretations for such sequences.

  11. Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression.

    PubMed

    Willoughby, Jamin A; Sundar, Shyam N; Cheung, Mark; Tin, Antony S; Modiano, Jaime; Firestone, Gary L

    2009-01-23

    Artemisinin, a naturally occurring component of Artemisia annua, or sweet wormwood, is a potent anti-malaria compound that has recently been shown to have anti-proliferative effects on a number of human cancer cell types, although little is know about the molecular mechanisms of this response. We have observed that artemisinin treatment triggers a stringent G1 cell cycle arrest of LNCaP (lymph node carcinoma of the prostate) human prostate cancer cells that is accompanied by a rapid down-regulation of CDK2 and CDK4 protein and transcript levels. Transient transfection with promoter-linked luciferase reporter plasmids revealed that artemisinin strongly inhibits CDK2 and CDK4 promoter activity. Deletion analysis of the CDK4 promoter revealed a 231-bp artemisinin-responsive region between -1737 and -1506. Site-specific mutations revealed that the Sp1 site at -1531 was necessary for artemisinin responsiveness in the context of the CDK4 promoter. DNA binding assays as well as chromatin immunoprecipitation assays demonstrated that this Sp1-binding site in the CDK4 promoter forms a specific artemisinin-responsive DNA-protein complex that contains the Sp1 transcription factor. Artemisinin reduced phosphorylation of Sp1, and when dephosphorylation of Sp1 was inhibited by treatment of cells with the phosphatase inhibitor okadaic acid, the ability of artemisinin to down-regulate Sp1 interactions with the CDK4 promoter was ablated, rendering the CDK4 promoter unresponsive to artemisinin. Finally, overexpression of Sp1 mostly reversed the artemisinin down-regulation of CDK4 promoter activity and partially reversed the cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin anti-proliferative effects in prostate cancer cells is the transcriptional down-regulation of CDK4 expression by disruption of Sp1 interactions with the CDK4 promoter.

  12. Cellient™ automated cell block versus traditional cell block preparation: a comparison of morphologic features and immunohistochemical staining.

    PubMed

    Wagner, David G; Russell, Donna K; Benson, Jenna M; Schneider, Ashley E; Hoda, Rana S; Bonfiglio, Thomas A

    2011-10-01

    Traditional cell block (TCB) sections serve as an important diagnostic adjunct to cytologic smears but are also used today as a reliable preparation for immunohistochemical (IHC) studies. There are many ways to prepare a cell block and the methods continue to be revised. In this study, we compare the TCB with the Cellient™ automated cell block system. Thirty-five cell blocks were obtained from 16 benign and 19 malignant nongynecologic cytology specimens at a large university teaching hospital and prepared according to TCB and Cellient protocols. Cell block sections from both methods were compared for possible differences in various morphologic features and immunohistochemical staining patterns. In the 16 benign cases, no significant morphologic differences were found between the TCB and Cellient cell block sections. For the 19 malignant cases, some noticeable differences in the nuclear chromatin and cellularity were identified, although statistical significance was not attained. Immunohistochemical or special stains were performed on 89% of the malignant cases (17/19). Inadequate cellularity precluded full evaluation in 23% of Cellient cell block IHC preparations (4/17). Of the malignant cases with adequate cellularity (13/17), the immunohistochemical staining patterns from the different methods were identical in 53% of cases. The traditional and Cellient cell block sections showed similar morphologic and immunohistochemical staining patterns. The only significant difference between the two methods concerned the lower overall cell block cellularity identified during immunohistochemical staining in the Cellient cell block sections.

  13. "Constructing" the Cell Cycle in 3D

    ERIC Educational Resources Information Center

    Koc, Isil; Turan, Merve

    2012-01-01

    The cycle of duplication and division, known as the "cell cycle," is the essential mechanism by which all living organisms reproduce. This activity allows students to develop an understanding of the main events that occur during the typical eukaryotic cell cycle mostly in the process of mitotic phase that divides the duplicated genetic material…

  14. Simple Method of Counterclockwise Isthmus Conduction Block by Comparing Double Potentials and Flutter Cycle Length

    PubMed Central

    Rhee, Kyoung-Suk; Kwon, Keun-Sang; Lee, Sun Hwa; Lee, Kang-Hyu; Lee, Sang Rok; Chae, Jei Keon; Kim, Won-Ho; Ko, Jae-Ki; Nam, Gi-Byoung; Kim, You-Ho

    2009-01-01

    Background and Objectives Local wide split double potentials are used as a parameter to determine complete conduction block during cavotricuspid isthmus ablation in patients with isthmus dependent atrial flutter. However, delayed slow conduction in that region can sometimes be very difficult to differentiate from complete block. Flutter cycle length (FCL) can be used to confirm isthmus conduction block, because FCL is a measure of conduction time around the tricuspid annulus (TA). This study was designed to determine which degree of splitting of the local electrograms is adequate to confirm complete isthmus block, using FCL as a reference. Subjects and Methods Cavotricuspid isthmus (CTI) ablation was performed in fifty consecutive patients. The interval between the pacing stimulus on the lateral side of the CTI and the first component of the double potentials on the block line (SD1) corresponded to the counterclockwise conduction time. The interval between the pacing stimulus and second component (SD2) represented the clockwise conduction time to the contralateral side of the ablation line. SD1 and SD2 were measured before and after complete isthmus block. Results An SD1+SD2 reaching 90% of the FCL identified the counterclockwise isthmus conduction block with 94% sensitivity and 100% specificity. Conclusion If the sum of SD1 and SD2 following isthmus ablation was close to the FCL, complete conduction block was predicted with high diagnostic accuracy and positive predictive value for at least counterclockwise conduction. PMID:20049138

  15. Imaging Nuclear Morphology and Organization in Cleared Plant Tissues Treated with Cell Cycle Inhibitors.

    PubMed

    de Souza Junior, José Dijair Antonino; de Sa, Maria Fatima Grossi; Engler, Gilbert; Engler, Janice de Almeida

    2016-01-01

    Synchronization of root cells through chemical treatment can generate a large number of cells blocked in specific cell cycle phases. In plants, this approach can be employed for cell suspension cultures and plant seedlings. To identify plant cells in the course of the cell cycle, especially during mitosis in meristematic tissues, chemical inhibitors can be used to block cell cycle progression. Herein, we present a simplified and easy-to-apply protocol to visualize mitotic figures, nuclei morphology, and organization in whole Arabidopsis root apexes. The procedure is based on tissue clearing, and fluorescent staining of nuclear DNA with DAPI. The protocol allows carrying out bulk analysis of nuclei and cell cycle phases in root cells and will be valuable to investigate mutants like overexpressing lines of genes disturbing the plant cell cycle.

  16. Cytofluorometric assessment of cell cycle progression.

    PubMed

    Vitale, Ilio; Jemaà, Mohamed; Galluzzi, Lorenzo; Metivier, Didier; Castedo, Maria; Kroemer, Guido

    2013-01-01

    One of the most prominent features of cellular senescence, a stress response that prevents the propagation of cells that have accumulated potentially oncogenic alterations, is a permanent loss of proliferative potential. Thus, at odds with quiescent cells, which resume proliferation when stimulated to do so, senescent cells cannot proceed through the cell cycle even in the presence of mitogenic factors. Here, we describe a set of cytofluorometric techniques for studying how chemical and/or physical stimuli alter the cell cycle in vitro, in both qualitative and quantitative terms. Taken together, these methods allow for the identification of bona fide cytostatic effects as well as for a refined characterization of cell cycle distributions, providing information on proliferation, DNA content as well as on the presence of cell cycle phase-specific markers. At the end of the chapter, a set of guidelines is offered to assist researchers that approach the study of the cell cycle with the interpretation of results.

  17. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    PubMed Central

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  18. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch.

    PubMed

    Seidel, Hannah S; Kimble, Judith

    2015-11-09

    Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells--including germline stem cells--become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions--GLP-1/Notch signaling--becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance.

  19. Environmental testing of block 2 solar cell modules

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1979-01-01

    The testing procedures and results of samples of the LSA Project Block 2 procurement of silicon solar cell modules are described. Block 2 was the second large scale procurement of silicon solar cell modules made by the JPL Low-cost Solar Array Project with deliveries in 1977 and early 1978. The results showed that the Block 2 modules were greatly improved over Block 1 modules. In several cases it was shown that design improvements were needed to reduce environmental test degradation. These improvements were incorporated during this production run.

  20. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    SciTech Connect

    Zhang, Heyu; Ma, Xi; Shi, Taiping; Song, Quansheng; Zhao, Hongshan; Ma, Dalong

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  1. Cell cycle control and seed development.

    PubMed

    Dante, Ricardo A; Larkins, Brian A; Sabelli, Paolo A

    2014-01-01

    Seed development is a complex process that requires coordinated integration of many genetic, metabolic, and physiological pathways and environmental cues. Different cell cycle types, such as asymmetric cell division, acytokinetic mitosis, mitotic cell division, and endoreduplication, frequently occur in sequential yet overlapping manner during the development of the embryo and the endosperm, seed structures that are both products of double fertilization. Asymmetric cell divisions in the embryo generate polarized daughter cells with different cell fates. While nuclear and cell division cycles play a key role in determining final seed cell numbers, endoreduplication is often associated with processes such as cell enlargement and accumulation of storage metabolites that underlie cell differentiation and growth of the different seed compartments. This review focuses on recent advances in our understanding of different cell cycle mechanisms operating during seed development and their impact on the growth, development, and function of seed tissues. Particularly, the roles of core cell cycle regulators, such as cyclin-dependent-kinases and their inhibitors, the Retinoblastoma-Related/E2F pathway and the proteasome-ubiquitin system, are discussed in the contexts of different cell cycle types that characterize seed development. The contributions of nuclear and cellular proliferative cycles and endoreduplication to cereal endosperm development are also discussed.

  2. Cell cycle control and seed development

    PubMed Central

    Dante, Ricardo A.; Larkins, Brian A.; Sabelli, Paolo A.

    2014-01-01

    Seed development is a complex process that requires coordinated integration of many genetic, metabolic, and physiological pathways and environmental cues. Different cell cycle types, such as asymmetric cell division, acytokinetic mitosis, mitotic cell division, and endoreduplication, frequently occur in sequential yet overlapping manner during the development of the embryo and the endosperm, seed structures that are both products of double fertilization. Asymmetric cell divisions in the embryo generate polarized daughter cells with different cell fates. While nuclear and cell division cycles play a key role in determining final seed cell numbers, endoreduplication is often associated with processes such as cell enlargement and accumulation of storage metabolites that underlie cell differentiation and growth of the different seed compartments. This review focuses on recent advances in our understanding of different cell cycle mechanisms operating during seed development and their impact on the growth, development, and function of seed tissues. Particularly, the roles of core cell cycle regulators, such as cyclin-dependent-kinases and their inhibitors, the Retinoblastoma-Related/E2F pathway and the proteasome-ubiquitin system, are discussed in the contexts of different cell cycle types that characterize seed development. The contributions of nuclear and cellular proliferative cycles and endoreduplication to cereal endosperm development are also discussed. PMID:25295050

  3. Cell cycle gene expression under clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  4. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting.

    PubMed

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.

  5. Stretched cell cycle model for proliferating lymphocytes

    PubMed Central

    Dowling, Mark R.; Kan, Andrey; Heinzel, Susanne; Zhou, Jie H. S.; Marchingo, Julia M.; Wellard, Cameron J.; Markham, John F.; Hodgkin, Philip D.

    2014-01-01

    Stochastic variation in cell cycle time is a consistent feature of otherwise similar cells within a growing population. Classic studies concluded that the bulk of the variation occurs in the G1 phase, and many mathematical models assume a constant time for traversing the S/G2/M phases. By direct observation of transgenic fluorescent fusion proteins that report the onset of S phase, we establish that dividing B and T lymphocytes spend a near-fixed proportion of total division time in S/G2/M phases, and this proportion is correlated between sibling cells. This result is inconsistent with models that assume independent times for consecutive phases. Instead, we propose a stretching model for dividing lymphocytes where all parts of the cell cycle are proportional to total division time. Data fitting based on a stretched cell cycle model can significantly improve estimates of cell cycle parameters drawn from DNA labeling data used to monitor immune cell dynamics. PMID:24733943

  6. A Difluorobenzoxadiazole Building Block for Efficient Polymer Solar Cells.

    PubMed

    Zhao, Jingbo; Li, Yunke; Hunt, Adrian; Zhang, Jianquan; Yao, Huatong; Li, Zhengke; Zhang, Jie; Huang, Fei; Ade, Harald; Yan, He

    2016-03-02

    A difluorobenzoxadiazole building block is synthesized and utilized to construct a conjugated polymer leading to high-performance thick-film polymer solar cells with a V(OC) of 0.88 V and a power conversion efficiency of 9.4%. This new building block can be used in many possible polymer structures for various organic electro-nic applications.

  7. Protein tyrosine nitration in the cell cycle

    SciTech Connect

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-09-23

    Highlights: {yields} Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. {yields} Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. {yields} Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  8. Critical analysis of cell block versus smear examination in effusions

    PubMed Central

    Thapar, Meenu; Mishra, Rajiv K; Sharma, Amit; Goyal, Vikas; Goyal, Vibhuti

    2009-01-01

    Objectives: To assess the utility of the cell block preparation method in increasing the sensitivity of cytodiagnosis of serous fluids and to know the primary site of malignant effusions. Materials and Methods: A total of 190 cases were subjected to routine smear examination as well as cell block preparation. After the cytological diagnosis, each case was objectively analysed for cellularity, arrangement (acini, papillae, cell balls, and proliferation spheres), cytoplasmic, and nuclear details. Results: Out of 190 cases, 70 cases were found to be malignant and had been examined in smears and paraffin-embedded cell blocks. Using a combination of the cell block and smear techniques yielded 13% more malignant cases than what were detected using smears by themselves. The combined technique helped to ascertain the primary site of malignancy in 83.3% of the cases, whereas the primary site could not be ascertained in 17.7% of the cases. Conclusions: The cell block technique not only increased the positive results, but also helped to demonstrate better architectural patterns, which could be of great help in making correct diagnosis of the primary site. The cell block technique was also useful for special stains and immunohistochemistry and can give morphological details by preserving the architectural patterns. PMID:21938154

  9. Blocking effects of genistein on cell proliferation and possible mechanism in human gastric carcinoma

    PubMed Central

    Cui, Hong-Bin; Na, Xiao-Lin; Song, Dan-Feng; Liu, Ying

    2005-01-01

    AIM: To study the blocking effects of genistein on cell proliferation cycle in human gastric carcinoma cells (SGC-7901) and the possible mechanism. METHODS: MTT assay was applied in the detection of the inhibitory effects of genistein on cell proliferation. Flow cytometry was used to analyze the cell cycle distribution. Immunocytochemical technique and Western blotting were performed to detect the protein expression of cyclin D1, cyclin B1 and p21waf1/cip1. RESULTS: Genistein significantly inhibited the growth and proliferation of human gastric carcinoma cells (SGC-7901). Seven days after treatment with different concentrations of genistein (2.5, 5.0, 10.0, 20.0 μg /mL), the growth inhibitory rates were 11.2%, 28.8%, 55.3%, 84.7% respectively and cell cycles were arrested at the G(2)/ M phase. Genistein decreased cyclin D1 protein expression and enhanced cyclin B1 and p21waf/cip1 protein expression in a concentration-dependent manner. CONCLUSION: The growth and proliferation of SGC-7901 cells can be inhibited by genistein via blocking the cell cycle, with reduced expression of cyclin D1 and enhanced expression of cyclin B1 and p21waf/cip1 protein in the concentration range of 0-20 μg /mL. PMID:15609399

  10. Nucleosome architecture throughout the cell cycle.

    PubMed

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-28

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity.

  11. Nucleosome architecture throughout the cell cycle

    PubMed Central

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-01

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity. PMID:26818620

  12. Labeling of lectin receptors during the cell cycle.

    PubMed

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling.

  13. FOXM1 participates in PLK1-regulated cell cycle progression in renal cell cancer cells

    PubMed Central

    ZHANG, ZHE; ZHANG, GUOJUN; KONG, CHUIZE

    2016-01-01

    The regulation of entry into and progression through mitosis is important for cell proliferation. Polo-like kinase 1 (PLK1) is involved in multiple stages of mitosis. Forkhead box protein M1 (FOXM1) has multiple functions in tumorigenesis and, in elevated levels, is frequently associated with cancer progression. The present study reports that FOXM1, a substrate of PLK1, controls the transcription mechanism that mediates the PLK1-dependent regulation of the cell cycle. The present study investigated the expression of PLK1 and FOXM1 in the clear renal cell carcinoma 769-P and ACHN cell lines, and indicated that the expression of PLK1 and FOXM1 are correlated in human renal cell cancer cell lines and that the suppression of PLK1 may decrease the expression of FOXM1. The knockdown of FOXM1 or PLK1 in renal cell cancer cell lines caused cell cycle progression to be blocked. As a result, the present study indicated the involvement of FOXM1 in PLK1-regulated cell cycle progression. PMID:27073539

  14. Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.

    PubMed

    Fleisig, Helen; Wong, Judy

    2012-05-22

    Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key

  15. Interplay between cell growth and cell cycle in plants.

    PubMed

    Sablowski, Robert; Carnier Dornelas, Marcelo

    2014-06-01

    The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.

  16. Fuel cell and advanced turbine power cycle

    SciTech Connect

    White, D.J.

    1995-10-19

    Solar Turbines, Incorporated (Solar) has a vested interest in the integration of gas turbines and high temperature fuel cells and in particular, solid oxide fuel cells (SOFCs). Solar has identified a parallel path approach to the technology developments needed for future products. The primary approach is to move away from the simple cycle industrial machines of the past and develop as a first step more efficient recuperated engines. This move was prompted by the recognition that the simple cycle machines were rapidly approaching their efficiency limits. Improving the efficiency of simple cycle machines is and will become increasingly more costly. Each efficiency increment will be progressively more costly than the previous step.

  17. User handbook for block IV silicon solar cell modules

    NASA Technical Reports Server (NTRS)

    Smokler, M. I.

    1982-01-01

    The essential electrical and mechanical characteristics of block 4 photovoltaic solar cell modules are described. Such module characteristics as power output, nominal operating voltage, current-voltage characteristics, nominal operating cell temperature, and dimensions are tabulated. The limits of the environmental and other stress tests to which the modules are subjected are briefly described.

  18. Acanthamoeba induces cell-cycle arrest in host cells.

    PubMed

    Sissons, James; Alsam, Selwa; Jayasekera, Samantha; Kim, Kwang Sik; Stins, Monique; Khan, Naveed Ahmed

    2004-08-01

    Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed severe cytotoxicity on HBMEC and HCEC, respectively. No tissue specificity was observed in their ability to exhibit binding to the host cells. To determine the effects of Acanthamoeba on the host cell cycle, a cell-cycle-specific gene array was used. This screened for 96 genes specific for host cell-cycle regulation. It was observed that Acanthamoeba inhibited expression of genes encoding cyclins F and G1 and cyclin-dependent kinase 6, which are proteins important for cell-cycle progression. Moreover, upregulation was observed of the expression of genes such as GADD45A and p130 Rb, associated with cell-cycle arrest, indicating cell-cycle inhibition. Next, the effect of Acanthamoeba on retinoblastoma protein (pRb) phosphorylation was determined. pRb is a potent inhibitor of G1-to-S cell-cycle progression; however, its function is inhibited upon phosphorylation, allowing progression into S phase. Western blotting revealed that Acanthamoeba abolished pRb phosphorylation leading to cell-cycle arrest at the G1-to-S transition. Taken together, these studies demonstrated for the first time that Acanthamoeba inhibits the host cell cycle at the transcriptional level, as well as by modulating pRb phosphorylation using host cell-signalling mechanisms. A complete understanding of Acanthamoeba-host cell interactions may help in developing novel strategies to treat Acanthamoeba infections.

  19. Cycle life test of secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1980-01-01

    The results of the life cycling program on rechargeable calls are reported. Information on required data, the use of which the data will be put, application details, including orbital description, charge control methods, load rquirements, etc., are given. Cycle tests were performed on 660 sealed, nickel cadmium cells. The cells consisted of seven sample classifications ranging form 3.0 to 20 amp. hours. Nickel cadmium, silver cadmium, and silver zinc sealed cells, excluding synchronous orbit and accelerated test packs were added. The capacities of the nickel cadmium cells, the silver cadmium and the silver zinc cells differed in range of amp hrs. The cells were cylced under different load, charge control, and temperature conditions. All cell packs are recharged by use of a pack voltage limit. All charging is constant current until the voltage limit is reached.

  20. Nitrophenide (Megasul) blocks Eimeria tenella development by inhibiting the mannitol cycle enzyme mannitol-1-phosphate dehydrogenase.

    PubMed

    Allocco, J J; Nare, B; Myers, R W; Feiglin, M; Schmatz, D M; Profous-Juchelka, H

    2001-12-01

    Unsporulated oocysts of the protozoan parasite Eimeria tenella contain high levels of mannitol, which is thought to be the principal energy source for the process of sporulation. Biosynthesis and utilization of this sugar alcohol occurs via a metabolic pathway known as the mannitol cycle. Here, results are presented that suggest that 3-nitrophenyl disulfide (nitrophenide, Megasul), an anticoccidial drug commercially used in the 1950s, inhibits mannitol-1-phosphate dehydrogenase (M1PDH), which catalyzes the committed enzymatic step in the mannitol cycle. Treatment of E. tenella-infected chickens with nitrophenide resulted in a 90% reduction in oocyst shedding. The remaining oocysts displayed significant morphological abnormalities and were largely incapable of further development. Nitrophenide treatment did not affect parasite asexual reproduction, suggesting specificity for the sexual stage of the life cycle. Isolated oocysts from chickens treated with nitrophenide exhibited a dose-dependent reduction in mannitol, suggesting in vivo inhibition of parasite mannitol biosynthesis. Nitrophenide-mediated inhibition of MIPDH was observed in vitro using purified native enzyme. Moreover, MIPDH activity immunoprecipitated from E. tenella-infected cecal tissues was significantly lower in nitrophenide-treated compared with untreated chickens. Western blot analysis and immunohistochemistry showed that parasites from nitrophenide-treated and untreated chickens contained similar enzyme levels. These data suggest that nitrophenide blocks parasite development at the sexual stages by targeting M1PDH. Thus, targeting of the mannitol cycle with drugs could provide an avenue for controlling the spread of E. tenella in commercial production facilities by preventing oocyst shedding.

  1. Modeling of Sonos Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeond, Todd C.; Ho, Fat D.

    2010-01-01

    Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile semiconductor memories (NVSMS) have many advantages. These memories are electrically erasable programmable read-only memories (EEPROMs). They utilize low programming voltages, endure extended erase/write cycles, are inherently resistant to radiation, and are compatible with high-density scaled CMOS for low power, portable electronics. The SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. The SONOS floating gate charge and voltage, tunneling current, threshold voltage, and drain current were characterized during an erase cycle. Comparisons were made between the model predictions and experimental device data.

  2. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  3. Cell Cycle Regulators and Cell Death in Immunity

    PubMed Central

    Zebell, Sophia G.; Dong, Xinnian

    2015-01-01

    Summary Various cell death mechanisms are integral to host defense in both plants and mammals. Plant defense against biotrophic pathogens is associated with programmed cell death (PCD) of the infected cell. This effector-triggered PCD is partly analogous to pyroptosis, an inflammatory host cell death process that plays a crucial role in defense against microbial infections in mammals. Plant effector-triggered PCD also shares with mammalian apoptosis the involvement of cell cycle regulators as signaling components. Here we explore the similarities between these different cell death programs as they relate to host defense and their relationship to the cell-cycle. PMID:26468745

  4. SAFT nickel hydrogen cell cycling status

    NASA Technical Reports Server (NTRS)

    Borthomieu, Yannick; Duquesne, Didier

    1994-01-01

    An overview of the NiH2 cell development is given. The NiH2 SAFT system is an electrochemical (single or dual) stack (IPV). The stack is mounted in an hydroformed Inconel 718 vessel operating at high pressure, equipped with 'rabbit ears' ceramic brazed electrical feedthroughs. The cell design is described: positive electrode, negative electrode, and stack configuration. Overviews of low earth orbit and geostationary earth orbit cyclings are provided. DPA results are also provided. The cycling and DPA results demonstrate that SAFT NiH2 is characterized by high reliability and very stable performances.

  5. Inositol pyrophosphates modulate cell cycle independently of alteration in telomere length.

    PubMed

    Banfic, Hrvoje; Crljen, Vladiana; Lukinovic-Skudar, Vesna; Dembitz, Vilma; Lalic, Hrvoje; Bedalov, Antonio; Visnjic, Dora

    2016-01-01

    Synthesis of inositol pyrophosphates through activation of Kcs1 plays an important role in the signalling response required for cell cycle progression after mating pheromone arrest. Overexpression of Kcs1 doubled the level of inositol pyrophosphates when compared to wild type cells and 30 min following the release from α-factor block further increase in inositol pyrophosphates was observed, which resulted that cells overexpressing Kcs1 reached G2/M phase earlier than wild type cells. Similar effect was observed in ipk1Δ cells, which are unable to synthesize IP6-derived inositol pyrophosphates (IP7 and IP8) but will synthesize IP5-derived inositol pyrophosphates (PP-IP4 and (PP)2-IP3). Although ipk1Δ cells have shorter telomeres than wild type cells, overexpression of Kcs1 in both strains have similar effect on cell cycle progression. As it is known that PP-IP4 regulates telomere length through Tel1, inositol polyphosphates, cell cycle and telomere length were determined in tel1Δ cells. The release of the cells from α-factor block and overexpression of Kcs1 in tel1Δ cells produced similar effects on inositol pyrophosphates level and cell cycle progression when compared to wild type cells, although tel1Δ cells possesses shorter telomeres than wild type cells. It can be concluded that telomere length does not affect cell cycle progression, since cells with short telomeres (ipk1Δ and tel1Δ) progress through cell cycle in a similar manner as wild type cells and that overexpression of Kcs1 in cells with either short or normal telomeres will increase S phase progression without affecting telomere length. Furthermore, IP5-derived inositol pyrophosphates can compensate for the loss of IP6-derived inositol pyrophosphates, in modulating S phase progression of the cell cycle.

  6. Control of cell cycle and cell growth by molecular chaperones.

    PubMed

    Aldea, Martí; Garí, Eloi; Colomina, Neus

    2007-11-01

    Cells adapt their size to both intrinsic and extrinsic demands and, among them, those that stem from growth and proliferation rates are crucial for cell size homeostasis. Here we revisit mechanisms that regulate cell cycle and cell growth in budding yeast. Cyclin Cln3, the most upstream activator of Start, is retained at the endoplasmic reticulum in early G(1) and released by specific chaperones in late G(1) to initiate the cell cycle. On one hand, these chaperones are rate-limiting for release of Cln3 and cell cycle entry and, on the other hand, they are required for key biosynthetic processes. We propose a model whereby the competition for specialized chaperones between growth and cycle machineries could gauge biosynthetic rates and set a critical size threshold at Start.

  7. Cell cycle specificity of Fas-mediated apoptosis in WIL-2 cells.

    PubMed

    Beletskaya, I V; Nikonova, L V; Beletsky, I P

    1997-07-21

    Antibodies to Fas/APO1 receptor induce effective apoptosis in WIL-2 cells of the human B-lymphoid line. Quantitative assessment of the extent of the death in cells synchronized by thymidine block revealed a significant increase in their sensitivity to the cytocidal effect mediated by Fas/APO1 during the G1 phase of the cell cycle. Western analysis of the content of the p53 antigen in the cytoplasm and nuclei of the cells showed that the Fas/APO1-induced death is accompanied by massive translocation of the p53 from the cytoplasm to the nucleus. These findings suggest that cell vulnerability to the Fas/APO1-mediated apoptosis is subjected to regulation by cell cycle-dependent mechanisms, one of which is probably the function of the p53 antigen.

  8. Tumor cell "dead or alive": caspase and survivin regulate cell death, cell cycle and cell survival.

    PubMed

    Suzuki, A; Shiraki, K

    2001-04-01

    Cell death and cell cycle progression are two sides of the same coin, and these two different phenomenons are regulated moderately to maintain the cellular homeostasis. Tumor is one of the disease states produced as a result of the disintegrated regulation and is characterized as cells showing an irreversible progression of cell cycle and a resistance to cell death signaling. Several investigations have been performed for the understanding of cell death or cell cycle, and cell death research has remarkably progressed in these 10 years. Caspase is a nomenclature referring to ICE/CED-3 cysteine proteinase family and plays a central role during cell death. Recently, several investigations raised some possible hypotheses that caspase is also involved in cell cycle regulation. In this issue, therefore, we review the molecular basis of cell death and cell cycle regulated by caspase in tumor, especially hepatocellular carcinoma cells.

  9. Cell cycle regulation of glucocorticoid receptor function.

    PubMed Central

    Hsu, S C; Qi, M; DeFranco, D B

    1992-01-01

    Glucocorticoid receptor (GR) nuclear translocation, transactivation and phosphorylation were examined during the cell cycle in mouse L cell fibroblasts. Glucocorticoid-dependent transactivation of the mouse mammary tumor virus promoter was observed in G0 and S phase synchronized L cells, but not in G2 synchronized cells. G2 effects were selective on the glucocorticoid hormone signal transduction pathway, since glucocorticoid but not heavy metal induction of the endogenous Metallothionein-1 gene was also impaired in G2 synchronized cells. GRs that translocate to the nucleus of G2 synchronized cells in response to dexamethasone treatment were not efficiently retained there and redistributed to the cytoplasmic compartment. In contrast, GRs bound by the glucocorticoid antagonist RU486 were efficiently retained within nuclei of G2 synchronized cells. Inefficient nuclear retention was observed for both dexamethasone- and RU486-bound GRs in L cells that actively progress through G2 following release from an S phase arrest. Finally, site-specific alterations in GR phosphorylation were observed in G2 synchronized cells suggesting that cell cycle regulation of specific protein kinases and phosphatases could influence nuclear retention, recycling and transactivation activity of the GR. Images PMID:1505524

  10. Control points within the cell cycle

    SciTech Connect

    Van't Hof, J.

    1984-01-01

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures.

  11. Mitochondrial dynamics and the cell cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear-mitochondrial (NM) communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution...

  12. A Kinase-Phosphatase Switch Transduces Environmental Information into a Bacterial Cell Cycle Circuit

    PubMed Central

    Heinrich, Kristina; Sobetzko, Patrick; Jonas, Kristina

    2016-01-01

    The bacterial cell cycle has been extensively studied under standard growth conditions. How it is modulated in response to environmental changes remains poorly understood. Here, we demonstrate that the freshwater bacterium Caulobacter crescentus blocks cell division and grows to filamentous cells in response to stress conditions affecting the cell membrane. Our data suggest that stress switches the membrane-bound cell cycle kinase CckA to its phosphatase mode, leading to the rapid dephosphorylation, inactivation and proteolysis of the master cell cycle regulator CtrA. The clearance of CtrA results in downregulation of division and morphogenesis genes and consequently a cell division block. Upon shift to non-stress conditions, cells quickly restart cell division and return to normal cell size. Our data indicate that the temporary inhibition of cell division through the regulated inactivation of CtrA constitutes a growth advantage under stress. Taken together, our work reveals a new mechanism that allows bacteria to alter their mode of proliferation in response to environmental cues by controlling the activity of a master cell cycle transcription factor. Furthermore, our results highlight the role of a bifunctional kinase in this process that integrates the cell cycle with environmental information. PMID:27941972

  13. The Integrins Involved in Soybean Agglutinin-Induced Cell Cycle Alterations in IPEC-J2

    PubMed Central

    Pan, Li; Zhao, Yuan; Yuan, Zhijie; Farouk, Mohammed Hamdy; Zhang, Shiyao; Bao, Nan; Qin, Guixin

    2017-01-01

    Soybean agglutinin (SBA) is an anti-nutritional factor of soybean, affecting cell proliferation and inducing cytotoxicity. Integrins are transmembrane receptors, mediating a variety of cell biological processes. This research aims to study the effects of SBA on cell proliferation and cell cycle progression of the intestinal epithelial cell line from piglets (IPEC-J2), to identify the integrin subunits especially expressed in IPEC-J2s, and to analyze the functions of these integrins on IPEC-J2 cell cycle progression and SBA-induced IPEC-J2 cell cycle alteration. The results showed that SBA lowered cell proliferation rate as the cell cycle progression from G0/G1 to S phase (P < 0.05) was inhibited. Moreover, SBA lowered mRNA expression of cell cycle-related gene CDK4, Cyclin E and Cyclin D1 (P < 0.05). We successfully identified integrins α2, α3, α6, β1, and β4 in IPEC-J2s. These five subunits were crucial to maintain normal cell proliferation and cell cycle progression in IPEC-J2s. Restrain of either these five subunits by their inhibitors, lowered cell proliferation rate, and arrested the cells at G0/G1 phase of cell cycle (P < 0.05). Further analysis indicated that integrin α2, α6, and β1 were involved in the blocking of G0/G1 phase induced by SBA. In conclusion, these results suggested that SBA lowered the IPEC-J2 cell proliferation rate through the perturbation of cell cycle progression. Furthermore, integrins were important for IPEC-J2 cell cycle progression, and they were involved in the process of SBA-induced cell cycle progression alteration, which provide a basis for further revealing SBA anti-proliferation and anti-nutritional mechanism. PMID:28222496

  14. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  15. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    SciTech Connect

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  16. Cell cycle nucleic acids, polypeptides and uses thereof

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Larkins, Brian A.; Dilkes, Brian R.; Sun, Yuejin

    2007-08-14

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  17. Modeling of SONOS Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  18. Solid oxide fuel cell combined cycles

    SciTech Connect

    Bevc, F.P.; Lundberg, W.L.; Bachovchin, D.M.

    1996-12-31

    The integration of the solid oxide fuel cell and combustion turbine technologies can result in combined-cycle power plants, fueled with natural gas, that have high efficiencies and clean gaseous emissions. Results of a study are presented in which conceptual designs were developed for 3 power plants based upon such an integration, and ranging in rating from 3 to 10 MW net ac. The plant cycles are described and characteristics of key components summarized. Also, plant design-point efficiency estimates are presented as well as values of other plant performance parameters.

  19. The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1 {yields} S transition

    SciTech Connect

    Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay; Sarvepalli, Kavitha; Sadhale, Parag P.; Nath, Utpal

    2011-07-01

    Highlights: {yields} TCP4 is a class II TCP transcription factor, that represses cell division in Arabidopsis. {yields} TCP4 expression in yeast retards cell division by blocking G1 {yields} S transition. {yields} Genome-wide expression studies and Western analysis reveals stabilization of cell cycle inhibitor Sic1, as possible mechanism. -- Abstract: The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 {yields} S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 {yields} S arrest is discussed.

  20. Dose-related effects of psoralen and ultraviolet light on the cell cycle of murine melanoma cells

    SciTech Connect

    Varga, J.M.; Wiesehahn, G.; Bartholomew, J.C.; Hearst, J.E.

    1982-06-01

    Cloudman (S91) murine melanoma cells were treated with 4'-hydroxymethyltrioxsalen (HMT), a bifunctional psoralen and exposed to long-wavelength (365 nm) ultraviolet light. DNA content of the cells stained with propidium iodide was measured by flow cytometry, and cell cycle phases were delineated from the DNA histograms by using a curve-fitting routine. Researchers found that HMT in combination with long-wavelength (365 nm) ultraviolet irradiation blocked melanoma cells in different phases of the cell cycle, depending on the dose of long-wavelength (365 nm) ultraviolet light and the concentration of HMT. The binding of (/sup 3/H)HMT to DNA was measured parallel with cell cycle analyses. Treatments with HMT at concentrations corresponding to about 1 HMT bound per 10(6) base pairs of DNA led to the accumulation of cells with predominantly G2 DNA content. At higher concentrations (2 to 3 HMT/10(6) base pairs), the cells were blocked in the S and G1 phases. In conclusion, it was shown that extremely sparse substitution of HMT to DNA blocks melanoma cells in the G2 phase or other phases of the cell cycle in a dose-dependent manner.

  1. Gas block mechanism for water removal in fuel cells

    DOEpatents

    Issacci, Farrokh; Rehg, Timothy J.

    2004-02-03

    The present invention is directed to apparatus and method for cathode-side disposal of water in an electrochemical fuel cell. There is a cathode plate. Within a surface of the plate is a flow field comprised of interdigitated channels. During operation of the fuel cell, cathode gas flows by convection through a gas diffusion layer above the flow field. Positioned at points adjacent to the flow field are one or more porous gas block mediums that have pores sized such that water is sipped off to the outside of the flow field by capillary flow and cathode gas is blocked from flowing through the medium. On the other surface of the plate is a channel in fluid communication with each porous gas block mediums. The method for water disposal in a fuel cell comprises installing the cathode plate assemblies at the cathode sides of the stack of fuel cells and manifolding the single water channel of each of the cathode plate assemblies to the coolant flow that feeds coolant plates in the stack.

  2. Westinghouse fuel cell combined cycle systems

    SciTech Connect

    Veyo, S.

    1996-12-31

    Efficiency (voltage) of the solid oxide fuel cell (SOFC) should increase with operating pressure, and a pressurized SOFC could function as the heat addition process in a Brayton cycle gas turbine (GT) engine. An overall cycle efficiency of 70% should be possible. In cogeneration, half of the waste heat from a PSOFC/GT should be able to be captured in process steam and hot water, leading to a fuel effectiveness of about 85%. In order to make the PSOFC/GT a commercial reality, satisfactory operation of the SOFC at elevated pressure must be verified, a pressurized SOFC generator module must be designed, built, and tested, and the combined cycle and parameters must be optimized. A prototype must also be demonstrated. This paper describes progress toward making the PSOFC/GT a reality.

  3. Cell cycle regulation of hematopoietic stem or progenitor cells.

    PubMed

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  4. 4D chromatin dynamics in cycling cells

    PubMed Central

    Strickfaden, Hilmar; Zunhammer, Andreas; van Koningsbruggen, Silvana; Köhler, Daniela

    2010-01-01

    This live cell study of chromatin dynamics in four dimensions (space and time) in cycling human cells provides direct evidence for three hypotheses first proposed by Theodor Boveri in seminal studies of fixed blastomeres from Parascaris equorum embryos: (I) Chromosome territory (CT) arrangements are stably maintained during interphase. (II) Chromosome proximity patterns change profoundly during prometaphase. (III) Similar CT proximity patterns in pairs of daughter nuclei reflect symmetrical chromosomal movements during anaphase and telophase, but differ substantially from the arrangement in mother cell nucleus. Hypothesis I could be confirmed for the majority of interphase cells. A minority, however, showed complex, rotational movements of CT assemblies with large-scale changes of CT proximity patterns, while radial nuclear arrangements were maintained. A new model of chromatin dynamics is proposed. It suggests that long-range DNA-DNA interactions in cell nuclei may depend on a combination of rotational CT movements and locally constrained chromatin movements. PMID:21327076

  5. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    PubMed

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  6. A thermodynamic cycle for the solar cell

    NASA Astrophysics Data System (ADS)

    Alicki, Robert; Gelbwaser-Klimovsky, David; Jenkins, Alejandro

    2017-03-01

    A solar cell is a heat engine, but textbook treatments are not wholly satisfactory from a thermodynamic standpoint, since they present solar cells as directly converting the energy of light into electricity, and the current in the circuit as maintained by an electrostatic potential. We propose a thermodynamic cycle in which the gas of electrons in the p phase serves as the working substance. The interface between the p and n phases acts as a self-oscillating piston that modulates the absorption of heat from the photons so that it may perform a net positive work during a complete cycle of its motion, in accordance with the laws of thermodynamics. We draw a simple hydrodynamical analogy between this model and the ;putt-putt; engine of toy boats, in which the interface between the water's liquid and gas phases serves as the piston. We point out some testable consequences of this model.

  7. A metabolic thermodynamic theory of cell cycle

    NASA Astrophysics Data System (ADS)

    Kummer, A.; Ocone, R.

    2003-08-01

    Due to its intrinsic complexity, a complete mathematical description of the cell cycle appears a difficult task. Nevertheless, a preliminary analysis, based on molecular biology, can help in clarifying what are the reliable tools for a quantitative approach. In a previous paper [Physica A 321 (3-4) (2003) 587], the steps to be followed to formulate a metabolic statistical thermodynamics have been established. Here we present a simple mathematical model for the interaction of CyclinB and Cdh1 [The Cell Cycle. An Introduction, Oxford University Press, New York, 1993], with the aim of analysing the properties of the system from a thermodynamic viewpoint. The model is shown to define the Gibbs phase integral of the system and the general Gibbs energy function is obtained. This, together with the analogue of the temperature, defines the working tools indispensable for the formulation of a metabolic statistical thermodynamic-like theory.

  8. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    PubMed

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  9. LIMD1 antagonizes E2F1 activity and cell cycle progression by enhancing Rb function in cancer cells.

    PubMed

    Mayank, Adarsh K; Sharma, Shipra; Deshwal, Ravi K; Lal, Sunil K

    2014-07-01

    Tumour suppressor genes restrain inappropriate cell growth and division, as well as stimulate cell death to maintain tissue homeostasis. Loss of function leads to abnormal cellular behaviour, including hyperproliferation of cell and perturbation of cell cycle regulation. LIMD1 is a tumour suppressor gene located at chromosome 3p21.3, a region commonly deleted in many solid malignancies. LIMD1 interacts with retinoblastoma (Rb) and is involved in Rb-mediated downregulation of E2F1-target genes. However, the role of LIMD1 in cell cycle regulation remains unclear. We propose that LIMD1 induces cell cycle arrest, utilising Rb-E2F1 axis, and show that ectopic expression of LIMD1 in A549 cells results in hypo-phosphorylation that potentiates Rb function, which correlates with downregulation of E2F1. In agreement with these observations, LIMD1 overexpression retards cell cycle progression and blocks S-phase entry, as cells accumulate in G0/G1 phase and have reduced incorporation of BrdU. Most significantly, LIMD1-dependent effects on Rb function and cell cycle are reversed on depletion of endogenous LIMD1, underscoring its centrality in Rb-mediated cell cycle regulation. Hence, our findings provide new insight into cell cycle control by Rb-LIMD1 nexus.

  10. G1/S control of anchorage-independent growth in the fibroblast cell cycle

    PubMed Central

    1991-01-01

    We have developed methodology to identify the block to anchorage- independent growth and position it within the fibroblast cell cycle. Results with NRK fibroblasts show that mitogen stimulation of the G0/G1 transition and G1-associated increases in cell size are minimally affected by loss of cell anchorage. In contrast, the induction of G1/S cell cycle genes and DNA synthesis is markedly inhibited when anchorage is blocked. Moreover, we demonstrate that the anchorage-dependent transition maps to late G1 and shortly before activation of the G1/S p34cdc2-like kinase. The G1/S block was also detectable in NIH-3T3 cells. Our results: (a) distinguish control of cell cycle progression by growth factors and anchorage; (b) indicate that anchorage mediates G1/S control in fibroblasts; and (c) identify a physiologic circumstance in which the phenotype of mammalian cell cycle arrest would closely resemble Saccharomyces cerevisiae START. The close correlation between anchorage independence in vitro and tumorigenicity in vivo emphasizes the key regulatory role for G1/S control in mammalian cells. PMID:1955482

  11. Targeting cell cycle regulators in hematologic malignancies

    PubMed Central

    Aleem, Eiman; Arceci, Robert J.

    2015-01-01

    Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed. PMID:25914884

  12. Ionizing radiation damage to cells: effects of cell cycle redistribution.

    PubMed

    Chen, P L; Brenner, D J; Sachs, R K

    1995-04-01

    If a population of cycling cells is exposed to a fixed dose of ionizing radiation delivered over time T, it is sometimes observed that increasing T increases the amount of cell killing. This is essentially because at first the radiation preferentially kills cells in a sensitive portion of the cycle and the surviving, more resistant cells then have time to reach more sensitive stages. We refer to this effect as population resensitization, caused by redistribution within the cell cycle. We investigate the effect theoretically by employing the McKendrick-von Foerster equation for age-structured proliferating cell populations, generalized by introducing a radiation damage term. Within our formalism, we show that population resensitization occurs whenever: (a) prior to irradiation the cell population has the stable age-distribution approached asymptotically by an unirradiated population, and (b) T is sufficiently small. Examples and other cases are outlined. The methods of Volterra integral equations, renewal theory, and positive semigroup theory are applied. The effect of varying T is evaluated by considering the ultimate amplitude of the stable age-distribution population at times much greater than both the irradiation duration and the average cell-cycle time. The main biological limitations of the formalism are the following: considering only radiation damage which is not subject to enzymatic repair or quadratic misrepair, using an overly naive method of ensuring loss of cell cycle synchrony, neglecting nonlinear effects such as density inhibition of growth, and neglecting radiatively induced perturbations of the cell cycle. Possible methods for removing these limitations are briefly discussed.

  13. Early B Cell Progenitors Deficient for GON4L Fail To Differentiate Due to a Block in Mitotic Cell Division.

    PubMed

    Barr, Jennifer Y; Goodfellow, Renee X; Colgan, Diana F; Colgan, John D

    2017-04-05

    B cell development in Justy mutant mice is blocked due to a precursor mRNA splicing defect that depletes the protein GON4-like (GON4L) in B cell progenitors. Genetic and biochemical studies have suggested that GON4L is a transcriptional regulator that coordinates cell division with differentiation, but its role in B cell development is unknown. To understand the function of GON4L, we characterized B cell differentiation, cell cycle control, and mitotic gene expression in GON4L-deficient B cell progenitors from Justy mice. We found that these cells established key aspects of the transcription factor network that guides B cell development and proliferation and rearranged the IgH gene locus. However, despite intact IL-7 signaling, GON4L-deficient pro-B cell stage precursors failed to undergo a characteristic IL-7-dependent proliferative burst. These cells also failed to upregulate genes required for mitotic division, including those encoding the G1/S cyclin D3 and E2F transcription factors and their targets. Additionally, GON4L-deficient B cell progenitors displayed defects in DNA synthesis and passage through the G1/S transition, contained fragmented DNA, and underwent apoptosis. These phenotypes were not suppressed by transgenic expression of prosurvival factors. However, transgenic expression of cyclin D3 or other regulators of the G1/S transition restored pro-B cell development from Justy progenitor cells, suggesting that GON4L acts at the beginning of the cell cycle. Together, our findings indicate that GON4L is essential for cell cycle progression and division during the early stages of B cell development.

  14. Transfection of mammalian cells using block copolypeptide vesicles.

    PubMed

    Sun, Victor Z; Choe, Uh-Joo; Rodriguez, April R; Dai, Howard; Deming, Timothy J; Kamei, Daniel T

    2013-05-01

    An arginine-leucine block copolypeptide (R60 L20 ) is synthesized, which is capable of forming vesicles with controllable sizes, able to transport hydrophilic cargo across the cell membrane, and exhibit relatively low cytotoxicity. The R60 L20 vesicles also possess the ability to deliver DNA into mammalian cells for transfection. Although the transfection efficiency is lower than that of the commercially available transfection agent Lipofectamine 2000, the R60 L20 vesicles are able to achieve transfection with significantly lower cytotoxicity and immunogenicity. This behavior is potentially due to its stronger interaction with DNA which subsequently provides better protection against anionic heparin.

  15. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch

    PubMed Central

    Seidel, Hannah S; Kimble, Judith

    2015-01-01

    Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells—including germline stem cells—become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions—GLP-1/Notch signaling—becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance. DOI: http://dx.doi.org/10.7554/eLife.10832.001 PMID:26551561

  16. Quantitative characterization of mitosis-blocked tetraploid cells using high content analysis.

    PubMed

    Grove, Linnette E; Ghosh, Richik N

    2006-08-01

    A range of cellular evidence supporting a G1 tetraploidy checkpoint was obtained from different assay methods including flow cytometry, immunoblotting, and microscopy. Cancer research would benefit if these cellular properties could instead be measured by a single, quantitative, automated assay method, such as high content analysis (HCA). Thus, nocodazole-treated cells were fluorescently labeled for different cell cycle-associated properties, including DNA content, retinoblastoma (Rb) and histone H3 phosphorylation, p53 and p21(WAF1) expression, nuclear and cell sizes, and cell morphology, and automatically imaged, analyzed, and correlated using HCA. HCA verified that nocodazole-induced mitosis block resulted in tetraploid cells. Rb and histone H3 were maximally hyperphosphorylated by 24 h of nocodazole treatment, accompanied by cell and nuclear size decreases and cellular rounding. Cells remained tetraploid and mononucleated with longer treatments, but other targets reverted to G1 levels, including Rb and histone H3 dephosphorylation accompanied by cellular respreading. This was accompanied by increased p53 and p21(WAF1) expression levels. The range of effects accompanying nocodazole-induced block of mitosis and the resulting tetraploid cells' reversal to a pseudo-G1 state can be quantitatively measured by HCA in an automated manner, recommending this assay method for the large-scale biology challenges of modern cancer drug discovery.

  17. Analysis of Sporulation Mutants II. Mutants Blocked in the Citric Acid Cycle

    PubMed Central

    Fortnagel, Peter; Freese, Ernst

    1968-01-01

    Sporulation mutants that were unable to incorporate uracil during the developmental period recovered this capacity with the addition of ribose and in most cases with the addition of glutamate. Of the mutants that responded to both ribose and glumate, all but three also responded to citrate, and all but five responded to acetate. One of the exceptional strains was deficient in aconitase and another one in aconitase and isocitrate dehydrogenase; both required glutamate for growth. For the mutants which did not respond to glutamate, the products made from 14C-glutamate were determined by thin-layer chromatography. Significant differences were found which enabled the identification of mutant blocks. The deficiency of the corresponding enzyme activity was verified. Several mutants were deficient in α-ketoglutarate dehydrogenase, and one lacked succinic dehydrogenase. These mutants could still grow on glucose as sole carbon source, but not on glutamate. The intact Krebs cycle is therefore not required for vegetative growth of aerobic Bacillis subtilis, but it is indispensable for sporulation. Images PMID:4967197

  18. Cell cycle alterations, apoptosis, and response to low-dose-rate radioimmunotherapy in lymphoma cells

    SciTech Connect

    Macklis, R.M.; Beresford, B.A.; Palayoor, S.; Sweeney, S.; Humm, J.L.

    1993-10-20

    In an attempt to elucidate some aspects of the radiobiological basis of radioimmunotherapy, we have evaluated the in vitro cellular response patterns for malignant lymphoma cell lines exposed to high- and low-dose-rate radiation administered within the physiological context of antibody cell-surface binding. We used two different malignant lymphoma cell lines, a Thy1.2{sup +} murine T-lymphoma line called EL-4 and a CD20{sup +} human B-lymphoma line called Raji. Irradiated cells were evaluated for viability, cell-cycle changes, patterns of post-radiation morphologic changes, and biochemical hallmarks of radiation-associated necrosis and programmed cell death. The EL-4 line was sensitive to both high-dose-rate and low-dose-rate irradiation, while the Raji showed efficient cell kill only after high-dose-rate irradiation. Studies of radiation-induced cell cycle changes demonstrated that both cell lines were efficiently blocked at the G2/M interface by high-dose-rate irradiation, with the Raji cells appearing somewhat more susceptible than the EL-4 cells to low-dose-rate radiation-induced G2/M block. Electron microscopy and DNA gel electrophoresis studies showed that a significant proportion of the EL-4 cells appeared to be dying by radiation-induced programmed cell death (apoptosis) while the Raji cells appeared to be dying primarily by classical radiation-induced cellular necrosis. We propose that the unusual clinical responsiveness of some high and low grade lymphomas to modest doses of low-dose-rate radioimmunotherapy may be explained in part by the induction of apoptosis. The unusual dose-response characteristics observed in some experimental models of radiation-induced apoptosis may require a reappraisal of standard linear quadratic and alpha/beta algorithms used to predict target tissue cytoreduction after radioimmunotheraphy. 34 refs., 4 figs.

  19. Nanomimics of host cell membranes block invasion and expose invasive malaria parasites.

    PubMed

    Najer, Adrian; Wu, Dalin; Bieri, Andrej; Brand, Françoise; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2014-12-23

    The fight against most infectious diseases, including malaria, is often hampered by the emergence of drug resistance and lack or limited efficacies of vaccines. Therefore, new drugs, vaccines, or other strategies to control these diseases are needed. Here, we present an innovative nanotechnological strategy in which the nanostructure itself represents the active substance with no necessity to release compounds to attain therapeutic effect and which might act in a drug- and vaccine-like dual function. Invasion of Plasmodium falciparum parasites into red blood cells was selected as a biological model for the initial validation of this approach. Stable nanomimics-polymersomes presenting receptors required for parasite attachment to host cells-were designed to efficiently interrupt the life cycle of the parasite by inhibiting invasion. A simple way to build nanomimics without postformation modifications was established. First, a block copolymer of the receptor with a hydrophobic polymer was synthesized and then mixed with a polymersome-forming block copolymer. The resulting nanomimics bound parasite-derived ligands involved in the initial attachment to host cells and they efficiently blocked reinvasion of malaria parasites after their egress from host cells in vitro. They exhibited efficacies of more than 2 orders of magnitude higher than the soluble form of the receptor, which can be explained by multivalent interactions of several receptors on one nanomimic with multiple ligands on the infective parasite. In the future, our strategy might offer interesting treatment options for severe malaria or a way to modulate the immune response.

  20. Block copolymers for alkaline fuel cell membrane materials

    NASA Astrophysics Data System (ADS)

    Li, Yifan

    Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC

  1. Proliferation and cell cycle dynamics in the developing stellate ganglion.

    PubMed

    Gonsalvez, David G; Cane, Kylie N; Landman, Kerry A; Enomoto, Hideki; Young, Heather M; Anderson, Colin R

    2013-04-03

    Cell proliferation during nervous system development is poorly understood outside the mouse neocortex. We measured cell cycle dynamics in the embryonic mouse sympathetic stellate ganglion, where neuroblasts continue to proliferate following neuronal differentiation. At embryonic day (E) 9.5, when neural crest-derived cells were migrating and coalescing into the ganglion primordium, all cells were cycling, cell cycle length was only 10.6 h, and S-phase comprised over 65% of the cell cycle; these values are similar to those previously reported for embryonic stem cells. At E10.5, Sox10(+) cells lengthened their cell cycle to 38 h and reduced the length of S-phase. As cells started to express the neuronal markers Tuj1 and tyrosine hydroxylase (TH) at E10.5, they exited the cell cycle. At E11.5, when >80% of cells in the ganglion were Tuj1(+)/TH(+) neuroblasts, all cells were again cycling. Neuroblast cell cycle length did not change significantly after E11.5, and 98% of Sox10(-)/TH(+) cells had exited the cell cycle by E18.5. The cell cycle length of Sox10(+)/TH(-) cells increased during late embryonic development, and ∼25% were still cycling at E18.5. Loss of Ret increased neuroblast cell cycle length at E16.5 and decreased the number of neuroblasts at E18.5. A mathematical model generated from our data successfully predicted the relative change in proportions of neuroblasts and non-neuroblasts in wild-type mice. Our results show that, like other neurons, sympathetic neuron differentiation is associated with exit from the cell cycle; sympathetic neurons are unusual in that they then re-enter the cell cycle before later permanently exiting.

  2. Cell cycle of globose basal cells in rat olfactory epithelium.

    PubMed

    Huard, J M; Schwob, J E

    1995-05-01

    The olfactory epithelium of adult mammals has the unique property of generating olfactory sensory neurons throughout life. Cells of the basal compartment, which include horizontal and globose basal cells, are responsible for the ongoing process of neurogenesis in this system. We report here that the globose basal cells in olfactory epithelium of rats, as in mice, are the predominant type of proliferating cell, and account for 97.6% of the actively dividing cells in the basal compartment of the normal epithelium. Globose basal cells have not been fully characterized in terms of their proliferative properties, and the dynamic aspects of neurogenesis are not well understood. As a consequence, it is uncertain whether cell kinetic properties are under any regulation that could affect the rate of neurogenesis. To address this gap in our knowledge, we have determined the duration of both the synthesis phase (S-phase) and the full cell cycle of globose basal cells in adult rats. The duration of the S-phase was found to be 9 hr in experiments utilizing sequential injections of either IdU followed by BrdU or 3H-thy followed by BrdU. The duration of the cell cycle was determined by varying the time interval between the injections of 3H-thy and BrdU and tracking the set of cells that exit S shortly after the first injection. With this paradigm, the interval required for these cells to traverse G2, M, G1, and a second S-phase, is equivalent to the duration of one mitotic cycle and equals 17 hr. These observations serve as the foundation to assess whether the cell cycle duration is subject to regulation in response to experimental injury, and whether such regulation is partly responsible for changes in the rate of neurogenesis in such settings.

  3. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2.

    PubMed

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Reiter, Michael; Tsaur, Igor; Bartsch, Georg; Haferkamp, Axel; Blaheta, Roman A

    2014-01-01

    Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25-10 mg/ml) on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP). Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR) related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug.

  4. Amygdalin Blocks Bladder Cancer Cell Growth In Vitro by Diminishing Cyclin A and cdk2

    PubMed Central

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Reiter, Michael; Tsaur, Igor; Bartsch, Georg; Haferkamp, Axel; Blaheta, Roman A.

    2014-01-01

    Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25–10 mg/ml) on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP). Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR) related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug. PMID:25136960

  5. Mitochondrial Regulation of Cell Cycle and Proliferation

    PubMed Central

    Antico Arciuch, Valeria Gabriela; Elguero, María Eugenia; Poderoso, Juan José

    2012-01-01

    Abstract Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O2, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O2 utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis. Antioxid. Redox Signal. 16, 1150–1180. PMID:21967640

  6. Estrogen inhibits cell cycle progression and retinoblastoma phosphorylation in rhesus ovarian surface epithelial cell culture

    SciTech Connect

    Wright, Jay W.; Stouffer, Richard L.; Rodland, Karin D.

    2003-10-31

    Estrogen promotes the growth of some ovarian cancer cells at nanomolar concentrations, but has been shown to inhibit growth of normal ovarian surface epithelial (OSE) cells at micromolar concentrations (1μg/ml). OSE cells express the estrogen receptor (ER)-α, and are the source of 90% of various cancers. The potential sensitivity of OSE cells to estrogen stresses the importance of understanding the estrogen-dependent mechanisms at play in OSE proliferation and transformation, as well as in anticancer treatment. We investigated the effects of estradiol on cell proliferation in vitro, and demonstrate an intracellular locus of action of estradiol in cultured rhesus ovarian surface epithelial (RhOSE) cells. We show that ovarian and breast cells are growth-inhibited by micromolar concentration of estradiol and that this inhibition correlates with estrogen receptor expression. We further show that normal rhesus OSE cells do not activate ERK or Akt in response to estradiol nor does estradiol block the ability of serum to stimulate ERK or induce cyclin D expression. Contrarily, estradiol inhibits serum-dependent retinoblastoma protein (Rb) phosphorylation and blocks DNA synthesis. This inhibition does not formally arrest cells and is reversible within hours of estrogen withdrawal. Our data are consistent with growth inhibition by activation of Rb and indicate that sensitivity to hormone therapy in anticancer treatment can be modulated by cell cycle regulators downstream of the estrogen receptor.

  7. The cell cycle rallies the transcription cycle: Cdc28/Cdk1 is a cell cycle-regulated transcriptional CDK.

    PubMed

    Chymkowitch, Pierre; Enserink, Jorrit M

    2013-01-01

    In the budding yeast Saccharomyces cerevisiae, the cyclin-dependent kinases (CDKs) Kin28, Bur1 and Ctk1 regulate basal transcription by phosphorylating the carboxyl-terminal domain (CTD) of RNA polymerase II. However, very little is known about the involvement of the cell cycle CDK Cdc28 in the transcription process. We have recently shown that, upon cell cycle entry, Cdc28 kinase activity boosts transcription of a subset of genes by directly stimulating the basal transcription machinery. Here, we discuss the biological significance of this finding and give our view of the kinase-dependent role of Cdc28 in regulation of RNA polymerase II.

  8. FTIR spectral signature of anticancer drug effects on PC-3 cancer cells: is there any influence of the cell cycle?

    PubMed

    Derenne, Allison; Mignolet, Alix; Goormaghtigh, Erik

    2013-07-21

    FTIR spectroscopy was recently demonstrated to be a useful tool to obtain a unique fingerprint of several anticancer drugs. While cell responses to anticancer drugs are related to their "mode of action", it is obvious that some of the drugs used in the previous studies affect the cell cycle. For example, antimicrotubules disable the mitotic apparatus by disrupting the formation or the depolymerisation of microtubules. Cells are thus mostly blocked in the G2/M phase. On the other hand, it has been suggested that the changes observed in the cell spectra due to treatments could be related to the cell cycle. The aim of the present study is to examine this hypothesis and to investigate whether spectral variations induced by a treatment reflect the cell cycle behaviour or the metabolic perturbations induced by the drug. To answer this question, a method was developed that allows an unambiguous identification of the cell cycle phase for each individual cell. This method is based on the superimposition of three types of images: visible, infrared and propidium iodide fluorescence images. Propidium iodide intercalates the bases of the DNA. As the DNA amount in a cell is correlated with the cell cycle phase, the exact phase of each individual cell could be identified. On IR images, mean spectra corresponding to single cells were calculated and associated with the cycle stage defined using fluorescence images. Statistical analyses were applied on these IR spectra, first in order to compare spectra of cells from different stages of the cycle and second, to investigate to what extent the modifications related to the cell cycle contribute to the spectral variations due to paclitaxel treatment. Results demonstrate that the FTIR cell cycle signature is very small with respect to the changes induced by paclitaxel.

  9. T Cell Receptor-induced Activation and Apoptosis In Cycling Human T Cells Occur throughout the Cell Cycle

    PubMed Central

    Karas, Michael; Zaks, Tal Z.; JL, Liu; LeRoith, Derek

    1999-01-01

    Previous studies have found conflicting associations between susceptibility to activation-induced cell death and the cell cycle in T cells. However, most of the studies used potentially toxic pharmacological agents for cell cycle synchronization. A panel of human melanoma tumor-reactive T cell lines, a CD8+ HER-2/neu-reactive T cell clone, and the leukemic T cell line Jurkat were separated by centrifugal elutriation. Fractions enriched for the G0–G1, S, and G2–M phases of the cell cycle were assayed for T cell receptor-mediated activation as measured by intracellular Ca2+ flux, cytolytic recognition of tumor targets, and induction of Fas ligand mRNA. Susceptibility to apoptosis induced by recombinant Fas ligand and activation-induced cell death were also studied. None of the parameters studied was specific to a certain phase of the cell cycle, leading us to conclude that in nontransformed human T cells, both activation and apoptosis through T cell receptor activation can occur in all phases of the cell cycle. PMID:10588669

  10. Variant surface glycoprotein RNA interference triggers a precytokinesis cell cycle arrest in African trypanosomes.

    PubMed

    Sheader, Karen; Vaughan, Sue; Minchin, James; Hughes, Katie; Gull, Keith; Rudenko, Gloria

    2005-06-14

    Trypanosoma brucei is a protozoan parasite that causes African sleeping sickness. T. brucei multiplies extracellularly in the bloodstream, relying on antigenic variation of a dense variant surface glycoprotein (VSG) coat to escape antibody-mediated lysis. We investigated the role of VSG in proliferation and pathogenicity by using inducible RNA interference to ablate VSG transcript down to 1-2% normal levels. Inhibiting VSG synthesis in vitro triggers a rapid and specific cell cycle checkpoint blocking cell division. Parasites arrest at a discrete precytokinesis stage with two full-length flagella and opposing flagellar pockets, without undergoing additional rounds of S phase and mitosis. A subset (<10%) of the stalled cells have internal flagella, indicating that the progenitors of these cells were already committed to cytokinesis when VSG restriction was sensed. Although there was no obvious VSG depletion in vitro after 24-h induction of VSG RNA interference, there was rapid clearance of these cells in vivo. We propose that a stringent block in VSG synthesis produces stalled trypanosomes with a minimally compromised VSG coat, which can be targeted by the immune system. Our data indicate that VSG protein or transcript is monitored during cell cycle progression in bloodstream-form T. brucei and describes precise precytokinesis cell cycle arrest. This checkpoint before cell division provides a link between the protective VSG coat and cell cycle progression and could function as a novel parasite safety mechanism, preventing extensive dilution of the protective VSG coat in the absence of VSG synthesis.

  11. The cell-cycle state of stem cells determines cell fate propensity.

    PubMed

    Pauklin, Siim; Vallier, Ludovic

    2013-09-26

    Self-renewal and differentiation of stem cells are fundamentally associated with cell-cycle progression to enable tissue specification, organ homeostasis, and potentially tumorigenesis. However, technical challenges have impaired the study of the molecular interactions coordinating cell fate choice and cell-cycle progression. Here, we bypass these limitations by using the FUCCI reporter system in human pluripotent stem cells and show that their capacity of differentiation varies during the progression of their cell cycle. These mechanisms are governed by the cell-cycle regulators cyclin D1-3 that control differentiation signals such as the TGF-β-Smad2/3 pathway. Conversely, cell-cycle manipulation using a small molecule directs differentiation of hPSCs and provides an approach to generate cell types with a clinical interest. Our results demonstrate that cell fate decisions are tightly associated with the cell-cycle machinery and reveal insights in the mechanisms synchronizing differentiation and proliferation in developing tissues.

  12. Fungal Cell Cycle: A Unicellular versus Multicellular Comparison.

    PubMed

    Dörter, Ilkay; Momany, Michelle

    2016-12-01

    All cells must accurately replicate DNA and partition it to daughter cells. The basic cell cycle machinery is highly conserved among eukaryotes. Most of the mechanisms that control the cell cycle were worked out in fungal cells, taking advantage of their powerful genetics and rapid duplication times. Here we describe the cell cycles of the unicellular budding yeast Saccharomyces cerevisiae and the multicellular filamentous fungus Aspergillus nidulans. We compare and contrast morphological landmarks of G1, S, G2, and M phases, molecular mechanisms that drive cell cycle progression, and checkpoints in these model unicellular and multicellular fungal systems.

  13. Alteration of cell cycle progression by Sindbis virus infection

    SciTech Connect

    Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa; Shirasawa, Hiroshi

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  14. Metabolism, cell growth and the bacterial cell cycle

    PubMed Central

    Wang, Jue D.; Levin, Petra A.

    2010-01-01

    Adaptation to fluctuations in nutrient availability is a fact of life for single-celled organisms in the ‘wild’. A decade ago our understanding of how bacteria adjust cell cycle parameters to accommodate changes in nutrient availability stemmed almost entirely from elegant physiological studies completed in the 1960s. In this Opinion article we summarize recent groundbreaking work in this area and discuss potential mechanisms by which nutrient availability and metabolic status are coordinated with cell growth, chromosome replication and cell division. PMID:19806155

  15. Capacity fade of Sony 18650 cells cycled at elevated temperatures. Part I. Cycling performance

    NASA Astrophysics Data System (ADS)

    Ramadass, P.; Haran, Bala; White, Ralph; Popov, Branko N.

    The capacity fade of Sony 18650 Li-ion cells increases with increase in temperature. After 800 cycles, the cells cycled at RT and 45 °C showed a capacity fade of 30 and 36%, respectively. The cell cycled at 55 °C showed a capacity loss of about 70% after 490 cycles. The rate capability of the cells continues to decrease with cycling. Impedance measurements showed an overall increase in the cell resistance with cycling and temperature. Impedance studies of the electrode materials showed an increased positive electrode resistance when compared to that of the negative electrode for cells cycled at RT and 45 °C. However, cells cycled at 50 and 55 °C exhibit higher negative electrode resistance. The increased capacity fade for the cells cycled at high temperatures can be explained by taking into account the repeated film formation over the surface of anode, which results in increased rate of lithium loss and also in a drastic increase in the negative electrode resistance with cycling.

  16. Reducing the serine availability complements the inhibition of the glutamine metabolism to block leukemia cell growth

    PubMed Central

    Polet, Florence; Corbet, Cyril; Pinto, Adan; Rubio, Laila Illan; Martherus, Ruben; Bol, Vanesa; Drozak, Xavier; Grégoire, Vincent; Riant, Olivier; Feron, Olivier

    2016-01-01

    Leukemia cells are described as a prototype of glucose-consuming cells with a high turnover rate. The role of glutamine in fueling the tricarboxylic acid cycle of leukemia cells was however recently identified confirming its status of major anaplerotic precursor in solid tumors. Here we examined whether glutamine metabolism could represent a therapeutic target in leukemia cells and whether resistance to this strategy could arise. We found that glutamine deprivation inhibited leukemia cell growth but also led to a glucose-independent adaptation maintaining cell survival. A proteomic study revealed that glutamine withdrawal induced the upregulation of phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase (PSAT), two enzymes of the serine pathway. We further documented that both exogenous and endogenous serine were critical for leukemia cell growth and contributed to cell regrowth following glutamine deprivation. Increase in oxidative stress upon inhibition of glutamine metabolism was identified as the trigger of the upregulation of PHGDH. Finally, we showed that PHGDH silencing in vitro and the use of serine-free diet in vivo inhibited leukemia cell growth, an effect further increased when glutamine metabolism was blocked. In conclusion, this study identified serine as a key pro-survival actor that needs to be handled to sensitize leukemia cells to glutamine-targeting modalities. PMID:26625201

  17. Intracellular fates of cell-penetrating block copolypeptide vesicles.

    PubMed

    Sun, Victor Z; Li, Zhibo; Deming, Timothy J; Kamei, Daniel T

    2011-01-10

    The block copolypeptide poly(l-homoarginine)(60)-b-poly(l-leucine)(20) (R(60)L(20)) was previously found to self-assemble into versatile vesicles with controllable size and encapsulate hydrophilic cargo. These R(60)L(20) vesicles also demonstrated the ability to cross the cell membrane and transport encapsulated cargo into different cell lines. To assess the potential for using the R(60)L(20) vesicles as drug delivery vehicles further, we have investigated their endocytosis and intracellular trafficking behavior. Using drugs that inhibit different endocytosis pathways, we identified macropinocytosis to be a major process by which the R(60)L(20) vesicles enter HeLa cells. Subsequent immunostaining experiments demonstrated that the vesicles entered the early endosomes but not the lysosomes, suggesting that they recycle back to the cell surface. Overall, our studies indicate that the R(60)L(20) vesicles are able to enter cells intact with their cargos, and although some manage to escape from early endosomes, most are trapped within these intracellular compartments.

  18. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    SciTech Connect

    Nilsson, Emeli M.; Brokken, Leon J.S.; Haerkoenen, Pirkko L.

    2010-03-10

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  19. Cell cycle dysregulation in pituitary oncogenesis.

    PubMed

    Muşat, Madalina; Vax, Vladimir V; Borboli, Ninetta; Gueorguiev, Maria; Bonner, Sarah; Korbonits, Márta; Grossman, Ashley B

    2004-01-01

    The cell cycle is the process by which cells grow, replicate their genome and divide. The cell cycle control system is a cyclically-operating biochemical device constructed from a set of interacting proteins that induce and coordinate proper progression through the cycle, and includes cyclins, cyclin-dependent kinases (CDK) and their inhibitors (CDKI). There are mainly two families of CDKI, the INK family (INK4a/p16; INK4b/p15; INK4c/p18 and INK4d/p19) and the WAF/KIP family (WAF1/p21; KIP1/p27; KIP2/p57). Progression through the cell cycle is mainly dependent on fluctuations in the concentration of cyclins and CDKI achieved through the programmed degradation of these proteins by proteolysis within the ubiquitin-proteasome system. There is also a transcriptional regulation of cyclin expression, probably dependent on CDK phosphorylation. The p53 family--p53, p63 and p73--function as transcription factors that play a major role in regulating the response of mammalian cells to stressors and damage, in part through the transcriptional activation of genes involved in cell cycle control (e.g. p21), DNA repair, senescence, angiogenesis and apoptosis. Essential for the maintenance of euploidy during mitosis is human securin, identical to the product of the pituitary tumour-transforming gene (PTTG). Loss of regulation at the G1/S transition appears to be a common event among virtually all types of human tumours. Aberrations of one or more components of the pRb/p16/cyclin D1/CDK4 pathway seem to be a frequent event (80%) in pituitary tumours. The role of p27 is rather that of a haploinsufficient gene. p27-/- mice show an increased growth rate, due to increased cellularity, testicular and ovarian cell hyperplasia and infertility, and hyperplasia of the pituitary intermediate lobe with nearly 100% mortality caused by such a benign pituitary tumour. Although the p27 gene was not found to be mutated in human pituitary tumours and its mRNA expression was similar in tumour samples

  20. Analysis of Cell Cycle Switches in Drosophila Oogenesis.

    PubMed

    Jia, Dongyu; Huang, Yi-Chun; Deng, Wu-Min

    2015-01-01

    The study of Drosophila oogenesis provides invaluable information about signaling pathway regulation and cell cycle programming. During Drosophila oogenesis, a string of egg chambers in each ovariole progressively develops toward maturity. Egg chamber development consists of 14 stages. From stage 1 to stage 6 (mitotic cycle), main-body follicle cells undergo mitotic divisions. From stage 7 to stage 10a (endocycle), follicle cells cease mitosis but continue three rounds of endoreduplication. From stage 10b to stage 13 (gene amplification), instead of whole genome duplication, follicle cells selectively amplify specific genomic regions, mostly for chorion production. So far, Drosophila oogenesis is one of the most well studied model systems used to understand cell cycle switches, which furthers our knowledge about cell cycle control machinery and sheds new light on potential cancer treatments. Here, we give a brief summary of cell cycle switches, the associated signaling pathways and factors, and the detailed experimental procedures used to study the cell cycle switches.

  1. Protein PSMD8 may mediate microgravity-induced cell cycle arrest

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Xu, Dan; Wu, Di; Chen, Xiaoning

    Microgravity environment of space can induce a serial of changes in cells, such as morphology alterations, cytoskeleton disorder and cell cycle disturbance. Our previous study of simulated-microgravity on zebrafish (Danio rerio) embryos demonstrated 26s proteasome non-ATPase regulatory subunit 8 (PSMD8) might be a microgravity sensitive gene. However, functional study on PSMD8 is very limited and it has not been cloned in zebrafish till now. In this study, we tried to clone PSMD8 gene in zebrafish, quantify its protein expression level in zebrafish embryos after simulated microgravity and identify its possible function in cell cycle regulation. A rotary cell culture system (RCCS) designed by national aeronautics and apace administration (NASA) of America was used to simulate microgravity. The full-length of psmd8 gene in zebrafish was cloned. Preliminary analysis on its sequence and phylogenetic tree construction were carried out subsequently. Quantitative analysis by western blot showed that PSMD8 protein expression levels were significantly increased 1.18 and 1.22 times after 24-48hpf and 24-72hpf simulated microgravity, respectively. Moreover, a significant delay on zebrafish embryo development was found in simulated-microgravity exposed group. Inhibition of PSMD8 protein in zebrafish embryonic cell lines ZF4 could block cell cycle in G1 phase, which indicated that PSMD8 may play a role in cell cycle regulation. Interestingly, simulated-microgravity could also block ZF4 cell in G1 phase. Whether it is PSMD8 mediated cell cycle regulation result in the zebrafish embryo development delay after simulated microgravity exposure still needs further study. Key Words: PSMD8; Simulated-microgravity; Cell cycle; ZF4 cell line

  2. Differences in kinase-mediated regulation of cell cycle progression in normal and transformed cells

    SciTech Connect

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Stevenson, A.P.; Kraemer, P.M.; Bustos, L.D.; Dickson, J.A.; Bradbury, E.M. )

    1993-01-01

    Staurosporine (Stsp), a general protein kinase inhibitor, was used to investigate the role of kinase-mediated mechanisms in regulating mammalian cell proliferation. Low levels of Stsp (1-2nM) prevented nontransformed cells from entering S phase, indicating that protein phosphorylation processes are essential for commitment of DNA replication in normal cells. Cells resumed cycling when Stsp was removed. The period of sensitivity of nontransformed human diploid fibroblasts to low levels of the drug commenced 3 h later than the G0/G1 boundary and extended through the G1/S boundary. The initial block point at 3 h corresponds neither to the serum nor the amino acid restriction point. In contrast, neither low nor high concentrations (100nm) of Stsp affected G1 progression of transformed cells. High drug concentrations blocked normal cells in G1 and G2 but affected only G2-progression in transformed cells. These results indicate that kinase-mediated regulation of DNA replication is lost as a result of neoplastic transformation, but the G2-arrest mechanism remains intact.

  3. Endosymbiosis in trypanosomatid protozoa: the bacterium division is controlled during the host cell cycle.

    PubMed

    Catta-Preta, Carolina M C; Brum, Felipe L; da Silva, Camila C; Zuma, Aline A; Elias, Maria C; de Souza, Wanderley; Schenkman, Sergio; Motta, Maria Cristina M

    2015-01-01

    Mutualism is defined as a beneficial relationship for the associated partners and usually assumes that the symbiont number is controlled. Some trypanosomatid protozoa co-evolve with a bacterial symbiont that divides in coordination with the host in a way that results in its equal distribution between daughter cells. The mechanism that controls this synchrony is largely unknown, and its comprehension might provide clues to understand how eukaryotic cells evolved when acquiring symbionts that later became organelles. Here, we approached this question by studying the effects of inhibitors that affect the host exclusively in two symbiont-bearing trypanosomatids, Strigomonas culicis and Angomonas deanei. We found that inhibiting host protein synthesis using cycloheximide or host DNA replication using aphidicolin did not affect the duplication of bacterial DNA. Although the bacteria had autonomy to duplicate their DNA when host protein synthesis was blocked by cycloheximide, they could not complete cytokinesis. Aphidicolin promoted the inhibition of the trypanosomatid cell cycle in the G1/S phase, leading to symbiont filamentation in S. culicis but not in A. deanei. Treatment with camptothecin blocked the host protozoa cell cycle in the G2 phase and induced the formation of filamentous symbionts in both species. Oryzalin, which affects host microtubule polymerization, blocked trypanosomatid mitosis and abrogated symbiont division. Our results indicate that host factors produced during the cell division cycle are essential for symbiont segregation and may control the bacterial cell number.

  4. Endosymbiosis in trypanosomatid protozoa: the bacterium division is controlled during the host cell cycle

    PubMed Central

    Catta-Preta, Carolina M. C.; Brum, Felipe L.; da Silva, Camila C.; Zuma, Aline A.; Elias, Maria C.; de Souza, Wanderley; Schenkman, Sergio; Motta, Maria Cristina M.

    2015-01-01

    Mutualism is defined as a beneficial relationship for the associated partners and usually assumes that the symbiont number is controlled. Some trypanosomatid protozoa co-evolve with a bacterial symbiont that divides in coordination with the host in a way that results in its equal distribution between daughter cells. The mechanism that controls this synchrony is largely unknown, and its comprehension might provide clues to understand how eukaryotic cells evolved when acquiring symbionts that later became organelles. Here, we approached this question by studying the effects of inhibitors that affect the host exclusively in two symbiont-bearing trypanosomatids, Strigomonas culicis and Angomonas deanei. We found that inhibiting host protein synthesis using cycloheximide or host DNA replication using aphidicolin did not affect the duplication of bacterial DNA. Although the bacteria had autonomy to duplicate their DNA when host protein synthesis was blocked by cycloheximide, they could not complete cytokinesis. Aphidicolin promoted the inhibition of the trypanosomatid cell cycle in the G1/S phase, leading to symbiont filamentation in S. culicis but not in A. deanei. Treatment with camptothecin blocked the host protozoa cell cycle in the G2 phase and induced the formation of filamentous symbionts in both species. Oryzalin, which affects host microtubule polymerization, blocked trypanosomatid mitosis and abrogated symbiont division. Our results indicate that host factors produced during the cell division cycle are essential for symbiont segregation and may control the bacterial cell number. PMID:26082757

  5. Classic "broken cell" techniques and newer live cell methods for cell cycle assessment.

    PubMed

    Henderson, Lindsay; Bortone, Dante S; Lim, Curtis; Zambon, Alexander C

    2013-05-15

    Many common, important diseases are either caused or exacerbated by hyperactivation (e.g., cancer) or inactivation (e.g., heart failure) of the cell division cycle. A better understanding of the cell cycle is critical for interpreting numerous types of physiological changes in cells. Moreover, new insights into how to control it will facilitate new therapeutics for a variety of diseases and new avenues in regenerative medicine. The progression of cells through the four main phases of their division cycle [G(0)/G(1), S (DNA synthesis), G(2), and M (mitosis)] is a highly conserved process orchestrated by several pathways (e.g., transcription, phosphorylation, nuclear import/export, and protein ubiquitination) that coordinate a core cell cycle pathway. This core pathway can also receive inputs that are cell type and cell niche dependent. "Broken cell" methods (e.g., use of labeled nucleotide analogs) to assess for cell cycle activity have revealed important insights regarding the cell cycle but lack the ability to assess living cells in real time (longitudinal studies) and with single-cell resolution. Moreover, such methods often require cell synchronization, which can perturb the pathway under study. Live cell cycle sensors can be used at single-cell resolution in living cells, intact tissue, and whole animals. Use of these more recently available sensors has the potential to reveal physiologically relevant insights regarding the normal and perturbed cell division cycle.

  6. Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation.

    PubMed Central

    Linette, G P; Li, Y; Roth, K; Korsmeyer, S J

    1996-01-01

    BCL-2-deficient T cells demonstrate accelerated cell cycle progression and increased apoptosis following activation. Increasing the levels of BCL-2 retarded the G0-->S transition, sustained the levels of cyclin-dependent kinase inhibitor p27Kip1, and repressed postactivation death. Proximal signal transduction events and immediate early gene transcription were unaffected. However, the transcription and synthesis of interleukin 2 and other delayed early cytokines were markedly attenuated by BCL-2. In contrast, a cysteine protease inhibitor that also blocks apoptosis had no substantial affect upon cytokine production. InterleUkin 2 expression requires several transcription factors of which nuclear translocation of NFAT (nuclear factor of activated T cells) and NFAT-mediated transactivation were impaired by BCL-2. Thus, select genetic aberrations in the apoptotic pathway reveal a cell autonomous coregulation of activation. Images Fig. 3 Fig. 4 Fig. 7 PMID:8790367

  7. Profiling of Hepatocellular Carcinoma Cell Cycle Regulating Genes Targeted by Calycosin

    PubMed Central

    Zhang, Dongqing; Wang, Shufang; Zhu, Liguo; Tian, Yaping; Wang, Haibao; Zhuang, Yuan; Li, Yu; Wang, Deqing

    2013-01-01

    We cocultured calycosin with human hepatocellular carcinoma cell line (BEL-7402) to investigate the effect on cell proliferation. Calycosin can markedly block the cell growth in G1 phase (P < 0.01) on the IC50 concentration. There were seventeen genes involved in cell-cycle regulation showing differentially expressed in treated cells detected by gene chip. Eight genes were upregulated and nine genes were downregulated. Downregulated TFDP-1, CDKN2D, and SPK2 and upregulated CDC2 and CCNB1 might affect cell cycle of tumor cells. Furthermore, we checked the transcription pattern using 2D gel method to find different expression of proteins in human hepatocellular carcinoma cells after exposure to calycosin. Fourteen proteins were identified by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Twelve proteins expression were increased such as transgelin 2, pyridoxine 5′-phosphate, stress-induced-phosphoprotein 1, peroxiredoxin 1, endoplasmic reticulum protein 29, and phosphoglycerate mutase 1. Only thioredoxin peroxidase and high-mobility group box1 proteins' expression decreased. Both genes and proteins changes might be relate to the mechanism of antitumor effect under treatment of calycosin. In conclusion, calycosin has a potential effect to inhibit the BEL-7402 cell growth by inhibiting some oncogene expression and increasing anticancer genes expression, what is more, by blocking cell cycle. PMID:24455688

  8. Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling

    PubMed Central

    Plikus, Maksim V.; Vollmers, Christopher; de la Cruz, Damon; Chaix, Amandine; Ramos, Raul; Panda, Satchidananda; Chuong, Cheng-Ming

    2013-01-01

    Regenerative cycling of hair follicles offers an unique opportunity to explore the role of circadian clock in physiological tissue regeneration. We focused on the role of circadian clock in actively proliferating transient amplifying cells, as opposed to quiescent stem cells. We identified two key sites of peripheral circadian clock activity specific to regenerating anagen hair follicles, namely epithelial matrix and mesenchymal dermal papilla. We showed that peripheral circadian clock in epithelial matrix cells generates prominent daily mitotic rhythm. As a consequence of this mitotic rhythmicity, hairs grow faster in the morning than in the evening. Because cells are the most susceptible to DNA damage during mitosis, this cycle leads to a remarkable time-of-day–dependent sensitivity of growing hair follicles to genotoxic stress. Same doses of γ-radiation caused dramatic hair loss in wild-type mice when administered in the morning, during mitotic peak, compared with the evening, when hair loss is minimal. This diurnal radioprotective effect becomes lost in circadian mutants, consistent with asynchronous mitoses in their hair follicles. Clock coordinates cell cycle progression with genotoxic stress responses by synchronizing Cdc2/Cyclin B-mediated G2/M checkpoint. Our results uncover diurnal mitotic gating as the essential protective mechanism in highly proliferative hair follicles and offer strategies for minimizing or maximizing cytotoxicity of radiation therapies. PMID:23690597

  9. The Cell Cycle Switch Computes Approximate Majority

    NASA Astrophysics Data System (ADS)

    Cardelli, Luca; Csikász-Nagy, Attila

    2012-09-01

    Both computational and biological systems have to make decisions about switching from one state to another. The `Approximate Majority' computational algorithm provides the asymptotically fastest way to reach a common decision by all members of a population between two possible outcomes, where the decision approximately matches the initial relative majority. The network that regulates the mitotic entry of the cell-cycle in eukaryotes also makes a decision before it induces early mitotic processes. Here we show that the switch from inactive to active forms of the mitosis promoting Cyclin Dependent Kinases is driven by a system that is related to both the structure and the dynamics of the Approximate Majority computation. We investigate the behavior of these two switches by deterministic, stochastic and probabilistic methods and show that the steady states and temporal dynamics of the two systems are similar and they are exchangeable as components of oscillatory networks.

  10. Cell Cycle and Cell Size Dependent Gene Expression Reveals Distinct Subpopulations at Single-Cell Level

    PubMed Central

    Dolatabadi, Soheila; Candia, Julián; Akrap, Nina; Vannas, Christoffer; Tesan Tomic, Tajana; Losert, Wolfgang; Landberg, Göran; Åman, Pierre; Ståhlberg, Anders

    2017-01-01

    Cell proliferation includes a series of events that is tightly regulated by several checkpoints and layers of control mechanisms. Most studies have been performed on large cell populations, but detailed understanding of cell dynamics and heterogeneity requires single-cell analysis. Here, we used quantitative real-time PCR, profiling the expression of 93 genes in single-cells from three different cell lines. Individual unsynchronized cells from three different cell lines were collected in different cell cycle phases (G0/G1 – S – G2/M) with variable cell sizes. We found that the total transcript level per cell and the expression of most individual genes correlated with progression through the cell cycle, but not with cell size. By applying the random forests algorithm, a supervised machine learning approach, we show how a multi-gene signature that classifies individual cells into their correct cell cycle phase and cell size can be generated. To identify the most predictive genes we used a variable selection strategy. Detailed analysis of cell cycle predictive genes allowed us to define subpopulations with distinct gene expression profiles and to calculate a cell cycle index that illustrates the transition of cells between cell cycle phases. In conclusion, we provide useful experimental approaches and bioinformatics to identify informative and predictive genes at the single-cell level, which opens up new means to describe and understand cell proliferation and subpopulation dynamics. PMID:28179914

  11. SUMOylation-mediated regulation of cell cycle progression and cancer

    PubMed Central

    Eifler, Karolin; Vertegaal, Alfred C.O.

    2016-01-01

    SUMOylation plays critical roles during cell cycle progression. Many important cell cycle regulators, including many oncogenes and tumor suppressors, are functionally regulated via SUMOylation. The dynamic SUMOylation pattern observed throughout the cell cycle is ensured via distinct spatial and temporal regulation of the SUMO machinery. Additionally, SUMOylation cooperates with other post-translational modifications to mediate cell cycle progression. Deregulation of these SUMOylation and deSUMOylation enzymes causes severe defects in cell proliferation and genome stability. Different types of cancers were recently shown to be dependent on a functioning SUMOylation system, a finding that could potentially be exploited in anti-cancer therapies. PMID:26601932

  12. Dynamics of Human Telomerase Holoenzyme Assembly and Subunit Exchange across the Cell Cycle.

    PubMed

    Vogan, Jacob M; Collins, Kathleen

    2015-08-28

    Human telomerase acts on telomeres during the genome synthesis phase of the cell cycle, accompanied by its concentration in Cajal bodies and transient colocalization with telomeres. Whether the regulation of human telomerase holoenzyme assembly contributes to the cell cycle restriction of telomerase function is unknown. We investigated the steady-state levels, assembly, and exchange dynamics of human telomerase subunits with quantitative in vivo cross-linking and other methods. We determined the physical association of telomerase subunits in cells blocked or progressing through the cell cycle as synchronized by multiple protocols. The total level of human telomerase RNA (hTR) was invariant across the cell cycle. In vivo snapshots of telomerase holoenzyme composition established that hTR remains bound to human telomerase reverse transcriptase (hTERT) throughout all phases of the cell cycle, and subunit competition assays suggested that hTERT-hTR interaction is not readily exchangeable. In contrast, the telomerase holoenzyme Cajal body-associated protein, TCAB1, was released from hTR in mitotic cells coincident with TCAB1 delocalization from Cajal bodies. This telomerase holoenzyme disassembly was reversible with cell cycle progression without any change in total TCAB1 protein level. Consistent with differential cell cycle regulation of hTERT-hTR and TCAB1-hTR protein-RNA interactions, overexpression of hTERT or TCAB1 had limited if any influence on hTR assembly of the other subunit. Overall, these findings revealed a cell cycle regulation that disables human telomerase association with telomeres while preserving the co-folded hTERT-hTR ribonucleoprotein catalytic core. Studies here, integrated with previous work, led to a unifying model for telomerase subunit assembly and trafficking in human cells.

  13. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells

    SciTech Connect

    Kim, Soon-hee; Park, Hee-Sook; Lee, Myoung-su; Cho, Yong-Jin; Kim, Young-Sup; Hwang, Jin-Taek; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young

    2008-07-18

    Inhibition of adipocyte differentiation is one approach among the anti-obesity strategies. This study demonstrates that vitisin A, a resveratrol tetramer, inhibits adipocyte differentiation most effectively of 18 stilbenes tested. Fat accumulation and PPAR{gamma} expression were decreased by vitisin A in a dose-dependent manner. Vitisin A significantly inhibited preadipocyte proliferation and consequent differentiation within the first 2 days of treatment, indicating that the anti-adipogenic effect of vitisin A was derived from anti-proliferation. Based on cell cycle analysis, vitisin A blocked the cell cycle at the G1-S phase transition, causing cells to remain in the preadipocyte state. Vitisin A increased p21 expression, while the Rb phosphorylation level was reduced. Therefore, vitisin A seems to induce G1 arrest through p21- and consequent Rb-dependent suppression of transcription. On the other hand, ERK and Akt signaling pathways were not involved in the anti-mitotic regulation by vitisin A. Taken together, these results suggest that vitisin A inhibits adipocyte differentiation through preadipocyte cell cycle arrest.

  14. Cadmium block of isometric contractions of isolated bullfrog atrial cells.

    PubMed

    Shepherd, N; Kavaler, F; Spielman, W

    1991-02-01

    We studied the effect of cadmium, verapamil, and quinacrine on the force of contraction (Fp) of isolated, single, field-stimulated bullfrog atrial cells. All agents were applied or removed rapidly (t1/2 approximately 15 ms) to minimize intracellular concentration changes other than intracellular calcium concentration. Two components of twitch force were observed, one blocked by micromolar Cd2+ and the other by millimolar Cd2+. The two contributed about equally to the activation of the twitch. The "cadmium-sensitive" portion of force (that affected by [Cd] less than or equal to 100 microM) had a K1/2 approximately 1 microM, was identical in magnitude to, and not additive with, a "verapamil-sensitive" (10 microM) component of force, was most strongly affected by 50-ms pulses of Cd2+ when they were applied in the mechanical latent period, and was potentiated by catecholamines. The cadmium-insensitive portion of force was abolished by the removal of extracellular calcium and was greatly potentiated by quinacrine (3 or 10 microM), a blocker of Na-Ca exchange. The results are consistent with the idea that activating calcium enters the cell via both an inactivating cadmium-sensitive L-type channel and a noninactivating cadmium-insensitive mechanism that is not Na-Ca exchange and leaves the cell via Na-Ca exchange.

  15. Indirect-fired gas turbine dual fuel cell power cycle

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  16. Somatic cell encystment promotes abscission in germline stem cells following a regulated block in cytokinesis.

    PubMed

    Lenhart, Kari F; DiNardo, Stephen

    2015-07-27

    In many tissues, the stem cell niche must coordinate behavior across multiple stem cell lineages. How this is achieved is largely unknown. We have identified delayed completion of cytokinesis in germline stem cells (GSCs) as a mechanism that regulates the production of stem cell daughters in the Drosophila testis. Through live imaging, we show that a secondary F-actin ring is formed through regulation of Cofilin activity to block cytokinesis progress after contractile ring disassembly. The duration of this block is controlled by Aurora B kinase. Additionally, we have identified a requirement for somatic cell encystment of the germline in promoting GSC abscission. We suggest that this non-autonomous role promotes coordination between stem cell lineages. These findings reveal the mechanisms by which cytokinesis is inhibited and reinitiated in GSCs and why such complex regulation exists within the stem cell niche.

  17. Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells.

    PubMed

    Chang, Hsin-Yi; Shih, Meng-Her; Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3-5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G(2)/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G(2)/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression.

  18. Glyphosate-based pesticides affect cell cycle regulation.

    PubMed

    Marc, Julie; Mulner-Lorillon, Odile; Bellé, Robert

    2004-04-01

    Cell-cycle dysregulation is a hallmark of tumor cells and human cancers. Failure in the cell-cycle checkpoints leads to genomic instability and subsequent development of cancers from the initial affected cell. A worldwide used product Roundup 3plus, based on glyphosate as the active herbicide, was suggested to be of human health concern since it induced cell cycle dysfunction as judged from analysis of the first cell division of sea urchin embryos, a recognized model for cell cycle studies. Several glyphosate-based pesticides from different manufacturers were assayed in comparison with Roundup 3plus for their ability to interfere with the cell cycle regulation. All the tested products, Amega, Cargly, Cosmic, and Roundup Biovert induced cell cycle dysfunction. The threshold concentration for induction of cell cycle dysfunction was evaluated for each product and suggests high risk by inhalation for people in the vicinity of the pesticide handling sprayed at 500 to 4000 times higher dose than the cell-cycle adverse concentration.

  19. Structure-activity relationship between carboxylic acids and T cell cycle blockade.

    PubMed

    Gilbert, Kathleen M; DeLoose, Annick; Valentine, Jimmie L; Fifer, E Kim

    2006-04-04

    This study was designed to examine the potential structure-activity relationship between carboxylic acids, histone acetylation and T cell cycle blockade. Toward this goal a series of structural homologues of the short-chain carboxylic acid n-butyrate were studied for their ability to block the IL-2-stimulated proliferation of cloned CD4+ T cells. The carboxylic acids were also tested for their ability to inhibit histone deacetylation. In addition, Western blotting was used to examine the relative capacity of the carboxlic acids to upregulate the cyclin kinase-dependent inhibitor p21cip1 in T cells. As shown earlier n-butyrate effectively inhibited histone deacetylation. The increased acetylation induced by n-butyrate was associated with the upregulation of the cyclin-dependent kinase inhibitor p21cip1 and the cell cycle blockade of CD4+ T cells. Of the other carboxylic acids studied, the short chain acids, C3-C5, without branching were the best inhibitors of histone deacetylase. This inhibition correlated with increased expression of the cell cycle blocker p21cip1, and the associated suppression of CD4+ T cell proliferation. The branched-chain carboxylic acids tested were ineffective in all the assays. These results underline the relationship between the ability of a carboxylic acid to inhibit histone deacetylation, and their ability to block T cell proliferation, and suggests that branching inhibits these effects.

  20. Effects of 3-(3,4-dichlorophenyl)-1,1-dimethylurea on the cell cycle in Euglena gracilis

    SciTech Connect

    Yee, Muhching; Bartholomew, J.C. )

    1989-11-01

    The cell cycle of the photosynthetic unicellular alga Euglena gracilis growing in phototrophic medium is regulated by light. To investigate the relationship of this cell cycle response to light stimulated photosynthesis, we have tested the effect of the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on Euglena cell cycle transit. While DCMU does not block light stimulated cells from entering the S phase of the cell cycle, it does inhibit the transit through G{sub 2}/M. The specificity of this response and its relationship to photosynthesis was studied by looking at the effect of DCMU on dark grown wild-type cells, and on two bleached variants of Euglena (W{sub 3}BUL and W{sub 10}BSmL) that lack chloroplasts. The drug does block G{sub 2}/M in these cells, but not entrance into the cell cycle. Our studies show that entrance of cells into the cell cycle from a quiescent state does not require active photosynthesis, and that DCMU has effects on G{sub 2}/M transit that are independent of the photosynthetic capacity of the cells.

  1. Block Copolymer Electrolytes: Thermodynamics, Ion Transport, and Use in Solid- State Lithium/Sulfur Cells

    NASA Astrophysics Data System (ADS)

    Teran, Alexander Andrew

    anode, the compatibility of the sulfur cathode was explored. The sulfur cathode presents many unique challenges, including the generation of soluble lithium polysulfides (Li2Sx, 2 ≤ x ≤ 8) during discharge. The solubility of such species in block copolymers and their effect on morphology was examined. The lithium polysulfides were found to exhibit similar solubility in the block copolymers as in typical organic electrolytes, however induced unusual and unexpected phase behavior in the block copolymers. Inspired by successful efforts to physically confine the soluble lithium polysulfides via nanostructured carbon-sulfur composites in the cathode, our nanostructured block copolymer electrolytes were employed in full electrochemical cells with a lithium metal anode and sulfur cathode. Different cathode compositions, electrolyte additives, and cell architectures were tested. Surprisingly, the polysulfides diffused readily from the cathode through the block copolymer electrolyte, and the normally robust SEO|Li metal interface was detrimentally affected their presence during cycling. The polysulfides appeared to change the mechanical properties of the electrolyte such that intimate contact with the lithium metal was lost. Several promising strategies to overcome this problem were investigated and offer exciting avenues for improvement for future researchers. (Abstract shortened by UMI.).

  2. Basal p21 controls population heterogeneity in cycling and quiescent cell cycle states

    PubMed Central

    Overton, K. Wesley; Spencer, Sabrina L.; Noderer, William L.; Meyer, Tobias; Wang, Clifford L.

    2014-01-01

    Phenotypic heterogeneity within a population of genetically identical cells is emerging as a common theme in multiple biological systems, including human cell biology and cancer. Using live-cell imaging, flow cytometry, and kinetic modeling, we showed that two states—quiescence and cell cycling—can coexist within an isogenic population of human cells and resulted from low basal expression levels of p21, a Cyclin-dependent kinase (CDK) inhibitor (CKI). We attribute the p21-dependent heterogeneity in cell cycle activity to double-negative feedback regulation involving CDK2, p21, and E3 ubiquitin ligases. In support of this mechanism, analysis of cells at a point before cell cycle entry (i.e., before the G1/S transition) revealed a p21–CDK2 axis that determines quiescent and cycling cell states. Our findings suggest a mechanistic role for p21 in generating heterogeneity in both normal tissues and tumors. PMID:25267623

  3. From the cell cycle to population cycles in phytoplankton-nutrient interactions

    SciTech Connect

    Pascual, M.; Caswell, H.

    1997-04-01

    The internal demographic structure of a population influences its dynamics and its response to the environment. Most models for phytoplankton ignore internal structure and group all cells in a single variable such as total biomass or density. However, a cell does have a life history, the cell division cycle. We investigate the significance of the cell cycle to phytoplankton population dynamics in a variable nutrient environment, using chemostate models. Following the transition point hypothesis, nutrient uptake affects cell development only within a limited segment of the cell cycle. Simulation results demonstrate oscillations in cell numbers and population structure generated by this interaction. When nutrient input is varied periodically, the population displays an aperiodic response with frequencies different from that of the forcing. These results also hold for a model that includes nutrient storage by the cells. These dynamics differ from those of traditional chemostate models and from cell cycle models driven by light cycles. Resource control of cell cycle progression may explain the time delays previously postulated to explain oscillatory transients in chemostate experiments. 78 refs., 22 figs.

  4. Centchroman induces redox-dependent apoptosis and cell-cycle arrest in human endometrial cancer cells.

    PubMed

    Shyam, Hari; Singh, Neetu; Kaushik, Shweta; Sharma, Ramesh; Balapure, Anil K

    2017-04-01

    Centchroman (CC) or Ormeloxifene has been shown to induce apoptosis and cell cycle arrest in various types of cancer cells. This has, however, not been addressed for endometrial cancer cells where its (CC) mechanism of action remains unclear. This study focuses on the basis of antineoplasticity of CC by blocking the targets involved in the cell cycle, survival and apoptosis in endometrial cancer cells. Ishikawa Human Endometrial Cancer Cells were cultured under estrogen deprived medium, exposed to CC and analyzed for proliferation and apoptosis. Additionally, we also analyzed oxidative stress induced by CC. Cell viability studies confirmed the IC50 of CC in Ishikawa cells to be 20 µM after 48 h treatment. CC arrests the cells in G0/G1 phase through cyclin D1 and cyclin E mediated pathways. Phosphatidylserine externalization, nuclear morphology changes, DNA fragmentation, PARP cleavage, and alteration of Bcl-2 family protein expression clearly suggest ongoing apoptosis in the CC treated cells. Activation of caspase 3 & 9, up-regulation of AIF and inhibition of apoptosis by z-VAD-fmk clearly explains the participation of the intrinsic pathway of programmed cell death. Further, the increase of ROS, loss of MMP, inhibition of antioxidant (MnSOD, Cu/Zn-SOD and GST) and inhibition of apoptosis with L-NAC suggests CC induced oxidative stress leading to apoptosis via mitochondria mediated pathway. Therefore, CC could be a potential therapeutic agent for the treatment of Endometrial Cancer adjunct to its utility as a contraceptive and an anti-breast cancer agent.

  5. Organic photovoltaic cell incorporating electron conducting exciton blocking layers

    SciTech Connect

    Forrest, Stephen R.; Lassiter, Brian E.

    2014-08-26

    The present disclosure relates to photosensitive optoelectronic devices including a compound blocking layer located between an acceptor material and a cathode, the compound blocking layer including: at least one electron conducting material, and at least one wide-gap electron conducting exciton blocking layer. For example, 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure increased power conversion efficiency is achieved, compared to an analogous device using a conventional blocking layers shown to conduct electrons via damage-induced midgap states.

  6. Paris Saponin I Sensitizes Gastric Cancer Cell Lines to Cisplatin via Cell Cycle Arrest and Apoptosis

    PubMed Central

    Song, Shuichuan; Du, Leiwen; Jiang, Hao; Zhu, Xinhai; Li, Jinhui; Xu, Ji

    2016-01-01

    Background Dose-related toxicity is the major restriction of cisplatin and cisplatin-combination chemotherapy, and is a challenge for advanced gastric cancer treatment. We explored the possibility of using Paris saponin I as an agent to sensitize gastric cancer cells to cisplatin, and examined the underlying mechanism. Material/Methods Growth inhibition was detected by MTT assay. The cell cycle and apoptosis were detected using flow cytometry and Annexin V/PI staining. The P21waf1/cip1, Bcl-2, Bax, and caspase-3 protein expression were detected using Western blot analysis. Results The results revealed that PSI sensitized gastric cancer cells to cisplatin, with low toxicity. The IC50 value of cisplatin in SGC-7901 cell lines was decreased when combined with PSI. PSI promoted cisplatin-induced G2/M phase arrest and apoptosis in a cisplatin concentration-dependent manner. Bcl-2 protein expression decreased, but Bax, caspase-3, and P21waf1/cip1 protein expression increased with PSI treatment. Conclusions The underlying mechanism of Paris saponin I may be related to targeting the apoptosis pathway and cell cycle blocking, which suggests that PSI is a potential therapeutic sensitizer for cisplatin in treating gastric cancer. PMID:27755523

  7. Cell cycle controls stress response and longevity in C. elegans

    PubMed Central

    Dottermusch, Matthias; Lakner, Theresa; Peyman, Tobias; Klein, Marinella; Walz, Gerd; Neumann-Haefelin, Elke

    2016-01-01

    Recent studies have revealed a variety of genes and mechanisms that influence the rate of aging progression. In this study, we identified cell cycle factors as potent regulators of health and longevity in C. elegans. Focusing on the cyclin-dependent kinase 2 (cdk-2) and cyclin E (cye-1), we show that inhibition of cell cycle genes leads to tolerance towards environmental stress and longevity. The reproductive system is known as a key regulator of longevity in C. elegans. We uncovered the gonad as the central organ mediating the effects of cell cycle inhibition on lifespan. In particular, the proliferating germ cells were essential for conferring longevity. Steroid hormone signaling and the FOXO transcription factor DAF-16 were required for longevity associated with cell cycle inhibition. Furthermore, we discovered that SKN-1 (ortholog of mammalian Nrf proteins) activates protective gene expression and induces longevity when cell cycle genes are inactivated. We conclude that both, germline absence and inhibition through impairment of cell cycle machinery results in longevity through similar pathways. In addition, our studies suggest further roles of cell cycle genes beyond cell cycle progression and support the recently described connection of SKN-1/Nrf to signals deriving from the germline. PMID:27668945

  8. The molecular basis of carcinogenesis: understanding the cell cycle clock.

    PubMed

    Weinberg, R A

    1996-06-01

    The cell cycle clock is the central controller of cell proliferation that governs the progress of the cell through its growth cycle, its exit from the active cycle, and its decision to differentiate. Components of the clock are found to be functioning in an aberrant fashion in many types of malignancies. Notable among these is the retinoblastoma protein, pRB, which acts to restrain proliferation in normal cells and suffers inactivation in many types of tumour cells. Its activity is controlled by D-type cyclins in various cell types. We have deleted one of these cyclins--cyclin D1--from the mouse germline and find that its absence leads to a limited range of defects including hypoplastic retinae and the inability of the mammary epithelium to respond to pregnancy-associated hormonal stimulation. Cyclin D1 is overexpressed in many human breast cancers, pointing to a highly specific association of this cell cycle clock component with mammary cell proliferation.

  9. Cell cycle analysis by flow cytometry: principles and applications.

    PubMed

    Jayat, C; Ratinaud, M H

    1993-01-01

    Numerous flow cytometric analyses are based on DNA content studies. We have considered firstly monoparametric cell cycle analyses, which only take DNA content into account, but are sometimes of limited interest. Then, we have presented multiparametric analyses, which can be used to improve cycle phase identification by taking simultaneously into account DNA and other cellular components, or by considering some events occurring during cell cycle. Finally, we have discussed monoparametric and multiparametric cell cycle analysis interest in various application fields, particularly in pharmacology, toxicology, tumoral pathology and higher plant system studies.

  10. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.; Prusty, D.; Sun, Z.; Betensky, H.; Wang, N.

    1995-01-01

    Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthetic integrin ligand (RGD-containing peptide), cell spreading, nuclear extension, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12-15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally 'anchorage-dependent' endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25-1000 ng ml-1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml-1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed

  11. Genetic instability in cancer cells by impaired cell cycle checkpoints.

    PubMed

    Nakanishi, Makoto; Shimada, Midori; Niida, Hiroyuki

    2006-10-01

    Cells continuously encounter DNA damage caused either by damaging agents, including oxygen radicals and DNA replication errors caused by stalled replication forks, or by extracellular environments such as ultraviolet or ionizing irradiation. Such DNA damage poses a great threat to genome stability, potentially leading to loss or amplification of chromosome activity, which may result in cellular senescence, cancer or apoptosis. The DNA damage checkpoints coordinate an arrest in cell cycle progression with the DNA repair process, suppressing either mitotic catastrophe or proliferation of cells with damaged DNA. Numerous key players have been identified in terms of damage sensor proteins, transducer kinases and effectors, but their coordination and interconnectedness in damage control have only recently become evident. In this review, we discuss changes in chromatin structure, recruitment of mediator proteins and activation of transducer kinases in response to DNA damage. These cellular responses are important for determining the potential effects of current cancer therapies in terms of toxicity and efficacy.

  12. The nuclear chloride ion channel NCC27 is involved in regulation of the cell cycle

    PubMed Central

    Valenzuela, Stella M; Mazzanti, Michele; Tonini, Raffaella; Qiu, Min Ru; Warton, Kristina; Musgrove, Elizabeth A; Campbell, Terence J; Breit, Samuel N

    2000-01-01

    NCC27 is a nuclear chloride ion channel, identified in the PMA-activated U937 human monocyte cell line. NCC27 mRNA is expressed in virtually all cells and tissues and the gene encoding NCC27 is also highly conserved. Because of these factors, we have examined the hypothesis that NCC27 is involved in cell cycle regulation. Electrophysiological studies in Chinese hamster ovary (CHO-K1) cells indicated that NCC27 chloride conductance varied according to the stage of the cell cycle, being expressed only on the plasma membrane of cells in G2/M phase. We also demonstrate that Cl− ion channel blockers known to block NCC27 led to arrest of CHO-K1 cells in the G2/M stage of the cell cycle, the same stage at which this ion channel is selectively expressed on the plasma membrane. These data strongly support the hypothesis that NCC27 is involved, in some as yet undetermined manner, in regulation of the cell cycle. PMID:11195932

  13. Life cycle testing of sodium/sulfur satellite battery cells

    NASA Astrophysics Data System (ADS)

    Flake, Richard A.

    Test results on sodium sulfur cells developed presently by the Air Force for NaS rechargeable batteries for baseload power applications are summarized. Cycle life data are presented on fourteen cells, some of which have accumulated more than 1900 days on test and/or more than 6000 cycles. Results demonstrated cycle life times to be sufficient for use on satellites in high-altitude orbits.

  14. Characteristics and Behavior of Cycled Aged Lithium Ion Cells

    DTIC Science & Technology

    2010-01-01

    service cycle and provide the cornerstone for safety analysis. 18650 Cells with representative chemistry of cells contained in current Army procured...their relevance to this effort warrants inclusion. 1-3 EXPERIMENTAL Representative 18650 cells were cycled at different rates and environmental...conditions. The 18650 chemistry used in this effort is a LiCoO2 lithium ion electrochemical cell. The bulk of this effort was conducted with 1.5 Amp-hr

  15. Jungermannenone A and B induce ROS- and cell cycle-dependent apoptosis in prostate cancer cells in vitro

    PubMed Central

    Guo, Yan-xia; Lin, Zhao-min; Wang, Mei-juan; Dong, Yi-wen; Niu, Huan-min; Young, Charles YF; Lou, Hong-xiang; Yuan, Hui-qing

    2016-01-01

    Aim: Jungermannenone A and B (JA, JB) are new ent-kaurane diterpenoids isolated from Chinese liverwort Jungermannia fauriana, which show anti-proliferation activities in cancer cells. In this study we investigated the mechanisms underlying the anticancer action of JA and JB in PC3 human prostate cancer cells in vitro. Methods: A panel of 9 human cancer cell lines was tested. Cell proliferation was assessed with a real-time cell analyzer and MTT assay. Cell apoptosis, cell cycle distribution and ROS levels were measured using cytometry. Mitochondrial damage was examined by transmission electron microscopy. DNA damage was detected with comet assay. Apoptotic, DNA damage- and cell cycle-related proteins were analyzed using Western blotting. The expression of DNA repair genes was measured with qRT-PCR. Results: Both JA and JB exerted potent anti-proliferative action against the 9 cancer cell lines, and PC3 cells were more sensitive with IC50 values of 1.34±0.09 and 4.93±0.20 μmol/L, respectively. JA (1.5 μmol/L) and JB (5 μmol/L) induced PC3 cell apoptosis, which was attenuated by the caspase inhibitor Z-VAD. Furthermore, both JA and JB caused mitochondrial damage and ROS accumulation in PC3 cells, whereas vitamin C blocked the ROS accumulation and attenuated the cytotoxicity of JA and JB. Moreover, both JA and JB induced DNA damage, accompanied by downregulated DNA repair proteins Ku70/Ku80 and RDA51. JA induced marked cell cycle arrest at the G0/G1 phase, which was related to c-Myc suppression, whereas JB enforced the cell cycle blockade in the G2/M phase, which associated with activation of the JNK signaling. Conclusion: Both JA and JB induce prostate cancer apoptosis via ROS accumulation and induction of cell cycle arrest. PMID:27133304

  16. Regulatory pathways coordinating cell cycle progression in early Xenopus development.

    PubMed

    Gotoh, Tetsuya; Villa, Linda M; Capelluto, Daniel G S; Finkielstein, Carla V

    2011-01-01

    The African clawed frog, Xenopus laevis, is used extensively as a model organism for studying both cell development and cell cycle regulation. For over 20 years now, this model organism has contributed to answering fundamental questions concerning the mechanisms that underlie cell cycle transitions--the cellular components that synthesize, modify, repair, and degrade nucleic acids and proteins, the signaling pathways that allow cells to communicate, and the regulatory pathways that lead to selective expression of subsets of genes. In addition, the remarkable simplicity of the Xenopus early cell cycle allows for tractable manipulation and dissection of the basic components driving each transition. In this organism, early cell divisions are characterized by rapid cycles alternating phases of DNA synthesis and division. The post-blastula stages incorporate gap phases, lengthening progression, and allowing more time for DNA repair. Various cyclin/Cdk complexes are differentially expressed during the early cycles with orderly progression being driven by both the combined action of cyclin synthesis and degradation and the appropriate selection of specific substrates by their Cdk components. Like other multicellular organisms, chief developmental events in early Xenopus embryogenesis coincide with profound remodeling of the cell cycle, suggesting that cell proliferation and differentiation events are linked and coordinated through crosstalk mechanisms acting on signaling pathways involving the expression of cell cycle control genes.

  17. Label-free determination of the cell cycle phase in human embryonic stem cells by Raman microspectroscopy.

    PubMed

    Konorov, Stanislav O; Schulze, H Georg; Piret, James M; Blades, Michael W; Turner, Robin F B

    2013-10-01

    The cell cycle is a series of integrated and coordinated physiological events that results in cell growth and replication. Besides observing the event of cell division it is not feasible to determine the cell cycle phase without fatal and/or perturbing invasive procedures such as cell staining, fixing, and/or dissociation. Raman microspectroscopy (RMS) is a chemical imaging technique that exploits molecular vibrations as a contrast mechanism; it can be applied to single living cells noninvasively to allow unperturbed analysis over time. We used RMS to determine the cell cycle phase based on integrating the composite 783 cm(-1) nucleic acid band intensities across individual cell nuclei. After correcting for RNA contributions using the RNA 811 cm(-1) band, the measured intensities essentially reflected DNA content. When quantifying Raman images from single cells in a population of methanol-fixed human embryonic stem cells, the histogram of corrected 783 cm(-1) band intensities exhibited a profile analogous to that obtained using flow-cytometry with nuclear stains. The two population peaks in the histogram occur at Raman intensities corresponding to a 1-fold and 2-fold diploid DNA complement per cell, consistent with a distribution of cells with a population peak due to cells at the end of G1 phase (1-fold) and a peak due to cells entering M phase (2-fold). When treated with EdU to label the replicating DNA and block cell division, cells with higher EdU-related fluorescence generally had higher integrated Raman intensities. This provides proof-of-principle of an analytical method for label-free RMS determination in situ of cell cycle phase in adherent monolayers or even single adherent cells.

  18. AMPK Causes Cell Cycle Arrest in LKB1-deficient Cells via Activation of CAMKK2

    PubMed Central

    Fogarty, Sarah; Ross, Fiona A.; Ciruelos, Diana Vara; Gray, Alexander; Gowans, Graeme J.; Hardie, D. Grahame

    2017-01-01

    The AMP-activated protein kinase (AMPK) is activated by phosphorylation at Thr172, either by the tumor suppressor kinase LKB1 or by an alternate pathway involving the Ca2+/calmodulin-dependent kinase, CAMKK2. Increases in AMP:ATP and ADP:ATP ratios, signifying energy deficit, promote allosteric activation and net Thr172 phosphorylation mediated by LKB1, so that the LKB1-AMPK pathway acts as an energy sensor. Many tumor cells carry loss-of-function mutations in the STK11 gene encoding LKB1, but LKB1 re-expression in these cells causes cell cycle arrest. Therefore, it was investigated as to whether arrest by LKB1 is caused by activation of AMPK or of one of the AMPK-related kinases, which are also dependent on LKB1 but are not activated by CAMKK2. In three LKB1-null tumor cell lines, treatment with the Ca2+ ionophore A23187 caused a G1-arrest that correlated with AMPK activation and Thr172 phosphorylation. In G361 cells, expression of a truncated, CAMKK2 mutant also caused G1-arrest similar to that caused by expression of LKB1, while expression of a dominant negative AMPK mutant, or a double knockout of both AMPK-α subunits, also prevented the cell cycle arrest caused by A23187. These mechanistic findings confirm that AMPK activation triggers cell cycle arrest, and also suggest that the rapid proliferation of LKB1-null tumor cells is due to lack of the restraining influence of AMPK. However, cell cycle arrest can be restored by re-expressing LKB1 or a constitutively active CAMKK2, or by pharmacological agents that increase intracellular Ca2+ and thus activate endogenous CAMKK2. Implications Evidence here reveals that the rapid growth and proliferation of cancer cells lacking the tumor suppressor LKB1 is due to reduced activity of AMPK, and suggests a therapeutic approach by which this block might be circumvented. PMID:27141100

  19. CXCR7 Participates in CXCL12-mediated Cell Cycle and Proliferation Regulation in Mouse Neural Progenitor Cells

    PubMed Central

    Wang, Y.; Xu, P.; Qiu, L.; Zhang, M.; Huang, Y.; Zheng, J.C.

    2016-01-01

    Background: Cell cycle regulation of neural progenitor cells (NPCs) is an essential process for neurogenesis, neural development, and repair after brain trauma. Stromal cell-derived factor-1 (SDF-1, CXCL12) and its receptors CXCR4 and CXCR7 are well known in regulating the migration and survival of NPCs. The effects of CXCL12 on NPCs proliferation, cell cycle regulation, and their associated signaling pathways remain unclear. Cyclin D1 is a protein required for progression through the G1 phase of the cell cycle and a known downstream target of β-catenin. Therefore, cyclin D1 plays critical roles of cell cycle regulation, proliferation, and survival in NPCs. Methods: Primary mouse NPCs (mNPCs) were derived from brain tissues of wild-type, Cxcr4 knockout, or Cxcr7 knockout mice at mouse embryonic day 13.5 (E13.5). Flow cytometry was used to perform cell cycle analysis by quantitation of DNA content. Real-time PCR and Western blot were used to evaluate mRNA and protein expressions, respectively. Ki67 immunostaining and TUNEL assay were used to assess the proliferation and survival of mNPCs, respectively. Results: CXCL12 pretreatment led to the shortening of G0/G1 phase and lengthening of S phase, suggesting that CXCL12 regulates cell cycle progression in mNPCs. Consistently, CXCL12 treatment increased the expression of CyclinD1 and β-catenin, and promoted proliferation and survival of mNPCs. Cxcr7 knockout of mNPCs blocked CXCL12-mediated mNPCs proliferation, whereas Cxcr4 knockout mNPC did not significantly effect CXCL12- mediated mNPCs proliferation. Conclusion: CXCR7 plays an important role in CXCL12-mediated mNPC cell cycle regulation and proliferation. PMID:27573194

  20. Intracellular calcium signals regulate growth of hepatic stellate cells via specific effects on cell cycle progression.

    PubMed

    Soliman, Elwy M; Rodrigues, Michele Angela; Gomes, Dawidson Assis; Sheung, Nina; Yu, Jin; Amaya, Maria Jimina; Nathanson, Michael H; Dranoff, Jonathan A

    2009-03-01

    Hepatic stellate cells (HSC) are important mediators of liver fibrosis. Hormones linked to downstream intracellular Ca(2+) signals upregulate HSC proliferation, but the mechanisms by which this occurs are unknown. Nuclear and cytosolic Ca(2+) signals may have distinct effects on cell proliferation, so we expressed plasmid and adenoviral constructs containing the Ca(2+) chelator parvalbumin (PV) linked to either a nuclear localization sequence (NLS) or a nuclear export sequence (NES) to block Ca(2+) signals in distinct compartments within LX-2 immortalized human HSC and primary rat HSC. PV-NLS and PV-NES constructs each targeted to the appropriate intracellular compartment and blocked Ca(2+) signals only within that compartment. PV-NLS and PV-NES constructs inhibited HSC growth. Furthermore, blockade of nuclear or cytosolic Ca(2+) signals arrested growth at the G2/mitosis (G2/M) cell-cycle interface and prevented the onset of mitosis. Blockade of nuclear or cytosolic Ca(2+) signals downregulated phosphorylation of the G2/M checkpoint phosphatase Cdc25C. Inhibition of calmodulin kinase II (CaMK II) had identical effects on LX-2 growth and Cdc25C phosphorylation. We propose that nuclear and cytosolic Ca(2+) are critical signals that regulate HSC growth at the G2/M checkpoint via CaMK II-mediated regulation of Cdc25C phosphorylation. These data provide a new logical target for pharmacological therapy directed against progression of liver fibrosis.

  1. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    ERIC Educational Resources Information Center

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  2. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy.

    PubMed

    Liu, Juntao; Mao, Zhangfan; Huang, Jie; Xie, Songping; Liu, Tianshu; Mao, Zhifu

    2014-02-21

    Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133- cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133- cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G2/M phase, and there were half as many cells in S phase compared with the CD133- cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were enhanced when combined with GSI. Interestingly, this effect was especially significant in CD133+ cells, suggesting that Notch pathway blockade may be a useful CSC-targeted therapy in lung cancer.

  3. Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy.

    PubMed

    Tasdemir, Ezgi; Maiuri, M Chiara; Tajeddine, Nicolas; Vitale, Ilio; Criollo, Alfredo; Vicencio, José Miguel; Hickman, John A; Geneste, Olivier; Kroemer, Guido

    2007-09-15

    When added to cells, a variety of autophagy inducers that operate through distinct mechanisms and target different organelles for autophagic destruction (mitochondria in mitophagy, endoplasmic reticulum in reticulophagy) rarely induce autophagic vacuolization in more than 50% or the cells. Here we show that this heterogeneity may be explained by cell cycle-specific effects. The BH3 mimetic ABT737, lithium, rapamycin, tunicamycin or nutrient depletion stereotypically induce autophagy preferentially in the G(1) and S phases of the cell cycle, as determined by simultaneous monitoring of cell cycle markers and the cytoplasmic aggregation of GFP-LC3 in autophagic vacuoles. These results point to a hitherto neglected crosstalk between autophagic vacuolization and cell cycle regulation.

  4. Flow cytometry methods for the study of cell-cycle parameters of planarian stem cells.

    PubMed

    Kang, Hara; Sánchez Alvarado, Alejandro

    2009-05-01

    Due to their characteristic inaccessibility and low numbers, little is known about the cell-cycle dynamics of most stem cells in vivo. A powerful, established methodology to study cell-cycle dynamics is flow cytometry, which is used routinely to study the cell-cycle dynamics of proliferating cells in vitro. Its use in heterogeneous mixtures of cells obtained from whole animals, however, is complicated by the relatively low abundance of cycling to non-cycling cells. We report on flow cytometric methods that take advantage of the abundance of proliferating stem cells in the planarian Schmidtea mediterranea. The optimized protocols allow us to measure cell-cycle dynamics and follow BrdU-labeled cells specifically in complex mixtures of cells. These methods expand on the growing toolkit being developed to study stem cell biology in planarians, and open the door to detailed cytometric studies of a collectively totipotent population of adult stem cells in vivo.

  5. Cycle life test. [of secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1977-01-01

    Statistical information concerning cell performance characteristics and limitations of secondary spacecraft cells is presented. Weaknesses in cell design as well as battery weaknesses encountered in various satellite programs are reported. Emphasis is placed on improving the reliability of space batteries.

  6. Cell cycle control, checkpoint mechanisms, and genotoxic stress.

    PubMed Central

    Shackelford, R E; Kaufmann, W K; Paules, R S

    1999-01-01

    The ability of cells to maintain genomic integrity is vital for cell survival and proliferation. Lack of fidelity in DNA replication and maintenance can result in deleterious mutations leading to cell death or, in multicellular organisms, cancer. The purpose of this review is to discuss the known signal transduction pathways that regulate cell cycle progression and the mechanisms cells employ to insure DNA stability in the face of genotoxic stress. In particular, we focus on mammalian cell cycle checkpoint functions, their role in maintaining DNA stability during the cell cycle following exposure to genotoxic agents, and the gene products that act in checkpoint function signal transduction cascades. Key transitions in the cell cycle are regulated by the activities of various protein kinase complexes composed of cyclin and cyclin-dependent kinase (Cdk) molecules. Surveillance control mechanisms that check to ensure proper completion of early events and cellular integrity before initiation of subsequent events in cell cycle progression are referred to as cell cycle checkpoints and can generate a transient delay that provides the cell more time to repair damage before progressing to the next phase of the cycle. A variety of cellular responses are elicited that function in checkpoint signaling to inhibit cyclin/Cdk activities. These responses include the p53-dependent and p53-independent induction of Cdk inhibitors and the p53-independent inhibitory phosphorylation of Cdk molecules themselves. Eliciting proper G1, S, and G2 checkpoint responses to double-strand DNA breaks requires the function of the Ataxia telangiectasia mutated gene product. Several human heritable cancer-prone syndromes known to alter DNA stability have been found to have defects in checkpoint surveillance pathways. Exposures to several common sources of genotoxic stress, including oxidative stress, ionizing radiation, UV radiation, and the genotoxic compound benzo[a]pyrene, elicit cell cycle

  7. Differential response of cell-cycle and cell-expansion regulators to heat stress in apple (Malus domestica) fruitlets.

    PubMed

    Flaishman, Moshe A; Peles, Yuval; Dahan, Yardena; Milo-Cochavi, Shira; Frieman, Aviad; Naor, Amos

    2015-04-01

    Temperature is one of the most significant factors affecting physiological and biochemical aspects of fruit development. Current and progressing global warming is expected to change climate in the traditional deciduous fruit tree cultivation regions. In this study, 'Golden Delicious' trees, grown in a controlled environment or commercial orchard, were exposed to different periods of heat treatment. Early fruitlet development was documented by evaluating cell number, cell size and fruit diameter for 5-70 days after full bloom. Normal activities of molecular developmental and growth processes in apple fruitlets were disrupted under daytime air temperatures of 29°C and higher as a result of significant temporary declines in cell-production and cell-expansion rates, respectively. Expression screening of selected cell cycle and cell expansion genes revealed the influence of high temperature on genetic regulation of apple fruitlet development. Several core cell-cycle and cell-expansion genes were differentially expressed under high temperatures. While expression levels of B-type cyclin-dependent kinases and A- and B-type cyclins declined moderately in response to elevated temperatures, expression of several cell-cycle inhibitors, such as Mdwee1, Mdrbr and Mdkrps was sharply enhanced as the temperature rose, blocking the cell-cycle cascade at the G1/S and G2/M transition points. Moreover, expression of several expansin genes was associated with high temperatures, making them potentially useful as molecular platforms to enhance cell-expansion processes under high-temperature regimes. Understanding the molecular mechanisms of heat tolerance associated with genes controlling cell cycle and cell expansion may lead to the development of novel strategies for improving apple fruit productivity under global warming.

  8. On the link between cell cycle and infection of the Alphaproteobacterium Brucella abortus

    PubMed Central

    Deghelt, Michaël; Letesson, Jean-Jacques; De Bolle, Xavier

    2014-01-01

    Bacteria of the Brucella genus are responsible for brucellosis, a worldwide zoonosis. These bacteria are known to have a peculiar intracellular trafficking, with a first long and non-proliferative endosomal stage and a second proliferation stage, often associated with its localization of the bacteria in the endoplasmic reticulum (ER). However, the status of the bacterial cell cycle during the non-proliferative phase was still unknown. In a recent study [Nat. Communic. 5:4366], we followed the cell cycle of B. abortus in culture and inside the host cells. In culture, B. abortus initiates the replication of its large chromosome before the small chromosome. The origin and terminator regions of these two chromosomes display distinct localization and dynamics within B. abortus. In HeLa cells and RAW264.7 macrophages, the bacteria in G1 (i.e. before the initiation of chromosomes replication) are preferentially found during the endosomal stage of the infection. During this period, growth is also arrested. The cell cycle arrest and resume during the B. abortus trafficking in host cell suggest that like the model Alphaproteobacterium Caulobacter crescentus, these bacteria are able to block their cell cycle at the G1 phase when starvation is sensed. PMID:28357212

  9. Transposition of the yeast retroviruslike element Ty3 is dependent on the cell cycle.

    PubMed Central

    Menees, T M; Sandmeyer, S B

    1994-01-01

    Host cell cycle genes provide important functions to retroviruses and retroviruslike elements. To define some of these functions, the cell cycle dependence of transposition of the yeast retroviruslike element Ty3 was examined. Ty3 is unique among retroviruslike elements because of the specificity of its integration, which occurs upstream of genes transcribed by RNA polymerase III. A physical assay for Ty3 transposition which takes advantage of this position-specific integration was developed. The assay uses PCR to amplify a product of Ty3 integration into a target plasmid that carries a modified tRNA gene. By using the GAL1 upstream activating sequence to regulate expression of Ty3, transposition was detected within one generation of cell growth after Ty3 transcription was initiated. This physical assay was used to show that Ty3 did not transpose when yeast cells were arrested in G1 during treatment with the mating pheromone alpha-factor. The restriction of transposition was not due to changes in transcription of either Ty3 or tRNA genes or to aspects of the mating pheromone response unrelated to cell cycle arrest. The block of the Ty3 life cycle was reversed when cells were released from G1 arrest. Examination of Ty3 intermediates during G1 arrest indicated that Ty3 viruslike particles were present but that reverse transcription of the Ty3 genomic RNA into double-stranded DNA had not occurred. In G1, the Ty3 life cycle is blocked after particle assembly but before the completion of reverse transcription. Images PMID:7969160

  10. Calcium-dependent deceleration of the cell cycle in muscle cells by simulated microgravity.

    PubMed

    Benavides Damm, Tatiana; Richard, Stéphane; Tanner, Samuel; Wyss, Fabienne; Egli, Marcel; Franco-Obregón, Alfredo

    2013-05-01

    Of all our mechanosensitive tissues, skeletal muscle is the most developmentally responsive to physical activity. Conversely, restricted mobility due to injury or disease results in muscle atrophy. Gravitational force is another form of mechanical input with profound developmental consequences. The mechanical unloading resulting from the reduced gravitational force experienced during spaceflight results in oxidative muscle loss. We examined the early stages of myogenesis under conditions of simulated microgravity (SM). C2C12 mouse myoblasts in SM proliferated more slowly (2.23× less) as a result of their being retained longer within the G2/M phase of the cell cycle (2.10× more) relative to control myoblasts at terrestrial gravity. Blocking calcium entry via TRP channels with SKF-96365 (10-20 μM) accumulated myoblasts within the G2/M phase of the cell cycle and retarded their proliferation. On the genetic level, SM resulted in the reduced expression of TRPC1 and IGF-1 isoforms, transcriptional events regulated by calcium downstream of mechanical input. A decrease in TRPC1-mediated calcium entry thus appears to be a pivotal event in the muscle atrophy brought on by gravitational mechanical unloading. Hence, relieving the constant force of gravity on cells might prove one valid experimental approach to expose the underlying mechanisms modulating mechanically regulated developmental programs.

  11. Disconnected circadian and cell cycles in a tumor-driven cell line.

    PubMed

    Pendergast, Julie S; Yeom, Mijung; Reyes, Bryan A; Ohmiya, Yoshihiro; Yamazaki, Shin

    2010-11-01

    Cell division occurs at a specific time of day in numerous species, suggesting that the circadian and cell cycles are coupled in vivo. By measuring the cell cycle rhythm in real-time, we recently showed that the circadian and cell cycles are not coupled in immortalized fibroblasts, resulting in a rapid rate of cell division even though the circadian rhythm is normal in these cells. Here we report that tumor-driven Lewis lung carcinoma (LLC) cells have perfectly temperature compensated circadian clocks, but the periods of their cell cycle gene expression rhythms are temperature-dependent, suggesting that their circadian and cell cycles are not connected. These data support our hypothesis that decoupling of the circadian and cell cycles may underlie aberrant cell division in tumor cells.

  12. Lobaplatin arrests cell cycle progression, induces apoptosis and alters the proteome in human cervical cancer cell Line CaSki.

    PubMed

    Li, Xiaoqin; Ran, Li; Fang, Wen; Wang, Donghong

    2014-04-01

    Cervical cancer is one of the most common gynecologic tumors. There is an upward trend in the incidence. The objective of this research was to explore the effect of lobaplatin on cervical cancer CaSki cells proliferation, cell cycle and apoptosis and analysis of the differential expressed proteins of CaSki cells after exposed to lobaplatin. Our findings have shown that lobaplatin inhibits cell proliferations in human cervical cancer CaSki cells in dose- and time-dependent manner. Flow cytometry assay confirmed that lobaplatin affected cervical cancer cell survival by blocking cell cycle progression in S phase and G0/G1 phase and inducing apoptosis in dose- and time-dependent manner. Lobaplatin treatment reduced polypyrimidine tract-binding protein 2, ribose-phosphate pyrophosphokinase, hypothetical protein, terminal uridylyltransferase 7, ubiquitin specific protease 16 and heterogeneous nuclear ribonucleoprotein A2/B1 expression and increase zinc finger protein 91, zinc finger protein, C-X-C motif chemokine 10 precursor, stromal cell protein and laminin subunit alpha-4 expression. Some of the differentially expressed proteins may be associated with antitumor effect of lobaplatin. Lobaplatin showed a good antitumour activity in in vitro models of human cervical cancer cells. These results indicate that lobaplatin could be an effective chemotherapeutic agent in human cervical cancer treatment by inducing apoptosis, cell cycle arrest and changing many kinds of protein molecule expression level.

  13. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    SciTech Connect

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  14. Ca2+ signaling, genes and the cell cycle

    PubMed Central

    Machaca, Khaled

    2013-01-01

    Changes in the concentration and spatial distribution of Ca2+ ions in the cytoplasm constitute a ubiquitous intracellular signaling module in cellular physiology. With the advent of Ca2+ dyes that allow direct visualization of Ca2+ transients, combined with powerful experimental tools such as electrophysiological recordings, intracellular Ca2+ transients have been implicated in practically every aspect of cellular physiology, including cellular proliferation. Ca2+ signals are associated with different phases of the cell cycle and interfering with Ca2+ signaling or downstream pathways often disrupts progression of the cell cycle. Although there exists a dependence between Ca2+ signals and the cell cycle the mechanisms involved are not well defined and given the cross-talk between Ca2+ and other signaling modules, it is difficult to assess the exact role of Ca2+ signals in cell cycle progression. Two exceptions however, include fertilization and T-cell activation, where well-defined roles for Ca2+ signals in mediating progression through specific stages of the cell cycle have been clearly established. In the case of T-cell activation Ca2+ regulates entry into the cell cycle through the induction of gene transcription. PMID:21084120

  15. Impact of the cell division cycle on gene circuits

    NASA Astrophysics Data System (ADS)

    Bierbaum, Veronika; Klumpp, Stefan

    2015-12-01

    In growing cells, protein synthesis and cell growth are typically not synchronous, and, thus, protein concentrations vary over the cell division cycle. We have developed a theoretical description of genetic regulatory systems in bacteria that explicitly considers the cell division cycle to investigate its impact on gene expression. We calculate the cell-to-cell variations arising from cells being at different stages in the division cycle for unregulated genes and for basic regulatory mechanisms. These variations contribute to the extrinsic noise observed in single-cell experiments, and are most significant for proteins with short lifetimes. Negative autoregulation buffers against variation of protein concentration over the division cycle, but the effect is found to be relatively weak. Stronger buffering is achieved by an increased protein lifetime. Positive autoregulation can strongly amplify such variation if the parameters are set to values that lead to resonance-like behaviour. For cooperative positive autoregulation, the concentration variation over the division cycle diminishes the parameter region of bistability and modulates the switching times between the two stable states. The same effects are seen for a two-gene mutual-repression toggle switch. By contrast, an oscillatory circuit, the repressilator, is only weakly affected by the division cycle.

  16. Chloroquine Sensitizes Nasopharyngeal Carcinoma Cells but Not Nasoepithelial Cells to Irradiation by Blocking Autophagy

    PubMed Central

    Makowska, Anna; Eble, Michael; Prescher, Kirsten; Hoß, Mareike; Kontny, Udo

    2016-01-01

    Background Treatment of nasopharyngeal carcinoma requires the application of high dosages of radiation, leading to severe long-term complications in the majority of patients. Sensitizing tumor cells to radiation could be a means to increase the therapeutic window of radiation. Nasopharyngeal carcinoma cells display alterations in autophagy and blockade of autophagy has been shown to sensitize them against chemotherapy. Methods We investigated the effect of chloroquine, a known inhibitor of autophagy, on sensitization against radiation-induced apoptosis in a panel of five nasopharyngeal carcinoma cell lines and a SV40-transformed nasoepithelial cell line. Autophagy was measured by immunoblot of autophagy-related proteins, immunofluorescence of autophagosomic microvesicles and electron microscopy. Autophagy was blocked by siRNA against autophagy-related proteins 3, 5, 6 and 7 (ATG3, ATG5, ATG6 and ATG7). Results Chloroquine sensitized four out of five nasopharyngeal cancer cell lines towards radiation-induced apoptosis. The sensitizing effect was based on the blockade of autophagy as inhibition of ATG3, ATG5, ATG6 and ATG7 by specific siRNA could substitute for the effect of chloroquine. No sensitization was seen in nasoepithelial cells. Conclusion Chloroquine sensitizes nasopharyngeal carcinoma cells but not nasoepithelial cells towards radiation-induced apoptosis by blocking autophagy. Further studies in a mouse-xenograft model are warranted to substantiate this effect in vivo. PMID:27902742

  17. The molecular mechanism of G2/M cell cycle arrest induced by AFB1 in the jejunum

    PubMed Central

    Yin, Heng; Jiang, Min; Peng, Xi; Cui, Hengmin; Zhou, Yi; He, Min; Zuo, Zhicai; Ouyang, Ping; Fan, Junde; Fang, Jing

    2016-01-01

    Aflatoxin B1 (AFB1) has potent hepatotoxic, carcinogenic, genotoxic, immunotoxic and other adverse effects in human and animals. The aim of this study was to investigate the molecular mechanism of G2/M cell cycle arrest induced by AFB1 in the jejunum of broilers. Broilers, as experimental animals, were fed 0.6 mg/kg AFB1 diet for 3 weeks. Our results showed that AFB1 reduced the jejunal villus height, villus height/crypt ratio and caused G2/M cell cycle arrest. The G2/M cell cycle was accompanied by the increase of ataxia telangiectasia mutated (ATM), p53, Chk2, p21 protein and mRNA expression, and the decrease of Mdm2, cdc25C, cdc2, cyclin B and proliferating cell nuclear antigen protein and mRNA expression. In conclusion, AFB1 blocked G2/M cell cycle by ATM pathway in the jejunum of broilers. PMID:27232757

  18. Mechanisms of sulindac-induced apoptosis and cell cycle arrest.

    PubMed

    Jung, Barbara; Barbier, Valerie; Brickner, Howard; Welsh, John; Fotedar, Arun; McClelland, Michael

    2005-02-28

    The mechanism underlying the chemopreventive effects of the non-steroidal anti-inflammatory drug sulindac remains unclear. Its active metabolite, sulindac sulfide, induces cell cycle arrest as well as apoptosis in mammalian cell lines. We now show that in murine thymocytes, sulindac sulfide-induced cell death is p53, bax, Fas, and FasL independent. In contrast, bcl2 transgenic thymocytes are resistant to sulindac sulfide-induced apoptosis. In addition, we demonstrate that sulindac sulfide-induced cell cycle arrest in mouse embryonic fibroblasts (MEFs) is partly mediated by the retinoblastoma tumor suppressor protein (Rb) and the cyclin kinase inhibitor p21waf1/cip1. Furthermore, MEFs deficient in p21 or Rb are more susceptible to sulindac sulfide-induced cell death. These results suggest that sulindac may selectively target premalignant cells with cell cycle checkpoint deficits.

  19. Configuration and performance of fuel cell-combined cycle options

    SciTech Connect

    Rath, L.K.; Le, P.H.; Sudhoff, F.A.

    1995-12-31

    The natural gas, indirect-fired, carbonate fuel-cell-bottomed, combined cycle (NG-IFCFC) and the topping natural-gas/solid-oxide fuel-cell combined cycle (NG-SOFCCC) are introduced as novel power-plant systems for the distributed power and on-site markets in the 20-200 mega-watt (MW) size range. The novel NG-IFCFC power-plant system configures the ambient pressure molten-carbonate fuel cell (MCFC) with a gas turbine, air compressor, combustor, and ceramic heat exchanger: The topping solid-oxide fuel-cell (SOFC) combined cycle is not new. The purpose of combining a gas turbine with a fuel cell was to inject pressurized air into a high-pressure fuel cell and to reduce the size, and thereby, to reduce the cost of the fuel cell. Today, the SOFC remains pressurized, but excess chemical energy is combusted and the thermal energy is utilized by the Carnot cycle heat engine to complete the system. ASPEN performance results indicate efficiencies and heat rates for the NG-IFCFC or NG-SOFCCC are better than conventional fuel cell or gas turbine steam-bottomed cycles, but with smaller and less expensive components. Fuel cell and gas turbine systems should not be viewed as competitors, but as an opportunity to expand to markets where neither gas turbines nor fuel cells alone would be commercially viable. Non-attainment areas are the most likely markets.

  20. Intercellular Coupling of the Cell Cycle and Circadian Clock in Adult Stem Cell Culture.

    PubMed

    Matsu-Ura, Toru; Dovzhenok, Andrey; Aihara, Eitaro; Rood, Jill; Le, Hung; Ren, Yan; Rosselot, Andrew E; Zhang, Tongli; Lee, Choogon; Obrietan, Karl; Montrose, Marshall H; Lim, Sookkyung; Moore, Sean R; Hong, Christian I

    2016-12-01

    Circadian clock-gated cell division cycles are observed from cyanobacteria to mammals via intracellular molecular connections between these two oscillators. Here we demonstrate WNT-mediated intercellular coupling between the cell cycle and circadian clock in 3D murine intestinal organoids (enteroids). The circadian clock gates a population of cells with heterogeneous cell-cycle times that emerge as 12-hr synchronized cell division cycles. Remarkably, we observe reduced-amplitude oscillations of circadian rhythms in intestinal stem cells and progenitor cells, indicating an intercellular signal arising from differentiated cells governing circadian clock-dependent synchronized cell division cycles. Stochastic simulations and experimental validations reveal Paneth cell-secreted WNT as the key intercellular coupling component linking the circadian clock and cell cycle in enteroids.

  1. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion.

    PubMed

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan

    2016-06-17

    Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P < 0.05) compared with unliganded conditions. The alterations in cell cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P < 0.05) compared with parental cells. Finally, treatment of MCF-7 cells with antiestrogens revealed that tamoxifen yields a slower cell cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.

  2. c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry.

    PubMed

    Morrish, F; Isern, N; Sadilek, M; Jeffrey, M; Hockenbery, D M

    2009-07-09

    Cell proliferation requires the coordinated activity of cytosolic and mitochondrial metabolic pathways to provide ATP and building blocks for DNA, RNA and protein synthesis. Many metabolic pathway genes are targets of the c-myc oncogene and cell-cycle regulator. However, the contribution of c-Myc to the activation of cytosolic and mitochondrial metabolic networks during cell-cycle entry is unknown. Here, we report the metabolic fates of [U-(13)C] glucose in serum-stimulated myc(-/-) and myc(+/+) fibroblasts by (13)C isotopomer NMR analysis. We demonstrate that endogenous c-myc increased (13)C labeling of ribose sugars, purines and amino acids, indicating partitioning of glucose carbons into C1/folate and pentose phosphate pathways, and increased tricarboxylic acid cycle turnover at the expense of anaplerotic flux. Myc expression also increased global O-linked N-acetylglucosamine protein modification, and inhibition of hexosamine biosynthesis selectively reduced growth of Myc-expressing cells, suggesting its importance in Myc-induced proliferation. These data reveal a central organizing function for the Myc oncogene in the metabolism of cycling cells. The pervasive deregulation of this oncogene in human cancers may be explained by its function in directing metabolic networks required for cell proliferation.

  3. AP4 is required for mitogen- and c-MYC-induced cell cycle progression

    PubMed Central

    Jackstadt, Rene; Hermeking, Heiko

    2014-01-01

    AP4 represents a c-MYC-inducible bHLH-LZ transcription factor, which displays elevated expression in many types of tumors. We found that serum-starved AP4-deficient mouse embryo fibroblasts (MEFs) were unable to resume proliferation and showed a delayed S-phase entry after restimulation. Furthermore, they accumulated as tetraploid cells due to a cytokinesis defect. In addition, AP4 was required for c-MYC-induced cell cycle re-entry. AP4-deficient MEFs displayed decreased expression of CDK2 (cyclin-dependent kinase 2), which we characterized as a conserved and direct AP4 target. Activation of an AP4 estrogen receptor fusion protein (AP4-ER) enhanced proliferation of human diploid fibroblasts in a CDK2-dependent manner. However, in contrast to c-MYC-ER, AP4-ER activation was not sufficient to induce cell cycle re-entry or apoptosis in serum-starved MEFs. AP4-deficiency was accompanied by increased spontaneous and c-MYC-induced DNA damage in MEFs. Furthermore, c-MYC-induced apoptosis was decreased in AP4-deficient MEFs, suggesting that induction of apoptosis by c-MYC is linked to its ability to activate AP4 and thereby cell cycle progression. Taken together, these results indicate that AP4 is a central mediator and coordinator of cell cycle progression in response to mitogenic signals and c-MYC activation. Therefore, inhibition of AP4 function may represent a therapeutic approach to block tumor cell proliferation. PMID:25261373

  4. FGF1-mediated cardiomyocyte cell cycle reentry depends on the interaction of FGFR-1 and Fn14.

    PubMed

    Novoyatleva, Tatyana; Sajjad, Amna; Pogoryelov, Denys; Patra, Chinmoy; Schermuly, Ralph T; Engel, Felix B

    2014-06-01

    Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs) mediating a broad range of cellular functions during embryonic development, as well as disease and regeneration during adulthood. Thus, it is important to understand the underlying molecular mechanisms that modulate this system. Here, we show that FGFR-1 can interact with the TNF receptor superfamily member fibroblast growth factor-inducible molecule 14 (Fn14) resulting in cardiomyocyte cell cycle reentry. FGF1-induced cell cycle reentry in neonatal cardiomyocytes could be blocked by Fn14 inhibition, while TWEAK-induced cell cycle activation was inhibited by blocking FGFR-1 signaling. In addition, costimulation experiments revealed a synergistic effect of FGF1 and TWEAK in regard to cardiomyocyte cell cycle induction via PI3K/Akt signaling. Overexpression of Fn14 with either FGFR-1 long [FGFR-1(L)] or FGFR-1 short [FGFR-1(S)] isoforms resulted after FGF1/TWEAK stimulation in cell cycle reentry of >40% adult cardiomyocytes. Finally, coimmunoprecipitation and proximity ligation assays indicated that endogenous FGFR-1 and Fn14 interact with each other in cardiomyocytes. This interaction was strongly enhanced in the presence of their corresponding ligands, FGF1 and TWEAK. Taken together, our data suggest that FGFR-1/Fn14 interaction may represent a novel endogenous mechanism to modulate the action of these receptors and their ligands and to control cardiomyocyte cell cycle reentry.

  5. Apicomplexan cell cycle flexibility: centrosome controls the clutch

    PubMed Central

    Chen, Chun-Ti; Gubbels, Marc-Jan

    2015-01-01

    The centrosome serves as a central hub coordinating multiple cellular events in eukaryotes. A recent study in Toxoplasma gondii revealed a unique bipartite structure of the centrosome, which coordinates the nuclear cycle (S-phase and mitosis) and budding cycle (cytokinesis) of the parasite, and deciphers the principle behind flexible apicomplexan cell division modes. PMID:25899747

  6. Effects of metallothionein-3 and metallothionein-1E gene transfection on proliferation, cell cycle, and apoptosis of esophageal cancer cells.

    PubMed

    Tian, Z Q; Xu, Y Z; Zhang, Y F; Ma, G F; He, M; Wang, G-Y

    2013-10-17

    Metallothionein (MT)-3 has cell growth inhibitory activity, and is the only currently known MT subtype with unique physiological functions. The expression levels of MT-1E, a subtype of MT-1, were positively correlated with the degree of esophageal cancer malignancy. The present study aimed to investigate the effects of MT-3 and MT-1E gene transfection on the proliferation, cell cycle, and apoptosis of esophageal cancer cells. The cationic liposome method was used to transfect the esophageal cancer strains Eca-109 and TE13. Reverse transcription-polymerase chain reaction was used to detect target gene expression, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction was applied to detect cell proliferation, and flow cytometry was used for cell cycle and apoptosis detection. Esophageal cancer cells with MT-3 and MT-1E gene transfection showed high expression of the foreign target gene and mRNA. Cells with MT-3 gene transfection showed markedly inhibited proliferation (P < 0.05), a significantly higher proportion of cells in the G0/G1 phase (P < 0.05), a significantly lower proportion of cells in the S phase (P < 0.05), and a significantly increased apoptosis rate (P < 0.05). Cells with MT-1E gene transfection did not show significant changes in proliferation, cell cycle, or apoptosis rate (P > 0.05). Therefore, the upregulation of MT-3 gene expression can inhibit esophageal cancer cell proliferation and induce apoptosis, which may be achieved by blocking the tumor cell growth cycle, whereas effects of the MT-1E gene on the proliferation of esophageal cancer cells were not evident.

  7. Low Cycle Fatigue Behavior of HT250 Gray Cast Iron for Engine Cylinder Blocks

    NASA Astrophysics Data System (ADS)

    Fan, K. L.; He, G. Q.; She, M.; Liu, X. S.; Yang, Y.; Lu, Q.; shen, Y.; Tian, D. D.

    2014-08-01

    The strain-controlled low cycle fatigue properties were evaluated on specimens of HT250 gray cast iron (GCI) at room temperature. The material exhibited cyclic stabilization at a low strain amplitude of 0.1% and cyclic softening characteristic at higher strain amplitudes (0.15-0.30%). At a representative total strain amplitude (0.30%), the hysteresis loops of HT250 GCI were asymmetric with a large amount of plastic deformation in the compressive phases. Furthermore, the hysteresis loop became larger in both width and height with increasing total strain amplitude (from 0.10 to 0.30%), and tended to exhibit a clockwise rotation. The fatigue crack propagation mechanisms were different at various total strain amplitudes, where high stress concentration due to dislocation pile-up favored fatigue crack initiation in the examined HT250. Finally, the roughness-induced crack closure was a key to determine the crack growth rate as well as fatigue life.

  8. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    SciTech Connect

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  9. Large scale spontaneous synchronization of cell cycles in amoebae

    NASA Astrophysics Data System (ADS)

    Segota, Igor; Boulet, Laurent; Franck, Carl

    2014-03-01

    Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. We show that substrate-growtn cell populations spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state and provide opportunities for synchronization theories beyond classic Kuramoto models.

  10. Grow₂: the HIF system, energy homeostasis and the cell cycle.

    PubMed

    Moniz, Sónia; Biddlestone, John; Rocha, Sónia

    2014-05-01

    Cell cycle progression is an energy demanding process and requires fine-tuned metabolic regulation. Cells must overcome an energy restriction checkpoint before becoming committed to progress through the cell cycle. Aerobic organisms need oxygen for the metabolic conversion of nutrients into energy. As such, environmental oxygen is a critical signalling molecule regulating cell fate. The Hypoxia Inducible Factors (HIFs) are a family of transcription factors that respond to changes in environmental oxygen and cell energy and coordinate a transcriptional program which forms an important part of the cellular response to a hostile environment. A significant proportion of HIF-dependent transcriptional target genes, code for proteins that are involved in energy homeostasis. In this review we discuss the role of the HIF system in the regulation of energy homeostasis in response to changes in environmental oxygen and the impact on cell cycle control, and address the implications of the deregulation of this effect in cancer.

  11. Block Copolymers for Alkaline Fuel Cell Membrane Materials

    DTIC Science & Technology

    2014-07-30

    chloromethylation step. Poly(vinylbenzyl chloride) was radiation grafted into fluorinated or partially fluorinated polymer membranes to prepare an...their early studies, vinylbenzyl chloride was grafted onto partially fluorinated films of poly(vinylidene fluoride) (PVDF) and fully fluorinated ...block copolymers. In addition, the reactive sites can be readily terminated with an electrophile to form functionalized polymers. Additional living

  12. Developmental Block and Programmed Cell Death in Bos indicus Embryos: Effects of Protein Supplementation Source and Developmental Kinetics

    PubMed Central

    Garcia, Sheila Merlo; Marinho, Luciana Simões Rafagnin; Lunardelli, Paula Alvares; Seneda, Marcelo Marcondes; Meirelles, Flávio Vieira

    2015-01-01

    The aims of this study were to determine if the protein source of the medium influences zebu embryo development and if developmental kinetics, developmental block and programmed cell death are related. The culture medium was supplemented with either fetal calf serum or bovine serum albumin. The embryos were classified as Fast (n = 1,235) or Slow (n = 485) based on the time required to reach the fourth cell cycle (48 h and 90 h post insemination - hpi -, respectively). The Slow group was further separated into two groups: those presenting exactly 4 cells at 48 hpi (Slow/4 cells) and those that reached the fourth cell cycle at 90 hpi (Slow). Blastocyst quality, DNA fragmentation, mitochondrial membrane potential and signs of apoptosis or necrosis were evaluated. The Slow group had higher incidence of developmental block than the Fast group. The embryos supplemented with fetal calf serum had lower quality. DNA fragmentation and mitochondrial membrane potential were absent in embryos at 48 hpi but present at 90 hpi. Early signs of apoptosis were more frequent in the Slow and Slow/4 cell groups than in the Fast group. We concluded that fetal calf serum reduces blastocyst development and quality, but the mechanism appears to be independent of DNA fragmentation. The apoptotic cells detected at 48 hpi reveal a possible mechanism of programmed cell death activation prior to genome activation. The apoptotic cells observed in the slow-developing embryos suggested a relationship between programmed cell death and embryonic developmental kinetics in zebu in vitro-produced embryos. PMID:25760989

  13. Variety in intracellular diffusion during the cell cycle.

    PubMed

    Selhuber-Unkel, Christine; Yde, Pernille; Berg-Sørensen, Kirstine; Oddershede, Lene B

    2009-07-01

    During the cell cycle, the organization of the cytoskeletal network undergoes dramatic changes. In order to reveal possible changes of the viscoelastic properties in the intracellular space during the cell cycle we investigated the diffusion of endogenous lipid granules within the fission yeast Schizosaccharomyces Pombe using optical tweezers. The cell cycle was divided into interphase and mitotic cell division, and the mitotic cell division was further subdivided in its stages. During all stages of the cell cycle, the granules predominantly underwent subdiffusive motion, characterized by an exponent alpha that is also linked to the viscoelastic moduli of the cytoplasm. The exponent alpha was significantly smaller during interphase than during any stage of the mitotic cell division, signifying that the cytoplasm was more elastic during interphase than during division. We found no significant differences in the subdiffusive exponents from granules measured in different stages of cell division. Also, our results for the exponent displayed no significant dependence on the position of the granule within the cell. The observation that the cytoplasm is more elastic during interphase than during mitotic cell division is consistent with the fact that elastic cytoskeletal elements such as microtubules are less abundantly present during cell division than during interphase.

  14. Cell cycle deregulation by methyl isocyanate: Implications in liver carcinogenesis.

    PubMed

    Panwar, Hariom; Raghuram, Gorantla V; Jain, Deepika; Ahirwar, Alok K; Khan, Saba; Jain, Subodh K; Pathak, Neelam; Banerjee, Smita; Maudar, Kewal K; Mishra, Pradyumna K

    2014-03-01

    Liver is often exposed to plethora of chemical toxins. Owing to its profound physiological role and central function in metabolism and homeostasis, pertinent succession of cell cycle in liver epithelial cells is of prime importance to maintain cellular proliferation. Although recent evidence has displayed a strong association between exposures to methyl isocyanate (MIC), one of the most toxic isocyanates, and neoplastic transformation, molecular characterization of the longitudinal effects of MIC on cell cycle regulation has never been performed. Here, we sequentially delineated the status of different proteins arbitrating the deregulation of cell cycle in liver epithelial cells treated with MIC. Our data reaffirms the oncogenic capability of MIC with elevated DNA damage response proteins pATM and γ-H2AX, deregulation of DNA damage check point genes CHK1 and CHK2, altered expression of p53 and p21 proteins involved in cell cycle arrest with perturbation in GADD-45 expression in the treated cells. Further, alterations in cyclin A, cyclin E, CDK2 levels along with overexpression of mitotic spindle checkpoints proteins Aurora A/B, centrosomal pericentrin protein, chromosomal aberrations, and loss of Pot1a was observed. Thus, MIC impacts key proteins involved in cell cycle regulation to trigger genomic instability as a possible mechanism of developmental basis of liver carcinogenesis.

  15. Duplication of the genome in normal and cancer cell cycles.

    PubMed

    Bandura, Jennifer L; Calvi, Brian R

    2002-01-01

    It is critical to discover the mechanisms of normal cell cycle regulation if we are to fully understand what goes awry in cancer cells. The normal eukaryotic cell tightly regulates the activity of origins of DNA replication so that the genome is duplicated exactly once per cell cycle. Over the last ten years much has been learned concerning the cell cycle regulation of origin activity. It is now clear that the proteins and cell cycle mechanisms that control origin activity are largely conserved from yeast to humans. Despite this conservation, the composition of origins of DNA replication in higher eukaryotes remains ill defined. A DNA consensus for predicting origins has yet to emerge, and it is of some debate whether primary DNA sequence determines where replication initiates. In this review we outline what is known about origin structure and the mechanism of once per cell cycle DNA replication with an emphasis on recent advances in mammalian cells. We discuss the possible relevance of these regulatory pathways for cancer biology and therapy.

  16. Spica Prunellae extract inhibits the proliferation of human colon carcinoma cells via the regulation of the cell cycle.

    PubMed

    Lin, Wei; Zheng, Liangpu; Zhuang, Qunchuan; Shen, Aling; Liu, Liya; Chen, Youqin; Sferra, Thomas J; Peng, Jun

    2013-10-01

    Spica Prunellae has long been used as a significant component in numerous traditional Chinese medicine (TCM) formulas to clinically treat cancers. Previously, Spica Prunellae was shown to promote cancer cell apoptosis and inhibit angiogenesis in vivo and in vitro. To further elucidate the precise mechanism of its tumoricidal activity, the effect of the ethanol extract of Spica Prunellae (EESP) on the proliferation of human colon carcinoma HT-29 cells was elucidated and the underlying molecular mechanisms were investigated. The proliferation of HT-29 cells was evaluated using 3-(4, 5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation analyses. The cell cycle was determined using fluorescence-activated cell sorting (FACS) with propidium iodide (PI) staining. The mRNA and protein expression of cyclin-dependent kinase 4 (CDK4) and cyclin D1 was examined using RT-PCR and western blotting, respectively. EESP was observed to inhibit HT-29 viability and survival in a dose- and time-dependent manner. Furthermore, EESP treatment blocked G1/S cell cycle progression and reduced the expression of pro-proliferative cyclin D1 and CDK4 at the transcriptional and translational levels. Altogether, these data suggest that the inhibition of cell proliferation via G1/S cell cycle arrest may be one of the mechanisms through which Spica Prunellae treats cancer.

  17. Spica Prunellae extract inhibits the proliferation of human colon carcinoma cells via the regulation of the cell cycle

    PubMed Central

    LIN, WEI; ZHENG, LIANGPU; ZHUANG, QUNCHUAN; SHEN, ALING; LIU, LIYA; CHEN, YOUQIN; SFERRA, THOMAS J.; PENG, JUN

    2013-01-01

    Spica Prunellae has long been used as a significant component in numerous traditional Chinese medicine (TCM) formulas to clinically treat cancers. Previously, Spica Prunellae was shown to promote cancer cell apoptosis and inhibit angiogenesis in vivo and in vitro. To further elucidate the precise mechanism of its tumoricidal activity, the effect of the ethanol extract of Spica Prunellae (EESP) on the proliferation of human colon carcinoma HT-29 cells was elucidated and the underlying molecular mechanisms were investigated. The proliferation of HT-29 cells was evaluated using 3-(4, 5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation analyses. The cell cycle was determined using fluorescence-activated cell sorting (FACS) with propidium iodide (PI) staining. The mRNA and protein expression of cyclin-dependent kinase 4 (CDK4) and cyclin D1 was examined using RT-PCR and western blotting, respectively. EESP was observed to inhibit HT-29 viability and survival in a dose- and time-dependent manner. Furthermore, EESP treatment blocked G1/S cell cycle progression and reduced the expression of pro-proliferative cyclin D1 and CDK4 at the transcriptional and translational levels. Altogether, these data suggest that the inhibition of cell proliferation via G1/S cell cycle arrest may be one of the mechanisms through which Spica Prunellae treats cancer. PMID:24137475

  18. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells.

    PubMed

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27(Kip) accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27(Kip) at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27(Kip) accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.

  19. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells

    PubMed Central

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    ABSTRACT Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27Kip accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27Kip at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27Kip accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment. PMID:26694515

  20. Combined cycle phosphoric acid fuel cell electric power system

    SciTech Connect

    Mollot, D.J.; Micheli, P.L.

    1995-12-31

    By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

  1. The Timing of T Cell Priming and Cycling

    PubMed Central

    Obst, Reinhard

    2015-01-01

    The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4+ and CD8+ cells. The results suggest a degree of programing by early signals for effector differentiation, particularly in the CD8+ T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4+ T cell expansion and new avenues toward a molecular understanding of cell cycle regulation in lymphocytes are discussed. PMID:26594213

  2. Global Dynamical Properties of the Yeast Cell Cycle Network

    NASA Astrophysics Data System (ADS)

    Tang, Chao

    2004-03-01

    The interactions between proteins, DNA, and RNA in living cells constitute molecular networks that govern various cellular functions. To investigate the global dynamical properties and stabilities of such networks, we studied the network regulating the cell division (cell cycle) of the budding yeast. With the use of both discrete (Boolean) and continuous (ODEs) dynamical models, it was demonstrated that the cell-cycle network is extremely stable and robust for its function. The biological stationary state--the G1 state--is a global attractor of the dynamics. The biological pathway--the cell-cycle sequence of protein states--is a globally attracting trajectory of the dynamics. These properties are largely preserved with respect to small perturbations to the network. These results suggest that cellular regulatory networks are robustly designed for their functions.

  3. Bax alpha perturbs T cell development and affects cell cycle entry of T cells.

    PubMed Central

    Brady, H J; Gil-Gómez, G; Kirberg, J; Berns, A J

    1996-01-01

    Bax alpha can heterodimerize with Bcl-2 and Bcl-X(L), countering their effects, as well as promoting apoptosis on overexpression. We show that bax alpha transgenic mice have greatly reduced numbers of mature T cells, which results from an impaired positive selection in the thymus. This perturbation in positive selection is accompanied by an increase in the number of cycling thymocytes. Further to this, mature T cells overexpressing Bax alpha have lower levels of p27Kip1 and enter S phase more rapidly in response to interleukin-2 stimulation than do control T cells, while the converse is true of bcl-2 transgenic T cells. These data indicate that apoptotic regulatory proteins can modulate the level of cell cycle-controlling proteins and thereby directly impact on the cell cycle. Images PMID:9003775

  4. NONO couples the circadian clock to the cell cycle.

    PubMed

    Kowalska, Elzbieta; Ripperger, Juergen A; Hoegger, Dominik C; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A

    2013-01-29

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization.

  5. NONO couples the circadian clock to the cell cycle

    PubMed Central

    Kowalska, Elzbieta; Ripperger, Juergen A.; Hoegger, Dominik C.; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A.

    2013-01-01

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization. PMID:23267082

  6. Post-transcriptional RNA Regulons Affecting Cell Cycle and Proliferation

    PubMed Central

    Blackinton, Jeff G.

    2014-01-01

    The cellular growth cycle is initiated and maintained by punctual, yet agile, regulatory events involving modifications of cell cycle proteins as well as coordinated gene expression to support cyclic checkpoint decisions. Recent evidence indicates that post-transcriptional partitioning of messenger RNA subsets by RNA-binding proteins help physically localize, temporally coordinate, and efficiently translate cell cycle proteins. This dynamic organization of mRNAs encoding cell cycle components contributes to the overall economy of the cell cycle consistent with the post-transcriptional RNA regulon model of gene expression. This review examines several recent studies demonstrating the coordination of mRNA subsets encoding cell cycle proteins during nuclear export and subsequent coupling to protein synthesis, and discusses evidence for mRNA coordination of p53 targets and the DNA damage response pathway. We consider how these observations may connect to upstream and downstream post-transcriptional coordination and coupling of splicing, export, localization, and translation. Published examples from yeast, nematode, insect, and mammalian systems are discussed, and we consider genetic evidence supporting the conclusion that dysregulation of RNA regulons may promote pathogenic states of growth such as carcinogenesis. PMID:24882724

  7. Tracking performance and cycle slipping in the all-digital symbol synchronizer loop of the block 5 receiver

    NASA Technical Reports Server (NTRS)

    Aung, M.

    1992-01-01

    Computer simulated noise performance of the symbol synchronizer loop (SSL) in the Block 5 receiver is compared with the theoretical noise performance. Good agreement is seen at the higher loop SNR's (SNR(sub L)'s), with gradual degradation as the SNR(sub L) is decreased. For the different cases simulated, cycle slipping is observed (within the simulation time of 10(exp 4) seconds) at SNR(sub L)'s below different thresholds, ranging from 6 to 8.5 dB, comparable to that of a classical phase-locked loop. An important point, however, is that to achieve the desired loop SNR above the seemingly low threshold to avoid cycle slipping, a large data-to-loop-noise power ratio, P(sub D)/(N(sub 0)B(sub L)), is necessary (at least 13 dB larger than the desired SNR(sub L) in the optimum case and larger otherwise). This is due to the large squaring loss (greater than or equal to 13 dB) inherent in the SSL. For the special case of symbol rates approximately equaling the loop update rate, a more accurate equivalent model accounting for an extra loop update period delay (characteristic of the SSL phase detector design) is derived. This model results in a more accurate estimation of the noise-equivalent bandwidth of the loop.

  8. The Dynamical Mechanisms of the Cell Cycle Size Checkpoint

    NASA Astrophysics Data System (ADS)

    Feng, Shi-Fu; Yan, Jie; Liu, Zeng-Rong; Yang, Ling

    2012-10-01

    Cell division must be tightly coupled to cell growth in order to maintain cell size, whereas the mechanisms of how initialization of mitosis is regulated by cell size remain to be elucidated. We develop a mathematical model of the cell cycle, which incorporates cell growth to investigate the dynamical properties of the size checkpoint in embryos of Xenopus laevis. We show that the size checkpoint is naturally raised from a saddle-node bifurcation, and in a mutant case, the cell loses its size control ability due to the loss of this saddle-node point.

  9. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  10. Nanosecond pulsed electric fields and the cell cycle

    NASA Astrophysics Data System (ADS)

    Mahlke, Megan A.

    Exposure to nanosecond pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. The phase of the cell cycle at the time of exposure is linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Additionally, nsPEFs are capable of activating cell cycle checkpoints, which could lead to apoptosis or slow population growth. NsPEFs are emerging as a method for treating tumors via apoptotic induction; therefore, investigating the relevance of nsPEFs and the cell cycle could translate into improved efficacy in tumor treatment. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate the role of cell cycle phase in survival of nsPEFs. CHO populations appeared similar to sham populations post-nsPEFs but exhibited arrest in the G1 phase at 6h after exposure. Jurkat cells exhibited increased cell death after nsPEFs compared to CHO cells but did not exhibit checkpoint arrest at any observed time point. The G1/S phase checkpoint is partially controlled by the action of p53; the lack of an active p53 response in Jurkat cells could contribute to their ability to pass this checkpoint and resist cell cycle arrest. Both cell lines exhibited increased sensitivity to nsPEFs in G2/M phase. Live imaging of CHO cells after nsPEF exposure supports the theory of G1/S phase arrest, as a reduced number of cells undergo mitosis within 24 h when

  11. Cell cycles and proliferation patterns in Haematococcus pluvialis

    NASA Astrophysics Data System (ADS)

    Zhang, Chunhui; Liu, Jianguo; Zhang, Litao

    2016-09-01

    Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages: the motile stage and the non-motile stage. All the cells can be classified into forms as follows: motile cell, non-motile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.

  12. Cell-cycle fate-monitoring distinguishes individual chemosensitive and chemoresistant cancer cells in drug-treated heterogeneous populations demonstrated by real-time FUCCI imaging.

    PubMed

    Miwa, Shinji; Yano, Shuya; Kimura, Hiroaki; Yamamoto, Mako; Toneri, Makoto; Matsumoto, Yasunori; Uehara, Fuminari; Hiroshima, Yukihiko; Murakami, Takashi; Hayashi, Katsuhiro; Yamamoto, Norio; Bouvet, Michael; Fujiwara, Toshiyoshi; Tsuchiya, Hiroyuki; Hoffman, Robert M

    2015-01-01

    Essentially every population of cancer cells within a tumor is heterogeneous, especially with regard to chemosensitivity and resistance. In the present study, we utilized the fluorescence ubiquitination-based cell cycle indicator (FUCCI) imaging system to investigate the correlation between cell-cycle behavior and apoptosis after treatment of cancer cells with chemotherapeutic drugs. HeLa cells expressing FUCCI were treated with doxorubicin (DOX) (5 μM) or cisplatinum (CDDP) (5 μM) for 3 h. Cell-cycle progression and apoptosis were monitored by time-lapse FUCCI imaging for 72 h. Time-lapse FUCCI imaging demonstrated that both DOX and CDDP could induce cell cycle arrest in S/G2/M in almost all the cells, but a subpopulation of the cells could escape the block and undergo mitosis. The subpopulation which went through mitosis subsequently underwent apoptosis, while the cells arrested in S/G2/M survived. The present results demonstrate that chemoresistant cells can be readily identified in a heterogeneous population of cancer cells by S/G2/M arrest, which can serve in future studies as a visible target for novel agents that kill cell-cycle-arrested cells.

  13. Implication of Blocking Layer Functioning with the Effect of Temperature in Dye-Sensitized Solar Cells.

    PubMed

    Kou, Dongxing; Chen, Shuanghong; Hu, Linhua; Wu, Sixin; Dai, Songyuan

    2016-06-01

    The properties of thin titanium dioxide blocking layers onto TCO in dye-sensitized solar cells (DSCs) have been widely reported as their intensity dependence of illumination intensity. Herein, a further investigation about their functioning with the effect of temperature is developed. The electron recombination process, photovoltage response on illumination intensity and photocurrent-voltage properties for DSCs with/without blocking layer at different temperatures are detected. It is found that the electron recombination via TCO becomes increasingly pronounced with increasing temperature and the effect of blocking layer is extremely temperature dependent. The band bending of the compact layer is more effectively to block electron losses at high temperatures, preventing large falloff of photovoltage. Hence, a resistive layer at the surface of TCO keeps comparable cell performances without falloff over a wide temperature range, while the device without blocking layer shows large decrease by over 10% at high temperature for contrast.

  14. Cell death patterns in Arabidopsis cells subjected to four physiological stressors indicate multiple signalling pathways and cell cycle phase specificity.

    PubMed

    Pathirana, Ranjith; West, Phillip; Hedderley, Duncan; Eason, Jocelyn

    2017-03-01

    Corpse morphology, nuclear DNA fragmentation, expression of senescence-associated genes (SAG) and cysteine protease profiles were investigated to understand cell death patterns in a cell cycle-synchronised Arabidopsis thaliana cell suspension culture treated with four physiological stressors in the late G2 phase. Within 4 h of treatment, polyethylene glycol (PEG, 20 %), mannose (100 mM) and hydrogen peroxide (2 mM) caused DNA fragmentation coinciding with cell permeability to Evans Blue (EB) and produced corpse morphology corresponding to apoptosis-like programmed cell death (AL-PCD) with cytoplasmic retraction from the cell wall. Ethylene (8 mL per 250-mL flask) caused permeability of cells to EB without concomitant nuclear DNA fragmentation and cytoplasmic retraction, suggesting necrotic cell death. Mannose inducing glycolysis block and PEG causing dehydration resulted in relatively similar patterns of upregulation of SAG suggesting similar cell death signalling pathways for these two stress factors, whereas hydrogen peroxide caused unique patterns indicating an alternate pathway for cell death induced by oxidative stress. Ethylene did not cause appreciable changes in SAG expression, confirming necrotic cell death. Expression of AtDAD, BoMT1 and AtSAG2 genes, previously shown to be associated with plant senescence, also changed rapidly during AL-PCD in cultured cells. The profiles of nine distinct cysteine protease-active bands ranging in size from ca. 21.5 to 38.5 kDa found in the control cultures were also altered after treatment with the four stressors, with mannose and PEG again producing similar patterns. Results also suggest that cysteine proteases may have a role in necrotic cell death.

  15. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response.

    PubMed

    Hempstead, Andrew D; Isberg, Ralph R

    2015-12-08

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.

  16. Cycle life characteristics of Li-TiS2 cells

    NASA Technical Reports Server (NTRS)

    Deligiannis, Frank; Shen, D.; Huang, C. K.; Surampudi, S.

    1991-01-01

    The development of lithium ambient temperature rechargeable cells is discussed. During the development process, we hope to gain a greater understanding of the materials and the properties of the Li-TiS2 cell and its components. The design will meet the requirements of 100 Wh/Kg and 1000 cycles, at 50 percent depth-of-discharge, by 1995.

  17. The vacuole/lysosome is required for cell-cycle progression

    PubMed Central

    Jin, Yui; Weisman, Lois S

    2015-01-01

    Organelles are distributed to daughter cells, via inheritance pathways. However, it is unclear whether there are mechanisms beyond inheritance, which ensure that organelles are present in all cells. Here we present the unexpected finding that the yeast vacuole plays a positive essential role in initiation of the cell-cycle. When inheritance fails, a new vacuole is generated. We show that this occurs prior to the next cell-cycle, and gain insight into this alternative pathway. Moreover, we find that a combination of a defect in inheritance with an acute block in the vacuole biogenesis results in the loss of a functional vacuole and a specific arrest of cells in early G1 phase. Furthermore, this role for the vacuole in cell-cycle progression requires an intact TORC1-SCH9 pathway that can only signal from a mature vacuole. These mechanisms may serve as a checkpoint for the presence of the vacuole/lysosome. DOI: http://dx.doi.org/10.7554/eLife.08160.001 PMID:26322385

  18. Cell cycle progression requires the CDC-48UFD-1/NPL-4 complex for efficient DNA replication.

    PubMed

    Mouysset, Julien; Deichsel, Alexandra; Moser, Sandra; Hoege, Carsten; Hyman, Anthony A; Gartner, Anton; Hoppe, Thorsten

    2008-09-02

    Since cdc48 mutants were isolated by the first genetic screens for cell division cycle (cdc) mutants in yeast, the requirement of the chaperone-like ATPase Cdc48/p97 during cell division has remained unclear. Here, we discover an unanticipated function for Caenorhabditis elegans CDC-48 in DNA replication linked to cell cycle control. Our analysis of the CDC-48(UFD-1/NPL-4) complex identified a general role in S phase progression of mitotic cells essential for embryonic cell division and germline development of adult worms. These developmental defects result from activation of the DNA replication checkpoint caused by replication stress. Similar to loss of replication licensing factors, DNA content is strongly reduced in worms depleted for CDC-48, UFD-1, and NPL-4. In addition, these worms show decreased DNA synthesis and hypersensitivity toward replication blocking agents. Our findings identified a role for CDC-48(UFD-1/NPL-4) in DNA replication, which is important for cell cycle progression and genome stability.

  19. Bone marrow mesenchymal stromal cells affect the cell cycle arrest effect of genotoxic agents on acute lymphocytic leukemia cells via p21 down-regulation.

    PubMed

    Zhang, Yiran; Hu, Kaimin; Hu, Yongxian; Liu, Lizhen; Wang, Binsheng; Huang, He

    2014-09-01

    The effect of bone marrow microenvironment on the cell cycle of acute lymphocytic leukemia (ALL) and the underlying mechanism has not been elucidated. In this study, we found that in normal condition, bone marrow mesenchymal stromal cells (BM-MSCs) had no significant effect on the cell cycle and apoptosis of ALL; in the condition when the cell cycle of ALL was blocked by genotoxic agents, BM-MSCs could increase the S-phase cell ratio and decrease the G2/M phase ratio of ALL. Besides, BM-MSCs could protect ALL cells from drug-induced apoptosis. Then, we proved that BM-MSCs affect the cell cycle arrest effect of genotoxic agents on ALL cells via p21 down-regulation. Moreover, our results indicated that activation of Wnt/β-catenin and Erk pathways might be involved in the BM-MSC-induced down-regulation of p21 in ALL cells. Targeting microenvironment-related signaling pathway may therefore be a potential novel approach for ALL therapy.

  20. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    SciTech Connect

    Liu, Juntao; Mao, Zhangfan; Huang, Jie; Xie, Songping; Liu, Tianshu; Mao, Zhifu

    2014-02-21

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were

  1. Cyclin and DNA Distributed Cell Cycle Model for GS-NS0 Cells

    PubMed Central

    García Münzer, David G.; Kostoglou, Margaritis; Georgiadis, Michael C.; Pistikopoulos, Efstratios N.; Mantalaris, Athanasios

    2015-01-01

    Mammalian cell cultures are intrinsically heterogeneous at different scales (molecular to bioreactor). The cell cycle is at the centre of capturing heterogeneity since it plays a critical role in the growth, death, and productivity of mammalian cell cultures. Current cell cycle models use biological variables (mass/volume/age) that are non-mechanistic, and difficult to experimentally determine, to describe cell cycle transition and capture culture heterogeneity. To address this problem, cyclins—key molecules that regulate cell cycle transition—have been utilized. Herein, a novel integrated experimental-modelling platform is presented whereby experimental quantification of key cell cycle metrics (cell cycle timings, cell cycle fractions, and cyclin expression determined by flow cytometry) is used to develop a cyclin and DNA distributed model for the industrially relevant cell line, GS-NS0. Cyclins/DNA synthesis rates were linked to stimulatory/inhibitory factors in the culture medium, which ultimately affect cell growth. Cell antibody productivity was characterized using cell cycle-specific production rates. The solution method delivered fast computational time that renders the model’s use suitable for model-based applications. Model structure was studied by global sensitivity analysis (GSA), which identified parameters with a significant effect on the model output, followed by re-estimation of its significant parameters from a control set of batch experiments. A good model fit to the experimental data, both at the cell cycle and viable cell density levels, was observed. The cell population heterogeneity of disturbed (after cell arrest) and undisturbed cell growth was captured proving the versatility of the modelling approach. Cell cycle models able to capture population heterogeneity facilitate in depth understanding of these complex systems and enable systematic formulation of culture strategies to improve growth and productivity. It is envisaged that this

  2. The yeast cell-cycle network is robustly designed

    NASA Astrophysics Data System (ADS)

    Li, Fangting; Long, Tao; Lu, Ying; Ouyang, Qi; Tang, Chao

    2004-04-01

    The interactions between proteins, DNA, and RNA in living cells constitute molecular networks that govern various cellular functions. To investigate the global dynamical properties and stabilities of such networks, we studied the cell-cycle regulatory network of the budding yeast. With the use of a simple dynamical model, it was demonstrated that the cell-cycle network is extremely stable and robust for its function. The biological stationary state, the G1 state, is a global attractor of the dynamics. The biological pathway, the cell-cycle sequence of protein states, is a globally attracting trajectory of the dynamics. These properties are largely preserved with respect to small perturbations to the network. These results suggest that cellular regulatory networks are robustly designed for their functions.

  3. Cell cycling with the SEB: a personal view.

    PubMed

    Bryant, John

    2014-06-01

    This review, written from a personal perspective, traces firstly the development of plant cell cycle research from the 1970s onwards, with some focus on the work of the author and of Dr Dennis Francis. Secondly there is a discussion of the support for and discussion of plant cell cycle research in the SEB, especially through the activities of the Cell Cycle Group within the Society's Cell Biology Section. In the main part of the review, selected aspects of DNA replication that have of been of special interest to the author are discussed. These are DNA polymerases and associated proteins, pre-replication events, regulation of enzymes and other proteins, nature and activation of DNA replication origins, and DNA endoreduplication. For all these topics, there is mention of the author's own work, followed by a brief synthesis of current understanding and a look to possible future developments.

  4. Digital Holographic Microscopy for Non-Invasive Monitoring of Cell Cycle Arrest in L929 Cells

    PubMed Central

    Falck Miniotis, Maria; Mukwaya, Anthonny; Gjörloff Wingren, Anette

    2014-01-01

    Digital holographic microscopy (DHM) has emerged as a powerful non-invasive tool for cell analysis. It has the capacity to analyse multiple parameters simultaneously, such as cell- number, confluence and phase volume. This is done while cells are still adhered and growing in their culture flask. The aim of this study was to investigate whether DHM was able to monitor drug-induced cell cycle arrest in cultured cells and thus provide a non-disruptive alternative to flow cytometry. DHM parameters from G1 and G2/M cell cycle arrested L929 mouse fibroblast cells were collected. Cell cycle arrest was verified with flow cytometry. This study shows that DHM is able to monitor phase volume changes corresponding to either a G1 or G2/M cell cycle arrest. G1-phase arrest with staurosporine correlated with a decrease in the average cell phase volume and G2/M-phase arrest with colcemid and etoposide correlated with an increase in the average cell phase volume. Importantly, DHM analysis of average cell phase volume was of comparable accuracy to flow cytometric measurement of cell cycle phase distribution as recorded following dose-dependent treatment with etoposide. Average cell phase volume changes in response to treatment with cell cycle arresting compounds could therefore be used as a DHM marker for monitoring cell cycle arrest in cultured mammalian cells. PMID:25208094

  5. Photon recycling across a ultraviolet-blocking layer by luminescence in polymer solar cells

    NASA Astrophysics Data System (ADS)

    Engmann, Sebastian; Machalett, Marie; Turkovic, Vida; Rösch, Roland; Rädlein, Edda; Gobsch, Gerhard; Hoppe, Harald

    2012-08-01

    UV-blocking layers can increase the long term stability of organic solar cell devices; however, they limit the amount of light that can be utilized for energy conversion. We present photon recycling and down-conversion via a luminescent layer across a UV-blocking TiO2 layer. Our results show that the use of an additional UV-blocking layer does not necessarily reduce the overall efficiency of organic solar cells, since the loss in photocurrent due to the UV-absorption loss can be partially compensated using high energy photon down-conversion via luminescence layers.

  6. Cell cycle regulation by the bacterial nucleoid.

    PubMed

    Adams, David William; Wu, Ling Juan; Errington, Jeff

    2014-12-01

    Division site selection presents a fundamental challenge to all organisms. Bacterial cells are small and the chromosome (nucleoid) often fills most of the cell volume. Thus, in order to maximise fitness and avoid damaging the genetic material, cell division must be tightly co-ordinated with chromosome replication and segregation. To achieve this, bacteria employ a number of different mechanisms to regulate division site selection. One such mechanism, termed nucleoid occlusion, allows the nucleoid to protect itself by acting as a template for nucleoid occlusion factors, which prevent Z-ring assembly over the DNA. These factors are sequence-specific DNA-binding proteins that exploit the precise organisation of the nucleoid, allowing them to act as both spatial and temporal regulators of bacterial cell division. The identification of proteins responsible for this process has provided a molecular understanding of nucleoid occlusion but it has also prompted the realisation that substantial levels of redundancy exist between the diverse systems that bacteria employ to ensure that division occurs in the right place, at the right time.

  7. CIRCADIAN CLOCK AND CELL CYCLE GENE EXPRESSION

    PubMed Central

    Metz, Richard P.; Qu, Xiaoyu; Laffin, Brian; Earnest, David; Porter, Weston W.

    2009-01-01

    Mouse mammary epithelial cells (HC-11) and mammary tissues were analyzed for developmental changes in circadian clock, cellular proliferation and differentiation marker genes. Expression of the clock genes, Per1 and Bmal1, were elevated in differentiated HC-11 cells whereas Per2 mRNA levels were higher in undifferentiated cells. This differentiation-dependent profile of clock gene expression was consistent with that observed in mouse mammary glands as Per1 and Bmal1 mRNA levels were elevated in late pregnant and lactating mammary tissues, while Per2 expression was higher in proliferating virgin and early pregnant glands. In both HC-11 cells and mammary glands, elevated Per2 expression was positively correlated with c-Myc and Cyclin D1 mRNA levels while Per1 and Bmal1 expression changed in conjunction with ß-casein mRNA levels. Interestingly, developmental stage had differential effects on rhythms of clock gene expression in the mammary gland. These data suggest that circadian clock genes may play a role in mouse mammary gland development and differentiation. PMID:16261617

  8. Block 2 solar cell module environmental test program

    NASA Technical Reports Server (NTRS)

    Holloway, K. L.

    1978-01-01

    Environmental tests were performed of on 76 solar cell modules produced by four different manufacturers. The following tests were performed: (1) 28 day temperature and humidity; (2) rain and icing; (3) salt fog; (4) sand and dust; (5) vacuum/steam/pressure; (6) fungus; (7) temperature/altitude; and (8) thermal shock. Environmental testing of the solar cell modules produced cracked cells, cracked encapsulant and encapsulant delaminations on various modules. In addition, there was some minor cell and frame corrosion.

  9. Alteration of Cell Cycle Mediated by Zinc in Human Bronchial ...

    EPA Pesticide Factsheets

    Zinc (Zn2+), a ubiquitous ambient air contaminant, presents an oxidant challenge to the human lung and is linked to adverse human health effects. To further elucidate the adaptive and apoptotic cellular responses of human airway cells to Zn2+, we performed pilot studies to examine cell cycle perturbation upon exposure using a normal human bronchial epithelial cell culture (BEAS-2B). BEAS-2B cells were treated with low (0, 1, 2 µM) and apoptotic (3 µM) doses of Zn2+ plus 1 µM pyrithione, a Zn2+-specific ionophore facilitating cellular uptake, for up to 24 h. Fixed cells were then stained with propidium iodine (PI) and cell cycle phase was determined by fluorescent image cytometry. Initial results report the percentage of cells in the S phase after 18 h exposure to 1, 2, and 3 µM Zn2+ were similar (8%, 7%, and 12%, respectively) compared with 7% in controls. Cells exposed to 3 µM Zn2+ increased cell populations in G2/M phase (76% versus 68% in controls). Interestingly, exposure to 1 µM Zn2+ resulted in decreased (59%) cells in G2/M. While preliminary, these pilot studies suggest Zn2+ alters cell cycle in BEAS-2B cells, particularly in the G2/M phase. The G2/M checkpoint maintains DNA integrity by enabling initiation of DNA repair or apoptosis. Our findings suggest that the adaptive and apoptotic responses to Zn2+ exposure may be mediated via perturbation of the cell cycle at the G2/M checkpoint. This work was a collaborative summer student project. The st

  10. Heat Shield Employing Cured Thermal Protection Material Blocks Bonded in a Large-Cell Honeycomb Matrix

    NASA Technical Reports Server (NTRS)

    Zell, Peter

    2012-01-01

    A document describes a new way to integrate thermal protection materials on external surfaces of vehicles that experience the severe heating environments of atmospheric entry from space. Cured blocks of thermal protection materials are bonded into a compatible, large-cell honeycomb matrix that can be applied on the external surfaces of the vehicles. The honeycomb matrix cell size, and corresponding thermal protection material block size, is envisioned to be between 1 and 4 in. (.2.5 and 10 cm) on a side, with a depth required to protect the vehicle. The cell wall thickness is thin, between 0.01 and 0.10 in. (.0.025 and 0.25 cm). A key feature is that the honeycomb matrix is attached to the vehicle fs unprotected external surface prior to insertion of the thermal protection material blocks. The attachment integrity of the honeycomb can then be confirmed over the full range of temperature and loads that the vehicle will experience. Another key feature of the innovation is the use of uniform-sized thermal protection material blocks. This feature allows for the mass production of these blocks at a size that is convenient for quality control inspection. The honeycomb that receives the blocks must have cells with a compatible set of internal dimensions. The innovation involves the use of a faceted subsurface under the honeycomb. This provides a predictable surface with perpendicular cell walls for the majority of the blocks. Some cells will have positive tapers to accommodate mitered joints between honeycomb panels on each facet of the subsurface. These tapered cells have dimensions that may fall within the boundaries of the uniform-sized blocks.

  11. Establishment of Human Papillomavirus Infection Requires Cell Cycle Progression

    PubMed Central

    Pyeon, Dohun; Pearce, Shane M.; Lank, Simon M.; Ahlquist, Paul; Lambert, Paul F.

    2009-01-01

    Human papillomaviruses (HPVs) are DNA viruses associated with major human cancers. As such there is a strong interest in developing new means, such as vaccines and microbicides, to prevent HPV infections. Developing the latter requires a better understanding of the infectious life cycle of HPVs. The HPV infectious life cycle is closely linked to the differentiation state of the stratified epithelium it infects, with progeny virus only made in the terminally differentiating suprabasal compartment. It has long been recognized that HPV must first establish its infection within the basal layer of stratified epithelium, but why this is the case has not been understood. In part this restriction might reflect specificity of expression of entry receptors. However, this hypothesis could not fully explain the differentiation restriction of HPV infection, since many cell types can be infected with HPVs in monolayer cell culture. Here, we used chemical biology approaches to reveal that cell cycle progression through mitosis is critical for HPV infection. Using infectious HPV16 particles containing the intact viral genome, G1-synchronized human keratinocytes as hosts, and early viral gene expression as a readout for infection, we learned that the recipient cell must enter M phase (mitosis) for HPV infection to take place. Late M phase inhibitors had no effect on infection, whereas G1, S, G2, and early M phase cell cycle inhibitors efficiently prevented infection. We conclude that host cells need to pass through early prophase for successful onset of transcription of the HPV encapsidated genes. These findings provide one reason why HPVs initially establish infections in the basal compartment of stratified epithelia. Only this compartment of the epithelium contains cells progressing through the cell cycle, and therefore it is only in these cells that HPVs can establish their infection. By defining a major condition for cell susceptibility to HPV infection, these results also have

  12. 13-Methyl-palmatrubine induces apoptosis and cell cycle arrest in A549 cells in vitro and in vivo

    PubMed Central

    Chen, Jingxian; Lu, Xingang; Lu, Chenghua; Wang, Chunying; Xu, Haizhu; Xu, Xiaoli; Gou, Haixin; Zhu, Bing; Du, Wangchun

    2016-01-01

    Corydalis yanhusuo, a well-known herbaceous plant, is commonly used in the treatment of inflammation, injury and pain. One natural agent isolated from Corydalis yanhusuo, 13-methyl-palmatrubine, was found to have a cytotoxic effect on cancer cells as reported in published studies. In the present study, we synthesized a potential anti-lung tumor agent, 13-methyl-palmatrubine and analyzed its activity. 13-Methyl-palmatrubine exhibited a cytotoxic effect on a panel of cancer cell lines in a time- and concentration-dependent manner. Among all the tested cancer cell lines, lung cancer A549 cells were most sensitive to 13-methyl-palmatrubine treatment. Meanwhile 13-methyl-palmatrubine showed less cytotoxicity in human normal cells. Our investigation revealed that 13-methyl-palmatrubine induced apoptosis and cell cycle arrest in A549 cells in a dose-dependent manner. Furthermore, 13-methyl-palmatrubine treatment caused activation of P38 and JNK pathways and blocked the EGFR pathway. In conclusion, our findings demonstrated that 13-methyl-palmatrubine inhibited the growth of A549 cells mediated by blocking of the EGFR signaling pathway and activation of the MAPK signaling pathway and provides a better understanding of the molecular mechanisms of 13-methyl-palmatrubine. PMID:27633656

  13. Choreography of the Mycobacterium Replication Machinery during the Cell Cycle

    PubMed Central

    Trojanowski, Damian; Ginda, Katarzyna; Pióro, Monika; Hołówka, Joanna; Skut, Partycja; Jakimowicz, Dagmara

    2015-01-01

    ABSTRACT It has recently been demonstrated that bacterial chromosomes are highly organized, with specific positioning of the replication initiation region. Moreover, the positioning of the replication machinery (replisome) has been shown to be variable and dependent on species-specific cell cycle features. Here, we analyzed replisome positions in Mycobacterium smegmatis, a slow-growing bacterium that exhibits characteristic asymmetric polar cell extension. Time-lapse fluorescence microscopy analyses revealed that the replisome is slightly off-center in mycobacterial cells, a feature that is likely correlated with the asymmetric growth of Mycobacterium cell poles. Estimates of the timing of chromosome replication in relation to the cell cycle, as well as cell division and chromosome segregation events, revealed that chromosomal origin-of-replication (oriC) regions segregate soon after the start of replication. Moreover, our data demonstrate that organization of the chromosome by ParB determines the replisome choreography. PMID:25691599

  14. Neuronal cell cycle: the neuron itself and its circumstances.

    PubMed

    Frade, José M; Ovejero-Benito, María C

    2015-01-01

    Neurons are usually regarded as postmitotic cells that undergo apoptosis in response to cell cycle reactivation. Nevertheless, recent evidence indicates the existence of a defined developmental program that induces DNA replication in specific populations of neurons, which remain in a tetraploid state for the rest of their adult life. Similarly, de novo neuronal tetraploidization has also been described in the adult brain as an early hallmark of neurodegeneration. The aim of this review is to integrate these recent developments in the context of cell cycle regulation and apoptotic cell death in neurons. We conclude that a variety of mechanisms exists in neuronal cells for G1/S and G2/M checkpoint regulation. These mechanisms, which are connected with the apoptotic machinery, can be modulated by environmental signals and the neuronal phenotype itself, thus resulting in a variety of outcomes ranging from cell death at the G1/S checkpoint to full proliferation of differentiated neurons.

  15. Changing gears in the cell cycle: histoblasts and beyond.

    PubMed

    Ninov, Nikolay; Martín-Blanco, Enrique

    2009-01-01

    Although the molecular elements controlling cell cycle progression are well established, the mechanisms regulating how cell proliferation is triggered in response to extrinsic stimuli and how cell divisions change speed, particularly in stem or tumor cells or regenerative tissues, are poorly understood. One exceptional model system in which these events are precisely defined is Drosophila abdominal morphogenesis, in which stem-like histoblasts build the adult epidermis at metamorphosis by undergoing a series of sequential transitions from a non-proliferative to a growing, and finally to an invasive epithelium. We have recently uncovered in histoblasts an internal logic modulating cell cycle transitions that should constitute a reference paradigm for the study of other equivalent processes in stem cell, cancer or developmental biology.

  16. Cell Cycle Regulation of Estrogen and Androgen Receptor

    DTIC Science & Technology

    2002-07-01

    Estrogen and Androgen Receptor PRINCIPAL INVESTIGATOR: Elisabeth D. Martinez CONTRACTING ORGANIZATION: Georgetown University Medical Center...Cycle Regulation of Estrogen and Androgen DAMD17-99-1-9199 Receptor 6. AUTHOR(S) Elisabeth D. Martinez 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...with androgens. 14. SUBJECT TERMS 15. NUMBER OF PAGES breast cancer, cell cycle, androgen receptor, estrogen receptor, non- 66 steroidal activators, L

  17. Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy.

    PubMed

    Hughes, Louise; Borrett, Samantha; Towers, Katie; Starborg, Tobias; Vaughan, Sue

    2017-02-01

    The major mammalian bloodstream form of the African sleeping sickness parasite Trypanosoma brucei multiplies rapidly, and it is important to understand how these cells divide. Organelle inheritance involves complex spatiotemporal re-arrangements to ensure correct distribution to daughter cells. Here, serial block face scanning electron microscopy (SBF-SEM) was used to reconstruct whole individual cells at different stages of the cell cycle to give an unprecedented temporal, spatial and quantitative view of organelle division, inheritance and abscission in a eukaryotic cell. Extensive mitochondrial branching occurred only along the ventral surface of the parasite, but the mitochondria returned to a tubular form during cytokinesis. Fission of the mitochondrion occurred within the cytoplasmic bridge during the final stage of cell division, correlating with cell abscission. The nuclei were located underneath each flagellum at mitosis and the mitotic spindle was located along the ventral surface, further demonstrating the asymmetric arrangement of cell cleavage in trypanosomes. Finally, measurements demonstrated that multiple Golgi bodies were accurately positioned along the flagellum attachment zone, suggesting a mechanism for determining the location of Golgi bodies along each flagellum during the cell cycle.

  18. Hypoxia induces p53 accumulation in the S-phase and accumulation of hypophosphorylated retinoblastoma protein in all cell cycle phases of human melanoma cells.

    PubMed Central

    Danielsen, T.; Hvidsten, M.; Stokke, T.; Solberg, K.; Rofstad, E. K.

    1998-01-01

    Hypoxia has been shown to induce accumulation of p53 and of hypophosphorylated retinoblastoma protein (pRb) in tumour cells. In this study, the cell cycle dependence of p53 accumulation and pRb hypophosphorylation in four human melanoma cell lines that are wild type for p53 was investigated using two-parameter flow cytometry measurements of p53 or pRb protein content and DNA content. The hypoxia-induced increase in p53 protein was higher in S-phase than in G1 and G2 phases in all cell lines. The accumulation of p53 in S-phase during hypoxia was not related to hypoxia-induced apoptosis or substantial cell cycle specific cell inactivation during the first 24 h of reoxygenation. pRb was hypophosphorylated in all cell cycle phases by hypoxia treatment. The results did not support a direct link between p53 and pRb during hypoxia because p53 was induced in a cell cycle-specific manner, whereas no cell cycle-dependent differences in pRb hypophosphorylation were detected. Only a fraction of the cell populations (0.60+/-0.10) showed hypophosphorylated pRb. Thus, pRb is probably not the only mediator of the hypoxia-induced cell cycle block seen in all cells and all cell cycle phases. Moreover, the cell cycle-dependent induction of p53 by hypoxia suggests that the primary function of p53 accumulation during hypoxia is other than to arrest the cells. Images Figure 4 Figure 7 PMID:9862563

  19. Bcl-2 delays cell cycle through mitochondrial ATP and ROS.

    PubMed

    Du, Xing; Fu, Xufeng; Yao, Kun; Lan, Zhenwei; Xu, Hui; Cui, Qinghua; Yang, Elizabeth

    2017-02-22

    Bcl-2 inhibits cell proliferation by delaying G0/G1 to S phase entry. We tested the hypothesis that Bcl-2 regulates S phase entry through mitochondrial pathways. Existing evidence indicates mitochondrial adenosine tri-phosphate (ATP) and reactive oxygen species (ROS) are important signals in cell survival and cell death, however, the molecular details of how these 2 processes are linked remain unknown. In this study, 2 cell lines stably expressing Bcl-2, 3T3Bcl-2 and C3HBcl-2, and vector-alone PB controls were arrested in G0/G1 phase by serum starvation and contact inhibition, and ATP and ROS were measured during re-stimulation of cell cycle entry. Both ATP and ROS levels were decreased in G0/G1 arrested cells compared with normal growing cells. In addition, ROS levels were significant lower in synchronized Bcl-2 cells than those in PB controls. After re-stimulation, ATP levels increased with time, reaching peak value 1-3 hours ahead of S phase entry for both Bcl-2 cells and PB controls. Consistent with 2 hours of S phase delay, Bcl-2 cells reached ATP peaks 2 hours later than PB control, which suggests a rise in ATP levels is required for S phase entry. To examine the role of ATP and ROS in cell cycle regulation, ATP and ROS level were changed. We observed that elevation of ATP accelerated cell cycle progression in both PB and Bcl-2 cells, and decrease of ATP and ROS to the level equivalent to Bcl-2 cells delayed S phase entry in PB cells. Our results support the hypothesis that Bcl-2 protein regulates mitochondrial metabolism to produce less ATP and ROS, which contributes to S phase entry delay in Bcl-2 cells. These findings reveal a novel mechanistic basis for understanding the link between mitochondrial metabolism and tumor-suppressive function of Bcl-2.

  20. Life-cycle costs of high-performance cells

    NASA Technical Reports Server (NTRS)

    Daniel, R.; Burger, D.; Reiter, L.

    1985-01-01

    A life cycle cost analysis of high efficiency cells was presented. Although high efficiency cells produce more power, they also cost more to make and are more susceptible to array hot-spot heating. Three different computer analysis programs were used: SAMICS (solar array manufacturing industry costing standards), PVARRAY (an array failure mode/degradation simulator), and LCP (lifetime cost and performance). The high efficiency cell modules were found to be more economical in this study, but parallel redundancy is recommended.

  1. A combined gas cooled nuclear reactor and fuel cell cycle

    NASA Astrophysics Data System (ADS)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  2. A Cell Cycle Role for the Epigenetic Factor CTCF-L/BORIS

    PubMed Central

    Alonso-Lecue, Pilar; Abraira, Cristina; Delgado, M. Dolores; Gandarillas, Alberto

    2012-01-01

    CTCF is a ubiquitous epigenetic regulator that has been proposed as a master keeper of chromatin organisation. CTCF-like, or BORIS, is thought to antagonise CTCF and has been found in normal testis, ovary and a large variety of tumour cells. The cellular function of BORIS remains intriguing although it might be involved in developmental reprogramming of gene expression patterns. We here unravel the expression of CTCF and BORIS proteins throughout human epidermis. While CTCF is widely distributed within the nucleus, BORIS is confined to the nucleolus and other euchromatin domains. Nascent RNA experiments in primary keratinocytes revealed that endogenous BORIS is present in active transcription sites. Interestingly, BORIS also localises to interphase centrosomes suggesting a role in the cell cycle. Blocking the cell cycle at S phase or mitosis, or causing DNA damage, produced a striking accumulation of BORIS. Consistently, ectopic expression of wild type or GFP- BORIS provoked a higher rate of S phase cells as well as genomic instability by mitosis failure. Furthermore, down-regulation of endogenous BORIS by specific shRNAs inhibited both RNA transcription and cell cycle progression. The results altogether suggest a role for BORIS in coordinating S phase events with mitosis. PMID:22724006

  3. Cannabinoid receptor activation inhibits cell cycle progression by modulating 14-3-3β.

    PubMed

    Jung, Hye-Won; Park, Inae; Ghil, Sungho

    2014-09-01

    Cannabinoids display various pharmacological activities, including tumor regression, anti-inflammatory and neuroprotective effects. To investigate the molecular mechanisms underlying the pharmacological effects of cannabinoids, we used a yeast two-hybrid system to screen a mouse brain cDNA library for proteins interacting with type 1 cannabinoid receptor (CB1R). Using the intracellular loop 3 of CB1R as bait, we identified 14-3-3β as an interacting partner of CB1R and confirmed their interaction using affinity-binding assays. 14-3-3β has been reported to induce a cell cycle delay at the G2/M phase. We tested the effects of cannabinoids on cell cycle progression in HeLa cells synchronized using a double-thymidine block-and-release protocol and found an increase in the population of G2/M phase cells. We further found that CB1R activation augmented the interaction of 14-3-3β with Wee1 and Cdc25B, and promoted phosphorylation of Cdc2 at Tyr-15. These results suggest that cannabinoids induce cell cycle delay at the G2/M phase by activating 14-3-3β.

  4. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis

    PubMed Central

    Kümper, Sandra; Mardakheh, Faraz K; McCarthy, Afshan; Yeo, Maggie; Stamp, Gordon W; Paul, Angela; Worboys, Jonathan; Sadok, Amine; Jørgensen, Claus; Guichard, Sabrina

    2016-01-01

    Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility. DOI: http://dx.doi.org/10.7554/eLife.12203.001 PMID:26765561

  5. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis.

    PubMed

    Kümper, Sandra; Mardakheh, Faraz K; McCarthy, Afshan; Yeo, Maggie; Stamp, Gordon W; Paul, Angela; Worboys, Jonathan; Sadok, Amine; Jørgensen, Claus; Guichard, Sabrina; Marshall, Christopher J

    2016-01-14

    Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility.

  6. RoBlock: a prototype autonomous manufacturing cell

    NASA Astrophysics Data System (ADS)

    Baekdal, Lars K.; Balslev, Ivar; Eriksen, Rene D.; Jensen, Soren P.; Jorgensen, Bo N.; Kirstein, Brian; Kristensen, Bent B.; Olsen, Martin M.; Perram, John W.; Petersen, Henrik G.; Petersen, Morten L.; Ruhoff, Peter T.; Skjolstrup, Carl E.; Sorensen, Anders S.; Wagenaar, Jeroen M.

    2000-10-01

    RoBlock is the first phase of an internally financed project at the Institute aimed at building a system in which two industrial robots suspended from a gantry, as shown below, cooperate to perform a task specified by an external user, in this case, assembling an unstructured collection of colored wooden blocks into a specified 3D pattern. The blocks are identified and localized using computer vision and grasped with a suction cup mechanism. Future phases of the project will involve other processes such as grasping and lifting, as well as other types of robot such as autonomous vehicles or variable geometry trusses. Innovative features of the control software system include: The use of an advanced trajectory planning system which ensures collision avoidance based on a generalization of the method of artificial potential fields, the use of a generic model-based controller which learns the values of parameters, including static and kinetic friction, of a detailed mechanical model of itself by comparing actual with planned movements, the use of fast, flexible, and robust pattern recognition and 3D-interpretation strategies, integration of trajectory planning and control with the sensor systems in a distributed Java application running on a network of PC's attached to the individual physical components. In designing this first stage, the aim was to build in the minimum complexity necessary to make the system non-trivially autonomous and to minimize the technological risks. The aims of this project, which is planned to be operational during 2000, are as follows: To provide a platform for carrying out experimental research in multi-agent systems and autonomous manufacturing systems, to test the interdisciplinary cooperation architecture of the Maersk Institute, in which researchers in the fields of applied mathematics (modeling the physical world), software engineering (modeling the system) and sensor/actuator technology (relating the virtual and real worlds) could

  7. Computation Molecular Kinetics Model of HZE Induced Cell Cycle Arrest

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Ren, Lei

    2004-01-01

    Cell culture models play an important role in understanding the biological effectiveness of space radiation. High energy and charge (HZE) ions produce prolonged cell cycle arrests at the G1/S and G2/M transition points in the cell cycle. A detailed description of these phenomena is needed to integrate knowledge of the expression of DNA damage in surviving cells, including the determination of relative effectiveness factors between different types of radiation that produce differential types of DNA damage and arrest durations. We have developed a hierarchical kinetics model that tracks the distribution of cells in various cell phase compartments (early G1, late G1, S, G2, and M), however with transition rates that are controlled by rate-limiting steps in the kinetics of cyclin-cdk's interactions with their families of transcription factors and inhibitor molecules. The coupling of damaged DNA molecules to the downstream cyclin-cdk inhibitors is achieved through a description of the DNA-PK and ATM signaling pathways. For HZE irradiations we describe preliminary results, which introduce simulation of the stochastic nature of the number of direct particle traversals per cell in the modulation of cyclin-cdk and cell cycle population kinetics. Comparison of the model to data for fibroblast cells irradiated photons or HZE ions are described.

  8. Thermal stress cycling of GaAs solar cells

    NASA Astrophysics Data System (ADS)

    Janousek, B. K.; Francis, R. W.; Wendt, J. P.

    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance.

  9. Entrainability of cell cycle oscillator models with exponential growth of cell mass.

    PubMed

    Nakao, Mitsuyuki; Enkhkhudulmur, Tsog-Erdene; Katayama, Norihiro; Karashima, Akihiro

    2014-01-01

    Among various aspects of cell cycle, understanding synchronization mechanism of cell cycle is important because of the following reasons. (1)Cycles of cell assembly should synchronize to form an organ. (2) Synchronizing cell cycles are required to experimental analysis of regulatory mechanisms of cell cycles. (3) Cell cycle has a distinct phase relationship with the other biological rhythms such as circadian rhythm. However, forced as well as mutual entrainment mechanisms are not clearly known. In this study, we investigated entrainability of cell cycle models of yeast cell under the periodic forcing to both of the cell mass and molecular dynamics. Dynamics of models under study involve the cell mass growing exponentially. In our result, they are shown to allow only a limited frequency range for being entrained by the periodic forcing. In contrast, models with linear growth are shown to be entrained in a wider frequency range. It is concluded that if the cell mass is included in the cell cycle regulation, its entrainability is sensitive to a shape of growth curve assumed in the model.

  10. Coordinating cell polarity and cell cycle progression: what can we learn from flies and worms?

    PubMed

    Noatynska, Anna; Tavernier, Nicolas; Gotta, Monica; Pintard, Lionel

    2013-08-07

    Spatio-temporal coordination of events during cell division is crucial for animal development. In recent years, emerging data have strengthened the notion that tight coupling of cell cycle progression and cell polarity in dividing cells is crucial for asymmetric cell division and ultimately for metazoan development. Although it is acknowledged that such coupling exists, the molecular mechanisms linking the cell cycle and cell polarity machineries are still under investigation. Key cell cycle regulators control cell polarity, and thus influence cell fate determination and/or differentiation, whereas some factors involved in cell polarity regulate cell cycle timing and proliferation potential. The scope of this review is to discuss the data linking cell polarity and cell cycle progression, and the importance of such coupling for asymmetric cell division. Because studies in model organisms such as Caenorhabditis elegans and Drosophila melanogaster have started to reveal the molecular mechanisms of this coordination, we will concentrate on these two systems. We review examples of molecular mechanisms suggesting a coupling between cell polarity and cell cycle progression.

  11. Coordinating cell polarity and cell cycle progression: what can we learn from flies and worms?

    PubMed Central

    Noatynska, Anna; Tavernier, Nicolas; Gotta, Monica; Pintard, Lionel

    2013-01-01

    Spatio-temporal coordination of events during cell division is crucial for animal development. In recent years, emerging data have strengthened the notion that tight coupling of cell cycle progression and cell polarity in dividing cells is crucial for asymmetric cell division and ultimately for metazoan development. Although it is acknowledged that such coupling exists, the molecular mechanisms linking the cell cycle and cell polarity machineries are still under investigation. Key cell cycle regulators control cell polarity, and thus influence cell fate determination and/or differentiation, whereas some factors involved in cell polarity regulate cell cycle timing and proliferation potential. The scope of this review is to discuss the data linking cell polarity and cell cycle progression, and the importance of such coupling for asymmetric cell division. Because studies in model organisms such as Caenorhabditis elegans and Drosophila melanogaster have started to reveal the molecular mechanisms of this coordination, we will concentrate on these two systems. We review examples of molecular mechanisms suggesting a coupling between cell polarity and cell cycle progression. PMID:23926048

  12. High efficiency fuel cell/advanced turbine power cycles

    SciTech Connect

    Morehead, H.

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  13. Vertebrate Cell Cycle Modulates Infection by Protozoan Parasites

    NASA Astrophysics Data System (ADS)

    Dvorak, James A.; Crane, Mark St. J.

    1981-11-01

    Synchronized HeLa cell populations were exposed to Trypanosoma cruzi or Toxoplasma gondii, obligate intracellular protozoan parasites that cause Chagas' disease and toxoplasmosis, respectively, in humans. The ability of the two parasites to infect HeLa cells increased as the HeLa cells proceeded from the G1 phase to the S phase of their growth cycle and decreased as the cells entered G2-M. Characterization of the S-phase cell surface components responsible for this phenomenon could be beneficial in the development of vaccines against these parasitic diseases.

  14. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages

    SciTech Connect

    Arcangeletti, Maria-Cristina; Germini, Diego; Rodighiero, Isabella; Mirandola, Prisco; De Conto, Flora; Medici, Maria-Cristina; Gatti, Rita; Chezzi, Carlo; Calderaro, Adriana

    2013-05-25

    Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promoting cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.

  15. The reproductive-cell cycle theory of aging: an update.

    PubMed

    Atwood, Craig S; Bowen, Richard L

    2011-01-01

    The Reproductive-Cell Cycle Theory posits that the hormones that regulate reproduction act in an antagonistic pleiotrophic manner to control aging via cell cycle signaling; promoting growth and development early in life in order to achieve reproduction, but later in life, in a futile attempt to maintain reproduction, become dysregulated and drive senescence. Since reproduction is the most important function of an organism from the perspective of the survival of the species, if reproductive-cell cycle signaling factors determine the rate of growth, determine the rate of development, determine the rate of reproduction, and determine the rate of senescence, then by definition they determine the rate of aging and thus lifespan. The theory is able to explain: 1) the simultaneous regulation of the rate of aging and reproduction as evidenced by the fact that environmental conditions and experimental interventions known to extend longevity are associated with decreased reproductive-cell cycle signaling factors, thereby slowing aging and preserving fertility in a hostile reproductive environment; 2) two phenomena that are closely related to species lifespan-the rate of growth and development and the ultimate size of the animal; 3). the apparent paradox that size is directly proportional to lifespan and inversely proportional to fertility between species but vice versa within a species; 4). how differing rates of reproduction between species is associated with differences in their lifespan; 5). why we develop aging-related diseases; and 6). an evolutionarily credible reason for why and how aging occurs-these hormones act in an antagonistic pleiotrophic manner via cell cycle signaling; promoting growth and development early in life in order to achieve reproduction, but later in life, in a futile attempt to maintain reproduction, become dysregulated and drive senescence (dyosis). In essence, the Reproductive-Cell Cycle Theory can explain aging in all sexually reproductive life

  16. Modelling cell cycle synchronisation in networks of coupled radial glial cells.

    PubMed

    Barrack, Duncan S; Thul, Rüdiger; Owen, Markus R

    2015-07-21

    Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation, may help us to understand normal and pathological brain development.

  17. Regulated protein kinases and phosphatases in cell cycle decisions.

    PubMed

    Novak, Bela; Kapuy, Orsolya; Domingo-Sananes, Maria Rosa; Tyson, John J

    2010-12-01

    Many aspects of cell physiology are controlled by protein kinases and phosphatases, which together determine the phosphorylation state of targeted substrates. Some of these target proteins are themselves kinases or phosphatases or other components of a regulatory network characterized by feedback and feed-forward loops. In this review we describe some common regulatory motifs involving kinases, phosphatases, and their substrates, focusing particularly on bistable switches involved in cellular decision processes. These general principles are applied to cell cycle transitions, with special emphasis on the roles of regulated phosphatases in orchestrating progression from one phase to the next of the DNA replication-division cycle.

  18. aPKC Phosphorylates p27Xic1, Providing a Mechanistic Link between Apicobasal Polarity and Cell-Cycle Control

    PubMed Central

    Sabherwal, Nitin; Thuret, Raphael; Lea, Robert; Stanley, Peter; Papalopulu, Nancy

    2014-01-01

    Summary During the development of the nervous system, apicobasally polarized stem cells are characterized by a shorter cell cycle than nonpolar progenitors, leading to a lower differentiation potential of these cells. However, how polarization might be directly linked to the kinetics of the cell cycle is not understood. Here, we report that apicobasally polarized neuroepithelial cells in Xenopus laevis have a shorter cell cycle than nonpolar progenitors, consistent with mammalian systems. We show that the apically localized serine/threonine kinase aPKC directly phosphorylates an N-terminal site of the cell-cycle inhibitor p27Xic1 and reduces its ability to inhibit the cyclin-dependent kinase 2 (Cdk2), leading to shortening of G1 and S phases. Overexpression of activated aPKC blocks the neuronal differentiation-promoting activity of p27Xic1. These findings provide a direct mechanistic link between apicobasal polarity and the cell cycle, which may explain how proliferation is favored over differentiation in polarized neural stem cells. PMID:25490266

  19. Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis.

    PubMed

    Penterman, Jon; Abo, Ryan P; De Nisco, Nicole J; Arnold, Markus F F; Longhi, Renato; Zanda, Matteo; Walker, Graham C

    2014-03-04

    The α-proteobacterium Sinorhizobium meliloti establishes a chronic intracellular infection during the symbiosis with its legume hosts. Within specialized host cells, S. meliloti differentiates into highly polyploid, enlarged nitrogen-fixing bacteroids. This differentiation is driven by host cells through the production of defensin-like peptides called "nodule-specific cysteine-rich" (NCR) peptides. Recent research has shown that synthesized NCR peptides exhibit antimicrobial activity at high concentrations but cause bacterial endoreduplication at sublethal concentrations. We leveraged synchronized S. meliloti populations to determine how treatment with a sublethal NCR peptide affects the cell cycle and physiology of bacteria at the molecular level. We found that at sublethal levels a representative NCR peptide specifically blocks cell division and antagonizes Z-ring function. Gene-expression profiling revealed that the cell division block was produced, in part, through the substantial transcriptional response elicited by sublethal NCR treatment that affected ∼15% of the genome. Expression of critical cell-cycle regulators, including ctrA, and cell division genes, including genes required for Z-ring function, were greatly attenuated in NCR-treated cells. In addition, our experiments identified important symbiosis functions and stress responses that are induced by sublethal levels of NCR peptides and other antimicrobial peptides. Several of these stress-response pathways also are found in related α-proteobacterial pathogens and might be used by S. meliloti to sense host cues during infection. Our data suggest a model in which, in addition to provoking stress responses, NCR peptides target intracellular regulatory pathways to drive S. meliloti endoreduplication and differentiation during symbiosis.

  20. Hair cell recovery in mitotically blocked cultures of the bullfrog saccule

    NASA Technical Reports Server (NTRS)

    Baird, R. A.; Burton, M. D.; Fashena, D. S.; Naeger, R. A.

    2000-01-01

    Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event.

  1. HCdc14A is involved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose, free fatty acids and hypoxia.

    PubMed

    Su, Jingjing; Zhou, Houguang; Tao, Yinghong; Guo, Zhuangli; Zhang, Shuo; Zhang, Yu; Huang, Yanyan; Tang, Yuping; Hu, Renming; Dong, Qiang

    2015-01-01

    Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury.

  2. Impact of cell cycle delay on micronucleus frequency in TK6 cells.

    PubMed

    Sobol, Zhanna; Spellman, Richard A; Thiffeault, Catherine; Dobo, Krista L; Schuler, Maik

    2014-01-01

    Previous studies with TK6 cells have shown that extending the recovery period after pulse treatment allows for greater micronucleus expression for some compounds. This study explores the role of cell cycle delay in micronucleus expression after pulse treatment with three model genotoxins [mitomycin C, etoposide (ETOP), vinblastine]. Cells were treated for 4 hr and allowed to recover for 36 hr with samples removed at various time points during the recovery period and analyzed for cell cycle distribution, apoptosis and micronucleus frequency. Our results show that mitomycin C causes cell cycle delay for 20 hr after pulse treatment and cell cycle perturbation is no longer evident after 36 hr of recovery. The micronucleus frequency of cells sampled at 36 hr is doubled when compared with cells sampled at 20 hr after mitomycin C removal. When cells were treated with indirect acting genotoxins (ETOP, vinblastine), cell cycle perturbation was not observed at the 20 hr time point. Micronucleus frequency after treatment with either ETOP or vinblastine did not differ between the 20 hr and the 36 hr time point. All three compounds induced similar levels of apoptosis ranging from 4.5 to 5.6% with maximum induction occurring at the 36-hr time point. We conclude that TK6 cells exhibit extended cell cycle arrest after exposure to MMC and can go on to express micronuclei, after overcoming cell cycle arrest.

  3. Visualisation of cell cycle modifications by X-ray irradiation of single HeLa cells using fluorescent ubiquitination-based cell cycle indicators.

    PubMed

    Kaminaga, K; Noguchi, M; Narita, A; Sakamoto, Y; Kanari, Y; Yokoya, A

    2015-09-01

    To explore the effects of X-ray irradiation on mammalian cell cycle dynamics, single cells using the fluorescent ubiquitination-based cell cycle indicator (Fucci) technique were tracked. HeLa cells expressing Fucci were used to visualise cell cycle modifications induced by irradiation. After cultured HeLa-Fucci cells were exposed to 5 Gy X-rays, fluorescent cell images were captured every 20 min for 48 h using a fluorescent microscope. Time dependence of the fluorescence intensity of S/G2 cells was analysed to examine the cell cycle dynamics of irradiated and non-irradiated control cells. The results showed that irradiated cells could be divided into two populations: one with similar cell cycle dynamics to that of non-irradiated cells, and another displaying a prolonged G2 phase. Based on these findings, it is proposed in this article that an underlying switch mechanism is involved in cell cycle regulation and the G2/M checkpoint of HeLa cells.

  4. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    SciTech Connect

    Sidjanin, D.; Grdina, D.; Woloschak, G.E.

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  5. Andrographolide inhibits prostate cancer by targeting cell cycle regulators, CXCR3 and CXCR7 chemokine receptors.

    PubMed

    Mir, Hina; Kapur, Neeraj; Singh, Rajesh; Sonpavde, Guru; Lillard, James W; Singh, Shailesh

    2016-01-01

    Despite state of the art cancer diagnostics and therapies offered in clinic, prostate cancer (PCa) remains the second leading cause of cancer-related deaths. Hence, more robust therapeutic/preventive regimes are required to combat this lethal disease. In the current study, we have tested the efficacy of Andrographolide (AG), a bioactive diterpenoid isolated from Andrographis paniculata, against PCa. This natural agent selectively affects PCa cell viability in a dose and time-dependent manner, without affecting primary prostate epithelial cells. Furthermore, AG showed differential effect on cell cycle phases in LNCaP, C4-2b and PC3 cells compared to retinoblastoma protein (RB(-/-)) and CDKN2A lacking DU-145 cells. G2/M transition was blocked in LNCaP, C4-2b and PC3 after AG treatment whereas DU-145 cells failed to transit G1/S phase. This difference was primarily due to differential activation of cell cycle regulators in these cell lines. Levels of cyclin A2 after AG treatment increased in all PCa cells line. Cyclin B1 levels increased in LNCaP and PC3, decreased in C4-2b and showed no difference in DU-145 cells after AG treatment. AG decreased cyclin E2 levels only in PC3 and DU-145 cells. It also altered Rb, H3, Wee1 and CDC2 phosphorylation in PCa cells. Intriguingly, AG reduced cell viability and the ability of PCa cells to migrate via modulating CXCL11 and CXCR3 and CXCR7 expression. The significant impact of AG on cellular and molecular processes involved in PCa progression suggests its potential use as a therapeutic and/or preventive agent for PCa.

  6. DREAMs make plant cells to cycle or to become quiescent.

    PubMed

    Magyar, Zoltán; Bögre, László; Ito, Masaki

    2016-12-01

    Cell cycle phase specific oscillation of gene transcription has long been recognized as an underlying principle for ordered processes during cell proliferation. The G1/S-specific and G2/M-specific cohorts of genes in plants are regulated by the E2F and the MYB3R transcription factors. Mutant analysis suggests that activator E2F functions might not be fully required for cell cycle entry. In contrast, the two activator-type MYB3Rs are part of positive feedback loops to drive the burst of mitotic gene expression, which is necessary at least to accomplish cytokinesis. Repressor MYB3Rs act outside the mitotic time window during cell cycle progression, and are important for the shutdown of mitotic genes to impose quiescence in mature organs. The two distinct classes of E2Fs and MYB3Rs together with the RETINOBLATOMA RELATED are part of multiprotein complexes that may be evolutionary related to what is known as DREAM complex in animals. In plants, there are multiple such complexes with distinct compositions and functions that may be involved in the coordinated cell cycle and developmental regulation of E2F targets and mitotic genes.

  7. Histone supply regulates S phase timing and cell cycle progression

    PubMed Central

    Günesdogan, Ufuk; Jäckle, Herbert; Herzig, Alf

    2014-01-01

    Eukaryotes package DNA into nucleosomes that contain a core of histone proteins. During DNA replication, nucleosomes are disrupted and re-assembled with newly synthesized histones and DNA. Despite much progress, it is still unclear why higher eukaryotes contain multiple core histone genes, how chromatin assembly is controlled, and how these processes are coordinated with cell cycle progression. We used a histone null mutation of Drosophila melanogaster to show that histone supply levels, provided by a defined number of transgenic histone genes, regulate the length of S phase during the cell cycle. Lack of de novo histone supply not only extends S phase, but also causes a cell cycle arrest during G2 phase, and thus prevents cells from entering mitosis. Our results suggest a novel cell cycle surveillance mechanism that monitors nucleosome assembly without involving the DNA repair pathways and exerts its effect via suppression of CDC25 phosphatase String expression. DOI: http://dx.doi.org/10.7554/eLife.02443.001 PMID:25205668

  8. Bcr-Abl ubiquitination and Usp9x inhibition block kinase signaling and promote CML cell apoptosis.

    PubMed

    Sun, Hanshi; Kapuria, Vaibhav; Peterson, Luke F; Fang, Dexing; Bornmann, William G; Bartholomeusz, Geoffrey; Talpaz, Moshe; Donato, Nicholas J

    2011-03-17

    Although chronic myelogenous leukemia (CML) is effectively controlled by Bcr-Abl kinase inhibitors, resistance to inhibitors, progressive disease, and incomplete eradication of Bcr-Abl-expressing cells are concerns for the long-term control and suppression of this disease. We describe a novel approach to targeting key proteins in CML cells with a ubiquitin-cycle inhibitor, WP1130. Bcr-Abl is rapidly modified with K63-linked ubiquitin polymers in WP1130-treated CML cells, resulting in its accumulation in aggresomes, where is it unable to conduct signal transduction. Induction of apoptosis because of aggresomal compartmentalization of Bcr-Abl was observed in both imatinib-sensitive and -resistant cells. WP1130, but not Bcr-Abl kinase inhibitors, directly inhibits Usp9x deubiquitinase activity, resulting in the down-regulation of the prosurvival protein Mcl-1 and facilitating apoptosis. These results demonstrate that ubiquitin-cycle inhibition represents a novel and effective approach to blocking Bcr-Abl kinase signaling and reducing Mcl-1 levels to engage CML cell apoptosis. This approach may be a therapeutic option for kinase inhibitor-resistant CML patients.

  9. RAD001 (everolimus) induces dose-dependent changes to cell cycle regulation and modifies the cell cycle response to vincristine.

    PubMed

    Saunders, P O; Weiss, J; Welschinger, R; Baraz, R; Bradstock, K F; Bendall, L J

    2013-10-01

    More than 50% of adults and ~20% of children with pre-B acute lymphoblastic leukemia (ALL) relapse following treatment. Dismal outcomes for patients with relapsed or refractory disease mandate novel approaches to therapy. We have previously shown that the combination of the mTOR inhibitor RAD001 (everolimus) and the chemotherapeutic agent vincristine increases the survival of non-obese diabetic/severe combined immuno-deficient (NOD/SCID) mice bearing human ALL xenografts. We have also shown that 16 μM RAD001 synergized with agents that cause DNA damage or microtubule disruption in pre-B ALL cells in vitro. Here, we demonstrate that RAD001 has dose-dependent effects on the cell cycle in ALL cells, with 1.5 μM RAD001 inhibiting pRb, Ki67 and PCNA expression and increasing G0/1 cell cycle arrest, whereas 16 μM RAD001 increases pRb, cyclin D1, Ki67 and PCNA, with no evidence of an accumulation of cells in G0/1. Transition from G2 into mitosis was promoted by 16 μM RAD001 with reduced phosphorylation of cdc2 in cells with 4 N DNA content. However, 16 μM RAD001 preferentially induced cell death in cells undergoing mitosis. When combined with vincristine, 16 μM RAD001 reduced the vincristine-induced accumulation of cells in mitosis, probably as a result of increased death in this population. Although 16 μM RAD001 weakly activated Chk1 and Chk2, it suppressed strong vincristine-induced activation of these cell cycle checkpoint regulators. We conclude that RAD001 enhances chemosensitivity at least in part through suppression of cell cycle checkpoint regulation in response to vincristine and increased progression from G2 into mitosis.

  10. Dry Block Calibrator with Improved Temperature Field and Integrated Fixed-Point Cells

    NASA Astrophysics Data System (ADS)

    Hohmann, Michael; Marin, Sebastian; Schalles, Marc; Fröhlich, Thomas

    2017-02-01

    To reduce uncertainty of calibrations of contact thermometers using dry block calibrators, a concept was developed at Institute for Process Measurement and Sensor Technology of Technische Universität Ilmenau. This concept uses a multi-zone heating, heat flux sensors and a multiple fixed-point cell. The paper shows the concept and its validation on the basis of a dry block calibrator with a working temperature range of 70°C to 430°C. The experimental results show a stability of ± 4 mK for the reference temperature and axial temperature differences in the normalization block less than ± 55 mK.

  11. Organic photosensitive cells having a reciprocal-carrier exciton blocking layer

    DOEpatents

    Rand, Barry P.; Forrest, Stephen R.; Thompson, Mark E.

    2007-06-12

    A photosensitive cell includes an anode and a cathode; a donor-type organic material and an acceptor-type organic material forming a donor-acceptor junction connected between the anode and the cathode; and an exciton blocking layer connected between the acceptor-type organic material of the donor-acceptor junction and the cathode, the blocking layer consisting essentially of a material that has a hole mobility of at least 10.sup.-7 cm.sup.2/V-sec or higher, where a HOMO of the blocking layer is higher than or equal to a HOMO of the acceptor-type material.

  12. High-resolution timing of cell cycle-regulated gene expression

    PubMed Central

    Rowicka, Maga; Kudlicki, Andrzej; Tu, Benjamin P.; Otwinowski, Zbyszek

    2007-01-01

    The eukaryotic cell division cycle depends on an intricate sequence of transcriptional events. Using an algorithm based on maximum-entropy deconvolution, and expression data from a highly synchronized yeast culture, we have timed the peaks of expression of transcriptionally regulated cell cycle genes to an accuracy of 2 min (≈1% of the cell cycle time). The set of 1,129 cell cycle-regulated genes was identified by a comprehensive analysis encompassing all available cell cycle yeast data sets. Our results reveal distinct subphases of the cell cycle undetectable by morphological observation, as well as the precise timeline of macromolecular complex assembly during key cell cycle events. PMID:17827275

  13. Expression and localization of Ski determine cell type–specific TGFβ signaling effects on the cell cycle

    PubMed Central

    Jacob, Claire; Grabner, Henrik; Atanasoski, Suzana; Suter, Ueli

    2008-01-01

    Transforming growth factor β (TGFβ) promotes epithelial cell differentiation but induces Schwann cell proliferation. We show that the protooncogene Ski (Sloan-Kettering viral oncogene homologue) is an important regulator of these effects. TGFβ down-regulates Ski in epithelial cells but not in Schwann cells. In Schwann cells but not in epithelial cells, retinoblastoma protein (Rb) is up-regulated by TGFβ. Additionally, both Ski and Rb move to the cytoplasm, where they partially colocalize. In vivo, Ski and phospho-Rb (pRb) appear to interact in the Schwann cell cytoplasm of developing sciatic nerves. Ski overexpression induces Rb hyperphosphorylation, proliferation, and colocalization of both proteins in Schwann cell and epithelial cell cytoplasms independently of TGFβ treatment. Conversely, Ski knockdown in Schwann cells blocks TGFβ-induced proliferation and pRb cytoplasmic relocalization. Our findings reveal a critical function of fine-tuned Ski levels in the control of TGFβ effects on the cell cycle and suggest that at least a part of Ski regulatory effects on TGFβ-induced proliferation of Schwann cells is caused by its concerted action with Rb. PMID:18695043

  14. The Effect of Spaceflight on Cartilage Cell Cycle and Differentiation

    NASA Technical Reports Server (NTRS)

    Doty, Stephen B.; Stiner, Dalina; Telford, William G.

    2000-01-01

    In vivo studies have shown that spaceflight results in loss of bone and muscle. In an effort to understand the mechanisms of these changes, cell cultures of cartilage, bone and muscle have been subjected to spaceflight to study the microgravity effects on differentiated cells. However it now seems possible that the cell differentiation process itself may be the event(s) most affected by spaceflight. For example, osteoblast-like cells have been shown to have reduced cellular activity in microgravity due to an underdifferentiated state (Carmeliet, et al, 1997). And reduced human lymphocyte growth in spaceflight was related to increased apoptosis (Lewis, et al, 1998). Which brings us to the question of whether reduced cellular activity in space is due to an effect on the differentiated cell, an effect on the cell cycle and cell proliferation, or an effect on cell death. This question has not been specifically addressed on previous flights and was the question behind die present study.

  15. A novel mitosis-associated lncRNA, MA-linc1, is required for cell cycle progression and sensitizes cancer cells to Paclitaxel.

    PubMed

    Bida, Or; Gidoni, Moriah; Ideses, Diana; Efroni, Sol; Ginsberg, Doron

    2015-09-29

    Long noncoding RNAs (lncRNAs) are major regulators of many cellular processes including cell cycle progression and tumorigenesis. In this study, we identify a novel lncRNA, MA-linc1, and reveal its effects on cell cycle progression and cancer growth. Inhibition of MA-linc1 expression alters cell cycle distribution, leading to a decrease in the number of G1 cells and a concomitant increase in all other stages of the cell cycle, and in particular G2/M, suggesting its involvement in the regulation of M phase. Accordingly, knock down of MA-linc1 inhibits M phase exit upon release from a mitotic block. We further demonstrate that MA-linc1 predominantly functions in cis to repress expression of its neighboring gene, Purα, which is often deleted in human cancers and whose ectopic expression inhibits cell cycle progression. Knock down of Purα partially rescues the MA-linc1 dependent inhibition of M phase exit. In agreement with its suggested role in M phase, inhibition of MA-linc1 enhances apoptotic cell death induced by the antimitotic drug, Paclitaxel and this enhancement of apoptosis is rescued by Purα knockdown. Furthermore, high levels of MA-linc1 are associated with reduced survival in human breast and lung cancer patients.Taken together, our data identify MA-linc1 as a novel lncRNA regulator of cell cycle and demonstrate its potential role in cancer progression and treatment.

  16. The Elicitor Cryptogein Blocks Glucose Transport in Tobacco Cells1

    PubMed Central

    Bourque, Stéphane; Lemoine, Rémi; Sequeira-Legrand, Anabelle; Fayolle, Léon; Delrot, Serge; Pugin, Alain

    2002-01-01

    Cryptogein is a 10-kD protein secreted by the oomycete Phytophthora cryptogea that induces a hypersensitive response on tobacco (Nicotiana tabacum var. Xanthi) plants and a systemic acquired resistance against various pathogens. The mode of action of this elicitor has been studied using tobacco cell suspensions. Our previous data indicated that within minutes, cryptogein signaling involves various events including changes in ion fluxes, protein phosphorylation, sugar metabolism, and, eventually, cell death. These results suggested that transport of sugars could be affected and, thus, involved in the complex relationships between plant and microorganisms via elicitors. This led us to investigate the effects of cryptogein on glucose (Glc) uptake and mitochondrial activity in tobacco cells. Cryptogein induces an immediate inhibition of Glc uptake, which is not attributable to plasma membrane (PM) depolarization. Conversely, cryptogein-induced valine uptake is because of PM depolarization. Inhibition of the PM Glc transporter(s) was shown to be mediated by a calcium-dependent phosphorylation process, and is independent of active oxygen species production. This inhibition was associated with a strong decrease in O2 uptake rate by cells and a large mitochondrial membrane depolarization. Thus, inhibition of Glc uptake accompanied by inhibition of phosphorylative oxidation may participate in hypersensitive cell death. These results are discussed in the context of competition between plants and microorganisms for apoplastic sugars. PMID:12481101

  17. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    PubMed Central

    Kwak, Hyun-Ho; Park, Bong-Soo

    2016-01-01

    Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC. PMID:27478478

  18. siRNA blocking the RAS signalling pathway and inhibits the growth of oesophageal squamous cell carcinoma in nude mice.

    PubMed

    Wang, Xinjie; Zheng, Yuling; Fan, Qingxia; Zhang, Xudong; Shi, Yonggang

    2014-12-01

    The aim of this study was to study RAS-siRNA blocking RAS pathway and suppressing cell growth in human oesophageal squamous cell carcinoma in nude mice. The methods in this study was to construct RAS-siRNA expression vector, establish 40 oesophageal squamous cell carcinoma xenograft animal models and divided them into five groups: control group, siRNA control group, RAS-siRNA group, paclitaxel group and RAS-siRNA and paclitaxel group. We observed tumour growth in nude mice, studied histology by HE staining, tumour growth inhibition by TUNEL assay and detected the RAS, MAPK and cyclin D1 protein expression by immunohistochemistry and western blot. We have obtained the following results: (i) successfully established animal models; (ii) nude mice in each group after treatment inhibited tumour volume was significantly reduced compared with the control group (p < 0.05); (iii) compared with the control group, the number of apoptotic cells were significantly increased in the siRNA control group and the RAS-siRNA group, and the number of apoptosis cells in the paclitaxel and RAS-siRNA group is significantly most than the paclitaxel group and RAS-siRNA group (p < 0.05); and (iv) after treatment, RAS, MAPK and cyclin D1 expression in five groups was decreasing gradually. After adding paclitaxel, the protein expression in the paclitaxel and RAS-siRNA group was significantly lower than that of paclitaxel group, negative control and paclitaxel group (p < 0.05). We therefore conclude that RAS-siRNA can block the RAS signal transduction pathway, reduce the activity of tumour cells, arrest tumour cell cycle, promote apoptosis, inhibit cell proliferation and increase tumour cell sensitivity to chemotherapeutic drugs.

  19. Effects of cell cycle noise on excitable gene circuits

    NASA Astrophysics Data System (ADS)

    Veliz-Cuba, Alan; Gupta, Chinmaya; Bennett, Matthew R.; Josić, Krešimir; Ott, William

    2016-12-01

    We assess the impact of cell cycle noise on gene circuit dynamics. For bistable genetic switches and excitable circuits, we find that transitions between metastable states most likely occur just after cell division and that this concentration effect intensifies in the presence of transcriptional delay. We explain this concentration effect with a three-states stochastic model. For genetic oscillators, we quantify the temporal correlations between daughter cells induced by cell division. Temporal correlations must be captured properly in order to accurately quantify noise sources within gene networks.

  20. Low-dose methotrexate enhances cycling of highly anaplastic cancer cells

    PubMed Central

    Marzi, Ilaria; Olivotto, Massimo

    2017-01-01

    ABSTRACT We previously showed that cellular RedOx state governs the G1-S transition of AH130 hepatoma, a tumor spontaneously reprogrammed to the embryonic stem cell stage. This transition is impaired when the mithocondrial electron transport system is blocked by specific inhibitors (antimycin A) or the respiratory chain is saturated by adding to the cells high concentrations of pyruvate. The antimycin A or pyruvate block is removed by the addition of adequate concentrations of folate (F). This suggests that the G1-S transition of AH130 cells depends on a respiration-linked step of DNA synthesis related to folate metabolism. In the study reported here, we characterized the effects of methotrexate (MTX), an inhibitor of dihydofolate-reductase, on the G1-S transition of hepatoma cells, in the absence or the presence of exogenously added F, dihydrofolate (FH2) or tetrahydrofolate (FH4). MTX, at 1 μM or higher concentrations, inhibited G1-S transition. This inhibition was completely removed by exogenous folates. Surprisingly, 10 nM MTX stimulated G1-S transition. The addition of F, but not FH2 or FH4, significantly increased this effect. Furthermore, 10 nM MTX removed the block of the G1-S transition operated by antimycin A or pyruvate, an effect which was enhanced in the presence of F. Finally, the stimulatory effect of 10 nM MTX was inhibited in the presence of serine. Our findings indicated that, under certain conditions, MTX may stimulate, rather than inhibiting, the cycling of cancer cells exhibiting a stem cell-like phenotype, such as AH130 cells. This may impact the therapeutic use of MTX and of folates as supportive care. PMID:27841718

  1. Cell cycle-arrested tumor cells exhibit increased sensitivity towards TRAIL-induced apoptosis

    PubMed Central

    Ehrhardt, H; Wachter, F; Grunert, M; Jeremias, I

    2013-01-01

    Resting tumor cells represent a huge challenge during anticancer therapy due to their increased treatment resistance. TNF-related apoptosis-inducing ligand (TRAIL) is a putative future anticancer drug, currently in phases I and II clinical studies. We recently showed that TRAIL is able to target leukemia stem cell surrogates. Here, we tested the ability of TRAIL to target cell cycle-arrested tumor cells. Cell cycle arrest was induced in tumor cell lines and xenografted tumor cells in G0, G1 or G2 using cytotoxic drugs, phase-specific inhibitors or RNA interference against cyclinB and E. Biochemical or molecular arrest at any point of the cell cycle increased TRAIL-induced apoptosis. Accordingly, when cell cycle arrest was disabled by addition of caffeine, the antitumor activity of TRAIL was reduced. Most important for clinical translation, tumor cells from three children with B precursor or T cell acute lymphoblastic leukemia showed increased TRAIL-induced apoptosis upon knockdown of either cyclinB or cyclinE, arresting the cell cycle in G2 or G1, respectively. Taken together and in contrast to most conventional cytotoxic drugs, TRAIL exerts enhanced antitumor activity against cell cycle-arrested tumor cells. Therefore, TRAIL might represent an interesting drug to treat static-tumor disease, for example, during minimal residual disease. PMID:23744361

  2. An adaptor hierarchy regulates proteolysis during a bacterial cell cycle

    PubMed Central

    Joshi, Kamal Kishore; Bergé, Matthieu; Radhakrishnan, Sunish Kumar; Viollier, Patrick Henri; Chien, Peter

    2015-01-01

    Summary Regulated protein degradation is essential. The timed destruction of crucial proteins by the ClpXP protease drives cell-cycle progression in the bacterium Caulobacter crescentus. Although ClpXP is active alone, additional factors are inexplicably required for cell-cycle dependent proteolysis. Here, we show that these factors constitute an adaptor hierarchy where different substrates are destroyed based on the degree of adaptor assembly. The hierarchy builds upon priming of ClpXP by the adaptor CpdR, which promotes degradation of one class of substrates and also recruits the adaptor RcdA to degrade a second class of substrates. Adding the PopA adaptor promotes destruction of a third class of substrates, while inhibiting degradation of the second class. We dissect RcdA to generate bespoke adaptors, identifying critical substrate elements needed for RcdA recognition and uncovering additional cell-cycle dependent ClpXP substrates. Our work reveals how hierarchical adaptors and primed proteases orchestrate regulated proteolysis during bacterial cell-cycle progression. PMID:26451486

  3. Evaluation program for secondary spacecraft cells: Cycle life test

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1979-01-01

    The service life and storage stability for several storage batteries were determined. The batteries included silver-zinc batteries, nickel-cadmium batteries, and silver-cadmium batteries. The cell performance characteristics and limitations are to be used by spacecraft power systems planners and designers. A statistical analysis of the life cycle prediction and cause of failure versus test conditions is presented.

  4. Hydrogenosome behavior during the cell cycle in Tritrichomonas foetus.

    PubMed

    Benchimol, Marlene; Engelke, Flávio

    2003-07-01

    The hydrogenosome is an unusual organelle found in several trichomonad species and other protists living in oxygen poor or anoxic environments. The hydrogenosome behavior in the protist Tritrichomonas foetus, parasite of the urogenital tract of cattle, is reported here. The hydrogenosomes were followed by light and transmission electron microscopy during the whole cell cycle. Videomicroscopy, immunofluorescence microscopy, and immunocytochemistry were also used. It is shown that the hydrogenosomes divide at any phase of the cell cycle and that the organellar division is not synchronized. During the interphase the hydrogenosomes are distributed mainly along the axostyle and costa, and at the beginning of mitosis migrate to around the nucleus. Three forms of hydrogenosome division were seen: (1). segmentation, where elongated hydrogenosomes are further separated by external membranous profiles; (2). partition, where rounded hydrogenosomes, in a bulky form, are further separated by a membranous internal septum and, (3). a new dividing form: heart-shaped hydrogenosomes, which gradually present a membrane invagination leading to the organelle division. The hydrogenosomes divide at any phase of the cell cycle. A necklace of intramembranous particles delimiting the outer hydrogenosomal membrane in the region of organelle division was observed by freeze-etching. Similarities between hydrogenosomes and mitochondria behavior during the cell cycle are discussed.

  5. Cycle life status of SAFT VOS nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Goualard, Jacques

    1993-01-01

    The SAFT prismatic VOS Ni-Cd cells have been flown in geosynchronous orbit since 1977 and in low earth orbit since 1983. Parallel cycling tests are performed by several space agencies in order to determine the cycle life for a wide range of temperature and depth of discharge (DOD). In low Earth orbit (LEO), the ELAN program is conducted on 24 Ah cells by CNES and ESA at the European Battery Test Center at temperatures ranging from 0 to 27 C and DOD from 10 to 40 percent. Data are presented up to 37,000 cycles. One pack (X-80) has achieved 49,000 cycles at 10 C and 23 percent DOD. The geosynchronous orbit simulation of a high DOD test is conducted by ESA on 3 batteries at 10 C and 70, 90, and 100 percent DOD. Thirty-one eclipse seasons are completed, and no signs of degradation have been found. The Air Force test at CRANE on 24 Ah and 40 Ah cells at 20 C and 80 percent DOD has achieved 19 shadow periods. Life expectancy is discussed. The VOS cell technology could be used for the following: (1) in geosynchronous conditions--15 yrs at 10-15 C and 80 percent DOD; and (2) in low earth orbit--10 yrs at 5-15 C and 25-30 percent DOD.

  6. Visualizing cell-cycle kinetics after hypoxia/reoxygenation in HeLa cells expressing fluorescent ubiquitination-based cell cycle indicator (Fucci).

    PubMed

    Goto, Tatsuaki; Kaida, Atsushi; Miura, Masahiko

    2015-12-10

    Hypoxia induces G1 arrest in many cancer cell types. Tumor cells are often exposed to hypoxia/reoxygenation, especially under acute hypoxic conditions in vivo. In this study, we investigated cell-cycle kinetics and clonogenic survival after hypoxia/reoxygenation in HeLa cells expressing fluorescent ubiquitination-based cell cycle indicator (Fucci). Hypoxic treatment halted cell-cycle progression during mid-S to G2 phase, as determined by the cell cycle-regulated E3 ligase activities of SCF(Skp2) and APC/C(Cdh1), which are regulators of the Fucci probes; however, the DNA content of the arrested cells was equivalent to that in G1 phase. After reoxygenation, time-lapse imaging and DNA content analysis revealed that all cells reached G2 phase, and that Fucci fluorescence was distinctly separated into two fractions 24h after reoxygenation: red cells that released from G2 arrest after repairing DNA double-strand breaks (DSBs) exhibited higher clonogenic survival, whereas most cells that stayed green contained many DSBs and exhibited lower survival. We conclude that hypoxia disrupts coordination of DNA synthesis and E3 ligase activities associated with cell-cycle progression, and that DSB repair could greatly influence cell-cycle kinetics and clonogenic survival after hypoxia/reoxygenation.

  7. Cell cycle-dependent radiosensitivity in two-cell mouse embryos in culture

    SciTech Connect

    Domon, M.

    1980-02-01

    The radiosensitivity in embryo systems varies depending on factors such as genetic background, oxygen environment, developmental stage, and age of the embryo in cell cycle. This paper is concerned with the involvement of cell cycle age in radiosensitivity of two-cell mouse embryos. Thus the doses needed for 50% killing of blastocyst formation in vitro (LD/sub 50/) of X rays for the two-cell mouse embryos in culture were measured during their cell cycle. The cell cycle in the two-cell embryos was quite peculiar; the cell cycle time of 18 h was divided into a long DNA post synthesis phase (G/sub 2/) plus mitosis (M) of 14 h and a short DNA synthesis phase (S) of 4 h. Results indicate that the LD/sub 50/ varies roughly from 100 to 600 rad within the cell cycle. Thus a major factor in determining the sensitivity to ionizing radiation of two-cell mouse embryos in vitro and perhaps in vivo is their position in the cell division cycle at the time of irradiation.

  8. Cell cycle analysis of fetal germ cells during sex differentiation in mice

    PubMed Central

    Spiller, Cassy; Wilhelm, Dagmar; Koopman, Peter

    2009-01-01

    Background information. Primordial germ cells in developing male and female gonads are responsive to somatic cell cues that direct their sex-specific differentiation into functional gametes. The first divergence of the male and female pathways is a change in cell cycle state observed from 12.5 dpc (days post coitum) in mice. At this time XY and XX germ cells cease mitotic division and enter G1/G0 arrest and meiosis prophase I respectively. Aberrant cell cycle regulation at this time can lead to disrupted ovarian development, germ cell apoptosis, reduced fertility and/or the formation of germ cell tumours. Results. In order to unravel the mechanisms utilized by germ cells to achieve and maintain the correct cell cycle states, we analysed the expression of a large number of cell cycle genes in purified germ cells across the crucial time of sex differentiation. Our results revealed common signalling for both XX and XY germ cell survival involving calcium signalling. A robust mechanism for apoptosis and checkpoint control was observed in XY germ cells, characterized by p53 and Atm (ataxia telangiectasia mutated) expression. Additionally, a member of the retinoblastoma family and p21 were identified, linking these factors to XY germ cell G1/G0 arrest. Lastly, in XX germ cells we observed a down-regulation of genes involved in both G1- and G2-phases of the cell cycle consistent with their entry into meiosis. Conclusion. The present study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors warranting further investigation in order to understand cases of aberrant cell cycle control in these specialized cells. PMID:19419345

  9. Protein turnover in the cell cycle of Escherichia coli.

    PubMed

    Nishi, A; Kogoma, T

    1965-10-01

    Nishi, Arasuke (University of Tokyo, Tokyo, Japan), and Tokio Kogoma. Protein turnover in the cell cycle of Escherichia coli. J. Bacteriol. 90:884-890. 1965.-Protein metabolism and enzyme formation throughout the cell cycle were investigated in synchronized cultures of Escherichia coli. The cells showed a temporary cessation of the net increase of bulk protein and of constitutive beta-galactosidase activity during the division period. By contrast, when tested by short-term experiments performed with cells at different growth stages, the bacteria displayed a constant incorporation of labeled protein precursors into the protein fraction, even during the fission period. Similar results were obtained with respect to the capacities for induced enzyme formation. On the other hand, when the cells were previously labeled and then subjected to synchronization in a nonradioactive medium, the radioactivity of the protein fraction decreased temporarily by nearly 10% during the fission period and then regained its previous level at the beginning of the ensuing phase of growth. This indicates that the products of partial degradation of protein were again utilized for protein synthesis in the next cell cycle. It was concluded that the temporary lagging of net increase of bulk protein may be due to the partial breakdown of protein occurring during the fission period.

  10. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer.

    PubMed

    Weiskopf, Kipp; Jahchan, Nadine S; Schnorr, Peter J; Cristea, Sandra; Ring, Aaron M; Maute, Roy L; Volkmer, Anne K; Volkmer, Jens-Peter; Liu, Jie; Lim, Jing Shan; Yang, Dian; Seitz, Garrett; Nguyen, Thuyen; Wu, Di; Jude, Kevin; Guerston, Heather; Barkal, Amira; Trapani, Francesca; George, Julie; Poirier, John T; Gardner, Eric E; Miles, Linde A; de Stanchina, Elisa; Lofgren, Shane M; Vogel, Hannes; Winslow, Monte M; Dive, Caroline; Thomas, Roman K; Rudin, Charles M; van de Rijn, Matt; Majeti, Ravindra; Garcia, K Christopher; Weissman, Irving L; Sage, Julien

    2016-07-01

    Small-cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer with limited treatment options. CD47 is a cell-surface molecule that promotes immune evasion by engaging signal-regulatory protein alpha (SIRPα), which serves as an inhibitory receptor on macrophages. Here, we found that CD47 is highly expressed on the surface of human SCLC cells; therefore, we investigated CD47-blocking immunotherapies as a potential approach for SCLC treatment. Disruption of the interaction of CD47 with SIRPα using anti-CD47 antibodies induced macrophage-mediated phagocytosis of human SCLC patient cells in culture. In a murine model, administration of CD47-blocking antibodies or targeted inactivation of the Cd47 gene markedly inhibited SCLC tumor growth. Furthermore, using comprehensive antibody arrays, we identified several possible therapeutic targets on the surface of SCLC cells. Antibodies to these targets, including CD56/neural cell adhesion molecule (NCAM), promoted phagocytosis in human SCLC cell lines that was enhanced when combined with CD47-blocking therapies. In light of recent clinical trials for CD47-blocking therapies in cancer treatment, these findings identify disruption of the CD47/SIRPα axis as a potential immunotherapeutic strategy for SCLC. This approach could enable personalized immunotherapeutic regimens in patients with SCLC and other cancers.

  11. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer

    PubMed Central

    Weiskopf, Kipp; Jahchan, Nadine S.; Schnorr, Peter J.; Ring, Aaron M.; Maute, Roy L.; Volkmer, Anne K.; Volkmer, Jens-Peter; Liu, Jie; Lim, Jing Shan; Yang, Dian; Seitz, Garrett; Nguyen, Thuyen; Wu, Di; Guerston, Heather; Trapani, Francesca; George, Julie; Poirier, John T.; Gardner, Eric E.; Miles, Linde A.; de Stanchina, Elisa; Lofgren, Shane M.; Vogel, Hannes; Winslow, Monte M.; Dive, Caroline; Thomas, Roman K.; Rudin, Charles M.; van de Rijn, Matt; Majeti, Ravindra; Garcia, K. Christopher; Weissman, Irving L.

    2016-01-01

    Small-cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer with limited treatment options. CD47 is a cell-surface molecule that promotes immune evasion by engaging signal-regulatory protein alpha (SIRPα), which serves as an inhibitory receptor on macrophages. Here, we found that CD47 is highly expressed on the surface of human SCLC cells; therefore, we investigated CD47-blocking immunotherapies as a potential approach for SCLC treatment. Disruption of the interaction of CD47 with SIRPα using anti-CD47 antibodies induced macrophage-mediated phagocytosis of human SCLC patient cells in culture. In a murine model, administration of CD47-blocking antibodies or targeted inactivation of the Cd47 gene markedly inhibited SCLC tumor growth. Furthermore, using comprehensive antibody arrays, we identified several possible therapeutic targets on the surface of SCLC cells. Antibodies to these targets, including CD56/neural cell adhesion molecule (NCAM), promoted phagocytosis in human SCLC cell lines that was enhanced when combined with CD47-blocking therapies. In light of recent clinical trials for CD47-blocking therapies in cancer treatment, these findings identify disruption of the CD47/SIRPα axis as a potential immunotherapeutic strategy for SCLC. This approach could enable personalized immunotherapeutic regimens in patients with SCLC and other cancers. PMID:27294525

  12. Classification of signals for blocking apoptosis in vascular endothelial cells.

    PubMed

    Hase, M; Araki, S; Kaji, K; Hayashi, H

    1994-10-01

    The survival and death of human umbilical vascular endothelial cells in culture are affected by several factors, such as fibroblast growth factor (FGF), serum, phorbol ester (TPA), and vanadate. In order to identify common aspects of the various signal-transduction processes during the course of apoptotic or programmed cell death, we designed experiments to distinguish between these factors in terms of the pathway that is responsible for the processing of each stimulus. We found, for example, that the effect of removal of FGF was specifically overcome by the addition of the phorbol ester. Our results indicated that two distinct pathways were operative, one specific for signal transduction initiated by FGF and phorbol ester and another specific for signal transduction initiated by serum and vanadate. These two pathways merged down-stream of the individual signal-processing pathways.

  13. Effects of X-irradiation on cell-cycle progression, induction of chromosomal aberrations and cell killing in ataxia telangiectasia (AT) fibroblasts.

    PubMed

    Nagasawa, H; Latt, S A; Lalande, M E; Little, J B

    1985-01-01

    Survival, cumulative labeling indices, chromosomal aberrations and cell-cycle distribution by flow microfluorometry (FMF) were studied in fibroblasts from normal and three ataxia telangiectasia (AT) families after X-irradiation during density-inhibition of growth and immediate release by subculture to low density. Homozygotic AT (proband) fibroblasts were very hypersensitive to cell killing by X-irradiation (D0 = 40-45 rad). Fibroblasts from AT heterozygotes (parents) were minimally hypersensitive, with D0's (100-110 rad) slightly lower than those for normal fibroblasts (D0 = 120-140 rad). There were three different response groups for a G1 phase block induced by 400 rad of X-rays: (1) minimal or no G1 block was observed in AT homozygote cell strains; (2) 10-20% of the cells were blocked in G1 in normal cell strains; and (3) 50% or more of the cells were blocked in AT heterozygote strains. FMF profiles and cumulative labeling indices showed that homozygotic AT cells irradiated in plateau phase moved into the S-phase following subculture with no additional delay over non-irradiated controls. Homozygotic AT cells showed not only a 4-5 times higher frequency of X-ray-induced chromosomal aberrations than normal strains, but approximately 30% of these were of the chromatid-type. There were no differences in the frequency or type of X-ray-induced chromosomal aberrations between normal and heterozygotic AT cells.

  14. Competency of Anopheles stephensi mysorensis strain for Plasmodium vivax and the role of inhibitory carbohydrates to block its sporogonic cycle

    PubMed Central

    Basseri, Hamid R; Doosti, Soghra; Akbarzadeh, Kamran; Nateghpour, Mehdi; Whitten, Miranda MA; Ladoni, Hossein

    2008-01-01

    , GalNAc, and lactose. Conclusion The study indicates that An. stephensi in southern Iran has the potential to survive long enough to be re-infected and transmit vivax malaria several times, based on the average adult female longevity (about 30 days) and its gonotrophic cycle (2–3 days) during the malaria transmission season. Certain sugar binding interactions are important for the development of P. vivax sporozoites, and this information may be instrumental for the development of transmission blocking strategies. PMID:18627630

  15. Single cell studies of the cell cycle and some models

    PubMed Central

    Mitchison, JM

    2005-01-01

    Analysis of growth and division often involves measurements made on cell populations, which tend to average data. The value of single cell analysis needs to be appreciated, and models based on findings from single cells should be taken into greater consideration in our understanding of the way in which cell size and division are co-ordinated. Examples are given of some single cell analyses in mammalian cells, yeast and other microorganisms. There is also a short discussion on how far the results are in accord with simple models. PMID:15703075

  16. Odd-skipped maintains prohemocyte potency and blocks blood cell development in Drosophila.

    PubMed

    Gao, Hongjuan; Wu, Xiaorong; Fossett, Nancy

    2011-03-01

    Studies using Drosophila have contributed significantly to our understanding of regulatory mechanisms that control stem cell fate choice. The Drosophila blood cell progenitor or prohemocyte shares important characteristics with mammalian hematopoietic stem cells, including quiescence, niche dependence, and the capacity to form all three fly blood cell types. This report extends our understanding of prohemocyte fate choice by showing that the zinc-finger protein Odd-skipped promotes multipotency and blocks differentiation. Odd-skipped was expressed in prohemocytes and downregulated in terminally differentiated plasmatocytes. Furthermore, Odd-skipped maintained the prohemocyte population and blocked differentiation of plasmatocytes and lamellocytes but not crystal cells. A previous study showed that Odd-skipped expression is downregulated by Decapentaplegic signaling. This report provides a functional basis for this regulator/target pair by suggesting that Decapentaplegic signaling limits Odd-skipped expression to promote prohemocyte differentiation. Overall, these studies are the basis for a gene regulatory model of prohemocyte cell fate choice.

  17. Regulation of p27Kip1 phosphorylation and G1 cell cycle progression by protein phosphatase PPM1G

    PubMed Central

    Sun, Chuang; Wang, Gaohang; Wrighton, Katharine H; Lin, Han; Songyang, Zhou; Feng, Xin-Hua; Lin, Xia

    2016-01-01

    The cell cycle, an essential process leading to the cell division, is stringently controlled by the key cell cycle regulators, cyclin-CDK complexes, whose activity is further regulated by a variety of mechanisms. p27Kip1 is a cyclin-CDK inhibitor that arrests the cell cycle at the G1 phase by blocking the activation of cyclin E-CDK2 complex, preventing the improper entry to the cell cycle. Dysfunction of p27 has been frequently observed in many types of human cancers, resulting from p27 protein degradation and cytoplasmic mislocalization, which are highly regulated by the phosphorylation status of p27. Although the kinases that phosphorylate p27 have been extensively studied, phosphatases that dephosphorylate p27 remain to be elucidated. By using genomic phosphatase screening, we identified a PPM family phosphatase, PPM1G, which could reduce p27 phosphorylation at T198. We further confirmed that PPM1G is a novel p27 phosphatase by demonstrating that PPM1G can interact with and dephosphorylate p27 in cells and in vitro. Functionally, ectopic expression of PPM1G enhanced p27 protein stability and delayed cell cycle progression from G1 to S phase. In accordance, knockdown of PPM1G accelerated p27 degradation during G1 phase and rendered cells resistant to the cell cycle arrest induced by serum deprivation. Mechanistically, PPM1G inhibited the interaction of p27 to 14-3-3θ, a chaperone protein that facilitates p27 nuclear export. Knockdown of PPM1G promoted the cytoplasmic localization of p27. Taken together, our studies identified PPM1G as a novel regulator of p27 that dephosphorylates p27 at T198 site and, together with p27 kinases, PPM1G controls cell cycle progression by maintaining the proper level of p27 protein. PMID:27822412

  18. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle.

    PubMed

    Cantarero, Lara; Sanz-García, Marta; Vinograd-Byk, Hadar; Renbaum, Paul; Levy-Lahad, Ephrat; Lazo, Pedro A

    2015-06-12

    Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics.

  19. p53 controls CDC7 levels to reinforce G1 cell cycle arrest upon genotoxic stress

    PubMed Central

    Tudzarova, Slavica; Dey, Ayona; Stoeber, Kai; Okorokov, Andrei L.; Williams, Gareth H.

    2016-01-01

    ABSTRACT DNA replication initiation is a key event in the cell cycle, which is dependent on 2 kinases - CDK2 and CDC7. Here we report a novel mechanism in which p53 induces G1 checkpoint and cell cycle arrest by downregulating CDC7 kinase in response to genotoxic stress. We demonstrate that p53 controls CDC7 stability post-transcriptionally via miR-192/215 and post-translationally via Fbxw7β E3 ubiquitin ligase. The p53-dependent pathway of CDC7 downregulation is interlinked with the p53-p21-CDK2 pathway, as p21-mediated inhibition of CDK2-dependent phosphorylation of CDC7 on Thr376 is required for GSK3ß-phosphorylation and Fbxw7ß-dependent degradation of CDC7. Notably, sustained oncogenic high levels of active CDC7 exert a negative feedback onto p53, leading to unrestrained S-phase progression and accumulation of DNA damage. Thus, p53-dependent control of CDC7 levels is essential for blocking G1/S cell-cycle transition upon genotoxic stress, thereby safeguarding the genome from instability and thus representing a novel general stress response. PMID:27611229

  20. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle

    PubMed Central

    Cantarero, Lara; Sanz-García, Marta; Vinograd-Byk, Hadar; Renbaum, Paul; Levy-Lahad, Ephrat; Lazo, Pedro A.

    2015-01-01

    Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics. PMID:26068304

  1. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells

    PubMed Central

    Kwak, Choong-Hwan; Abekura, Fukushi; Park, Jun-Young; Park, Nam Gyu; Chang, Young-Chae; Lee, Young-Choon; Chung, Tae-Wook; Ha, Ki-Tae; Son, Jong-Keun

    2017-01-01

    Jellyfish species are widely distributed in the world’s oceans, and their population is rapidly increasing. Jellyfish extracts have several biological functions, such as cytotoxic, anti-microbial, and antioxidant activities in cells and organisms. However, the anti-cancer effect of Jellyfish extract has not yet been examined. We used chronic myelogenous leukemia K562 cells to evaluate the mechanisms of anti-cancer activity of hexane extracts from Nomura’s jellyfish in vitro. In this study, jellyfish are subjected to hexane extraction, and the extract is shown to have an anticancer effect on chronic myelogenous leukemia K562 cells. Interestingly, the present results show that jellyfish hexane extract (Jellyfish-HE) induces apoptosis in a dose- and time-dependent manner. To identify the mechanism(s) underlying Jellyfish-HE-induced apoptosis in K562 cells, we examined the effects of Jellyfish-HE on activation of caspase and mitogen-activated protein kinases (MAPKs), which are responsible for cell cycle progression. Induction of apoptosis by Jellyfish-HE occurred through the activation of caspases-3,-8 and -9 and phosphorylation of p38. Jellyfish-HE-induced apoptosis was blocked by a caspase inhibitor, Z-VAD. Moreover, during apoptosis in K562 cells, p38 MAPK was inhibited by pretreatment with SB203580, an inhibitor of p38. SB203580 blocked jellyfish-HE-induced apoptosis. Additionally, Jellyfish-HE markedly arrests the cell cycle in the G0/G1 phase. Therefore, taken together, the results imply that the anti-cancer activity of Jellyfish-HE may be mediated apoptosis by induction of caspases and activation of MAPK, especially phosphorylation of p38, and cell cycle arrest at the Go/G1 phase in K562 cells. PMID:28133573

  2. Instructive simulation of the bacterial cell division cycle.

    PubMed

    Zaritsky, Arieh; Wang, Ping; Vischer, Norbert O E

    2011-07-01

    The coupling between chromosome replication and cell division includes temporal and spatial elements. In bacteria, these have globally been resolved during the last 40 years, but their full details and action mechanisms are still under intensive study. The physiology of growth and the cell cycle are reviewed in the light of an established dogma that has formed a framework for development of new ideas, as exemplified here, using the Cell Cycle Simulation (CCSim) program. CCSim, described here in detail for the first time, employs four parameters related to time (replication, division and inter-division) and size (cell mass at replication initiation) that together are sufficient to describe bacterial cells under various conditions and states, which can be manipulated environmentally and genetically. Testing the predictions of CCSim by analysis of time-lapse micrographs of Escherichia coli during designed manipulations of the rate of DNA replication identified aspects of both coupling elements. Enhanced frequencies of cell division were observed following an interval of reduced DNA replication rate, consistent with the prediction of a minimum possible distance between successive replisomes (an eclipse). As a corollary, the notion that cell poles are not always inert was confirmed by observed placement of division planes at perpendicular planes in monstrous and cuboidal cells containing multiple, segregating nucleoids.

  3. Autophagy and the Cell Cycle: A Complex Landscape

    PubMed Central

    Mathiassen, Søs Grønbæk; De Zio, Daniela; Cecconi, Francesco

    2017-01-01

    Autophagy is a self-degradation pathway, in which cytoplasmic material is sequestered in double-membrane vesicles and delivered to the lysosome for degradation. Under basal conditions, autophagy plays a homeostatic function. However, in response to various stresses, the pathway can be further induced to mediate cytoprotection. Defective autophagy has been linked to a number of human pathologies, including neoplastic transformation, even though autophagy can also sustain the growth of tumor cells in certain contexts. In recent years, a considerable correlation has emerged between autophagy induction and stress-related cell-cycle responses, as well as unexpected roles for autophagy factors and selective autophagic degradation in the process of cell division. These advances have obvious implications for our understanding of the intricate relationship between autophagy and cancer. In this review, we will discuss our current knowledge of the reciprocal regulation connecting the autophagy pathway and cell-cycle progression. Furthermore, key findings involving nonautophagic functions for autophagy-related factors in cell-cycle regulation will be addressed.

  4. Cell Cycle Programs of Gene Expression Control Morphogenetic Protein Localization

    PubMed Central

    Lord, Matthew; Yang, Melody C.; Mischke, Michelle; Chant, John

    2000-01-01

    Genomic studies in yeast have revealed that one eighth of genes are cell cycle regulated in their expression. Almost without exception, the significance of cell cycle periodic gene expression has not been tested. Given that many such genes are critical to cellular morphogenesis, we wanted to examine the importance of periodic gene expression to this process. The expression profiles of two genes required for the axial pattern of cell division, BUD3 and BUD10/AXL2/SRO4, are strongly cell cycle regulated. BUD3 is expressed close to the onset of mitosis. BUD10 is expressed in late G1. Through promotor-swap experiments, the expression profile of each gene was altered and the consequences examined. We found that an S/G2 pulse of BUD3 expression controls the timing of Bud3p localization, but that this timing is not critical to Bud3p function. In contrast, a G1 pulse of BUD10 expression plays a direct role in Bud10p localization and function. Bud10p, a membrane protein, relies on the polarized secretory machinery specific to G1 to be delivered to its proper location. Such a secretion-based targeting mechanism for membrane proteins provides cells with flexibility in remodeling their architecture or evolving new forms. PMID:11134078

  5. Cell-cycle analyses using thymidine analogues in fission yeast.

    PubMed

    Anda, Silje; Boye, Erik; Grallert, Beata

    2014-01-01

    Thymidine analogues are powerful tools when studying DNA synthesis including DNA replication, repair and recombination. However, these analogues have been reported to have severe effects on cell-cycle progression and growth, the very processes being investigated in most of these studies. Here, we have analyzed the effects of 5-ethynyl-2'-deoxyuridine (EdU) and 5-Chloro-2'-deoxyuridine (CldU) using fission yeast cells and optimized the labelling procedure. We find that both analogues affect the cell cycle, but that the effects can be mitigated by using the appropriate analogue, short pulses of labelling and low concentrations. In addition, we report sequential labelling of two consecutive S phases using EdU and 5-bromo-2'-deoxyuridine (BrdU). Furthermore, we show that detection of replicative DNA synthesis is much more sensitive than DNA-measurements by flow cytometry.

  6. Dynamics of gene regulatory networks with cell division cycle

    NASA Astrophysics Data System (ADS)

    Chen, Luonan; Wang, Ruiqi; Kobayashi, Tetsuya J.; Aihara, Kazuyuki

    2004-07-01

    This paper focuses on modeling and analyzing the nonlinear dynamics of gene regulatory networks with the consideration of a cell division cycle with duplication process of DNA , in particular for switches and oscillators of synthetic networks. We derive two models that may correspond to the eukaryotic and prokaryotic cells, respectively. A biologically plausible three-gene model ( lac,tetR , and cI ) and a repressilator as switch and oscillator examples are used to illustrate our theoretical results. We show that the cell cycle may play a significant role in gene regulation due to the nonlinear dynamics of a gene regulatory network although gene expressions are usually tightly controlled by transcriptional factors.

  7. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence.

    PubMed

    Chen, San-Yuan; Liu, Geng-Hung; Chao, Wen-Ying; Shi, Chung-Sheng; Lin, Ching-Yen; Lim, Yun-Ping; Lu, Chieh-Hsiang; Lai, Peng-Yeh; Chen, Hau-Ren; Lee, Ying-Ray

    2016-04-23

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC) treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells.

  8. Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell

    NASA Astrophysics Data System (ADS)

    Magno, A. C. G.; Oliveira, I. L.; Hauck, J. V. S.

    2016-08-01

    The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation

  9. Effects of c-myc expression on cell cycle progression.

    PubMed Central

    Hanson, K D; Shichiri, M; Follansbee, M R; Sedivy, J M

    1994-01-01

    We used targeted homologous recombination to disrupt one c-myc gene copy in a diploid fibroblast cell line and found that a twofold reduction in Myc expression resulted in lower exponential growth rates and a lengthening of the G0-to-S-phase transition (M. Shichiri, K. D. Hanson and J. M. Sedivy, Cell Growth Differ. 4:93-104, 1993). Myc is a transcription factor, and the number of target genes whose regulation could result in differential growth rates may be very large. We have approached this problem by examining effects of reduced c-myc expression in three broad areas: (i) secretion of growth factors, (ii) expression of growth factor receptors, and (iii) intracellular signal transduction between Myc and components of the intrinsic cell cycle clock. We have found no evidence that differential medium conditioning can account for the growth phenotypes. Likewise, the expression of receptors for platelet-derived growth factor, epidermal growth factor, basic fibroblast growth factor, and insulin-like growth factor I was the same in diploid and heterozygous cells (platelet-derived growth factor, epidermal growth factor, fibroblast growth factor, and insulin-like growth factor are the sole growth factors required by these cells for growth in serum-free medium). In contrast, expression of cyclin E, cyclin A, and Rb phosphorylation were delayed when quiescent c-myc heterozygous cells were stimulated to enter the cell cycle. Expression of cyclin D1, cyclin D3, and Cdk2 was not affected. The timing of cyclin E induction was the earliest observable effect of reduced Myc expression. Our data indicate that Myc contributes to regulation of proliferation by a cell-autonomous mechanism that involves the modulation of cyclin E expression and, consequently, progression through the restriction point of the cell cycle. Images PMID:8065309

  10. Use of Surface Enhanced Blocking (SEB) Electrodes for Microbial Cell Lysis in Flow-Through Devices

    PubMed Central

    Talebpour, Abdossamad; Maaskant, Robert; Khine, Aye Aye; Alavie, Tino

    2014-01-01

    By simultaneously subjecting microbial cells to high amplitude pulsed electric fields and flash heating of the cell suspension fluid, effective release of intracellular contents was achieved. The synergistic effect of the applied electric field and elevated temperature on cell lysis in a flow-through device was demonstrated for Gram-negative and Gram-positive bacteria, and Mycobacterium species. The resulting lysate is suitable for downstream nucleic acid amplification and detection without requiring further preparation. The lysis chamber employs surface enhanced blocking electrodes which possess an etched micro-structured surface and a thin layer of dielectric metal oxide which provides a large effective area and blocks transmission of electrical current. The surface enhanced blocking electrodes enable simultaneous suppression of the rapid onset of electric field screening in the bulk of the cell suspension medium and avoidance of undesired electrochemical processes at the electrode-electrolyte interface. In addition the blocking layer ensures the robustness of the cell lysis device in applications involving prolonged flow-through processing of the microbial cells. PMID:25033080

  11. Caspase Inhibition Blocks Cell Death and Enhances Mitophagy but Fails to Promote T-Cell Lymphoma

    PubMed Central

    Wang, Sih-han; Martin, Sean M.; Harris, Peter S.; Knudson, C. Michael

    2011-01-01

    Caspase-9 is a component of the apoptosome that mediates cell death following release of cytochrome c from mitochondria. Inhibition of Caspase-9 with a dominant negative construct (Casp9DN) blocks apoptosome function, promotes viability and has been implicated in carcinogenesis. Inhibition of the apoptosome in vitro impairs mitochondrial function and promotes mitophagy. To examine whether inhibition of the apoptosome would enhance mitophagy and promote oncogenesis in vivo, transgenic mice were generated that express Casp9DN in the T cell lineage. The effects of Casp9DN on thymocyte viability, mitophagy and thymic tumor formation were examined. In primary thymocytes, Casp9DN delayed dexamethasone (Dex)-induced cell death, altered mitochondrial structure, and decreased oxidant production. Transmission electron microscopy (TEM) revealed that inhibition of the apoptosome resulted in structurally abnormal mitochondria that in some cases were engulfed by double-membrane structures resembling autophagosomes. Consistent with mitochondria being engulfed by autophagosomes (mitophagy), confocal microscopy showed colocalization of LC3-GFP and mitochondria. However, Casp9DN did not significantly accelerate T-cell lymphoma alone, or in combination with Lck-Bax38/1, or with Beclin 1+/− mice, two tumor-prone strains in which altered mitochondrial function has been implicated in promoting tumor development. In addition, heterozygous disruption of Beclin 1 had no effect on T-cell lymphoma formation in Lck-Bax38/1 mice. Further studies showed that Beclin 1 levels had no effect on Casp9DN-induced loss of mitochondrial function. These results demonstrate that neither inhibition of apoptosome function nor Beclin 1 haploinsufficiency accelerate T-cell lymphoma development in mice. PMID:21611191

  12. The terminal basal mitosis of chicken retinal Lim1 horizontal cells is not sensitive to cisplatin-induced cell cycle arrest.

    PubMed

    Shirazi Fard, Shahrzad; Thyselius, Malin; All-Ericsson, Charlotta; Hallböök, Finn

    2014-01-01

    For proper development, cells need to coordinate proliferation and cell cycle-exit. This is mediated by a cascade of proteins making sure that each phase of the cell cycle is controlled before the initiation of the next. Retinal progenitor cells divide during the process of interkinetic nuclear migration, where they undergo S-phase on the basal side, followed by mitoses on the apical side of the neuroepithelium. The final cell cycle of chicken retinal horizontal cells (HCs) is an exception to this general cell cycle behavior. Lim1 expressing (+) horizontal progenitor cells (HPCs) have a heterogenic final cell cycle, with some cells undergoing a terminal mitosis on the basal side of the retina. The results in this study show that this terminal basal mitosis of Lim1+ HPCs is not dependent on Chk1/2 for its regulation compared to retinal cells undergoing interkinetic nuclear migration. Neither activating nor blocking Chk1 had an effect on the basal mitosis of Lim1+ HPCs. Furthermore, the Lim1+ HPCs were not sensitive to cisplatin-induced DNA damage and were able to continue into mitosis in the presence of γ-H2AX without activation of caspase-3. However, Nutlin3a-induced expression of p21 did reduce the mitoses, suggesting the presence of a functional p53/p21 response in HPCs. In contrast, the apical mitoses were blocked upon activation of either Chk1/2 or p21, indicating the importance of these proteins during the process of interkinetic nuclear migration. Inhibiting Cdk1 blocked M-phase transition both for apical and basal mitoses. This confirmed that the cyclin B1-Cdk1 complex was active and functional during the basal mitosis of Lim1+ HPCs. The regulation of the final cell cycle of Lim1+ HPCs is of particular interest since it has been shown that the HCs are able to sustain persistent DNA damage, remain in the cell cycle for an extended period of time and, consequently, survive for months.

  13. Ethyl acetate extract of Peperomia tetraphylla induces cytotoxicity, cell cycle arrest, and apoptosis in lymphoma U937 cells.

    PubMed

    Yu, Dayong; Yang, Xiuxiu; Lu, Xuan; Shi, Liying; Feng, Baomin

    2016-12-01

    The current study evaluated the cytotoxicity and the mechanism of apoptotic induction by Peperomia tetraphylla in U937 lymphoma cells. The results showed that P. tetraphylla ethyl acetate extract (EAEPT) inhibited the cell growth in U937 cells by MTT assay. After the U937 cells were treated with EAEPT, the cells exhibited marked morphological features of apoptosis (Hoechst 33342 staining) and the number of apoptotic cell (Annexin V-FITC/PI staining) increased. The treatment of EAEPT could induce loss of mitochondrial membrane potential (MMP) and increase the ROS level. Moreover, EAEPT treatment resulted in the accumulation of cells at S phase. We found that EAEPT could induce the cleavage of the caspase 3, caspase 8, caspase 9 and Bid. And the treatment of EAEPT could increase expression of Bax and down-regulate the expression of CCNB1, CCND1 and CDK1. The sub-fraction of EAEPT, namely EASub1 demonstrated the highest cytotoxicity activity on U937 cells. It was confirmed that EAEPT could inhibit the growth of U937 cells by blocking the cell cycle and prompted apoptosis via the ROS-medicated mitochondria pathway in vitro.

  14. Cell cycle arrest of a Caulobacter crescentus secA mutant.

    PubMed Central

    Kang, P J; Shapiro, L

    1994-01-01

    Cell differentiation is an inherent component of the Caulobacter crescentus cell cycle. The transition of a swarmer cell, with a single polar flagellum, into a sessile stalked cell includes several morphogenetic events. These include the release of the flagellum and pili, the proteolysis of chemotaxis proteins, the biogenesis of the polar stalk, and the initiation of DNA replication. We have isolated a group of temperature-sensitive mutants that are unable to complete this process at the restrictive temperature. We show here that one of these strains has a mutation in a homolog of the Escherichia coli secA gene, whose product is involved in protein translocation at the cell membrane. This C. crescentus secA mutant has allowed the identification of morphogenetic events in the swarmer-to-stalked cell transition that require SecA-dependent protein translocation. Upon shift to the nonpermissive temperature, the mutant secA swarmer cell is able to release the polar flagellum, degrade chemoreceptors, and initiate DNA replication, but it is unable to form a stalk, complete DNA replication, or carry out cell division. At the nonpermissive temperature, the cell cycle blocks prior to the de novo synthesis of flagella and chemotaxis proteins that normally occurs in the predivisional cell. Although interactions between the chromosome and the cytoplasmic membrane are believed to be a functional component of the temporal regulation of DNA replication, the ability of this secA mutant to initiate replication at the nonpermissive temperature suggests that SecA-dependent events are not involved in this process. However, both cell division and stalk formation, which is analogous to a polar division event, require SecA function. Images PMID:8051008

  15. A New Cell Block Method for Multiple Immunohistochemical Analysis of Circulating Tumor Cells in Patients with Liver Cancer

    PubMed Central

    Nam, Soo Jeong; Yeo, Hyun Yang; Chang, Hee Jin; Kim, Bo Hyun; Hong, Eun Kyung; Park, Joong-Won

    2016-01-01

    Purpose We developed a new method of detecting circulating tumor cells (CTCs) in liver cancer patients by constructing cell blocks from peripheral blood cells, including CTCs, followed by multiple immunohistochemical analysis. Materials and Methods Cell blockswere constructed from the nucleated cell pellets of peripheral blood afterremoval of red blood cells. The blood cell blocks were obtained from 29 patients with liver cancer, and from healthy donor blood spikedwith seven cell lines. The cell blocks and corresponding tumor tissues were immunostained with antibodies to seven markers: cytokeratin (CK), epithelial cell adhesion molecule (EpCAM), epithelial membrane antigen (EMA), CK18, α-fetoprotein (AFP), Glypican 3, and HepPar1. Results The average recovery rate of spiked SW620 cells from blood cell blocks was 91%. CTCs were detected in 14 out of 29 patients (48.3%); 11/23 hepatocellular carcinomas (HCC), 1/2 cholangiocarcinomas (CC), 1/1 combined HCC-CC, and 1/3 metastatic cancers. CTCs from 14 patients were positive for EpCAM (57.1%), EMA (42.9%), AFP (21.4%), CK18 (14.3%), Gypican3 and CK (7.1%, each), and HepPar1 (0%). Patients with HCC expressed EpCAM, EMA, CK18, and AFP in tissue and/or CTCs, whereas CK, HepPar1, and Glypican3 were expressed only in tissue. Only EMA was significantly associated with the expressions in CTC and tissue. CTC detection was associated with higher T stage and portal vein invasion in HCC patients. Conclusion This cell block method allows cytologic detection and multiple immunohistochemical analysis of CTCs. Our results show that tissue biomarkers of HCC may not be useful for the detection of CTC. EpCAM could be a candidate marker for CTCs in patients with HCC. PMID:27034142

  16. High efficiency carbonate fuel cell/turbine hybrid power cycles

    SciTech Connect

    Steinfeld, G.

    1995-10-19

    Carbonate fuel cells developed by Energy Research Corporation, in commercial 2.85 MW size, have an efficiency of 57.9 percent. Studies of higher efficiency hybrid power cycles were conducted in cooperation with METC to identify an economically competitive system with an efficiency in excess of 65 percent. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine and a steam cycle, which generates power at a LHV efficiency in excess of 70 percent. This new system is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95 percent of the fuel is mixed with recycled fuel cell anode exhaust, providing water for the reforming of the fuel, and flows to a direct carbonate fuel cell system which generates 72 percent of the power. The portion of the fuel cell anode exhaust which is not recycled, is burned and heat is transferred to the compressed air from a gas turbine, raising its temperature to 1800{degrees}F. The stream is then heated to 2000{degrees}F in the gas turbine burner and expands through the turbine generating 13 percent of the power. Half the exhaust from the gas turbine flows to the anode exhaust burner, and the remainder flows to the fuel cell cathodes providing the O{sub 2} and CO{sub 2} needed in the electrochemical reaction. Exhaust from the fuel cells flows to a steam system which includes a heat recovery steam generator and stages steam turbine which generates 15 percent of the TTC system power. Studies of the TTC for 200-MW and 20-MW size plants quantified performance, emissions and cost-of-electricity, and compared the characteristics of the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6 percent, and is relatively insensitive to ambient temperature, but requires a heat exchanger capable of 2000{degrees}F. The estimated cost of electricity is 45.8 mills/kWhr which is not competitive with a combined cycle in installations where fuel cost is under $5.8/MMBtu.

  17. Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.

    PubMed

    Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue

    2014-03-01

    One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

  18. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae

    PubMed Central

    Desfossés-Baron, Kristelle; Hammond-Martel, Ian; Simoneau, Antoine; Sellam, Adnane; Roberts, Stephen; Wurtele, Hugo

    2016-01-01

    The mechanism of action of valproate (VPA), a widely prescribed short chain fatty acid with anticonvulsant and anticancer properties, remains poorly understood. Here, the yeast Saccharomyces cerevisiae was used as model to investigate the biological consequences of VPA exposure. We found that low pH strongly potentiates VPA-induced growth inhibition. Transcriptional profiling revealed that under these conditions, VPA modulates the expression of genes involved in diverse cellular processes including protein folding, cell wall organisation, sexual reproduction, and cell cycle progression. We further investigated the impact of VPA on selected processes and found that this drug: i) activates markers of the unfolded protein stress response such as Hac1 mRNA splicing; ii) modulates the cell wall integrity pathway by inhibiting the activation of the Slt2 MAP kinase, and synergizes with cell wall stressors such as micafungin and calcofluor white in preventing yeast growth; iii) prevents activation of the Kss1 and Fus3 MAP kinases of the mating pheromone pathway, which in turn abolishes cellular responses to alpha factor; and iv) blocks cell cycle progression and DNA replication. Overall, our data identify heretofore unknown biological responses to VPA in budding yeast, and highlight the broad spectrum of cellular pathways influenced by this chemical in eukaryotes. PMID:27782169

  19. Modeling circadian clock-cell cycle interaction effects on cell population growth rates.

    PubMed

    El Cheikh, R; Bernard, S; El Khatib, N

    2014-12-21

    The circadian clock and the cell cycle are two tightly coupled oscillators. Recent analytical studies have shown counter-intuitive effects of circadian gating of the cell cycle on growth rates of proliferating cells which cannot be explained by a molecular model or a population model alone. In this work, we present a combined molecular-population model that studies how coupling the circadian clock to the cell cycle, through the protein WEE1, affects a proliferating cell population. We show that the cell cycle can entrain to the circadian clock with different rational period ratios and characterize multiple domains of entrainment. We show that coupling increases the growth rate for autonomous periods of the cell cycle around 24 h and above 48 h. We study the effect of mutation of circadian genes on the growth rate of cells and show that disruption of the circadian clock can lead to abnormal proliferation. Particularly, we show that Cry 1, Cry 2 mutations decrease the growth rate of cells, Per 2 mutation enhances it and Bmal 1 knockout increases it for autonomous periods of the cell cycle less than 21 h and decreases it elsewhere. Combining a molecular model to a population model offers new insight on the influence of the circadian clock on the growth of a cell population. This can help chronotherapy which takes benefits of physiological rhythms to improve anti-cancer efficacy and tolerance to drugs by administering treatments at a specific time of the day.

  20. CELL CYCLE SYNCHRONIZATION OF MOUSE LIVER EPITHELIAL CELLS BY ELUTRIATION CENTRIFUGATION

    SciTech Connect

    Pearlman, Andrew L.; Bartholomew, James C.

    1980-06-01

    Detailed methods are described for the sorting and cell cycle synchronization by means of centrifugal elutriation of an established mouse liver epithelial cell line(NMuLi). In a comparison between three different elutriation media and between two different temperatures(4° and 20° C), the NMuLi cells were found to be most reproducibly sorted in the cell cycle when run in growth medium in the absence of serum and at the lower temperature. Under these conditions. and using decrements of rotor speed calculated from an empirically derived algorithm as described in the text an initially asynchronous population (38% G{sub 1}, 36% S, and 28% G{sub 2}M) was sorted into fractions enriched to 60% G{sub 1}, 75% S, and 50% G{sub 2}M. Of the cells loaded into the rotor, 30% were lost in the elutriation process, and about 20% recovered as aggregates. The remainder appeared in the various synchronized fractions. Epithelial cells sorted in this manner demonstrated no loss of viability, and upon replating showed significant movement in the cell cycle by 6 hrs post elutriation. The degree of synchronous movement through the cell cycle achieved by elutriation depended on the part of the cell cycle from which the original elutriated fraction came. Cells collected as late S and G{sub 2}M moved through the cell cycle with the tightest sychrony.

  1. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia.

    PubMed

    Stokes, Jennifer Ann; Arbogast, Tara Elizabeth; Moya, Esteban A; Fu, Zhenxing; Powell, Frank L

    2017-01-18

    Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia, and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg, i.p. daily) or saline beginning one day before and during 7 days of chronic hypoxia (CH, PIO2 = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly (p < 0.001) decreased ventilation during acute hypoxia in CH rats. However, minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 minutes to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 hour of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 hours of CH. Astrocytes increased GFAP antibody immunofluorescent intensity, indicating activation, at both 4 and 24 hours of CH. Minocycline had no effect on glia in normoxia, but significantly decreased microglia activation at 1 hour of CH and astrocyte activation at 24 hours of CH. These results support a role for glial cells providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia.

  2. The chromatin structure of Saccharomyces cerevisiae autonomously replicating sequences changes during the cell division cycle.

    PubMed Central

    Brown, J A; Holmes, S G; Smith, M M

    1991-01-01

    The chromatin structures of two well-characterized autonomously replicating sequence (ARS) elements were examined at their chromosomal sites during the cell division cycle in Saccharomyces cerevisiae. The H4 ARS is located near one of the duplicate nonallelic histone H4 genes, while ARS1 is present near the TRP1 gene. Cells blocked in G1 either by alpha-factor arrest or by nitrogen starvation had two DNase I-hypersensitive sites of about equal intensity in the ARS element. This pattern of DNase I-hypersensitive sites was altered in synchronous cultures allowed to proceed into S phase. In addition to a general increase in DNase I sensitivity around the core consensus sequence, the DNase I-hypersensitive site closest to the core consensus became more nuclease sensitive than the distal site. This change in chromatin structure was restricted to the ARS region and depended on replication since cdc7 cells blocked near the time of replication initiation did not undergo the transition. Subsequent release of arrested cdc7 cells restored entry into S phase and was accompanied by the characteristic change in ARS chromatin structure. Images PMID:1922046

  3. Short-Stalked Prosthecomicrobium hirschii Cells Have a Caulobacter-Like Cell Cycle

    PubMed Central

    Williams, Michelle; Hoffman, Michelle D.; Daniel, Jeremy J.; Madren, Seth M.; Dhroso, Andi; Korkin, Dmitry; Givan, Scott A.; Jacobson, Stephen C.

    2016-01-01

    ABSTRACT The dimorphic alphaproteobacterium Prosthecomicrobium hirschii has both short-stalked and long-stalked morphotypes. Notably, these morphologies do not arise from transitions in a cell cycle. Instead, the maternal cell morphology is typically reproduced in daughter cells, which results in microcolonies of a single cell type. In this work, we further characterized the short-stalked cells and found that these cells have a Caulobacter-like life cycle in which cell division leads to the generation of two morphologically distinct daughter cells. Using a microfluidic device and total internal reflection fluorescence (TIRF) microscopy, we observed that motile short-stalked cells attach to a surface by means of a polar adhesin. Cells attached at their poles elongate and ultimately release motile daughter cells. Robust biofilm growth occurs in the microfluidic device, enabling the collection of synchronous motile cells and downstream analysis of cell growth and attachment. Analysis of a draft P. hirschii genome sequence indicates the presence of CtrA-dependent cell cycle regulation. This characterization of P. hirschii will enable future studies on the mechanisms underlying complex morphologies and polymorphic cell cycles. IMPORTANCE Bacterial cell shape plays a critical role in regulating important behaviors, such as attachment to surfaces, motility, predation, and cellular differentiation; however, most studies on these behaviors focus on bacteria with relatively simple morphologies, such as rods and spheres. Notably, complex morphologies abound throughout the bacteria, with striking examples, such as P. hirschii, found within the stalked Alphaproteobacteria. P. hirschii is an outstanding candidate for studies of complex morphology generation and polymorphic cell cycles. Here, the cell cycle and genome of P. hirschii are characterized. This work sets the stage for future studies of the impact of complex cell shapes on bacterial behaviors. PMID:26833409

  4. Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis.

    PubMed

    Li, Xiang; Mo, Xiaorong; Shou, Huixia; Wu, Ping

    2006-08-01

    In Arabidopsis, lateral root formation is a post-embryonic developmental event, which is regulated by hormones and environmental signals. In this study, via analyzing the expression of cyclin genes during lateral root (LR) formation, we report that cytokinins (CTKs) inhibit the initiation of LR through blocking the pericycle founder cells cycling at the G(2) to M transition phase, while the promotion by CTK of LR elongation is due to the stimulation of the G(1) to S transition. No significant difference was detected in the inhibitory effect of CTK on LR formation between wild-type plants and mutants defective in auxin response or transport. In addition, exogenously applied auxin at different concentrations could not rescue the CTK-mediated inhibition of LR initiation. Our data suggest that CTK and auxin might control LR initiation through two separate signaling pathways in Arabidopsis. The CTK-mediated repression of LR initiation is transmitted through the two-component signal system and mediated by the receptor CRE1.

  5. Guttiferone K impedes cell cycle re-entry of quiescent prostate cancer cells via stabilization of FBXW7 and subsequent c-MYC degradation.

    PubMed

    Xi, Z; Yao, M; Li, Y; Xie, C; Holst, J; Liu, T; Cai, S; Lao, Y; Tan, H; Xu, H-X; Dong, Q

    2016-06-02

    Cell cycle re-entry by quiescent cancer cells is an important mechanism for cancer progression. While high levels of c-MYC expression are sufficient for cell cycle re-entry, the modality to block c-MYC expression, and subsequent cell cycle re-entry, is limited. Using reversible quiescence rendered by serum withdrawal or contact inhibition in PTEN(null)/p53(WT) (LNCaP) or PTEN(null)/p53(mut) (PC-3) prostate cancer cells, we have identified a compound that is able to impede cell cycle re-entry through c-MYC. Guttiferone K (GUTK) blocked resumption of DNA synthesis and preserved the cell cycle phase characteristics of quiescent cells after release from the quiescence. In vehicle-treated cells, there was a rapid increase in c-MYC protein levels upon release from the quiescence. However, this increase was inhibited in the presence of GUTK with an associated acceleration in c-MYC protein degradation. The inhibitory effect of GUTK on cell cycle re-entry was significantly reduced in cells overexpressing c-MYC. The protein level of FBXW7, a subunit of E3 ubiquitin ligase responsible for degradation of c-MYC, was reduced upon the release from the quiescence. In contrast, GUTK stabilized FBXW7 protein levels during release from the quiescence. The critical role of FBXW7 was confirmed using siRNA knockdown, which impaired the inhibitory effect of GUTK on c-MYC protein levels and cell cycle re-entry. Administration of GUTK, either in vitro prior to transplantation or in vivo, suppressed the growth of quiescent prostate cancer cell xenografts. Furthermore, elevation of FBXW7 protein levels and reduction of c-MYC protein levels were found in the xenografts of GUTK-treated compared with vehicle-treated mice. Hence, we have identified a compound that is capable of impeding cell cycle re-entry by quiescent PTEN(null)/p53(WT) and PTEN(null)/p53(mut) prostate cancer cells likely by promoting c-MYC protein degradation through stabilization of FBXW7. Its usage as a clinical modality to

  6. Astaxanthin Inhibits Proliferation and Induces Apoptosis and Cell Cycle Arrest of Mice H22 Hepatoma Cells

    PubMed Central

    Shao, Yiye; Ni, Yanbo; Yang, Jing; Lin, Xutao; Li, Jun; Zhang, Lixia

    2016-01-01

    Background It is widely recognized that astaxanthin (ASX), a member of the carotenoid family, has strong biological activities including antioxidant, anti-inflammation, and immune-modulation activities. Previous studies have confirmed that ASX can effectively inhibit hepatoma cells in vitro. Material/Methods MTT was used to assay proliferation of mice H22 cells, and flow cytometry was used to determine apoptosis and cell cycle arrest of H22 cells in vitro and in vivo. Moreover, anti-tumor activity of ASX was observed in mice. Results ASX inhibited the proliferation of H22 cells, promoted cell necrosis, and induced cell cycle arrest in G2 phase in vitro and in vivo. Conclusions This study indicated that ASX can inhibit proliferation and induce apoptosis and cell cycle arrest in mice H22 hepatoma cells in vitro and in vivo. PMID:27333866

  7. Molecular ties between the cell cycle and differentiation in embryonic stem cells.

    PubMed

    Li, Victor C; Kirschner, Marc W

    2014-07-01

    Attainment of the differentiated state during the final stages of somatic cell differentiation is closely tied to cell cycle progression. Much less is known about the role of the cell cycle at very early stages of embryonic development. Here, we show that molecular pathways involving the cell cycle can be engineered to strongly affect embryonic stem cell differentiation at early stages in vitro. Strategies based on perturbing these pathways can shorten the rate and simplify the lineage path of ES differentiation. These results make it likely that pathways involving cell proliferation intersect at various points with pathways that regulate cell lineages in embryos and demonstrate that this knowledge can be used profitably to guide the path and effectiveness of cell differentiation of pluripotent cells.

  8. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells.

    PubMed

    Bonifati, Serena; Daly, Michele B; St Gelais, Corine; Kim, Sun Hee; Hollenbaugh, Joseph A; Shepard, Caitlin; Kennedy, Edward M; Kim, Dong-Hyun; Schinazi, Raymond F; Kim, Baek; Wu, Li

    2016-08-01

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G1/G0 phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  9. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    SciTech Connect

    Bonifati, Serena; Daly, Michele B.; St Gelais, Corine; Kim, Sun Hee; Hollenbaugh, Joseph A.; Shepard, Caitlin; Kennedy, Edward M.; Kim, Dong-Hyun; Schinazi, Raymond F.; Kim, Baek; Wu, Li

    2016-08-15

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G{sub 1}/G{sub 0} phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  10. Regulatory T cells inhibit CD34+ cell differentiation into NK cells by blocking their proliferation

    PubMed Central

    Pedroza-Pacheco, Isabela; Shah, Divya; Domogala, Anna; Luevano, Martha; Blundell, Michael; Jackson, Nicola; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2016-01-01

    Graft versus Host Disease (GvHD) remains one of the main complications after hematopoietic stem cell transplantation (HSCT). Due to their ability to suppress effector cells, regulatory T cells (Tregs) have been proposed as a cellular therapy to prevent GvHD, however they also inhibit the functions of natural killer (NK) cells, key effectors of the Graft versus Leukemia effect. In this study, we have explored whether a Tregs therapy will also impact on NK cell differentiation. Using an in vitro model of hematopoietic stem cell (HSC) differentiation into NK cells, we found that activated Tregs led to a 90% reduction in NK cell numbers when added at the time of commitment to the NK cell lineage. This effect was contact dependent and was reversible upon Tregs depletion. The few NK cells that developed in these cultures were mature and exhibited normal functions. Furthermore, adoptive transfer of activated Tregs in rag-/- γc-/- mice abrogated HSC differentiation into NK cells thus confirming our in vitro findings. Collectively, these results demonstrate for the first time that activated Tregs can inhibit NK cell differentiation from HSC under specific conditions. PMID:26915707

  11. Regulatory T cells inhibit CD34+ cell differentiation into NK cells by blocking their proliferation.

    PubMed

    Pedroza-Pacheco, Isabela; Shah, Divya; Domogala, Anna; Luevano, Martha; Blundell, Michael; Jackson, Nicola; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2016-02-26

    Graft versus Host Disease (GvHD) remains one of the main complications after hematopoietic stem cell transplantation (HSCT). Due to their ability to suppress effector cells, regulatory T cells (Tregs) have been proposed as a cellular therapy to prevent GvHD, however they also inhibit the functions of natural killer (NK) cells, key effectors of the Graft versus Leukemia effect. In this study, we have explored whether a Tregs therapy will also impact on NK cell differentiation. Using an in vitro model of hematopoietic stem cell (HSC) differentiation into NK cells, we found that activated Tregs led to a 90% reduction in NK cell numbers when added at the time of commitment to the NK cell lineage. This effect was contact dependent and was reversible upon Tregs depletion. The few NK cells that developed in these cultures were mature and exhibited normal functions. Furthermore, adoptive transfer of activated Tregs in rag(-/-) γc(-/-) mice abrogated HSC differentiation into NK cells thus confirming our in vitro findings. Collectively, these results demonstrate for the first time that activated Tregs can inhibit NK cell differentiation from HSC under specific conditions.

  12. Size sensors in bacteria, cell cycle control, and size control.

    PubMed

    Robert, Lydia

    2015-01-01

    Bacteria proliferate by repetitive cycles of cellular growth and division. The progression into the cell cycle is admitted to be under the control of cell size. However, the molecular basis of this regulation is still unclear. Here I will discuss which mechanisms could allow coupling growth and division by sensing size and transmitting this information to the division machinery. Size sensors could act at different stages of the cell cycle. During septum formation, mechanisms controlling the formation of the Z ring, such as MinCD inhibition or Nucleoid Occlusion (NO) could participate in the size-dependence of the division process. In addition or alternatively, the coupling of growth and division may occur indirectly through the control of DNA replication initiation. The relative importance of these different size-sensing mechanisms could depend on the environmental and genetic context. The recent demonstration of an incremental strategy of size control in bacteria, suggests that DnaA-dependent control of replication initiation could be the major size control mechanism limiting cell size variation.

  13. Bioelectrical regulation of cell cycle and the planarian model system.

    PubMed

    Barghouth, Paul G; Thiruvalluvan, Manish; Oviedo, Néstor J

    2015-10-01

    Cell cycle regulation through the manipulation of endogenous membrane potentials offers tremendous opportunities to control cellular processes during tissue repair and cancer formation. However, the molecular mechanisms by which biophysical signals modulate the cell cycle remain underappreciated and poorly understood. Cells in complex organisms generate and maintain a constant voltage gradient across the plasma membrane known as the transmembrane potential. This potential, generated through the combined efforts of various ion transporters, pumps and channels, is known to drive a wide range of cellular processes such as cellular proliferation, migration and tissue regeneration while its deregulation can lead to tumorigenesis. These cellular regulatory events, coordinated by ionic flow, correspond to a new and exciting field termed molecular bioelectricity. We aim to present a brief discussion on the biophysical machinery involving membrane potential and the mechanisms mediating cell cycle progression and cancer transformation. Furthermore, we present the planarian Schmidtea mediterranea as a tractable model system for understanding principles behind molecular bioelectricity at both the cellular and organismal level. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  14. Size sensors in bacteria, cell cycle control, and size control

    PubMed Central

    Robert, Lydia

    2015-01-01

    Bacteria proliferate by repetitive cycles of cellular growth and division. The progression into the cell cycle is admitted to be under the control of cell size. However, the molecular basis of this regulation is still unclear. Here I will discuss which mechanisms could allow coupling growth and division by sensing size and transmitting this information to the division machinery. Size sensors could act at different stages of the cell cycle. During septum formation, mechanisms controlling the formation of the Z ring, such as MinCD inhibition or Nucleoid Occlusion (NO) could participate in the size-dependence of the division process. In addition or alternatively, the coupling of growth and division may occur indirectly through the control of DNA replication initiation. The relative importance of these different size-sensing mechanisms could depend on the environmental and genetic context. The recent demonstration of an incremental strategy of size control in bacteria, suggests that DnaA-dependent control of replication initiation could be the major size control mechanism limiting cell size variation. PMID:26074903

  15. Bioelectrical Regulation of Cell Cycle and the Planarian Model System

    PubMed Central

    Barghouth, Paul G.; Thiruvalluvan, Manish; Oviedo, Néstor J.

    2015-01-01

    Cell cycle regulation through the manipulation of endogenous membrane potentials offers tremendous opportunities to control cellular processes during tissue repair and cancer formation. However, the molecular mechanisms by which biophysical signals modulate the cell cycle remain underappreciated and poorly understood. Cells in complex organisms generate and maintain a constant voltage gradient across the plasma membrane known as the transmembrane potential. This potential, generated through the combined efforts of various ion transporters, pumps and channels, is known to drive a wide range of cellular processes such as cellular proliferation, migration and tissue regeneration while its deregulation can lead to tumorigenesis. These cellular regulatory events, coordinated by ionic flow, correspond to a new and exciting field termed molecular bioelectricity. We aim to present a brief discussion on the biophysical machinery involving membrane potential and the mechanisms mediating cell cycle progression and cancer transformation. Furthermore, we present the planarian Schmidtea mediterranea as a tractable model system for understanding principles behind molecular bioelectricity at both the cellular and organismal level. PMID:25749155

  16. cGMP-independent nitric oxide signaling and regulation of the cell cycle

    PubMed Central

    Cui, Xiaolin; Zhang, Jianhua; Ma, Penglin; Myers, Daniela E; Goldberg, Ilana G; Sittler, Kelly J; Barb, Jennifer J; Munson, Peter J; Cintron, Ana del Pilar; McCoy, J Philip; Wang, Shuibang; Danner, Robert L

    2005-01-01

    Background Regulatory functions of nitric oxide (NO•) that bypass the second messenger cGMP are incompletely understood. Here, cGMP-independent effects of NO• on gene expression were globally examined in U937 cells, a human monoblastoid line that constitutively lacks soluble guanylate cyclase. Differentiated U937 cells (>80% in G0/G1) were exposed to S-nitrosoglutathione, a NO• donor, or glutathione alone (control) for 6 h without or with dibutyryl-cAMP (Bt2cAMP), and then harvested to extract total RNA for microarray analysis. Bt2cAMP was used to block signaling attributable to NO•-induced decreases in cAMP. Results NO• regulated 110 transcripts that annotated disproportionately to the cell cycle and cell proliferation (47/110, 43%) and more frequently than expected contained AU-rich, post-transcriptional regulatory elements (ARE). Bt2cAMP regulated 106 genes; cell cycle gene enrichment did not reach significance. Like NO•, Bt2cAMP was associated with ARE-containing transcripts. A comparison of NO• and Bt2cAMP effects showed that NO• regulation of cell cycle genes was independent of its ability to interfere with cAMP signaling. Cell cycle genes induced by NO• annotated to G1/S (7/8) and included E2F1 and p21/Waf1/Cip1; 6 of these 7 were E2F target genes involved in G1/S transition. Repressed genes were G2/M associated (24/27); 8 of 27 were known targets of p21. E2F1 mRNA and protein were increased by NO•, as was E2F1 binding to E2F promoter elements. NO• activated p38 MAPK, stabilizing p21 mRNA (an ARE-containing transcript) and increasing p21 protein; this increased protein binding to CDE/CHR promoter sites of p21 target genes, repressing key G2/M phase genes, and increasing the proportion of cells in G2/M. Conclusion NO• coordinates a highly integrated program of cell cycle arrest that regulates a large number of genes, but does not require signaling through cGMP. In humans, antiproliferative effects of NO• may rely substantially on c

  17. Cell Cycle Dependence of TRAIL Sensitivity in Prostate Cancer Cells

    DTIC Science & Technology

    2006-11-01

    or presence of proteasome inhibitors and measured HIF-1α levels by immunoblotting. We also incubated cells in cobalt chloride (to mimic hypoxia) in...Indistinguishable results were obtained in cells exposed to cobalt chloride . Figure 5: Effects of proteasome inhibitors on HIF- 1α promoter activity (LNCaP...havegenerated luciferase-transduced variants of our human prostate cancer cell lines in order touse them to generate orthotopic tumors in nude mice that can

  18. Tangeretin induces cell cycle arrest and apoptosis through upregulation of PTEN expression in glioma cells.

    PubMed

    Ma, Li-Li; Wang, Da-Wei; Yu, Xu-Dong; Zhou, Yan-Ling

    2016-07-01

    Tangeretin (TANG), present in peel of citrus fruits, has been shown to various medicinal properties such as chemopreventive and neuroprotective. However, the chemopreventive effect of TANG on glioblastoma cells has not been examined. The present study was designed to explore the anticancer potential of TANG in glioblastoma cells and to investigate the related mechanism. Human glioblastoma U-87MG and LN-18 cells were treated with 45μM concentration of TANG and cell growth was measured by MTT assay. The cell cycle distribution and cell death were measured by flow cytometry. The expression of cell cycle and apoptosis related genes were analyzed by quantitative RT-PCR and western blot. The cells treated with TANG were significantly increased cell growth suppression and cell death effects than vehicle treated cells. Further, TANG treatment increases G2/M arrest and apoptosis by modulating PTEN and cell-cycle regulated genes such as cyclin-D and cdc-2 mRNA and protein expressions. Moreover, the ability of TANG to decrease cell growth and to induce cell death was compromised when PTEN was knockdown by siRNA. Taken together, the chemopreventive effect of TANG is associated with regulation of cell-cycle and apoptosis in glioblastoma, thereby attenuating glioblastoma cell growth. Hence, the present findings suggest that TANG may be a therapeutic agent for glioblastoma treatment.

  19. Differential expression and alternative splicing of cell cycle genes in imatinib-treated K562 cells.

    PubMed

    Liu, Jing; Lin, Jin; Huang, Lin-Feng; Huang, Bo; Xu, Yan-Mei; Li, Jing; Wang, Yan; Zhang, Jing; Yang, Wei-Ming; Min, Qing-Hua; Wang, Xiao-Zhong

    2015-09-01

    Cancer progression often involves the disorder of the cell cycle, and a number of effective chemotherapeutic drugs have been shown to induce cell cycle arrest. The purpose of this study was to comprehensively investigate the effects of imatinib on the expression profile of cell cycle genes in the chronic myeloid leukemia (CML) K562 cell line. In addition, we also investigated alternative splicing of the cell cycle genes affected by imatinib, since an important relationship has been shown to exist between RNA splicing and cell cycle progression. Exon array analysis was performed using total RNA purified from normal and imatinib-treated K562 cells. We identified 185 differentially expressed genes and 277 alternative splicing events between the two cell groups. A detailed analysis by reverse transcription-PCR (RT-PCR) of key genes confirmed the experimental results of the exon array. These results suggested that treatment of K562 cells with imatinib shifts the expression and alternative splicing profiles of several cell cycle-related genes. Importantly, these findings may help improve imatinib treatment strategies in patients with CML and may be useful for imatinib resistance research and CML drug development.

  20. Live fast, die soon: cell cycle progression and lifespan in yeast cells

    PubMed Central

    Jiménez, Javier; Bru, Samuel; Ribeiro, Mariana; Clotet, Josep

    2015-01-01

    Our understanding of lifespan has benefited enormously from the study of a simple model, the yeast Saccharomyces cerevisiae. Although a unicellular organism, yeasts undergo many of the processes directly related with aging that to some extent are conserved in mammalian cells. Nutrient-limiting conditions have been involved in lifespan extension, especially in the case of caloric restriction, which also has a direct impact on cell cycle progression. In fact, other environmental stresses (osmotic, oxidative) that interfere with normal cell cycle progression also influence the lifespan of cells, indicating a relationship between lifespan and cell cycle control. In the present review we compile and discuss new findings related to how cell cycle progression is regulated by other nutrients. We centred this review on the analysis of phosphate, also give some attention to nitrogen, and the impact of these nutrients on lifespan. PMID:28357278

  1. Pharmacodynamic Modeling of Cell Cycle Effects for Gemcitabine and Trabectedin Combinations in Pancreatic Cancer Cells

    PubMed Central

    Miao, Xin; Koch, Gilbert; Ait-Oudhia, Sihem; Straubinger, Robert M.; Jusko, William J.

    2016-01-01

    Combinations of gemcitabine and trabectedin exert modest synergistic cytotoxic effects on two pancreatic cancer cell lines. Here, systems pharmacodynamic (PD) models that integrate cellular response data and extend a prototype model framework were developed to characterize dynamic changes in cell cycle phases of cancer cell subpopulations in response to gemcitabine and trabectedin as single agents and in combination. Extensive experimental data were obtained for two pancreatic cancer cell lines (MiaPaCa-2 and BxPC-3), including cell proliferation rates over 0–120 h of drug exposure, and the fraction of cells in different cell cycle phases or apoptosis. Cell cycle analysis demonstrated that gemcitabine induced cell cycle arrest in S phase, and trabectedin induced transient cell cycle arrest in S phase that progressed to G2/M phase. Over time, cells in the control group accumulated in G0/G1 phase. Systems cell cycle models were developed based on observed mechanisms and were used to characterize both cell proliferation and cell numbers in the sub G1, G0/G1, S, and G2/M phases in the control and drug-treated groups. The proposed mathematical models captured well both single and joint effects of gemcitabine and trabectedin. Interaction parameters were applied to quantify unexplainable drug-drug interaction effects on cell cycle arrest in S phase and in inducing apoptosis. The developed models were able to identify and quantify the different underlying interactions between gemcitabine and trabectedin, and captured well our large datasets in the dimensions of time, drug concentrations, and cellular subpopulations. PMID:27895579

  2. Celastrol blocks interleukin-6 gene expression via downregulation of NF-κB in prostate carcinoma cells.

    PubMed

    Chiang, Kun-Chun; Tsui, Ke-Hung; Chung, Li-Chuan; Yeh, Chun-Nan; Chen, Wen-Tsung; Chang, Phei-Lang; Juang, Horng-Heng

    2014-01-01

    Interleukin-6 (IL-6), a multifunctional cytokine, contributes to proliferation or differentiation of prostate carcinoma cells in a highly cell type-specific manner. Celastrol (3-hydroxy-24-nor-2oxo-1(10),3,5,7-friedelatetrane-29-oic acid), also named as tripterine, is extracted from root of Chinese traditional herb Tripterygiumwilfordii Hook f with potent anti-inflammatory and anti-cancer activities. In this study, we evaluated the molecular mechanisms of celastrol on cell proliferation and IL-6 gene expression in prostate carcinoma cells. 3H-thymidine incorporation and flow cytometric analysis indicated that celastrol treatments arrested the cell cycle at the G0/G1 phase, thus attenuating cell proliferation in prostate carcinoma PC-3 cells; moreover, celastrol induced cell apoptosis at higher dosage. Knockdown of IL-6 attenuated the anti-proliferative effect of celastrol on PC-3 cells. Results from ELISA and 5'-deletion transient gene expression assays indicated that celastrol treatment decreased IL-6 secretion and gene expression, and this effect is dependent on the NF-κB response element within IL-6 promoter area since mutation of the NF-κB response element from AAATGTCCCATTTTCCC to AAATGTTACATTTTCCC by site-directed mutagenesis abolished the inhibition of celastrol on the IL-6 promoter activity. Celastrol also attenuated the activation of PMA and TNFα on the gene expression and secretion of IL-6 in PC-3 cells. Immunoblot assays revealed that celastrol treatment downregulated the expressions of IKKα, p50 and p65, supporting the 5'-deletion transient gene expression assay result that celastrol blocked IL-6 expression through the NF-κB pathway in PC-3 cells. For the first time, our results concluded that celastrol attenuates PC-3 cell proliferation via downregulation of IL-6 gene expression through the NF-κB-dependent pathway.

  3. Analysis of cell cycle and replication of mouse macrophages after in vivo and in vitro Cryptococcus neoformans infection using laser scanning cytometry.

    PubMed

    Coelho, Carolina; Tesfa, Lydia; Zhang, Jinghang; Rivera, Johanna; Gonçalves, Teresa; Casadevall, Arturo

    2012-04-01

    We investigated the outcome of the interaction of Cryptococcus neoformans with murine macrophages using laser scanning cytometry (LSC). Previous results in our lab had shown that phagocytosis of C. neoformans promoted cell cycle progression. LSC allowed us to simultaneously measure the phagocytic index, macrophage DNA content, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation such that it was possible to study host cell division as a function of phagocytosis. LSC proved to be a robust, reliable, and high-throughput method for quantifying phagocytosis. Phagocytosis of C. neoformans promoted cell cycle progression, but infected macrophages were significantly less likely to complete mitosis. Hence, we report a new cytotoxic effect associated with intracellular C. neoformans residence that manifested itself in impaired cell cycle completion as a consequence of a block in the G(2)/M stage of the mitotic cell cycle. Cell cycle arrest was not due to increased cell membrane permeability or DNA damage. We investigated alveolar macrophage replication in vivo and demonstrated that these cells are capable of low levels of cell division in the presence or absence of C. neoformans infection. In summary, we simultaneously studied phagocytosis, the cell cycle state of the host cell and pathogen-mediated cytotoxicity, and our results demonstrate a new cytotoxic effect of C. neoformans infection on murine macrophages: fungus-induced cell cycle arrest. Finally, we provide evidence for alveolar macrophage proliferation in vivo.

  4. Evidence for an interplay between cell cycle progression and the initiation of differentiation between life cycle forms of African trypanosomes

    PubMed Central

    1994-01-01

    Successful transmission of the African trypanosome between the mammalian host blood-stream and the tsetse fly vector involves dramatic alterations in the parasite's morphology and biochemistry. This differentiation through to the tsetse midgut procyclic form is accompanied by re-entry into a proliferative cell cycle. Using a synchronous differentiation model and a variety of markers diagnostic for progress through both differentiation and the cell cycle, we have investigated the interplay between these two processes. Our results implicate a relationship between the trypanosome cell cycle position and the perception of the differentiation signal and demonstrate that irreversible commitment to the differentiation occurs rapidly after induction. Furthermore, we show that re-entry into the cell cycle in the differentiating population is synchronous, and that once initiated, progress through the differentiation pathway can be uncoupled from progress through the cell cycle. PMID:8195296

  5. Tetraethylammonium and 4-aminopyridine block calcium-dependent chloride current in rat cerebellum Purkinje cells.

    PubMed

    Zamoyski, V L; Vikhareva, E A; Grigoriev, V V; Bachurin, S O

    2016-09-01

    Using patch-clamp method (whole cell configuration), it was shown that tetraethylammonium (TEA) and 4-aminopyridine (4-AP) block calcium-dependent chloride currents in the membrane of freshly isolated cerebellar Purkinje cells of rats (12-15 days). In the concentration range studied (50 μM-10 mM TEA and 100 μM-1 mM 4-AP), both compounds blocked the chloride current at IC50 130 μM for TEA and 110 μM for 4-AP. TEA blockade was reversible after washing. The effect of 4-AP at concentrations greater than 100 μM was irreversible: both outward and inward chloride currents were blocked even after the removal of 4-AP from the incubation medium.

  6. Computational analysis of mammalian cell division gated by a circadian clock: quantized cell cycles and cell size control.

    PubMed

    Zámborszky, Judit; Hong, Christian I; Csikász Nagy, Attila

    2007-12-01

    Cell cycle and circadian rhythms are conserved from cyanobacteria to humans with robust cyclic features. Recently, molecular links between these two cyclic processes have been discovered. Core clock transcription factors, Bmal1 and Clock (Clk), directly regulate Wee1 kinase, which inhibits entry into the mitosis. We investigate the effect of this connection on the timing of mammalian cell cycle processes with computational modeling tools. We connect a minimal model of circadian rhythms, which consists of transcription-translation feedback loops, with a modified mammalian cell cycle model from Novak and Tyson (2004). As we vary the mass doubling time (MDT) of the cell cycle, stochastic simulations reveal quantized cell cycles when the activity of Wee1 is influenced by clock components. The quantized cell cycles disappear in the absence of coupling or when the strength of this link is reduced. More intriguingly, our simulations indicate that the circadian clock triggers critical size control in the mammalian cell cycle. A periodic brake on the cell cycle progress via Wee1 enforces size control when the MDT is quite different from the circadian period. No size control is observed in the absence of coupling. The issue of size control in the mammalian system is debatable, whereas it is well established in yeast. It is possible that the size control is more readily observed in cell lines that contain circadian rhythms, since not all cell types have a circadian clock. This would be analogous to an ultradian clock intertwined with quantized cell cycles (and possibly cell size control) in yeast. We present the first coupled model between the mammalian cell cycle and circadian rhythms that reveals quantized cell cycles and cell size control influenced by the clock.

  7. [Integrins and cell cycle control by the environment].

    PubMed

    Bernard, A; Bernard, G

    2000-04-01

    Integrins insure cell adhesion to extra-cellular matrix components; they are thus involved in tissue architecture. They also can insure intercellular adhesions by binding to surface molecules from the immunoglobulin superfamily. Integrins binding to their ligands induce cytoskeleton reorganisation and, consequently, they gather into focal adhesion contacts. This greatly strenghthens mechanical forces. Nevertheless, integrins can also participate in cell locomotion and, moreover, tranduce within cells signals that can extensively influence cell metabolism, cell cycle and apoptosis. Doing so, they can interact with signals from other cellular receptors, such as soluble growth factors. They are therefore key molecules to integrate intrinsic and extrinsic events of the cellular behavior. They profoundly influence oncogenesis and the metastatic process.

  8. Cell cycle dependent changes in the plasma membrane organization of mammalian cells.

    PubMed

    Denz, Manuela; Chiantia, Salvatore; Herrmann, Andreas; Mueller, Peter; Korte, Thomas; Schwarzer, Roland

    2017-03-01

    Lipid membranes are major structural elements of all eukaryotic and prokaryotic organisms. Although many aspects of their biology have been studied extensively, their dynamics and lateral heterogeneity are still not fully understood. Recently, we observed a cell-to-cell variability in the plasma membrane organization of CHO-K1 cells (Schwarzer et al., 2014). We surmised that cell cycle dependent changes of the individual cells from our unsynchronized cell population account for this phenomenon. In the present study, this hypothesis was tested. To this aim, CHO-K1 cells were arrested in different cell cycle phases by chemical treatments, and the order of their plasma membranes was determined by various fluorescent lipid analogues using fluorescence lifetime imaging microscopy. Our experiments exhibit significant differences in the membrane order of cells arrested in the G2/M or S phase compared to control cells. Our single-cell analysis also enabled the specific selection of mitotic cells, which displayed a significant increase of the membrane order compared to the control. In addition, the lipid raft marker GPImYFP was used to study the lateral organization of cell cycle arrested cells as well as mitotic cells and freely cycling samples. Again, significant differences were found between control and arrested cells and even more pronounced between control and mitotic cells. Our data demonstrate a direct correlation between cell cycle progression and plasma membrane organization, underlining that cell-to-cell heterogeneities of membrane properties have to be taken into account in cellular studies especially at the single-cell level.

  9. Lineage correlations of single cell division time as a probe of cell-cycle dynamics.

    PubMed

    Sandler, Oded; Mizrahi, Sivan Pearl; Weiss, Noga; Agam, Oded; Simon, Itamar; Balaban, Nathalie Q

    2015-03-26

    Stochastic processes in cells are associated with fluctuations in mRNA, protein production and degradation, noisy partition of cellular components at division, and other cell processes. Variability within a clonal population of cells originates from such stochastic processes, which may be amplified or reduced by deterministic factors. Cell-to-cell variability, such as that seen in the heterogeneous response of bacteria to antibiotics, or of cancer cells to treatment, is understood as the inevitable consequence of stochasticity. Variability in cell-cycle duration was observed long ago; however, its sources are still unknown. A central question is whether the variance of the observed distribution originates from stochastic processes, or whether it arises mostly from a deterministic process that only appears to be random. A surprising feature of cell-cycle-duration inheritance is that it seems to be lost within one generation but to be still present in the next generation, generating poor correlation between mother and daughter cells but high correlation between cousin cells. This observation suggests the existence of underlying deterministic factors that determine the main part of cell-to-cell variability. We developed an experimental system that precisely measures the cell-cycle duration of thousands of mammalian cells along several generations and a mathematical framework that allows discrimination between stochastic and deterministic processes in lineages of cells. We show that the inter- and intra-generation correlations reveal complex inheritance of the cell-cycle duration. Finally, we build a deterministic nonlinear toy model for cell-cycle inheritance that reproduces the main features of our data. Our approach constitutes a general method to identify deterministic variability in lineages of cells or organisms, which may help to predict and, eventually, reduce cell-to-cell heterogeneity in various systems, such as cancer cells under treatment.

  10. Adolescent binge alcohol exposure alters hippocampal progenitor cell proliferation in rats: effects on cell cycle kinetics.

    PubMed

    McClain, Justin A; Hayes, Dayna M; Morris, Stephanie A; Nixon, Kimberly

    2011-09-01

    Binge alcohol exposure in adolescent rats potently inhibits adult hippocampal neurogenesis by altering neural progenitor cell (NPC) proliferation and survival; however, it is not clear whether alcohol results in an increase or decrease in net proliferation. Thus, the effects of alcohol on hippocampal NPC cell cycle phase distribution and kinetics were assessed in an adolescent rat model of an alcohol use disorder. Cell cycle distribution was measured using a combination of markers (Ki-67, bromodeoxyuridine incorporation, and phosphohistone H3) to determine the proportion of NPCs within G1, S, and G2/M phases of the cell cycle. Cell cycle kinetics were calculated using a cumulative bromodeoxyuridine injection protocol to determine the effect of alcohol on cell cycle length and S-phase duration. Binge alcohol exposure reduced the proportion of NPCs in S-phase, but had no effect on G1 or G2/M phases, indicating that alcohol specifically targets S-phase of the cell cycle. Cell cycle kinetics studies revealed that alcohol reduced NPC cell cycle duration by 36% and shortened S-phase by 62%, suggesting that binge alcohol exposure accelerates progression through the cell cycle. This effect would be expected to increase NPC proliferation, which was supported by a slight, but significant increase in the number of Sox-2+ NPCs residing in the hippocampal subgranular zone following binge alcohol exposure. These studies suggest the mechanism of alcohol inhibition of neurogenesis and also reveal the earliest evidence of the compensatory neurogenesis reaction that has been observed a week after binge alcohol exposure.

  11. Are paradoxical cell cycle activities in neurons and glia related to the metabolic theory of Alzheimer's disease?

    PubMed

    Erol, Adnan

    2010-01-01

    The progression and outcome of neurological diseases are determined by the balance between neurodegeneration, neuroprotection, and neuroregeneration. In this context, astroglial cells are invariably involved in every kind of neuropathology. Mitotically, active glial cells provide metabolic support to active neurons, contribute to coupling between synaptic activity and local blood flow, and thus protect against oxidative stress. Disturbances of the complex neuron-glia interrelation are increasingly recognized as a potentially important pathophysiological mechanism in a wide variety of neurological disorders including those marked by neurodegeneration. Peripheral insulin resistance-mediated increased oxidative stress in glial cells, and consequent DNA damage, induces senescence in glial cells leads to the development of an inflammatory environment. The immune mediators released by senescent (activated) glial cells are considered to be neurotoxic and ultimately increase the oxidant load of neurons. While the neuron is viewed as the prototypical post-mitotic, fully differentiated cell, certain subsets of neurons reactivate cell-cycle activity in response to triggers of neuronal apoptosis, such as genotoxic stress generated by redox changes due to pathological alterations in supporting astroglial cells. Thus, a paradoxical cell cycle block in glial cells coupled with concomitant cell cycle re-entry in neurons (due to pathological alterations created by peripheral insulin resistance-induced neuroendocrine signaling changes) may cause neurodegeneration, such as seen in Alzheimer's disease.

  12. Cell cycle in the fucus zygote parallels a somatic cell cycle but displays a unique translational regulation of cyclin-dependent kinases.

    PubMed

    Corellou, F; Brownlee, C; Detivaud, L; Kloareg, B; Bouget, F Y

    2001-03-01

    In eukaryotic cells, the basic machinery of cell cycle control is highly conserved. In particular, many cellular events during cell cycle progression are controlled by cyclin-dependent kinases (CDKs). The cell cycle in animal early embryos, however, differs substantially from that of somatic cells or yeasts. For example, cell cycle checkpoints that ensure that the sequence of cell cycle events is correct have been described in somatic cells and yeasts but are largely absent in embryonic cells. Furthermore, the regulation of CDKs is substantially different in the embryonic and somatic cells. In this study, we address the nature of the first cell cycle in the brown alga Fucus, which is evolutionarily distant from the model systems classically used for cell cycle studies in embryos. This cycle consists of well-defined G1, S, G2, and M phases. The purine derivative olomoucine inhibited CDKs activity in vivo and in vitro and induced different cell cycle arrests, including at the G1/S transition, suggesting that, as in somatic cells, CDKs tightly control cell cycle progression. The cell cycle of Fucus zygotes presented the other main features of a somatic cell cycle, such as a functional spindle assembly checkpoint that targets CDKs and the regulation of the early synthesis of two PSTAIRE CDKs, p32 and p34, and the associated histone H1 kinase activity as well as the regulation of CDKs by tyrosine phosphorylation. Surprisingly, the synthesis after fertilization of p32 and p34 was translationally regulated, a regulation not described previously for CDKs. Finally, our results suggest that the activation of mitotic CDKs relies on an autocatalytic amplification mechanism.

  13. Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells.

    PubMed

    Feng, Jianfang; Chen, Xiaonan; Wang, Yuanyuan; Du, Yuwen; Sun, Qianqian; Zang, Wenqiao; Zhao, Guoqiang

    2015-10-01

    Myricetin is a flavonoid that is abundant in fruits and vegetables and has protective effects against cancer and diabetes. However, the mechanism of action of myricetin against gastric cancer (GC) is not fully understood. We researched myricetin on the proliferation, apoptosis, and cell cycle in GC HGC-27 and SGC7901 cells, to explore the underlying mechanism of action. Cell Counting Kit (CCK)-8 assay, Western blotting, cell cycle analysis, and apoptosis assay were used to evaluate the effects of myricetin on cell proliferation, apoptosis, and the cell cycle. To analyze the binding properties of ribosomal S6 kinase 2 (RSK2) with myricetin, surface plasmon resonance (SPR) analysis was performed. CCK8 assay showed that myricetin inhibited GC cell proliferation. Flow cytometry analysis showed that myricetin induces apoptosis and cell cycle arrest in GC cells. Western blotting indicated that myricetin influenced apoptosis and cell cycle arrest of GC cells by regulating related proteins. SPR analysis showed strong binding affinity of RSK2 and myricetin. Myricetin bound to RSK2, leading to increased expression of Mad1, and contributed to inhibition of HGC-27 and SGC7901 cell proliferation. Our results suggest the therapeutic potential of myricetin in GC.

  14. Coherent regulation in yeast’s cell-cycle network

    NASA Astrophysics Data System (ADS)

    Aral, Neşe; Kabakçıoğlu, Alkan

    2015-05-01

    We define a measure of coherent activity for gene regulatory networks, a property that reflects the unity of purpose between the regulatory agents with a common target. We propose that such harmonious regulatory action is desirable under a demand for energy efficiency and may be selected for under evolutionary pressures. We consider two recent models of the cell-cycle regulatory network of the yeast, Saccharomyces cerevisiae as a case study and calculate their degree of coherence. A comparison with random networks of similar size and composition reveals that the yeast’s cell-cycle regulation is wired to yield an exceptionally high level of coherent regulatory activity. We also investigate the mean degree of coherence as a function of the network size, connectivity and the fraction of repressory/activatory interactions.

  15. Circular piecewise regression with applications to cell-cycle data.

    PubMed

    Rueda, Cristina; Fernández, Miguel A; Barragán, Sandra; Mardia, Kanti V; Peddada, Shyamal D

    2016-12-01

    Applications of circular regression models appear in many different fields such as evolutionary psychology, motor behavior, biology, and, in particular, in the analysis of gene expressions in oscillatory systems. Specifically, for the gene expression problem, a researcher may be interested in modeling the relationship among the phases of cell-cycle genes in two species with differing periods. This challenging problem reduces to the problem of constructing a piecewise circular regression model and, with this objective in mind, we propose a flexible circular regression model which allows different parameter values depending on sectors along the circle. We give a detailed interpretation of the parameters in the model and provide maximum likelihood estimators. We also provide a model selection procedure based on the concept of generalized degrees of freedom. The model is then applied to the analysis of two different cell-cycle data sets and through these examples we highlight the power of our new methodology.

  16. Mitochondria. Cell cycle-dependent regulation of mitochondrial preprotein translocase.

    PubMed

    Harbauer, Angelika B; Opalińska, Magdalena; Gerbeth, Carolin; Herman, Josip S; Rao, Sanjana; Schönfisch, Birgit; Guiard, Bernard; Schmidt, Oliver; Pfanner, Nikolaus; Meisinger, Chris

    2014-11-28

    Mitochondria play central roles in cellular energy conversion, metabolism, and apoptosis. Mitochondria import more than 1000 different proteins from the cytosol. It is unknown if the mitochondrial protein import machinery is connected to the cell division cycle. We found that the cyclin-dependent kinase Cdk1 stimulated assembly of the main mitochondrial entry gate, the translocase of the outer membrane (TOM), in mitosis. The molecular mechanism involved phosphorylation of the cytosolic precursor of Tom6 by cyclin Clb3-activated Cdk1, leading to enhanced import of Tom6 into mitochondria. Tom6 phosphorylation promoted assembly of the protein import channel Tom40 and import of fusion proteins, thus stimulating the respiratory activity of mitochondria in mitosis. Tom6 phosphorylation provides a direct means for regulating mitochondrial biogenesis and activity in a cell cycle-specific manner.

  17. [Cell cycle arrest at M phase induced by vinblastine in MOLT-4 cells].

    PubMed

    Zhong, Yi-Sheng; Pan, Chang-Chuan; Jin, Chang-Nan; Li, Jian-Jun; Xiong, Gong-Peng; Zhang, Jian-Xi; Gong, Jian-Ping

    2009-04-01

    This study was purposed to investigate the biological effect of vinblastine (VLS), usually known as inductor of mitotic arrest, on MOLT-4 of ALL cells and to evaluate its significance. The cell arrest in M phase and/or cell apoptosis were induced by treatment of MOLT-4 cells with 0.05 microg/ml VLS for 0 - 12 hours; the DNA histogram was detected by flow cytometry; the morphological changes of cells were observed by confocal microscopy; the cell cycle distribution, cell apoptosis and morphological changes of cells before and after arrest were analyzed by using arrest increasing rate (AIR), arrest efficiency (AE), apoptosis rate (AR) and morphologic parameters respectively. The results indicated that the cell arrest did not accompanied by significant increase of apoptosis rate; the DNA histogram of cell arrest showed dynamic change of cell cycle in time-dependent manner; the arrest efficiency could be quantified. The cell arrest at M phase was accompanied by cell stack in S phase, the cell proliferation rate dropped after cell arrest occurred. The cells arrested at M phase possessed of characteristic morphologic features in cell mitosis. It is concluded that the vinblastine can solely induce arrest of MOLT-4 cells at M phase. This study provides experimental basis for further investigating the relation of cell cycle arrest to apoptosis, mechanism of checkpoint and development of new anticancer drugs.

  18. Cell cycle arrest by prostaglandin A1 at the G1/S phase interface with up-regulation of oncogenes in S-49 cyc- cells

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.

    1994-01-01

    Our previous studies have implied that prostaglandins inhibit cell growth independent of cAMP. Recent reports, however, have suggested that prostaglandin arrest of the cell cycle may be mediated through protein kinase A. In this report, in order to eliminate the role of c-AMP in prostaglandin mediated cell cycle arrest, we use the -49 lymphoma variant (cyc-) cells that lack adenylate cyclase activity. We demonstrate that dimethyl prostaglandin A1 (dmPGA1) inhibits DNA synthesis and cell growth in cyc- cells. DNA synthesis is inhibited 42% by dmPGA1 (50 microM) despite the fact that this cell line lacks cellular components needed for cAMP generation. The ability to decrease DNA synthesis depends upon the specific prostaglandin structure with the most effective form possessing the alpha, beta unsaturated ketone ring. Dimethyl PGA1 is most effective in inhibiting DNA synthesis in cyc- cells, with prostaglandins PGE1 and PGB1 being less potent inhibitors of DNA synthesis. DmPGE2 caused a significant stimulation of DNA synthesis. S-49 cyc- variant cells exposed to (30-50 microns) dmPGA1, arrested in the G1 phase of the cell cycle within 24 h. This growth arrest was reversed when the prostaglandin was removed from the cultured cells; growth resumed within hours showing that this treatment is not toxic. The S-49 cyc- cells were chosen not only for their lack of adenylate cyclase activity, but also because their cell cycle has been extensively studied and time requirements for G1, S, G2, and M phases are known. Within hours after prostaglandin removal the cells resume active DNA synthesis, and cell number doubles within 15 h suggesting rapid entry into S-phase DNA synthesis from the G1 cell cycle block.(ABSTRACT TRUNCATED AT 250 WORDS).

  19. Local homogeneity of cell cycle length in developing mouse cortex

    NASA Technical Reports Server (NTRS)

    Cai, L.; Hayes, N. L.; Nowakowski, R. S.

    1997-01-01

    We have measured the amount of variation in the length of the cell cycle for cells in the pseudostratified ventricular epithelium (PVE) of the developing cortex of mice on embryonic day 14. Our measurements were made in three cortical regions (i.e., the neocortex, archicortex, and periarchicortex) using three different methods: the cumulative labeling method (CLM), the percent labeled mitoses (PLM) method, and a comparison of the time needed for the PLM to ascend from 0 to 100% with the time needed for the PLM to descend from 100 to 0%. These 3 different techniques provide different perspectives on the cytokinetic parameters. Theoretically, CLM gives an estimate for a maximum value of the total length of the cell cycle (TC), whereas PLM gives an estimate of a minimum value of TC. The difference between these two estimates indicates that the range for TC is +/-1% of the mean TC for periarchicortex, +/-7% for neocortex, and +/-8% for archicortex. This was confirmed by a lengthening of the PLM descent time in comparison with its ascent time. The sharpness of the transitions and the flatness of the plateau of the PLM curves indicate that 99% of the proliferating cells are within this narrow estimated range for TC; hence, only approximately 1% deviate outside of a relatively restricted range from the average TC of the population. In the context of the possible existence within the cortical PVE of two populations with markedly dissimilar cell cycle kinetics from the mean, one such population must comprise approximately 99% of the total population, and the other, if it exists, is only approximately 1% of the total. This seems to be true for all three cortical regions. The narrow range of TC indicates a homogeneity in the cell cycle length for proliferating cells in three different cortical regions, despite the fact that progenitor cells of different lineages may be present. It further predicts the existence of almost synchronous interkinetic nuclear movements of the

  20. Cell cycle S phase markers are expressed in cerebral neuron nuclei of cats infected by the Feline Panleukopenia Virus.

    PubMed

    Poncelet, Luc; Garigliany, Mutien; Ando, Kunie; Franssen, Mathieu; Desmecht, Daniel; Brion, Jean-Pierre

    2016-12-16

    The cell cycle-associated neuronal death hypothesis, which has been proposed as a common mechanism for most neurodegenerative diseases, is notably supported by evidencing cell cycle effectors in neurons. However, in naturally occurring nervous system diseases, these markers are not expressed in neuron nuclei but in cytoplasmic compartments. In other respects, the Feline Panleukopenia Virus (FPV) is able to complete its cycle in mature brain neurons in the feline species. As a parvovirus, the FPV is strictly dependent on its host cell reaching the cell cycle S phase to start its multiplication. In this retrospective study on the whole brain of 12 cats with naturally-occurring, FPV-associated cerebellar atrophy, VP2 capsid protein expression was detected by immunostaining not only in some brain neuronal nuclei but also in neuronal cytoplasm in 2 cats, suggesting that viral mRNA translation was still occurring. In these cats, double immunostainings demonstrated the expression of cell cycle S phase markers cyclin A, cdk2 and PCNA in neuronal nuclei. Parvoviruses are able to maintain their host cells in S phase by triggering the DNA damage response. S139 phospho H2A1, a key player in the cell cycle arrest, was detected in some neuronal nuclei, supporting that infected neurons were also blocked into the S phase. PCR studies did not support a co-infection with an adeno or herpes virus. ERK1/2 nuclear accumulation was observed in some neurons suggesting that the ERK signaling pathway might be involved as a mechanism driving these neurons far into the cell cycle.

  1. Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells

    PubMed Central

    Guo, Yongfeng; Flegel, Kerry; Kumar, Jayashree; McKay, Daniel J.

    2016-01-01

    ABSTRACT During development, cell proliferation and differentiation must be tightly coordinated to ensure proper tissue morphogenesis. Because steroid hormones are central regulators of developmental timing, understanding the links between steroid hormone signaling and cell proliferation is crucial to understanding the molecular basis of morphogenesis. Here we examined the mechanism by which the steroid hormone ecdysone regulates the cell cycle in Drosophila. We find that a cell cycle arrest induced by ecdysone in Drosophila cell culture is analogous to a G2 cell cycle arrest observed in the early pupa wing. We show that in the wing, ecdysone signaling at the larva-to-puparium transition induces Broad which in turn represses the cdc25c phosphatase String. The repression of String generates a temporary G2 arrest that synchronizes the cell cycle in the wing epithelium during early pupa wing elongation and flattening. As ecdysone levels decline after the larva-to-puparium pulse during early metamorphosis, Broad expression plummets, allowing String to become re-activated, which promotes rapid G2/M progression and a subsequent synchronized final cell cycle in the wing. In this manner, pulses of ecdysone can both synchronize the final cell cycle and promote the coordinated acquisition of terminal differentiation characteristics in the wing. PMID:27737823

  2. Predicting cell cycle regulated genes by causal interactions.

    PubMed

    Emmert-Streib, Frank; Dehmer, Matthias

    2009-08-18

    The fundamental difference between classic and modern biology is that technological innovations allow to generate high-throughput data to get insights into molecular interactions on a genomic scale. These high-throughput data can be used to infer gene networks, e.g., the transcriptional regulatory or signaling network, representing a blue print of the current dynamical state of the cellular system. However, gene networks do not provide direct answers to biological questions, instead, they need to be analyzed to reveal functional information of molecular working mechanisms. In this paper we propose a new approach to analyze the transcriptional regulatory network of yeast to predict cell cycle regulated genes. The novelty of our approach is that, in contrast to all other approaches aiming to predict cell cycle regulated genes, we do not use time series data but base our analysis on the prior information of causal interactions among genes. The major purpose of the present paper is to predict cell cycle regulated genes in S. cerevisiae. Our analysis is based on the transcriptional regulatory network, representing causal interactions between genes, and a list of known periodic genes. No further data are used. Our approach utilizes the causal membership of genes and the hierarchical organization of the transcriptional regulatory network leading to two groups of periodic genes with a well defined direction of information flow. We predict genes as periodic if they appear on unique shortest paths connecting two periodic genes from different hierarchy levels. Our results demonstrate that a classical problem as the prediction of cell cycle regulated genes can be seen in a new light if the concept of a causal membership of a gene is applied consequently. This also shows that there is a wealth of information buried in the transcriptional regulatory network whose unraveling may require more elaborate concepts than it might seem at first.

  3. HOT CELL BUILDING, TRA632. ELEVATIONS. PUMICE BLOCK WALLS. BLOWER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. ELEVATIONS. PUMICE BLOCK WALLS. BLOWER AND FILTER LOFT PLATFORM AND LADDER ON EAST SIDE. IDAHO OPERATIONS OFFICE MTR-632-IDO-4, 11/1952. INL INDEX NO. 531-0632-00-396-110563, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Cell cycle and centromere FISH studies in premature centromere division

    PubMed Central

    Corona-Rivera, Alfredo; Salamanca-Gomez, Fabio; Bobadilla-Morales, Lucina; Corona-Rivera, Jorge R; Palomino-Cueva, Cesar; Garcia-Cobian, Teresa A; Corona-Rivera, Enrique

    2005-01-01

    Background Mitotic configurations consistent in split centromeres and splayed chromatids in all or most of the chromosomes or premature centromere division (PCD) have been described in three categories. (1) Low frequency of PCD observed in colchicines-treated lymphocyte cultures from normal individuals. (2) High frequency of PCD with mosaic variegated aneuploidy. (3) High frequency of PCD as a sole chromosome abnormality observed in individuals with no recognizable clinical pattern. We report four members of a family with the third category of PCD. Methods Cell cycle duration assessed by average generation time using differential sister chromatid stain analysis and FISH studies of DNA centromere sequences in PCD individuals, are included and compared with previously reported PCD individuals from 9 families. Results We observed PCD in colchicine-treated cultures from the propositus, his father, and two paternal aunts but not in his mother and four other paternal and maternal family members, as well as in untreated cultures from the propositus and his father. We observed cytological evidence of active centromeres by Cd stain. Significative cell cycle time reduction in anaphases of PCD individuals (average generation time of 21.8 h;SD 0.4) with respect to individuals without PCD (average generation time of 31.8 h;SD 3.9) was observed (P < 0.005, Student t-test for independent samples). Increased cell proliferation kinetics was observed in anaphasic cells of individuals with PCD, by differential sister chromatid stain analysis. FISH studies revealed the presence of alpha satellite DNA from chromosomes 1, 13, 21/18, X, all centromeres, and CENP-B box sequences in metaphasic and anaphasic cells from PCD individuals. Conclusion This report examines evidences of a functional relationship between PCD and cell cycle impairment. It seems that essential centromere integrity is present in these cases. PMID:16174301

  5. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    PubMed

    Reinson, Tormi; Henno, Liisi; Toots, Mart; Ustav, Mart; Ustav, Mart

    2015-01-01

    Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research.

  6. Tracking of Normal and Malignant Progenitor Cell Cycle Transit in a Defined Niche

    PubMed Central

    Pineda, Gabriel; Lennon, Kathleen M.; Delos Santos, Nathaniel P.; Lambert-Fliszar, Florence; Riso, Gennarina L.; Lazzari, Elisa; Marra, Marco A.; Morris, Sheldon; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Jamieson, Catriona H. M.

    2016-01-01

    While implicated in therapeutic resistance, malignant progenitor cell cycle kinetics have been difficult to quantify in real-time. We developed an efficient lentiviral bicistronic fluorescent, ubiquitination-based cell cycle indicator reporter (Fucci2BL) to image live single progenitors on a defined niche coupled with cell cycle gene expression analysis. We have identified key differences in cell cycle regulatory gene expression and transit times between normal and chronic myeloid leukemia progenitors that may inform cancer stem cell eradication strategies. PMID:27041210

  7. Repression of DNA replication licensing in quiescence is independent of geminin and may define the cell cycle state of progenitor cells

    SciTech Connect

    Kingsbury, Sarah R.; Loddo, Marco; Fanshawe, Thomas; Obermann, Ellen C.; Prevost, A. Toby; Stoeber, Kai . E-mail: k.stoeber@ucl.ac.uk; Williams, Gareth H.

    2005-09-10

    The DNA replication (or origin) licensing machinery ensures precise duplication of the genome and contributes to the regulation of proliferative capacity in metazoa. Using an in vitro fibroblast model system coupled to a cell-free DNA replication assay, we have studied regulation of the origin licensing pathway during exit from and re-entry into the mitotic cell cycle. We show that in the quiescent state (G0) loss of proliferative capacity is achieved in part through down-regulation of the replication licensing factors Cdc6 and Mcm2-7. The origin licensing repressor geminin is absent in quiescent fibroblasts, suggesting that this powerful inhibitor of the licensing machinery is not required to suppress proliferative capacity in G0. Geminin expression is induced at a late stage in the G0-S transition post pre-RC assembly. Ectopic geminin can block re-acquisition of DNA replication competence during re-entry into the cell cycle, indicating that geminin levels must be tightly down-regulated for escape from G0. Analysis of geminin levels in thyroid shows that geminin expression is suppressed in anatomical compartments/tissues harbouring quiescent cells, confirming our in vitro data. Spatio-temporal control of geminin expression may therefore be of particular relevance for multi-potential stem cells which cycle infrequently. In support of this hypothesis, we have identified a unique population of cells in the putative stem cell niche of intestinal epithelium that are unlicensed and lack geminin expression, a prerequisite for successful re-entry into cycle. Our data argue that the prolonged cell cycle times observed for intestinal stem cells could be due to exit of progenitor cells from cycle into an unlicensed 'out-of-cycle' state, a powerful mechanism by which rapidly proliferating tissues may resist genotoxic insult.

  8. Molecular mechanisms underlying activity-dependent AMPA receptor cycling in retinal ganglion cells

    PubMed Central

    Casimiro, Tanya M.; Nawy, Scott; Carroll, Reed C.

    2013-01-01

    On retinal ganglion cells (RGCs) transmit light encoded information to the brain and receive excitatory input from On cone bipolar cells (CBPs). The synaptic CBP input onto On RGCs is mediated by AMPA-type glutamate receptors (AMPARs) that include both those lacking a GluA2 subunit, and are therefore permeable to Ca2+, and those that possess at least one GluA2 subunit and are Ca2+-impermeable. We have previously demonstrated in electrophysiological studies that periods of low synaptic activity, brought about by housing animals in darkness, enhances the proportion of GluA2-lacking AMPARs at the On CBP-On RGC synapse by mobilizing surface GluA2 containing receptors into a receptor pool that rapidly cycles in and out of the membrane. AMPAR cycling induction by reduced synaptic activity takes several hours. This delay suggests that changes in expression of proteins which regulate AMPAR trafficking may mediate the altered mobility of GluA2 AMPARs in RGCs. In this study, we test the hypothesis that AMPAR trafficking proteins couple synaptic activity to AMPAR cycling in RGCs. Immunocytochemical and biochemical analysis confirmed that darkness decreases surface GluA2 in RGCs and changed the expression levels of three proteins associated with GluA2 trafficking. GRIP was decreased, while PICK1 and Arc were increased. Knockdown of GRIP with siRNA elevated constitutive AMPAR cycling, mimicking effects of reduced synaptic activity, while knockdown of PICK1 and ARC blocked increases in constitutive GluA2 trafficking. Our results support a role for correlated, activity-driven changes in multiple AMPAR trafficking proteins that modulate GluA2 cycling which can in turn affect synaptic AMPAR composition in RGCs. PMID:23911793

  9. Cell cycle arrest induced by MPPa-PDT in MDA-MB-231 cells

    NASA Astrophysics Data System (ADS)

    Liang, Liming; Bi, Wenxiang; Tian, Yuanyuan

    2016-05-01

    Photodynamic therapy (PDT) is a medical treatment using a photosensitizing agent and light source to treat cancers. Pyropheophorbidea methyl ester (MPPa), a derivative of chlorophyll, is a novel potent photosensitizer. To learn more about this photosensitizer, we examined the cell cycle arrest in MDA-MB-231. Cell cycle and apoptosis were measured by flow cytometer. Checkpoints of the cell cycle were measured by western blot. In this study, we found that the expression of Cyclin D1 was obviously decreased, while the expression of Chk2 and P21 was increased after PDT treatment. This study showed that MPPa-PDT affected the checkpoints of the cell cycle and led the cells to apoptosis.

  10. Nuclear incorporation of iron during the eukaryotic cell cycle

    PubMed Central

    Robinson, Ian; Yang, Yang; Zhang, Fucai; Lynch, Christophe; Yusuf, Mohammed; Cloetens, Peter

    2016-01-01

    Scanning X-ray fluorescence microscopy has been used to probe the distribution of S, P and Fe within cell nuclei. Nuclei, which may have originated at different phases of the cell cycle, are found to show very different levels of Fe present with a strongly inhomogeneous distribution. P and S signals, presumably from DNA and associated nucleosomes, are high and relatively uniform across all the nuclei; these agree with X-ray phase contrast projection microscopy images of the same samples. Possible reasons for the Fe incorporation are discussed. PMID:27787255

  11. Nuclear incorporation of iron during the eukaryotic cell cycle

    DOE PAGES

    Robinson, Ian; Yang, Yang; Zhang, Fucai; ...

    2016-10-18

    Scanning X-ray fluorescence microscopy has been used to probe the distribution of S, P and Fe within cell nuclei. Nuclei, which may have originated at different phases of the cell cycle, are found to show very different levels of Fe present with a strongly inhomogeneous distribution. P and S signals, presumably from DNA and associated nucleosomes, are high and relatively uniform across all the nuclei; these agree with X-ray phase contrast projection microscopy images of the same samples. Finally, we discuss possible reasons for the Fe incorporation.

  12. Nuclear incorporation of iron during the eukaryotic cell cycle

    SciTech Connect

    Robinson, Ian; Yang, Yang; Zhang, Fucai; Lynch, Christophe; Yusuf, Mohammed; Cloetens, Peter

    2016-10-18

    Scanning X-ray fluorescence microscopy has been used to probe the distribution of S, P and Fe within cell nuclei. Nuclei, which may have originated at different phases of the cell cycle, are found to show very different levels of Fe present with a strongly inhomogeneous distribution. P and S signals, presumably from DNA and associated nucleosomes, are high and relatively uniform across all the nuclei; these agree with X-ray phase contrast projection microscopy images of the same samples. Finally, we discuss possible reasons for the Fe incorporation.

  13. Cell cycle propagation is driven by light-dark stimulation in a cultured symbiotic dinoflagellate isolated from corals

    NASA Astrophysics Data System (ADS)

    Wang, L.-H.; Liu, Y.-H.; Ju, Y.-M.; Hsiao, Y.-Y.; Fang, L.-S.; Chen, C.-S.

    2008-12-01

    Endosymbiosis is an intriguing plant-animal interaction in the dinoflagellate-Cnidaria association. Throughout the life span of the majority of corals, the dinoflagellate Symbiodinium sp. is a common symbiont residing inside host gastrodermal cells. The mechanism of regulating the cell proliferation of host cells and their intracellular symbionts is critical for a stable endosymbiotic association. In the present study, the cell cycle of a cultured Symbiodinium sp. (clade B) isolated from the hermatypic coral Euphyllia glabrescens was investigated using flow cytometry. The results showed that the external light-dark (L:D) stimulation played a pivotal role in regulating the cell cycle process. The sequential light (40-100 μmol m-2 s-1 ~ 12 h) followed by dark (0 μmol m-2 s-1 ~ 12 h) treatment entrained a single cell cycle from the G1 to the S phase, and then to the G2/M phase, within 24 h. Blue light (~450 nm) alone mimicked regular white light, while lights of wavelengths in the red and infrared area of the spectrum had little or no effect in entraining the cell cycle. This diel pattern of the cell cycle was consistent with changes in cell motility, morphology, and photosynthetic efficiency ( F v / F m ). Light treatment drove cells to enter the growing/DNA synthesis stage (i.e., G1 to S to G2/M), accompanied by increasing motility and photosynthetic efficiency. Inhibition of photosynthesis by 3-(3, 4-dichlorophenyl)-1, 1-dimethyl-urea (DCMU) treatment blocked the cell proliferation process. Dark treatment was required for the mitotic division stage, where cells return from G2/M to G1. Two different pools of adenylyl cyclase (AC) activities were shown to be involved in the growing/DNA synthesis and mitotic division states, respectively.

  14. Multi-cycle chemotherapy with the glycolipid-like polymeric micelles evade cancer stem cell enrichment in breast cancer therapy

    PubMed Central

    Meng, Tingting; Liu, Jingwen; Wen, Lijuan; Yuan, Ming; Cheng, Bolin; Hu, Yingwen; Zhu, Yun; Liu, Xuan; Yuan, Hong; Hu, Fuqiang

    2016-01-01

    Multi-cycle chemotherapy is commonly used in the clinic, while the phenomena of enrichment of cancer stem cells (CSCs) and enhanced multi-drug resistance (MDR) are commonly involved. This research was designed for evaluating this successive administration. Chitosan oligosaccharide-g-stearic acid (CSOSA) polymer was used as the drug delivery system (DDS) to perform tri-cycle chemotherapy on a new tumor model induced by mammosphere cells. In vitro, on CSCs enriched mammospheres model, the doxorubicin-loaded CSOSA (CSOSA/DOX) displayed an improved growth inhibition effect measured by acid phosphatase assay (APH). While in vivo, the CSOSA/DOX micelles blocked tumor progression and led to a marked decrease of CSCs proportion as well as MDR capacity. What's more, the CSOSA/DOX helped decay the microenvironment and attenuate systemic side effects. We concluded that the CSOSA polymer could be a potential DDS for long-term multi-cycle chemotherapy in antitumor research. PMID:27659522

  15. IDH mutation impairs histone demethylation and results in a block to cell differentiation.

    PubMed

    Lu, Chao; Ward, Patrick S; Kapoor, Gurpreet S; Rohle, Dan; Turcan, Sevin; Abdel-Wahab, Omar; Edwards, Christopher R; Khanin, Raya; Figueroa, Maria E; Melnick, Ari; Wellen, Kathryn E; O'Rourke, Donald M; Berger, Shelley L; Chan, Timothy A; Levine, Ross L; Mellinghoff, Ingo K; Thompson, Craig B

    2012-02-15

    Recurrent mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 have been identified in gliomas, acute myeloid leukaemias (AML) and chondrosarcomas, and share a novel enzymatic property of producing 2-hydroxyglutarate (2HG) from α-ketoglutarate. Here we report that 2HG-producing IDH mutants can prevent the histone demethylation that is required for lineage-specific progenitor cells to differentiate into terminally differentiated cells. In tumour samples from glioma patients, IDH mutations were associated with a distinct gene expression profile enriched for genes expressed in neural progenitor cells, and this was associated with increased histone methylation. To test whether the ability of IDH mutants to promote histone methylation contributes to a block in cell differentiation in non-transformed cells, we tested the effect of neomorphic IDH mutants on adipocyte differentiation in vitro. Introduction of either mutant IDH or cell-permeable 2HG was associated with repression of the inducible expression of lineage-specific differentiation genes and a block to differentiation. This correlated with a significant increase in repressive histone methylation marks without observable changes in promoter DNA methylation. Gliomas were found to have elevated levels of similar histone repressive marks. Stable transfection of a 2HG-producing mutant IDH into immortalized astrocytes resulted in progressive accumulation of histone methylation. Of the marks examined, increased H3K9 methylation reproducibly preceded a rise in DNA methylation as cells were passaged in culture. Furthermore, we found that the 2HG-inhibitable H3K9 demethylase KDM4C was induced during adipocyte differentiation, and that RNA-interference suppression of KDM4C was sufficient to block differentiation. Together these data demonstrate that 2HG can inhibit histone demethylation and that inhibition of histone demethylation can be sufficient to block the differentiation of non-transformed cells.

  16. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  17. Cell-cycle research with synchronous cultures: an evaluation

    NASA Technical Reports Server (NTRS)

    Helmstetter, C. E.; Thornton, M.; Grover, N. B.

    2001-01-01

    The baby-machine system, which produces new-born Escherichia coli cells from cultures immobilized on a membrane, was developed many years ago in an attempt to attain optimal synchrony with minimal disturbance of steady-state growth. In the present article, we put forward a model to describe the behaviour of cells produced by this method, and provide quantitative evaluation of the parameters involved, at each of four different growth rates. Considering the high level of selection achievable with this technique and the natural dispersion in interdivision times, we believe that the output of the baby machine is probably close to optimal in terms of both quality and persistence of synchrony. We show that considerable information on events in the cell cycle can be obtained from populations with age distributions very much broader than those achieved with the baby machine and differing only modestly from steady state. The data presented here, together with the long and fruitful history of findings employing the baby-machine technique, suggest that minimisation of stress on cells is the single most important factor for successful cell-cycle analysis.

  18. Differential cell cycle-specificity for chromosomal damage induced by merbarone and etoposide in V79 cells.

    PubMed

    Wang, Ling; Roy, Shambhu K; Eastmond, David A

    2007-03-01

    Merbarone, a topoisomerase II (topo II) inhibitor which, in contrast to etoposide, does not stabilize topo II-DNA cleavable complexes, was previously shown to be a potent clastogen in vitro and in vivo. To investigate the possible mechanisms, we compared the cell cycle-specificity of the clastogenic effects of merbarone and etoposide in V79 cells. Using flow cytometry and BrdU labeling techniques, etoposide was shown to cause a rapid and persistent G2 delay while merbarone was shown to cause a prolonged S-phase followed by a G2 delay. To identify the stages which are susceptible to DNA damage, we performed the micronucleus (MN) assay with synchronized cells or utilized a combination of BrdU pulse labeling and the cytokinesis-blocked MN assay with non-synchronized cells. Treatment of M phase cells with either agent did not result in increased MN formation. Etoposide but not merbarone caused a significant increase in MN when cells were treated during G2 phase. When treated during S-phase, both chemicals induced highly significant increases in MN. However, the relative proportion of MN induced by merbarone was substantially higher than that induced by etoposide. Both chemicals also caused significant increases in MN in cells that were treated during G1 phase. To confirm the observations in the MN assay, first division metaphases were evaluated in the chromosome aberration assay. The chromosomes of cells treated with merbarone and etoposide showed increased frequencies of both chromatid- and chromosome-type of aberrations. Our findings indicate that while etoposide causes DNA damage more evenly throughout the G1, S and G2 phases of the cell cycle, an outcome which may be closely associated with topo II-mediated DNA strand cleavage, merbarone induces DNA breakage primarily during S-phase, an effect which is likely due to the stalling of replication forks by inhibition of topo II activity.

  19. Cell Cycle Characteristics of Crenarchaeota: Unity among Diversity▿

    PubMed Central

    Lundgren, Magnus; Malandrin, Laurence; Eriksson, Stefan; Huber, Harald; Bernander, Rolf

    2008-01-01

    The hyperthermophilic archaea Acidianus hospitalis, Aeropyrum pernix, Pyrobaculum aerophilum, Pyrobaculum calidifontis, and Sulfolobus tokodaii representing three different orders in the phylum Crenarchaeota were analyzed by flow cytometry and combined phase-contrast and epifluorescence microscopy. The overall organization of the cell cycle was found to be similar in all species, with a short prereplicative period and a dominant postreplicative period that accounted for 64 to 77% of the generation time. Thus, in all Crenarchaeota analyzed to date, cell division and initiation of chromosome replication occur in close succession, and a long time interval separates termination of replication from cell division. In Pyrobaculum, chromosome segregation overlapped with or closely followed DNA replication, and further genome separation appeared to occur concomitant with cellular growth. Cell division in P. aerophilum took place without visible constriction. PMID:18502873

  20. Cell cycle characteristics of crenarchaeota: unity among diversity.

    PubMed

    Lundgren, Magnus; Malandrin, Laurence; Eriksson, Stefan; Huber, Harald; Bernander, Rolf

    2008-08-01

    The hyperthermophilic archaea Acidianus hospitalis, Aeropyrum pernix, Pyrobaculum aerophilum, Pyrobaculum calidifontis, and Sulfolobus tokodaii representing three different orders in the phylum Crenarchaeota were analyzed by flow cytometry and combined phase-contrast and epifluorescence microscopy. The overall organization of the cell cycle was found to be similar in all species, with a short prereplicative period and a dominant postreplicative period that accounted for 64 to 77% of the generation time. Thus, in all Crenarchaeota analyzed to date, cell division and initiation of chromosome replication occur in close succession, and a long time interval separates termination of replication from cell division. In Pyrobaculum, chromosome segregation overlapped with or closely followed DNA replication, and further genome separation appeared to occur concomitant with cellular growth. Cell division in P. aerophilum took place without visible constriction.

  1. Inhibition of PPARα induces cell cycle arrest and apoptosis, and synergizes with glycolysis inhibition in kidney cancer cells.

    PubMed

    Abu Aboud, Omran; Wettersten, Hiromi I; Weiss, Robert H

    2013-01-01

    Renal cell carcinoma (RCC) is the sixth most common cancer in the US. While RCC is highly metastatic, there are few therapeutics options available for patients with metastatic RCC, and progression-free survival of patients even with the newest targeted therapeutics is only up to two years. Thus, novel therapeutic targets for this disease are desperately needed. Based on our previous metabolomics studies showing alteration of peroxisome proliferator-activated receptor α (PPARα) related events in both RCC patient and xenograft mice materials, this pathway was further examined in the current study in the setting of RCC. PPARα is a nuclear receptor protein that functions as a transcription factor for genes including those encoding enzymes involved in energy metabolism; while PPARα has been reported to regulate tumor growth in several cancers, it has not been evaluated in RCC. A specific PPARα antagonist, GW6471, induced both apoptosis and cell cycle arrest at G0/G1 in VHL(+) and VHL(-) RCC cell lines (786-O and Caki-1) associated with attenuation of the cell cycle regulatory proteins c-Myc, Cyclin D1, and CDK4; this data was confirmed as specific to PPARα antagonism by siRNA methods. Interestingly, when glycolysis was blocked by several methods, the cytotoxicity of GW6471 was synergistically increased, suggesting a switch to fatty acid oxidation from glycolysis and providing an entirely novel therapeutic approach for RCC.

  2. Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria.

    PubMed

    Santi, Isabella; Dhar, Neeraj; Bousbaine, Djenet; Wakamoto, Yuichi; McKinney, John D

    2013-01-01

    During the bacterial cell cycle, chromosome replication and cell division must be coordinated with overall cell growth in order to maintain the correct ploidy and cell size. The spatial and temporal coordination of these processes in mycobacteria is not understood. Here we use microfluidics and time-lapse fluorescence microscopy to measure the dynamics of cell growth, division and chromosome replication in single cells of Mycobacterium smegmatis. We find that single-cell growth is size-dependent (large cells grow faster than small cells), which implicates a size-control mechanism in cell-size homoeostasis. Asymmetric division of mother cells gives rise to unequally sized sibling cells that grow at different velocities but show no differential sensitivity to antibiotics. Individual cells are restricted to one round of chromosome replication per cell division cycle, although replication usually initiates in the mother cell before cytokinesis and terminates in the daughter cells after cytokinesis. These studies reveal important differences between cell cycle organization in mycobacteria compared with better-studied model organisms.

  3. The uleine-rich fraction of Himatanthus lancifolius blocks proliferative responses of human lymphoid cells.

    PubMed

    Nardin, Jeanine Marie; Lima, Melissa Pires; Machado, Julio Cesar; Hilst, Luciana Farhat; Santos, Cid Aimbiré de Moraes; Weffort-Santos, Almeriane Maria

    2010-05-01

    The purpose of the present work is to report the effects shown by the uleine-rich fraction extracted from the barks of Himatanthus lancifolius (Muell. Arg.) Woodson (Apocynaceae) on human peripheral blood mononuclear cells in which we were able to inhibit the proliferation of phytohemagglutinin-stimulated lymphocytes by blocking their transformation into blast-dividing cells. Furthermore, it inhibited the proliferation of Daudi and Reh cells, two leukemic cell lines of lymphoid origin. The present study widens the biological applications of H. lancifolius' alkaloids to include its possible use as a modulator of the immune system.

  4. Effects of mimosine on Wolbachia in mosquito cells: cell cycle suppression reduces bacterial abundance.

    PubMed

    Fallon, Ann M

    2015-10-01

    The plant allelochemical L-mimosine (β-[N-(3-hydroxy-4-pyridone)]-α-aminopropionic acid; leucenol) resembles the nonessential amino acid, tyrosine. Because the obligate intracellular alphaproteobacterium, Wolbachia pipientis, metabolizes amino acids derived from host cells, the effects of mimosine on infected and uninfected mosquito cells were investigated. The EC50 for mimosine was 6-7 μM with Aedes albopictus C7-10 and C/wStr cell lines, and was not influenced by infection status. Mosquito cells responded to concentrations of mimosine substantially lower than those used to synchronize the mammalian cell cycle; at concentrations of 30-35 μM, mimosine reversibly arrested the mosquito cell cycle at the G1/S boundary and inhibited growth of Wolbachia strain wStr. Although lower concentrations of mimosine slightly increased wStr abundance, concentrations that suppressed the cell cycle reduced Wolbachia levels.

  5. Effects of trichostatin A on HDAC8 expression, proliferation and cell cycle of Molt-4 cells.

    PubMed

    He, Jing; Liu, Hongli; Chen, Yan

    2006-01-01

    The effects of Trichostatin A (TSA) on histone deacetylase 8 (HDAC8) expression, proliferation and cell cycle arrest in T-lymphoblastic leukemia cell line Molt-4 cells in vitro were investigated. The effect of TSA on the growth of Molt-4 cells was studied by MTT assay. Flow cytometry was used to examine the cell cycle. The expression of HDAC8 was detected by using immunocytochemistry and Western blot. The results showed that proliferation of Molt-4 cells was inhibited in TSA-treated group in a time- and dose-dependent manner. The IC50 of TSA exposures for 24 h and 36 h were 254.3236 and 199.257 microg/L respectively. The cell cycle analysis revealed that Molt-4 was mostly in G0/G1 phase, and after treatment with TSA from 50 to 400 microg/L for 24 h, the percents of G0/G1 cells were decreased and cells were arrested in G2/M phase. Treatment of TSA for 24 h could significantly inhibit the expression of HDAC8 protein in Molt-4 cells (P<0.01). It was concluded that TSA could decrease the expression of HDAC8 in Molt-4 cells, which contributed to the inhibition of proliferation and induction of cell cycle arrest in Molt-4 cells.

  6. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    PubMed Central

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-01-01

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity. PMID:26703569

  7. High density lipoproteins induce cell cycle entry in vascular smooth muscle cells via mitogen activated protein kinase-dependent pathway.

    PubMed

    Nofer, J R; Junker, R; Pulawski, E; Fobker, M; Levkau, B; von Eckardstein, A; Seedorf, U; Assmann, G; Walter, M

    2001-04-01

    In this study we found that HDL acts as a potent and specific mitogen in vascular smooth muscle cells (VSMC) by stimulating entry into S-phase and DNA synthesis in a time- and concentration-dependent manner, induction of cyclins D1, E, and A, as well as activation of cyclin D-dependent kinases as inferred from phosphorylation of the retinoblastoma protein (pRb). Moreover, HDL induced activation of the mitogen-activated protein kinase pathway including Raf-, MEK-1, and ERK1/2, as well as the expression of proto-oncogen c-fos, which is controlled by ERK1/2. PD98059, an inhibitor of MEK-1 blocked the mitogenic activity of HDL and cyclin D1 expression. HDL-induced VSMC proliferation, cell cycle progression, cyclin D1 expression, and activation of the Raf-1/MEK-1/ERK1/2 cascade were blocked by preincubation of cells with pertussis toxin indicating involvement of trimeric G-protein. By contrast, none of these responses was inhibited by the protein kinase C inhibitor, GF109203X. The mitogenic effects of native HDL were not mimicked by apo A-I, reconstituted HDL containing apo A-I, or cholesterol-containing liposomes. In conclusion, HDL possesses an intrinsic property to induce G-protein- and MAP-kinase-dependent proliferation and cell cycle progression in VSMC. The strong and specific mitogenic effect of HDL should be taken into account, when therapeutic strategies to elevate the plasma level of these lipoproteins are developed.

  8. Dopamine Modulates Cell Cycle in the Lateral Ganglionic Eminence

    PubMed Central

    Ohtani, Nobuyo; Goto, Tomohide; Waeber, Christian; Bhide, Pradeep G.

    2005-01-01

    Dopamine is a neuromodulator the functions of which in the regulation of complex behaviors such as mood, motivation, and attention are well known. Dopamine appears in the brain early in the embryonic period when none of those behaviors is robust, raising the possibility that dopamine may influence brain development. The effects of dopamine on specific developmental processes such as neurogenesis are not fully characterized. The neostriatum is a dopamine-rich region of the developing and mature brain. If dopamine influenced neurogenesis, the effects would likely be pronounced in the neostriatum. Therefore, we examined whether dopamine influenced neostriatal neurogenesis by influencing the cell cycle of progenitor cells in the lateral ganglionic eminence (LGE), the neuroepithelial precursor of the neostriatum. We show that dopamine arrives in the LGE via the nigrostriatal pathway early in the embryonic period and that neostriatal neurogenesis progresses in a dopamine-rich milieu. Dopamine D1-like receptor activation reduces entry of progenitor cells from the G1-to S-phase of the cell cycle, whereas D2-like receptor activation produces the opposite effects by promoting G1- to S-phase entry. D1-like effects are prominent in the ventricular zone, and D2-like effects are prominent in the subventricular zone. The overall effects of dopamine on the cell cycle are D1-like effects, most likely because of the preponderance of D1-like binding sites in the embryonic neostriatum. These data reveal a novel developmental role for dopamine and underscore the relevance of dopaminergic signaling in brain development. PMID:12684471

  9. Model scenarios for evolution of the eukaryotic cell cycle.

    PubMed Central

    Novak, B; Csikasz-Nagy, A; Gyorffy, B; Nasmyth, K; Tyson, J J

    1998-01-01

    Progress through the division cycle of present day eukaryotic cells is controlled by a complex network consisting of (i) cyclin-dependent kinases (CDKs) and their associated cyclins, (ii) kinases and phosphatases that regulate CDK activity, and (iii) stoichiometric inhibitors that sequester cyclin-CDK dimers. Presumably regulation of cell division in the earliest ancestors of eukaryotes was a considerably simpler affair. Nasmyth (1995) recently proposed a mechanism for control of a putative, primordial, eukaryotic cell cycle, based on antagonistic interactions between a cyclin-CDK and the anaphase promoting complex (APC) that labels the cyclin subunit for proteolysis. We recast this idea in mathematical form and show that the model exhibits hysteretic behaviour between alternative steady states: a Gl-like state (APC on, CDK activity low, DNA unreplicated and replication complexes assembled) and an S/M-like state (APC off, CDK activity high, DNA replicated and replication complexes disassembled). In our model, the transition from G1 to S/M ('Start') is driven by cell growth, and the reverse transition ('Finish') is driven by completion of DNA synthesis and proper alignment of chromosomes on the metaphase plate. This simple and effective mechanism for coupling growth and division and for accurately copying and partitioning a genome consisting of numerous chromosomes, each with multiple origins of replication, could represent the core of the eukaryotic cell cycle. Furthermore, we show how other controls could be added to this core and speculate on the reasons why stoichiometric inhibitors and CDK inhibitory phosphorylation might have been appended to the primitive alternation between cyclin accumulation and degradation. PMID:10098216

  10. Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells

    PubMed Central

    Hansberg-Pastor, Valeria

    2017-01-01

    Progesterone-induced blocking factor (PIBF) is a progesterone (P4) regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM) from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM) blocked this effect. PIBF (100 ng/mL) increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h) and U251 (24 and 48 h) cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells. PMID:28168193

  11. A conserved DNA damage response pathway responsible for coupling the cell division cycle to the circadian and metabolic cycles.

    PubMed

    Chen, Zheng; McKnight, Steven L

    2007-12-01

    The circadian clock drives endogenous oscillations of cellular and physiological processes with a periodicity of approximately 24 h. Progression of the cell division cycle (CDC) has been found to be coupled to the circadian clock, and it has been postulated that gating of the CDC by the circadian cycle may have evolved to protect DNA from the mutagenic effects of ultraviolet light. When grown under nutrient-limiting conditions in a chemostat, prototrophic strains of budding yeast, Saccharomyces cerevisiae, adopt a robust metabolic cycle of ultradian dimensions that temporally compartmentalizes essential cellular events. The CDC is gated by this yeast metabolic cycle (YMC), with DNA replication strictly segregated away from the oxidative phase when cells are actively respiring. Mutants impaired in such gating allow DNA replication to take place during the respiratory phase of the YMC and have been found to suffer significantly elevated rates of spontaneous mutation. Analogous to the circadian cycle, the YMC also employs the conserved DNA checkpoint kinase Rad53/Chk2 to facilitate coupling with the CDC. These studies highlight an evolutionarily conserved mechanism that seems to confine cell division to particular temporal windows to prevent DNA damage. We hypothesize that DNA damage itself might constitute a "zeitgeber", or time giver, for both the circadian cycle and the metabolic cycle. We discuss these findings in the context of a unifying theme underlying the circadian and metabolic cycles, and explore the relevance of cell cycle gating to human diseases including cancer.

  12. CTLA-4 ligation blocks CD28-dependent T cell activation [published erratum appears in J Exp Med 1996 Jul 1;184(1):301

    PubMed Central

    1996-01-01

    CTLA-4 is a CD28 homologue believed to be a negative regulator of T cell function. However, the mechanism of this downregulatory activity is not well understood. The present study was designed to examine the effect of CTLA-4 ligation on cytokine production, cell survival, and cell cycle progression. The results demonstrate that the primary effect of CTLA-4 ligation is not the induction of apoptosis. Instead, CTLA-4 signaling blocks IL-2 production, IL-2 receptor expression, and cell cycle progression of activated T cells. Moreover, the effect of CTLA-4 signaling was manifested after initial T cell activation. Inhibition of IL-2 receptor expression and cell cycle progression was more pronounced at late (72 h) time points after initial activation. The effects of anti-CTLA-4 mAbs were most apparent in the presence of optimal CD28- mediated costimulation consistent with the finding that CTLA-4 upregulation was CD28-dependent. Finally, the addition of exogenous IL- 2 to the cultures restored IL-2 receptor expression and T cell proliferation. These results suggest that CTLA-4 signaling does not regulate cell survival or responsiveness to IL-2, but does inhibit CD28- dependent IL-2 production. PMID:8676075

  13. Hubble Space Telescope solar cell module thermal cycle test

    NASA Technical Reports Server (NTRS)

    Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar

    1992-01-01

    The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.

  14. Numerical Simulation of Current Distribution in Cathode Carbon Block of an Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Tao, Wenju; Li, Tuofu; Wang, Zhaowen; Gao, Bingliang; Shi, Zhongning; Hu, Xianwei; Cui, Jianzhong

    2015-11-01

    Cathode carbon block wear is the main limiting factor for the lifetime of aluminum reduction cells. The wear rate is enhanced by current density. In this article, the current distribution at the surface of carbon block was calculated using a thermoelectric coupled model. Then the effects of effective length ( l e), height of the cathode carbon block ( h c), and width and height of the collector ( w b and h b) on current distribution were investigated. The results show that l e has a great effect on the current distribution. With l e decreasing, the maximum current density increases rapidly and shifts toward the cell center. When the l e decreases from 1.67 m to 1.51 m, the maximum current density increases by 57.9%. Moreover, the maximum current density will be reduced with increasing h c or h b × w b. For h b × w b = 180 mm × 180 mm2, the maximum current density is reduced by 27.8%. However, increasing h c or h b × w b will decrease the temperature in the cathode carbon block. The results of this study may provide the database optimization of cell operation and design.

  15. Characterization of functionally active interleukin-18/eGFP fusion protein expression during cell cycle phases in recombinant chicken DF1 Cells.

    PubMed

    Wu, Hsing Chieh; Chen, Yu San; Shien, Jui Hung; Shen, Pin Chun; Lee, Long Huw

    2016-05-01

    The dependence of foreign gene expression on cell cycle phases in mammalian cells has been described. In this study, a DF1/chIL-18a cell line that stably expresses the fusion protein chIL-18 was constructed and the enhanced green fluorescence protein connected through a (G4 S)3 linker sequence investigated the relationship between cell cycle phases and fusion protein production. DF1/chIL-18a cells (1 × 10(5) ) were inoculated in 60-mm culture dishes containing 5 mL of media to achieve 50%-60% confluence and were cultured in the presence of the cycle-specific inhibitors 10058-F4, aphidicolin, and colchicine for 24 and 48 h. The percentage of cell density and mean fluorescence intensity in each cell cycle phase were assessed using flow cytometry. The inhibitors effectively arrested cell growth. The fusion protein production rate was higher in the S phase than in the G0/G1 and G2/M phases. When cell cycle progression was blocked in the G0/G1, S, and G2/M phases by the addition of 10058-F4, aphidicolin, and colchicine, respectively, the aphidicolin-induced single cells showed higher fusion protein levels than did the 10058-F4- or colchicine-induced phase cells and the uninduced control cells. Although the cells did not proliferate after the drug additions, the amount of total fusion protein accumulated in aphidicolin-treated cells was similar to that in the untreated cultures. Fusion protein is biologically active because it induces IFN-γ production in splenocyte cultures of chicken. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:581-591, 2016.

  16. Effect of diphenylhydantoin and cortisol on the cell cycle

    SciTech Connect

    MacKinney, A.A. Jr.; Knobeloch, L.; Norback, D.

    1988-06-01

    Normal human lymphocytes cultured in the presence of phytohemagglutinin were blocked in G/sub 0/G/sub 1/ when diphenylhydantoin (DPH) or cortisol 3.6 x 10/sup -4/ M was added at the beginning of culture. The suppression of culture growth was analyzed by flow cytometry and confirmed by (/sup 3/H)thymidine incorporation and mitotic rate analysis. The correlation of these measurements with flow cytometry was good for DNA synthesis and excellent for mitosis. There was an additive effect of the G/sub 0/G/sub 1/ retention of cells when both drugs were present in the culture. These data may partially explain the suppression of cell-mediated immunity which occurs in DPH-treated patients.

  17. Preparative electrophoresis of cultured human cells: Effect of cell cycle phase

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Todd, P. W.; Goolsby, C. L.; Walker, J. T.

    1985-01-01

    Human epithelioid T-1E cells were cultured in suspension and subjected to density gradient electrophoresis upward in a vertical column. It is indicated that the most rapidly migrating cells were at the beginning of the cell cycle and the most slowly migrating cells were at the end of the cell cycle. The fastest migrating cells divided 24 hr later than the slowest migrating cells. Colonies developing from slowly migrating cells had twice as many cells during exponential growth as did the most rapidly migrating cells, and the numbers of cells per colony at any time was inversely related to the electrophoretic migration rate. The DNA measurements by fluorescence flow cytometry indicates that the slowest migrating cell populations are enriched in cells that have twice as much DNA as the fastest migrating cells. It is concluded that electrophoretic mobility of these cultured human cells declines steadily through the cell cycle and that the mobility is lowest at the end of G sub 2 phase and highest at the beginning of G sub 1 phase.

  18. HDAC2 regulates cell proliferation, cell cycle progression and cell apoptosis in esophageal squamous cell carcinoma EC9706 cells

    PubMed Central

    Li, Shenglei; Wang, Feng; Qu, Yunhui; Chen, Xiaoqi; Gao, Ming; Yang, Jianping; Zhang, Dandan; Zhang, Na; Li, Wencai; Liu, Hongtao

    2017-01-01

    Increasing evidence has demonstrated that histone deacetylase 2 (HDAC2) participates in the regulation of a variety of biological processes in numerous tumors. However, the potential role of HDAC2 in the development and progression of esophageal squamous cell carcinoma (ESCC) remains elusive. Immunohistochemistry was utilized to detect the expression of HDAC2, Cell Counting Kit-8 was used to determine the cell proliferation, and flow cytometry was employed to investigate cell cycle and cell apoptosis. Finally, western blotting was employed to detect the protein expression of cyclin D1, p21, B cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). The present study found that expression of HDAC2 protein in ESCC tissues was significantly increased compared with atypical hyperplasia tissues and normal esophageal mucosa (P<0.001). The expression of HDAC2 was not associated with the age or gender of patients (P>0.05), but was closely associated with the histological grade, invasion depth, tumor-node-metastasis stage and lymph node metastasis, respectively (all P<0.001). HDAC2 small interfering RNA effectively downregulated the expression of HDAC2 protein in ESCC EC9706 cells. Downregulation of HDAC2 expression evidently inhibited cell proliferation, arrested cell cycle at the G0/G1 phase and induced cell apoptosis in ESCC EC9706 cells, coupled with increased expression of p21 and Bax proteins and decreased expression of cyclin D1 and Bcl-2 proteins. Overall, the present findings suggest that HDAC2 may play an important role in the development and progression of ESCC and be considered as a novel molecular target for the treatment of ESCC. PMID:28123574

  19. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes.

    PubMed

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-04-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.

  20. Vapor of Volatile Oils from Litsea cubeba Seed Induces Apoptosis and Causes Cell Cycle Arrest in Lung Cancer Cells

    PubMed Central

    Seal, Soma; Chatterjee, Priyajit; Bhattacharya, Sushmita; Pal, Durba; Dasgupta, Suman; Kundu, Rakesh; Mukherjee, Sandip; Bhattacharya, Shelley; Bhuyan, Mantu; Bhattacharyya, Pranab R.; Baishya, Gakul; Barua, Nabin C.; Baruah, Pranab K.; Rao, Paruchuri G.; Bhattacharya, Samir

    2012-01-01

    Non-small cell lung carcinoma (NSCLC) is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s) as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO) deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser473 and Thr308; through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation. PMID:23091605

  1. Vapor of volatile oils from Litsea cubeba seed induces apoptosis and causes cell cycle arrest in lung cancer cells.

    PubMed

    Seal, Soma; Chatterjee, Priyajit; Bhattacharya, Sushmita; Pal, Durba; Dasgupta, Suman; Kundu, Rakesh; Mukherjee, Sandip; Bhattacharya, Shelley; Bhuyan, Mantu; Bhattacharyya, Pranab R; Baishya, Gakul; Barua, Nabin C; Baruah, Pranab K; Rao, Paruchuri G; Bhattacharya, Samir

    2012-01-01

    Non-small cell lung carcinoma (NSCLC) is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s) as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO) deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser(473) and Thr(308); through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation.

  2. Flow cytometric analysis of the cell cycle in chronic gastritis.

    PubMed

    Guerci, A; Chambre, J F; Franck, P; Floquet, J; Gaucher, P; Guerci, O

    1992-09-01

    Flow cytometric cell cycle analysis was recorded in gastric biopsy specimens from patients with normal gastric mucosa (GM), superficial gastritis (SG) and chronic atrophic gastritis (CAG). Cell-cycle analysis showed significantly higher percentages of cells in S- and S+G2/M-phase in CAG than in SG and normal GM (P < 0.0001). Moreover, CAG with severe or moderate atrophy showed significantly higher percentages of cells in S-phase (P < 0.05) and S+G2/M-phase (P < 0.02) than CAG with mild atrophy in antrum. In fundus, even if this increase was observed, it did not reach statistical significance. Consideration of concomitant pathologic findings such as oesophagite, gastric or duodenal ulcer, duodenite or benign polyp allowed a better differentiation of CAG both in antrum and in fundus. Significantly higher S-phase was observed in CAG with severe or moderate atrophy than in CAG with mild atrophy (P < 0.05). No statistically significant results were observed in patients with normal gastric mucosa or chronic gastritis and a concomitant pathologic finding.

  3. Modeling cell-cycle synchronization during embryogenesis in Xenopus laevis

    NASA Astrophysics Data System (ADS)

    McIsaac, R. Scott; Huang, K. C.; Sengupta, Anirvan; Wingreen, Ned

    2010-03-01

    A widely conserved aspect of embryogenesis is the ability to synchronize nuclear divisions post-fertilization. How is synchronization achieved? Given a typical protein diffusion constant of 10 μm^2sec, and an embryo length of 1mm, it would take diffusion many hours to propagate a signal across the embryo. Therefore, synchrony cannot be attained by diffusion alone. We hypothesize that known autocatalytic reactions of cell-cycle components make the embryo an ``active medium'' in which waves propagate much faster than diffusion, enforcing synchrony. We report on robust spatial synchronization of components of the core cell cycle circuit based on a mathematical model previously determined by in vitro experiments. In vivo, synchronized divisions are preceded by a rapid calcium wave that sweeps across the embryo. Experimental evidence supports the hypothesis that increases in transient calcium levels lead to derepression of a negative feedback loop, allowing cell divisions to start. Preliminary results indicate a novel relationship between the speed of the initial calcium wave and the ability to achieve synchronous cell divisions.

  4. Cell and nuclei separation from tissue and from various phases of the cell cycle. Final report

    SciTech Connect

    Pipkin, J.

    1982-05-01

    The Cell Biology laboratory has developed practical methods for routine electrostatic separation of nuclei. Specially designed collection chambers facilitate the capture of sufficient numbers of cells and/or nuclei from precise areas of the cell cycle for biochemical analysis. These analyses include: one- and two-dimensional gel electrophoresis, isoelectric focusing, amino acid analysis and capillary isotachophoretic techniques that are used to demonstrate nuclear regulatory protein synthesis during the in vivo cell cycle after administration of various compounds. Separation of nuclei into homogeneous populations simplifies the detection of biochemical events that transpire in both cycling and non-cycling tissue into more discrete stages for analysis, thus uncluttering the more complex overall picture seen so commonly in generalized proliferating tissue.

  5. Effects of suppressed autophagy on mitochondrial dynamics and cell cycle of N2a cells.

    PubMed

    Gui, Meng-cui; Chen, Bo; Yu, Shan-shan; Bu, Bi-tao

    2014-04-01

    Autophagy dysregulation, mitochondrial dynamic abnormality and cell cycle re-entry are implicated in the vulnerable neurons of patients with Alzheimer's disease. This study was designed to testify the association among autophagy, mitochondrial dynamics and cell cycle in dividing neuroblastoma (N2a) cells. The N2a cells were cultured in vitro and treated with different concentrations of 3-methyladenine (3-MA). The cell viability was detected by methyl thiazolyl tetrazolium (MTT) assay. They were randomly divided into control group (cells cultured in normal culture medium) and 3-MA group (cells treated with 10 mmol/L 3-MA). The cell cycle was analyzed in the two groups 3, 6, 12, and 24 h after treatment by flow cytometry. Western blotting was used to evaluate the expression levels of mitofission 1 (Fis1), mitofusin 2 (Mfn2), microtubule-associated protein 1 light chain 3 (LC3), cell cycle-dependent kinase 4 (CDK4) and cdc2. The flow cytometry revealed that the proportion of cells in G(2)/M was significantly increased, and that in G0/G1 was significantly reduced in the 3-MA group as compared with the control group. Western blotting showed that the expression levels of Fis1, LC3, and CDK4 were significantly up-regulated in the 3-MA group at the four indicated time points as compared with the control group. Mfn2 was initially decreased in the 3-MA group, and then significantly increased at 6 h or 12 h. Cdc2 was significantly increased in the 3-MA group at 3 h and 6 h, and then dropped significantly at 12 h and 24 h. Our data indicated that 3-MA-induced suppressed autophagy may interfere with the cell cycle progression and mitochondrial dynamics, and cause cell death. There are interactions among cell cycle, mitochondrial dynamics and autophagy in neurons.

  6. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression.

    PubMed

    Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A

    2014-05-02

    To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.

  7. Maintenance of imprinting and nuclear architecture in cycling cells.

    PubMed

    Teller, Kathrin; Solovei, Irina; Buiting, Karin; Horsthemke, Bernhard; Cremer, Thomas

    2007-09-18

    Dynamic gene repositioning has emerged as an additional level of epigenetic gene regulation. An early example was the report of a transient, spatial convergence (< or =2 microm) of oppositely imprinted regions ("kissing"), including the Angelman syndrome/Prader-Willi syndrome (AS/PWS) locus and the Beckwith-Wiedemann syndrome locus in human lymphocytes during late S phase. It was argued that kissing is required for maintaining opposite imprints in cycling cells. Employing 3D-FISH with a BAC contig covering the AS/PWS region, light optical, serial sectioning, and quantitative 3D-image analysis, we observed that both loci always retained a compact structure and did not form giant loops. Three-dimensional distances measured among various, homologous AS/PWS segments in 393 human lymphocytes, 132 human fibroblasts, and 129 lymphoblastoid cells from Gorilla gorilla revealed a wide range of distances at any stage of interphase and in G(0). At late S phase, 4% of nuclei showed distances < or =2 microm, 49% showed distances >6 microm, and 18% even showed distances >8 microm. A similar distance variability was found for Homo sapiens (HSA) 15 centromeres in a PWS patient with a deletion of the maternal AS/PWS locus and for the Beckwith-Wiedemann syndrome loci in human lymphocytes. A transient kiss during late S phase between loci widely separated at other stages of the cell cycle seems incompatible with known global constraints of chromatin movements in cycling cells. Further experiments suggest that the previously observed convergence of AS/PWS loci during late S phase was most likely a side effect of the convergence of nucleolus organizer region-bearing acrocentric human chromosomes, including HSA 15.

  8. Ligand modulation of a dinuclear platinum compound leads to mechanistic differences in cell cycle progression and arrest.

    PubMed

    Menon, Vijay R; Peterson, Erica J; Valerie, Kristoffer; Farrell, Nicholas P; Povirk, Lawrence F

    2013-12-15

    Despite similar structures and DNA binding profiles, two recently synthesized dinuclear platinum compounds are shown to elicit highly divergent effects on cell cycle progression. In colorectal HCT116 cells, BBR3610 shows a classical G2/M arrest with initial accumulation in S phase, but the derivative compound BBR3610-DACH, formed by introduction of the 1,2-diaminocyclohexane (DACH) as carrier ligand, results in severe G1/S as well as G2/M phase arrest, with nearly complete S phase depletion. The origin of this unique effect was studied. Cellular interstrand crosslinking as assayed by comet analysis was similar for both compounds, confirming previous in vitro results obtained on plasmid DNA. Immunoblotting revealed a stabilization of p53 and concomitant transient increases in p21 and p27 proteins after treatment with BBR3610-DACH. Cell viability assays and cytometric analysis of p53 and p21 null cells indicated that BBR3610-DACH-induced cell cycle arrest was p21-dependent and partially p53-dependent. However, an increase in the levels of cyclin E was observed with steady state levels of CDK2 and Cdc25A, suggesting that the G1 block occurs downstream of CDK/cyclin complex formation. The G2/M block was corroborated with decreased levels of cyclin A and cyclin B1. Surprisingly, BBR3610-DACH-induced G1 block was independent of ATM and ATR. Finally, both compounds induced apoptosis, with BBR3610-DACH showing a robust PARP-1 cleavage that was not associated with caspase-3/7 cleavage. In summary, BBR3610-DACH is a DNA binding platinum agent with unique inhibitory effects on cell cycle progression that could be further developed as a chemotherapeutic agent complementary to cisplatin and oxaliplatin.

  9. Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells.

    PubMed

    Okamoto, Mayumi; Miyata, Takaki; Konno, Daijiro; Ueda, Hiroki R; Kasukawa, Takeya; Hashimoto, Mitsuhiro; Matsuzaki, Fumio; Kawaguchi, Ayano

    2016-04-20

    During cerebral development, many types of neurons are sequentially generated by self-renewing progenitor cells called apical progenitors (APs). Temporal changes in AP identity are thought to be responsible for neuronal diversity; however, the mechanisms underlying such changes remain largely unknown. Here we perform single-cell transcriptome analysis of individual progenitors at different developmental stages, and identify a subset of genes whose expression changes over time but is independent of differentiation status. Surprisingly, the pattern of changes in the expression of such temporal-axis genes in APs is unaffected by cell-cycle arrest. Consistent with this, transient cell-cycle arrest of APs in vivo does not prevent descendant neurons from acquiring their correct laminar fates. Analysis of cultured APs reveals that transitions in AP gene expression are driven by both cell-intrinsic and -extrinsic mechanisms. These results suggest that the timing mechanisms controlling AP temporal identity function independently of cell-cycle progression and Notch activation mode.

  10. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Nykaza, Jacob Richard

    electrode (RDE) experiments determined the interfacial resistance imposed during cell assembly between the AEM, catalyst, and ionomer was a factor in fuel cell performance. Further RDE studies investigated the electrochemical stability of the PIL block copolymer ionomer under applied potentials, where it was determined that potential cycling increased the degradation compared to constant voltage or open circuit voltage studies. The PIL diblock copolymer was then anion exchanged to the bis(trifluoromethane)sulfonamide (TFSI-) anion form and imbibed with a lithium salt and ionic liquid solution for use as a SPE in lithium-ion batteries resulting in a maximum discharge capacity of 112 mAh g-1 at 0.1 C with a Coulombic efficiency greater than 94% over 100 cycles. PIL block copolymers have promising mechanical properties and transport properties (i.e., ion conductivity) in both the hydrated (hydrophilic anions; Br-, OH-) and dry (hydrophobic anions; TFSI-) states resulting in highly conductive, chemically/thermally stable, and mechanically robust solid-state polymer separators for use as AEMs in AFCs and as SPEs in lithium-ion batteries.

  11. Cell Cycle Dependence of TRIAL Sensitivity in Prostate Cancer Cells

    DTIC Science & Technology

    2007-11-01

    Fig. 1: Effects of the autophagy inhibitor hydroxychloroquine (CQ) on PI-induced downregulation of HIF-1α. Cells were preincubated with CoCl2...of the mice (5 per group) survived therapy and displayed minimal weight loss. Therefore, it appears that a biologically effective dose of TRAIL can...be administered with an MTD dose of bortezomib without excessive toxicity. Fig. 5: Effects of an agonistic anti-DR5 antibody on apoptosis in PC

  12. Methyl-beta-cyclodextrin directly binds methylene blue and blocks both its cell staining and glucose uptake stimulatory effects.

    PubMed

    Scott, Jordan; Tidball, Andrew; Uitvlugt, Jeff M; Lucia, Mario; Vander Griend, Douglas A; Louters, Larry L

    2009-02-01

    GLUT1, the most ubiquitously expressed member of the GLUT family of glucose transporters, can be acutely activated by a variety of cell stresses. Methylene blue activates glucose transport activity of GLUT1 in L929 fibroblast cells presumably by a redox cycling of MB, which generates an oxidative stress. Data shown here reveal that methyl-beta-cyclodextrin (MCD) blocks both the staining of cells and activation of glucose uptake by directly binding to MB. MCD binding to MB was qualitatively demonstrated by a significantly slower dialysis rate of MB in the presence of MCD. Analysis of the complete spectra of aqueous MB solutions and MB plus MCD solutions by a factor analysis program called SIVVU indicated that these equilibria can be modeled by three species: MB monomer, MB dimer, and MCD-MB inclusion complex. The molar extinction coefficients for each species from 500 to 700nm were determined. The equilibrium association constant (K(a)) for MB dimer formation was measured at 5846+/-30M(-1) and the K(a) for formation of the MCD-MB complex was 310+/-10M(-1). MCD also dramatically enhances the destaining rate of MB-stained cells. The loss of MB from the cell is tightly correlated with the loss of activated glucose uptake. This suggests that the MB activation of glucose uptake is likely not caused by its redox cycling, but more likely the result of a specific interaction between MB and a protein directly involved in the activation of GLUT1.

  13. Mitochondrial growth during the cell cycle of Trypanosoma brucei bloodstream forms

    PubMed Central

    Jakob, Martin; Hoffmann, Anneliese; Amodeo, Simona; Peitsch, Camille; Zuber, Benoît; Ochsenreiter, Torsten

    2016-01-01

    Mitochondrial organelles need to be replicated during cell division. Many aspects of this process have been studied in great detail, however the actual size increase and the position of organelle growth are less well understood. We use the protozoan parasite Trypanosoma brucei that contains a single mitochondrion to study organelle biogenesis by fluorescence microscopy. From the analysis of more than 1000 T. brucei bloodstream form cells of a nonsynchronous population we conclude that the mitochondrial network mostly grows from two areas along the main organelle axis, posterior and anterior of the nucleus. Loops and branches from these two areas eventually fuse to build a complex network. Together with the appearance of the division fold in the posterior part of the cell, pruning of the mitochondrial network and finally separation into the two daughter cells occurs. Overall organelle biogenesis is not continuous during cell growth and occurs mostly in the last part of the cell cycle. Furthermore, using 3D STED super resolution microscopy we reconstruct the volume of the organelle and characterize the region where the mitochondrial genome is positioned by serial block face scanning electron microscopy. PMID:27874016

  14. Effects of simulated microgravity on cell cycle in human endothelial cells

    NASA Astrophysics Data System (ADS)

    Sokolovskaya, Alisa A.; Ignashkova, Tatiana I.; Bochenkova, Anna V.; Moskovtsev, Aleksey A.; Baranov, Victor M.; Kubatiev, Aslan A.

    2014-06-01

    The aim of the current study is to investigate effects of simulated microgravity on the cell cycle of endothelial cells. We analyze changes in the cell cycle after exposure of endothelial-like EA.hy 926 cells to simulated microgravity using a Desktop random positioning machine (RPM). Cell cycle profiles determined by flow cytometry show, that the percentage of the cells in the G0/G1 phase after 24 and 96 h of RPM-simulated microgravity is significantly increased as compared to the control group. However, no significant difference is observed after 120 h of RPM-simulated microgravity. In regard to S phase, the percentage of cells is significantly decreased after 24 and 96 h of RPM, respectively; whereas 120 h later, the number of S-phase cells is comparable to the control group. Thus, we show that simulated microgravity inhibits cell cycle progression of human EA.hy 926 cells from the G0/G1 phase to the S phase. We observe an effect of a hibernation-like state, when the growth of the cells in the RPM group slows down, but does not stop. Our results further show that simulated microgravity can affect adhesion of endothelial cells, and alpha-tubulin expression, as most cells begin to detach from the surface of OptiCell unit after 24 h, form aggregates after 48 h, and exhibit accumulation of alpha-tubulin around the nucleus after 48 h of exposure to simulated microgravity conditions. Our results demonstrate a chance in the cell cycle in a low gravitational field.

  15. Monitoring of dynamin during the Toxoplasma gondii cell cycle.

    PubMed

    Caldas, Lucio Ayres; Soares, Leandro Lemgruber; Henrique Seabra, Sergio; Attias, Marcia; de Souza, Wanderley

    2016-12-01

    The obligate intracellular protozoan parasite Toxoplasma gondii actively invades virtually all warm-blooded nucleated cells. This process results in a non-fusogenic vacuole, inside which the parasites replicate continuously until egress signaling is triggered. In this work, we investigated the role of the large GTPase dynamin in the interaction of T. gondii with the host cell by using laser and electron microscopy during three key stages: invasion, development and egress. The detection of dynamin during invasion indicates the occurrence of endocytosis, while T. gondii egress appeared to be independent of dynamin participation. However, the presence of dynamin during T. gondii development suggests that this molecule plays undescribed roles in the tachyzoite's cell cycle.

  16. Cell cycle RNA regulons coordinating early lymphocyte development.

    PubMed

    Galloway, Alison; Turner, Martin

    2017-02-23

    Lymphocytes undergo dynamic changes in gene expression as they develop from progenitor cells lacking antigen receptors, to mature cells that are prepared to mount immune responses. While transcription factors have established roles in lymphocyte development, they act in concert with post-transcriptional and post-translational regulators to determine the proteome. Furthermore, the post-transcriptional regulation of RNA regulons consisting of mRNAs whose protein products act cooperatively allows RNA binding proteins to exert their effects at multiple points in a pathway. Here, we review recent evidence demonstrating the importance of RNA binding proteins that control the cell cycle in lymphocyte development and discuss the implications for tumorigenesis. For further resources related to this article, please visit the WIREs website.

  17. The hemagglutinin protein of highly pathogenic H5N1 influenza viruses overcomes an early block in the replication cycle to promote productive replication in macrophages.

    PubMed

    Cline, Troy D; Karlsson, Erik A; Seufzer, Bradley J; Schultz-Cherry, Stacey

    2013-02-01

    Macrophages are known to be one of the first lines of defense against influenza virus infection. However, they may also contribute to severe disease caused by the highly pathogenic avian (HPAI) H5N1 influenza viruses. One reason for this may be the ability of certain influenza virus strains to productively replicate in macrophages. However, studies investigating the productive replication of influenza viruses in macrophages have been contradictory, and the results may depend on both the type of macrophages used and the specific viral strain. In this work, we investigated the ability of H1 to H16 viruses to productively replicate in primary murine alveolar macrophages and RAW264.7 macrophages. We show that only a subset of HPAI H5N1 viruses, those that cause high morbidity and mortality in mammals, can productively replicate in macrophages, as measured by the release of newly synthesized virus particles into the cell supernatant. Mechanistically, we found that these H5 strains can overcome a block early in the viral life cycle leading to efficient nuclear entry, viral transcription, translation, and ultimately replication. Studies with reassortant viruses demonstrated that expression of the hemagglutinin gene from an H5N1 virus rescued replication of H1N1 influenza virus in macrophages. This study is the first to characterize H5N1 influenza viruses as the only subtype of influenza virus capable of productive replication in macrophages and establishes the viral gene that is required for this characteristic. The ability to productively replicate in macrophages is unique to H5N1 influenza viruses and may contribute to their increased pathogenesis.

  18. Oscillatory Dynamics of Cell Cycle Proteins in Single Yeast Cells Analyzed by Imaging Cytometry

    PubMed Central

    Ball, David A.; Marchand, Julie; Poulet, Magaly; Baumann, William T.; Chen, Katherine C.; Tyson, John J.; Peccoud, Jean

    2011-01-01

    Progression through the cell division cycle is orchestrated by a complex network of interacting genes and proteins. Some of these proteins are known to fluctuate periodically during the cell cycle, but a systematic study of the fluctuations of a broad sample of cell-cycle proteins has not been made until now. Using time-lapse fluorescence microscopy, we profiled 16 strains of budding yeast, each containing GFP fused to a single gene involved in cell cycle regulation. The dynamics of protein abundance and localization were characterized by extracting the amplitude, period, and other indicators from a series of images. Oscillations of protein abundance could clearly be identified for Cdc15, Clb2, Cln1, Cln2, Mcm1, Net1, Sic1, and Whi5. The period of oscillation of the fluorescently tagged proteins is generally in good agreement with the inter-bud time. The very strong oscillations of Net1 and Mcm1 expression are remarkable since little is known about the temporal expression of these genes. By collecting data from large samples of single cells, we quantified some aspects of cell-to-cell variability due presumably to intrinsic and extrinsic noise affecting the cell cycle. PMID:22046265

  19. Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth.

    PubMed

    Feillet, Celine; van der Horst, Gijsbertus T J; Levi, Francis; Rand, David A; Delaunay, Franck

    2015-01-01

    Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumor growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer.

  20. Taurine blocks spontaneous cone contraction but not horizontal cell dark suppression in isolated goldfish retina.

    PubMed

    Baldridge, W H; McLure, P; Pow, D V

    2000-06-01

    The objective of this study was to investigate the effects of taurine on cone retinomotor movements and the responses of cone-driven horizontal cells in dark-adapted teleost retina. In isolated goldfish retina preparations maintained in the dark, cones spontaneously contracted, and the responses of horizontal cells were suppressed. Addition of 5 mM taurine to the physiological solution blocked the spontaneous contraction of cones in the dark but did not block the dark-suppression of horizontal cell responses. These results indicate that the mechanism that leads to horizontal cell dark suppression is not sensitive to taurine. Although both cone retinomotor position and horizontal cell responsiveness are known to be modulated by dopamine, the present results do not support the hypothesis that taurine inhibits dopamine release in the dark because only spontaneous cone contraction was affected by taurine. These results also indicate that spontaneous cone contraction in the dark is not the cause of horizontal cell dark suppression because, in the presence of taurine, cones were elongated yet horizontal cell responses were still suppressed. Consequently, these results make it clear that horizontal cell dark suppression is not an artifact produced by incubating isolated teleost retina preparations in taurine-free physiological solution.

  1. Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis

    PubMed Central

    Kim, Unyoung; Shu, Chih-Wen; Dane, Karen Y.; Daugherty, Patrick S.; Wang, Jean Y. J.; Soh, H. T.

    2007-01-01

    An effective, noninvasive means of selecting cells based on their phase within the cell cycle is an important capability for biological research. Current methods of producing synchronous cell populations, however, tend to disrupt the natural physiology of the cell or suffer from low synchronization yields. In this work, we report a microfluidic device that utilizes the dielectrophoresis phenomenon to synchronize cells by exploiting the relationship between the cell's volume and its phase in the cell cycle. The dielectrophoresis activated cell synchronizer (DACSync) device accepts an asynchronous mixture of cells at the inlet, fractionates the cell populations according to the cell-cycle phase (G1/S and G2/M), and elutes them through different outlets. The device is gentle and efficient; it utilizes electric fields that are 1–2 orders of magnitude below those used in electroporation and enriches asynchronous tumor cells in the G1 phase to 96% in one round of sorting, in a continuous flow manner at a throughput of 2 × 105 cells per hour per microchannel. This work illustrates the feasibility of using laminar flow and electrokinetic forces for the efficient, noninvasive separation of living cells. PMID:18093921

  2. Effects of cell cycle on the uptake of water soluble quantum dots by cells

    NASA Astrophysics Data System (ADS)

    Zheng, Shen; Chen, Ji-Yao; Wang, Jun-Yong; Zhou, Lu-Wei; Peng, Qian

    2011-12-01

    Quantum dots (QDs) with excellent optical properties have become powerful candidates for cell imaging. Although numerous reports have studied the uptake of QDs by cells, little information exists on the effects of cell cycle on the cellular QD uptake. In this report, the effects of cell cycle on the uptake of water soluble thiol-capped CdTe QDs by the human cervical carcinoma Hela cell line, human hepatocellular carcinoma QGY7701 cell line, and human embryonic kidney 293T cell line were studied by means of laser scanning confocal microscopy and flow cytometry. All three cell lines show to take up CdTe QDs via endocytosis. After arresting cells at specific phases with pharmacological agents, the cells in G2/M phase take up the most CdTe QDs, probably due to an increased membrane expansion during mitosis; whereas the cells in G1 phase do the least. A mathematical physics model was built to calculate the relative uptake rates of CdTe QDs by cells in different phases of the cell cycle, with the result as the uptake rate in G2/M phase is 2-4 times higher than that in G1 phase for these three cell lines. The results obtained from this study may provide the information useful for intracellular delivery of QDs.

  3. Impairment of cell cycle progression by sterigmatocystin in human pulmonary cells in vitro.

    PubMed

    Huang, Shujuan; Wang, Juan; Xing, Lingxiao; Shen, Haitao; Yan, Xia; Wang, Junling; Zhang, Xianghong

    2014-04-01

    Sterigmatocystin (ST) is a carcinogenic mycotoxin that is commonly found in human food, animal feed and in the indoor environment. Although the correlation between ST exposure and lung cancer has been widely reported in many studies, the cytotoxicity of ST on human pulmonary cells is not yet fully understood. In the current study, we found that ST could induce DNA double-strand breaks in a human immortalized bronchial epithelial cell line (BEAS-2B cells) and a human lung cancer cell line (A549 cells). In addition, the effects of ST on cell cycle arrest were complex and dependent on the tested ST concentration and cell type. Low concentrations of ST arrested cells in the G2/M phase in BEAS-2B cells and in the S phase in A549 cells, while at high concentration both cells lines were arrested in S and G2/M phases. Furthermore, we observed that the modulation of cyclins and CDK expression showed concomitant changes with cell cycle arrest upon ST exposure in BEAS-2B and A549 cells. In conclusion, ST induced DNA damage and affected key proteins involved in cell cycle regulation to trigger genomic instability, which may be a potential mechanism underlying the developmental basis of lung carcinogenesis.

  4. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells

    PubMed Central

    Pauwels, Laurens; Morreel, Kris; De Witte, Emilie; Lammertyn, Freya; Van Montagu, Marc; Boerjan, Wout; Inzé, Dirk; Goossens, Alain

    2008-01-01

    Jasmonates (JAs) are plant-specific signaling molecules that steer a diverse set of physiological and developmental processes. Pathogen attack and wounding inflicted by herbivores induce the biosynthesis of these hormones, triggering defense responses both locally and systemically. We report on alterations in the transcriptome of a fast-dividing cell culture of the model plant Arabidopsis thaliana after exogenous application of methyl JA (MeJA). Early MeJA response genes encoded the JA biosynthesis pathway proteins and key regulators of MeJA responses, including most JA ZIM domain proteins and MYC2, together with transcriptional regulators with potential, but yet unknown, functions in MeJA signaling. In a second transcriptional wave, MeJA reprogrammed cellular metabolism and cell cycle progression. Up-regulation of the monolignol biosynthesis gene set resulted in an increased production of monolignols and oligolignols, the building blocks of lignin. Simultaneously, MeJA repressed activation of M-phase genes, arresting the cell cycle in G2. MeJA-responsive transcription factors were screened for their involvement in early signaling events, in particular the regulation of JA biosynthesis. Parallel screens based on yeast one-hybrid and transient transactivation assays identified both positive (MYC2 and the AP2/ERF factor ORA47) and negative (the C2H2 Zn finger proteins STZ/ZAT10 and AZF2) regulators, revealing a complex control of the JA autoregulatory loop and possibly other MeJA-mediated downstream processes. PMID:18216250

  5. Flow cytometric analysis of the cell cycle in different coconut palm (Cocos nucifera L.) tissues cultured in vitro.

    PubMed

    Sandoval, A; Hocher, V; Verdeil, J-L

    2003-08-01

    We conducted a study of the cell cycle of coconut palm tissues cultured in vitro in order to regulate regeneration. Coconut palm is a plant for which it is difficult to monitor the ability of the meristematic cells to actively divide. Cell nuclei were isolated from various types of coconut palm tissues with and without in vitro culture. After the nuclei were stained with propidium iodide, relative fluorescence intensity was estimated by flow cytometry. Characterization of the cell cycle reinforced the hypothesis of a block in the G(0)/G(1) and G(1)/S phases of the coconut cells. A time-course study carried out on immature leaves revealed that this block takes place gradually, following the introduction of the material in vitro. Synchronization of in vitro-cultured leaves cells using 60 micro M aphidicholin revealed an increase in the number of nuclei in the S phase after 108 h of treatment. The significance of these results is discussed in relation with the ability of coconut tissue cultured in vitro to divide.

  6. Contraceptive gossypol blocks cell-to-cell communication in human and rat cells.

    PubMed

    Hervé, J C; Pluciennik, F; Bastide, B; Cronier, L; Verrecchia, F; Malassiné, A; Joffre, M; Délèze, J

    1996-10-17

    Gossypol (a polycyclic lipophilic agent naturally present in cottonseed, known as a potent non-steroid antifertility agent and a non-specific enzyme inhibitor) irreversibly impaired the intercellular communication between homologous pairs of various cultured cells, from man or rat, involved (Sertoli or trophoblastic cells) or not involved (ventricular myocytes) in steroidogenesis, in a dose-dependent manner. In serum-free assays, a rapid junctional uncoupling occurred in non-cytotoxic conditions. At 5 microM (approximately twice the peak plasma concentration measured in human patients during chronic administration), gap junctional communication was interrupted within 4 to 10 min, without concomitant rise in the intracellular Ca2+ concentration. The latter importantly increased when gossypol treatment was prolonged (cytotoxic effect). The short term uncoupling effect of gossypol was prevented by serum proteins, but long-lasting treatments (48 h) with moderate concentrations (3 microM) elicited junctional uncoupling and impeded the in vitro differentiation of human trophoblasts.

  7. Effects of heavy ions on cycling stem cells

    NASA Astrophysics Data System (ADS)

    Hagan, Michael P.; Holahan, E. Vincent; Ainsworth, E. John

    Murine marrow stem cells assayed with the spleen colony assay have been shown to be largely in a noncycling state, Go. In the unirradiated animal where these spleen-colony forming units (CFUs) transit normally between a non-proliferative state and active proliferation, exposure to a sufficient dose of ionizing radiation increases the frequency (probability) of this transition. For low-LET irradiation, marrow stem cells are not induced into cycle until a threshold dose is achieved. This dose appears to be in the range 50 to 100 cGy, inducing proliferation in an all-or-nothing manner. For irradiation with heavy charged-particles, however, the threshold dose is dependent on mass and energy. Irradiation with particles of sufficient mass and energy stimulates active proliferation even at the smallest doses tested, 5 cGy. Further, this response does not appear to result from an all-or-nothing effect. Rather, individual animals with intermediate levels of stem cell cycling have been observed. These data support the notion that locally controlled hemopoiesis can be affected by local deposition of radiation damage.

  8. Rate-dependent activation failure in isolated cardiac cells and tissue due to Na+ channel block

    PubMed Central

    Spindler, Anthony J.; Paterson, David; Noble, Denis

    2015-01-01

    While it is well established that class-I antiarrhythmics block cardiac sodium channels, the mechanism of action of therapeutic levels of these drugs is not well understood. Using a combination of mathematical modeling and in vitro experiments, we studied the failure of activation of action potentials in single ventricular cells and in tissue caused by Na+ channel block. Our computations of block and unblock of sodium channels by a theoretical class-Ib antiarrhythmic agent predict differences in the concentrations required to cause activation failure in single cells as opposed to multicellular preparations. We tested and confirmed these in silico predictions with in vitro experiments on isolated guinea-pig ventricular cells and papillary muscles stimulated at various rates (2–6.67 Hz) and exposed to various concentrations (5 × 10−6 to 500 × 10−6 mol/l) of lidocaine. The most salient result was that whereas large doses (5 × 10−4 mol/l or higher) of lidocaine were required to inhibit action potentials temporarily in single cells, much lower doses (5 × 10−6 mol/l), i.e., therapeutic levels, were sufficient to have the same effect in papillary muscles: a hundredfold difference. Our experimental results and mathematical analysis indicate that the syncytial nature of cardiac tissue explains the effects of clinically relevant doses of Na+ channel blockers. PMID:26342072

  9. Naphthazarin enhances ionizing radiation-induced cell cycle arrest and apoptosis in human breast cancer cells.

    PubMed

    Kim, Min Young; Park, Seong-Joon; Shim, Jae Woong; Yang, Kwangmo; Kang, Ho Sung; Heo, Kyu

    2015-04-01

    Naphthazarin (Naph, DHNQ, 5,8-dihydroxy-l,4-naphthoquinone) is one of the naturally available 1,4-naphthoquinone derivatives that are well-known for their anti-inflammatory, antioxidant, antibacterial and antitumor cytotoxic effects in cancer cells. Herein, we investigated whether Naph has effects on cell cycle arrest and apoptosis in MCF-7 human breast cancer cells exposed to ionizing radiation (IR). Naph reduced the MCF-7 cell viability in a dose-dependent manner. We also found that Naph and/or IR increased the p53-dependent p21 (CIP/WAF1) promoter activity. Noteworthy, our ChIP assay results showed that Naph and IR combined treatment activated the p21 promoter via inhibition of binding of multi-domain proteins, DNMT1, UHRF1 and HDAC1. Apoptosis and cell cycle analyses demonstrated that Naph and IR combined treatment induced cell cycle arrest and apoptosis in MCF-7 cells. Herein, we showed that Naph treatment enhances IR-induced cell cycle arrest and death in MCF-7 human breast cancer cells through the p53-dependent p21 activation mechanism. These results suggest that Naph might sensitize breast cancer cells to radiotherapy by enhancing the p53-p21 mechanism activity.

  10. Smoc2 potentiates proliferation of hepatocellular carcinoma cells via promotion of cell cycle progression

    PubMed Central

    Su, Jing-Ran; Kuai, Jing-Hua; Li, Yan-Qing

    2016-01-01

    AIM To determine the influence of Smoc2 on hepatocellular carcinoma (HCC) cell proliferation and to find a possible new therapeutic target for preventing HCC progression. METHODS We detected expression of Smoc2 in HCC tissues and corresponding non-tumor liver (CNL) tissues using PCR, western blot, and immunohistochemistry methods. Subsequently, we down-regulated and up-regulated Smoc2 expression using siRNA and lentivirus transfection assay, respectively. Then, we identified the effect of Smoc2 on cell proliferation and cell cycle using CCK-8 and flow cytometry, respectively. The common cell growth signaling influenced by Smoc2 was detected by western blot assay. RESULTS The expression of Smoc2 was significantly higher in HCC tissues compared with CNL tissues. Overexpression of Smoc2 promoted HCC cell proliferation and cell cycle progression. Down-regulation of Smoc2 led to inhibition of cell proliferation and cell cycle progression. Smoc2 had positive effect on ERK and AKT signaling. CONCLUSION Smoc2 promotes the proliferation of HCC cells through accelerating cell cycle progression and might act as an anti-cancer therapeutic target in the future. PMID:28018113

  11. Chemosensitization of Cancer Cells via Gold Nanoparticle-Induced Cell Cycle Regulation

    PubMed Central

    Mackey, Megan A.; El-Sayed, Mostafa A.

    2015-01-01

    We have previously shown that plasmonic nanoparticles conjugated with nuclear-targeting and cytoplasm-targeting peptides (NLS and RGD, respectively) are capable of altering the cell cycle of human oral squamous carcinoma cells (HSC-3). In the present work, we show that this regulation of the cell cycle can be exploited to enhance the efficacy of a common chemotherapeutic agent, 5-Fluorouracil, by pre-treating cells with gold nanoparticles. Utilizing flow cytometry cell cycle analysis, we were able to quantify the 5-Fluorouracil efficacy as an accumulation of cells in the S phase with a depletion of cells in the G2/M phase. Two gold nanoparticle sizes were tested in this work; 30 nm with a surface plasmon resonance at 530 nm and 15 nm with a surface plasmon resonance at 520 nm. The 30 nm nuclear-targeted gold nanoparticles (NLS-AuNPs) showed the greatest 5-Fluorouracil efficacy enhancement when 5-Fluorouracil treatment (500 μM, 48 h) is preceded by a 24 h treatment with nanoparticles. In conclusion, we show that nuclear-targeted 30 nm gold nanoparticles enhance 5-Fluorouracil drug efficacy in HSC-3 cells via regulation of the cell cycle, a chemosensitization technique that could potentially be expanded to different cell lines and different chemotherapies. PMID:24329577

  12. Novel mechanism of harmaline on inducing G2/M cell cycle arrest and apoptosis by up-regulating Fas/FasL in SGC-7901 cells.

    PubMed

    Wang, Yihai; Wang, Chunhua; Jiang, Chenguang; Zeng, Hong; He, Xiangjiu

    2015-12-18

    Harmaline (HAR), a natural occurrence β-carboline alkaloid, was isolated from the seeds of Peganum harmala and exhibited potent antitumor effect. In this study, the anti-gastric tumor effects of HAR were firstly investigated in vitro and in vivo. The results strongly showed that HAR could inhibit tumor cell proliferation and induce G2/M cell cycle arrest accompanied by an increase in apoptotic cell death in SGC-7901 cancer cells. HAR could up-regulate the expressions of cell cycle-related proteins of p-Cdc2, p21, p-p53, Cyclin B and down-regulate the expression of p-Cdc25C. In addition, HAR could up-regulate the expressions of Fas/FasL, activated Caspase-8 and Caspase-3. Moreover, blocking Fas/FasL signaling could markedly inhibit the apoptosis caused by HAR, suggesting that Fas/FasL mediated pathways were involved in HAR-induced apoptosis. Interestingly, HAR could also exert on antitumor activity with a dose of 15 mg/kg/day in vivo, which was also related with cell cycle arrest. These new findings provided a framework for further exploration of HAR which possess the potential antitumor activity by inducing cell cycle arrest and apoptosis.

  13. Novel mechanism of harmaline on inducing G2/M cell cycle arrest and apoptosis by up-regulating Fas/FasL in SGC-7901 cells

    PubMed Central

    Wang, Yihai; Wang, Chunhua; Jiang, Chenguang; Zeng, Hong; He, Xiangjiu

    2015-01-01

    Harmaline (HAR), a natural occurrence β-carboline alkaloid, was isolated from the seeds of Peganum harmala and exhibited potent antitumor effect. In this study, the anti-gastric tumor effects of HAR were firstly investigated in vitro and in vivo. The results strongly showed that HAR could inhibit tumor cell proliferation and induce G2/M cell cycle arrest accompanied by an increase in apoptotic cell death in SGC-7901 cancer cells. HAR could up-regulate the expressions of cell cycle-related proteins of p-Cdc2, p21, p-p53, Cyclin B and down-regulate the expression of p-Cdc25C. In addition, HAR could up-regulate the expressions of Fas/FasL, activated Caspase-8 and Caspase-3. Moreover, blocking Fas/FasL signaling could markedly inhibit the apoptosis caused by HAR, suggesting that Fas/FasL mediated pathways were involved in HAR-induced apoptosis. Interestingly, HAR could also exert on antitumor activity with a dose of 15 mg/kg/day in vivo, which was also related with cell cycle arrest. These new findings provided a framework for further exploration of HAR which possess the potential antitumor activity by inducing cell cycle arrest and apoptosis. PMID:26678950

  14. Block by calcium of ATP-activated channels in pheochromocytoma cells

    PubMed Central

    1993-01-01

    We have investigated the effects of Ca2+ on Na+ influx through ATP- activated channels in pheochromocytoma PC12 cells using single channel current recordings. Under cell-attached patch-clamp conditions with 150 mM Na+ and 2 mM Ca2+ in the pipette, the unitary current activity showed an open level of about -4.3 pA at -150 mV. The channel opening was interrupted by flickery noise as well as occasional transition to a subconducting state of about -1.7 pA at -150 mV. The open level was decreased with increased external Ca2+, suggesting that external Ca2+ blocks Na+ permeation. We assessed the block by Ca2+ as the mean amplitude obtained with heavy filtration according to Pietrobon et al. (Pietrobon, D., B. Prod'hom, and P. Hess, 1989. J. Gen. Physiol. 94:1- 21). The block was concentration dependent with a Hill coefficient of 1 and a half-maximal concentration of approximately 6 mM. A similar block was observed with other divalent cations, and the order of potency was Cd2+ > Mn2+ > Mg2+ not equal to Ca2+ > Ba2+. High Ca2+, Mg2+ and Ba2+ did not block completely, probably because they can carry current in the channel. The block by external Ca2+ did not exhibit voltage dependence between -100 and -210 mV. In the inside-out patch-clamp configuration, the amplitude of inward channel current obtained with 150 mM external Na+ was reduced by increased internal Ca2+. The reduction was observed at lower concentrations than that by external Ca2+. Internal Ba2+ and Cd2+ induced similar reduction in current amplitude. This inhibitory effect of internal Ca2+ was voltage dependent; the inhibition was relieved with hyperpolarization. The results suggest that both external and internal Ca2+ can block Na+ influx through the ATP-activated channel. A simple one-binding site model with symmetric energy barriers is not sufficient to explain the Ca2+ block from both sides. PMID:8386218

  15. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    SciTech Connect

    Hu, Xiaolan; Zhang, Xianqi; Qiu, Shuifeng; Yu, Daihua; Lin, Shuxin

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  16. MYC-repressed long noncoding RNAs antagonize MYC-induced cell proliferation and cell cycle progression

    PubMed Central

    Jeon, Young-Jun; Fadda, Paolo; Alder, Hansjuerg; Croce, Carlo M.

    2015-01-01

    The transcription factor MYC is a proto-oncogene regulating cell proliferation, cell cycle, apoptosis and metabolism. The recent identification of MYC-regulated long noncoding RNAs (lncRNAs) expands our knowledge of the role of lncRNAs in MYC functions. Here, we identify MYC-repressed lncRNAs named MYCLo-4, -5 and -6 by comparing 3 categories of lncRNAs (downregulated in highly MYC-expressing colorectal cancer, up-regulated by MYC knockdown in HCT116, upregulated by MYC knockdown in RKO). The MYC-repressed MYCLos are implicated in MYC-modulated cell proliferation through cell cycle regulation. By screening cell cycle-related genes regulated by MYC and the MYC-repressed MYCLos, we identified the MYC-repressed gene GADD45A as a target gene of the MYC-repressed MYCLos such as MYCLo-4 and MYCLo-6. PMID:26003165

  17. Pathobiology of Pneumocystis pneumonia: life cycle, cell wall and cell signal transduction.

    PubMed

    Skalski, Joseph H; Kottom, Theodore J; Limper, Andrew H

    2015-09-01

    Pneumocystis is a genus of ascomycetous fungi that are highly morbid pathogens in immunosuppressed humans and other mammals. Pneumocystis cannot easily be propagated in culture, which has greatly hindered understanding of its pathobiology. The Pneumocystis life cycle is intimately associated with its mammalian host lung environment, and life cycle progression is dependent on complex interactions with host alveolar epithelial cells and the extracellular matrix. The Pneumocystis cell wall is a varied and dynamic structure containing a dominant major surface glycoprotein, β-glucans and chitins that are important for evasion of host defenses and stimulation of the host immune system. Understanding of Pneumocystis cell signaling pathways is incomplete, but much has been deduced by comparison of the Pneumocystis genome with homologous genes and proteins in related fungi. In this mini-review, the pathobiology of Pneumocystis is reviewed, with particular focus on the life cycle, cell wall components and cell signal transduction.

  18. Forty-five years of cell-cycle genetics

    PubMed Central

    Reid, Brian J.; Culotti, Joseph G.; Nash, Robert S.; Pringle, John R.

    2015-01-01

    In the early 1970s, studies in Leland Hartwell’s laboratory at the University of Washington launched the genetic analysis of the eukaryotic cell cycle and set the path that has led to our modern understanding of this centrally important process. This 45th-anniversary Retrospective reviews the steps by which the project took shape, the atmosphere in which this happened, and the possible morals for modern times. It also provides an up-to-date look at the 35 original CDC genes and their human homologues. PMID:26628751

  19. Fourier analysis of cell-wise Block-Jacobi splitting in two-dimensional geometry

    SciTech Connect

    Rosa, Massimiliano; Warsa, James S; Kelley, Timothy M

    2009-01-01

    A Fourier analysis is conducted in two-dimensional (2D) geometry for the discrete-ordinates (SN) approximation of the neutron transport problem solved with Richardson iteration (Source Iteration) using the cell-wise Block-Jacobi (B1) algorithm. The results of the Fourier analysis show that convergence of cell-wise BJ can degrade, leading to a spectral radius equal to 1, in problems containing optically thin cells. For problems containing cells that are optically thick, instead, the spectral radius tends to O. Hence, in the optically thick-cell regime, cell-wise BJ is rapidly convergent even for problems that are scattering dominated, with a scattering ratio c close to I.

  20. Distinct modes of centromere protein dynamics during cell cycle progression in Drosophila S2R+ cells.

    PubMed

    Lidsky, Peter V; Sprenger, Frank; Lehner, Christian F

    2013-10-15

    Centromeres are specified epigenetically in animal cells. Therefore, faithful chromosome inheritance requires accurate maintenance of epigenetic centromere marks during progression through the cell cycle. Clarification of the mechanisms that control centromere protein behavior during the cell cycle should profit from the relatively simple protein composition of Drosophila centromeres. Thus we have analyzed the dynamics of the three key players Cid/Cenp-A, Cenp-C and Cal1 in S2R+ cells using quantitative microscopy and fluorescence recovery after photobleaching, in combination with novel fluorescent cell cycle markers. As revealed by the observed protein abundances and mobilities, centromeres proceed through at least five distinct states during the cell cycle, distinguished in part by unexpected Cid behavior. In addition to the predominant Cid loading onto centromeres during G1, a considerable but transient increase was detected during early mitosis. A low level of Cid loading was detected in late S and G2, starting at the reported time of centromere DNA replication. Our results reveal the complexities of Drosophila centromere protein dynamics and its intricate coordination with cell cycle progression.